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Abstract 

Echo planar imaging (EPI) is widely used in functional and diffusion-weighted MRI, but suffers from significant 

geometric distortions in the phase encoding direction caused by inhomogeneities in the static magnetic field (B0). This is 

a particular challenge for EPI at very high field (7T and above), as distortion increases with higher field strength. A 

number of techniques for correcting geometric distortion exist, including those based on B0 field mapping and acquiring 

EPI scans with opposite phase encoding directions. However, few quantitative comparisons of distortion compensation 

methods have been performed using EPI data from the human brain, and even fewer at very high field. In the current 

study, we compared geometric distortion compensation using B0 field maps and opposite phase encoding scans 

implemented in two different software packages (FSL and AFNI) applied to 7T gradient echo EPI data from 31 human 

participants. We assessed the quality of distortion compensation by quantifying the degree of alignment to a T1-

weighted anatomical reference scan using Dice coefficients and mutual information. We found that the best distortion 

compensation was achieved in our dataset using gradient echo scans with opposite phase encoding directions to map 

the distortion, as compared to B0 field maps or spin echo opposite phase encoding scans. Performance between FSL and 

AFNI was equivalent. While the ideal geometric distortion compensation approach may vary due to methodological 

differences across experiments, this study provides a framework for researchers to assess the quality of different 

distortion compensation methods in their own work. 

Introduction 

Geometric fidelity is critical for high quality brain imaging. It is essential for accurate interpretation of functional MRI 

(fMRI) data based on anatomical landmarks and is necessary for precise quantification of structural and functional 

connectivity. It is also relevant for clinical brain imaging applications, such as neurosurgery and the placement of deep 

brain stimulation electrodes. However, currently-popular MRI techniques suffer from a number of common artifacts that 

degrade spatial fidelity, including gradient nonlinearities and geometric distortion due to B0 inhomogeneity2, 3. A number 

of methods to correct for these geometric artifacts have been established2-5. To select an appropriate method for 

distortion correction, quantitative comparisons between methods are essential, but few of these studies have been 

performed to-date. 

Echo planar imaging (EPI) is among the most commonly used MRI techniques in human neuroscience. Rapid 

acquisition times enable studies of functional brain activation (i.e., fMRI; often ≤ 1 s per whole-brain image) and efficient 

measurement of white matter tractography via diffusion-weighted MRI (dMRI; on the order of 5 s per image). This 

temporal efficiency comes at the cost of relatively low pixel bandwidth in the phase encoding (PE) direction, which results 

in severe geometric distortions in regions of B0 inhomogeneity3-5. Lower bandwidth (i.e., higher effective echo spacing) 

makes distortion more severe; distortion of some regions in EPI data in the PE direction often reaches 5-10 mm3. B0 

inhomogeneities and the resulting distortions are greatest at the interface of different tissue types (e.g., brain, bone, air) 

in regions such as the orbitofrontal cortex and temporal lobes. Inhomogeneities also scale linearly with B0 field strength, 
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such that geometric distortions are more severe at 7 Tesla than at 3 Tesla6 (though this is mitigated by the fact that smaller 

voxel sizes typically achieved at higher field will reduce distortion). 

A number of methods for minimizing and correcting geometric distortion in EPI data exist. Prospectively, geometric 

distortion can be limited by reducing B0 inhomogeneity via B0 shimming and confirming shim quality during a scan by 

measuring the linewidth of the water signal. Geometric distortion can also be limited by shortening read-out time. 

Methods for this include: 1) using multi-shot or segmented EPI7-9 (rather than single-shot sequences, at the cost of longer 

TRs and increased physiological noise sensitivity), 2) using a higher parallel imaging acceleration factor (R; assuming the 

radio frequency coil has multiple receive elements, at the cost of reduced signal-to-noise ratio [SNR]), 3) increasing 

receiver bandwidth (i.e., reducing echo spacing, at the cost of reduced SNR), 4) decreasing the field of view in the PE 

direction (at the cost of reduced spatial coverage)10. Although one might be tempted to think that distortion would also 

be attenuated by reducing the sampling of k-space data in the PE direction using partial Fourier approaches, this is not the 

case; distortion is just as bad for partial Fourier data as it would be with full sampling because phase errors in the sampled 

portion of k-space are extrapolated. Finally, it is worth noting that when using spiral acquisition sequences11 in place of 

EPI, B0 inhomogeneity produces blurring rather than geometric distortion, which may be preferable for some applications. 

It is also possible to correct geometric distortion in an EPI dataset retrospectively, which has been shown to improve 

registration between EPI and T1-weighted anatomical data4. A number of different methods for retrospective distortion 

compensation have been introduced, including:  

1) B0 field mapping by measuring phase differences from two gradient echo (GE) images with different echo times 

(TEs)4, 12, 13,  

2) calculating a distortion field based on two EPI scans with opposite PE directions (i.e. forward & reverse, often 

anterior-posterior and posterior-anterior; hereafter referred to as opposite phase encoding [oppPE] field mapping), 

for which the geometric distortion will be equal but in opposite directions14-16,  

3) non-rigid registration (e.g., affine or spline fitting) of the distorted EPI to a minimally distorted anatomical 

reference17-21,  

4) mapping the EPI point-spread function22-24,  

5) methods based on forward and inverse modeling of the distortion25, 26,  

6) multi-reference scan methods27,  

7) hybrid methods (e.g., B0 or oppPE field mapping plus non-rigid registration)5, 13, 28, and  

8) dynamic methods for correcting time-varying geometric distortions due to factors such as head movement6, 26, 29. 

Of these, the first two (B0 and oppPE field maps) are arguably the most popular and are currently implemented in various 

forms across many widely used MRI analysis software packages (e.g., FSL30, AFNI31, SPM32, BrainVoyager33). Thus, we chose 

to focus on quantitative comparisons between B0 and oppPE field map approaches in the current study. 

