

Original Article

Landscape and climatic features drive genetic differentiation processes in a South American coastal plant

GUSTAVO A. SILVA-ARIAS^{1,2}, LINA CABALLERO-VILLALOBOS¹, GIOVANNA C. GIUDICELLI¹, LORETA B. FREITAS^{1*}

¹*Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.*

²*Section of Population Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Straße 2 85354 Freising, Germany.*

*For correspondence. E-mail: loreta.freitas@ufrgs.br

Genetic differentiation in South America's coastline

1 **ABSTRACT**

2 **Background and aims** Historical and ecological processes shaped the patterns of genetic
3 diversity in plant species; among these, colonization to new environments such as coastal
4 regions generate multiple signals of interest to understand the influence of landscape features
5 on the population differentiation.

6 **Methods** We analysed the genetic diversity and population structure of *Calibrachoa*
7 *heterophylla* to infer the influence of abiotic landscape features on this coastal species' gene
8 flow in the South Atlantic Coastal Plain (SACP). We used ten microsatellite loci to genotype
9 253 individuals from 15 populations, covering the species' entire geographical range. We
10 applied population genetics analyses to determine population diversity and structure along the
11 SACP, migration model inference and correlative analyses to disentangle the most likely
12 drivers of gene flow in the SACP.

13 **Key Results** The *C. heterophylla* populations located more distantly from the seashore
14 showed higher genetic diversity than those closer to the sea. The genetic differentiation had a
15 consistent signal of isolation-by-distance. Landscape features, such as water bodies and wind
16 corridors, and raw geographical distances equally explained the genetic differentiation,
17 whereas the precipitation seasonality showed a strong signal for isolation-by-environment in
18 marginal populations. The estimated gene flow suggested that marginal populations had
19 restricted immigration rates, which could enhance the genetic differentiation.

20 **Conclusions** The influence of topographical features in population differentiation in *C.*
21 *heterophylla* is related with the history of the coastal plain deposition. Gene flow is mainly
22 restricted to nearby populations and facilitated by wind fields but with no apparent influence
23 of large water bodies. Furthermore, differential rainfall regimes in marginal populations can
24 promote local genetic differentiation.

26 **Key words:** *Calibrachoa heterophylla*; coastal species; colonization; gene flow; landscape

27 genetics; Solanaceae; South Atlantic Coastal Plain.

28

INTRODUCTION

29 Coastal areas in South America constitute distinct landscapes with unique biotic composition.
30 Many different geomorphological, climate, oceanographic features, and colonization events
31 from the surrounding biomes shaped these areas (Hulton *et al.*, 2002; Scarano, 2002; Behling,
32 2003; Carnaval and Moritz, 2008; Saillard *et al.*, 2009; Miloslavich *et al.*, 2011). Therefore,
33 South American coastal flora shows a peculiar diversity with a range of biogeographical
34 processes involving different population demographic processes (Silva *et al.*, 2018; Massante
35 and Gerhold, 2020). Although the studies on plant diversification in South America have
36 received increased attention in the last years, analyses focusing the post-glacial re-
37 colonization, speciation, migration, and colonization of coastal areas are still scarce (Sérsic *et*
38 *al.*, 2011; Turchetto-Zolet *et al.*, 2013; Leal *et al.*, 2016).

39 The species' geographical distribution and genetic diversity result from historical and
40 contemporary processes acting together with ecological factors (Loveless and Hamrick, 1984;
41 Huang *et al.*, 2016; Schierenbeck, 2017). The multiple environmental particularities in the
42 coastal areas constitute exciting models for studying genetic differentiation in response to
43 climate changes, physical barriers, and ecological features (Kadereit and Westberg, 2007;
44 Escudero *et al.*, 2010; Sork, 2016). Coastal regions have common characteristics, such as
45 intrinsic linear distributions, high salinity, wind strength, and tidal influence, that investigate
46 convergent demographic patterns among species from different areas (Escudero *et al.*, 2010).
47 The colonization and the genetic isolation are critical events in the evolutionary dynamics of
48 coastal plant populations (Thompson, 1999), mainly because the spread to new environments
49 generates signals on the genetic diversity and structure of species (Excoffier *et al.*, 2009).

50 The geographical distance and environmental differences influence the genetic
51 differentiation across species range because they affect the genetic variation and structure
52 between populations (Manel *et al.*, 2003; Nosil *et al.*, 2009; Lee and Mitchell-Olds, 2011).

53 Analyses such as the isolation-by-distance (IBD) and isolation-by-environment (IBE) can
54 identify the causes of the genetic differentiation resulting from geographic distance and
55 interactions between organisms and their environments, respectively (Orsini *et al.*, 2013;
56 Sexton *et al.*, 2014; Wang and Bradburd, 2014).

57 Some studies have indicated that the differences in micro-environments or resulting from
58 abiotic factors (temperature and superficial marine currents) may promote differential
59 selection that limits the establishment of species (e.g., Tellier *et al.*, 2009, 2011; Mori *et al.*,
60 2015; Francisco *et al.*, 2018). Despite that, the evaluation of the relative influence of space
61 and environment on the genetic differentiation in South American coastal plains is still scarce
62 (Baranzelli *et al.*, 2014; Silva-Arias *et al.*, 2017; Meireles and Manos, 2018).

63 The South Atlantic coastal Plain (SACP) is a flat, continuous, and open region
64 constituting the most extensive coastal region in South America. The SACP extends NE-SW
65 for approximately 600 km, occupied mostly by large coastal lakes, and crossed by two
66 perennial water channels (Tomazelli *et al.*, 2000; Weschenfelder *et al.*, 2010). The SACP
67 gradually arose during sea-level transgressions and regressions processes caused by glacial-
68 interglacial cycles during the last 400 thousand years. The most substantial transgression and
69 regression cycles let the formation of four main sand barriers to be positioned parallel to the
70 coastline (barrier-lagoon systems I to IV; Tomazelli *et al.*, 2000; Tomazelli and Dillenburg,
71 2007). The harsh environment, such as strong spring-summer sea breezes from the northeast
72 and high insolation, strongly influences this region such as strong spring-summer sea breezes
73 from the northeast and high insolation (Dillenburg *et al.*, 2009), which was responsible for the
74 current topography and, consequently, influenced the distribution and variability of genetic
75 lineages in contemporary plants (e.g., Mäder *et al.*, 2013; Ramos-Fregonezi *et al.*, 2015;
76 Silva-Arias *et al.*, 2017).

77 In this study, we aimed to investigate the historical and contemporary processes involved
78 in the diversification of coastal plants in South America. We examined potential
79 topographical and climatic predictors for population structure and gene flow during the
80 colonization of the SACP based on a small shrub, perennial, and coastal nightshade species,
81 *Calibrachoa heterophylla*. Our results provided information that can support the
82 establishment of general scenarios describing evolutionary processes for plants from the
83 coastal regions in South America and addressing conservation gaps in the face of climate
84 changes.

85

86 MATERIALS AND METHODS

87 *Study system*

88 The species of *Calibrachoa* (Solanaceae) occur in subtropical and temperate grasslands in
89 southern Brazil, northeast Argentina, and Uruguay. The genus encompasses ca. 30 species,
90 among which *C. heterophylla* is the only species that colonized coastal environments (Mäder
91 and Freitas, 2019). This species is diploid ($2n = 18$), semi-prostrated, and displays purplish
92 bee-pollinated flowers; the fruits are capsules and produce dozens of tiny seeds (< 1.4 mm)
93 with no dispersal mechanisms. The species occupies open sandy grasslands, dunes, or rocky
94 outcrops in lakeside or marine environments from ~ 28 Lat S to 32 Lat S in the SACP (Mäder
95 *et al.*, 2013). Longitudinally, populations of *C. heterophylla* occur from the seashore to less
96 than 90 km from the coast, with the populations separated from the sea by big lagoons. Just
97 one disjointed and small group of populations (Fig. 1A) can be found outside from SACP,
98 restricted to the sandbanks alongside the Santa Maria River basin, ~ 55 Long W.

99 The phylogeographic structure of *C. heterophylla* reveals one inland and three coastal
100 intra-specific plastid DNA (cpDNA) lineages that likely resulted from divergence before the
101 SACP formation. Two river channels acted as paleo-barriers, splitting the coastal lineages

102 (Mäder *et al.*, 2013). The current distribution of *C. heterophylla* in SACP could be shaped
103 through a population expansion following the last marine regression (Mäder and Freitas,
104 2019), ca. 7-8 thousand years ago (kya; Tomazzeli *et al.*, 2000).

105

106 *Sample collections*

107 We sampled a total of 253 individuals from 15 locations (hereafter called populations; Fig.
108 1A) that covered the entire *C. heterophylla* known distribution. We collected leaves of all
109 individuals found in each locality and preserved them in silica gel. The number of individuals
110 per population varied from three to 41 (Table 1).

111

112 *Laboratory procedures*

113 The total DNA was extracted following a CTAB-based protocol (Roy *et al.*, 1992) and
114 amplified for ten anonymous microsatellite loci (Che18, Che59, Che119, Che26, Che34,
115 Che81, Che82, Che85, Che72, and Che126) developed for *C. heterophylla*, following
116 standard protocols for PCR and genotyping procedures (Silva-Arias *et al.*, 2015).

117

118 *Characterization of the genetic diversity*

119 We performed tests for linkage disequilibrium and deviations from Hardy-Weinberg
120 equilibrium (HWE) within each population for each locus. We assessed the significance of
121 HWE deviations using 10^6 Markov chain steps and Fisher's exact probability tests in
122 ARLEQUIN 3.5 (Excoffier and Lischer, 2010). We estimated the genetic diversity based on
123 average rarefied allelic richness, private alleles, observed heterozygosity (H_o), expected
124 heterozygosity (H_e), the Garza-Williamson (G-W) index, and inbreeding coefficient (F_{IS} ; with
125 confidence limits from 1000 bootstrap resampling over loci) using the POPPR 2.8.5 (Kamvar

126 *et al.*, 2014, 2015) and HIERFSTAT 0.04-22 (Goudet, 2005, 2014) in R 3.6.3 package (R Core
127 Team, 2019), and ARLEQUIN.

128

129 *Genetic structure*

130 We assessed the genetic structure employing two model-based clustering methods and two
131 exploratory data analyses (Fran ois and Waits, 2016). The model-based clustering methods
132 used were STRUCTURE 2.3.4 (Pritchard *et al.*, 2000) and the spatial Bayesian clustering
133 program TESS 2.3. These analyses provide estimates for the number of genetic clusters (K) in
134 HWE equilibrium, individual assignment probabilities, and compute the proportion of the
135 genome of each individual that can be assigned to the inferred clusters.

136 For STRUCTURE analysis, the number of clusters evaluated ranged from 1 to the total
137 number of populations (15), with ten independent runs per K-value. We performed each run
138 using 2.5×10^5 burn-in periods and 1.0×10^6 Markov chain Monte Carlo repetitions after the
139 burn-in, under an admixture model, assuming correlated allele frequencies (Falush *et al.*,
140 2003), and including a priori sampling locations as prior (*locprior*) to detect weak population
141 structure. The *locprior* option is not biased toward detecting structure when it is not present
142 and can improve the STRUCTURE results when implemented with few loci (Hubisz *et al.*,
143 2009). To obtain the K value that better explains the structure based on the genetic dataset, we
144 assessed the measures of the ΔK method (Evanno *et al.*, 2005) that is useful to recover the
145 highest level of genetic structure.

146 TESS implements a spatial assignment approach to group individuals into clusters
147 accounting for samples' geographical locations, giving them higher probabilities of belonging
148 to the same genetic cluster to those that are spatially closer in the connection network. For
149 TESS, we ran 100 000 generations, with 50 000 generations as the burn-in, using the
150 conditional autoregressive (CAR) admixture model, and starting from a neighbour-joining

151 tree. We ran 20 iterations for each value of maxK ranging from 2 to 15. We added small
152 perturbations to the original spatial with a standard deviation equal to 0.2 to obtain single
153 different coordinates for each individual, because of the spatial proximity among individuals
154 from each collection site allowed to obtain only one coordinate. We assessed the convergence
155 inspecting the post-run log-likelihood plots and obtained the support for alternative K values
156 inspecting the statistical measure of the model prediction capability from deviance
157 information criterion (DIC; Spiegelhalter *et al.*, 2002). We computed and plotted the average
158 of DIC values to detect maxK value at the beginning of a plateau. Replicated runs of best K
159 results for both STRUCTURE and TESS were summarized and plotted with the POPHELPER
160 (Francis, 2017) R package.

161 Additionally, to detect genetic structure, we implemented two exploratory data analyses
162 multivariate method (Fran ois and Waits, 2016), the Discriminant Analysis of Principal
163 Components (DAPC; Jombart *et al.*, 2010) and the spatial Principal Component Analysis
164 (sPCA; Jombart *et al.*, 2008), both using the ADEGENET 2.1.3 (Jombart, 2008) R package. For
165 the DAPC analysis, the SSR data were first transformed using Principal Component Analysis
166 and keeping all principal components (PCs). After that, we implemented the function
167 *find.clusters* to obtain the optimal number of clusters that maximizes the between-group
168 variability using the lowest Bayesian Information Criterion (BIC) score. To avoid overfitting,
169 we set an optimal reduced number of PCs to retain given the best number of clusters using the
170 function *optim.a.score*. Finally, the DAPC was implemented with the number of clusters and
171 PCs to the optimal values and plotted a scatter plot of the two first components with the
172 function *s.class*.

173 sPCA of genetic structure incorporates spatial information to maximize the product of
174 spatial autocorrelation (Moran's I) and the variance for each eigenvector, which produces
175 orthogonal axes that describe spatial patterns of genetic variation. The spatial information is

176 included in the analysis using a spatial weighting matrix derived from a connection network.
177 To test the effect of the neighbouring definition on the results, we ran the sPCA using six
178 different connection networks available in the function *chooseCN*. For these analyses, we
179 used the same perturbed coordinates used in TESS analysis. Monte Carlo simulations (global
180 and local tests) were used with 10 000 permutations to test for non-random spatial association
181 of population allele frequencies for all sPCA implemented.

182

183 *Historical and contemporary gene flow estimations*

184 Contemporary asymmetric migration rates were estimated using a Bayesian approach
185 implemented in BAYESASS 3.0 (Wilson and Rannala, 2003). We ran 10^8 iterations and a
186 burn-in of 10^7 . We adjusted the mixing of allele frequencies, inbreeding coefficients, and
187 migration rates parameters to 0.6, 0.6, and 0.3, respectively, to obtain acceptance rates around
188 40%. We assessed convergence examining the log-probability plots and the effective sample
189 sizes for each run using TRACER 1.6 (Rambaut *et al.*, 2014) and looking for consistency of the
190 migration estimates among three independent runs with different initial seed numbers.

