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ABSTRACT

High throughput primer design is needed to simultaneously design primers for multiple genes of
interest, such as a group of functional genes. We have developed MetaFunPrimer, a
bioinformatic pipeline to design primer targets for genes of interests, with a prioritization based
on ranking the presence of gene targets in references, such as metagenomes. MetaFunPrimer
takes inputs of protein and nucleotide sequences for gene targets of interest accompanied by a set
of reference metagenomes or genomes for determining genes of interest. Its output is a set of
primers that may be used to amplify genes of interest. To demonstrate the usage and benefits of
MetaFunPrimer, a total of 78 HT-gPCR primer pairs were designed to target observed ammonia
monooxygenase subunit A (amoA) genes of ammonia-oxidizing bacteria (AOB) in 1,550 soil
metagenomes. We demonstrate that these primers can significantly improve targeting of amoA-

AOB genes in soil metagenomes compared to previously published primers.

IMPORTANCE

Amplification-based gene characterization allows for sensitive and specific quantification of
functional genes. Often, there is a large diversity of genes represented for a function of interest,
and multiple primers may be necessary to target associated genes. Current primer design tools
are limited to designing primers for only a few genes of interest. MetaFunPrimer allows for high
throughput primer design for functional genes of interest and also allows for ranking gene targets
by their presence and abundance in environmental datasets. This tool enables high throughput

gPCR approaches for characterizing functional genes.
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INTRODUCTION

Diverse microbes in our surrounding environments are key drivers of nutrient cycling and
energy necessary for our lives (1-3). To understand the role of these microbes in environments,
we characterize their community composition and structure, their diversity, and their function
under various conditions. Efforts for characterizing microbiomes have been aided by the
development of molecular techniques in combination with sequencing technologies. Specifically,
16S rRNA gene amplicon sequencing has enabled high throughput characterization of taxa or
gene composition to inform community structure (4, 5). These sequencing methods are often
limited to characterizing phylogenetic markers within a community and are not optimized for
characterization of the functional potential of genes within microbial communities.

To characterize the functional roles of microbes, several approaches have been used. One
such method is to isolate and enrich representatives of a function of interest to identify and
characterize functional traits and their hosts (6, 7). A challenge to this approach is that
cultivating microbes from the environment may not represent those found in the environment (8—
11). To complement cultivation of isolates, sequencing-based approaches that do not rely on the
ability to grow environmental isolates have been used to characterize functional genes (12-14).
Specifically, metagenome sequencing of environmental DNA can be used to characterize diverse
functional genes in environmental samples. However, it is often the case that these genes make
up only a small fraction of the environmental DNA, which can result in a high cost to obtain this
functional information (15). Another method to characterize functional genes has been to target
amplicons for PCR-based methods. Like 16S rRNA gene sequencing, these methods amplify a
specific target gene. All amplicon-based approaches that target genes of interest rely on the

ability of primer sets to amplify these genes of interests. These primer sets and their subsequent
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amplification reactions are most effective if they are both sensitive and specific to target genes of
interest.

Many existing primers have been developed based on sequenced genes or genomes (16—
19). The increasing availability of metagenome sequencing provides new opportunities to expand
or redesign primers for target genes for gene targets, especially microbes that may not be
cultivated or have genomes available (20). PCR-based characterization of functional gene targets
has been recently combined with high-throughput gPCR (HT-gPCR) platforms to assay hundreds
of genes in a single run. For example, hundreds of primer sets for high-throughput qPCR arrays
have been used to simultaneously characterize antibiotic resistance genes in environmental
samples (21, 22).

These technologies now enhance our ability to characterize functional genes in the
environment. Specifically, by combining the increased availability of metagenomes and the
emergence of HT-qPCR platforms, we can scale PCR-based assays for functional genes of
interest. Combining these two resources requires the design of appropriate probes, but is limited
in the lack of publicly available software that allows users to design environment-specific
primers for specific functional genes. Here, we have developed MetaFunPrimer, a pipeline to
perform high throughput primer design to target genes of interest existing in metagenome
samples. This tool builds upon existing primer design software for developing PCR or qPCR
primers, such as Primer3 (23), which can design primers for specific amplification conditions
and product length outputs but are limited to a small number of primers and gene targets.
MetaFunPrimer designs primers for targeted functional genes and evaluates and prioritizes these
primers against hundreds of environmentally abundant functional genes. Here, we demonstrate