With regard to oppPE field maps, it has been suggested that spin echo (SE) EPI scans may offer an advantage over GE 

sequences in mapping the distortion field34, as the former minimizes signal dropout from through-slice dephasing due to 

the 180° refocusing pulse at TE/2. This suggests that a pair of SE EPI scans with opposite PE directions should give a more 

complete map of field inhomogeneities than a GE oppPE pair. However, this theoretical motivation has not, to our 

knowledge, been tested empirically, and other factors (e.g., increased subject motion due to added scan time, image 

intensity differences) might limit the utility of SE oppPE field maps for the correction of geometric distortion in GE EPI 

data, which is currently the most commonly used technique for fMRI. Thus, in the current study we sought to directly and 

quantitatively compare the performance of SE and GE oppPE field maps applied to GE EPI data. 

Previous studies that have compared different methods for geometric distortion compensation have generally 

focused on data collected at field strengths of 1.5 to 3T, for which geometric distortion may be less extreme as compared 

to very high field (≥ 7T). The proliferation of very high field imaging methods35, due in part to efforts such as the Human 

Connectome Project36-40, makes it increasingly important to achieve effective geometric distortion compensation of high 

field EPI data. Therefore, in the current study we examined this issue using 7T EPI data that we have collected as part of 

the Psychosis Human Connectome Project at the University of Minnesota’s Center for Magnetic Resonance Research. 

Prior investigations of geometric distortion compensation methods have not, generally, included correction for 

additional gradient nonlinearities41. Gradient nonlinearities are unrelated to distortion due to B0 inhomogeneity, are 

present in all three dimensions (PE, readout, and through-slice), and are sequence independent2. These gradient 
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nonlinearities can be on the order of 1-2%2, 3 and will vary between scanners due to differences in gradient hardware. 

Distortions due to gradient nonlinearities may therefore confound efforts to achieve high spatial fidelity in EPI data, and 

are particularly important to consider when trying to unify datasets acquired on different scanners (e.g., a T1 anatomy 

acquired at 3T, and GE EPI fMRI data acquired at 7T, as in the current study). 

In this study, we compared the methods noted above (i.e., GE and SE oppPE as well as B0 field maps) for the correction 
of geometric distortion due to B0 inhomogeneity in GE EPI data collected at very high field (7T), following a separate 
correction for gradient nonlinearity distortion. We sought to answer the following question: which distortion 
compensation method(s) would perform best for our 7T GE fMRI data? This study presents a framework within which to 
answer this question for a given data set. We do not intend to prescribe one method as definitively superior over another 
in all cases, as relative performance is expected to depend on acquisition parameters, order and timing of the acquisition 
of EPI and field map scans, scanner and radiofrequency coil hardware, and the details of the processing pipeline that is 
used. Our results suggest that all of the examined methods improved correspondence between GE EPI and T1 anatomical 
data, with the best performance being observed for GE oppPE field map methods in our dataset. 

Methods 

Participants 

We recruited 31 participants for the current study from a larger sample as part of the Psychosis Human Connectome 

Project. This included 12 patients with a diagnosed psychotic disorder (e.g., schizophrenia), 9 first-degree biological 

relatives of patients with psychosis (i.e., parents, siblings, or children), and 10 healthy controls. Group differences were 

not examined in this particular study, as a subject’s mental health status was not deemed relevant to the assessment of 

geometric distortion compensation methods. We chose to study a diverse population (i.e., patients and controls) in order 

to make our results more broadly applicable to the type of MRI data that would be obtained in clinical populations such 

as adults with psychosis. Subject demographics were as follows: 20 female and 11 male participants, mean age was 45 

years (SD = 11 years). 

Inclusion criteria for the Psychosis Human Connectome Project were as follows: age 18-65 years, English as primary 

language, the ability to provide informed consent, no legal guardian, no alcohol or drug abuse within the last 2 weeks, no 

alcohol or drug dependence within the last 6 months, no diagnosed learning disability or IQ less than 70, no current or 

past central nervous system disease, no history of head injury with skull fracture or loss of consciousness longer than 30 

min, no electroconvulsive therapy within the last year, no tardive dyskinesia, no visual or hearing impairment, no condition 

that would inhibit task performance such as paralysis or severe arthritis. All patients had a history of bipolar I, 

schizophrenia, or schizoaffective disorder and were not adopted. Relatives had a biological parent, sibling, or child with a 

history of one of these disorders and were not adopted. Controls had no personal or family history (parents, siblings, 

children) of these disorders. Additional inclusion criteria for this particular study included the ability to fit comfortably 

within the scanner bore (60 cm diameter) and the radio frequency head coil (head circumference less than 62 cm), weight 

less than 440 pounds, and corrected Snellen visual acuity of 20/40 or better. Further, all participants had completed two 

3T fMRI scanning sessions prior to 7T scanning and did not exceed a limit of 0.5 mm of head motion across greater than 

20% of TRs from all 3T fMRI runs (approximately 2 hours of scanning). Finally, participants included in this study had all 7T 

MRI scans acquired in the prescribed order (see below) and did not exceed a limit of 0.5 mm of head motion on greater 

than 20% of TRs during 7T fMRI scans (1.25 hours of scanning). 

All participants provided written informed consent prior to participation and were compensated for their time. All 

experimental procedures complied with the regulations for research on human subjects described in the Declaration of 

Helsinki and were approved by the Institutional Review Board at the University of Minnesota. All subjects were found to 

have sufficient capacity to provide informed consent, as assessed by the University of California Brief Assessment of 

Capacity to Consent42.  

Experimental protocol 

7T MRI data were acquired on a Siemens MAGNETOM scanner (software version: VB17). This scanner was equipped 

with an 8-kW radio frequency power amplifier and body gradients with 70 mT/m maximum amplitude and 200 T/m/s 

maximum slew rate. We used a Nova Medical (Wilmington, MA) radio frequency head coil with 1 transmit and 32 receive 

channels for all 7T MRI data acquisition. Subjects were provided with head padding inside the coil and instructed to 
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minimize head movements 

during scanning. We placed 5 

mm thick dielectric pads (3:1 

calcium titanate powder in 

water) under the neck and 

beside the temples, as this 

has been shown to improve 

transmit B1 homogeneity in 

the cerebellum and temporal 

lobe regions during 7T MRI37. 