191 We assessed historical gene flow testing the support of four alternative scenarios given
192 our genetic dataset using Bayes factors calculated from the marginal likelihood
193 approximations (Beerli and Palczewski, 2010). We used the coalescent-based MIGRATE-N
194 3.2.6 (Beerli and Felsenstein, 2001) software to estimate the mutation-scaled population size
195 (Θ) and a mutation-scaled migration (M) parameter. To assess the support of each migration
196 model, we used the Bézier log-marginal likelihood approximations.

197 For all models, we pooled the populations into four groups according to the geographical
198 distribution and genetic structure (see Results Figs. 1A and 2). The ‘Inland’ group included
199 the São Francisco de Assis, Cacequi 1, and Cacequi 2 populations; ‘West’ group
200 encompassed the Arambaré, Barra do Ribeiro, and Pelotas populations; ‘North’ included the

201 Santo Antônio da Patrulha, Torres, and Laguna populations; and ‘South’ group clustered the
202 Mostardas 1, Mostardas 2, São José do Norte 1, São José do Norte 2, Rio Grande, and Santa
203 Vitória do Palmar populations.

204 We evaluated four migration models: (1) source-sink from inland with unidirectional
205 migration from ‘Inland’ group to the remaining groups; (2) source-sink from the west with
206 unidirectional migration from ‘West’ group to the remaining groups; (3) step-stone from
207 inland with unidirectional migration from Inland to West and from West to North and South;
208 and (4) step-stone from the coast with unidirectional migration from North to West, from
209 South to West, and from West to Inland (Supplementary Data Fig. S1).

210 We ran the MIGRATE-N Bayesian inference in the Cipres Science Gateway 3.3 (Miller *et*
211 *al.*, 2010), with one long chain of 5×10^6 steps, sampling at every 100th increment, and a
212 burn-in of 3×10^4 steps. We used uniform priors and slice sampling for both Θ and M ranging
213 from 0 to 20 (mean = 10, delta = 0.5). We used a heating scheme (Metropolis-coupled
214 Markov Chain Monte Carlo) with four parallel chains and temperatures of 1, 1.5, 3, and 10^6 .

215

216 *Space, topography, environment, and genetic differentiation*

217 Spatial correlation patterns under isolation-by-distance (IBD) arouse bias in several genetic
218 structure tests (Frantz *et al.*, 2009; Meirmans, 2012). Therefore, we assessed the IBD through
219 linear regression of linearized pairwise F_{ST} genetic distances and log-transformed
220 geographical distances (Rousset, 1997) using a Mantel test, assessing the significance with 10
221 000 randomizations in VEGAN 2.5-6 (Oksanen *et al.*, 2015) R package.

222 We calculated the pairwise F_{ST} (Weir and Cockerham, 1984) matrix with the HIERFSTAT
223 package. We obtained the geographical inter-population distance matrix calculating the linear
224 Euclidean distance between X and Y UTM 22S (reference EPSG: 32722) populations’

225 coordinates transformed from Long/Lat coordinates with RGDAL 1.0-4 (Bivand *et al.*, 2015) R
226 package.

227 We tested isolation-by-environment (IBE) models to examine whether differences in
228 climatic conditions explain the observed inter-population genetic differentiation in *C.*
229 *heterophylla*. We calculated the climatic dissimilarity matrices between each populations' pair
230 for the following bioclimatic variables: total annual precipitation, total annual days with rain,
231 precipitation seasonality, mean annual temperature, mean summer maximum temperature,
232 mean winter minimum temperature, mean temperature range, and temperature seasonality.

233 We took the values of those climatic variables from raster layers specifically developed for
234 the SACP derived from a high-density sampling of climate stations throughout the region,
235 geostatistical modelling, and spatial interpolation (Silva-Arias *et al.*, 2017).

236 Considering that strong summer winds in the SACP can be an important vector for seed
237 or vegetative propagules movement, we also included a wind connectivity matrix in the IBE
238 tests. We calculated surface wind direction and speed data for southern Hemisphere's spring
239 months (September to November) 2011–2016 sampled every three hours. We downloaded the
240 data from the Global Forecasting System using the RWIND 1.1.5 (Fernández-López and
241 Schliep, 2019) R package. For each sampled time, we transformed direction and speed values
242 into raster layers using the *wind2raster* function to obtain transition layers using the function
243 *flow.dispersion*. Finally, we calculated pairwise cost distance matrices with the function
244 *costDistance* in GDISTANCE 1.3-1 (van Etten, 2017) R package. We then averaged the matrices
245 for all-time series. We plotted the final matrix with the QGRAPH 1.6.5 (Epskamp *et al.*, 2012)
246 in the R package.

247 To test for possible models of inter-population differentiation linked to landscape
248 discontinuities alongside the SACP, we extended the IBD and IBE analyses using raster grids.
249 We outlined two coast distance models (Supplementary Data Fig. S2): (1) the *continuous* (or

250 null) model wherein no landscape discontinuity affects the inter-population connectivity. We
251 created a raster grid with all cells values equal to 1, including all cells on freshwater surfaces.
252 This model is expected to resemble a Euclidean geographical distance, but it is more proper
253 for comparisons with models based on circuit theory; and (2) the *water bodies* model, which
254 proposes that the widespread freshwater bodies in the SACP restrict the connectivity between
255 populations. For that, we created a raster grid with all land cells values equal to 1, and cells
256 within freshwater surfaces as complete barriers (*no data*). We generated pairwise cost
257 distance matrices using the function *transition* in GDISTANCE package considering an eight-
258 neighbour cell connection scheme, Long/Lat coordinates per population as nodes, and raster
259 resolution of 0.09 degrees (~ 10 km).

260 We examined the relationships between genetic differentiation (F_{ST}) and geographical or
261 topographical distances (IBD) and environmental dissimilarity (IBE) using multiple matrix
262 regressions with randomization (MMRR; Wang, 2013) implemented in R.

263

264 RESULTS

265 *Genetic diversity*

266 We found a total of 140 alleles across the ten microsatellite loci. The mean number of alleles
267 per locus was 14, ranging from seven (Che59) to 17 (Che81). All loci showed higher H_e
268 (Supplementary Data Fig. S3) with 25% of the locus-population combinations showing a
269 departure of HWE ($P < 0.05$). We detected a significant linkage disequilibrium signal ($P <$
270 0.01) for several loci pairs, but as the linkage pattern was not consistent across populations for
271 any loci pair, we assumed linkage equilibrium and maintained all loci in the analyses.
272 MICROCHECKER analysis did not show null alleles, scoring errors, or stutter peaks for any
273 locus.

274 Populations located outside of SACP and those collected at the west side of the Patos
275 Lagoon showed higher genetic diversity overall loci (Fig. 1B). In contrast, the coastal
276 populations located at the northern and southern edges of species distribution in SACP
277 (Laguna and Santa Vitória do Palmar populations, respectively) had lower genetic diversity
278 values. Average values across loci for H_o ranged from 0.72 (São Francisco de Assis) to 0.31
279 (Laguna) and for H_e from 0.74 (Cacequi 2) to 0.48 (São José do Norte 1). We found 22% of
280 the alleles being exclusive to one population, with Barra do Ribeiro showing the highest
281 number of private alleles (eight), whereas Pelotas, Mostardas 1, São José do Norte 1, and São
282 José do Norte 2 populations had no private alleles. Garza-Williamson values ranged from
283 0.39 (Cacequi 1) to 0.83 (Torres). We found positive and significant inbreeding coefficients
284 (F_{IS}) for five populations (Fig. 1B), all of them located at the borders (northern and southern)
285 of species' distribution in the SACP (Fig. 1A; Table 1).

286

287 *Genetic structure*

288 The best K value inferred from the ΔK method in STRUCTURE analysis was K = 4
289 (Supplementary Data Fig. S4A), whereas the curve of average DIC values obtained with
290 TESS analyses showed a plateau after maxK = 8 and maxK = 2, 3, and 4 runs had the lowest
291 standard deviations (Supplementary Data Fig. S4B). Accounting for these results, we
292 analysed the bar plots of membership probability from K = 2 to K = 8.

293 The recovered population structure had a strong geographic signal. Genetic clustering
294 obtained with STRUCTURE (Fig. 2) and TESS (Supplementary Data Fig. S5) showed similar
295 results. For both approaches, assignment probabilities obtained for K = 2 delimited one
296 cluster composed of populations located at northern SACP and a second group composed by
297 remain populations. When K = 3, one group encompassed the northern coastal populations,
298 the second clustered the southern coastal populations, and the third brought together all

299 populations located on the west side of the Patos Lagoon and the three inland populations.
300 Higher values of K showed differences between the two Bayesian clustering methods in the
301 sequence that groups were incorporated; however, both recovered the same clustering pattern
302 at K = 8. With this K, the first group was composed by the three inland populations; the
303 second and third groups encompassed solely a single population each (Barra do Ribeiro and
304 Pelotas, respectively, both located on the west of Patos Lagoon); the forth cluster grouped two
305 populations from the northern SACP (Santo Antonio da Patrulha and Torres); the fifth cluster
306 encompassed the individuals from Laguna population (the northernmost distributed
307 population); the sixth cluster grouped São José do Norte 1 and São José do Norte 2
308 populations; the seventh cluster enclosed the individuals from the southernmost located
309 population (Santa Vitória do Palmar); and the eighth group was not preferentially linked to
310 any population, instead showed low membership probabilities for individuals from several
311 populations.

312 We found higher admixed membership for individuals from populations located in
313 geographical transitional regions (Fig. 2 and Supplementary Data Fig. S5). The most notable
314 cases were Mostardas 1 and Mostardas 2 populations located between the north and south
315 SACP portions, with all individuals from these populations showing membership probability
316 assigned into all clusters except the inland group. Individuals from the Rio Grande population
317 also showed high mixed membership and achieved some discrepancy between the two
318 Bayesian assignment tests. For the individuals from the Rio Grande population, STRUCTURE
319 assigned around 60% of the membership to the Torres genetic component, while TESS
320 supported a higher membership probability to the Santa Vitória do Palmar component.

321 Exploratory analyses revealed similar results to the Bayesian clustering analyses.
322 Although the lowest BIC score was for K = 8 (Supplementary Data Fig. S6), DAPC
323 scatterplot of the two main discriminant components (Fig. 1C) revealed three main groups,

324 delimiting northern and southern coastal populations in two different groups, and a third
325 group encompassing individuals from inland, Patos Lagoon western side, and the two
326 Mostardas populations. sPCA (Fig. 1D) recovered the two main groups formed by the
327 northern and southern edge coastal populations on the first sPC axis. The Torres and Santo
328 Antônio de Patrulha from the northern and Santa Vitória do Palmar from the southern
329 occupied opposed spaces related to their respective groups on the first sPC axis, while the
330 remaining populations showed a gradient of differentiation on the second sPC axis.

331

332 *Migration rates*

333 The mean migration rate, as estimated with BAYESASS, was 0.015. However, the vast
334 majority of the pairwise population estimations showed relatively wide confidence intervals
335 ranging between 0 and 0.1, with only four population pairs showing higher posterior effective
336 migration rates and confidence intervals above zero. Among these four cases, the most
337 outstanding was Mostardas2 to Arambaré ($N_m \approx 0.08$; 95% CI 0.01 - 0.14) that supports
338 migration between populations separated by the Patos Lagoon. The other three cases involved
339 neighbour populations, Cacequi1 to Cacequi2 ($N_m \approx 0.12$; 95% CI 0.05-0.19), Mostardas2 to
340 Mostardas1 ($N_m \approx 0.07$; 95% CI 0.01-0.13), and SJoséNorte2 to SJoséNorte1 ($N_m \approx 0.16$;
341 95% CI 0.09-0.22). Migration estimates obtained from independent runs of BAYESASS
342 showed similar values (Supplementary Data Table. S1).

343 The model-based coalescent approach implemented in MIGRATE-N supported the *step-
344 stone from the coast* as the most likely historical migration model between population groups
345 (Table 2, Supplementary Data Fig. S1C). Parameter estimation taken from the best-supported
346 model showed that ‘Inland’ group had the highest mean mutation scaled population size (Θ),
347 which was around eight times higher than the Θ estimated for ‘West’ and ‘North’ groups, and
348 around of 20 times higher than the Θ estimated for ‘South’ group that showed the lowest

349 value (Table 2). Migration from 'West' to 'Inland' had the highest mean mutation scaled
350 migration rate that was twice higher than the 'North' to 'West' and five times when compared
351 to the 'South' to 'West' values (Table 2).

352

353 *Isolation-by-distance, isolation-by-environment, and resistance tests*

354 Measures of population differentiation (Fig. 3A) F_{ST} ranged from 0.01 between Mostardas1
355 and Mostardas2 populations to 0.54 between Laguna and São José do Norte1 populations.
356 Linear regressions showed a significant positive relationship between genetic (Fig. 3A) and
357 linear geographical (Fig. 3B) distances ($R^2 = 0.14$; $P < 0.001$) supporting a IBD pattern for the
358 data set (Fig. 4A). Mantel test also supported a correlation between the genetic and
359 geographical distance matrices (Mantel's $r = 0.38$, $P < 0.001$).

360 Analyses testing the relationship among geographical distance, climate variables, and
361 genetic differentiation based on MMRR approach showed significant association between the
362 genetic dissimilarity and Euclidean distance ($R^2 = 0.21$, $\beta = 1.7 \times 10^{-7}$, $P < 0.001$) when
363 regressed with F_{ST} as the unique explanatory variable. MMRR models implemented with each
364 of the assessed climate variables and Euclidean distance as explanatory variables showed
365 significant relationship only for precipitation seasonality (Fig. 3C; $R^2 = 0.35$, $P = 0.003$;
366 $\beta_{\text{preseason}} = 7.5 \times 10^{-3}$, $P = 0.05$; $\beta_{\text{Euc}} = 1.1 \times 10^{-7}$, $P = 0.02$, respectively). IBD tests based on
367 topographic models based on coast distances showed that the *continuous* model (i.e.,
368 landscape matrix with no topographic discontinuities; Supplementary Data Fig. S2A)
369 explained slightly better the genetic differentiation (F_{ST} ; $R^2 = 0.16$, $\beta = 0.022$, $P = 0.006$) than
370 the *water bodies* ($R^2 = 0.14$, $\beta = 0.02$, $P = 0.011$) model (i.e., landscape matrix with water
371 bodies as full barriers to population connectivity; Supplementary Data Fig. S2B). The wind
372 connectivity matrix (Figs. 4B and 4C) showed a consistent north-to-south asymmetric step-
373 stone pattern where marginal populations appeared strongly isolated. Moreover, populations

374 located at the west side of the Patos Lagoon became receptors from coastline populations. The
375 coast distance wind matrix (Fig. 4A) showed significant correlation with the F_{ST} genetic
376 distance matrix ($R^2 = 0.19$, $\beta = 0.001$, $P = 0.0037$).

