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ABSTRACT 

Protein kinases regulate various cell signaling events in a diverse range of species through 

phosphorylation. The phosphorylation occurs upon transferring the terminal phosphate of an 

ATP molecule to a designated target residue. Due to the central role of protein kinases in 

proliferative pathways, point mutations occurring within or in the vicinity of ATP binding pocket 

can render the enzyme overactive, leading to cancer. Combatting such mutation-induced effects 

with the available drugs has been a challenge, since these mutations usually happen to be drug 

resistant. Therefore, the functional study of naturally and/or artificially occurring kinase 

mutations have been at the center of attention in diverse biology-related disciplines. 

Unfortunately, rapid experimental exploration of the impact of such mutations remains to be a 

challenge due to technical and economical limitations. Therefore, the availability of kinase-

ligand binding affinity prediction tools is of great importance. Within this context, we have 

tested six state-of-the-art web-based affinity predictors (DSX-ONLINE, KDEEP, 

HADDOCK2.2, PDBePISA, Pose&Rank, and PRODIGY-LIG) in assessing the impact of kinase 

mutations with their ligand interactions. This assessment is performed on our structure-based 

protein kinase mutation benchmark, BINDKIN. BINDKIN contains 23 wild type-mutant pairs of 

kinase-small molecule complexes, together with their corresponding binding affinity data (in the 

form of IC50, Kd, and Ki). The web-server performances over BINDKIN show that the raw server 

predictions fail to produce good correlations with the experimental data. However, when we start 

looking in to the direction of change (whether a mutation improves/worsens the binding), we 

observe that over Ki data, DSX-ONLINE achieves a Pearson’s R correlation coefficient of 0.97. 

When we used homology models instead of crystal structures, this correlation drops to 0.45. 

These results highlight that there is still room to improve the available web-based predictors to 
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estimate the impact of protein kinase point mutations. We present our BINDKIN benchmark and 

all the related results online for the sake of aiding such improvement efforts. Our files can be 

reached at https://github.com/CSB-KaracaLab/BINDKIN 
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1. INTRODUCTION 

Protein kinases regulate various cell signaling events in a diverse range of species through 

phosphorylation.1 The phosphorylation occurs upon transferring the terminal phosphate of an 

ATP molecule to a designated serine/threonine/tyrosine/histidine target residue. This transfer 

leads to an addition of three negative charges per phosphosite, thus, to an alteration of the 

physicochemical properties of target protein. The phosphorylation induces critical cellular 

events, such as apoptosis, and transcriptional regulation. Due to their essential role in the cellular 

homeostasis, a deregulation in the kinase activity often results in malignancies. Such 

deregulations stem from expression level changes or point mutations, which are occurring at 

around the kinase’s ATP binding pocket.  

1.1. A brief introduction to the protein kinase catalysis mechanism 

The protein kinases mediate the catalysis through its inter-domain interactions (between the 

globular N-terminal and C-terminal domains) (Figure 1). This architecture grants modularity to 

the enzyme to leverage binding of ATP, cofactors, and other proteins during enzyme’s catalytic 

cycle2. The smaller N-terminal lobe is constituted of antiparallel β-sheets, where the bigger C-

terminal lobe is enriched in α-helices.3–5 The protein kinases confer four catalytically important 

regions, i.e., the gatekeeper residue, the activation loop, the DFG motif, and the glycine-rich 

loop. The kinase gatekeeper residue resides within the ATP binding pocket (Figure 2). In the 

inactive state of the enzyme, the 20-30 residues long activation loop is found in the DFG-out 

conformation. In this state, the catalytic aspartate (D), responsible for transfer of the γ-phosphate 

from ATP to the substrate, blocks the catalytic cleft for substrate entry (Figure 1). In the active 

DFG-in conformation, the side chain of the catalytic aspartate faces the ATP binding pocket, 

making the pocket accessible to substrate binding6,7 (Figure 1). The conformational transition 
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from DFG-out to DFG-in states is induced upon phosphorylation of the activation loop or by

binding of ATP-competitive kinase inhibitors.8–10 In its active form, the catalytic aspartate

chelates the essential cofactor divalent cations, either manganese or magnesium11 (Figure 2).

