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Abstract 25 
 26 
Background: Skeletal muscle accounts for the largest proportion of human body mass, on 27 
average, and is a key tissue in complex diseases, mobility, and quality of life. It is composed of 28 
several different cell and muscle fiber types.  29 
Results: Here, we optimize single-nucleus ATAC-seq (snATAC-seq) to map skeletal muscle cell-30 
specific chromatin accessibility landscapes in frozen human and rat samples, and single-nucleus 31 
RNA-seq (snRNA-seq) to map cell-specific transcriptomes in human. We capture type I and type 32 
II muscle fiber signatures, which are generally missed by existing single-cell RNA-seq methods. 33 
We perform cross-modality and cross-species integrative analyses on 30,531 nuclei, representing 34 
11 libraries, profiled in this study, and identify seven distinct cell types ranging in abundance from 35 
63% (type II fibers) to 0.9% (muscle satellite cells) of all nuclei. We introduce a regression-based 36 
approach to infer cell types by comparing transcription start site-distal ATAC-seq peaks to 37 
reference enhancer maps and show consistency with RNA-based marker gene cell type 38 
assignments. We find heterogeneity in enrichment of genetic variants linked to complex 39 
phenotypes from the UK Biobank and diabetes genome wide association studies in cell-specific 40 
ATAC-seq peaks, with the most striking enrichment patterns in muscle mesenchymal stem cells 41 
(~3% of nuclei). Finally, we overlay these chromatin accessibility maps on GWAS data to 42 
nominate causal cell types, SNPs, and transcription factor motifs for creatinine levels and type 2 43 
diabetes signals. 44 
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Conclusions: These chromatin accessibility profiles for human and rat skeletal muscle cell types 45 
are a useful resource for investigating specific cell types and nominating causal GWAS SNPs and 46 
cell types.   47 
 48 
 49 
Background 50 
 51 
Skeletal muscle tissue accounts for 30-40% of body mass, which is the largest tissue, on average, 52 
in adult humans and is central to basic quality of life and complex diseases (1,2). Like other 53 
tissues, skeletal muscle is composed of a mixture of different cell types. Most of the tissue is 54 
composed of muscle fibers, which may be categorized into different fiber types, each of which 55 
display distinct metabolic and molecular phenotypes. The proportion of muscle fibers accounted 56 
for by each fiber type varies across individuals (3). Muscle-related diseases may differentially 57 
impact different fiber types, and fiber type proportions are associated with complex phenotypes, 58 
including aerobic and anaerobic exercise capacity and type 2 diabetes (T2D) status (4). Muscle 59 
satellite cells are progenitors to muscle fibers, indispensable for the generation and regeneration 60 
of muscle (5); these cells are present in skeletal muscle tissue, as are several other cell types, 61 
such as mesenchymal stem cells, that cooperate in muscle regeneration (6,7). Molecular 62 
associations with skeletal muscle tissue/muscle fiber characteristics and muscle-related complex 63 
diseases could be mediated in part by these stem cell-like populations; for example a genetic 64 
variant that alters the developmental of a satellite cell could carry important implications for later 65 
muscle function, just as some T2D-associated variants are proposed to impact pancreatic/beta 66 
cell development rather than the function of mature beta cells (8,9) and facial morphology 67 
associated variants may act through progenitor cell populations (10). Immune cells infiltrate 68 
muscle tissue and communicate with muscle cells as well, playing a particularly important role 69 
following injury (11). Profiling the transcriptomic and epigenomic landscapes of these cell types 70 
and muscle fiber types may therefore contribute to our understanding of the biology of muscle 71 
development and muscle-related complex traits. 72 
 73 
Bulk profiling of skeletal muscle tissue ignores this heterogeneity and is dominated by the most 74 
common cell types (muscle fibers), but single-cell/-nucleus methods overcome this and allow 75 
profiling of the constituent cell types. In the case of skeletal muscle, the distinction between single-76 
nucleus and single-cell profiling is particularly important as (1) skeletal muscle fibers have an 77 
elongated shape that may make them difficult to capture in single-cell suspensions, and (2) 78 
muscle fibers are multinucleated, meaning that a single-cell measurement will capture the output 79 
of many nuclei. Previous single-cell RNA-seq studies of human (12–14), mouse (15–20), and pig 80 
(21) skeletal muscle tissue either capture no muscle fiber nuclei or capture them in 81 
unrepresentative proportions. Bulk analysis of pooled, dissected muscle fibers have generated 82 
fiber-type specific transcriptional profiles (22–25) and analysis of specific isolated muscle resident 83 
cell populations (26–28) have generated insights into targeted cell subpopulations but these 84 
studies are necessarily biased towards specific cell types. To date no single nucleus ATAC-seq 85 
(snATAC-seq) studies of whole human or rat skeletal muscle tissue samples has been performed. 86 
 87 
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Here, we employ single-nucleus RNA-sequencing (snRNA-seq) and ATAC-seq (snATAC-seq) on 88 
the 10X Genomics platform to profile gene expression and chromatin accessibility of frozen 89 
skeletal muscle cell populations in human and rat. First we examine the influence of fluorescence 90 
activated nucleus sorting (FANS) and nucleus loading concentration on the performance of the 91 
platform. Next, we perform joint clustering of the snRNA-seq and snATAC-seq libraries to 92 
determine the cell types detected in skeletal muscle tissue samples and map their respective 93 
transcriptomes and chromatin landscapes. We then integrate the resulting genomic maps with 94 
UK Biobank and T2D-related GWAS results to explore the relationship between these cell types 95 
and a broad range of human phenotypes and diseases and nominate causal SNPs at several 96 
genomic loci. 97 
 98 
 99 
Results 100 
 101 
FANS negatively impacts 10X snATAC-seq results 102 
 103 
Before being loaded onto the 10X platform, nuclei must be isolated from the samples of interest. 104 
This process involves cell lysis, which produces viable nuclei as well as substantial cellular debris 105 
and dead nuclei, some of which inevitably remains in the final nuclei suspension. By staining the 106 
DNA in live nuclei and using FANS to selectively filter the suspension for stained entities, one 107 
should be able to remove dead nuclei and cellular debris in the suspension, improving the purity 108 
and quality of the suspension loaded onto the 10X platform. However, the FANS process could 109 
stress the nuclei or otherwise alter the snRNA-seq and snATAC-seq results. Comparing quality 110 
control metrics and (in the case of snRNA-seq) aggregate gene expression or (in the case of 111 
snATAC-seq) aggregate ATAC-seq peaks/signal between snRNA-seq and snATAC-seq libraries 112 
generated from nuclei that either did or did not undergo FANS allows one to detect substantial 113 
changes that FANS may introduce. Also, because the aggregate of reads from a snATAC-seq 114 
library should resemble the profile of an ATAC-seq library on the same biological sample, one 115 
can generate bulk and single-nucleus libraries from a single sample and compare quality control 116 
metrics and ATAC-seq signal between them. Therefore, to determine the effect of FANS on 10X 117 
snRNA-seq and snATAC-seq results, we performed three nuclear isolations from a single human 118 
muscle sample, mixed the resulting nuclei together, and performed FANS (using DRAQ7 staining) 119 
on one half of the suspension (Fig. 1A). The FANS and non-FANS suspensions were then each 120 
used to produce two replicate snATAC-seq and two replicate snRNA-seq libraries, resulting in 121 
eight total libraries (four snATAC and four snRNA). We also generated two independent bulk 122 
ATAC-seq libraries from the same biological sample, allowing us to compare snATAC-seq 123 
profiles, with and without FANS, to a comparable bulk ATAC-seq profile. 124 
 125 
First we examined the four snATAC-seq libraries, comparing the aggregate signal for each library 126 
to bulk ATAC-seq libraries from the same biological sample. We called peaks for the four libraries 127 
and ran the ataqv quality control software package (29) on the aggregated data to examine the 128 
overall transcription start site (TSS) enrichment and fragment length distributions. The fragment 129 
length distributions for each library resembled the expected stereotypical ATAC-seq fragment 130 
length distribution, showing an abundance of short fragments as well as mononucleosomal 131 
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fragments (Fig. 1B) (Buenrostro et al., 2013); however, the TSS enrichment was lower in the 132 
FANS libraries (Fig. 1C), indicating the FANS libraries had a lower signal to noise ratio. This 133 
difference in signal-to-noise ratio is demonstrated when visualizing the ATAC-seq signal at 134 
genomic regions active in muscle, such as the ANK1 locus (Fig. 1D) (30). We additionally 135 
overlapped TSS-distal ATAC-seq peaks from each of the libraries with existing chromatin states 136 
from diverse tissues and cell types (31) and found that the peaks from the non-FANS libraries 137 
showed considerable overlap with skeletal muscle enhancers, while the peaks from the FANS 138 
libraries showed poor overlap (Fig. S1). ATAC-seq signal across FANS libraries showed poor 139 
correlation with the two bulk ATAC-seq libraries from the same sample (Fig. S2). We therefore 140 