377

378 **DISCUSSION**

379 In this study, we analysed patterns of genetic diversity and structure of *Calibrachoa*
380 *heterophylla* to infer the influence of topographical and environmental features on the gene
381 flow during the recent colonization of a coastal plain in South America.

382 Our results provided consistent evidence for limited and asymmetric gene flow, mainly
383 limited by the geographical distance. The populations from northern and southern edges of
384 the species distribution showed negligible historical and contemporary immigration rates
385 probably related with an isolation-by-environment through the precipitation conditions. We
386 also found that the more outstanding topographical feature in the South Atlantic Coastal Plain
387 (the big water bodies) does not seem to constrain *C. heterophylla* populations' gene flow.

388

389 *Historical and contemporary drivers of genetic structure in Calibrachoa heterophylla*
390 There is a hierarchical pattern of genetic structure related to both historical and contemporary
391 landscape features. The highest level of population structure showed three well-supported
392 groups, northern, central, and southern groups. The central group also included the inland
393 populations. This main clustering pattern mirrors the phylogeographical structure of *C.*
394 *heterophylla* based on cpDNA (Mäder *et al.*, 2013). The retention of historical signals of
395 genetic structure in highly variable markers, such as microsatellites, is expected for studies
396 involving the entire geographic range of species, which reinforces the importance of
397 considering the historical patterns for landscape genetic approaches (Anderson *et al.*, 2010).
398 The populations from the intersection between northern and southern regions, such as

399 Mostardas 1 and Mostardas 2 populations, or those between west Patos Lagoon and southern
400 regions, as Pelotas population, had higher admixture values to a secondary gene flow between
401 previously differentiated intraspecific lineages (Fig 1).

402 The influence of geographical distances on the genetic structure was evident in several
403 levels of *C. heterophylla* genetic structure. The northern, southern, and central groups showed
404 a main latitudinal pattern of structure. At a fine scale, we found that individuals from
405 peripheral populations conformed independent groups with individuals' membership higher
406 than 80%, as seen in Santa Vitória do Palmar, inland populations São Francisco de Assis,
407 Cacequi 1, and Cacequi 2, and Laguna locations (Figs. 1 and 2; Supplementary Data Fig. S3).
408 Genetic drift due to strong geographical isolation (Whigham *et al.*, 2008) can explain
409 individuals' assignment to a completely separated group.

410 We observed few departures from the geographical frame in the genetic structure in
411 some distant populations for which the assignment tests suggested as sharing partial genetic
412 identities, such as Laguna and São José do Norte and Torres and Rio Grande population pairs.
413 In both cases, populations from northern and southern SACP regions were involved. Either
414 persistent ancestral variation after population divergence or randomly driven processes, such
415 as the fixation of the same allele during an expansion wave (Excoffier and Ray, 2008) or
416 homoplasy (Grimaldi and Crouau-Roy, 1997; van Oppen *et al.*, 2000; Schaal and Olsen,
417 2000) could equally explain that partial genetic affinity between spatially distant populations.
418 A long-distance gene flow seems an unlikely scenario based on the high F_{ST} between these
419 populations and the observed low migration rates.

420 The Pelotas population showed several different results according to the methodology
421 and structure level inferred. Exploratory and STRUCTURE analyses grouped Pelotas with the
422 inland populations (Figs. 1 and 2), while TESS suggested that Pelotas would be more related
423 to the southern group (Supplementary Data Fig. S3). Similarly, a population fine structure

424 patterns (i.e., $K = 5-8$) for both STRUCTURE and TESS suggested a higher affinity of Pelotas
425 population with São José do Norte or forming an independent group with all individuals
426 assigned at $\sim 100\%$ of membership probability (Fig. 2, Supplementary Data Fig. S3). The
427 geographic position of Pelotas population and environmental features could have drawn this
428 scenario. Regarding the geographic position, the Pelotas population is located close to the
429 southern coastal populations, such as the Rio Grande and São José do Norte. However, the
430 Patos Lagoon separates the Pelotas population from the seashore, which can lead Pelotas to
431 receive migrants from coastal populations in a more continental environment. Nevertheless,
432 inter-annual rainfall conditions, as well as the continental-scale periodic climatic fluctuations,
433 such as El Niño, can also affect the fluvial discharge and the wind responsible for the
434 salinization and desalination processes in the Patos Lagoon (Möller *et al.*, 1996, 2001; Möller
435 and Castaing, 1999). This environmental dynamic could continuously change the individuals'
436 establishment or survival rates, with the coastal or continental gene pools probably leading to
437 a differential genetic profile.

438

439 *Patos Lagoon development let to a secondary contact between previously diverged lineages*
440 The populations located close to the Patos Lagoon, Arambaré, Mostardas 1, Mostardas 2, São
441 José do Norte 1, São José do Norte 2, and Rio Grande (Fig. 1A) showed the highest levels of
442 genetic admixture (Fig. 2; Supplementary Data Fig. S3) and the lowest F_{ST} values (Fig. 3A)
443 among the coastal populations. These results could be related to the recent geomorphological
444 history of the SAPC region. During most of the Quaternary Period, two rivers (Jacuí and
445 Camaquã rivers), including several channels corresponding to their temporal dynamic delta
446 systems, crossed the Patos Lagoon (Weschenfelder *et al.*, 2014). After the formation of the
447 barrier systems III and IV, the two most recent ocean regressive-transgressive events, the
448 Patos Lagoon was completely close by sands from the inlets (Santos-Fischer *et al.*, 2016),

449 which could have constituted an obstacle for the establishment of the population in the east
450 side of the lagoon. In contrast, the northern and southern regions, which correspond to the
451 well-established barrier systems I and II (cf. Fig. 1 in Tomazelli and Dillenburg, 2007), could
452 let to the establishment and differentiation of main coastal lineages that, later, spread and
453 experienced a secondary contact on the east side of the Patos Lagoon generating the current
454 patterns of genetic admixture in this region. This recent admixture processes can also explain
455 the lack of private alleles in Pelotas, São José do Norte 1, São José do Norte 2, and Mostardas
456 1 populations (Fig. 1B).

457 The east side of Patos Lagoon (seashore side) has the strongest wind influence within
458 the SACP (Fig. 4B; Martinho *et al.*, 2010) that can increase the seed dispersal alongside the
459 region generating, in consequence, higher admixture rates. The gene flow estimations among
460 *C. heterophylla* populations support an asymmetric migration from coastal to inland locations,
461 even at great distances crossing the coastal lakes (Figs. 1 and 4). Despite the differences in the
462 intraspecific divergence history between *C. heterophylla* (Mäder *et al.*, 2013) and the co-
463 distributed *P. integrifolia* subsp. *depauperata* (Ramos-Fregonezi *et al.*, 2015), both taxa
464 shared the same pattern of high genetic admixture based on microsatellite data in populations
465 located at the east of Patos Lagoon (Silva-Arias *et al.*, 2017). This congruent pattern between
466 species indicates that the current and historical dynamics in the topographical and
467 environmental conditions in SACP are responsible for the admixture patterns and the genetic
468 structure in this region.

469 The precipitation seasonality is different between the northern and southern extremes
470 of SACP (Fig. 3C), and there is a significant positive relationship between this environment
471 feature and genetic differentiation. Moreover, the immigration for the SACP edges falls
472 within the lowest estimates (Supplementary Data Fig. S5). Altogether, these results point to a
473 genetic divergence process enhanced by differential rainfall regimes alongside SACP. The

474 strong correlation between precipitation seasonality and genetic differentiation was also found
475 for the coastal populations of *Petunia integrifolia* subsp. *depauperata* (Silva-Arias *et al.*,
476 2017). Ecological differentiation can promote selection against immigrants that leads, in a
477 genome-wide context, to a reduction of gene flow, reproductive isolation, and enhances the
478 stochastic effects of genetic drift (Hendry, 2004; Nosil *et al.*, 2005, 2009). For *C.*
479 *heterophylla*, the limited migration rates from the central to marginal distribution could
480 enhance the fixation of locally adaptive alleles in peripheral populations by preventing the
481 gene swamping (Alleaume-Benharira *et al.*, 2006).

482 We found that both geomorphological and environmental conditions influenced population
483 demographic processes in coastal plants, such as differentiation, connectivity, and local
484 adaptation. The main current population differentiation in *Calibrachoa heterophylla* is
485 determined by historical processes and the age of the deposition of the coastal plain. In
486 contrast, population connectivity is mainly determined by geographic distance and wind fields
487 but seems to be not affected by significant barriers like water bodies. Besides, marginal
488 populations appear to present local differentiation related to rainfall conditions.

489

490 **ACKNOWLEDGEMENTS**

491 The authors thank to G. Mäder for help in fieldwork and J.R Stehmann for plant
492 identification. G.A.S.-A. and L.B.F. designed the study; G.A.S.-A. performed fieldwork,
493 laboratory experiments, analysed data, and interpreted the results; G.A.S.-A. and L.C.-V.
494 discussed the results and wrote the manuscript. G.C.G. performed laboratory genotyping;
495 L.B.F. supervised the project and provided resources for the research. All authors reviewed
496 the manuscript. All authors declare no conflict of interest. All data underlying the study are
497 included in the manuscript or its supplementary materials.

498

499

FUNDING

500 This work was supported by the Conselho Nacional de Desenvolvimento Científico e
501 Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
502 (CAPES), and Programa de Pós-Graduação em Genética e Biologia Molecular da
503 Universidade Federal do Rio Grande do Sul (PPGBM-UFRGS). G.A.S.-A. was supported by
504 a scholarship from the Francisco José Caldas Institute for the Development of Science and
505 Technology (COLCIENCIAS).

506

LITERATURE CITED

508 **Alleaume-Benharira M, Pen IR, Ronce O. 2006.** Geographical patterns of adaptation within
509 a species' range: interactions between drift and gene flow. *Journal of Evolutionary
510 Biology* **19**: 203–215.

511 **Anderson CD, Epperson BK, Fortin M-J, et al. 2010.** Considering spatial and temporal
512 scale in landscape-genetic studies of gene flow. *Molecular Ecology* **19**: 3565–3575.

513 **Baranzelli MC, Johnson LA, Cosacov A, Sérsic AN. 2014.** Historical and ecological
514 divergence among populations of *Monttea chilensis* (Plantaginaceae), an endemic
515 endangered shrub bordering the Atacama Desert, Chile. *Evolutionary Ecology* **28**: 751–
516 774.

517 **Beerli P, Felsenstein J. 2001.** Maximum likelihood estimation of a migration matrix and
518 effective population sizes in n subpopulations by using a coalescent approach.
519 *Proceedings of the National Academy of Sciences USA* **98**: 4563–4568.

520 **Beerli P, Palczewski M. 2010.** Unified framework to evaluate panmixia and migration
521 direction among multiple sampling locations. *Genetics* **185**: 313–326.

522 **Behling H. 2003.** Late glacial and Holocene vegetation, climate and fire history inferred from
523 Lagoa Nova in the southeastern Brazilian lowland. *Vegetation History and*

524 *Archaeobotany* **12**: 263–270.

525 **Bivand R, Keitt T, Rowlingson B. 2015.** rgdal: Bindings for the ‘Geospatial’ data
526 abstraction library. <https://cran.r-project.org/package=rgdal>.

527 **Carnaval AC, Moritz C. 2008.** Historical climate modelling predicts patterns of current
528 biodiversity in the Brazilian Atlantic forest. *Journal of Biogeography* **35**: 1187–1201.

529 **Dillenburg SR, Barboza EG, Tomazelli LJ, Ayup-Zouain RN, Hesp PA, Clerot LCP.**
530 **2009.** The Holocene coastal barriers of Rio Grande do Sul. In: *Geology and*
531 *Geomorphology of Holocene Coastal Barriers of Brazil*. Lecture Notes in Earth Sciences,
532 vol. 107. Berlin:Springer, 53-91.

533 **Epskamp S, Cramer AOJ, Waldorp LJ, Schmittmann VD, Borsboom D. 2012.** *qgraph*:
534 network visualization of relationships in psychometric data. *Journal of Statistical*
535 *Software* **48**: 1-18.

536 **Escudero M, Vargas P, Arens P, Ouborg NJ, Luceño M. 2010.** The east-west-north
537 colonization history of the Mediterranean and Europe by the coastal plant *Carex extensa*
538 (Cyperaceae). *Molecular Ecology* **19**: 352–370.

539 **van Etten J. 2017.** *R* Package gdistance: distances and routes on geographical grids. *Journal*
540 *of Statistical Software* **76**: 1-21.

541 **Evanno G, Regnaut S, Goudet J. 2005.** Detecting the number of clusters of individuals
542 using the software structure: a simulation study. *Molecular Ecology* **14**: 2611–2620.

543 **Excoffier L, Lischer HEL. 2010.** *Arlequin* suite ver 3.5: a new series of programs to perform
544 population genetics analyses under Linux and Windows. *Molecular Ecology Resources*
545 **10**: 564–567.

546 **Excoffier L, Ray N. 2008.** Surfing during population expansions promotes genetic
547 revolutions and structuration. *Trends in Ecology & Evolution* **23**: 347–351.

548 **Excoffier L, Foll M, Petit RJ. 2009.** Genetic consequences of range expansions. *Annual*

549 *Review of Ecology, Evolution, and Systematics* **40**: 481–501.

550 **Falush D, Stephens M, Pritchard JK.** **2003.** Inference of population structure using
551 multilocus genotype data: linked loci and correlated allele frequencies. *Genetics* **164**:
552 1567–1587.

553 **Fernández-López J, Schliep K.** **2019.** *rWind*: download, edit and include wind data in
554 ecological and evolutionary analysis. *Ecography* **42**: 804–810.

555 **Francis RM.** **2017.** *POPHELPER*: an R package and web app to analyse and visualize
556 population structure. *Molecular Ecology Resources* **17**: 27–32.