Together with these cations, ATP molecule is coordinated by the glycine rich loop, and a

conserved lysine of the ATP binding pocket. In this coordination, the N1 and N6 nitrogen atoms

of the adenine ring form specific hydrogen bonds with the backbone of the inter-domain hinge

region (Figure 2).12 The partially conserved nonpolar aliphatic residues (leucine, valine,

phenylalanine, alanine, and methionine) present within the ATP binding pocket provide van der

Waals contacts with ATP’s purine moiety.13 The details on the reaction mechanism are provided

in the Supplementary Information.4,5,14–18 

 

 
 

Figure 1. A representative protein kinase structure in DFG-in/-out states. DFG-in and DFG-out conformations of

Abl kinase were superposed (PDB entries 3KF4 and 3KFA, respectively).19 In the DFG-in conformation (cyan),

activation loop exposes the ATP binding pocket while orienting the catalytic aspartate towards the ATP binding
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pocket. In the DFG-out conformation (pink), activation loop occludes the ATP binding pocket and orients the

catalytic aspartate away from the ATP binding pocket. The glycine-rich loop is shown in orange. 

 

 

Figure 2. The ATP-bound catalytic subunit of cAMP-dependent protein kinase (PDB entry 1ATP).20 The ATP,

hinge region and glycine-rich loop backbone, the conserved lysine, and the catalytic aspartate is shown in sticks.

Manganese ions are depicted as pink spheres. The position of two common gatekeeper residues is shown as smaller

gray spheres. The blue, red, and orange colored atoms correspond to nitrogen, oxygen, and phosphorus, respectively.

The possible dipole-dipole (hydrogen bond), ion-ion (salt bridge), and ion-dipole interactions between the kinase

and ATP are depicted in blue, red, and gray colored dashed lines, respectively. 

1.3. Protein kinase deregulation due to point mutations 
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Kinase point mutations, occurring at the kinase’s functionally important positions, impact cell 

fate by altering the specificity of the enzyme or creating a constitutively active protein kinase. 

These changes eventually lead to severe clinical outcomes. For example, naturally occurring 

bulkier side chain substitutions at the gatekeeper residue cause drug resistance, as this change 

blocks the entry of ATP binding. Two such gatekeeper mutation examples are T315I substitution 

in ABL kinase and T790M substitution in EGFR. Constitutive activity of these mutants is 

attributed to the interaction between the phenylalanine of the DFG motif and the mutant gate-

keeper residue21–25 There are also frequent mutations found within the N-lobe side of the 

activation loop.26 For example, V600 of BRAF is a commonly mutated residue in cancer. The 

V600D/E/G/K/L/M/R mutations of BRAF protein kinase were shown to lead to an over-active 

kinase. This positional change corresponds to the activating mutations D1228V/N/H in MET and 

D816E/H/V/N/F/Y/I in KIT. Another prominent example is the L858R (activation loop) and 

G719S (proximal to glycine-rich loop) mutants of EGFR, which destabilize the inactive 

conformation of the kinase.  

1.3. Utilization of kinase mutations to study kinase function 

ATP binding pocket point mutations have been exploited by drug discovery and chemical 

genetics approaches to dissect the kinase function. In the case of drug discovery, protein kinase 

gatekeeper residues and other critical residues are artificially mutated in model systems to study 

the mechanism of drug resistance. This approach allows scientists to tailor novel compounds to 

be utilized for the treatment of drug resistant tumors.27 Within the context of chemical genetics, 

naturally occurring mutations are used as a tool to evaluate the biological significance of a 

protein kinase.28 For this, the kinase gatekeeper residue is mutated to either glycine or alanine, 

which allows binding of a bulky ATP analogue. So, it provides a useful means to turn the 
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enzyme off without imposing any genetic modification.29,30 Some of these engineered kinases 

include  yeast v-Src (I338G), c-Abl (T315A), Cdk2 (F80G), and Mps1 (M516G),7 and human 

Cdk12 (F813G) mutants.31 Besides their numerous advantages, exploiting ATP binding pocket 

mutations for different research purposes contains important risk factors, such as the improper 

choice of mutation-drug combinations or inactivation of the enzyme upon mutation. To minimize 

these risks, pre-screening of mutation-drug combinations with binding affinity prediction tools 

stands out as a prominent alternative. 