concluded that FANS has a clear negative impact on 10X snATAC-seq results. 141 
  142 
Next we examined the four snRNA-seq libraries. All four libraries showed high correlation, 143 
indicating that FANS does not substantially alter snRNA-seq results, at least at the pseudobulk 144 
gene expression level (Fig. 1E). In order to determine if FANS altered the yield of quality nuclei, 145 
we used read counts and mitochondrial contamination to select quality nuclei from each library, 146 
additionally removing doublets using doubletfinder (Fig. S3) (32). We found that FANS 147 
substantially increased the number of quality nuclei obtained (2,004 and 2,078 for non-FANS 148 
libraries; 7,715 and 7,118 for FANS libraries). We therefore concluded that FANS has little effect 149 
on pseudobulk gene expression measurements, but may alter nucleus yield. 150 
 151 
 152 
snATAC-seq and snRNA-seq results are robust to nucleus loading concentrations 153 
 154 
The concentration at which nuclei are loaded onto the 10X platform is an important parameter 155 
affecting data quality and the number of nuclei available for downstream analysis. Increasing the 156 
loading concentration increases the maximum number of nuclei from which data can be obtained; 157 
however, it also increases the probability that multiple nuclei end up with the same gel bead, 158 
thereby increasing the doublet rate. Balancing these outcomes is important to maximize the 159 
amount of quality data and number of nuclei available for downstream analysis. To evaluate the 160 
effect of increasing the number of nuclei loaded onto the platform, we performed a separate 161 
experiment in which we isolated nuclei from two muscle samples, mixed them together, and then 162 
loaded either 20k or 40k nuclei (as quantified by a Countess II FL Automated Cell Counter) into 163 
a 10X well for snRNA-seq and for snATAC-seq (Fig. 1F). We also generated two independent 164 
bulk ATAC-seq libraries from the biological sample for which bulk ATAC-seq profiles were not 165 
already available, allowing us to compare snATAC-seq profiles to comparable bulk ATAC-seq 166 
profiles. 167 
 168 
The snATAC-seq libraries displayed the expected fragment length distributions and comparable 169 
TSS enrichments (Fig. 1G, H). We examined the aggregate signal of the snATAC-seq libraries 170 
next to bulk ATAC-seq libraries from the same samples and confirmed that both libraries showed 171 
strong signal, comparable to that of bulk data (Fig. 1I). Overlap between TSS-distal ATAC-seq 172 
peaks called on both libraries and chromatin states were likewise similar, showing relatively high 173 
overlap with skeletal muscle enhancers (Fig. S4), and the ATAC-seq signal in the libraries 174 
correlated with bulk ATAC-seq signal to an extent comparable to the correlation between two bulk 175 
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ATAC-seq libraries (Fig. S5). After selecting quality nuclei (Fig. S6), we found that the higher 176 
loading concentration yielded 2,035 nuclei while the lower concentration yielded 855 nuclei (after 177 
doublet removal). 178 
 179 
Correlation between the snRNA-seq libraries was high, indicating that the loading concentration 180 
could be changed substantially without compromising data quality (Fig. 1J). We again found the 181 
higher loading concentration yielded more quality nuclei than the lower concentration (3,839 vs 182 
2,118; Fig. S7) after doublet removal. 183 
 184 
10X guidelines recommend loading up to 15k nuclei into a well; however, our results indicate that 185 
exceeding this loading concentration can still yield quality snATAC-seq results (as measured by 186 
standard quality control metrics relative to bulk ATAC-seq data) and, for both snATAC-seq and 187 
snRNA-seq, increase the number of quality nuclei even after accounting for the increase in 188 
doublet rate. The aggregate gene expression/ATAC-seq signal profile was comparable between 189 
loading concentrations. One caveat to these conclusions is that the actual number of nuclei 190 
loaded into the well may differ from our estimated numbers, as debris in the nuclei preps may 191 
affect the accuracy of the nuclei counts. 192 
 193 
 194 
Joint clustering of human and rat snATAC-seq and snRNA-seq identifies skeletal muscle 195 
cell types 196 
 197 
To determine cell types present in skeletal muscle samples, we selected high-quality ATAC and 198 
RNA nuclei from the FANS/non-FANS libraries and the 20k/40k nuclei libraries generated above 199 
and performed joint clustering. snATAC-seq libraries that underwent FANS were excluded as they 200 
failed to provide quality data. We generated and included a snATAC-seq library containing a mix 201 
of human and rat nuclei (Fig. S8, S9; Tables S1, S2). Information about the biological samples 202 
and post-QC nucleus summary statistics for each library is provided in Table S3. In total we 203 
obtained 24,866 human snRNA-seq (mean UMIs = 7,482), 5,053 human snATAC-seq (mean 204 
fragments = 41,655), and 612 rat snATAC-seq (mean fragments = 60,875) nuclei. We used 205 
integrative nonnegative matrix factorization (iNMF) as implemented in the LIGER (linked inference 206 
of genomic experimental relationships) software package (Welch et al., 2019) to perform joint 207 
clustering on snRNA-seq and snATAC-seq nuclei and identified seven cell type clusters (Fig. 2A). 208 
Nuclei from different modalities, species, and libraries integrated well, indicating that clustering 209 
was not driven by technical factors (Fig. 2B).  210 
 211 
We used marker genes to assign cell types to each cluster (Table S4) and found clear 212 
concordance between human snRNA-seq and snATAC-seq (Fig. 2C, D). We found marker gene 213 
accessibility in the rat snATAC-seq data to be largely consistent with the human data, though 214 
examination of the myosin heavy chain genes, often used to distinguish between different muscle 215 
fiber types, indicated that a considerable number of rat type II muscle fiber nuclei were likely 216 
present in the type I muscle fiber cluster (the opposite did not seem to occur; i.e., the type II 217 
muscle fiber cluster appeared to be relatively free of rat type I muscle fiber nuclei; Fig. S10). This 218 
mixing of some rat muscle fiber nuclei is a limitation of our data; because only 612 of 30,531 219 
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(2.0%) of all nuclei come from rat, the human data drive the clustering. As expected the vast 220 
majority of the profiled nuclei (90.4%) came from muscle fiber (Fig. 2E).  221 
 222 
We sought to independently assess cluster identity without relying on marker gene patterns and 223 
therefore focused on cluster-level TSS-distal ATAC-seq peaks, many of which would not be taken 224 
into account when assigning cell types using marker genes. We developed a logistic regression 225 
approach to score the similarity between these peaks and enhancer chromatin states from 127 226 
Roadmap Epigenomics cell types (Fig. 2F) (31).  We found concordance with the marker gene-227 
based cell type assignment approach (Fig. 2G). Remarkably this approach worked relatively well 228 
in assigning rat nuclei, despite the fact that the number of nuclei per cluster for rat ranged between 229 
six and twenty for the smallest four cell types (Table S5; Fig. 2H). 230 
 231 
The majority of the nuclei were assigned as type I or type II muscle fibers. Genes previously 232 
discovered to be preferentially expressed in type I vs. type II muscle fibers (13) were usually 233 
similarly preferentially expressed in our snRNA-seq data (Fig. S11), validating the quality of the 234 
data and accuracy of muscle fiber type assignments. 235 
 236 
Integration of cell-type-specific ATAC-seq peaks with UK Biobank GWAS reveals cell type 237 
roles in complex phenotypes 238 
 239 
Genetic variants associated with complex traits and disease are frequently located in non-coding 240 
regions of the genome (33–35). Variants associated with a given complex trait are expected to be 241 
enriched specifically in non-coding regulatory elements of the trait-relevant cell types; for 242 
example, T2D-associated genetic variants are enriched in regulatory elements specific to 243 
pancreatic islets and beta cells (34,36–44), and variants associated with autoimmune disorders 244 
are enriched in immune cell-specific regulatory elements (36). Variant enrichment in cell-specific 245 
regulatory elements can therefore be used to determine which cell types are relevant to a given 246 
trait or disease. Variants in high linkage disequilibrium (LD) with trait-influencing SNPs are often 247 
statistically associated with the trait as well, making it difficult to infer the causal SNP through 248 
statistical association alone. Epigenomic data, such as chromatin accessibility in trait-relevant cell 249 
types, can be used to nominate causal genetic variants under the assumption that non-coding 250 
SNPs in accessible regions of the genome are more likely to be causally related to a trait than 251 
non-coding SNPs in inaccessible regions. 252 
 253 
To explore the relationship between complex traits and the cell types present in our data, as well 254 
as demonstrate the value of our muscle cell type chromatin data in narrowing the post-GWAS 255 
search space, we used LD score regression (LDSC) (36,45) to perform a partitioned heritability 256 
analysis using GWAS of 404 heritable traits from the UK Biobank (46) (http://www.nealelab.is/uk-257 
biobank/) and our muscle cell type open chromatin regions (Table S6; see Methods) (36,45). 258 
Results for all traits in which at least one of our cell types showed significant (P < 0.05) enrichment 259 
after Benjamini-Yekutieli correction are displayed in Fig. 3A. Due to the heavy multiple testing 260 
correction burden, relatively few traits meet this threshold. However, we observed immune cell 261 
