

1 **Human and rat skeletal muscle single-nuclei multi-omic integrative analyses nominate
2 causal cell types, regulatory elements, and SNPs for complex traits**

3
4 **Authors:** Peter Orchard^{*,1}, Nandini Manickam^{*,1}, Arushi Varshney¹, Vivek Rai¹, Jeremy
5 Kaplan¹, Claudia Lalancette², Katherine Gallagher^{3,4}, Charles F. Burant⁵, Stephen C.J.
6 Parker^{1,6,7}

7
8 **Affiliations:**

9 ¹Department of Computational Medicine and Bioinformatics, University of Michigan, Ann
10 Arbor, MI 48109, USA

11 ²Epigenomics Core, University of Michigan, Ann Arbor, MI 48109, USA

12 ³Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA

13 ⁴Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI
14 48109, USA

15 ⁵Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA

16 ⁶Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA

17
18 *The authors wish it to be known that, in their opinion, the first two authors should be regarded as
19 joint First Authors

20
21 ⁷Corresponding author:

22 Stephen C.J. Parker

23 scjp@umich.edu

24
25 **Abstract**

26
27 **Background:** Skeletal muscle accounts for the largest proportion of human body mass, on
28 average, and is a key tissue in complex diseases, mobility, and quality of life. It is composed of
29 several different cell and muscle fiber types.

30 **Results:** Here, we optimize single-nucleus ATAC-seq (snATAC-seq) to map skeletal muscle cell-
31 specific chromatin accessibility landscapes in frozen human and rat samples, and single-nucleus
32 RNA-seq (snRNA-seq) to map cell-specific transcriptomes in human. We capture type I and type
33 II muscle fiber signatures, which are generally missed by existing single-cell RNA-seq methods.
34 We perform cross-modality and cross-species integrative analyses on 30,531 nuclei, representing
35 11 libraries, profiled in this study, and identify seven distinct cell types ranging in abundance from
36 63% (type II fibers) to 0.9% (muscle satellite cells) of all nuclei. We introduce a regression-based
37 approach to infer cell types by comparing transcription start site-distal ATAC-seq peaks to
38 reference enhancer maps and show consistency with RNA-based marker gene cell type
39 assignments. We find heterogeneity in enrichment of genetic variants linked to complex
40 phenotypes from the UK Biobank and diabetes genome wide association studies in cell-specific
41 ATAC-seq peaks, with the most striking enrichment patterns in muscle mesenchymal stem cells
42 (~3% of nuclei). Finally, we overlay these chromatin accessibility maps on GWAS data to
43 nominate causal cell types, SNPs, and transcription factor motifs for creatinine levels and type 2
44 diabetes signals.

45 **Conclusions:** These chromatin accessibility profiles for human and rat skeletal muscle cell types
46 are a useful resource for investigating specific cell types and nominating causal GWAS SNPs and
47 cell types.

48
49

50 **Background**

51

52 Skeletal muscle tissue accounts for 30-40% of body mass, which is the largest tissue, on average,
53 in adult humans and is central to basic quality of life and complex diseases (1,2). Like other
54 tissues, skeletal muscle is composed of a mixture of different cell types. Most of the tissue is
55 composed of muscle fibers, which may be categorized into different fiber types, each of which
56 display distinct metabolic and molecular phenotypes. The proportion of muscle fibers accounted
57 for by each fiber type varies across individuals (3). Muscle-related diseases may differentially
58 impact different fiber types, and fiber type proportions are associated with complex phenotypes,
59 including aerobic and anaerobic exercise capacity and type 2 diabetes (T2D) status (4). Muscle
60 satellite cells are progenitors to muscle fibers, indispensable for the generation and regeneration
61 of muscle (5); these cells are present in skeletal muscle tissue, as are several other cell types,
62 such as mesenchymal stem cells, that cooperate in muscle regeneration (6,7). Molecular
63 associations with skeletal muscle tissue/muscle fiber characteristics and muscle-related complex
64 diseases could be mediated in part by these stem cell-like populations; for example a genetic
65 variant that alters the developmental of a satellite cell could carry important implications for later
66 muscle function, just as some T2D-associated variants are proposed to impact pancreatic/beta
67 cell development rather than the function of mature beta cells (8,9) and facial morphology
68 associated variants may act through progenitor cell populations (10). Immune cells infiltrate
69 muscle tissue and communicate with muscle cells as well, playing a particularly important role
70 following injury (11). Profiling the transcriptomic and epigenomic landscapes of these cell types
71 and muscle fiber types may therefore contribute to our understanding of the biology of muscle
72 development and muscle-related complex traits.