557 **Francisco PM, Mori GM, Alves FM, Tambarussi EV, Souza AP.** **2018.** Population genetic
558 structure, introgression, and hybridization in the genus *Rhizophora* along the Brazilian
559 coast. *Ecology and Evolution* **8**: 3491–3504.

560 **François O, Waits LP.** **2016.** Clustering and assignment methods in landscape genetics. In
561 Balkenhol N, Cushman SA, Storfer AT, Waits LP, eds. *Landscape genetics: concepts,*
562 *methods, applications*. Chichester: Wiley, 114–128.

563 **Frantz AC, Cellina S, Krier A, Schley L, Burke T.** **2009.** Using spatial Bayesian methods
564 to determine the genetic structure of a continuously distributed population: clusters or
565 isolation by distance? *Journal of Applied Ecology* **46**: 493–505.

566 **Goudet J.** **2005.** *hierfstat*, a package for R to compute and test hierarchical F-statistics.
567 *Molecular Ecology Notes* **5**: 184–186.

568 **Goudet J.** **2014.** *hierfstat*: estimation and tests of hierarchical F-statistics. R package version
569 0.04-14. <http://CRAN.R-project.org/package=hierfstat>.

570 **Grimaldi M-C, Crouau-Roy B.** **1997.** Microsatellite allelic homoplasy due to variable
571 flanking sequences. *Journal of Molecular Evolution* **44**: 336–340.

572 **Hendry AP.** **2004.** Selection against migrants contributes to the rapid evolution of
573 ecologically dependent reproductive isolation. *Evolutionary Ecology Research* **6**: 1219–

574 1236.

575 **Hickerson MJ, Carstens BC, Cavender-Bares J, et al. 2010.** Phylogeography's past,
576 present, and future: 10 years after Avise, 2000. *Molecular Phylogenetics and Evolution*
577 **54:** 291–301.

578 **Huang W, Zhao H, Zhao X, Li Y, Lian J. 2016.** Effects of environmental factors on genetic
579 diversity of *Caragana microphylla* in Horqin sandy land, northeast China. *Ecology and*
580 *Evolution* **6:** 8256–8266.

581 **Hubisz MJ, Falush D, Stephens M, Pritchard JK. 2009.** Inferring weak population
582 structure with the assistance of sample group information. *Molecular Ecology Resources*
583 **9:** 1322–1332.

584 **Hulton NRJ, Purves RS, McCulloch RD, Sugden DE, Bentley MJ. 2002.** The Last Glacial
585 Maximum and deglaciation in southern South America. *Quaternary Science Reviews* **21:**
586 233–241.

587 **Jombart T. 2008.** *adegenet*: a R package for the multivariate analysis of genetic markers.
588 *Bioinformatics* **24:** 1403–1405.

589 **Jombart T, Devillard S, Balloux F. 2010.** Discriminant analysis of principal components: a
590 new method for the analysis of genetically structured populations. *BMC Genetics* **11:** 94.

591 **Jombart T, Devillard S, Dufour A-B, Pontier D. 2008.** Revealing cryptic spatial patterns in
592 genetic variability by a new multivariate method. *Heredity* **101:** 92–103.

593 **Kadereit J, Westberg E. 2007.** Determinants of phylogeographic structure: a comparative
594 study of seven coastal flowering plant species across their European range. *Watsonia* **26:**
595 229–238.

596 **Kamvar ZN, Brooks JC, Grünwald NJ. 2015.** Novel R tools for analysis of genome-wide
597 population genetic data with emphasis on clonality. *Frontiers in Genetics* **6:** 208.

598 **Kamvar ZN, Tabima JF, Grünwald NJ. 2014.** *Poppr*: an R package for genetic analysis of

599 populations with clonal, partially clonal, and/or sexual reproduction. *PeerJ* **2**: e281.

600 **Leal BSS, Palma da Silva C, Pinheiro F. 2016.** Phylogeographic studies depict the role of
601 space and time scales of plant speciation in a highly diverse Neotropical region. *Critical
602 Reviews in Plant Sciences* **35**: 215–230.

603 **Lee C-R, Mitchell-Olds T. 2011.** Quantifying effects of environmental and geographical
604 factors on patterns of genetic differentiation. *Molecular Ecology* **20**: 4631–4642.

605 **Loveless MD, Hamrick JL. 1984.** Ecological determinants of genetic structure in plant
606 populations. *Annual Review of Ecology and Systematics* **15**: 65–95.

607 **Mäder G, Fregonezi JN, Lorenz-Lemke AP, Bonatto SL, Freitas LB. 2013.** Geological
608 and climatic changes in Quaternary shaped the evolutionary history of *Calibrachoa*
609 *heterophylla*, an endemic South-Atlantic species of petunia. *BMC Evolutionary Biology*
610 **13**: 178.

611 **Mäder G, Freitas LB. 2019.** Biogeographical, ecological, and phylogenetic analyses
612 clarifying the evolutionary history of *Calibrachoa* in South American grasslands.
613 *Molecular Phylogenetics and Evolution* **141**: 106614.

614 **Manel S, Schwartz MK, Luikart G, Taberlet P. 2003.** Landscape genetics: combining
615 landscape ecology and population genetics. *Trends in Ecology & Evolution* **18**: 189–197.

616 **Martinho CT, Hesp PA, Dillenburg SR. 2010.** Morphological and temporal variations of
617 transgressive dune fields of the northern and mid-littoral Rio Grande do Sul coast,
618 Southern Brazil. *Geomorphology* **117**: 14–32.

619 **Massante JC, Gerhold P. 2020.** Environment and evolutionary history depict phylogenetic
620 alpha and beta diversity in the Atlantic coastal white-sand woodlands. *Journal of
621 Vegetation Science* **31**: 634-645.

622 **Meireles JE, Manos PS. 2018.** Pervasive migration across rainforest and sandy coastal plain
623 *Aechmea nudicaulis* (Bromeliaceae) populations despite contrasting environmental

624 conditions. *Molecular Ecology* **27**: 1261–1272.

625 **Meirmans PG. 2012.** The trouble with isolation by distance. *Molecular Ecology* **21**: 2839–
626 2846.

627 **Miller MA, Pfeiffer W, Schwartz T. 2010.** Creating the CIPRES Science Gateway for
628 inference of large phylogenetic trees. In: *2010 Gateway Computing Environments
629 Workshop (GCE)*. New Orleans: IEEE, 1–8.

630 **Miloslavich P, Klein E, Díaz JM, et al. 2011.** Marine biodiversity in the Atlantic and Pacific
631 coasts of South America: knowledge and gaps. *PLoS ONE* **6**: e14631.

632 **Möller OO, Castaing P. 1999.** Hydrographical characteristics of the estuarine area of Patos
633 Lagoon (30°S, Brazil). In Perillo GME, Piccolo MC, Pino-Quivira M, eds, *Estuaries of
634 South America*. Berlin: Springer, 83–100.

635 **Möller OO, Castaing P, Salomon JC, Lazure P. 2001.** The influence of local and non-local
636 forcing effects on the sub-tidal circulation of Patos Lagoon. *Estuaries* **24**: 297–311.

637 **Möller OO, Lorenzzentti JA, Stech JL, Math MM. 1996.** The Patos Lagoon summertime
638 circulation and dynamics. *Continental Shelf Research* **16**: 335–351.

639 **Mori GM, Zucchi MI, Sampaio I, Souza AP. 2015.** Species distribution and introgressive
640 hybridization of two *Avicennia* species from the Western Hemisphere unveiled by
641 phylogeographic patterns. *BMC Evolutionary Biology* **15**: 61.

642 **Nosil P, Funk PD, Ortiz-Barrientos D. 2009.** Divergent selection and heterogeneous
643 genomic divergence. *Molecular Ecology* **18**: 375–402.

644 **Nosil P, Vines TH, Funk DJ. 2005.** Reproductive isolation caused by natural selection
645 against immigrants from divergent habitats. *Evolution* **59**: 705–719.

646 **Oksanen J, Blanchet FG, Kindt R, et al. 2015.** *vegan*: community ecology package. R
647 package version 2.3-0. <http://CRAN.R-project.org/package=vegan>.

648 **Orsini L, Vanoverbeke J, Swillen I, Mergeay J, Meester L. 2013.** Drivers of population

649 genetic differentiation in the wild: isolation by dispersal limitation, isolation by
650 adaptation and isolation by colonization. *Molecular Ecology* **22**: 5983–5999.

651 **Pritchard JK, Stephens M, Donnelly P. 2000.** Inference of population structure using
652 multilocus genotype data. *Genetics* **155**: 945–959.

653 **R Core Team. 2019.** *R*: a language and environment for statistical computing. R Foundation
654 for Statistical Computing, Vienna, Austria. <http://www.R-project.org/>.

655 **Rambaut A, Suchard MA, Xie D, Drummond A. 2014.** *Tracer* v1.6.
656 <http://beast.bio.ed.ac.uk/Tracer>.

657 **Ramos-Fregonezi AMC, Fregonezi JN, Cybis GB, Fagundes NJR, Bonatto SL, Freitas**
658 **LB. 2015.** Were sea level changes during the Pleistocene in the South Atlantic Coastal
659 Plain a driver of speciation in *Petunia* (Solanaceae)? *BMC Evolutionary Biology* **15**: 92.

660 **Rissler LJ. 2016.** Union of phylogeography and landscape genetics. *Proceedings of the*
661 *National Academy of Sciences USA* **113**: 8079–8086.

662 **Rousset F. 1997.** Genetic differentiation and estimation of gene flow from F-statistics under
663 isolation by distance. *Genetics* **145**: 1219–1228.

664 **Roy A, Frascaria N, MacKay J, Bousquet J. 1992.** Segregating random amplified
665 polymorphic DNAs (RAPDs) in *Betula alleghaniensis*. *Theoretical and Applied Genetics*
666 **85**: 173–180.

667 **Saillard M, Hall SR, Audin L, et al. 2009.** Non-steady long-term uplift rates and Pleistocene
668 marine terrace development along the Andean margin of Chile (31°S) inferred from 10Be
669 dating. *Earth and Planetary Science Letters* **277**: 50–63.

670 **Santos-Fischer CB, Corrêa ICS, Weschenfelder J, Torgan LC, Stone JR. 2016.**
671 Paleoenvironmental insights into the Quaternary evolution of the southern Brazilian coast
672 based on fossil and modern diatom assemblages. *Palaeogeography, Palaeoclimatology,*
673 *Palaeoecology* **446**: 108–124.

674 **Scarano FR.** 2002. Structure, function and floristic relationships of plant communities in
675 stressful habitats marginal to the Brazilian Atlantic Rainforest. *Annals of Botany* **90**: 517–
676 524.

677 **Schaal BA, Olsen KM.** 2000. Gene genealogies and population variation in plants.
678 *Proceedings of the National Academy of Sciences USA* **97**: 7024–7029.

679 **Schierenbeck KA.** 2017. Population-level genetic variation and climate change in a
680 biodiversity hotspot. *Annals of Botany* **119**: 215–228.

681 **Sérsic, AN, Cosacov A, Cocucci AA, et al.** 2011. Emerging phylogeographical patterns of
682 plants and terrestrial vertebrates from Patagonia. *Biological Journal of the Linnean
683 Society* **103**: 475–494.

684 **Sexton JP, Hangartner SB, Hoffmann AA.** 2014. Genetic isolation by environment or
685 distance: which pattern of gene flow is most common? *Evolution* **68**: 1–15.

686 **Silva GAR, Antonelli A, Lendel A, Moraes EM, Manfrin MH.** 2018. The impact of early
687 Quaternary climate change on the diversification and population dynamics of a South
688 American cactus species. *Journal of Biogeography* **45**: 76–88.

689 **Silva-Arias GA, Mäder G, Bonatto SL, Freitas LB.** 2015. Novel Microsatellites for
690 *Calibrachoa heterophylla* (Solanaceae) endemic to the South Atlantic Coastal Plain of
691 South America. *Applications in Plant Sciences* **3**: 1500021.

692 **Silva-Arias GA, Reck-Kortmann M, Carstens BC, Hasenack H, Bonatto SL, Freitas LB.**
693 2017. From inland to the coast: spatial and environmental signatures on the genetic
694 diversity in the colonization of the South Atlantic Coastal Plain. *Perspectives in Plant
695 Ecology, Evolution and Systematics* **28**: 47–57.

696 **Slatkin M.** 1987. Gene flow and the geographic structure of natural populations. *Science* **236**:
697 787–792.

698 **Sork VL.** 2016. Gene flow and natural selection shape spatial patterns of genes in tree

699 populations: implications for evolutionary processes and applications. *Evolutionary*
700 *Applications* **9**: 291–310.

701 **Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. 2002.** Bayesian measures of
702 model complexity and fit. *Journal of the Royal Statistical Society: Series B (Statistical*
703 *Methodology*) **64**: 583–639.

704 **Tellier F, Meynard AP, Correa JA, Faugeron S, Valero M. 2009.** Phylogeographic
705 analyses of the 30° S south-east Pacific biogeographic transition zone establish the
706 occurrence of a sharp genetic discontinuity in the kelp *Lessonia nigrescens*: vicariance or
707 parapatry? *Molecular Phylogenetics and Evolution* **53**: 679–693.

708 **Tellier F, Tapia J, Faugeron S, Destombe C, Valero M. 2011.** The *Lessonia nigrescens*
709 species complex (Laminariales, Phaeophyceae) shows strict parapatry and complete
710 reproductive isolation in a secondary contact zone: reproductive isolation between kelp
711 species. *Journal of Phycology* **47**: 894–903.

712 **Thompson JD. 1999.** Population differentiation in Mediterranean plants: insights into
713 colonization history and the evolution and conservation of endemic species. *Heredity* **82**:
714 229–236.

715 **Tomazelli LJ, Dillenburg SR. 2007.** Sedimentary facies and stratigraphy of a last
716 interglacial coastal barrier in south Brazil. *Marine Geology* **244**: 33–45.

717 **Tomazelli LJ, Dillenburg SR, Villwock JA. 2000.** Late Quaternary geological history of
718 Rio Grande do Sul coastal plain, southern Brazil. *Revista Brasileira de Geociências* **30**:
719 474–476.

720 **Turchetto-Zolet AC, Pinheiro F, Salgueiro F, Palma-Silva C. 2013.** Phylogeographical
721 patterns shed light on evolutionary process in South America. *Molecular Ecology* **22**:
722 1193–1213.