abundance traits show enrichment for the immune cell cluster, and diastolic blood pressure 262 
GWAS SNPs are enriched in smooth muscle ATAC-seq peaks. In addition, we see that several 263 
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skeletal trait GWAS SNPs are enriched in mesenchymal stem cell peaks. Previous work has 264 
shown a central role of bone mesenchymal stem cells in osteoblast development (47,48). In 265 
addition, SNPs for several corneal traits are also enriched in mesenchymal stem cell peaks, 266 
consistent with previously observed enrichment of corneal thickness GWAS SNPs in 267 
mesenchymal stem cell/connective tissue cell annotations (49). Results using rat peaks projected 268 
into human coordinates largely mirror the human mesenchymal stem cell enrichment findings 269 
(Fig. S12). 270 
 271 
One muscle-related trait included in the UK Biobank is creatinine level. In humans most serum 272 
creatinine is produced by skeletal muscle and is filtered by the kidneys (50). Creatinine levels are 273 
commonly used as a biomarker for kidney function but correlate with muscle mass and have been 274 
used to score sarcopenia (51–53). In our enrichment analysis, the cell type with the highest LDSC 275 
coefficient Z-score was type II muscle fibers (z-score = 2.5; Fig. 3B).  276 
 277 
Integrating the ATAC-seq results with the GWAS summary statistics can help nominate causal 278 
SNPs. One example is the C17orf67 locus in the creatinine GWAS (Fig. 3C). The lead SNP at 279 
this locus (rs227727; p = 5.38e-18) lies in an intergenic region 92 kb from C17orf67 and 104 kb 280 
from NOG. This SNP is in an ATAC-seq peak in several muscle cell types, though the signal is 281 
largest in type II muscle fibers (Fig. 3D). The peak corresponds to an enhancer chromatin state 282 
in muscle, amongst other cell types (31). We used the Probabilistic Identification of Causal SNPs 283 
(PICS) tool (54) to estimate the probability that nearby SNPs were causal given the pattern of 284 
linkage disequilibrium at the locus. PICS assigned the index SNP, rs227727, a probability of 0.766 285 
of being the causal SNP. A tightly linked SNP, rs227731 (R2 = 0.99), had a probability of 0.221; 286 
no other SNPs had probability greater than 0.01. SNP rs227731 is not in an ATAC-seq peak in 287 
any of the muscle cell types we identified nor is it in any of ENCODE’s 1.3 million candidate cis-288 
regulatory elements (55,56) or any of the approximately 3.6 million DNaseI hypersensitive sites 289 
(DHS) annotated in (57), suggesting that the index SNP rs227727 is indeed the causal SNP. A 290 
previous study found that the A allele of rs227727 was associated with higher activity in an allelic 291 
luciferase assay in both human fetal oral epithelial cells (GMSM-K) and murine osteoblastic cells 292 
(MC3T3) (58). To predict allelic effects at this SNP in type II muscle fibers, we trained a gapped-293 
kmer support vector machine model (gkm-SVM) (59,60) to detect kmers associated with 294 
increased or decreased chromatin accessibility using the top ATAC-seq peaks for each of our cell 295 
types and then ran deltaSVM (61) to predict this SNP’s effect on chromatin accessibility. 296 
DeltaSVM predicts a SNP’s effect by comparing the gkm-SVM inferred kmer weights for kmers 297 
created by the reference vs the alt allele; we transformed the deltaSVM score to a z-score based 298 
on the distribution of the predicted impacts of all autosomal 1000 Genomes SNPs (62). The type 299 
II muscle fiber deltaSVM z-score for this SNP was 0.73 (directionally favoring the alt allele, T, 300 
having higher chromatin accessibility, although the z-score is not statistically significant). We also 301 
attempted to interpret how each allele of the SNP affects the gkm-SVM model’s score for the 302 
sequence using the gkmexplain software package, which scores the importance of each base in 303 
a sequence to the gkm-SVM model score for the sequence (63). We ran gkmexplain on the 304 
sequence surrounding the SNP in the presence of either the reference or the alternative allele 305 
and compared the results (Fig. 3E). The change in the gkmexplain importance scores in the 306 
presence of the reference vs alternative allele resembled several known homeodomain TF motifs 307 
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predicted to be disrupted by the reference allele such as that of PITX2, suggesting that the 308 
alternate allele may have directionally (non-significant) greater predicted chromatin accessibility 309 
because it is a better match to these homeodomain TF motifs (Fig. 3E) (64). We note, however, 310 
that the deltaSVM z-score of the SNP as well as the gkmexplain importance scores of the SNP 311 
and surrounding nucleotides are of low magnitude, suggesting that the reference allele may 312 
reduce the binding of PITX2 or another homeodomain TF without such a dramatic effect on local 313 
chromatin accessibility. Biologically, the nearby NOG gene is a particularly compelling candidate 314 
target gene of this regulatory element, as its product (noggin) regulates BMP signaling and is 315 
involved in muscle growth and maintenance (65–70). Integrated with the GWAS summary 316 
statistics and these additional resources, our ATAC-seq data adds to existing evidence that SNP 317 
rs227727 alters the activity of a gene regulatory element and is a prime candidate to impact 318 
creatinine levels. 319 
 320 
 321 
Integration of cell type-specific ATAC-seq peaks with T2D GWAS credible sets nominates 322 
causal cell types, regulatory elements, and SNPs  323 
 324 
It is well-established that T2D GWAS SNPs overlap pancreatic islet/beta cell enhancers 325 
(34,37,38,41,43); however, some SNPs may act through other T2D-relevant tissues, such as 326 
muscle, adipose, or liver. We therefore used LDSC to perform a partitioned heritability analysis 327 
for T2D-associated SNPs (38) in each of the muscle cell types as well as in beta cell ATAC-seq 328 
peaks, adipose ATAC-seq peaks, and liver DNaseI hypersensitive sites (see Methods) (Figs. 4A, 329 
S13A). When modeling each cell type separately (adjusting for the cell type-agnostic LDSC 330 
baseline annotations and common open chromatin regions), we found significant enrichment 331 
(after Bonferroni correction for 40 tests) in type II muscle fibers and beta cells, though when 332 
modeling all cell types in a single joint model only beta cell open chromatin regions showed 333 
significant enrichment (Fig. S13A). We performed a similar analysis on GWAS SNPs for a T2D-334 
related trait, fasting insulin (Figs. 4A, S13A) (71). For fasting insulin, we found significant 335 
enrichment in mesenchymal stem cells, immune cells, and bulk adipose when modeling each cell 336 
type individually, but only adipose showed significant enrichment when modeling all cell types 337 
jointly. For fasting insulin, we note that the small sample size of that GWAS means the analysis 338 
was likely underpowered, leaving open the possibility that other cell types will show significant 339 
enrichment when GWAS with larger sample sizes are available. We also note that the adipose 340 
open chromatin regions are derived from bulk tissue open chromatin profiling; it is therefore 341 
possible that at least some of the signal from adipose is being driven by cell types shared between 342 
our muscle samples and adipose tissue, such as mesenchymal stem cells. This is an area for 343 
further exploration when single-cell/single-nucleus data from adipose is available. 344 
 345 
We performed similar GWAS enrichments using the rat muscle cell type peaks projected into 346 
human coordinates (Fig. 4A, S13B). For T2D we found muscle fiber types and mesenchymal stem 347 
cells were significantly enriched after Bonferroni correction, but as with human muscle cell types 348 
these enrichments did not persist in a joint model with all cell types (Fig S13B). For fasting insulin 349 
no rat muscle cell types showed enrichment after Bonferroni correction. 350 
 351 
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While none of our cell types showed significant enrichment in 10-cell-type models after Bonferroni 352 
correction, it is still possible that some T2D GWAS loci act through muscle cell types or cell types 353 
shared between muscle and other tissues such as adipose. There are a substantial number of 354 
T2D GWAS credible sets that show no overlap with pancreatic islet functional annotations (38). 355 
We therefore overlapped 380 previously-published T2D GWAS signals with 99% genetic credible 356 
set SNPs (38) with our snATAC-seq peaks to nominate SNPs that may be acting through the 357 
muscle cell types, including those that are expected to be shared with adipose (Table S7). 358 
 359 
One locus highlighted by our data is the ITPR2 locus on chromosome 12 (Fig. 4B). This locus 360 
contains 22 credible set SNPs, none with a particularly high posterior probability of association 361 
(PPA) in the DIAMANTE genetic fine-mapping (maximum across all credible set SNPs = 0.06). 362 
Only one SNP (rs7132434; PPA = 0.042) overlaps any of our muscle cell type peak calls (Fig. 363 
4C). This SNP is in a large mesenchymal stem cell ATAC-seq peak, and also overlaps peak calls 364 
in smooth muscle and blood, though the chromatin accessibility signal in those cell types is lower 365 
in our data. The SNP also overlaps a peak call in a subset of adipose and islet samples (Fig. 366 
S14). We found that this SNP had a large deltaSVM z-score in several of the muscle cell types 367 
(absolute z-score = 2.88 in mesenchymal stem cells; the T2D risk allele, A, is predicted to result 368 
in greater chromatin accessibility). We ran gkmexplain on the sequence surrounding the SNP and 369 
found the gkmexplain importance scores for the sequence in the presence of the risk allele 370 