1.4. How far are we in predicting the impact of kinase mutations on their ligand binding 

abilities? 

 Several methods have been proposed to predict protein-ligand binding affinities. Though, only 

recently, the accuracy of these methods has been evaluated within the scope of predicting the 

impact of kinase mutations in ligand binding. In 2018, Hauser et al., compiled a set, involving 

144 ligand affinity data regarding clinically diagnosed Abl mutations.32 A year later, in 2019, 

Aldeghi et al. assessed the capacity of statistical mechanics, mixed physics- and knowledge-

based potentials, and machine learning approaches in predicting the impact of 31 Abl mutations 

with their drug interactions33. Both of these approaches used a hybrid structure-based Abl 

benchmark, composed of wild type co-crystal/docked structures and modeled mutant cases. 

Moreover, both papers assessed the use of sophisticated tools, the employment of which would 

be too complicated for many experimental biologists. Next to these approaches, there are also 

web-based protein-ligand binding affinity predictors, which can easily be used by the non-

experts to plan/guide their experiments. Though, the assessment of these servers within the 

context of kinase mutations has never been done. To compensate for this shortcoming, we have 

benchmarked four web-based protein-ligand scoring functions, DSX-ONLINE, KDEEP, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.07.02.184556doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.184556
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9

Pose&Rank, PRODIGY-LIG, as well as two general scoring functions, PDBePISA, HADDOCK 

Score34–41 to assess their capability in predicting the impact of kinase mutations on their ligand 

binding. We selected these predictors based on their user-friendliness and their widespread use. 

The benchmarking has been performed on our structure-based BINDKIN (effect of point 

mutations on the BINDing affinity of protein KINase-ligand complexes) data set.   

Our BINDKIN benchmark is composed of 23 experimentally determined wild type and mutant 

kinase structures co-crystallized with their ligands. It covers nine kinases (seven EGFR, three 

Abl, three Mps1, three Src, two Cdk2, one ALK, one FGFR, one Kit, and one PKA), 15 unique 

point mutations and binding modes of 18 different ligands. The affinity data associated to each 

benchmark case is reported in the form of IC50, Kd, and Ki (Table S1). Majority of the presented 

mutation positions are within or in the vicinity of the ATP binding pocket. The web-server 

performances over BINDKIN show that the raw server scores fail to produce good correlations 

with the experimental data. However, when we started looking in to the direction of change 

(whether a mutation improves/worsens the binding), we observe that for Ki, DSX-ONLINE 

could predict the impact of point mutations on the binding affinity accurately, while achieving a 

Pearson’s R value as 0.97 (n=6).  The other kinetic metrics lead to less sensitive mutation-

induced changes, thus could not be correlated with any of the scoring terms. Expanding on the 

DSX’s success in reproducing Ki changes, we have probed DSX-ONLINE also on the 

BINDKIN-homology benchmark, which contains the homology models of our Ki cases. This 

resulted in a drop of R from 0.97 to 0.45, highlighting the importance of structure quality in the 

rapid prediction of kinase mutations’ impact. We hope that these results will guide the 

experimentalists in designing their kinase mutation experiments, and the computational 

biologists in improving their protein-ligand scoring functions. The BINDKIN results, server 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.07.02.184556doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.184556
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10

outputs, and other related results are publicly available at https://github.com/CSB-

KaracaLab/BINDKIN  
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2. METHODS 

2.1. The collection of the BINDKIN benchmark 

To construct the BINDKIN (effect of point mutations on the BINDing affinity of protein 

KINase-ligand complexes) benchmark, we performed a thorough search in the Protein Data 

Bank (PDB)42 (https://www.rcsb.org/) and obtained the list of available wild type and mutant 

kinase-ligand complexes. Our final list was obtained by imposing the following criteria: 

• For each mutant complex, there has to be a wild type complex, containing the same 

protein and the ligand. 

• The wild type and mutant complexes should be determined in the same study (i.e., they 

should come from the same paper). 

• For each complex, there has to be experimentally determined binding affinity available in 

the form of IC50, Kd, or Ki together with a related research paper.  The experimental 

binding kinetics data were acquired from PDBbind (http://www.pdbbind-

cn.org/index.php),43–45 Binding DB (https://www.bindingdb.org/bind/index.jsp),46 and 

Binding MOAD (http://bindingmoad.org/Search/advancesearch)47,48 databases.  