723 **van Oppen MJH, Rico C, Turner GF, Hewitt GM. 2000.** Extensive homoplasy, non-

724 stepwise mutations, and shared ancestral polymorphism at a complex microsatellite locus

725 in lake Malawi cichlids. *Molecular Biology and Evolution* **17**: 489–498.

726 **Wang IJ. 2013.** Examining the full effects of landscape heterogeneity on spatial genetic

727 variation: a multiple matrix regression approach for quantifying geographic and

728 ecological isolation. *Evolution* **67**: 3403–3411.

729 **Wang IJ, Bradburd GS. 2014.** Isolation by environment. *Molecular Ecology* **23**: 5649–

730 5662.

731 **Weir BS, Cockerham CC. 1984.** Estimating F-statistics for the analysis of population

732 structure. *Evolution* **38**: 1358–1370.

733 **Weschenfelder J, Baitelli R, Corrêa ICS, Bortolin EC, Santos CB. 2014.** Quaternary

734 incised valleys in southern Brazil coastal zone. *Journal of South American Earth Sciences*

735 **55**: 83–93.

736 **Weschenfelder J, Corrêa ICS, Aliotta S, Baitelli R. 2010.** Paleochannels related to Late

737 Quaternary sea-level changes in Southern Brazil. *Brazilian Journal of Oceanography* **58**:

738 35–44.

739 **Whigham PA, Dick GC, Spencer HG. 2008.** Genetic drift on networks: ploidy and the time

740 to fixation. *Theoretical Population Biology* **74**: 283–290.

741 **Wilson G, Rannala B. 2003.** Bayesian inference of recent migration rates using multilocus

742 genotypes. *Genetics* **163**: 1177–1191.

743

744

TABLES

745 **Table 1.** Sampling information and inbreeding coefficients for *Calibrachoa heterophylla*
746 populations. Population ID codes follow Fig. 1A.

Pop ID	N	Location	Long	Lat	Fis
1	4	São Francisco de Assis	-55.10077	-29.58307	-0.16
2	10	Cacequi 1	-54.85375	-29.8947	-0.01
3	9	Cacequi 2	-54.90852	-29.85478	0
4	27	Barra do Ribeiro	-51.20255	-30.40754	0.08
5	4	Arambaré	-51.49195	-30.90082	0.12
6	23	Pelotas	-52.16478	-31.70757	0.07
7	10	Laguna	-48.76501	-28.45991	0.34**
8	23	Torres	-49.79809	-29.43227	0.17**
9	37	S Antônio da Patrulha	-50.42936	-29.89291	0.10*
10	3	Mostardas 1	-50.73934	-30.93746	0.35
11	13	Mostardas 2	-50.90112	-31.10909	0.08
12	12	S José do Norte 1	-51.42576	-31.66673	-0.01
13	11	S José do Norte 2	-52.03612	-32.02393	-0.05
14	26	Rio Grande	-52.54661	-32.52396	0.27***
15	41	S Vitória do Palmar	-52.7323	-32.98765	0.25***

747

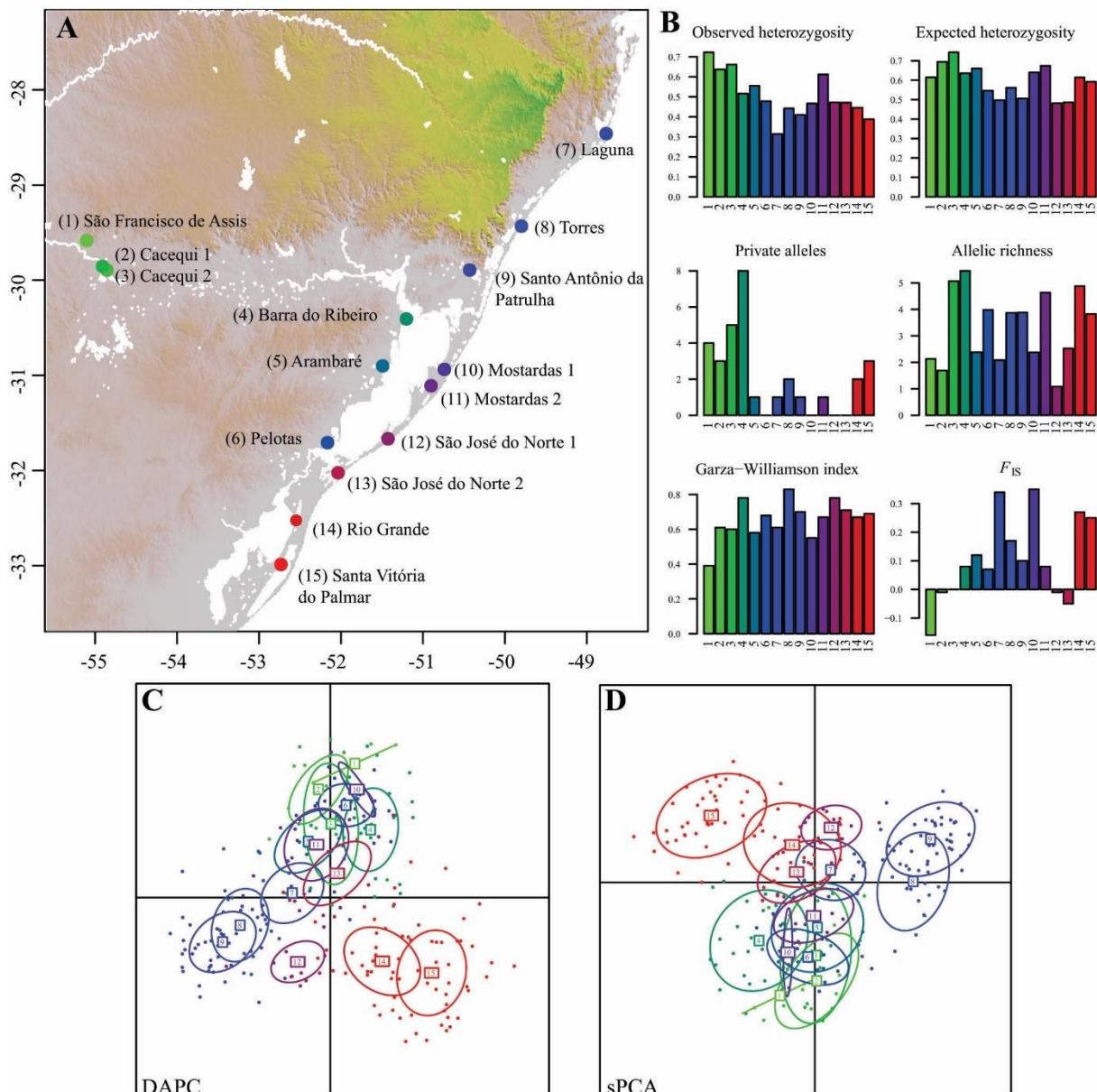
748 *P-value < 0.05; ** P-value < 0.01; *** P-value < 0.001

749

750 **Table 2.** Model support statistics (upper panel) and parameter estimations taken from the
 751 best-supported model (lower panel).

Model name	Ln marginal	Log Bayes Factor	Model
	Likelihood		probability
<i>Step stone from coast</i>	-5900.7	0	1.0
<i>Source-sink from west</i>	-5940.5	-79.6	5.1E-18
<i>Source-sink from inland</i>	-5941.5	-81.6	1.9E-18
<i>Step stone from inland</i>	-5944.9	-88.4	6.5E-20

Parameter	Median	Mean	95 % CI
Θ 'Inland'	4.11	4.25	2.55 - 6.28
Θ 'West'	0.55	0.56	0.12 - 0.96
Θ 'North'	0.51	0.52	0.05 - 0.95
Θ 'South'	0.27	0.22	0 - 0.55
M 'West' -> 'Inland'	0.41	0.45	0 - 1.16
M 'North' -> 'West'	0.3	0.26	0 - 0.6
M 'South' -> 'West'	0.19	0.08	0 - 0.41

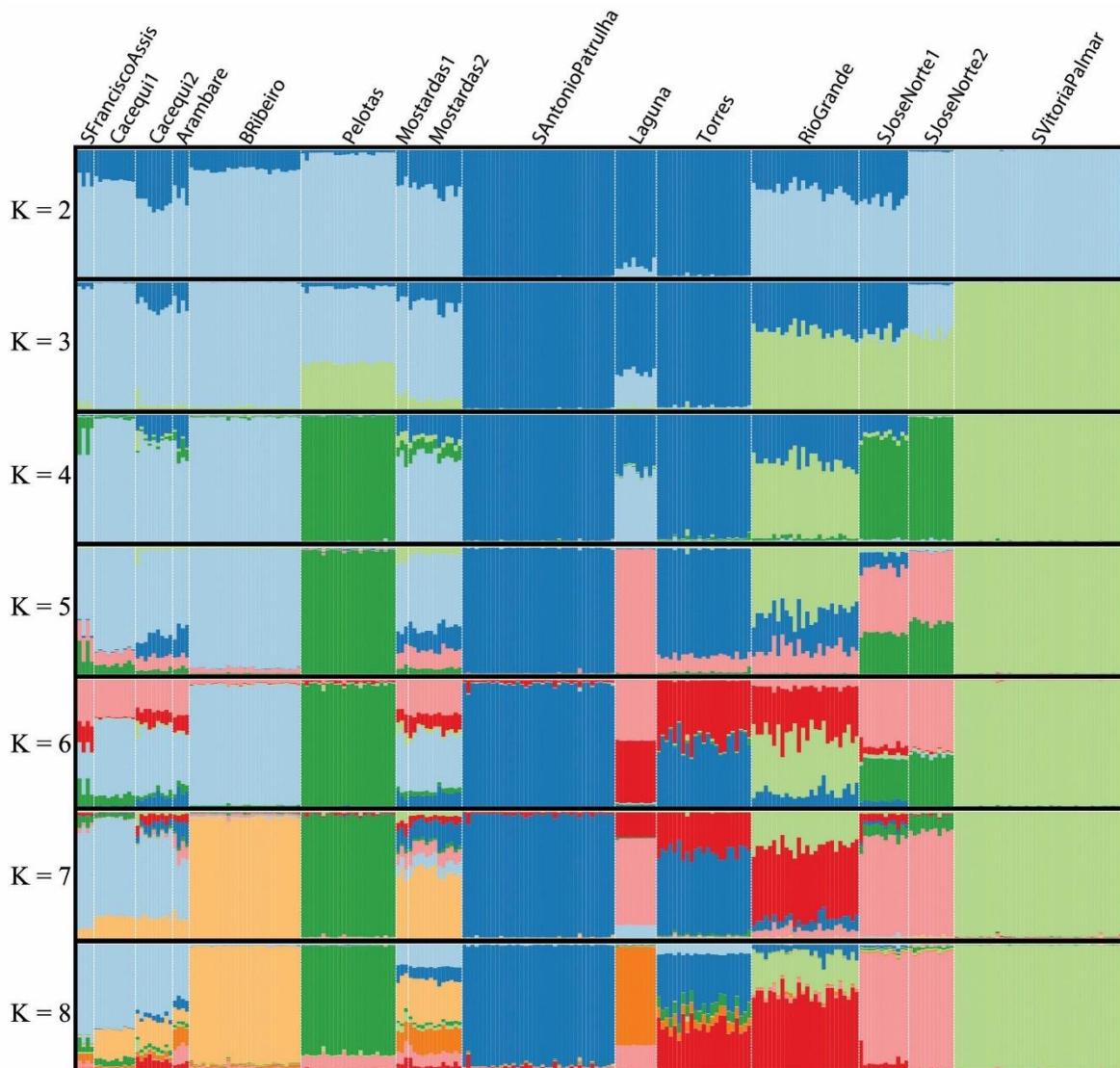

752
 753 Bayes factor values < 2 indicate a strong preference for the model with the highest probability. Θ = mutation
 754 scaled population size; M = mutation scaled migration rate; CI = confidence interval. For graphical model
 755 descriptions see Fig. S1.

756

757

758

FIGURES



759

760 **Figure 1.** (A) Geographic locations of *Calibrachoa heterophylla* populations. (B) Graphical
761 representation of the mean genetic diversity statistics estimated for each population across all
762 microsatellite loci. (C) Scatterplot of the DAPC analysis. (D) Scatterplot of the sPCA.
763 Populations' numbers and colours follow each panel.

764

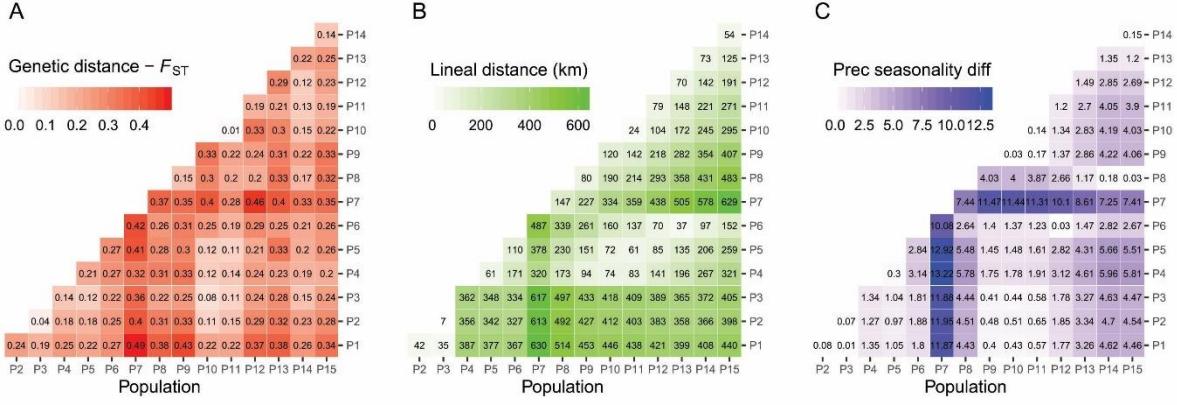
765

766

767 **Figure 2.** Bar plots of the individual membership for $K = 2-8$ genetic clusters as estimated

768 with STRUCTURE. Populations are separated by white dashed lines and named on the figure

769 top side of.