resembled an AP-1 motif (Fig. 4D) (64). A literature search revealed that the element underlying 371 
this SNP has been validated for enhancer activity using a luciferase assay (in the 786-O cell line) 372 
and the risk allele showed preferential binding of the AP-1 transcription factor in an EMSA assay 373 
in the same study and cell line (Bigot et al., 2016), consistent with our findings. We note that this 374 
SNP is also a 95% credible set SNP for waist-hip ratio (one of eight SNPs in the credible set) 375 
(72). We therefore hypothesize that rs7132434 is the causal SNP at this locus, and that it may be 376 
acting through mesenchymal stem cells.  377 
 378 
A second locus highlighted by our data is an intronic locus in the ARL15 gene (Fig 4E). The 379 
DIAMANTE genetic fine-mapping narrowed the list of potentially causal SNPs at this locus to 380 
three (two other, larger DIAMANTE genetic fine-mapping credible sets are also annotated to 381 
ARL15). SNPs in this credible set are statistically associated with fasting insulin (73), and more 382 
broadly variants in or near ARL15 associate with metabolic traits including adiponectin, HDL 383 
cholesterol levels, and BMI (73–75), suggesting that the locus may affect T2D risk not through 384 
islets but through adipose or a related cell type. Interestingly, none of the SNPs overlap with any 385 
of ENCODE’s 1.3 million candidate cis-regulatory elements (55,56) or any of the approximately 386 
3.6 million DNaseI hypersensitive sites (DHS) annotated in (57); however, in our data we find that 387 
one of the SNPs (rs702634) is in the center of a mesenchymal stem cell specific ATAC-seq peak 388 
(Fig. 4F), and a mesenchymal stem cell peak is likewise present in the corresponding position in 389 
the rat genome (Fig. 4G), indicating that this is a regulatory element that has been conserved 390 
across species. The DIAMANTE genetic fine-mapping assigned this SNP a probability of 0.48 of 391 
being the causal SNP at this locus, higher than either of the other two SNPs (0.33 and 0.19, 392 
respectively). We examined publicly-available beta cell (n = 1), islet (n = 10) (41), and adipose (n 393 
= 3) (76) ATAC-seq data to see if hints of this peak are present in these T2D-relevant cell types. 394 
No convincing signal appears to be present in beta cell or islet data; a weak increase in signal at 395 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.07.01.183004doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.01.183004
http://creativecommons.org/licenses/by/4.0/


that SNP is evident in the adipose samples and a peak is called (Fig. S15). As mesenchymal 396 
stem cells are one component of adipose tissue, it is possible that the weak signal in adipose is 397 
due to mesenchymal stem cell populations within adipose; this is one area for follow-up when 398 
adipose single-nucleus ATAC-seq data is available. The absolute deltaSVM z-score in 399 
mesenchymal stem cells for this SNP was 0.48, indicating it does not have a large impact on 400 
predicted chromatin accessibility; however, the risk allele is predicted to disrupt a MEF2 motif 401 
(64,77), and we found the change in gkmexplain importance scores between the reference and 402 
alternative allele showed similarity to this motif (Fig. 4H). This data is consistent with a model in 403 
which rs702634 is the causal SNP and acts through mesenchymal stem cells. 404 
 405 
  406 
Discussion 407 
 408 
Here we present snATAC-seq and snRNA-seq for human skeletal muscle and snATAC-seq for 409 
rat skeletal muscle, which we use to map the transcriptomes and chromatin accessibility of cell 410 
types present in skeletal muscle samples. The cell types identified are consistent with known 411 
biology and with previous studies of human (13) and mouse (16,17,20) skeletal muscle tissue. 412 
However, our use of single-nucleus rather than single-cell techniques allows us to capture muscle 413 
fiber nuclei, cell types missing from previously published snRNA-seq datasets. To our knowledge 414 
this is the first published snATAC-seq dataset for human and rat skeletal muscle tissue. We 415 
therefore anticipate that this dataset will be useful in nominating causal GWAS SNPs and 416 
demonstrate this by integrating the data with UK Biobank and previously published T2D GWAS 417 
credible sets, highlighting potentially causal SNPs at the NOG, ARL15, and ITPR2 loci. 418 
 419 
Additionally, we explore the effect of two technical parameters on snRNA-seq and snATAC-seq 420 
results. First, we find that FANS (using DRAQ7 staining) substantially alters snATAC-seq results. 421 
Though the stereotypical ATAC-seq fragment length distribution is observed, signal-to-noise (as 422 
measured by TSS enrichment and fraction of reads in peaks, as well as by visual inspection) 423 
appears to decrease substantially relative to non-FANS libraries. We note that the effect of FANS 424 
(nucleus sorting) may differ from that of FACS (cell sorting). snRNA-seq results appear to be 425 
substantially less sensitive to FANS -- the pseudobulk gene expression from FANS libraries 426 
correlates strongly with that from non-FANS libraries -- suggesting that chromatin is more 427 
sensitive to FANS than is RNA. We also observed higher nucleus yield in our FANS snRNA-seq 428 
libraries than our non-FANS libraries. There are several potential explanations for this. One is that 429 
the nuclei counting step that necessarily precedes loading of the 10X platform may be sensitive 430 
to debris. If greater amounts of debris are observed in non-FANS libraries, nucleus concentration 431 
may be systematically overestimated in non-FANS libraries, resulting in more nuclei actually being 432 
loaded onto the 10X platform from FANS libraries. While not mutually exclusive, FANS may also 433 
decrease the amount of debris being loaded into the 10X platform, and thereby improve nucleus 434 
capture. 435 
 436 
We found snATAC-seq and snRNA-seq results were remarkably consistent at different loading 437 
concentrations. One clear caveat is that this may change as the loading concentration is further 438 
reduced or increased. It is also important to note that the actual number of nuclei loaded may 439 
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differ from the estimated 20k or 40k nuclei. As discussed above, it is possible that debris in the 440 
input preparation makes nucleus counting less accurate, in which case our cited values may not 441 
reflect the true values. However, because the same nuclear preparation was used as input for the 442 
20k and 40k nuclei libraries, the two-fold difference in loading concentration should be reliable, 443 
even if the absolute values are skewed. 444 
 445 
The GWAS enrichments presented here will be one interesting area to follow up on as more 446 
snATAC-seq data is published. Interpretation of the results is complicated by the fact that many 447 
tissues share cell types. For example, mesenchymal stem cell-like populations exist in many 448 
tissues besides muscle, such as adipose tissue and bone marrow. Taking the fasting insulin 449 
enrichments as an example, we found that the enrichment of GWAS SNPs in muscle cell type 450 
ATAC-seq peaks disappeared when adipose tissue was included in the enrichment model. 451 
However, it is possible that the adipose enrichment is being driven in part by mesenchymal stem 452 
cell populations within adipose itself. Direct comparison of snATAC-seq and snRNA-seq profiles 453 
from mesenchymal stem cells from a wider array of tissues will help tease apart commonalities 454 
and tissue-specific differences in this interesting population. 455 
 456 
 457 
 458 
Methods 459 
 460 
Reproducibility of computational analyses 461 
 462 
Code used for analyses in this manuscript are available at https://github.com/ParkerLab/2020-sn-463 
muscle. 464 
 465 
 466 
snATAC-seq and snRNA-seq, FANS vs no FANS experiment 467 
Three separate pieces of tissue were cut from a single human skeletal muscle sample (weighing 468 
60mg, 50mg and 50mg; sample HSM1, quadriceps femoris muscle group). Nuclei were isolated 469 
using a modified version of the ENCODE protocol (protocol S1) (56,56), customized from Step 5 470 
onwards to accommodate FANS (Fluorescence assisted nuclei sorting). In step 5, the nuclei were 471 
resuspended in 700 µL of Sort buffer (1% BSA, 1mM EDTA in PBS) and filtered through a 30 µm 472 
filter. Three different nuclei isolations were performed and the nuclei suspended in sort buffer 473 
were mixed, pooled together and divided into two groups, one with FANS and one without FANS. 474 
FANS nuclei were sorted according to the previously published FANS protocol using DRAQ7 (78). 475 
DRAQ7 (0.3mM from Cell Signaling Technology) was added to the FANS nuclei suspension, at 476 
100 fold dilution to get a final concentration of 3 μM. Nuclei were gently mixed and incubated for 477 
10 minutes on ice. Nuclei were analyzed in the presence of DRAQ7 and sorted for high DRAQ7 478 
positive signal using Beckman Coulter’s Astrios MoFlo. We followed the gating strategy outlined 479 
in the FANS protocol (Preissl et al, 2018). The sorted nuclei were collected in a recovery buffer 480 
(5% BSA in PBS). The nuclei with and without FANS were spun at 1000g for 15 min at 4°C. The 481 
nuclei were resuspended in 100 µL of 1X diluted nuclei buffer and counted in the Countess II FL 482 
Automated Cell Counter. The appropriate amount of nuclei were split for snRNA-seq and spun 483 
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down at 500g for 10 min at 4°C and resuspended in RNA nuclei buffer (1%BSA+PBS in 0.2U 484 
RNAse inhibitor). The nuclei at appropriate concentration for snATAC-seq and snRNA-seq were 485 
submitted to the Advanced Genomics core for all the snATAC-seq and snRNA-seq processing on 486 
the 10X Genomics Chromium platform (v. 3.1 chemistry for snRNA-seq). For each modality nuclei 487 