MRI data were acquired 

using sequences and scan 

parameters that followed the 

original young adult Human 

Connectome Project36-40. 

Parameters for the different 

MR scans are listed in Table 

1. Additional scan 

parameters include a 

multiband acceleration 

factor of 5 for GE and SE 

fMRI, and GRAPPA parallel 

imaging acceleration factor 

(R) of 2 for all scans except 

the B0 field map (no 

acceleration). The delta TE 

for the B0 field map scan was 

1.02 ms. Single-band 

reference scans were 

acquired with each multi-

band EPI scan (GE & SE). Data 

were acquired using Siemens 

Auto Align to standardize the 

orientation and positioning 

of the imaging field of view. 

7T MRI data in this study 

were acquired in a fixed scan 

order:  

1) auto-align scout and 

localizer,  

2) GE EPI with posterior-

anterior (PA) phase 

encoding direction 

(3 TRs; Figure 1B),  

3) first GE EPI with 

anterior-posterior 

(AP) phase encoding 

direction (324 TRs; 

Figure 1A),  

Figure 1. Data and processing pipeline. A & B) Gradient echo (GE) data with opposite (anterior-
posterior [AP] and posterior-anterior [PA], respectively) phase encoding directions. White box in A 
indicates that the GE AP data were the base data set to which all distortion compensation methods 
were applied. All brain images are examples from the same parasagittal section in the same subject, 
after gradient nonlinearity correction has been applied. C) GE data after applying distortion 
compensation based on GE oppPE field map. D & E) B0 field map magnitude and phase data, 
respectively. F) GE data after applying distortion compensation based on B0 field map. G & H) Spin 
echo (SE) oppPE data (AP & PA, respectively). I) GE data after applying distortion compensation 
based on SE oppPE field map. J) Data processing pipeline steps and software (italics). Arrows indicate 
the sequence in which processing steps were performed. 
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4) second AP GE scan (297 TRs),  

5) B0 field mapping scan (Figure 1D & E),  

6) AP SE scan (3 TRs; Figure 1G),  

7) PA SE scan (3 TRs; Figure 1H),  

8) third AP GE scan (468 TRs). 

Inhomogeneity in the B0 field was minimized prior to 7T fMRI data acquisition using the Siemens automated B0 

shimming procedure. Shim currents were calculated to minimize field variation within a 130 x 170 x 120 mm3 region (i.e., 

the adjust volume) with an oblique-axial orientation centered on the brain (standardized by Auto Align). To assess shim 

quality, the linewidth of water (full width at half-maximum [FWHM]) was measured in the Siemens Interactive Shim tab 

during each scanning session before fMRI data were acquired (for this study, mean linewidth across subjects = 60 Hz, SD 

= 11 Hz). Shim values were stored and applied across all scanning runs using a 3rd-party stand-alone program (shimcache), 

to prevent any accidental loss of the B0 shim between scans. 

3T structural MRI data were acquired on a Siemens MAGNETOM Prisma scanner (software version: VE11C). This 

scanner was equipped with two RF power amplifiers with a combined power of 40 kW, and body gradients with 80 mT/m 

maximum amplitude and 200 T/m/s maximum slew rate. Data were acquired using a Siemens 32 channel radio frequency 

head coil. T1- and T2-weighted anatomical scans (parameters listed in Table 1) were acquired in the first of two 3T MRI 

scanning sessions. 

Data analysis and statistics 

Our data processing pipeline is summarized in Figure 1J. All data processing steps were performed using either AFNI31  

(version 18.2.04) or FSL30 (version 5.0.9), as noted below. Data were converted from DICOM to g-zipped NIFTI format using 

AFNI’s to3d program. To obtain a single time point for all EPI scans for the sake of computational efficiency, we took the 

temporal median of 3 TRs at the beginning or end of each scan (i.e., the time points closest to the respective field map 

scan(s), see below) using AFNI’s 3dTstat. We then performed gradient nonlinearity unwarping using gradunwarp (version 

1.0.3; github.com/Washington-University/gradunwarp), with the warp field (a.k.a. voxel displacement map) applied using 

AFNI’s 3dNwarpApply. In our typical analysis path (i.e., in other studies), we apply all geometric corrections within a single 

resampling step to minimize blurring. In the current study, we first applied gradient nonlinearity correction and then 

separately applied B0 inhomogeneity distortion compensation, which allowed us to specifically examine the performance 

of B0 inhomogeneity distortion correction methods implemented in AFNI versus FSL. 

Distortion compensation 

We then performed corrections for geometric distortion due to B0 inhomogeneity on our 7T GE EPI data using each of 

the following 5 methods:  

1) GE opposite phase encoding (oppPE) field map correction14-16 via AFNI’s 3dQwarp or  

2) FSL’s topup. Distortion correction in each of these two methods was applied to the median of TRs 1-3 from the first 

AP GE EPI scan.  

3) B0 field map correction4, 12, 13 in FSL’s fugue, applied to the median of TRs 295-297 from the second AP GE scan.  

4) SE oppPE field map correction using AFNI’s 3dQwarp, or  

Scan Field TR TE Echo 
spacing 

Flip angle Resolution Partial 
Fourier 

Slices FOV 
(mm) 

GE EPI 7T 1000 ms 22.2 ms 0.64 ms 45° 1.6 mm iso. 7/8 85 208 x 208  

B0 field map 7T 642 ms 4.08 / 5.1 
ms 

- 32° 1.6 mm iso. 6/8 85 208 x 208  

SE EPI 7T 3000 ms 60 ms 0.64 ms 90° / 180° 1.6 mm iso. 7/8 85 208 x 208  
T1 anat. 3T 2500 ms 1.81 / 

3.6 / 5.39 / 
7.18 ms 

11.2 ms 8° 0.8 mm iso. Off (phase) & 
6/8 (slice) 

208 256 x 256 

T2 anat. 3T 3200 ms 564 ms 3.86 ms Variable 0.8 mm iso. Allowed 
(phase) & off 

(slice) 
 

208 256 x 256 

Table 1. Scan parameters. Anat. = anatomical, TR = repetition time, TE = echo time, FOV = field of view, iso. = isotropic. 
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5) FSL’s topup, applied to 

the median of TRs 1-3 

from the third AP GE 

scan.  