• The ligand has to be a non-covalent one. 

This limitation has left us with 23 wild type-mutant complex pairs, making up the BINDKIN 

benchmark. BINDKIN constitutes of seven EGFR, three Abl, three Mps1, three Src, two Cdk2, 

one ALK, one FGFR, one Kit, and one PKA proteins. These complexes present 15 unique point 

mutations distributed. BINDKIN contains binding modes of 18 different ligands. The 

pharmacophoric characteristics of the ligands were evaluated with the ALOGPS web server of 

the Virtual Computational Chemistry Laboratory 

(http://www.virtuallaboratory.org/web/alogps/)49–58 and pkCSM web server 
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(http://structure.bioc.cam.ac.uk/pkcsm).59 The available ligand-related data were obtained from 

RCSB PDB and PubChem (https://pubchem.ncbi.nlm.nih.gov/). Most of the mutation positions 

are within or in the vicinity of the ATP binding pocket (Figure 3A). All the benchmark related 

features are deposited in https://github.com/CSB-KaracaLab/BINDKIN. Further details about the 

benchmark characteristics are described in the Results section. 

2.2. The BINDKIN-homology benchmark 

The wild type and mutant sequences were structurally modeled with the default settings of the 

I-TASSER web server (https://zhanglab.ccmb.med.umich.edu/I-TASSER/).60–62 During 

modeling, the original coordinates of the wild type or mutant structures were excluded from the 

template list. After obtaining the homology models, their corresponding ligands were placed at 

their catalytic binding pocket by using the original crystal structure as a template. The fitting was 

performed with PyMOL.63 In these crude models, steric clashes were observed. To optimize the 

protein-ligand interface, we applied water refinement on each model by using the 

HADDOCK2.2 refinement interface 

(https://milou.science.uu.nl/services/HADDOCK2.2/haddockserver-refinement.html).38 

2.3. The benchmarked web servers 

Before benchmarking, the crystallization buffer additives, ions were discarded from the co-

crystal structures (in the .pdb format). For each occurrence of multiple conformations, the 

conformer with the highest occupancy was retained and the other conformers were removed. In 

one of the EGFR cases (5em7), the ligand 5Q4 is depicted in two different conformations. Both 

conformations were taken into consideration. The ligand coordinate files were converted to 

‘mol2’ and ‘sdf’ formats based on the different file format requirements of the web servers. For 

mol2 conversion Open BABEL (v2.4.1) and for sdf conversion the Online SMILES Translator 
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and Structure File Generator (National Cancer Institute) (https://cactus.nci.nih.gov/translate/) 

were used. For the sdf conversion, the “Aromatic” SMILES representation option (prints the 

unique SMILES string into the ‘sdf’ file) and “3D” coordinates option were chosen. The sdf files 

were protonated by default. The conformations and the 3D coordinates of the ligands were 

retained during conversion to both mol2 and sdf formats.  

Six different web-based scoring functions were used to predict the binding affinities listed 

within BINDKIN. A short description of each web server is provided in Table 1. 

 

Table 1: The list of the benchmarked servers. 

Tool Name Brief Explanation Input Format Link 

DSX-

ONLINE37 

A knowledge-based 

scoring function 

composed of distance-

dependent pair potentials, 

novel torsion angle 

potentials, and solvent 

accessible surface-

dependent potentials. 

Takes the protein and 

ligand coordinate files 

separately in pdb and 

mol2 formats, 

respectively. 

http://pc1664.pharmazie.uni-

marburg.de/drugscore/index.php  

KDEEP35 A deep convolutional 

neural network approach. 

The web server represents 

the binding site as a 24Å 

voxel for pharmacophore 

featurization. It reports 

Takes the protein and 

the ligand coordinate 

files in pdb and sdf 

formats, respectively. 

https://www.playmolecule.org/K

deep/ 
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pKd, ΔG scores. 

Pose&Rank34 PoseScore and RankScore 

are atomistic distance-

dependent statistical 

scoring functions. The 

PoseScore is optimal for 

distinguishing the native 

binding geometries of 

compounds from other 

poses, whereas RankScore 

is optimal for 

distinguishing ligands 

from nonbinding small 

molecules. 