were loaded at 15.4K nuclei/well. 488 
 489 
snATAC-seq and snRNA-seq, loading 20k or 40k nuclei 490 
Two pieces of tissue (weighing 85.3 mg and 85.8 mg) were cut from one human skeletal muscle 491 
sample (HSM1) and two tissue pieces (weighing 95.9 mg and 92.6 mg) were cut from a second 492 
human skeletal muscle sample (HSM2; quadriceps femoris muscle group). Each of the samples 493 
was cut on dry ice using a frozen scalpel to prevent thawing. The samples were pulverized using 494 
a CP02 cryoPREP automated dry pulverizer (Covaris 500001). We developed a customized 495 
protocol (protocol S2) derived from the previously published ENCODE protocol (56,56) and used 496 
it to isolate nuclei, which is compatible with both snATAC-seq and snRNA-seq. All four pulverized 497 
tissues pieces were mixed and redistributed to perform four different nuclei isolations. The desired 498 
concentration of nuclei was achieved by resuspending the appropriate number of nuclei in 1X 499 
diluted nuclei buffer for snATAC-seq and RNA nuclei buffer (1% BSA in PBS containing  0.2U/uL 500 
of RNAse inhibitor) for snRNA-seq. The nuclei at appropriate concentration for snATAC-seq and 501 
snRNA-seq were submitted to the Advanced Genomics core for all the snATAC-seq and snRNA-502 
seq processing on the 10X Genomics Chromium platform (v. 3.1 chemistry for snRNA-seq). For 503 
each modality nuclei were loaded at two different concentrations, 20K nuclei/well and 40K 504 
nuclei/well. 505 
 506 
snATAC-seq, human and rat mixed library 507 
Tissue from human (49mg of pulverized human skeletal muscle; sample HSM1) and rat (45mg of 508 
pulverized gastrocnemius samples) were used in this single nuclei ATAC experiment. We used 509 
the previously published ENCODE protocol (protocol S1) (56,56) to isolate nuclei, which is 510 
compatible with both snATAC-seq and snRNA-seq. After isolating nuclei from each sample 511 
(species) individually, the nuclei were mixed in equal proportions. The desired concentration of 512 
nuclei was achieved by resuspending the appropriate number of nuclei in 1X diluted nuclei buffer 513 
for snATAC-seq. The nuclei at the appropriate concentration for snATAC were submitted to the 514 
Advanced Genomics core for all the snATAC-seq processing on the 10X Genomics Chromium 515 
platform. 15.4K nuclei were loaded into a single well. 516 
 517 
Bulk ATAC-seq 518 
2 tissue pieces weighing 99.4 mg and 80.7 mg were cut from one human skeletal muscle sample 519 
(HSM1) and 2 pieces weighing 67.6 mg and 103.5 mg were cut from a second human skeletal 520 
muscle sample (HSM2). Each of the samples was cut on dry ice using frozen scalpel to prevent 521 
thawing. The samples were pulverized using a CP02 cryoPREP automated dry pulverizer 522 
(Covaris 500001). For bulk ATAC seq we followed the nuclei isolation protocol outlined in protocol 523 
S2, except in the final step the nuclei were resuspended in 250 μL of 1% BSA. The nuclei were 524 
counted in  Countess II FL Automated Cell Counter, and the appropriate volume of the suspension 525 
for 50K nuclei was spun down and used for the downstream transposition reaction (a modified 526 
version of the ENCODE protocol; protocol S3) (56,56). 527 
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 528 
Processing of muscle bulk ATAC-seq data 529 
Adapters were trimmed using cta (v. 0.1.2; https://github.com/ParkerLab/cta). Reads were 530 
mapped to hg19 using bwa mem (-I 200,200,5000 -M; v. 0.7.15-r1140) (79). Duplicates were 531 
marked using picard MarkDuplicates (v. 2.21.3; https://broadinstitute.github.io/picard/). We used 532 
samtools to filter to high-quality, properly-paired autosomal read pairs (-f 3 -F 4 -F 8 -F 256 -F 533 
1024 -F 2048 -q 30; v. 1.9 using htslib v. 1.9) (80). To call peaks, we used bedtools bamtobed to 534 
convert to a bed file (v. 2.27.1)  and then used that file as input to MACS2 callpeak (--nomodel --535 
shift -100 --seed 762873 --extsize 200 --broad --keep-dup all --SPMR; v. 2.1.1.20160309) (81,82). 536 
To visualize the signal, we converted the bedgraph files output by MACS2 to bigwig files using 537 
bedGraphToBigWig (v. 4) (83). 538 
 539 
Processing of snATAC-seq data 540 
Adapters were trimmed using cta. We used a custom python script (available in the GitHub repo) 541 
for barcode correction. Barcodes were corrected in a similar manner as in the 10X Genomics Cell 542 
Ranger ATAC v. 1.0 software. In brief, barcodes were checked against the 10X Genomics 543 
whitelist. If a barcode was not on the whitelist, then we found all whitelisted barcodes within a 544 
hamming distance of two from the bad barcode. For each of these whitelisted barcodes, we 545 
calculated the probability that the bad barcode should be assigned to the whitelisted barcode 546 
using the phred scores of the mismatched base(s) and the prior probability of a read coming from 547 
the whitelisted barcode (based on the whitelisted barcode’s abundance in the rest of the data). If 548 
there was at least a 97.5% chance that the bad barcode was derived from one specific whitelisted 549 
barcode, it was corrected to the whitelisted barcode.  550 
 551 
Reads were mapped using bwa mem with flags ‘-I 200,200,5000 -M’. We used Picard 552 
MarkDuplicates to mark duplicates, and filtered to high-quality, non-duplicate autosomal read 553 
pairs using samtools view with flags ‘-f 3 -F 4 -F 8 -F 256 -F 1024 -F 2048 -q 30’. Quality control 554 
metrics were gathered on a per-nucleus basis using ataqv (v. 1.1.1) on the bam file with duplicates 555 
marked. In the case of the mixed rat and human snATAC-seq library, all reads were mapped to 556 
the hg19 and rn6 genomes separately, and then a nucleus was assigned as either rat or human 557 
by counting the number of high-quality, non-duplicate autosomal reads after mapping to either 558 
genome. If at least three times as many high-quality reads were present after mapping to one 559 
genome than to the other, the nucleus was assigned to either the rat or human sample as 560 
appropriate. In the case that fewer than three times as many high-quality reads mapped to one 561 
genome as to the other, the nucleus was not assigned to either species and was dropped. 562 
 563 
For the two snATAC-seq libraries that contained a mix of nuclei from the two human individuals, 564 
we assigned nuclei to biological samples (and determined doublets) using demuxlet (84) with 565 
SNP calls from the bulk ATAC-seq libraries. To call SNPs on the bulk ATAC-seq bam files, we 566 
first merged the two bulk technical replicate ATAC-seq bam files for each individual, then filtered 567 
out reads with edit distance > 2 from the hg19 reference. Used samtools mpileup (-R -Q 20 -d 568 
10000 -E) on these two bam files as input to bcftools call (-v -f GQ; v. 1.9). We then used bcftools 569 
filter to filter to those positions where both individuals had genotype quality (GQ) > 90. This VCF 570 
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file was used as input to demuxlet (option ‘--field PL’; git commit b7453fc, modified as described 571 
in GitHub issue #15). 572 
 573 
When comparing aggregate snATAC-seq signal to bulk ATAC-seq signal (Fig. 1), we eliminated 574 
sequencing reads corresponding to nucleus barcodes that couldn’t be matched to the 10X 575 
barcode whitelist, but otherwise processed it as bulk ATAC-seq data (i.e., marking duplicates 576 
ignoring cell-level information, and not filtering to quality nuclei). 577 
 578 
To select quality nuclei from each library, we selected nuclei (barcodes) meeting the thresholds 579 
in Table S1. In addition to setting a threshold for minimum fragments (to filter out barcodes that 580 
only capture ambient DNA fragments), we set a threshold for maximum fragments, because 581 
barcodes with very high fragment counts may be enriched for doublets (41). We also set a 582 
threshold for minimum TSS enrichment (because ATAC-seq signal for healthy nuclei is expected 583 
to be enriched near TSS (41,85,86)), and we filtered out barcodes that showed an unexpectedly 584 
large fraction of reads coming from a single autosome (see (29)). 585 
 586 
Processing of snRNA-seq data 587 
snRNA-seq data was processed using starSOLO (STAR v. 2.7.3a), which outputs the count 588 
matrices needed for most of the analyses (87). To select quality nuclei from each library, we 589 
selected nuclei meeting the thresholds in Table S2 (we set a threshold for minimum UMIs to filter 590 
out barcodes that only capture ambient RNA; a threshold for maximum fragments, since barcodes 591 
with very high UMI counts may be enriched for doublets; and a threshold for maximum 592 
mitochondrial contamination, since barcodes with quality nuclei and low ambient RNA should 593 
show reduced mitochondrial contamination (88)). We used souporcell (as contained in the 594 
Singularity container downloaded from the souporcell GitHub on Dec. 10, 2019, and setting -k 2) 595 
to detect doublets in the libraries that were a mix of nuclei from two human individuals (89). We 596 
additionally ran doubletfinder (v. 2.0.2) (32) on each of the snRNA-seq libraries, and removed any 597 
nuclei that were called as a doublet by either souporcell or doubletfinder. When running Seurat 598 
(v. 3.0.2) for doubletfinder, we set selection.method = "vst" and nfeatures = 2000, and used the 599 
top 20 PCs to find neighbors and resolution = 0.8 to find clusters (90,91). When calling the 600 
doubletFinder_v3 function, we selected the doubletfinder pK based on the maximum ‘BCmetric’ 601 
after running the paramSweep_v3 function, set nExp assuming a 7.5% doublet rate (adjusting for 602 
the homotypic proportion as in the doubletfinder documentation example), and used the top 20 603 
PCs. 604 
 605 
Clustering with LIGER 606 
Nuclei were clustered using LIGER (v. 0.4.2; with R v. 3.5.1 and Seurat v. 2.3.0) (90–92). For 607 