The details of each distortion 

compensation method are 

provided below (see Code 

and data availability for a link 

to our published code for full 

details). Note that these 

methods are all designed to 

correct geometric distortions 

in the PE direction only (on 

the order of several 

millimeters); distortions in 

the readout and through-

slice directions (generally less 

than 0.1 mm)12 are not 

corrected by these methods 

and are not considered 

further in the present study. 

For the GE and SE oppPE 

methods using AFNI’s 

3dQwarp, both the AP and PA 

scans were masked using 

AFNI’s 3dAutomask to 

remove non-brain image 

regions. Next, the warp field 

for distortion compensation was calculated using 3dQwarp with the -plusminus flag (indicating that the desired 

undistorted brain image is ‘in between’ the AP and PA scans). This program calculates distortion within image regions of 

progressively smaller size (minimum size used in our study was 9 mm), after progressive blurring using a spatial median 

filter (radius for our study was 0.08 to 1.6 mm, with less blur applied to smaller image regions). Distortion compensation 

of the GE EPI scan was then performed by applying the resulting warp field using AFNI’s 3dNwarpApply with sinc 

interpolation for the final resampling step. 

For distortion based on GE and SE oppPE field maps using FSL’s topup14, the warp field was calculated using the default 

topup parameters (i.e., those provided by FSL within the b02b0.cnf file). This method also involves calculating geometric 

distortion across progressively smaller warp field regions (using B-splines; resolution was 19.2 to 3.2 mm in our study). 

Data were blurred across these progressive stages using a Gaussian kernel (FWHM ranged from 8 to 0 mm [i.e., no 

smoothing] for larger to smaller regions). Data for larger warp fields were sub-sampled by a factor of 2. Prior to topup, 

both the AP and PA scans were zero padded with 1 additional slice in the superior direction, to obtain an even number of 

slices (as required for voxel sub-sampling). Geometric distortion within the GE EPI scan was corrected based on the 

calculated warp field using FSL’s applytopup, with cubic B-spline interpolation. The added empty slice was removed after 

distortion compensation. 

For the B0 field map method using FSL’s fugue, non-brain regions of the magnitude portion of the B0 field map were 

removed using FSL’s bet. The difference between the phase portions of the B0 field map scans with different echo times 

were exported by the scanner automatically. This phase difference map was then masked within the extracted brain 

region, converted from scanner units to radians per second using FSL’s fsl_prepare_fieldmap tool (which also includes 

phase unwrapping), and then median filtered (radius = 1.6 mm) using AFNI’s 3dMedianFilter in order to reduce noise in 

Figure 2. Alignment and segmentation of T1 (A-C) and EPI data (C-E). Transparent colored overlays 
in B & E show binary masks for gray matter (blue), white matter (red), and cerebral spinal fluid (CSF; 
green) as a result of tissue segmentation. Yellow lines in C show edges from 7T GE EPI (using AFNI’s 
3dedge3) overlaid on T1 data, to show alignment. All brain images are examples from the same axial 
section in the same subject, after gradient nonlinearity correction, geometric distortion 
compensation, and co-registration. 
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the field map, especially in regions near the outer edge of the brain. Distortion compensation of the GE EPI data was then 

performed using this phase map via FSL’s fugue. 

Our primary analysis (reported in the Analysis #1: main study section of the Results) assumes there was no head 

motion between each field map and the corresponding GE EPI scan, and that any difference between oppPE scan pairs is 

caused by geometric distortion and not head motion4. Prior to distortion compensation, no alignment between field map 

and GE EPI scans was performed, in order to avoid any spurious ‘correction’ of differences between scans that was in fact 

caused by geometric distortion. We performed an additional analysis, described below as Analysis #2, in order to examine 

the impact of this methodological decision. 

Alignment 

Following distortion compensation, we aligned GE EPI data and T1 anatomical scans using AFNI’s align_epi_anat.py 

function (Figure 2). Rigid body alignment (6-parameter: x, y, z, roll, pitch, yaw) was performed for the five distortion 

compensation methods above, as well as for non-distortion compensated (i.e., uncorrected) data. We used a rigid body 

alignment procedure in order to better preserve the geometric properties of the GE EPI and T1 data sets, to facilitate clear 

comparison between the various distortion compensation methods. We also performed 12-parameter affine alignment 

(6 additional parameters for scaling and shearing) for the uncorrected data, in order to compare 6- versus 12-parameter 

alignment quality. We refer to the 12-parameter aligned data as ‘alignment-only’ since no explicit attempt was made to 

map and correct geometric distortion due to B0 inhomogeneity in these data. However, we note that we were motivated 

to include the 12-parameter alignment method to determine the extent to which the addition of the 6 scaling and shearing 

parameters would mirror geometric distortion compensation performed with oppPE or B0 field mapping methods. This 

procedure yielded a total of seven GE EPI data sets per subject for our analyses (five distortion compensated versions 

detailed above, plus 6- and 12-parameter alignment-only versions). We refer to these as the seven different analysis 

conditions below, as they form the basis of our comparison of different approaches for geometric distortion 

compensation. 

Prior to alignment, the T1 and T2 anatomical data were processed using the HCP minimal pre-processing pipeline 

(version 3.22.0), including gradient nonlinearity correction with gradunwarp and skull stripping. Note that no correction 

for geometric distortion due to B0 inhomogeneity was performed for these anatomical data, as any such distortions are 

expected to be minimal (< 0.1 mm)21. Although T2-weighted scans have a more similar intensity profile to the GE EPI data, 

T1 anatomical scans are currently more widely used in the field of human functional neuroimaging, and robust approaches 

for aligning EPI and T1 data have been developed43. Thus, we chose to use the T1-weighted scan as our anatomical 

reference in order to increase the generalizability of our results. We additionally corrected intensity inhomogeneities 

across the brain in the T1 anatomical data using AFNI’s 3dUnifize. 

