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ABSTRACT

Protein Kinases regulate various cell signaling events in a diverse range of species through
phosphorylation. The phosphorylation occurs upon transferring the terminal phosphate of an
ATP molecule to a designated target residue. Due to the central role of protein kinases in
proliferative pathways, point mutations occurring within or in the vicinity of ATP binding pocket
can render the enzyme overactive, leading to cancer. Combatting such mutation-induced effects
with the available drugs has been a challenge, since these mutations usually happen to be drug
resistant. Therefore, the functional study of naturally and/or artificially occurring kinase
mutations have been at the center of attention in diverse biology-related disciplines.
Unfortunately, rapid experimental exploration of the impact of such mutations remains to be a
challenge due to technical and economical limitations. Therefore, the availability of kinase-
ligand binding affinity prediction tools is of great importance. Within this context, we have
tested six state-of-the-art web-based affinity predictors (DSX-ONLINE, KDEEP,
HADDOCK2.2, PDBePISA, Pose&Rank, and PRODIGY-LIG) in assessing the impact of kinase
mutations with their ligand interactions. This assessment is performed on our structure-based
protein kinase mutation benchmark, BINDKIN. BINDKIN contains 23 wild type-mutant pairs of
kinase-small molecule complexes, together with their corresponding binding affinity data (in the
form of ICsp, Ky, and K;). The web-server performances over BINDKIN show that the raw server
predictions fail to produce good correlations with the experimental data. However, when we start
looking in to the direction of change (whether a mutation improves/worsens the binding), we
observe that over K; data, DSX-ONLINE achieves a Pearson’s R correlation coefficient of 0.97.
When we used homology models instead of crystal structures, this correlation drops to 0.45.

These results highlight that there is still room to improve the available web-based predictors to
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estimate the impact of protein kinase point mutations. We present our BINDKIN benchmark and
all the related results online for the sake of aiding such improvement efforts. Our files can be

reached at https://qgithub.com/CSB-KaracalLab/BINDKIN
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1. INTRODUCTION

Protein Kinases regulate various cell signaling events in a diverse range of species through
phosphorylation." The phosphorylation occurs upon transferring the terminal phosphate of an
ATP molecule to a designated serine/threonine/tyrosine/histidine target residue. This transfer
leads to an addition of three negative charges per phosphosite, thus, to an alteration of the
physicochemical properties of target protein. The phosphorylation induces critical cellular
events, such as apoptosis, and transcriptional regulation. Due to their essential role in the cellular
homeostasis, a deregulation in the kinase activity often results in malignancies. Such
deregulations stem from expression level changes or point mutations, which are occurring at
around the kinase’s ATP binding pocket.

1.1. A brief introduction to the protein kinase catalysis mechanism

The protein kinases mediate the catalysis through its inter-domain interactions (between the
globular N-terminal and C-terminal domains) (Figure 1). This architecture grants modularity to
the enzyme to leverage binding of ATP, cofactors, and other proteins during enzyme’s catalytic
cycle?. The smaller N-terminal lobe is constituted of antiparallel p-sheets, where the bigger C-
terminal lobe is enriched in a-helices.*™ The protein kinases confer four catalytically important
regions, i.e., the gatekeeper residue, the activation loop, the DFG motif, and the glycine-rich
loop. The kinase gatekeeper residue resides within the ATP binding pocket (Figure 2). In the
inactive state of the enzyme, the 20-30 residues long activation loop is found in the DFG-out
conformation. In this state, the catalytic aspartate (D), responsible for transfer of the y-phosphate
from ATP to the substrate, blocks the catalytic cleft for substrate entry (Figure 1). In the active
DFG-in conformation, the side chain of the catalytic aspartate faces the ATP binding pocket,

making the pocket accessible to substrate binding®’ (Figure 1). The conformational transition
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from DFG-out to DFG-in states is induced upon phosphorylation of the activation loop or by
binding of ATP-competitive kinase inhibitors.®™® In its active form, the catalytic aspartate
chelates the essential cofactor divalent cations, either manganese or magnesium™ (Figure 2).
Together with these cations, ATP molecule is coordinated by the glycine rich loop, and a
conserved lysine of the ATP binding pocket. In this coordination, the N1 and N6 nitrogen atoms
of the adenine ring form specific hydrogen bonds with the backbone of the inter-domain hinge
region (Figure 2).** The partially conserved nonpolar aliphatic residues (leucine, valine,
phenylalanine, alanine, and methionine) present within the ATP binding pocket provide van der
Waals contacts with ATP’s purine moiety.*® The details on the reaction mechanism are provided