the use of MetaFunPrimer for designing novel primers for targeting ammonia oxidizing genes
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93  previously observed in agricultural soils. While this study focuses on ammonia monooxygenase
94  subunit A gene of ammonia-oxidizing bacteria (amoA-AOB) as a specific target gene of
95 interest, MetaFunPrimer is broadly applicable to diverse genes of interest. An online tutorial of
96  the use of MetaFunPrimer is available at
97  https://metafunprimer.readthedocs.io/en/latest/Tutorial.html.
98 The amoA-AOB genes were chosen as a target for functional probe design due to its
99 important role in nitrogen cycling. The amoA genes encode ammonia monooxygenase, an
100  enzyme that is the main catalyst in ammonia oxidation. Ammonia oxidation is the first and rate-
101  limiting step of nitrification which converts ammonia to nitrite then nitrate, the chemical form of
102  nitrogen that can potentially result in nitrogen loss from in environmental systems (24,
103  25). Generally, AOB species belong to either beta or gamma subclasses of the class
104  Proteobacteria, with the majority of AOB associated with genera Nitrosococcus, Nitrosomonas,
105 Nitrosospira (26, 27). AmoA genes have previously been used as functional markers for
106  analyzing AOB diversity (16, 28, 29), and several primer pairs for conserved regions of amoA-
107  AOB genes have been previously used for studying its function (16-19). In this study, we use the
108 example of amoA-AOB genes to demonstrate the usage of MetaFunPrimer. Specifically, we
109 evaluate the diversity of amoA-AOB genes in soil metagenomes, evaluate the sensitivity and
110  specificity of previously published probes to detect these genes, and use MetaFunPrimer to
111 design primers for novel gene targets.
112
113 RESULTS
114 The steps for MetaFunPrimer primer design of amoA-AOB genes include: (1)

115  characterization of reference amoA-AOB genes; (2) weighting of target genes based on soil
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116  metagenomes; (3) design of primers for selected genes; and (4) computational primer evaluation
117  for alignment to target genes (Fig. 1, Table 1).

118 Characterization of reference amoA-AOB genes: A curated set of functional genes for
119 amoA-AOB was obtained from the Ribosomal Database Project Fungene (version 9.6) (30). We
120  obtained protein sequences, nucleotide sequences, and their corresponding NCBI accession

121 numbers for a total of 1205 amoA-AOB genes. For HT-gPCR applications, we aimed to detect as
122  many target genes as possible with minimal primer pairs. For our study, it was impractical to
123 have thousands of primers, and thus our first step was to reduce the number of gene targets. We
124 removed redundancy and reduced gene targets by initially clustering gene reference sequences
125  based on their similarity. Among the 1205 amoA-AOB protein sequences, many sequences were
126  observed to have a high degree of similarity. When sequences were clustered from 80 to 100%
127  protein similarity, we found that clustering these sequences at greater than 96% amino acid

128  similarity resulted in the largest increase in resulting total unique clusters (Fig. 2). We aimed to
129  balance the lowest number of clusters representing potential gene targets while representing the
130  most gene diversity. Consequently, we found that clustering based on 96% similarity resulted in
131  atotal of 60 clusters, and representative sequences from each cluster covered a wide diversity
132 of amoA-AOB including the genera Nitrosomonas, Nitrosococcus, and Nitrosospira (Fig. S1).
133 Weighting of target genes based on soil metagenomes: The representative protein

134  sequences from each cluster were next aligned to 1550 publicly available soil metagenomes

135 (Table S1), with alignments defined as having 97% percent sequence identity over the length of
136  the reference gene. Each amoA-AOB associated gene identified in soil metagenomes was

137  then ranked based on two criteria: estimated gene abundance (the total number of observations of

138  each gene within all the metagenomes sequences) and prevalence (the number of unique
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139  metagenomes where the gene was observed) (Table S2). The abundance and prevalence of each
140  representative gene were then normalized separately before taking their mean value to calculate
141  each representative sequence’s representation score (R-score). The clusters represented by the
142  ten sequences with the highest R-score accounted for a total of 720 amoA-AOB genes,

143 comprising a total of 87.4% of the cumulative overall abundance of these genes observed

144 in the soil metagenomes (Fig. 3).