snATAC-seq libraries, per-gene scores were computed by calculating the number of reads 608 
overlapping with each gene’s promoter/gene body using bedtools intersect. Gene promoter/body 609 
were calculated based on NCBI annotation GTF files (NCBI Rattus norvegicus Annotation 610 
Release 106 and Homo sapiens Updated Annotation Release 105.20190906), filtered to include 611 
only protein-coding/lncRNA genes with source ‘BestRefSeq’/BestRefSeq%2CGnomon’/’Curated 612 
Genomic’. Genes assigned to multiple chromosomes/strands were excluded, and then the 613 
regions for each gene were merged to get the gene body. Promoters were taken as the 3kb 614 
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upstream of the TSS; after this, genes represented by multiple non-contiguous genomic stretches 615 
were excluded. For input to LIGER, all count matrices for a given modality and biological sample 616 
were concatenated together, so that there was 1 rat snATAC matrix, 2 human snATAC matrices, 617 
and 2 human snRNA matrices. For factorization, we used k = 15, lambda = 5, and nrep=5, using 618 
the smaller human snRNA matrix to select variable genes (as all the nuclei for that matrix were 619 
processed on a single day, and should therefore reflect less technical variation). For each of the 620 
downstream steps we dropped factors 3 and 5, as these had highly-loading ribosomal genes or 621 
showed relatively high specificity for one of the two omics modalities. For normalization, we set 622 
knnk (and small.clust.thresh) to 10 and resolution to 0.05, and centered the data. For the UMAP, 623 
we used n_neighbors = 15. We then called the clusterLouvainJaccard function to re-cluster cells 624 
using the normalized factors, with k = 17, and resolution = 0.05. 625 
 626 
 627 
Per-cluster processing of snATAC-seq data 628 
The filtered reads from all snATAC-seq nuclei in each cluster were merged using samtools merge. 629 
Peaks were called and bigwig files produced as described for the bulk ATAC-seq data. Peak files 630 
were filtered against blacklist files available from 631 
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncode632 
DacMapabilityConsensusExcludable.bed.gz and 633 
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncode634 
DukeMapabilityRegionsExcludable.bed.gz  (hg19) (56)  and 635 
https://github.com/shwetaramdas/maskfiles/tree/master/rataccessibleregionsmaskfiles/strains_i636 
ntersect.bed for rn6 (93). 637 
 638 
For analysis of rat peak overlap with human GWAS data, rat peaks were projected into the human 639 
genome using bnMapper (v. 0.8.6) and the chain file at 640 
http://hgdownload.cse.ucsc.edu/goldenpath/rn6/liftOver/rn6ToHg19.over.chain.gz. 641 
 642 
 643 
Roadmap enhancer regression 644 
We called peaks on the aggregate of the nuclei in each cluster, and then took the union of peaks 645 
across all clusters to generate a master peak list. We then used logistic regression to model, for 646 
each cluster and each Roadmap Epigenomics cell type in the Roadmap 15-state chromHMM 647 
model, the accessibility of each TSS-distal master peak (> 5kb from a RefSeq TSS) in that cluster 648 
as a function of the posterior probability that that master peak is an enhancer in that Roadmap 649 
cell type according to the Roadmap chromHMM model (31). Since the posteriors are given in 200 650 
bp windows, and there are also 3 different enhancer states (‘Genic enhancers’, ‘Enhancers’, and 651 
‘Bivalent Enhancer’), multiple windows overlap with each master peak -- the posterior for the 652 
master peak is therefore taken as the maximum of the 200 bp window posteriors, across all 3 of 653 
the enhancer states. The model coefficient was used as the (unnormalized) score for that 654 
Roadmap cell type in that cluster, and the normalized score was simply the score for that 655 
Roadmap cell type in that cluster divided by the max score across all cell types for that cluster. 656 
 657 
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For rat peaks, in addition to removing master peaks near TSS in rat coordinates, we additionally 658 
removed master peaks that were within 5 kb of a TSS after projecting into human coordinates. 659 
 660 
 661 
Non-muscle cell type open chromatin annotations used in GWAS 662 
To create the adipose open chromatin regions, we processed the three adipose ATAC-seq 663 
libraries from (76). Adapter sequences were removed using Cutadapt (v. 1.12) (94) before 664 
mapping to hg19 with bwa mem (-I 200,200,5000 -M). Duplicates were marked using picard 665 
MarkDuplicates and BAM files were filtered using samtools view (-F 4 -F 256 -F 1024 -F 2048 -q 666 
30) before converting to BED format (bamtools bamtobed) and calling peaks with MACS2 (--667 
nomodel --shift -100 --seed 2018 --extsize 200 --broad --keep-dup all --SPMR). We then took the 668 
union of peaks across the three samples, keeping those merged peaks that appeared in at least 669 
two samples. 670 
 671 
The beta cell ATAC-seq peaks were taken from (41). We used the peaks called using all beta cell 672 
nuclei. 673 
 674 
Common open chromatin regions were derived from the DNaseI hypersensitive sites from (57). 675 
The DHS index from Meuleman et al. was downloaded from 676 
https://www.meuleman.org/DHS_Index_and_Vocabulary_hg38_WM20190703.txt.gz on March 677 
21, 2020. We lifted open chromatin regions from hg38 to hg19 using liftOver with the chain file 678 
from http://hgdownload.cse.ucsc.edu/goldenpath/hg38/liftOver/hg38ToHg19.over.chain.gz (95). 679 
We then kept those that were labeled as ‘tissue invariant’ and that appeared in at least 500 of the 680 
733 samples. 681 
 682 
We also used open chromatin regions from (57) for adrenal gland, bone, brain, eye, gonad, gum, 683 
heart, kidney, large intestine, liver, lung, mammary, mesoderm, ovary, placenta, prostate, skin, 684 
small intestine, spinal cord, spleen, stomach, and umbilical cord. For each tissue, we took the 685 
non-cancerous samples labeled ‘Primary’ from that tissue and kept those DNaseI hypersensitive 686 
sites that appeared in at least 50% of the samples from that tissue. 687 
 688 
UK Biobank GWAS enrichment 689 
We downloaded UK Biobank GWAS summary statistics made available by the Benjamin Neale 690 
lab (v2 of their analysis, initially made public on August 1, 2018; http://www.nealelab.is/uk-691 
biobank/) (46). Specifically, we downloaded the ‘both sex’ GWAS summary statistic files listed in 692 
the ‘UKBB GWAS Imputed v3 - File Manifest Release 20180731’ spreadsheet available at 693 
https://docs.google.com/spreadsheets/d/1kvPoupSzsSFBNSztMzl04xMoSC3Kcx3CrjVf4yBmES694 
U (downloaded on April 9, 2020). Because some traits may not be appropriate for such an 695 
enrichment analysis (because they are not strongly polygenic, because the phenotypes are 696 
untrustworthy, etc.), we kept only traits deemed as ‘high confidence’ and with estimated heritability 697 
> 0.01 (and z-score > 7) based on the Neale Lab’s own LD score regression heritability analysis 698 
of the GWAS results. Their rating criteria are described on their UKBB LDSC GitHub page 699 
(https://nealelab.github.io/UKBB_ldsc/confidence.html) and their LD score regression results 700 
(with confidence ratings) were downloaded from 701 
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https://www.dropbox.com/s/ipeqyhrpdqav5uh/ukb31063_h2_all.02Oct2019.tsv.gz?dl=1. For 702 
each trait, we used the ‘primary’ GWAS result, as indicated in that file. Any traits that did not have 703 
a combined male and female GWAS analysis were dropped. The creatinine GWAS highlighted in 704 
the text was trait 30700_irnt (“Creatinine (quantile)”). 705 
 706 
The LDSC software package (v. 1.0.1) includes a ‘baseline’ model with 59 categories derived 707 
from 28 genomic annotations (36,45). Many of these annotations are cell type agnostic; e.g. a 708 
SNP’s minor allele frequency does not change between cell types. However, other annotations in 709 
the baseline model are not cell type agnostic; for example, the FANTOM5 enhancer annotation 710 
is derived from experiments performed on a range of different cell types, and may change 711 
substantially if the cell types used to create the annotation were to change. When performing the 712 
UK Biobank GWAS enrichments, we utilized the cell-type agnostic annotations from the LDCS 713 
baseline model (Table S8). In order to reduce the likelihood of model misspecification, we then 714 
added common open chromatin regions and open chromatin regions from a range of cell types. 715 
Specifically, we added (1) beta cell ATAC-seq peaks, (2) adipose ATAC-seq peaks, (3) DNase-716 
seq peaks derived from the 22 tissues/organs listed above, and (4) the ATAC-seq peaks from all 717 
seven of our snATAC-seq cell types. The various annotation files (regression weights, 718 
frequencies, etc.) required for running LDSC were downloaded from 719 
https://data.broadinstitute.org/alkesgroup/LDSCORE. LD scores were calculated using the Phase 720 
3 1000 Genomes data, keeping only the HapMap3 SNPs as recommended by the LDSC authors 721 
and using only SNPs with minimum MAF of 0.01. GWAS summary statistics were prepared for 722 
LDSC using the munge_sumstats.py script, with option --merge-alleles w_hm3.snplist (where 723 
w_hm3.snplist is the file in the data download).  When running the regression, we required a 724 
minimum MAF of 0.05, and utilized the Phase 3 1000 Genomes SNP frequencies/weights. 725 
 726 
T2D and fasting insulin GWAS enrichment 727 
We used the T2D (BMI unadjusted) and fasting insulin (BMI adjusted) GWAS summary statistics 728 
from (Mahajan et al., 2018) and (Manning et al., 2012), respectively. 729 
 730 
Because the cell types relevant to T2D are generally thought to be pancreatic beta cells, adipose, 731 
muscle, and liver, we performed enrichments using each of these cell types, common open 732 