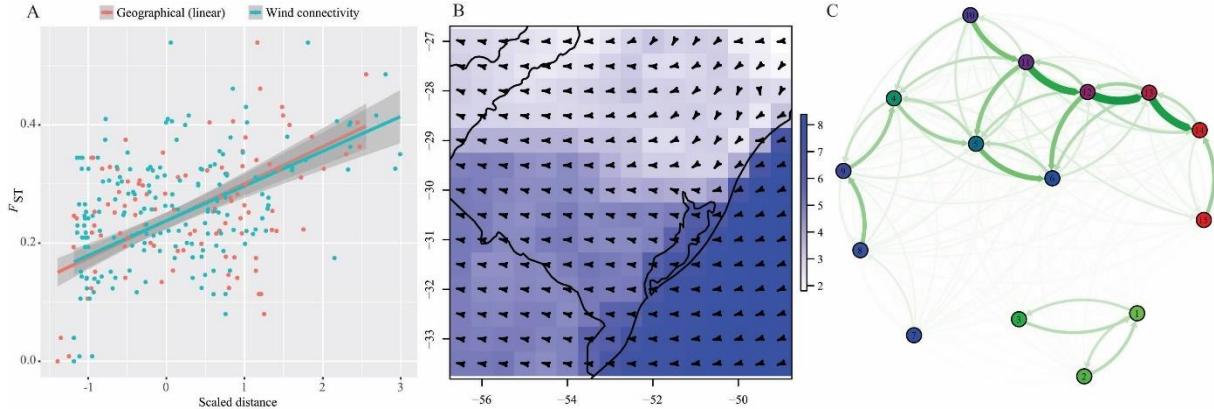

770

771

772

773

774

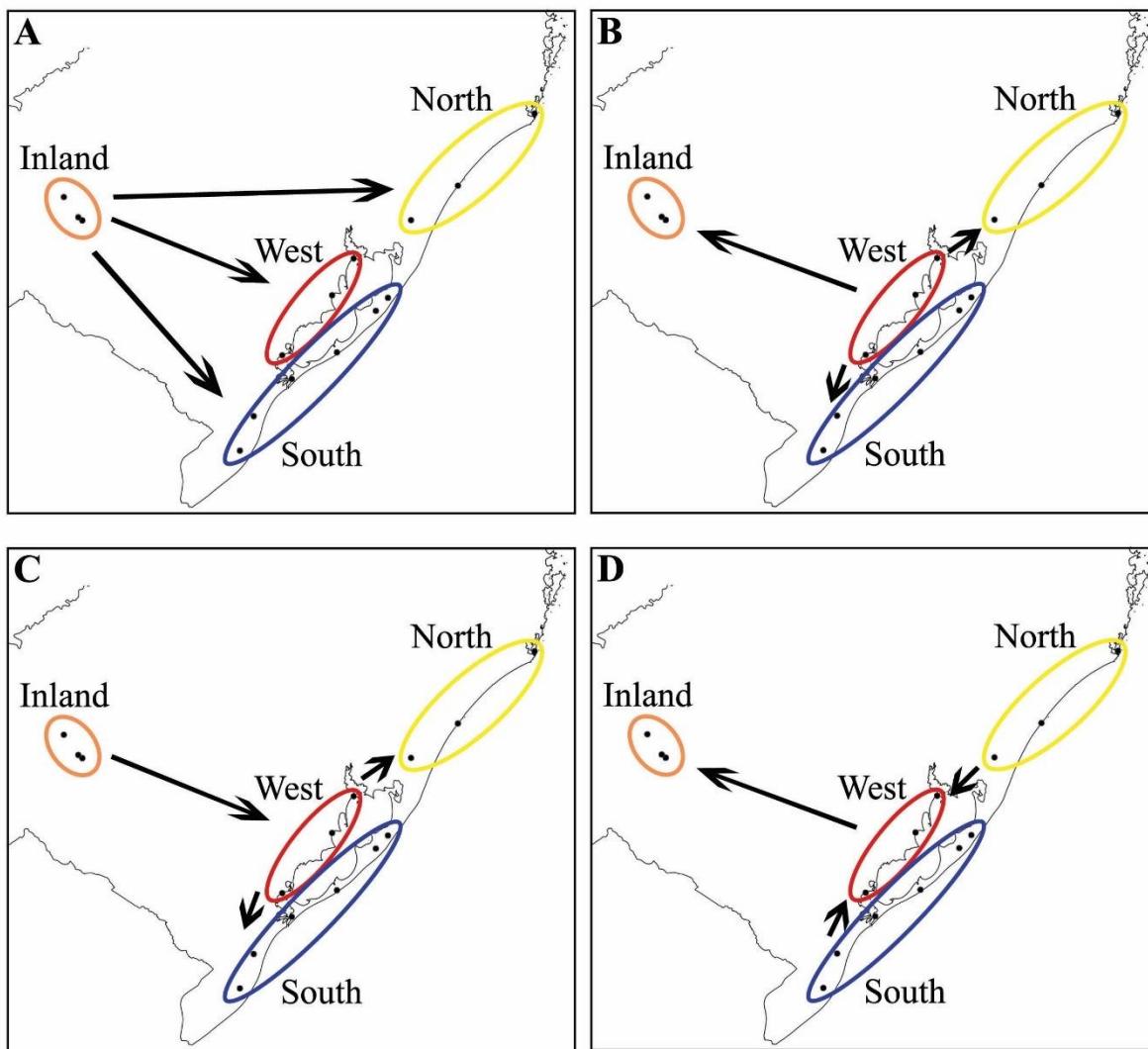


775

776 **Figure 3.** Interpopulation genetic, geographic, and environmental dissimilarity matrices. (A)
777 Genetic differentiation and F_{ST} ; (B) Linear geographic distance; (C) Precipitation seasonality
778 dissimilarity. The values are represented by a colour on a continuous scale. Populations are
779 numbered as in Fig. 1A and Table 1.

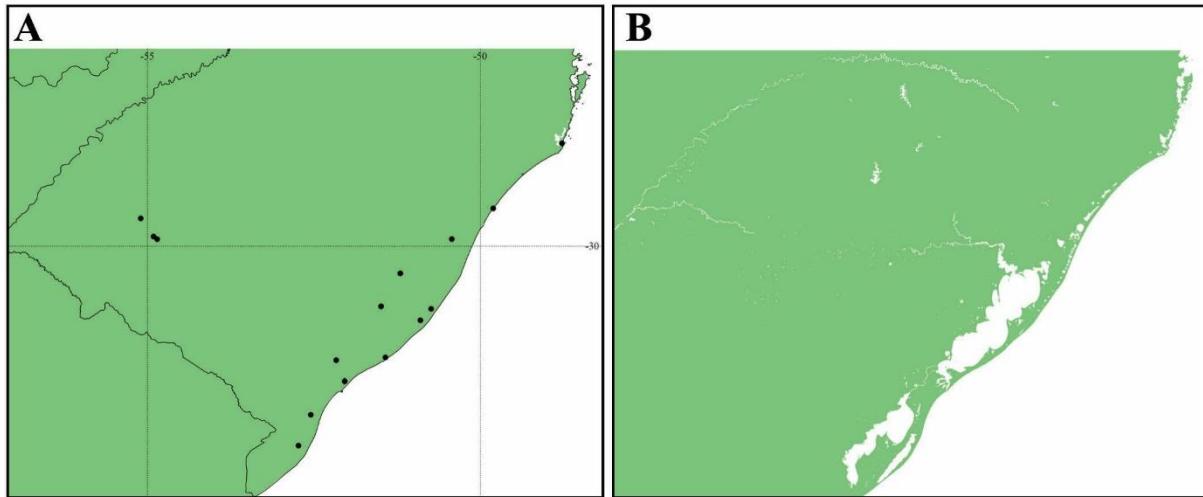
780

781



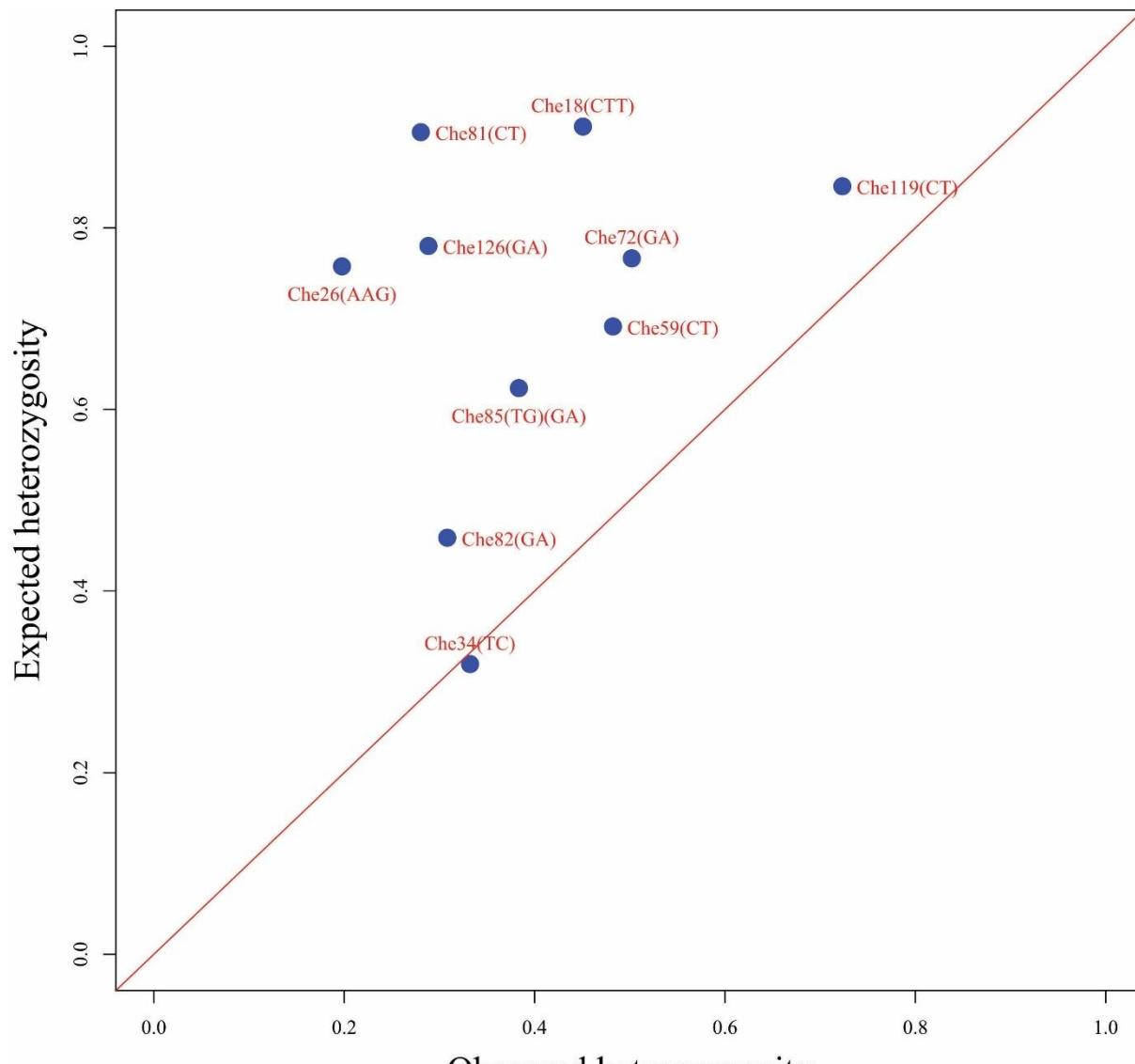
782

783 **Figure 4.** Spring season wind fields in the South Atlantic Coastal Plain and inference of wind
784 in the population connectivity and gene flow. (A) Correlation between geographical distance
785 (red) and wind connectivity (blue) coast distance matrices with the F_{ST} genetic distance
786 matrix; (B) Mean values 2011-2016 of wind speed (blue scale m/s) and direction (arrows) for
787 the spring season (Sept-Nov); (C) Inter-population wind connectivity network.


