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ABSTRACT  24 

High throughput primer design is needed to simultaneously design primers for multiple genes of 25 

interest, such as a group of functional genes. We have developed MetaFunPrimer, a 26 

bioinformatic pipeline to design primer targets for genes of interests, with a prioritization based 27 

on ranking the presence of gene targets in references, such as metagenomes. MetaFunPrimer 28 

takes inputs of protein and nucleotide sequences for gene targets of interest accompanied by a set 29 

of reference metagenomes or genomes for determining genes of interest. Its output is a set of 30 

primers that may be used to amplify genes of interest. To demonstrate the usage and benefits of 31 

MetaFunPrimer, a total of 78 HT-qPCR primer pairs were designed to target observed ammonia 32 

monooxygenase subunit A (amoA) genes of ammonia-oxidizing bacteria (AOB) in 1,550 soil 33 

metagenomes. We demonstrate that these primers can significantly improve targeting of amoA-34 

AOB genes in soil metagenomes compared to previously published primers.  35 

 36 

IMPORTANCE  37 

Amplification-based gene characterization allows for sensitive and specific quantification of 38 

functional genes. Often, there is a large diversity of genes represented for a function of interest, 39 

and multiple primers may be necessary to target associated genes. Current primer design tools 40 

are limited to designing primers for only a few genes of interest. MetaFunPrimer allows for high 41 

throughput primer design for functional genes of interest and also allows for ranking gene targets 42 

by their presence and abundance in environmental datasets. This tool enables high throughput 43 

qPCR approaches for characterizing functional genes. 44 

 45 

 46 
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INTRODUCTION  47 

Diverse microbes in our surrounding environments are key drivers of nutrient cycling and 48 

energy necessary for our lives (1–3). To understand the role of these microbes in environments, 49 

we characterize their community composition and structure, their diversity, and their function 50 

under various conditions. Efforts for characterizing microbiomes have been aided by the 51 

development of molecular techniques in combination with sequencing technologies. Specifically, 52 

16S rRNA gene amplicon sequencing has enabled high throughput characterization of taxa or 53 

gene composition to inform community structure (4, 5). These sequencing methods are often 54 

limited to characterizing phylogenetic markers within a community and are not optimized for 55 

characterization of the functional potential of genes within microbial communities.  56 

To characterize the functional roles of microbes, several approaches have been used. One 57 

such method is to isolate and enrich representatives of a function of interest to identify and 58 

characterize functional traits and their hosts (6, 7). A challenge to this approach is that 59 

cultivating microbes from the environment may not represent those found in the environment (8–60 

11). To complement cultivation of isolates, sequencing-based approaches that do not rely on the 61 

ability to grow environmental isolates have been used to characterize functional genes (12–14). 62 

Specifically, metagenome sequencing of environmental DNA can be used to characterize diverse 63 

functional genes in environmental samples. However, it is often the case that these genes make 64 

up only a small fraction of the environmental DNA, which can result in a high cost to obtain this 65 

functional information (15). Another method to characterize functional genes has been to target 66 

amplicons for PCR-based methods. Like 16S rRNA gene sequencing, these methods amplify a 67 

specific target gene. All amplicon-based approaches that target genes of interest rely on the 68 

ability of primer sets to amplify these genes of interests. These primer sets and their subsequent 69 
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amplification reactions are most effective if they are both sensitive and specific to target genes of 70 

interest. 71 

Many existing primers have been developed based on sequenced genes or genomes (16–72 

19). The increasing availability of metagenome sequencing provides new opportunities to expand 73 

or redesign primers for target genes for gene targets, especially microbes that may not be 74 

cultivated or have genomes available (20). PCR-based characterization of functional gene targets 75 

has been recently combined with high-throughput qPCR (HT-qPCR) platforms to assay hundreds 76 

of genes in a single run. For example, hundreds of primer sets for high-throughput qPCR arrays 77 

have been used to simultaneously characterize antibiotic resistance genes in environmental 78 

samples (21, 22). 79 

These technologies now enhance our ability to characterize functional genes in the 80 

environment. Specifically, by combining the increased availability of metagenomes and the 81 

emergence of HT-qPCR platforms, we can scale PCR-based assays for functional genes of 82 

interest. Combining these two resources requires the design of appropriate probes, but is limited 83 

in the lack of publicly available software that allows users to design environment-specific 84 

primers for specific functional genes. Here, we have developed MetaFunPrimer, a pipeline to 85 

perform high throughput primer design to target genes of interest existing in metagenome 86 

samples. This tool builds upon existing primer design software for developing PCR or qPCR 87 

primers, such as Primer3 (23), which can design primers for specific amplification conditions 88 

and product length outputs but are limited to a small number of primers and gene targets. 89 