in the Supplementary Information.*>**®
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Figure 1. A representative protein kinase structure in DFG-in/-out states. DFG-in and DFG-out conformations of
Abl kinase were superposed (PDB entries 3KF4 and 3KFA, respectively)." In the DFG-in conformation (cyan),

activation loop exposes the ATP binding pocket while orienting the catalytic aspartate towards the ATP binding
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pocket. In the DFG-out conformation (pink), activation loop occludes the ATP binding pocket and orients the

catalytic aspartate away from the ATP binding pocket. The glycine-rich loop is shown in orange.
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Figure 2. The ATP-bound catalytic subunit of cAMP-dependent protein kinase (PDB entry 1ATP).% The ATP,
hinge region and glycine-rich loop backbone, the conserved lysine, and the catalytic aspartate is shown in sticks.
Manganese ions are depicted as pink spheres. The position of two common gatekeeper residues is shown as smaller
gray spheres. The blue, red, and orange colored atoms correspond to nitrogen, oxygen, and phosphorus, respectively.
The possible dipole-dipole (hydrogen bond), ion-ion (salt bridge), and ion-dipole interactions between the kinase

and ATP are depicted in blue, red, and gray colored dashed lines, respectively.

1.3. Protein kinase deregulation due to point mutations
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Kinase point mutations, occurring at the kinase’s functionally important positions, impact cell
fate by altering the specificity of the enzyme or creating a constitutively active protein kinase.
These changes eventually lead to severe clinical outcomes. For example, naturally occurring
bulkier side chain substitutions at the gatekeeper residue cause drug resistance, as this change
blocks the entry of ATP binding. Two such gatekeeper mutation examples are T315I substitution
in ABL kinase and T790M substitution in EGFR. Constitutive activity of these mutants is
attributed to the interaction between the phenylalanine of the DFG motif and the mutant gate-
keeper residue®? There are also frequent mutations found within the N-lobe side of the
activation loop.? For example, V600 of BRAF is a commonly mutated residue in cancer. The
V600D/E/G/K/L/M/R mutations of BRAF protein kinase were shown to lead to an over-active
kinase. This positional change corresponds to the activating mutations D1228V/N/H in MET and
D816E/H/VIN/F/Y/l in KIT. Another prominent example is the L858R (activation loop) and
G719S (proximal to glycine-rich loop) mutants of EGFR, which destabilize the inactive
conformation of the kinase.

1.3. Utilization of kinase mutationsto study kinase function

ATP binding pocket point mutations have been exploited by drug discovery and chemical
genetics approaches to dissect the kinase function. In the case of drug discovery, protein kinase
gatekeeper residues and other critical residues are artificially mutated in model systems to study
the mechanism of drug resistance. This approach allows scientists to tailor novel compounds to
be utilized for the treatment of drug resistant tumors.?” Within the context of chemical genetics,
naturally occurring mutations are used as a tool to evaluate the biological significance of a
protein kinase.?® For this, the kinase gatekeeper residue is mutated to either glycine or alanine,

which allows binding of a bulky ATP analogue. So, it provides a useful means to turn the
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enzyme off without imposing any genetic modification.?** Some of these engineered kinases
include yeast v-Src (1338G), c-Abl (T315A), Cdk2 (F80G), and Mpsl (M516G),7 and human
Cdk12 (F813G) mutants.** Besides their numerous advantages, exploiting ATP binding pocket
mutations for different research purposes contains important risk factors, such as the improper
choice of mutation-drug combinations or inactivation of the enzyme upon mutation. To minimize
these risks, pre-screening of mutation-drug combinations with binding affinity prediction tools

stands out as a prominent alternative.

1.4. How far are we in predicting the impact of kinase mutations on their ligand binding

abilities?