Tissue segmentation 

We performed tissue segmentation for each subject using the T1 and T2 anatomical scans to define individual white 

matter and pial surfaces in FreeSurfer44, 45 (version 5.3.0) as part of the HCP minimal pre-processing pipeline (Figure 2A & 

B). For GE EPI data from each of the seven analysis conditions in each subject, we transformed both the T1 and FreeSurfer’s 

segmentation data (wmparc) into the space of the GE EPI scan using the alignment information (obtained above) via AFNI’s 

3dAllineate. Individual binary masks for gray matter and white matter were defined from the T1 data based on FreeSurfer’s 

anatomical labels (surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/AnatomicalROI/FreeSurferColorLUT). To define binary 

masks for cerebral spinal fluid (CSF), we summed the gray and white matter masks from FreeSurfer, blurred the summed 

data using AFNI’s 3dmerge (FWHM = 0.5 mm), and then masked the blurred data at a value of 0.2 to create a binary mask 

that included the region surrounding the brain (putative CSF). We then summed this mask with a binary mask of the 

ventricles from FreeSurfer’s wmparc file, and subtracted the gray and white matter masks to obtain a CSF mask. Gray 

matter, white matter, and CSF masks from the T1 anatomy were used to aid segmentation of the 7T GE EPI data (below). 

To segment the 7T fMRI data into gray matter, white matter, and CSF regions (Figure 2D & E), we first corrected spatial 

inhomogeneities in the GE EPI data using AFNI’s 3dUnifize, and then derived a whole-brain mask using AFNI’s 3dAutomask. 

We then segmented the 7T fMRI data from each analysis condition in each subject into gray matter, white matter, and 

CSF using AFNI’s 3dSeg function, with the gray matter, white matter, and CSF masks from the T1 scan (above) as seed data. 
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Tissue masks from the 7T fMRI data were median filtered with a radius of 1.6 mm using AFNI’s 3dMedianFilter to reduce 

noise. 

Dice coefficients 

To quantify alignment between T1 anatomical and GE EPI data (and thus the effectiveness of distortion compensation), 

we calculated the overlap between each subject’s T1 and fMRI data in each of the seven analysis conditions using Dice 

coefficients via AFNI’s 3ddot function. The Dice coefficient is a measure of how well two binary datasets overlap in three-

dimensional space. This metric varies between zero (no overlap) and one (identity) and is calculated by taking the 

intersection of the two data sets, multiplying by two, and then dividing by the total number of voxels in both scans. Dice 

coefficients were calculated using two different types of binary masks of the 3T and 7T data: 1) a whole-brain mask using 

AFNI’s 3dAutoMask, and 2) a CSF-excluded mask based on the segmented T1 and fMRI data. 

Mutual information 

We also quantified alignment quality by calculating mutual information between the T1 and fMRI data for each of the 

seven analysis conditions in each subject. This metric, which comes from the information theory literature, reflects the 

similarity of two data sets by quantifying how much is learned about the second data set from knowing a value in the first. 

Mutual information is often used to assess multi-modal brain image registration46, and should be maximal for two identical 

data sets that are perfectly aligned. Specifically, mutual information is defined as the difference between the joint entropy 

and the sum of the marginal entropies for two datasets. Compared to Dice coefficients, mutual information is more 

sensitive to differences in alignment in internal brain structures. Prior to calculating mutual information, we excluded non-

brain regions of the T1 and EPI data using the whole-brain masks described above (intensity values for regions outside the 

mask were set to zero). We computed mutual information using the mutInfo function 

(mathworks.com/matlabcentral/fileexchange/35625-information-theory-toolbox). 

Additional analyses 

We carried out a second analysis (Analysis #2: pre-aligned data) to explore whether differences in head motion across 

different field map scans may have affected our results. For example, if subjects moved more between and/or during 

scans that occurred later in the session, then this could have resulted in poorer distortion compensation using certain 

methods, given that our field map scans were acquired in a fixed order. To minimize differences between scans due to 

head motion, the following scans were aligned to the magnitude portion of the B0 field map using AFNI’s align_epi_anat.py 

function: 1) AP GE EPI, 2) PA GE EPI, 3) AP SE EPI, 2) PA SE EPI. Unlike our main analysis above, this procedure assumes 

that residual head motion between field map scans and fMRI data can be corrected by co-registration to a common 

reference scan, and that following such an alignment, differences between pairs of field map scans with opposite phase 

encoding directions reflect geometric distortion due to B0 inhomogeneity. Distortion compensation was performed as 

described above, except that all distortion compensation methods were applied to a single GE EPI scan with AP PE 

direction (rather than applying distortion compensation to the GE EPI scan acquired closest in time to the corresponding 

field map scan, as in our main analysis). 

In our third analysis (Analysis #3: single-band reference) we examined the role of image contrast in our results by using 

the single-band reference scan data that were acquired at the beginning of each multi-band 7T GE EPI scan. Image contrast 

(i.e., white matter vs. gray matter vs. CSF) was higher in the single-band reference as compared to the multi-band data 

(Supplemental Figure 1). This analysis was identical to the first, except that the single-band reference data were used in 

place of the multi-band 7T GE EPI data during alignment, EPI segmentation, and the quantification of alignment quality 

using Dice coefficients and mutual information (but were not used to calculate distortion fields). Using the single-band 

reference data for alignment purposes allowed us to examine the extent to which alignment quality (and thus, our Dice 

coefficient and mutual information metrics) depended on image contrast. This analysis of the single-band reference data 

also allowed us to assess whether our EPI segmentation method was limited by image contrast for the multi-band data in 

our main analysis. 