chromatin, and the cell type-agnostic LDSC baseline annotations. First, for each of these 733 
muscle/beta cell/adipose/liver cell types, we ran one model containing the open chromatin from 734 
that cell type, the common open chromatin regions, and the cell type-agnostic LDSC baseline 735 
annotations. Then, we ran one joint model containing all of those cell types and annotations. 736 
LDSC parameters were the same as for the UK Biobank GWAS enrichments. 737 
 738 
T2D GWAS locus genome browser screenshots and peak overlaps 739 
All signal tracks in the genome browser were created by converting the normalized bedgraph files 740 
output by MACS2 to bigwig files using bedGraphToBigWig (v. 4) (83). 741 
 742 
Processing and provenance of  adipose ATAC-seq and beta cell ATAC-seq is described above. 743 
The 10 bulk islet libraries were from (41). These libraries were processed as described in that 744 
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manuscript, except we used the 10% FDR peak set from peak calling on the unsubsampled 745 
libraries. 746 
 747 
 748 
Predicting SNP regulatory impact 749 
We used the lsgkm package modified by the Kundaje lab with gkmexplain 750 
(https://github.com/kundajelab/lsgkm; commit c3758d5bee7) (59,60,63). For each cell type, we 751 
took the 150 bps on either side of the summits of the top 40,000 narrowPeaks (by p-value) as the 752 
positive sequences for gkmSVM. To generate negative sequences, we took windows across the 753 
genome (step size = 200), removed those containing Ns, overlapping hg19 blacklists, overlapping 754 
any FDR 10% broadPeaks from that cell type, or having repeat content > 60%, and then for each 755 
positive sequence selected a negative sequence with matching GC content and repeat content 756 
(repeat content was calculated based on the hg19 simpleRepeat table from the UCSC genome 757 
browser (96,97), downloaded on March 29, 2020, which contains simple tandem repeats 758 
annotated by Tandem Repeats Finder (98); GC content and repeat content for the negative 759 
sequence was required to be within 2% of that of the positive sequence; in the case that no such 760 
negative sequence could be found, the positive sequence was dropped from the analysis). We 761 
held out 15% of sequences as test data, and trained the gkmSVM model on the remaining 85% 762 
of sequences, setting l = 10 and k = 6 and using the gkm kernel. Using this model and deltaSVM 763 
(61), we predicted the effect of all autosomal 1000 Genomes phase 3 SNPs (downloaded on May 764 
27, 2015 from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502) (62). For each muscle 765 
cell type, deltaSVM scores were converted to z-scores based on the distribution of scores across 766 
all SNPs for that cell type. We additionally passed the gkmSVM model to gkmexplain to generate 767 
importance scores for sequences containing the ref/alt alleles. 768 
 769 
Overlap of SNPs and peaks with ENCODE candidate cis-regulatory elements 770 
The set of 1,310,152 candidate cis-regulatory elements in ENCODE’s ‘Registry of candidate 771 
Regulatory Elements’ (in hg19 coordinates) were fetched from the ENCODE web portal on April 772 
7, 2020 (55,56). 773 
 774 
 775 
Locuszoom plots 776 
Locuszoom plots were created for the DIAMANTE T2D GWAS summary statistics with the 777 
locuszoom standalone v. 1.4, using the Nov. 2014 EUR 1000 Genomes data included in the 778 
download (--pop EUR --source 1000G_Nov2014) (99). 779 
 780 
PICS 781 
We used the online PICS tool (54) (https://pubs.broadinstitute.org/pubs/finemapping/pics.php) 782 
with the EUR LD structure. The tool was accessed on April 13, 2020. 783 
 784 
Motif scan 785 
The MEF2 motif scan was performed using FIMO (v. 5.0.4) with a background model calculated 786 
from the hg19 reference genome (77). 787 
 788 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.07.01.183004doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.01.183004
http://creativecommons.org/licenses/by/4.0/


 789 
Declarations 790 
 791 
Ethics approval and consent to participate 792 
Human samples were approved by the University of Michigan IRB protocol # HUM 000060733. 793 
Collection of the rat muscle sample was approved by the University of Michigan Institutional 794 
Animal Care and Use Committee. 795 
 796 
Consent for publication 797 
Not applicable. 798 
 799 
Availability of data and materials 800 
Raw sequencing reads generated during this study are not publicly available due to privacy 801 
restrictions. Processed data is available in a Zenodo repository (10.5281/zenodo.3926660). 802 
 803 
Code used for analyses in this manuscript are available at https://github.com/ParkerLab/2020-sn-804 
muscle. 805 
 806 
Competing interests 807 
The authors declare that they have no competing interests. 808 
 809 
Funding 810 
This work was supported by National Institute of Diabetes and Digestive and Kidney Diseases 811 
grant R01 DK117960 and American Diabetes Association Pathway to Stop Diabetes grant 1-14-812 
INI-07 to SCJP, and National Institutes of Health grant R01 DK099034 to CFB. PO was funded 813 
by a University of Michigan Rackham Predoctoral Fellowship and grant T32 HG00040 from the 814 
National Human Genome Research Institute of the National Institutes of Health. The funding 815 
agencies had no role in the study design, sample collection, data analysis/interpretation, and 816 
writing of the manuscript. 817 
 818 
Authors’ contributions 819 
NM generated the bulk ATAC-seq data and performed the nuclear isolations for the single-820 
nucleus datasets. AV and VR processed existing islet and adipose ATAC-seq data. JK helped set 821 
up gkm-SVM models. CL helped coordinate production of the single-nucleus data. CFB provided 822 
the rat muscle sample, and KG provided human muscle samples. PO performed all computational 823 
processing and analyses of the data not attributed to others, and contributed to manuscript writing. 824 
SCJP designed and supervised the study and contributed to manuscript writing. All authors read 825 
and approved the manuscript. 826 
 827 
Acknowledgements 828 
We wish to thank the University of Michigan Advanced Genomics Core for their assistance in 829 
generating the snRNA-seq and snATAC-seq libraries, and the University of Michigan Flow 830 
Cytometry Core for their help performing FANS. We are grateful to the Benjamin Neale lab for 831 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.07.01.183004doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.01.183004
http://creativecommons.org/licenses/by/4.0/


providing their UK Biobank GWAS and LDSC results to the scientific community. We also thank 832 
members of the Parker lab for their helpful feedback.  833 
 834 
 835 
Figure legends 836 
Figure 1: (A) Study design to determine the effect of FANS on snRNA-seq and snATAC-seq 837 
results. Muscle cartoon adapted from Scott et al. 2016. HSM1 refers to one specific skeletal 838 
muscle sample ('human skeletal muscle 1'). Bulk ATAC-seq was performed on HSM1 as well (two 839 
replicates, each separate nuclei isolations). (B) Fragment length distribution and (C) TSS 840 
enrichment for two snATAC-seq libraries that did not undergo FANS and two that did, as well as 841 
two bulk ATAC-seq replicates from the same sample ('Bulk'). (D) ATAC-seq signal at the ANK1 842 
locus for FANS or non-FANS input snATAC-seq libraries, and the two bulk ATAC-seq libraries. 843 
All tracks are normalized to 1M reads. Gene model (GENCODE v19 basic) displays protein coding 844 
genes only. (E) Correlation between FANS and non-FANS snRNA-seq libraries; each point 845 
represents one gene. (F) Study design to determine the effect of loading 20k vs 40k nuclei into 846 
the 10X platform, utilizing HSM1 as well as a second sample, HSM2 ('human skeletal muscle 2'). 847 
Bulk ATAC-seq was performed on HSM1 (same libraries as in (a)) and on HSM2 (two replicates, 848 
each separate nuclei isolations). (G) Fragment length distribution and (H) TSS enrichment for 849 
snATAC-seq libraries after loading 20k vs 40k nuclei, as well as for the four bulk ATAC-seq 850 
libraries (two each from the two muscle samples, 'HSM1 bulk' and 'HSM2 bulk'). (I) ATAC-seq 851 
signal at the ANK1 locus for the 20k and 40k libraries and the four bulk ATAC-seq libraries. All 852 
tracks are normalized to 1M reads. Gene model (GENCODE v19 basic) displays protein coding 853 
genes only. (J) Correlation between snRNA-seq libraries resulting from loading 20k vs 40k nuclei. 854 
 855 
Figure 2: (A) UMAP after clustering human snATAC-seq, human snRNA-seq, and rat snATAC-856 
seq nuclei with LIGER. (B) UMAP facetted by species and modality. (C) Gene expression 857 
(snRNA-seq) or accessibility (snATAC-seq; gene promoter + gene body) of marker genes. Values 858 
are column-normalized. (D) ATAC-seq signal for human snATAC-seq nuclei in each cluster. All 859 
tracks are normalized to 1M reads. (E) Fraction of nuclei, across both species and modalities, 860 
assigned to each cell type. (F) Logistic regression-based approach to score similarity between 861 
TSS-distal ATAC-seq peaks (> 5 kb from TSS) and Roadmap Epigenomics enhancer states. For 862 
all TSS-distal ATAC-seq peaks across all muscle cell types, we scored the accessibility of the 863 
peak (0/1) in each of the muscle cell types based on the presence or absence of a peak call in 864 
that cell type. Then, for a given one of the 127 Roadmap Epigenomics cell types, we determined 865 
the maximum posterior probability of the enhancer states in the Roadmap Epigenomics 866 
chromHMM model within each peak. We then used logistic regression to model the relationship 867 
between the peak accessibility and the enhancer posteriors (running one model per muscle cell 868 
type per Roadmap Epigenomics cell type). Then, for each muscle cell type, the model coefficient 869 
was normalized to 1 by dividing by the maximum coefficient across all 127 Roadmap Epigenomics 870 