Several methods have been proposed to predict protein-ligand binding affinities. Though, only
recently, the accuracy of these methods has been evaluated within the scope of predicting the
impact of kinase mutations in ligand binding. In 2018, Hauser et al., compiled a set, involving
144 ligand affinity data regarding clinically diagnosed Abl mutations.® A year later, in 2019,
Aldeghi et al. assessed the capacity of statistical mechanics, mixed physics- and knowledge-
based potentials, and machine learning approaches in predicting the impact of 31 Abl mutations
with their drug interactions®. Both of these approaches used a hybrid structure-based Abl
benchmark, composed of wild type co-crystal/docked structures and modeled mutant cases.
Moreover, both papers assessed the use of sophisticated tools, the employment of which would
be too complicated for many experimental biologists. Next to these approaches, there are also
web-based protein-ligand binding affinity predictors, which can easily be used by the non-
experts to plan/guide their experiments. Though, the assessment of these servers within the
context of kinase mutations has never been done. To compensate for this shortcoming, we have

benchmarked four web-based protein-ligand scoring functions, DSX-ONLINE, KDEEP,
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Pose&Rank, PRODIGY-LIG, as well as two general scoring functions, PDBePISA, HADDOCK

Score®+*

to assess their capability in predicting the impact of kinase mutations on their ligand
binding. We selected these predictors based on their user-friendliness and their widespread use.
The benchmarking has been performed on our structure-based BINDKIN (effect of point

mutations on the BINDing affinity of protein K1Nase-ligand complexes) data set.

Our BINDKIN benchmark is composed of 23 experimentally determined wild type and mutant
kinase structures co-crystallized with their ligands. It covers nine kinases (seven EGFR, three
Abl, three Mps1, three Src, two Cdk2, one ALK, one FGFR, one Kit, and one PKA), 15 unique
point mutations and binding modes of 18 different ligands. The affinity data associated to each
benchmark case is reported in the form of ICsp, Kg, and K (Table S1). Majority of the presented
mutation positions are within or in the vicinity of the ATP binding pocket. The web-server
performances over BINDKIN show that the raw server scores fail to produce good correlations
with the experimental data. However, when we started looking in to the direction of change
(whether a mutation improves/worsens the binding), we observe that for K;, DSX-ONLINE
could predict the impact of point mutations on the binding affinity accurately, while achieving a
Pearson’s R value as 0.97 (n=6). The other Kinetic metrics lead to less sensitive mutation-
induced changes, thus could not be correlated with any of the scoring terms. Expanding on the
DSX’s success in reproducing K; changes, we have probed DSX-ONLINE also on the
BINDKIN-homology benchmark, which contains the homology models of our K; cases. This
resulted in a drop of R from 0.97 to 0.45, highlighting the importance of structure quality in the
rapid prediction of kinase mutations’ impact. We hope that these results will guide the
experimentalists in designing their kinase mutation experiments, and the computational

biologists in improving their protein-ligand scoring functions. The BINDKIN results, server
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outputs, and other related results are publicly available at https://github.com/CSB-

KaracalLab/BINDKIN
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2. METHODS
2.1. Thecollection of the BINDKIN benchmar k
To construct the BINDKIN (effect of point mutations on the BINDing affinity of protein
K1Nase-ligand complexes) benchmark, we performed a thorough search in the Protein Data

Bank (PDB)* (https://www.rcsh.org/) and obtained the list of available wild type and mutant

kinase-ligand complexes. Our final list was obtained by imposing the following criteria:
e For each mutant complex, there has to be a wild type complex, containing the same
protein and the ligand.
e The wild type and mutant complexes should be determined in the same study (i.e., they
should come from the same paper).
e For each complex, there has to be experimentally determined binding affinity available in
the form of 1Cs, Ky, or K; together with a related research paper. The experimental

binding kinetics data were acquired from PDBbind (http://www.pdbbind-

cn.org/index.php),”*™** Binding DB (https://www.bindingdb.org/bind/index.jsp),*® and

Binding MOAD (http://bindingmoad.org/Search/advancesearch)*’*® databases.

e The ligand has to be a non-covalent one.