All data were visualized in AFNI using default settings for display purposes (i.e., image histograms are scaled so that 

black ≤ 2%, white ≥ 98%). Brain images are shown in neurological convention (i.e., left is left). 
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Statistics 

Statistical analyses were performed in MATLAB (version 2017b). Analyses of variance (ANOVAs) were performed using 

the anovan function, with subjects treated as a random effect, and the 7 analysis conditions (i.e., the 5 different distortion 

compensation methods, plus the 6- and 12-parameter alignment-only data) as a within-subjects factor. Normality and 

homogeneity of variance were assessed by visual inspection of the data (Supplemental Figure 2). Post-hoc comparisons 

between analysis methods were performed using paired 2-tailed t-tests, with False Discovery Rate (FDR) correction for 21 

multiple comparisons (between each of the 7 analysis conditions). Because the effects of interest (i.e., differences 

between distortion compensation methods) were within- rather than between-subjects, we used within-subjects error 

bars to visualize the variance in each analysis condition, thereby excluding the between-subjects variance for display 

purposes. To do so, we used an established method1 that involved subtracting the mean value for each subject (across all 

analysis conditions) from all data points for that individual, and then adding the grand mean (across all subjects and 

conditions). 

Code and data availability 

Our analysis code is available on GitHub (github.com/mpschallmo/DistortionCompensation). Imaging data are 

available from the Human Connectome Project (intradb.humanconnectome.org; first data release planned for 4th quarter, 

2020). 

Results 

Analysis #1: main study 

To compare different distortion compensation methods, we first examined the overlap between whole-brain masks 

obtained from 7T GE EPI data that had been corrected for geometric distortion and T1-weighted anatomical data (T1 

hereafter), following co-registration. Data from 7 different analysis conditions were examined (Figure 1J), including those 

obtained using five different distortion correction methods, and two alignment-only data sets (6- and 12-parameter 

alignment). Overlap was calculated using the Dice coefficient, such that higher Dice coefficients reflect more-effective 

distortion compensation. 

Dice coefficients for the whole-brain masks differed significantly across analysis conditions (F6,30 = 42.7, p = 4 x 10-32), 

as shown in Figure 3A (see also Supplemental Figure 2 for a visualization of all data points). This indicates that the method 

of distortion compensation significantly affected the degree to which whole-brain masks from EPI and T1 anatomical scans 

overlapped. Post-hoc paired t-tests (FDR corrected for 21 comparisons between conditions) revealed that the overlap 

between EPI and T1 anatomical masks was highest and comparable for the two GE oppPE methods using AFNI’s 3dQwarp 

and FSL’s topup (red symbols). Dice coefficients were lower when using the B0 field map (using FSL’s fugue; green triangle) 

and SE oppPE (via 3dQwarp; blue square). Note that in Figure 3, gray lines indicate conditions that do not differ significantly 

based on post-hoc tests (i.e., conditions that do differ significantly are not linked by gray lines; all significant paired t30 

values ≥ 2.82, FDR-corrected p-values ≤ 0.042). Lower Dice coefficients were observed for the SE oppPE data corrected 

using topup (blue triangle), which did not differ from the uncorrected data using only a 6-parameter alignment (white 

circle). Dice coefficients for whole-brain masks were lowest for the data using a 12-parameter alignment only (gray circle). 

Next, we asked which distortion compensation method(s) performed best in terms of aligning binary tissue masks 

from fMRI and T1 data with CSF regions excluded, rather than whole-brain masks (see Methods). This analysis was 

somewhat more sensitive to the alignment of internal brain structures, as compared to our previous analysis based on 

Dice coefficients for whole-brain masks. Dice coefficients for CSF-excluded masks varied significantly across different 

analysis conditions (F6,30 = 91.5, p = 5 x 10-52; Figure 3B), showing that the agreement between non-CSF brain regions from 

the EPI and T1 anatomical scans depended on the method of distortion compensation that was used. Post-hoc paired t-

tests revealed that the overlap for non-CSF regions was highest when using GE oppPE field maps for distortion 

compensation (via either AFNI’s 3dQwarp or FSL’s topup; red symbols; all significant paired t30 values ≥ 2.84, FDR-corrected 

p-values ≤ 0.032). The overlap for the CSF-excluded masks was lower when distortion compensation was performed using 

a B0 field map (via FSL’s fugue; green triangle) or SE oppPE field map (in either AFNI’s 3dQwarp or FSL’s topup; blue 

symbols), and lowest for the alignment-only data (using either 6-parameter [white circle] or 12-parameter alignment 

methods [gray circle]). 
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We further compared distortion compensation methods by calculating the mutual information between fMRI and T1 

data, as higher mutual information reflects better alignment. Compared to the Dice coefficient, mutual information is 

more sensitive to differences in the alignment of internal brain structures, as it is based on the intensity of all voxels within 

the brain. Mutual information between EPI and T1 anatomical scans differed significantly across analysis conditions (F6,30 

= 35.1, p = 7 x 10-28; Figure 3C), reflecting a difference in alignment quality for different distortion compensation methods. 

In particular, post-hoc tests revealed that mutual information was highest when using the GE oppPE field map methods 

for distortion compensation (red squares; all significant paired t30 values ≥ 3.48, FDR-corrected p-values ≤ 0.017). Mutual 

information was generally comparable between all other methods and the 6-parameter alignment-only data (white 

square). The 12-parameter alignment-only method (gray circle) yielded lower mutual information compared to all other 

conditions. 

Analysis #2: pre-aligned data 

Human subjects, especially those who are not experienced with MR scanning, may be more likely to move, or move 

more towards the end of a long scanning session. Because our scans were acquired in a fixed order, we considered whether 

differences in head motion might have biased our results in favor of the GE oppPE data, which was acquired near the 

beginning of the session (approximately 1.25 hours in total length), rather than the B0 field map or SE oppPE data, which 

were acquired near the end. Specifically, if subjects tended to move more during the B0 field map and SE oppPE scans, or 

moved more between these scans and the GE EPI scans on which distortion compensation was performed, then this might 

degrade the quality of distortion compensation for the B0 field map and SE oppPE methods as compared to the GE oppPE 

method. 