788

SUPPLEMENTARY MATERIAL

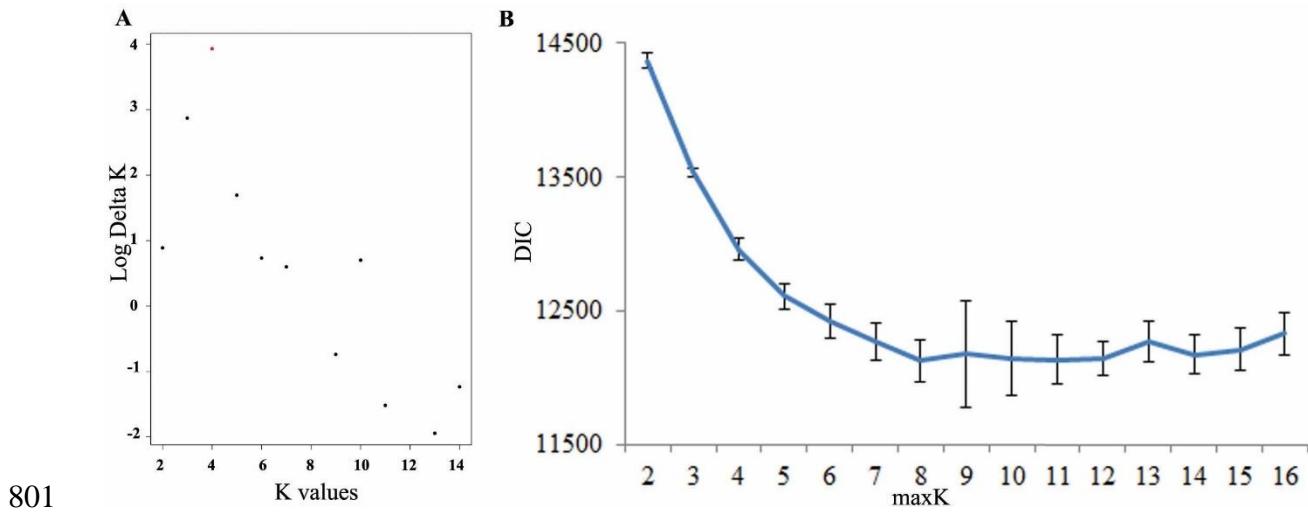
789

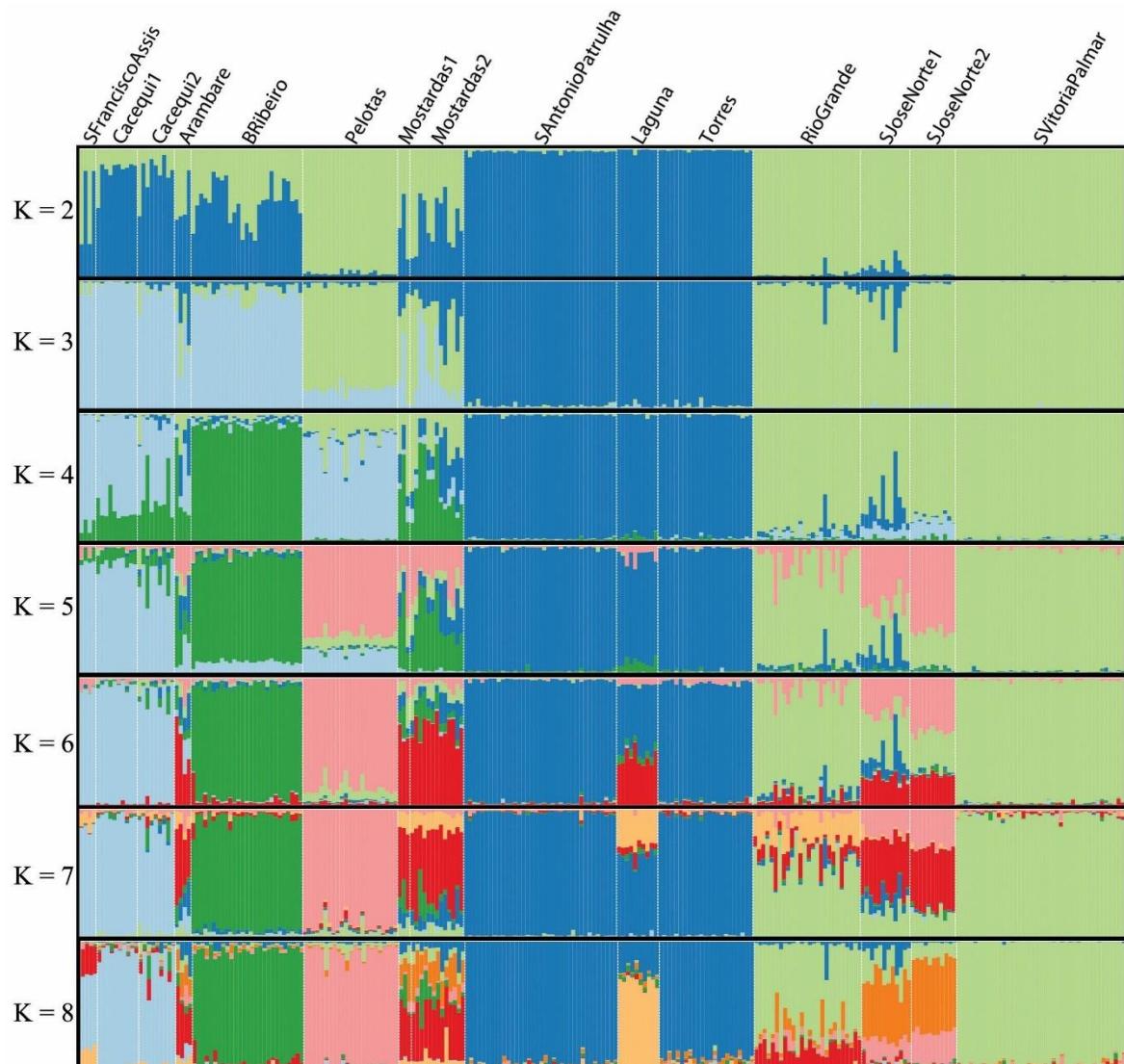

790 **Figure S1.** Graphical representation of the four coalescent migration models tested in
791 MIGRATE-N for *Calibrachoa heterophylla*. (A) Source-sink from inland; (B) Source-sink
792 from the west; (C) Step-stone from inland; (D) Step-stone from the coast.

793

794 **Figure S2.** Graphical representation of the raster layers used to calculate the connectivity
795 values in topographic tests (A) Continuous model; (B) Water bodies model.

796

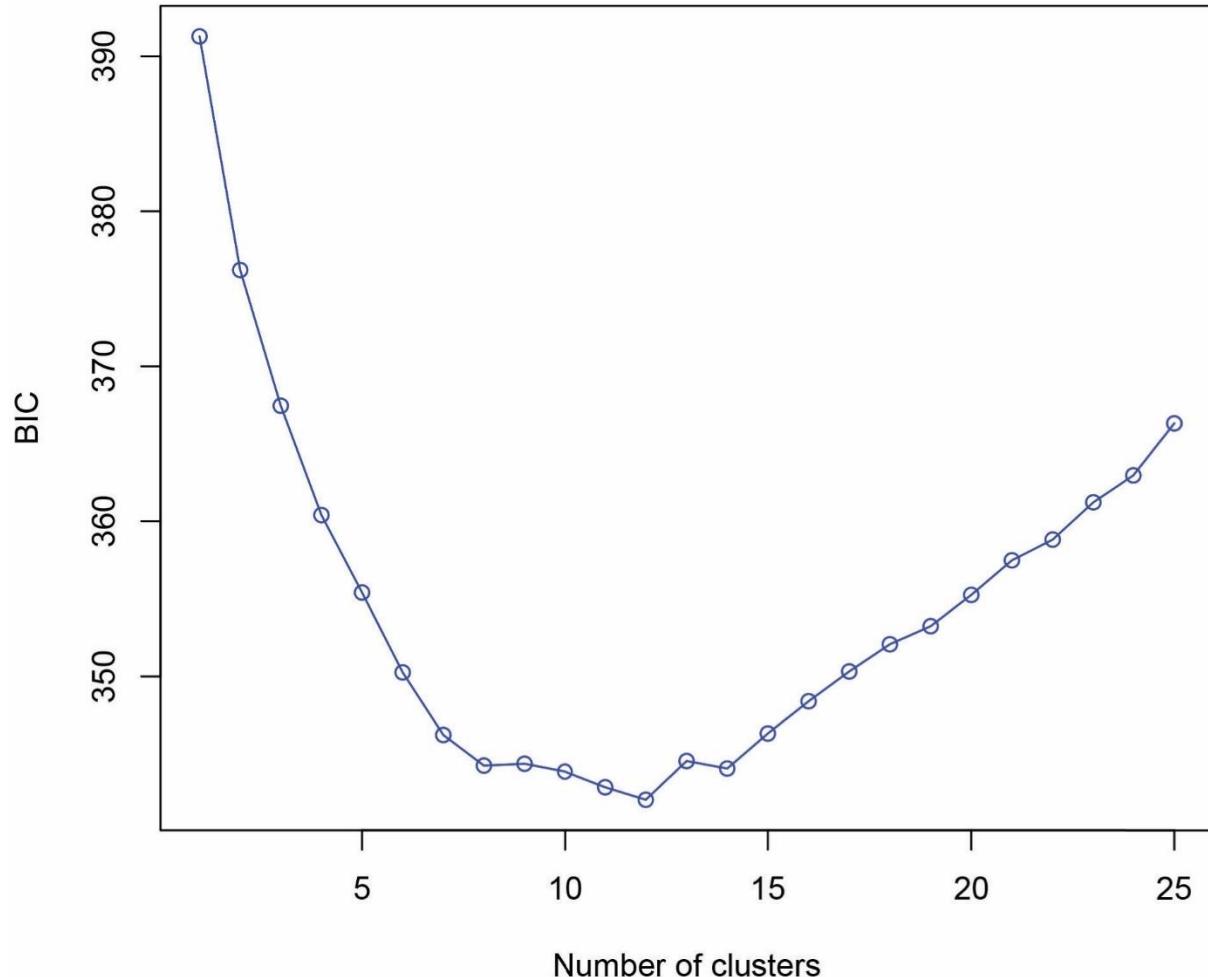



797

798 **Figure S3.** The plot of observed vs. expected heterozygosity for each locus.

799

800



806

807 **Figure S5.** Bar plots of the individual membership for each genetic cluster obtained with
808 TESS. Populations are separated by white dashed lines and names are indicated on the figure
809 top side.

810

811

812 **Figure S6.** The plot of Bayesian information criterion (BIC) values obtained for each K
813 number as assessed with the multivariate method Discriminant Analyses of Principal
814 Components.

Table S1. Migration estimates obtained with three independent runs of BAYESASS. Populations are numbered as in Fig. 1. The values indicate the estimated posterior mean effective migration rate per generation [the fraction of individuals in population i (rows) that are migrants derived from population j (columns)] and the numbers in parenthesis show the standard deviation. Bold values indicate the diagonal (intra-population estimates) and red values indicate the highest migration estimates (those with above zero 95% confidence intervals).

	1_j	2_j	3_j	4_j	5_j	6_j	7_j	8_j	9_j	10_j	11_j	12_j	13_j	14_j	15_j
1_i	0.6850 (0.0180)	0.0454 (0.0389)	0.0179 (0.0171)	0.0183 (0.0185)	0.0177 (0.0168)	0.0330 (0.0280)	0.0179 (0.0169)	0.0405 (0.0306)	0.0175 (0.0164)	0.0179 (0.0168)	0.0186 (0.0183)	0.0181 (0.0172)	0.0176 (0.0169)	0.0173 (0.0164)	0.0174 (0.0164)
2_i	0.0136 (0.0132)	0.7980 (0.0339)	0.0136 (0.0129)	0.0134 (0.0131)	0.0136 (0.0131)	0.0168 (0.0153)	0.0136 (0.0130)	0.0160 (0.0155)	0.0135 (0.0130)	0.0173 (0.0159)	0.0168 (0.0159)	0.0135 (0.0130)	0.0135 (0.0131)	0.0135 (0.0130)	0.0133 (0.0126)
3_i	0.0144 (0.0139)	0.1189 (0.0356)	0.6806 (0.0134)	0.0140 (0.0134)	0.0211 (0.0185)	0.0140 (0.0133)	0.0140 (0.0133)	0.0232 (0.0199)	0.0144 (0.0137)	0.0139 (0.0131)	0.0146 (0.0142)	0.0153 (0.0145)	0.0138 (0.0132)	0.0140 (0.0132)	0.0138 (0.0132)
4_i	0.0175 (0.0169)	0.0203 (0.0192)	0.0174 (0.0164)	0.6842 (0.0165)	0.0179 (0.0171)	0.0189 (0.0178)	0.0174 (0.0165)	0.0793 (0.0330)	0.0177 (0.0167)	0.0175 (0.0167)	0.0177 (0.0169)	0.0174 (0.0168)	0.0179 (0.0170)	0.0212 (0.0195)	0.0176 (0.0167)
5_i	0.0080 (0.0079)	0.0101 (0.0094)	0.0079 (0.0077)	0.0081 (0.0080)	0.8792 (0.0257)	0.0080 (0.0079)	0.0080 (0.0079)	0.0105 (0.0100)	0.0080 (0.0079)	0.0087 (0.0085)	0.0086 (0.0083)	0.0081 (0.0078)	0.0081 (0.0078)	0.0105 (0.0099)	0.0082 (0.0081)
6_i	0.0088 (0.0087)	0.0088 (0.0086)	0.0088 (0.0087)	0.0087 (0.0085)	0.0089 (0.0087)	0.8694 (0.0270)	0.0089 (0.0086)	0.0098 (0.0095)	0.0087 (0.0085)	0.0088 (0.0086)	0.0087 (0.0087)	0.0092 (0.0089)	0.0088 (0.0085)	0.0149 (0.0124)	0.0088 (0.0085)
7_i	0.0185 (0.0175)	0.0181 (0.0175)	0.0187 (0.0176)	0.0186 (0.0173)	0.0191 (0.0177)	0.0193 (0.0181)	0.6849 (0.0171)	0.0711 (0.0320)	0.0187 (0.0177)	0.0187 (0.0179)	0.0185 (0.0178)	0.0203 (0.0194)	0.0185 (0.0175)	0.0186 (0.0178)	0.0183 (0.0175)
8_i	0.0119 (0.0114)	0.0119 (0.0113)	0.0122 (0.0117)	0.0120 (0.0116)	0.0138 (0.0134)	0.0123 (0.0117)	0.0121 (0.0117)	0.8201 (0.0329)	0.0119 (0.0115)	0.0129 (0.0126)	0.0138 (0.0131)	0.0143 (0.0134)	0.0119 (0.0116)	0.0156 (0.0144)	0.0134 (0.0131)
9_i	0.0063 (0.0063)	0.0065 (0.0064)	0.0064 (0.0064)	0.0064 (0.0063)	0.0064 (0.0064)	0.0065 (0.0063)	0.0065 (0.0065)	0.0066 (0.0064)	0.9055 (0.0216)	0.0064 (0.0061)	0.0086 (0.0086)	0.0086 (0.0078)	0.0064 (0.0063)	0.0064 (0.0063)	0.0065 (0.0064)
10_i	0.0132 (0.0127)	0.0134 (0.0131)	0.0133 (0.0127)	0.0136 (0.0134)	0.0134 (0.0127)	0.0135 (0.0126)	0.0133 (0.0129)	0.0136 (0.0131)	0.0135 (0.0127)	0.7483 (0.0703)	0.0768 (0.0705)	0.0136 (0.0130)	0.0133 (0.0129)	0.0135 (0.0129)	0.0138 (0.0133)
11_i	0.0088 (0.0085)	0.0087 (0.0084)	0.0088 (0.0086)	0.0088 (0.0086)	0.0088 (0.0085)	0.0088 (0.0086)	0.0088 (0.0084)	0.0088 (0.0085)	0.0973 (0.0967)	0.0094 (0.0090)	0.7873 (0.0966)	0.0095 (0.0092)	0.0088 (0.0086)	0.0087 (0.0085)	0.0086 (0.0086)
12_i	0.0081 (0.0080)	0.0081 (0.0080)	0.0081 (0.0079)	0.0081 (0.0080)	0.0081 (0.0079)	0.0087 (0.0083)	0.0080 (0.0079)	0.0088 (0.0085)	0.0098 (0.0094)	0.0082 (0.0078)	0.0088 (0.0086)	0.8814 (0.0253)	0.0081 (0.0080)	0.0085 (0.0083)	0.0092 (0.0089)
13_i	0.0122 (0.0117)	0.0124 (0.0120)	0.0125 (0.0120)	0.0125 (0.0123)	0.0124 (0.0119)	0.0124 (0.0120)	0.0122 (0.0118)	0.0131 (0.0126)	0.0136 (0.0133)	0.0125 (0.0119)	0.0125 (0.0120)	0.0143 (0.0136)	0.6792 (0.0121)	0.1557 (0.0323)	0.0125 (0.0120)
14_i	0.0127 (0.0121)	0.0125 (0.0122)	0.0129 (0.0124)	0.0129 (0.0125)	0.0127 (0.0121)	0.0150 (0.0144)	0.0130 (0.0123)	0.0131 (0.0126)	0.0129 (0.0123)	0.0127 (0.0124)	0.0129 (0.0124)	0.0129 (0.0124)	0.0127 (0.0122)	0.8180 (0.0322)	0.0130 (0.0126)
15_i	0.0060 (0.0059)	0.0059 (0.0058)	0.0059 (0.0058)	0.0060 (0.0058)	0.0059 (0.0059)	0.0061 (0.0060)	0.0060 (0.0058)	0.0060 (0.0060)	0.0059 (0.0058)	0.0059 (0.0058)	0.0059 (0.0058)	0.0061 (0.0060)	0.0060 (0.0059)	0.0059 (0.0058)	0.9164 (0.0193)