This limitation has left us with 23 wild type-mutant complex pairs, making up the BINDKIN
benchmark. BINDKIN constitutes of seven EGFR, three Abl, three Mps1, three Src, two Cdk2,
one ALK, one FGFR, one Kit, and one PKA proteins. These complexes present 15 unique point
mutations distributed. BINDKIN contains binding modes of 18 different ligands. The
pharmacophoric characteristics of the ligands were evaluated with the ALOGPS web server of
the Virtual Computational Chemistry Laboratory

49-58
)

(http://www.virtuallaboratory.org/web/alogps/ and pkCSM web server

11
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(http://structure.bioc.cam.ac.uk/pkcsm).”® The available ligand-related data were obtained from

RCSB PDB and PubChem (https://pubchem.ncbi.nim.nih.gov/). Most of the mutation positions

are within or in the vicinity of the ATP binding pocket (Figure 3A). All the benchmark related

features are deposited in https://github.com/CSB-KaracalLab/BINDKIN. Further details about the

benchmark characteristics are described in the Results section.
2.2. The BINDKIN-homology benchmar k

The wild type and mutant sequences were structurally modeled with the default settings of the

I-TASSER  web  server (https://zhanglab.ccmb.med.umich.edu/I-TASSER/).®**  During
modeling, the original coordinates of the wild type or mutant structures were excluded from the
template list. After obtaining the homology models, their corresponding ligands were placed at
their catalytic binding pocket by using the original crystal structure as a template. The fitting was
performed with PyMOL.®® In these crude models, steric clashes were observed. To optimize the
protein-ligand interface, we applied water refinement on each model by using the
HADDOCK2.2 refinement interface

(https://milou.science.uu.nl/servicessT HADDOCK?2.2/haddockserver-refinement.html).*®

2.3. The benchmar ked web servers
Before benchmarking, the crystallization buffer additives, ions were discarded from the co-
crystal structures (in the .pdb format). For each occurrence of multiple conformations, the
conformer with the highest occupancy was retained and the other conformers were removed. In
one of the EGFR cases (5em7), the ligand 5Q4 is depicted in two different conformations. Both
conformations were taken into consideration. The ligand coordinate files were converted to
‘mol2’ and ‘sdf’ formats based on the different file format requirements of the web servers. For

mol2 conversion Open BABEL (v2.4.1) and for sdf conversion the Online SMILES Translator

12
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and Structure File Generator (National Cancer Institute) (https://cactus.nci.nih.gov/translate/)

were used. For the sdf conversion, the “Aromatic” SMILES representation option (prints the

unique SMILES string into the ‘sdf’ file) and “3D” coordinates option were chosen. The sdf files

were protonated by default. The conformations and the 3D coordinates of the ligands were

retained during conversion to both mol2 and sdf formats.

Six different web-based scoring functions were used to predict the binding affinities listed

within BINDKIN. A short description of each web server is provided in Table 1.

Table 1: The list of the benchmarked servers.

Tool Name | Brief Explanation I nput Format Link
DSX- A knowledge-based Takes the protein and | http://pc1664.pharmazie.uni-
ONLINE® scoring function ligand coordinate files | marburg.de/drugscore/index.php
composed of distance- separately in pdb and
dependent pair potentials, | mol2 formats,
novel torsion angle respectively.
potentials, and solvent
accessible surface-
dependent potentials.
KDEEP® A deep convolutional | Takes the protein and | https://www.playmolecule.org/K
neural network approach. | the ligand coordinate | deep/
The web server represents | files in pdb and sdf
the binding site as a 24A | formats, respectively.
voxel for pharmacophore
featurization. It reports

13
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pKq, 4G scores.

Pose&Rank>

PoseScore and RankScore
are atomistic distance-
dependent statistical
scoring functions. The
PoseScore is optimal for
distinguishing the native
binding geometries of
compounds from other
poses, whereas RankScore
is optimal for
distinguishing ligands
from nonbinding small

molecules.

Pose&Rank takes the

protein and ligand
coordinate files were
in pdb and mol2

formats, respectively.

https://modbase.compbio.ucsf.ed

u/poseandrank/

PRODIGY-

LIG*

An atomistic contact-

based protein-small
molecule binding affinity

predictor.