Figure 3. Main results. A) Overlap (Dice coefficient) between GE EPI and T1 brain mask data, across different distortion compensation 
methods. Gray lines indicate conditions that do not differ significantly (post-hoc paired t-tests, threshold p < 0.05, FDR corrected). X-
axis labels: GE oppPE = gradient echo opposite phase encoding field map (red), B0 FM = B0 field map (green), SE oppPE = spin echo 
opposite phase encoding field map (blue), Align only = alignment-only (no explicit geometric distortion compensation). B) Same, but 
for binary masks with regions of cerebrospinal fluid (CSF) excluded, following tissue segmentation. C) Mutual information between GE 
EPI and T1 scan data. Squares show data corrected using AFNI, triangles show data from FSL, circles show alignment-only data. Error 
bars are SEM calculated within subjects1. All of the tested distortion compensation methods improved agreement between fMRI and 
T1 data sets. For our particular dataset, GE oppPE field maps (red) tended to produce the best results.  
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To explore this issue, we re-ran our analyses after aligning all field map and 7T GE fMRI scans to the magnitude portion 

of the B0 field map (see Methods for details, and a discussion of why this initial alignment step was omitted from the first 

analysis). We applied all five distortion compensation methods to the same 7T GE EPI scan, to mitigate any possible bias 

caused by the fixed scanning order. We found that this methodological decision had very little impact on our results 

(Supplemental Figure 3); all distortion compensation methods improved alignment between fMRI and T1 data (ANOVAs, 

main effects of condition for whole-brain masks, CSF-excluded masks, and mutual information, F6,30 > 35.7, p-values < 3 

x 10-28), with the GE oppPE field maps showing the strongest performance. 

Analysis #3: single-band reference 

Alignment and segmentation of GE EPI data may depend on image contrast (e.g., gray matter vs. white matter 

intensity). To explore the role of image contrast in our results, we repeated our main analyses using the single-band 

reference data in place of the multi-band 7T GE EPI data for alignment, segmentation, and quantification purposes, as 

image contrast was higher in the single-band reference (Supplemental Figure 1). We calculated Dice coefficients and 

mutual information between the GE single-band reference data and the T1 scans, as before. These metrics differed 

significantly across distortion compensation methods for the single-band reference data (ANOVAs, main effects of 

condition, F6,30 > 35.2, p-values < 5 x 10-28; Supplemental Figure 4). The patterns of results for the single-band reference 

data were very similar to those obtained with multi-band GE EPI in the main analysis (Figure 3), suggesting that the quality 

of the alignment and segmentation of our 7T data were not limited by image contrast in the multi-band scans. 

Discussion 

Our analyses showed that all of the distortion compensation methods tested (GE oppPE field maps, B0 field maps, SE 

oppPE field maps) yielded improved correspondence between GE fMRI and T1 anatomical data, compared to alignment-

only data. We found no substantial differences when comparing our results for oppPE field map corrections performed 

using AFNI versus FSL (squares vs. triangles, Figure 3), suggesting that these two software packages yield equivalent data 

quality for this type of distortion compensation. However, we did find small but consistent differences in Dice coefficients 

and mutual information between the various distortion compensation methods we examined. Agreement between GE 

fMRI and T1 data was generally highest in our data set when using GE oppPE field maps for distortion compensation (red 

symbols, Figure 3). Hence, we have chosen to implement this particular correction method within our own internal data 

processing pipeline for the Psychosis Human Connectome Project.  

This study provides a framework for deciding which distortion compensation method to use for a given data set, based 

on quantitative comparisons of the agreement between distortion-corrected EPI data and a T1 anatomical reference scan. 

We expect that the relative performance of different methods may vary across data sets based on data acquisition 

parameters, scanner and coil hardware, and the details of the processing pipeline that is used. Thus, the reader may wish 

to compare the relative performance of different distortion compensation methods in their own dataset, using an 

approach similar to ours. We used multiple metrics to quantify EPI-T1 agreement as a proxy for correction quality (i.e., 

Dice coefficients for whole-brain masks and CSF-excluded masks, as well as mutual information), since we acknowledge 

that there is no single gold standard for measuring the quality of distortion compensation in human brain imaging data28 

(but see the following studies that used simulations to try to establish ground truth47, 48). By making our data and analysis 

code publicly available (see Methods), we hope to facilitate the empirical selection of effective approaches for geometric 

distortion compensation in future research. 

In addition to geometric distortion compensation, our analyses included gradient nonlinearity correction2, 3, 41, a post-

processing step to correct for static spatial non-uniformities in the brain images caused by the gradients themselves (i.e., 

not dependent on the scanning sequence or B0 field inhomogeneity). This is particularly important in cases such as ours, 

where one wishes to align EPI data acquired on one scanner to anatomical data acquired on another, as gradient 

nonlinearities will vary across scanners based on differences in gradient hardware. Previous studies comparing different 

geometric distortion compensation methods have generally not included (or reported) gradient nonlinearity correction. 

For datasets acquired using a single scanner, sequence-independent gradient nonlinearities limit geometric fidelity but 

not the ability to align distortion corrected EPI to anatomical reference scans. We believe that effective corrections for 

both gradient nonlinearities and geometric distortions are critical for achieving high spatial fidelity, and for harmonizing 

EPI and T1 data across different scanners and field strengths. 
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It has been suggested that, due to reduced through-slice dephasing, SE oppPE field maps may provide higher quality 

distortion compensation as compared to GE oppPE field maps34. However, in the current study we observed consistently 

better distortion correction, as quantified by Dice coefficients and mutual information, for GE vs. SE oppPE methods when 

applied to our GE EPI data (red vs. blue symbols, Figure 3). We offer two possible explanations, which are not mutually 

exclusive. First, there may be more opportunities for head motion to degrade the quality of distortion compensation when 

using a SE oppPE field map to correct GE EPI data, as there are two additional scans (beyond the GE EPI to be corrected) 

during and between which the subject must hold still, versus only one additional scan for a GE oppPE field map (i.e., the 

GE EPI data used for functional imaging themselves can serve as half of the GE oppPE pair). As noted below, any head 

motion between scans will change the B0 inhomogeneities and subsequent geometric distortions, leading to poorer 

correction. Second, superior performance of the GE oppPE field maps might possibly be due to differences in signal 

intensity between GE and SE data (compare Figure 1A & B vs. Figure 1G & H). Unwarping algorithms (i.e., FSL’s topup and 

AFNI’s 3dQwarp) may be generally better suited to correcting geometric distortion based on the image contrast in GE vs. 