cell types, and this value was used as the enhancer similarity score for that muscle cell type and 871 
Roadmap Epigenomics cell type. (G) Similarity of snATAC-seq peak calls for each cell type and 872 
species to Roadmap Epigenomics chromHMM enhancer states based on the logistic regression 873 
procedure outlined in (F). The Roadmap Epigenomics cell type names have been adjusted slightly 874 
for clarity and the sake of space. The full names and the identifiers from the Roadmap 875 
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Epigenomics paper are: Psoas muscle (E100), Mesenchymal Stem Cell Derived Adipocyte 876 
Cultured Cells (E023), HUVEC Umbilical Vein Endothelial Primary Cells (E122), Stomach Smooth 877 
Muscle (E111), Primary monocytes from peripheral blood (E029), and Fetal Muscle Trunk (E089). 878 
(H) Nucleus counts per species for snATAC-seq data. 879 
 880 
Figure 3: (A) UK Biobank LDSC partitioned heritability results for traits for which one of the muscle 881 
cell types was significant after Benjamini-Yekutieli correction. (B) LDSC partitioned heritability 882 
results for creatinine (UK Biobank trait 30700). Red y-axis labels refer to the muscle snATAC-seq 883 
cell type annotations. (C) Locuszoom plot for C17orf67 locus in the UK Biobank creatinine GWAS. 884 
(D) ATAC-seq signal in the region highlighted in (C). The red line represents the location of SNP 885 
rs227727. All tracks are normalized to 1M reads. SNPs shown have LD > 0.8 with the lead SNP 886 
based on the European samples in 1000 Genomes Phase 3 (Version 5; 1000 Genomes Project 887 
Consortium et al., 2015). (E). gkmexplain importance scores for the ref and alt allele-containing 888 
sequences (top two rows), and the difference between the ref and alt allele importance scores 889 
(third row), which resembles the PITX2_2 motif predicted to be disrupted by the A allele (bottom 890 
row). 891 
 892 
Figure 4: (A) LDSC partitioned heritability results for T2D (BMI-unadjusted) and Fasting insulin 893 
GWAS (BMI-adjusted), using human peak calls. For each of the cell types, one model was run 894 
adjusting for cell type-agnostic annotations from the LDSC baseline model and common open 895 
chromatin regions. Asterisks represent Bonferroni significance (p < 0.05 after adjusting for 40 896 
tests). (B) locuszoom plot for ITPR2 locus in the DIAMANTE data. (C) DIAMANTE credible set 897 
near the ITPR2 gene, consisting of 22 SNPs. One SNP (rs7132434; highlighted in red) overlaps 898 
a peak call in any of the muscle cell types. (D) gkmexplain importance scores for the ref and alt 899 
allele (top two rows) and the difference between the ref and alt importance scores (third row); the 900 
G allele disrupts an AP1 motif (bottom row). (E). locuszoom plot for ARL15 locus in the 901 
DIAMANTE data. (F). DIAMANTE credible set SNPs near the ARL15 gene. The three SNPs 902 
represent the three-SNP credible set discussed in the text. One of these SNPs (rs702634; 903 
highlighted in red) overlaps a mesenchymal stem cell specific peak. (G). Projecting the SNP 904 
highlighted in (F), rs702634, into the rat genome (projected SNP position indicated by the red 905 
vertical line) shows the corresponding region has open chromatin in rat mesenchymal stem cells. 906 
(H). gkmexplain importance scores for the ref and alt alleles (top two rows), the difference 907 
between them (third row), and a MEF2 motif disrupted by rs702634. 908 
 909 
Figure S1: Chromatin state overlap for TSS-distal (> 5kb from TSS) ATAC-seq peaks from the 910 
FANS and non-FANS snATAC-seq libraries. 911 
 912 
Figure S2: Correlation between FANS snATAC-seq, non-FANS snATAC-seq, and standard bulk 913 
ATAC-seq libraries. Each point represents one peak. 914 
 915 
Figure S3: QC thresholds for FANS and non-FANS snRNA-seq libraries. Dashed lines represent 916 
thresholds for minimum number of UMIs, maximum number of UMIs, and maximum fraction of 917 
mitochondrial UMIs. 918 
 919 
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Figure S4: Chromatin state overlap for TSS-distal (>5 kb from TSS) ATAC-seq peaks from the 920 
20k and 40k nucleus FANS snATAC-seq libraries. 921 
 922 
Figure S5: Correlation between 20k and 40k nucleus snATAC-seq libraries and standard bulk 923 
ATAC-seq libraries. Each point represents one peak. 924 
 925 
Figure S6: QC thresholding for the 20k and 40k nuclei input snATAC-seq libraries. (a) Dashed 926 
lines represent thresholds for minimum number of reads, maximum number of reads, and 927 
minimum TSS enrichment. (b) Dashed lines represent thresholds for minimum number of reads, 928 
maximum number of reads, and the maximum fraction of reads derived from a single autosome 929 
(imposed to filter out nuclei showing aberrant per-chromosome coverage). 930 
 931 
Figure S7: QC thresholds for the 20k and 40k nuclei input snRNA-seq libraries. Dashed lines 932 
represent thresholds for minimum number of UMIs, maximum number of UMIs, and maximum 933 
fraction of mitochondrial UMIs. 934 
 935 
Figure S8: QC thresholds for all snATAC-seq libraries used in cell type clustering and downstream 936 
analyses. (a) Dashed lines represent thresholds for minimum number of reads, maximum number 937 
of reads, and minimum TSS enrichment. (b) Dashed lines represent thresholds for minimum 938 
number of reads, maximum number of reads, and the maximum fraction of reads derived from a 939 
single autosome (imposed to filter out nuclei showing aberrant per-chromosome coverage). 940 
 941 
Figure S9: QC thresholds for all snRNA-seq libraries used in cell type clustering and downstream 942 
analyses. Dashed lines represent thresholds for minimum number of UMIs, maximum number of 943 
UMIs, and maximum fraction of mitochondrial UMIs. 944 
 945 
Figure S10: snATAC-seq read counts (gene promoter + gene body) derived from the Type II 946 
muscle fiber myosin heavy chain genes (MYH1, MYH2, MYH4) or the Type I muscle fiber myosin 947 
heavy chain gene (MYH7) for human and rat nuclei. Each point represents a single nucleus. Type 948 
I muscle fibers/Type II muscle fibers headers represent the cluster to which each nucleus was 949 
assigned. 950 
 951 
Figure S11: Log2(fold change) for Type II vs Type I muscle fiber gene expression, showing the 952 
genes with the largest fold changes between fiber types based on data from Rubenstein et al. 953 
(Rubenstein et al. Table S4). Rubenstein et al. performed RNA-seq on pooled type I and pooled 954 
type II muscle fibers, and determined the 20 genes with the largest fold change in type II relative 955 
to type I fibers, and the 20 genes with the largest fold change in the other direction, along with p-956 
values for differential expression. The 34 genes (of those 40 genes) that were differentially 957 
expressed are shown here. The gene fold changes based on the muscle snRNA-seq data are 958 
often lower in magnitude than the fold changes based on Rubenstein et. al's pooled RNA-seq 959 
data; this is unsurprising, as ambient RNA in the snRNA-seq data as well as any errors in nucleus 960 
fiber type assignments in snRNA-seq data clustering will reduce the observed fiber type 961 
differences. 962 
 963 
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Figure S12: UK Biobank LDSC partitioned heritability results for traits for which one of the muscle 964 
cell types was significant after Benjamini-Yekutieli correction. (A) human, (B) rat. 965 
 966 
Figure S13: (A) LDSC partitioned heritability results for T2D (BMI-unadjusted) and Fasting insulin 967 
GWAS (BMI-adjusted), using human peak calls. Results are shown for pancreatic beta cell, 968 
adipose, and liver open chromatin regions as well. First, for each of the ten cell types, one model 969 
was run adjusting for cell type-agnostic annotations from the LDSC baseline model and common 970 
open chromatin regions (this is the joint model with open chromatin). Then, a single model 971 
containing those same annotations and all ten cell types was run (this is the joint model with open 972 
chromatin and all other cell types). Asterisk represents Bonferroni significance (p < 0.05 after 973 
adjusting for two traits, ten cell types, and two models per cell type = 40 tests). (B) Same as (A), 974 
but using the rat peak calls projected into human coordinates for the muscle cell types. 975 
 976 
Figure S14: ATAC-seq signal in bulk adipose, bulk islet, single-nucleus pancreatic beta cell, or 977 
our muscle cell types at the ITPR2 locus. Position of SNP rs7132434 is indicated by the long 978 
vertical red line. All tracks are normalized to 1M reads. 979 
 980 
Figure S15: ATAC-seq signal in bulk adipose, bulk islet, single-nucleus pancreatic beta cell, or 981 
our muscle cell types at the ARL15 locus. Position of SNP rs702634 is indicated by the long 982 
vertical red line. All tracks are normalized to 1M reads.  983 
 984 
Table legends 985 
Table S1: snATAC-seq per-nucleus QC thresholds. 986 
Table S2: snRNA-seq per-nucleus QC thresholds. 987 
Table S3: Per library summary statistics (number nuclei per sample, mean and median fragments 988 
per library). 989 
Table S4: Marker genes used for cluster cell type assignment. 990 
Table S5: Nucleus counts per cell type, species, and modality. 991 
Table S6: LDSC partitioned heritability z-scores for human snATAC-seq peaks. 992 
Table S7: Cell type annotation overlap summary for credible sets from Mahajan et al. 2018. 993 
Values represent the number of credible set SNPs at each locus that overlap with the specified 994 
annotation. The ARL15 locus discussed in the text (5_53271420) indicates one SNP overlaps 995 
with an Islet ATAC-seq peak; however, visual inspection of the locus reveals no convincing signal 996 
in any of the 10 examined islet ATAC-seq libraries (Fig. S15). 997 
Table S8: LDSC baseline model annotations used. 998 
 999 
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