Takes the protein and
the ligand coordinates

in pdb format.

https://bianca.science.uu.nl/prodi

ay/

HADDOCK?2

.238

HADDOCK2.2 is a
molecular docking
program using both force
field-based and
knowledge-based scoring
terms. In this study, we
refinement

used the

Takes the protein and
the ligand coordinates

in pdb format.

https://milou.science.uu.nl/servic

es/[HADDOCK?2.2/haddockserve

r-refinement.html

14
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interface of

HADDOCK?2.2.

PDBePISA®" | Scores according to the | Takes the protein and | https://www.ebi.ac.uk/pdbe/pisa/

“ average free  energy | the ligand coordinates

contributions  of  the | in pdb format.
hydrogen bonds and salt
bridges  between  the
subunits and the solvation

free energy of folding.

2.4.The assessment of the prediction results
Three different approaches were used to assess the prediction results. These are direct
assessiment, delta assessment, and binary assessment. Direct assessment is the classical approach
in which the raw scores were correlated with the experimental ones by linear regression. In the
delta assessment, mutation-induced affinity (1) and score (2) changes were correlated.
ABAexp = BAexp-mutant - BAexp-wiId type (1)
ABApred = BApred-mutant - BApred-wild type (2)

In the binary assessment, we checked the agreement in the mutation induced direction change.
In this case, if a mutation leads to a decrease in the experimental binding affinity and it is
predicted as such by the computational prediction, it was considered as a successful prediction. If
the increase in the experimental affinity is accompanied by a decrease in the predicted affinity,
then this case was counted as a misprediction. In the binary assessment, the percentage of correct

predictions was used as the final success rate.

15
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For the linear regression analyses, the associated R and p values, and the plots were generated
with R (v3.6.1)®, invoked by RStudio (v1.2.5001).%° The following R packages were used to
generate scatterplots, barplots, or histograms: ggpubr,®® ggplot2,” magrittr,%® ggrepel,” grid,**

and gridExtra.”® The heatmaps were produced with pheatmap’* and RColorBrewer’® R packages.
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3. RESULTSAND DISCUSSION
3.1. The BINDKIN benchmark characteristics

Our benchmark was gathered from the literature by following the criteria listed under Methods.
BINDKIN benchmark covers nine protein kinases (seven EGFR, three Abl, three Mpsl, three
Src, two Cdk2, one ALK, one FGFR, one Kit, and one PKA), where each wild type kinase has a
mutant counterpart, leading to 23 pairs (with 8, 9, and 6; ICso-, Ky-, and Kj-associated cases,
respectively) and 42 individual cases (with 16, 15, and 11; ICso-, K¢-, and K- cases, respectively)
(Table S1). It includes 15 different mutations, corresponding mostly to single point ones (except
one quadrupole, two triple, and two double mutations). The mutations are distributed within or in
the vicinity of ATP binding pocket (Figure 3A). In their wild type states, these mutation
positions exert diverse biophysical characteristics (charged, polar, hydrophobic), whereas in their
mutant forms they predominantly turn into hydrophobic and charged amino acids. Also, half of
the mutations result in bulkier residues. The 18 different ligands presented in BINDKIN are
ATP-competing chemicals. They are nitrogen-rich and mainly hydrogen bond acceptors. From
the degrees of freedom point of view, BINDKIN ligands cover a diverse range of rotatable
bonds, i.e., from O to 11.

The binding affinity range spanned by BINDKIN is 0.80 - 350, 0.73 - 185, and 0.07 - 1090 nM
for 1ICso, Ky, and K; subsets, respectively (Table $2).”*® So, the K; subset covers the widest
affinity range (Figure 3B). We classified a mutation as sendtive if the mutant complex's binding
affinity is at least ten-fold higher than that of its wild type state.****% When the mutant
complex’s binding affinity is less than one-tenth of its wild type, then this case is classified as

resistant. According to this criterion, BINDKIN contains five senstive (four K;and one Kg) and
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five resistant cases (three ICsp, and two Kg) (Figure 3C). The probability density of affinity

values is left-skewed, meaning that our benchmark is biased towards drug-sensitizing mutations.