	1_j	2_j	3_j	4_j	5_j	6_j	7_j	8_j	9_j	10_j	11_j	12_j	13_j	14_j	15_j
1_i	0.6848 (0.0172)	0.0418 (0.0393)	0.0399 (0.0400)	0.0175 (0.0163)	0.0175 (0.0165)	0.0262 (0.0246)	0.0178 (0.0169)	0.0306 (0.0289)	0.0176 (0.0164)	0.0192 (0.0188)	0.0174 (0.0166)	0.0176 (0.0167)	0.0174 (0.0164)	0.0174 (0.0165)	0.0173 (0.0166)
2_i	0.0135 (0.0132)	0.7976 (0.0340)	0.0145 (0.0139)	0.0138 (0.0135)	0.0138 (0.0131)	0.0166 (0.0153)	0.0132 (0.0126)	0.0154 (0.0146)	0.0132 (0.0126)	0.0203 (0.0179)	0.0142 (0.0134)	0.0134 (0.0129)	0.0135 (0.0131)	0.0134 (0.0127)	0.0136 (0.0129)
3_i	0.0138 (0.0132)	0.1111 (0.0383)	0.6858 (0.0186)	0.0139 (0.0133)	0.0235 (0.0197)	0.0138 (0.0131)	0.0140 (0.0138)	0.0236 (0.0202)	0.0143 (0.0137)	0.0143 (0.0137)	0.0148 (0.0140)	0.0151 (0.0144)	0.0141 (0.0136)	0.0140 (0.0134)	0.0140 (0.0134)
4_i	0.0175 (0.0167)	0.0204 (0.0189)	0.0179 (0.0172)	0.6839 (0.0163)	0.0173 (0.0167)	0.0192 (0.0180)	0.0176 (0.0168)	0.0805 (0.0335)	0.0175 (0.0170)	0.0170 (0.0163)	0.0182 (0.0175)	0.0175 (0.0166)	0.0177 (0.0169)	0.0201 (0.0185)	0.0176 (0.0167)
5_i	0.0080 (0.0077)	0.0097 (0.0093)	0.0091 (0.0087)	0.0080 (0.0079)	0.8789 (0.0260)	0.0082 (0.0081)	0.0080 (0.0079)	0.0101 (0.0097)	0.0081 (0.0080)	0.0093 (0.0091)	0.0082 (0.0080)	0.0081 (0.0079)	0.0080 (0.0078)	0.0104 (0.0096)	0.0079 (0.0078)
6_i	0.0087 (0.0086)	0.0089 (0.0086)	0.0087 (0.0085)	0.0087 (0.0084)	0.0089 (0.0086)	0.8697 (0.0270)	0.0088 (0.0085)	0.0099 (0.0096)	0.0088 (0.0085)	0.0086 (0.0085)	0.0088 (0.0085)	0.0091 (0.0088)	0.0087 (0.0085)	0.0149 (0.0124)	0.0088 (0.0085)
7_i	0.0186 (0.0174)	0.0186 (0.0175)	0.0187 (0.0176)	0.0181 (0.0174)	0.0186 (0.0176)	0.0189 (0.0181)	0.6854 (0.0178)	0.0713 (0.0319)	0.0182 (0.0171)	0.0188 (0.0176)	0.0184 (0.0175)	0.0202 (0.0190)	0.0185 (0.0177)	0.0188 (0.0180)	0.0188 (0.0178)
8_i	0.0118 (0.0114)	0.0120 (0.0118)	0.0119 (0.0116)	0.0118 (0.0113)	0.0138 (0.0132)	0.0124 (0.0119)	0.0116 (0.0114)	0.8204 (0.0323)	0.0121 (0.0115)	0.0135 (0.0128)	0.0137 (0.0131)	0.0143 (0.0137)	0.0119 (0.0115)	0.0154 (0.0144)	0.0134 (0.0128)
9_i	0.0065 (0.0064)	0.0064 (0.0062)	0.0065 (0.0065)	0.0064 (0.0063)	0.0066 (0.0063)	0.0064 (0.0063)	0.0064 (0.0063)	0.0066 (0.0064)	0.9034 (0.0216)	0.0064 (0.0064)	0.0102 (0.0097)	0.0090 (0.0080)	0.0065 (0.0064)	0.0064 (0.0063)	0.0064 (0.0062)
10_i	0.0134 (0.0128)	0.0133 (0.0126)	0.0132 (0.0126)	0.0132 (0.0127)	0.0133 (0.0127)	0.0135 (0.0132)	0.0135 (0.0130)	0.0138 (0.0130)	0.0132 (0.0127)	0.8033 (0.0452)	0.0219 (0.0358)	0.0135 (0.0130)	0.0135 (0.0129)	0.0133 (0.0129)	0.0140 (0.0133)
11_i	0.0087 (0.0085)	0.0090 (0.0087)	0.0088 (0.0086)	0.0088 (0.0087)	0.0088 (0.0084)	0.0089 (0.0087)	0.0086 (0.0084)	0.0088 (0.0086)	0.0244 (0.0399)	0.0097 (0.0093)	0.8593 (0.0457)	0.0096 (0.0093)	0.0088 (0.0085)	0.0088 (0.0087)	0.0090 (0.0087)
12_i	0.0082 (0.0079)	0.0081 (0.0079)	0.0082 (0.0080)	0.0083 (0.0080)	0.0081 (0.0079)	0.0088 (0.0084)	0.0082 (0.0079)	0.0089 (0.0086)	0.0097 (0.0092)	0.0082 (0.0081)	0.0096 (0.0092)	0.8802 (0.0255)	0.0081 (0.0079)	0.0086 (0.0083)	0.0090 (0.0086)
13_i	0.0123 (0.0119)	0.0123 (0.0119)	0.0122 (0.0118)	0.0123 (0.0117)	0.0123 (0.0119)	0.0122 (0.0116)	0.0123 (0.0116)	0.0133 (0.0126)	0.0135 (0.0131)	0.0123 (0.0118)	0.0129 (0.0125)	0.0144 (0.0137)	0.6790 (0.0117)	0.1564 (0.0318)	0.0124 (0.0120)
14_i	0.0130 (0.0125)	0.0128 (0.0125)	0.0128 (0.0121)	0.0128 (0.0124)	0.0130 (0.0125)	0.0149 (0.0141)	0.0126 (0.0122)	0.0129 (0.0123)	0.0128 (0.0122)	0.0129 (0.0125)	0.0132 (0.0128)	0.0128 (0.0124)	0.0126 (0.0120)	0.8182 (0.0322)	0.0128 (0.0123)
15_i	0.0059 (0.0059)	0.0060 (0.0058)	0.0060 (0.0059)	0.0059 (0.0058)	0.0059 (0.0058)	0.0061 (0.0060)	0.0060 (0.0060)	0.0061 (0.0060)	0.0061 (0.0060)	0.0060 (0.0058)	0.0060 (0.0058)	0.0062 (0.0062)	0.0060 (0.0062)	0.0061 (0.0061)	0.9157 (0.0194)

	1_j	2_j	3_j	4_j	5_j	6_j	7_j	8_j	9_j	10_j	11_j	12_j	13_j	14_j	15_j
1_i	0.6852 (0.0185)	0.0557 (0.0411)	0.0219 (0.0246)	0.0177 (0.0170)	0.0175 (0.0167)	0.0259 (0.0244)	0.0178 (0.0169)	0.0338 (0.0299)	0.0174 (0.0164)	0.0187 (0.0180)	0.0180 (0.0177)	0.0175 (0.0167)	0.0177 (0.0167)	0.0178 (0.0171)	0.0175 (0.0164)
2_i	0.0134 (0.0130)	0.7989 (0.0338)	0.0139 (0.0132)	0.0135 (0.0128)	0.0136 (0.0131)	0.0171 (0.0158)	0.0134 (0.0129)	0.0156 (0.0150)	0.0133 (0.0130)	0.0179 (0.0165)	0.0156 (0.0149)	0.0133 (0.0127)	0.0135 (0.0128)	0.0135 (0.0130)	0.0135 (0.0131)
3_i	0.0143 (0.0136)	0.1194 (0.0364)	0.6813 (0.0143)	0.0139 (0.0133)	0.0211 (0.0188)	0.0139 (0.0132)	0.0137 (0.0133)	0.0222 (0.0196)	0.0143 (0.0138)	0.0142 (0.0137)	0.0146 (0.0141)	0.0150 (0.0144)	0.0139 (0.0133)	0.0141 (0.0135)	0.0140 (0.0135)
4_i	0.0176 (0.0167)	0.0207 (0.0194)	0.0174 (0.0165)	0.6845 (0.0168)	0.0176 (0.0170)	0.0185 (0.0175)	0.0175 (0.0168)	0.0801 (0.0331)	0.0177 (0.0167)	0.0176 (0.0168)	0.0177 (0.0169)	0.0175 (0.0165)	0.0174 (0.0162)	0.0209 (0.0192)	0.0172 (0.0164)
5_i	0.0081 (0.0079)	0.0099 (0.0093)	0.0081 (0.0079)	0.0082 (0.0078)	0.8791 (0.0253)	0.0081 (0.0079)	0.0080 (0.0079)	0.0104 (0.0099)	0.0080 (0.0079)	0.0088 (0.0085)	0.0083 (0.0081)	0.0083 (0.0081)	0.0080 (0.0078)	0.0104 (0.0097)	0.0082 (0.0079)
6_i	0.0088 (0.0086)	0.0088 (0.0085)	0.0087 (0.0086)	0.0088 (0.0087)	0.8698 (0.0270)	0.0089 (0.0084)	0.0097 (0.0092)	0.0088 (0.0086)	0.0087 (0.0084)	0.0088 (0.0086)	0.0091 (0.0086)	0.0087 (0.0083)	0.0148 (0.0122)	0.0088 (0.0086)	
7_i	0.0185 (0.0178)	0.0186 (0.0178)	0.0183 (0.0172)	0.0184 (0.0175)	0.0188 (0.0178)	0.0194 (0.0185)	0.6848 (0.0173)	0.0720 (0.0326)	0.0183 (0.0172)	0.0183 (0.0172)	0.0188 (0.0179)	0.0202 (0.0187)	0.0185 (0.0177)	0.0187 (0.0177)	0.0183 (0.0175)
8_i	0.0120 (0.0115)	0.0120 (0.0115)	0.0117 (0.0114)	0.0119 (0.0117)	0.0138 (0.0134)	0.0123 (0.0118)	0.0119 (0.0116)	0.8204 (0.0323)	0.0121 (0.0117)	0.0132 (0.0128)	0.0139 (0.0133)	0.0141 (0.0132)	0.0119 (0.0116)	0.0154 (0.0145)	0.0133 (0.0128)
9_i	0.0065 (0.0065)	0.0064 (0.0063)	0.0064 (0.0063)	0.0065 (0.0064)	0.0065 (0.0064)	0.0064 (0.0062)	0.0065 (0.0063)	0.0065 (0.0065)	0.9046 (0.0216)	0.0065 (0.0063)	0.0091 (0.0089)	0.0086 (0.0079)	0.0064 (0.0063)	0.0065 (0.0063)	0.0066 (0.0064)
10_i	0.0132 (0.0126)	0.0133 (0.0127)	0.0133 (0.0127)	0.0132 (0.0127)	0.0136 (0.0129)	0.0134 (0.0129)	0.0134 (0.0126)	0.0135 (0.0132)	0.0133 (0.0127)	0.7636 (0.0693)	0.0623 (0.0674)	0.0136 (0.0130)	0.0132 (0.0126)	0.0133 (0.0130)	0.0139 (0.0133)
11_i	0.0087 (0.0085)	0.0088 (0.0086)	0.0088 (0.0087)	0.0087 (0.0085)	0.0086 (0.0084)	0.0090 (0.0087)	0.0087 (0.0084)	0.0089 (0.0087)	0.0836 (0.0938)	0.0092 (0.0089)	0.8010 (0.0933)	0.0092 (0.0089)	0.0087 (0.0084)	0.0089 (0.0090)	0.0090 (0.0087)
12_i	0.0081 (0.0078)	0.0083 (0.0081)	0.0081 (0.0079)	0.0083 (0.0080)	0.0082 (0.0079)	0.0088 (0.0086)	0.0083 (0.0081)	0.0088 (0.0085)	0.0098 (0.0095)	0.0080 (0.0080)	0.0090 (0.0089)	0.8810 (0.0253)	0.0081 (0.0079)	0.0084 (0.0083)	0.0089 (0.0086)
13_i	0.0123 (0.0116)	0.0125 (0.0120)	0.0123 (0.0118)	0.0125 (0.0120)	0.0124 (0.0118)	0.0124 (0.0117)	0.0121 (0.0117)	0.0128 (0.0123)	0.0132 (0.0125)	0.0125 (0.0121)	0.0129 (0.0125)	0.0145 (0.0136)	0.6792 (0.0121)	0.1560 (0.0322)	0.0124 (0.0122)
14_i	0.0129 (0.0126)	0.0127 (0.0123)	0.0128 (0.0123)	0.0129 (0.0124)	0.0129 (0.0124)	0.0150 (0.0142)	0.0129 (0.0124)	0.0130 (0.0127)	0.0129 (0.0123)	0.0127 (0.0122)	0.0130 (0.0124)	0.0130 (0.0126)	0.0128 (0.0121)	0.8176 (0.0324)	0.0129 (0.0124)
15_i	0.0059 (0.0058)	0.0060 (0.0059)	0.0059 (0.0058)	0.0061 (0.0060)	0.0059 (0.0060)	0.0060 (0.0058)	0.0060 (0.0059)	0.0060 (0.0060)	0.0059 (0.0058)	0.0058 (0.0058)	0.0061 (0.0059)	0.0060 (0.0059)	0.0059 (0.0059)	0.0059 (0.0057)	0.9165 (0.0192)