MetaFunPrimer designs primers for targeted functional genes and evaluates and prioritizes these 90 

primers against hundreds of environmentally abundant functional genes. Here, we demonstrate 91 

the use of MetaFunPrimer for designing novel primers for targeting ammonia oxidizing genes 92 
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previously observed in agricultural soils. While this study focuses on ammonia monooxygenase 93 

subunit A gene of ammonia-oxidizing bacteria (amoA-AOB) as a specific target gene of 94 

interest, MetaFunPrimer is broadly applicable to diverse genes of interest. An online tutorial of 95 

the use of MetaFunPrimer is available at 96 

https://metafunprimer.readthedocs.io/en/latest/Tutorial.html.  97 

The amoA-AOB genes were chosen as a target for functional probe design due to its 98 

important role in nitrogen cycling. The amoA genes encode ammonia monooxygenase, an 99 

enzyme that is the main catalyst in ammonia oxidation. Ammonia oxidation is the first and rate-100 

limiting step of nitrification which converts ammonia to nitrite then nitrate, the chemical form of 101 

nitrogen that can potentially result in nitrogen loss from in environmental systems (24, 102 

25). Generally, AOB species belong to either beta or gamma subclasses of the class 103 

Proteobacteria, with the majority of AOB associated with genera Nitrosococcus, Nitrosomonas, 104 

Nitrosospira (26, 27). AmoA genes have previously been used as functional markers for 105 

analyzing AOB diversity (16, 28, 29), and several primer pairs for conserved regions of amoA-106 

AOB genes have been previously used for studying its function (16–19). In this study, we use the 107 

example of amoA-AOB genes to demonstrate the usage of MetaFunPrimer. Specifically, we 108 

evaluate the diversity of amoA-AOB genes in soil metagenomes, evaluate the sensitivity and 109 

specificity of previously published probes to detect these genes, and use MetaFunPrimer to 110 

design primers for novel gene targets.  111 

 112 

RESULTS  113 

 The steps for MetaFunPrimer primer design of amoA-AOB genes include: (1) 114 

characterization of reference amoA-AOB genes; (2) weighting of target genes based on soil 115 
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metagenomes; (3) design of primers for selected genes; and (4) computational primer evaluation 116 

for alignment to target genes (Fig. 1, Table 1). 117 

 Characterization of reference amoA-AOB genes: A curated set of functional genes for 118 

amoA-AOB was obtained from the Ribosomal Database Project Fungene (version 9.6) (30). We 119 

obtained protein sequences, nucleotide sequences, and their corresponding NCBI accession 120 

numbers for a total of 1205 amoA-AOB genes. For HT-qPCR applications, we aimed to detect as 121 

many target genes as possible with minimal primer pairs. For our study, it was impractical to 122 

have thousands of primers, and thus our first step was to reduce the number of gene targets. We 123 

removed redundancy and reduced gene targets by initially clustering gene reference sequences 124 

based on their similarity. Among the 1205 amoA-AOB protein sequences, many sequences were 125 

observed to have a high degree of similarity. When sequences were clustered from 80 to 100% 126 

protein similarity, we found that clustering these sequences at greater than 96% amino acid 127 

similarity resulted in the largest increase in resulting total unique clusters (Fig. 2). We aimed to 128 

balance the lowest number of clusters representing potential gene targets while representing the 129 

most gene diversity. Consequently, we found that clustering based on 96% similarity resulted in 130 

a total of 60 clusters, and representative sequences from each cluster covered a wide diversity 131 

of amoA-AOB including the genera Nitrosomonas, Nitrosococcus, and Nitrosospira (Fig. S1). 132 

 Weighting of target genes based on soil metagenomes: The representative protein 133 

sequences from each cluster were next aligned to 1550 publicly available soil metagenomes 134 