genotype ﬁ mutant H wild type 23 total cases

5 sensitive cases 5 resistant cases
31 Tls 1
L] >
. 2
2 . 8
[
% 1 z
g ’ 2 |k . ' i
04 ’ = o -g J: AN B
o | H
" D)
K ‘C _|.'I I I I L ! I III .I
Ka i 50 0.0 01 02 03 04 0.5 0 10 20 30 40
Experimental binding affinity Experimental [MUT(nM)YWT(nM)]

Figure 3. The BINDKIN benchmark characteristics. (A) The corresponding positions of the mutated residues are
mapped on a representative ATP-bound protein kinase (¢AMP-dependent protein kinase with PDB entry 1ATP).?
The orange sphere is the position where the majority of the BINDKIN mutations are located. The blue sphere
indicates the sensitizing mutations positions, where red spheres indicate the mutations conferring resistance, and
light brown ones indicate unclassified mutations. (B) Distribution of the experimental binding kinetics data for the
42 individual cases. The data was split as Ky, Kj, and ICsy and plotted as box-and-whisker plots for the
corresponding wild type and mutant cases. (C) Probability distribution of the experimental kinetic data for wild type

and mutant pairs. The blue and red areas indicate the drug-sensitive and drug-resistant cases, respectively. The KDE

(kernel density estimate) is represented as the light-brown area.
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3.2. Majority of the web-based scoring functions predicts the direction of affinity
change caused upon mutation
Advanced computational tools have been shown to accurately predict protein kinase-
ligand binding affinities.***® Considering that these approaches do not have a broad reach
among the experimental biology community, in this work, we have focused on user-friendly
web servers' performance within the context of predicting the impact of kinase mutations. To
this end, we have tested the prediction performances of DSX-ONLINE, HADDOCK2.2

(refinement interface), KDEEP, PDBePISA, Pose&Rank, and PRODIGY-LIG over

BINDKIN.
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Figure 4. The performance of the various scoring functions accorring to direct assessment. Due to the nature of
the prediction scores, a negative correlation for pKd (KDEEP) and a positive correlation for rest of the tools is

expected. (A) DSX-ONLINE, (B) HADDOCK2.2 (HADDOCK score), (C, D) KDEEP (pK4 and 4G), (E)
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PDBePISA (4G), (F, G) Pose&Rank (PoseScore and RankScore), and (H) PRODIGY-LIG (4G). The sample size
for 1Cso, Kg, and K are n=16, n=15, and n=11, respectively.

To assess the performance of each tool, we have pooled the affinity predictions (n=42)
and analyzed their association with the experimental data. This direct assessment shows that the
presented scoring functions could not predict the affinity of BINDKIN cases (Figure 4). Here,
the highest R-value is produced by KDEEP (R=0.31). When we divide the same set according to
their kinetic metrics (ICso, Kq, Kj), the highest correlation is obtained with Rank and PRODIGY -
LIG scores over ICs, cases (R=0.55). Considering wild type and mutant states separately did not

improve the presented correlations (data not shown).

Next to the direct assessment, we have also performed a relative evaluation of the results
with delta and binary assessments (Figure 5, see Methods). Delta assessment measures the
absolute change in the (predicted) affinity upon mutation. Using delta assessment improves R
values significantly. This is especially the case for the R-performances of KDEEP and DSX-
ONLINE over Kj-cases, which become 0.75 and 0.97, respectively. In the binary assessment, the
accuracy of predictors was measured by analyzing the agreement between the direction of
change in the experimental and predicted binding affinities. According to this metric, DSX-
ONLINE accurately predicts the affinity change of all Kj-cases. The success rate of DSX-
ONLINE over Kj-cases is followed by PoseScore and PRODIGY-LIG, both leading to 83%
accuracy. As another important highlight, KDEEP (pKg) reaches 88% success rate on 1Csy cases.
As an across-metric comparison, over Ki-cases, DSX-ONLINE leads to an R of 0.07 and 0.97 in
direct and delta assessments, and 100% accuracy in binary assessment. While delta and binary
assessments agree in this particular case, in some other cases, they contradict. As an example,