145 Design of primers for selected genes: The nucleotide sequences of these 720 genes

146  were obtained and used for further primer design. Embedded in MetaFunPrimer is

147  EcoFunPrimer, which was developed by the Ribosomal Database Project (RDP) at Michigan
148  State University (https://github.com/rdpstaff/EcoFunPrimer). EcoFunPrimer is a primer design
149  tool which outputs primers based on input genes. For the 720 genes selected for primer design,
150 28 primer sets were generated by EcoFunPrimer, allowing at most 6 degenerate primers based on
151  specific PCR conditions (Table S3). From the resulting 28 degenerate primer pairs,

152  MetaFunPrimer generated 181 single non-degenerate primer pairs and next evaluated these

153  primers through an in silico PCR against the 720 targeted reference genes. In some cases,

154  redundant primer pairs exist for the same gene target, and these redundant primers were removed
155  resulting in a final set of 78 non-degenerate primer pairs (Table S4). Overall, the resulting primer
156  pairs were predicted to in silico amplify a total of 676 out of 720 soil abundant amoA-AOB

157  genes observed from soil metagenomes.

158 Finally, to compare our designed primers to previously published primers, we summarized
159  previously published amoA-AOB primers (16-19) to single non-degenerate primer pairs (Table
160  S5). MetaFunPrimer’s in silico amplification procedure was performed using these primer pairs

161  to evaluate their alignment to the 720 targeted soil abundant amoA-AOB genes. In total, 49.44%
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162  (356/720) of these genes would be detected using pre-existing primer pairs, while the primers
163  designed by MetaFunPrimer resulted in 93.89% (676/720) detection (Table 2). Within each soil
164  abundant cluster, primers designed using MetaFunPrimer tend to have higher amplification

165  abilities compared with pre-existing primers.

166

167 DISCUSSION

168 Amplicon-based approaches for characterizing functional genes provide an approach that
169 is astrong complement to metagenome sequencing. In comparison to metagenome sequencing,
170  HT-qPCR approaches have the potential to be more affordable and sensitive due to the targeted
171 amplification of genes of interest and can be used for standardized surveys of microbial

172 communities and their functions (31). The opportunities of HT-qPCR approaches and amplicon-
173  Dbased approaches depends strongly on the reliability of primer design to target genes of interest
174 (32). In this present work, we introduce the MetaFunPrimer pipeline for designing HT-gPCR
175  primers and demonstrate its use by capturing a broad diversity of relevant genes associated with
176  ammonia oxidation within soil metagenomes. Nitrogen cycling genes are one of the most

177  challenging targets for amplicon approaches as they are encoded by highly diverse

178  microorganisms, including heterotrophic nitrifying microorganisms, denitrifying bacteria,

179  anammox bacteria, nitrifying archaea, and denitrifying fungi (33). Previously, there have

180  numerous efforts to design primers for amoA and other nitrogen cycling genes, but existing

181  primers detect a limited range of the phylogenetically diverse genes and often result in

182  misinterpretation (34). Our analysis supports these previous observations that currently existing
183  primers capture less than half amoA-AOB genes in soil metagenomes. Using MetaFunPrimer,

184  we have developed 78 novel primer sets to improve quantification of these genes in soil
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185  metagenomes, increasing detection of amoA-AOB genes from 49% to 94% coverage of observed
186  genes in metagenomes. Notably, in soil metagenomes, amoA-AOB genes comprise less than
187  0.002% of reads in metagenome libraries and thus comprise only a fraction of each generated
188  metagenome. In contrast, q°PCR-based approaches would allow for amplification of these genes
189  from environmental DNA, allowing for more sensitive detection.

190 In our amoA-AOB example, we aimed for hundreds of primer sets to capture high

191  diversity of these genes in soils. Generally, however, MetaFunPrimer inputs can be used to

192 design primers for any user-inputted number of sequences, and this number could be varied to
193  suit experimental capabilities or user-specific aims. Another important attribute of

194  MetaFunPrimer is the ability to rank primer design based on targets present in metagenomes.
195  This feature allows for the selection of the most relevant genes based on previous observations of
196 abundance and prevalence in reference metagenomes. For our study, we weighted equally both
197  abundance and prevalence, but the weights of each category could be varied to prioritize

198  diversity or representation within metagenomes. Additionally, the selection of metagenomes as a
199  reference for selecting probes can also be varied. For example, one could use inputs of

200  metagenomes from only bioenergy-associated soils to prioritize microbial communities within
201  specific agricultural sites. Alternately, genomes could be used as a reference for probe design,
202  allowing users to weight primers for genes from known representatives.