(Table S1), with alignments defined as having 97% percent sequence identity over the length of 135 

the reference gene. Each amoA-AOB associated gene identified in soil metagenomes was 136 

then ranked based on two criteria: estimated gene abundance (the total number of observations of 137 

each gene within all the metagenomes sequences) and prevalence (the number of unique 138 
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 7 

metagenomes where the gene was observed) (Table S2). The abundance and prevalence of each 139 

representative gene were then normalized separately before taking their mean value to calculate 140 

each representative sequence’s representation score (R-score). The clusters represented by the 141 

ten sequences with the highest R-score accounted for a total of 720 amoA-AOB genes, 142 

comprising a total of 87.4% of the cumulative overall abundance of these genes observed 143 

in the soil metagenomes (Fig. 3).  144 

 Design of primers for selected genes: The nucleotide sequences of these 720 genes 145 

were obtained and used for further primer design. Embedded in MetaFunPrimer is 146 

EcoFunPrimer, which was developed by the Ribosomal Database Project (RDP) at Michigan 147 

State University (https://github.com/rdpstaff/EcoFunPrimer). EcoFunPrimer is a primer design 148 

tool which outputs primers based on input genes. For the 720 genes selected for primer design, 149 

28 primer sets were generated by EcoFunPrimer, allowing at most 6 degenerate primers based on 150 

specific PCR conditions (Table S3). From the resulting 28 degenerate primer pairs, 151 

MetaFunPrimer generated 181 single non-degenerate primer pairs and next evaluated these 152 

primers through an in silico PCR against the 720 targeted reference genes. In some cases, 153 

redundant primer pairs exist for the same gene target, and these redundant primers were removed 154 

resulting in a final set of 78 non-degenerate primer pairs (Table S4). Overall, the resulting primer 155 

pairs were predicted to in silico amplify a total of 676 out of 720 soil abundant amoA-AOB 156 

genes observed from soil metagenomes.  157 

 Finally, to compare our designed primers to previously published primers, we summarized 158 

previously published amoA-AOB primers (16–19) to single non-degenerate primer pairs (Table 159 

S5). MetaFunPrimer’s in silico amplification procedure was performed using these primer pairs 160 

to evaluate their alignment to the 720 targeted soil abundant amoA-AOB genes. In total, 49.44% 161 
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(356/720) of these genes would be detected using pre-existing primer pairs, while the primers 162 

designed by MetaFunPrimer resulted in 93.89% (676/720) detection (Table 2). Within each soil 163 

abundant cluster, primers designed using MetaFunPrimer tend to have higher amplification 164 

abilities compared with pre-existing primers.  165 

  166 

DISCUSSION  167 

 Amplicon-based approaches for characterizing functional genes provide an approach that 168 

is a strong complement to metagenome sequencing. In comparison to metagenome sequencing, 169 

HT-qPCR approaches have the potential to be more affordable and sensitive due to the targeted 170 

amplification of genes of interest and can be used for standardized surveys of microbial 171 

communities and their functions (31). The opportunities of HT-qPCR approaches and amplicon-172 

based approaches depends strongly on the reliability of primer design to target genes of interest 173 

(32). In this present work, we introduce the MetaFunPrimer pipeline for designing HT-qPCR 174 

primers and demonstrate its use by capturing a broad diversity of relevant genes associated with 175 

ammonia oxidation within soil metagenomes. Nitrogen cycling genes are one of the most 176 

challenging targets for amplicon approaches as they are encoded by highly diverse 177 

microorganisms, including heterotrophic nitrifying microorganisms, denitrifying bacteria, 178 

anammox bacteria, nitrifying archaea, and denitrifying fungi (33). Previously, there have 179 

numerous efforts to design primers for amoA and other nitrogen cycling genes, but existing 180 

primers detect a limited range of the phylogenetically diverse genes and often result in 181 

misinterpretation (34). Our analysis supports these previous observations that currently existing 182 

primers capture less than half amoA-AOB genes in soil metagenomes. Using MetaFunPrimer, 183 

we have developed 78 novel primer sets to improve quantification of these genes in soil 184 
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metagenomes, increasing detection of amoA-AOB genes from 49% to 94% coverage of observed 185 

genes in metagenomes. Notably, in soil metagenomes, amoA-AOB genes comprise less than 186 

0.002% of reads in metagenome libraries and thus comprise only a fraction of each generated 187 

metagenome. In contrast, qPCR-based approaches would allow for amplification of these genes 188 

from environmental DNA, allowing for more sensitive detection. 189 

 In our amoA-AOB example, we aimed for hundreds of primer sets to capture high 190 

diversity of these genes in soils. Generally, however, MetaFunPrimer inputs can be used to 191 

design primers for any user-inputted number of sequences, and this number could be varied to 192 

suit experimental capabilities or user-specific aims. Another important attribute of 193 