PRODIGY-LIG achieves an R value of 0.29 in the delta assessment, and 83% accuracy in the
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binary assessment. The contradiction between these two types of assessment approaches can be
explained by the data spread. For example, a scoring function may achieve a great success on the
binary assessment, because it can predict the direction of affinity change. However, the same
scoring function may not be able to predict the amount of change, which would lead to a lower R
value. Within the context of the biological meaning of the assessment approaches, we suggest the

concurrent use of delta and binary assessments.
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Figure 5. The performance of the various scoring functions accor ding to the delta assessment. Due to the nature
of the prediction scores, a negative correlation for pKd (KDEEP) and a positive correlation for rest of the tools is

expected. (A) DSX-ONLINE, (B) HADDOCK2.2 (HADDOCK score), (C, D) KDEEP (pKq and 4G), (E)

PDBePISA (4G), (F, G) Pose&Rank (PoseScore and RankScore), and (H) PRODIGY-LIG (4G). (1) The success

21


https://doi.org/10.1101/2020.07.02.184556
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.184556; this version posted July 2, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

rates from the binary assessment are provided as a heatmap. Yellow indicates low accuracy and red indicates high

accuracy predictions. The sample size for 1Cs, Ky, and K; are n=8, n=9, and n=6, respectively.

Among the three different kinetic data types, according to the direct assessment, 1Csg
turns out to be the best descriptor for most of the scoring functions. When the complexes are
considered as mutant/wild type pairs (delta and binary assessments), K; comes out as the best
descriptor (Figure 5). Interestingly, none of the methods could lead to a reliable prediction over
the Ky set. Kq is a universal measure of binding while K; is defined for enzymes only, which
could be the reason of the high R values reported for the Ki-set.*® However, we also cannot rule
out the fact that success rates of the kinetic descriptors may depend on the number of cases
present for each descriptor (8 pairs for ICsp, 9 pairs for Ky, and 6 pairs for K;).

In a real case scenario, the structure of the complex under study might not be available.
Expanding on this, we have homology modeled the Kj-cases and probed these structures with
DSX-ONLINE (as this combination gives the best delta and binary assessments). The mutation-
specific features such as hydropathy index change™, residue volume change®, and drug
resistance or sensitivity were chosen for the characterization of predicted affinities (Figure 6). As
a result of this exercise, here, we show that the performance of DSX-ONLINE is dramatically
worsened by the worsened quality of the input structure (an R-drop from 0.97 to 0.45). We also
observe that a decrease in the residue volume upon mutation is accompanied by an increase of
polarity and drug sensitivity. However, in this case, the amount of cases is not sufficient to draw

a conclusion regarding the effect of mutation characteristics on the prediction accuracy.
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Figure 6. The default scoring function of DSX-ONLINE was tested on the K;-associated crystal structure and

homology model structure sets by using delta assessment. Orange color corresponds to the neutral cases (left) or a
decrease in the hydropathy index (middle) or residue volume (right). Turquoise color corresponds to the sensitive
cases (left) or an increase in the hydropathy index (middle) or residue volume (right). RMSD: 2.0 £ 0.5. The sample

size of the crystal structures and model structures are n=6 and n=5, respectively.
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4. CONCLUSIONS

The presented study investigates whether web-based scoring functions can predict the impact
of kinase mutations. To test this, we have compiled BINDKIN, the first structure-based affinity
benchmark of wild type and mutant protein kinase-small molecule complexes. Based on the K-
associated cases of BINDKIN, we have also compiled a homology model benchmark. Using
these structure sets and their available experimentally binding affinity data, we have assessed the
prediction accuracy of six different web servers. These are DSX-ONLINE, HADDOCK?2.2,
KDEEP, PDBePISA, Pose&Rank, and PRODIGY-LIG. The prediction accuracy of the web
servers has been thoroughly analyzed by the use of different assessment approaches. As a result,
we have observed that (i) K is a sensitive descriptor that can capture the effect of mutations on
binding affinity, (ii) DSX-ONLINE is the best tool in predicting the mutation-induced K;
changes, (iii) the quality of the input structure directly impacts the performance of DSX-
ONLINE, and (iv) more kinase mutation-related ligand binding data are needed to perform a

statistically significant analysis.
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