203 Overall, we developed the MetaFunPrimer pipeline as a high-throughput primer design
204  software to partner with the availability of HT-qPCR capabilities. However, this tool is

205  appropriate for any targeted amplification approach, where primer design for specific genes of
206 interests can be guided by available datasets, as we demonstrated in a recent paper which

207  designed primers with the same approach and successfully measured microcystin-producing
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208  genes in hundreds of lake water samples (Lee et al., 2020). Within MetaFunPrimer, we also
209  make available workflows for in silico comparisons of primers and gene targets. Similar to any
210  primer design effort, experimental validation is required, but computational efforts can help
211  determine which candidates to test experimentally.

212

213 MATERIALS AND METHODS

214 As inputs, MetaFunPrimer takes the nucleotide and protein sequences of the genes of
215 interest, a file containing the mapping between a gene's nucleotide and protein sequence, and
216  gene sequences for prioritization (such as metagenomes). The output of the pipeline is a set of
217  primers that can be used to amplify selected functional genes. The major steps

218  of MetaFunPrimer are firstly to filter and rank genes of interest based on both diversity and
219  representation in inputs, and then to design and evaluate primer sequences for genes of interest
220 (Fig. 1).

221 Identifying environmentally representative gene clusters and determine target genes. The
222  first step in the MetaFunPrimer pipeline is to cluster input protein sequences over a range of
223  similarity thresholds in order to determine an optimal or user-defined similarity

224 threshold. Specifically, CD-HIT (35, 36) is used to cluster sequences in the range of 80% to
225  100% (with 1% increments) similarity to determine the number of clusters found at each

226  threshold. MetaFunPrimer will recommend a similarity threshold that optimizes the first-order
227  difference, a criterion based on the symmetric derivative (37). However, users can select the
228  most appropriate cluster similarity threshold based on their needs.

229 Next, MetaFunPrimer evaluates the presence of these genes in user-input reference

230  sequences, i.e., metagenomes. For each cluster, the representative protein sequence (identified by

10
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231  CD-HIT) is aligned to reference sequences using DIAMOND (version 0.9.14) (38). Each

232  representative protein sequence is then ranked based on their R-score in reference sequences

233  (i.e., in the case of our case study, these are soil metagenomes). The R-score is defined as

234  the mean of that gene’s normalized abundance and prevalence among reference sequences. The
235  representative genes for each cluster of sequences are subsequently ranked based on R-score in
236  descending order, gene clusters are included until the user-input threshold of the cumulative R-
237  score (i.e., 80% in the case study) is reached. Genes that are associated with selected ranked

238  clusters are considered as genes of interests and consequently target genes for primer design and
239  are converted into their corresponding nucleotide sequences.

240  Designing and evaluating primers for genes of interest. MetaFunPrimer uses selected gene
241  sequences and user-defined parameters such as amplicon product length and melting temperature
242  ranges for the subsequent primer design process. Within MetaFunPrimer, EcoFunPrimer is the
243  primary tool used to design thermodynamically stable primer pairs from aligned nucleotide

244 sequences. Depending on user-defined inputs, it is possible for primer outputs from this pipeline
245  to have multiple degenerate forms. To evaluate primer effectiveness, MetaFunPrimer converts all
246  primer outputs to non-degenerate forms (e.g., all possible primer pairs) of forward and reverse
247  primers. Next, all primer pairs are evaluated via in silico PCR against the original set of

248  reference genes provided by the user. A pair of primers successfully amplifies a gene product if
249  both the forward and reverse primers achieve a 100% match against a sequence. In some cases, a
250 single reference gene may be targeted by multiple pairs of primers, and each primer pair can also
251  potentially target more than one gene. Thus, as a final step, MetaFunPrimer outputs the minimal

252  number of primer sets to achieve a maximum number of reference gene products.