SE data. Additionally, in regions of significant B0 inhomogeneity (e.g., temporal lobe, orbitofrontal cortex), geometric 

distortion may cause displaced signal from multiple voxels to ‘pile up’ within a single voxel14, 18, 19, 27. If the signal intensity 

differs strongly between the pair of oppPE scans from which the voxel displacement map is calculated and the EPI scan to 

which it is applied (e.g., when using SE oppPE field maps to correct distortion in GE EPI), then the voxel displacement map 

in such regions might be incorrect, resulting in poorer distortion compensation15, 48. 

Our results agree with previous studies that have universally shown corrections for geometric distortion due to B0 

field inhomogeneity improve EPI data quality and alignment with minimally distorted reference scans4. In particular, 

previous work has generally shown better performance for oppPE field map strategies, as compared to B0 field maps, 

which has been attributed in part to the difficulty of using B0 field maps to correct distortion near the edges of the brain 

(see Figure 1F), where phase values change rapidly. Using simulated EPI data, both Esteban47 and Graham48 showed 

quantitatively that ground truth undistorted images were recovered best using an oppPE field map method, whereas B0 

field maps performed slightly worse, and nonlinear registration-based methods were greatly inferior (but still better than 

no correction at all). Similar conclusions were reached by Hong and colleagues28 using SE EPI in the mouse brain at 7T, by 

Holland and colleagues34 using SE EPI at 1.5 and 3T in the human brain, and by Wang and colleagues49 using 3T dMRI data 

in humans (see also 5). Thus, there is some evidence to suggest, in general terms, better performance for oppPE methods 

over B0 field maps, with nonlinear registration yielding poorer results (but better than no correction, and useful in cases 

where the additional scans required to perform the other methods above are not available). 

This study considered only static geometric distortions in the GE EPI data caused by B0 inhomogeneity. If a subject 

moves during a scanning session, then the B0 inhomogeneities will not be stable over time, and geometric distortions will 

vary with head motion4, resulting in poorer correction based on static methods48. We conducted a second analysis 

(Analysis #2: pre-aligned data) in which all field map scans were first aligned to the magnitude portion of the B0 field map 

prior to distortion compensation. The results from this second analysis (Supplemental Figure 3) recapitulated the findings 

from the main portion of our study (Figure 3), suggesting that differences in subject head motion over time may not 

explain the pattern of results we observed. Methods for dynamic distortion compensation (e.g., with different distortion 

fields calculated for each time point in an EPI time series) have also been proposed6, 26, 29, and may offer advantages in 

correcting time-varying geometric distortion, as compared to the static approaches considered here. However, to our 

knowledge, such dynamic distortion compensation methods are not currently implemented in the software packages that 

are most often used to pre-process brain imaging data. 
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Supplemental information 

  

Supplemental Figure 1. Single-band reference data. Panel 
A shows an example re-sliced coronal section from our 
standard multi-band GE EPI sequence, whereas B shows 
the single-band reference data from the same section in 
the same subject. Note the higher gray matter-white 
matter contrast for the single-band reference data in B. 
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Supplemental Figure 2. Box plots of the results from the main analysis. The order of conditions (left to right) is GE 3dQwarp, GE topup, 
fugue, SE 3dQwarp, SE topup, 6 param., 12 param. (same as in Figure 3). X-axis labels: GE oppPE = gradient echo opposite phase 
encoding field map, B0 FM = B0 field map, SE oppPE = spin echo opposite phase encoding field map, Align only = alignment-only (no 
explicit geometric distortion compensation). Red lines = median, blue boxes = interquartile range, whiskers = 1.5 x interquartile range, 
red pluses = points outside whiskers, gray dots = all data points. 
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Supplemental Figure 3. Results for data aligned to B0 field map from Analysis #2. A) Overlap (Dice coefficient) between GE EPI and T1 
brain mask data, across different distortion compensation methods. Gray lines indicate conditions that do not differ significantly (post-
hoc paired t-tests, threshold p < 0.05, FDR corrected). X-axis labels: GE oppPE = gradient echo opposite phase encoding field map (red), 
B0 FM = B0 field map (green), SE oppPE = spin echo opposite phase encoding field map (blue), Align only = alignment-only (no explicit 
geometric distortion compensation). B) Same, but for binary masks with regions of cerebrospinal fluid (CSF) excluded, following tissue 
segmentation. C) Mutual information between GE EPI and T1 scan data. Squares show data corrected using AFNI, triangles show data 
from FSL, circles show alignment-only data. Error bars are SEM calculated within subjects1. Aligning all scans to the magnitude portion 
of the B0 field map did not substantially alter our pattern of results (compare with data from the main analysis in Figure 3), suggesting 
that differences in head motion across the scanning session did not dramatically affect our findings. 
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Supplemental Figure 4. Results for single-band reference data from Analysis #3. A) Overlap (Dice coefficient) between GE EPI and T1 
brain mask data, across different distortion compensation methods. Gray lines indicate conditions that do not differ significantly (post-
hoc paired t-tests, threshold p < 0.05, FDR corrected). X-axis labels: GE oppPE = gradient echo opposite phase encoding field map 
(red), B0 FM = B0 field map (green), SE oppPE = spin echo opposite phase encoding field map (blue), Align only = alignment-only (no 
explicit geometric distortion compensation). B) Same, but for binary masks with regions of cerebrospinal fluid (CSF) excluded, 
following tissue segmentation. C) Mutual information between GE EPI and T1 scan data. Squares show data corrected using AFNI, 
triangles show data from FSL, circles show alignment-only data. Error bars are SEM calculated within subjects1. Using the single-band 
reference data for alignment and segmentation did not dramatically alter the pattern of results (compare with data from the main 
analysis in Figure 3), suggesting that these analysis steps did not depend strongly on image contrast. 
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