MetaFunPrimer is the ability to rank primer design based on targets present in metagenomes. 194 

This feature allows for the selection of the most relevant genes based on previous observations of 195 

abundance and prevalence in reference metagenomes. For our study, we weighted equally both 196 

abundance and prevalence, but the weights of each category could be varied to prioritize 197 

diversity or representation within metagenomes. Additionally, the selection of metagenomes as a 198 

reference for selecting probes can also be varied. For example, one could use inputs of 199 

metagenomes from only bioenergy-associated soils to prioritize microbial communities within 200 

specific agricultural sites. Alternately, genomes could be used as a reference for probe design, 201 

allowing users to weight primers for genes from known representatives. 202 

 Overall, we developed the MetaFunPrimer pipeline as a high-throughput primer design 203 

software to partner with the availability of HT-qPCR capabilities. However, this tool is 204 

appropriate for any targeted amplification approach, where primer design for specific genes of 205 

interests can be guided by available datasets, as we demonstrated in a recent paper which 206 

designed primers with the same approach and successfully measured microcystin-producing 207 
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 10 

genes in hundreds of lake water samples (Lee et al., 2020). Within MetaFunPrimer, we also 208 

make available workflows for in silico comparisons of primers and gene targets. Similar to any 209 

primer design effort, experimental validation is required, but computational efforts can help 210 

determine which candidates to test experimentally. 211 

 212 

MATERIALS AND METHODS  213 

As inputs, MetaFunPrimer takes the nucleotide and protein sequences of the genes of 214 

interest, a file containing the mapping between a gene's nucleotide and protein sequence, and 215 

gene sequences for prioritization (such as metagenomes). The output of the pipeline is a set of 216 

primers that can be used to amplify selected functional genes. The major steps 217 

of MetaFunPrimer are firstly to filter and rank genes of interest based on both diversity and 218 

representation in inputs, and then to design and evaluate primer sequences for genes of interest 219 

(Fig. 1).  220 

 Identifying environmentally representative gene clusters and determine target genes. The 221 

first step in the MetaFunPrimer pipeline is to cluster input protein sequences over a range of 222 

similarity thresholds in order to determine an optimal or user-defined similarity 223 

threshold. Specifically, CD-HIT (35, 36) is used to cluster sequences in the range of 80% to 224 

100% (with 1% increments) similarity to determine the number of clusters found at each 225 

threshold. MetaFunPrimer will recommend a similarity threshold that optimizes the first-order 226 

difference, a criterion based on the symmetric derivative (37). However, users can select the 227 

most appropriate cluster similarity threshold based on their needs.  228 

 Next, MetaFunPrimer evaluates the presence of these genes in user-input reference 229 

sequences, i.e., metagenomes. For each cluster, the representative protein sequence (identified by 230 
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CD-HIT) is aligned to reference sequences using DIAMOND (version 0.9.14) (38). Each 231 

representative protein sequence is then ranked based on their R-score in reference sequences 232 

(i.e., in the case of our case study, these are soil metagenomes). The R-score is defined as 233 

the mean of that gene’s normalized abundance and prevalence among reference sequences. The 234 

representative genes for each cluster of sequences are subsequently ranked based on R-score in 235 

descending order, gene clusters are included until the user-input threshold of the cumulative R-236 

score (i.e., 80% in the case study) is reached. Genes that are associated with selected ranked 237 

clusters are considered as genes of interests and consequently target genes for primer design and 238 

are converted into their corresponding nucleotide sequences.  239 

Designing and evaluating primers for genes of interest. MetaFunPrimer uses selected gene 240 

sequences and user-defined parameters such as amplicon product length and melting temperature 241 

ranges for the subsequent primer design process. Within MetaFunPrimer, EcoFunPrimer is the 242 

primary tool used to design thermodynamically stable primer pairs from aligned nucleotide 243 

sequences. Depending on user-defined inputs, it is possible for primer outputs from this pipeline 244 

to have multiple degenerate forms. To evaluate primer effectiveness, MetaFunPrimer converts all 245 

primer outputs to non-degenerate forms (e.g., all possible primer pairs) of forward and reverse 246 