11
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253  Data availability. For amoA-AOB primer design, 1205 protein and nucleotide sequences and a
254  file containing the mapping between each gene’s nucleotide and protein sequence obtained

255  curated gene sequences from the Fungene database, requiring a Hidden Markov Model (HMM)
256  search score > 400 and HMM coverage over 70.2% amino acid similarity. To prioritize these
257  gene targets for amoA-AOB function in soils, we used 1550 publicly available soil metagenomes
258  (Table S1) as reference metagenomes for primer design.

259
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376 TABLES

TABLE 1 Data associated with MetaFunPrimer in the design of amoA-AOB genes.

Data Associated with MetaFunPrimer Type Results for our study

Curated amoA-AOB genes from functional gene database Input 1205 nucleotide and amino acid sequences
Soil metagenomes Input 1550 soil metagenomes

Optimal clustering similarity found (Recommended by MetaFunPrimer) Parameter 96%

Gene clusters included (Recommended by MetaFunPrimer) Parameter 10 gene clusters

Prioritized genes based on input #1 and #2: Total number of soil abundant genes  Output 720 genes

Non-degenerate primers Output 78 primer sets

Total number of soil metagenome genes targeted by final primer set Output 676 (93.89%)

377

378

18


https://doi.org/10.1101/2020.07.01.183509
http://creativecommons.org/licenses/by-nc-nd/4.0/

379

380

TABLE 2 Comparison of previously published amoA-AOB primers to those in this study. Targeting rate is the ratio of the
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number of genes within the associated cluster that can be aligned by given primer sets and the total number of genes in the
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cluster.
Number of .
Soil abundant Number of previously Targe;mg Number of . f
amoA-AOB gene published rate o MetaFunPrimer Targeting rate o
sequences - . previously - . MetaFunPrimer
cluster [gene - primer pairs - primer pairs that -
) within each published . primers
representative] cluster that target rimers targeting each cluster
each cluster P
1 [AAB38709] 20 3 3(15.00%) 5 19 (95.00%)
3 [SEF68642] 285 7 55 (19.30%) 33 273 (95.79%)
4 [K1048008] 320 14 255(79.69%) 26 304 (95.00%)
5 [AAC25057] 65 11 30 (46.15%) 12 53 (81.54%)
6 [AAL86637] 5 - - 2 3 (60.00%)
7 [AAL86638] 11 2 10 (90.91%) 2 11 (100.00%)
28 [ABM54175] 2 - - 2 2 (100.00%)
29 [ADZ75349] 8 2 3 (37.50%) 3 7 (87.50%)
52 [AFL48355] 2 - - 2 2 (100.00%)
58 [ADZ75355] 2 - - 1 2 (100.00%)
Total 720 20 356 (49.44%) 78 676 (93.89%)

Primer pairs that target genes in each cluster are described in Table S5 in supplementary materials.

19


https://doi.org/10.1101/2020.07.01.183509
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.183509; this version posted July 2, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

381 FIGURES

~
( Input #1 Design primers with
Cluster sequences at EcoFunPrimer
. - optimum similarity
Genes of interest threshold
(targets)
v ( Output
y, utpu
Determine primer
caverage of input
genes via in silico Primers
| gPCR
( Input #2 — q
Prioritize genes based
. on presence and \
Metagenomes o abundance in e
; ; metagenomes
(for guided design) Select primers for
Y, downstream analysis

382

383 Fig. 1 Overview summarizing the MetaFunPrimer pipeline for gene primer design based guided by inputs of reference genes and
384  metagenomes.
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387

388 Fig. 2 The selection of the appropriate number of genes for designing gene primers can be reduced by clustering sequences by
389 protein similarity. A total of 60 clusters were selected based on 96% amino acid similarity of amoA-AOB genes (indicated by red
390 point). Clusters were found using CD-HIT with word size 5 for each of the similarity thresholds indicated.
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393

394 Fig. 3 Known amoA-AOB genes ranked by representation score (R-score; the mean of the scaled abundance and prevalence) and
395 the estimated cumulative abundance of each gene in 1,550 soil metagenomes. The protein sequences in red indicate those amoA-
396 AOB gene clusters and their associated genes that were selected for primer design based on cumulative R-score in reference
397  metagenomes.
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