Pose&Rank takes the 

protein and ligand 

coordinate files were 

in pdb and mol2 

formats, respectively. 

https://modbase.compbio.ucsf.ed

u/poseandrank/ 

PRODIGY-

LIG36 

An atomistic contact-

based protein-small 

molecule binding affinity 

predictor. 

Takes the protein and 

the ligand coordinates 

in pdb format. 

https://bianca.science.uu.nl/prodi

gy/ 

HADDOCK2

.238 

HADDOCK2.2 is a 

molecular docking 

program using both force 

field-based and 

knowledge-based scoring 

terms. In this study, we 

used the refinement 

Takes the protein and 

the ligand coordinates 

in pdb format. 

https://milou.science.uu.nl/servic

es/HADDOCK2.2/haddockserve

r-refinement.html 
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interface of 

HADDOCK2.2. 

PDBePISA39–

41 

Scores according to the 

average free energy 

contributions of the 

hydrogen bonds and salt 

bridges between the 

subunits and the solvation 

free energy of folding. 

Takes the protein and 

the ligand coordinates 

in pdb format. 

https://www.ebi.ac.uk/pdbe/pisa/ 

 

2.4.The assessment of the prediction results 

 Three different approaches were used to assess the prediction results. These are direct 

assessment, delta assessment, and binary assessment. Direct assessment is the classical approach 

in which the raw scores were correlated with the experimental ones by linear regression. In the 

delta assessment, mutation-induced affinity (1) and score (2) changes were correlated.  

ΔBAexp = BAexp-mutant - BAexp-wild type (1) 

ΔBApred = BApred-mutant - BApred-wild type (2) 

In the binary assessment, we checked the agreement in the mutation induced direction change. 

In this case, if a mutation leads to a decrease in the experimental binding affinity and it is 

predicted as such by the computational prediction, it was considered as a successful prediction. If 

the increase in the experimental affinity is accompanied by a decrease in the predicted affinity, 

then this case was counted as a misprediction. In the binary assessment, the percentage of correct 

predictions was used as the final success rate. 
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For the linear regression analyses, the associated R and p values, and the plots were generated 

with R (v3.6.1)64, invoked by RStudio (v1.2.5001).65 The following R packages were used to 

generate scatterplots, barplots, or histograms: ggpubr,66 ggplot2,67 magrittr,68 ggrepel,69 grid,64 

and gridExtra.70 The heatmaps were produced with pheatmap71 and RColorBrewer72 R packages.  
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3. RESULTS AND DISCUSSION 

3.1. The BINDKIN benchmark characteristics 

Our benchmark was gathered from the literature by following the criteria listed under Methods. 

BINDKIN benchmark covers nine protein kinases (seven EGFR, three Abl, three Mps1, three 

Src, two Cdk2, one ALK, one FGFR, one Kit, and one PKA), where each wild type kinase has a 

mutant counterpart, leading to 23 pairs (with 8, 9, and 6; IC50-, Kd-, and Ki-associated cases, 

respectively) and 42 individual cases (with 16, 15, and 11; IC50-, Kd-, and Ki- cases, respectively) 

(Table S1). It includes 15 different mutations, corresponding mostly to single point ones (except 

one quadrupole, two triple, and two double mutations). The mutations are distributed within or in 

the vicinity of ATP binding pocket (Figure 3A). In their wild type states, these mutation 

positions exert diverse biophysical characteristics (charged, polar, hydrophobic), whereas in their 

mutant forms they predominantly turn into hydrophobic and charged amino acids. Also, half of 

the mutations result in bulkier residues. The 18 different ligands presented in BINDKIN are 

ATP-competing chemicals. They are nitrogen-rich and mainly hydrogen bond acceptors. From 

the degrees of freedom point of view, BINDKIN ligands cover a diverse range of rotatable 

bonds, i.e., from 0 to 11.  