primers. Next, all primer pairs are evaluated via in silico PCR against the original set of 247 

reference genes provided by the user. A pair of primers successfully amplifies a gene product if 248 

both the forward and reverse primers achieve a 100% match against a sequence. In some cases, a 249 

single reference gene may be targeted by multiple pairs of primers, and each primer pair can also 250 

potentially target more than one gene. Thus, as a final step, MetaFunPrimer outputs the minimal 251 

number of primer sets to achieve a maximum number of reference gene products. 252 
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Data availability. For amoA-AOB primer design, 1205 protein and nucleotide sequences and a 253 

file containing the mapping between each gene’s nucleotide and protein sequence obtained 254 

curated gene sequences from the Fungene database, requiring a Hidden Markov Model (HMM) 255 

search score > 400 and HMM coverage over 70.2% amino acid similarity. To prioritize these 256 

gene targets for amoA-AOB function in soils, we used 1550 publicly available soil metagenomes 257 

(Table S1) as reference metagenomes for primer design.  258 
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TABLES 376 

 377 

  378 

TABLE 1 Data associated with MetaFunPrimer in the design of amoA-AOB genes. 

Data Associated with MetaFunPrimer Type Results for our study 

Curated amoA-AOB genes from functional gene database Input 1205 nucleotide and amino acid sequences 

Soil metagenomes Input 1550 soil metagenomes 

Optimal clustering similarity found (Recommended by MetaFunPrimer) Parameter 96% 

Gene clusters included (Recommended by MetaFunPrimer) Parameter 10 gene clusters 

Prioritized genes based on input #1 and #2:  Total number of soil abundant genes Output 720 genes 

Non-degenerate primers  Output 78 primer sets 

Total number of soil metagenome genes targeted by final primer set Output 676 (93.89%) 
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TABLE 2 Comparison of previously published amoA-AOB primers to those in this study. Targeting rate is the ratio of the 

number of genes within the associated cluster that can be aligned by given primer sets and the total number of genes in the 

cluster. 
 

 

Soil abundant 

amoA-AOB 

cluster [gene 

representative] 

Number of 

gene 

sequences 

within each 

cluster 

Number of 

previously 

published 

primer pairs 

that target 

each cluster 

Targeting 

rate of 

previously 

published 

primers 

Number of 

MetaFunPrimer 

primer pairs that 

targeting each cluster 

Targeting rate of 

MetaFunPrimer 

primers 

 

 

1 [AAB38709] 20 3 3 (15.00%) 5 19 (95.00%)  

3 [SEF68642] 285 7 55 (19.30%) 33 273 (95.79%)  

4 [KIO48008] 320 14 255 (79.69%) 26 304 (95.00%)  

5 [AAC25057] 65 11 30 (46.15%) 12 53 (81.54%)  

6 [AAL86637] 5 - - 2 3 (60.00%)  

7 [AAL86638] 11 2 10 (90.91%) 2 11 (100.00%)  

28 [ABM54175] 2 - - 2 2 (100.00%)  

29 [ADZ75349] 8 2 3 (37.50%) 3 7 (87.50%)  

52 [AFL48355] 2 - - 2 2 (100.00%)  

58 [ADZ75355] 2 - - 1 2 (100.00%)  

Total 720 20 356 (49.44%) 78 676 (93.89%)  

Primer pairs that target genes in each cluster are described in Table S5 in supplementary materials.   

 379 

  380 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.07.01.183509doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.01.183509
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

FIGURES 381 

 382 

Fig. 1 Overview summarizing the MetaFunPrimer pipeline for gene primer design based guided by inputs of reference genes and 383 
metagenomes.  384 
 385 
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 387 

Fig. 2 The selection of the appropriate number of genes for designing gene primers can be reduced by clustering sequences by 388 
protein similarity. A total of 60 clusters were selected based on 96% amino acid similarity of amoA-AOB genes (indicated by red 389 
point). Clusters were found using CD-HIT with word size 5 for each of the similarity thresholds indicated.   390 
 391 
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 393 

Fig. 3 Known amoA-AOB genes ranked by representation score (R-score; the mean of the scaled abundance and prevalence) and 394 
the estimated cumulative abundance of each gene in 1,550 soil metagenomes. The protein sequences in red indicate those amoA-395 
AOB gene clusters and their associated genes that were selected for primer design based on cumulative R-score in reference 396 
metagenomes. 397 
 398 
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