The binding affinity range spanned by BINDKIN is 0.80 - 350, 0.73 - 185, and 0.07 - 1090 nM 

for IC50, Kd, and Ki subsets, respectively (Table S2).73–88 So, the Ki subset covers the widest 

affinity range (Figure 3B). We classified a mutation as sensitive if the mutant complex's binding 

affinity is at least ten-fold higher than that of its wild type state.32,33,89 When the mutant 

complex's binding affinity is less than one-tenth of its wild type, then this case is classified as 

resistant. According to this criterion, BINDKIN contains five sensitive (four Ki and one Kd) and 
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five resistant cases (three IC50, and two Kd) (Figure 3C). The probability density of affinity

values is left-skewed, meaning that our benchmark is biased towards drug-sensitizing mutations. 

 

 
Figure 3. The BINDKIN benchmark characteristics. (A) The corresponding positions of the mutated residues are

mapped on a representative ATP-bound protein kinase (cAMP-dependent protein kinase with PDB entry 1ATP).20

The orange sphere is the position where the majority of the BINDKIN mutations are located. The blue sphere

indicates the sensitizing mutations positions, where red spheres indicate the mutations conferring resistance, and

light brown ones indicate unclassified mutations. (B) Distribution of the experimental binding kinetics data for the

42 individual cases. The data was split as Kd, Ki, and IC50 and plotted as box-and-whisker plots for the

corresponding wild type and mutant cases. (C) Probability distribution of the experimental kinetic data for wild type

and mutant pairs. The blue and red areas indicate the drug-sensitive and drug-resistant cases, respectively. The KDE

(kernel density estimate) is represented as the light-brown area. 
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3.2. Majority of the web-based scoring functions predicts the direction of affinity 

change caused upon mutation 

Advanced computational tools have been shown to accurately predict protein kinase-

ligand binding affinities.33,89 Considering that these approaches do not have a broad reach 

among the experimental biology community, in this work, we have focused on user-friendly 

web servers' performance within the context of predicting the impact of kinase mutations. To 

this end, we have tested the prediction performances of DSX-ONLINE, HADDOCK2.2 

(refinement interface), KDEEP, PDBePISA, Pose&Rank, and PRODIGY-LIG over 

BINDKIN.  

 

Figure 4. The performance of the various scoring functions accorring to direct assessment. Due to the nature of 

the prediction scores, a negative correlation for pKd (KDEEP) and a positive correlation for rest of the tools is 

expected. (A) DSX-ONLINE, (B) HADDOCK2.2 (HADDOCK score), (C, D) KDEEP (pKd and ΔG), (E) 
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PDBePISA (ΔG), (F, G) Pose&Rank (PoseScore and RankScore), and (H) PRODIGY-LIG (ΔG). The sample size 

for IC50, Kd, and Ki are n=16, n=15, and n=11, respectively. 

To assess the performance of each tool, we have pooled the affinity predictions (n=42) 

and analyzed their association with the experimental data. This direct assessment shows that the 

presented scoring functions could not predict the affinity of BINDKIN cases (Figure 4). Here, 

the highest R-value is produced by KDEEP (R=0.31). When we divide the same set according to 

their kinetic metrics (IC50, Kd, Ki), the highest correlation is obtained with Rank and PRODIGY-

LIG scores over IC50 cases (R=0.55). Considering wild type and mutant states separately did not 

improve the presented correlations (data not shown). 

Next to the direct assessment, we have also performed a relative evaluation of the results 

with delta and binary assessments (Figure 5, see Methods). Delta assessment measures the 

absolute change in the (predicted) affinity upon mutation. Using delta assessment improves R 

values significantly. This is especially the case for the R-performances of KDEEP and DSX-

ONLINE over Ki-cases, which become 0.75 and 0.97, respectively. In the binary assessment, the 

accuracy of predictors was measured by analyzing the agreement between the direction of 

change in the experimental and predicted binding affinities. According to this metric, DSX-

ONLINE accurately predicts the affinity change of all Ki-cases. The success rate of DSX-

ONLINE over Ki-cases is followed by PoseScore and PRODIGY-LIG, both leading to 83% 

accuracy. As another important highlight, KDEEP (pKd) reaches 88% success rate on IC50 cases. 

As an across-metric comparison, over Ki-cases, DSX-ONLINE leads to an R of 0.07 and 0.97 in 

direct and delta assessments, and 100% accuracy in binary assessment. While delta and binary 

assessments agree in this particular case, in some other cases, they contradict. As an example, 

PRODIGY-LIG achieves an R value of 0.29 in the delta assessment, and 83% accuracy in the 
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binary assessment. The contradiction between these two types of assessment approaches can be 

explained by the data spread. For example, a scoring function may achieve a great success on the 

binary assessment, because it can predict the direction of affinity change. However, the same 

scoring function may not be able to predict the amount of change, which would lead to a lower R 

value. Within the context of the biological meaning of the assessment approaches, we suggest the 

concurrent use of delta and binary assessments. 

 
Figure 5. The performance of the various scoring functions according to the delta assessment. Due to the nature 

of the prediction scores, a negative correlation for pKd (KDEEP) and a positive correlation for rest of the tools is 

expected. (A) DSX-ONLINE, (B) HADDOCK2.2 (HADDOCK score), (C, D) KDEEP (pKd and ΔG), (E) 

PDBePISA (ΔG), (F, G) Pose&Rank (PoseScore and RankScore), and (H) PRODIGY-LIG (ΔG). (I) The success 
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rates from the binary assessment are provided as a heatmap. Yellow indicates low accuracy and red indicates high 

accuracy predictions. The sample size for IC50, Kd, and Ki are n=8, n=9, and n=6, respectively. 

Among the three different kinetic data types, according to the direct assessment, IC50 

turns out to be the best descriptor for most of the scoring functions. When the complexes are 

considered as mutant/wild type pairs (delta and binary assessments), Ki comes out as the best 

descriptor (Figure 5). Interestingly, none of the methods could lead to a reliable prediction over 

the Kd set. Kd is a universal measure of binding while Ki is defined for enzymes only, which 

could be the reason of the high R values reported for the Ki-set.90 However, we also cannot rule 

out the fact that success rates of the kinetic descriptors may depend on the number of cases 

present for each descriptor (8 pairs for IC50, 9 pairs for Kd, and 6 pairs for Ki). 

In a real case scenario, the structure of the complex under study might not be available. 

Expanding on this, we have homology modeled the Ki-cases and probed these structures with 

DSX-ONLINE (as this combination gives the best delta and binary assessments). The mutation-

specific features such as hydropathy index change91, residue volume change92, and drug 

resistance or sensitivity were chosen for the characterization of predicted affinities (Figure 6). As 

a result of this exercise, here, we show that the performance of DSX-ONLINE is dramatically 

worsened by the worsened quality of the input structure (an R-drop from 0.97 to 0.45). We also 

observe that a decrease in the residue volume upon mutation is accompanied by an increase of 

polarity and drug sensitivity. However, in this case, the amount of cases is not sufficient to draw 

a conclusion regarding the effect of mutation characteristics on the prediction accuracy. 
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Figure 6. The default scoring function of DSX-ONLINE was tested on the Ki-associated crystal structure and 

homology model structure sets by using delta assessment. Orange color corresponds to the neutral cases (left) or a 

decrease in the hydropathy index (middle) or residue volume (right). Turquoise color corresponds to the sensitive 

cases (left) or an increase in the hydropathy index (middle) or residue volume (right). RMSD: 2.0 ± 0.5. The sample 

size of the crystal structures and model structures are n=6 and n=5, respectively. 
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4. CONCLUSIONS 

The presented study investigates whether web-based scoring functions can predict the impact 

of kinase mutations. To test this, we have compiled BINDKIN, the first structure-based affinity 

benchmark of wild type and mutant protein kinase-small molecule complexes. Based on the Ki-

associated cases of BINDKIN, we have also compiled a homology model benchmark. Using 

these structure sets and their available experimentally binding affinity data, we have assessed the 

prediction accuracy of six different web servers. These are DSX-ONLINE, HADDOCK2.2, 

KDEEP, PDBePISA, Pose&Rank, and PRODIGY-LIG. The prediction accuracy of the web 

servers has been thoroughly analyzed by the use of different assessment approaches. As a result, 

we have observed that (i) Ki is a sensitive descriptor that can capture the effect of mutations on 

binding affinity, (ii) DSX-ONLINE is the best tool in predicting the mutation-induced Ki 

changes, (iii) the quality of the input structure directly impacts the performance of DSX-

ONLINE, and (iv) more kinase mutation-related ligand binding data are needed to perform a 

statistically significant analysis. 
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