73

74 Bulk profiling of skeletal muscle tissue ignores this heterogeneity and is dominated by the most
75 common cell types (muscle fibers), but single-cell-/nucleus methods overcome this and allow
76 profiling of the constituent cell types. In the case of skeletal muscle, the distinction between single-
77 nucleus and single-cell profiling is particularly important as (1) skeletal muscle fibers have an
78 elongated shape that may make them difficult to capture in single-cell suspensions, and (2)
79 muscle fibers are multinucleated, meaning that a single-cell measurement will capture the output
80 of many nuclei. Previous single-cell RNA-seq studies of human (12–14), mouse (15–20), and pig
81 (21) skeletal muscle tissue either capture no muscle fiber nuclei or capture them in
82 unrepresentative proportions. Bulk analysis of pooled, dissected muscle fibers have generated
83 fiber-type specific transcriptional profiles (22–25) and analysis of specific isolated muscle resident
84 cell populations (26–28) have generated insights into targeted cell subpopulations but these
85 studies are necessarily biased towards specific cell types. To date no single nucleus ATAC-seq
86 (snATAC-seq) studies of whole human or rat skeletal muscle tissue samples has been performed.

87

88 Here, we employ single-nucleus RNA-sequencing (snRNA-seq) and ATAC-seq (snATAC-seq) on
89 the 10X Genomics platform to profile gene expression and chromatin accessibility of frozen
90 skeletal muscle cell populations in human and rat. First we examine the influence of fluorescence
91 activated nucleus sorting (FANS) and nucleus loading concentration on the performance of the
92 platform. Next, we perform joint clustering of the snRNA-seq and snATAC-seq libraries to
93 determine the cell types detected in skeletal muscle tissue samples and map their respective
94 transcriptomes and chromatin landscapes. We then integrate the resulting genomic maps with
95 UK Biobank and T2D-related GWAS results to explore the relationship between these cell types
96 and a broad range of human phenotypes and diseases and nominate causal SNPs at several
97 genomic loci.

98

99

100 **Results**

101

102 **FANS negatively impacts 10X snATAC-seq results**

103

104 Before being loaded onto the 10X platform, nuclei must be isolated from the samples of interest.
105 This process involves cell lysis, which produces viable nuclei as well as substantial cellular debris
106 and dead nuclei, some of which inevitably remains in the final nuclei suspension. By staining the
107 DNA in live nuclei and using FANS to selectively filter the suspension for stained entities, one
108 should be able to remove dead nuclei and cellular debris in the suspension, improving the purity
109 and quality of the suspension loaded onto the 10X platform. However, the FANS process could
110 stress the nuclei or otherwise alter the snRNA-seq and snATAC-seq results. Comparing quality
111 control metrics and (in the case of snRNA-seq) aggregate gene expression or (in the case of
112 snATAC-seq) aggregate ATAC-seq peaks/signal between snRNA-seq and snATAC-seq libraries
113 generated from nuclei that either did or did not undergo FANS allows one to detect substantial
114 changes that FANS may introduce. Also, because the aggregate of reads from a snATAC-seq
115 library should resemble the profile of an ATAC-seq library on the same biological sample, one
116 can generate bulk and single-nucleus libraries from a single sample and compare quality control
117 metrics and ATAC-seq signal between them. Therefore, to determine the effect of FANS on 10X
118 snRNA-seq and snATAC-seq results, we performed three nuclear isolations from a single human
119 muscle sample, mixed the resulting nuclei together, and performed FANS (using DRAQ7 staining)
120 on one half of the suspension (Fig. 1A). The FANS and non-FANS suspensions were then each
121 used to produce two replicate snATAC-seq and two replicate snRNA-seq libraries, resulting in
122 eight total libraries (four snATAC and four snRNA). We also generated two independent bulk
123 ATAC-seq libraries from the same biological sample, allowing us to compare snATAC-seq
124 profiles, with and without FANS, to a comparable bulk ATAC-seq profile.

125

126 First we examined the four snATAC-seq libraries, comparing the aggregate signal for each library
127 to bulk ATAC-seq libraries from the same biological sample. We called peaks for the four libraries
128 and ran the ataqv quality control software package (29) on the aggregated data to examine the
129 overall transcription start site (TSS) enrichment and fragment length distributions. The fragment
130 length distributions for each library resembled the expected stereotypical ATAC-seq fragment
131 length distribution, showing an abundance of short fragments as well as mononucleosomal

132 fragments (Fig. 1B) (Buenrostro et al., 2013); however, the TSS enrichment was lower in the
133 FANS libraries (Fig. 1C), indicating the FANS libraries had a lower signal to noise ratio. This
134 difference in signal-to-noise ratio is demonstrated when visualizing the ATAC-seq signal at
135 genomic regions active in muscle, such as the *ANK1* locus (Fig. 1D) (30). We additionally
136 overlapped TSS-distal ATAC-seq peaks from each of the libraries with existing chromatin states
137 from diverse tissues and cell types (31) and found that the peaks from the non-FANS libraries
138 showed considerable overlap with skeletal muscle enhancers, while the peaks from the FANS
139 libraries showed poor overlap (Fig. S1). ATAC-seq signal across FANS libraries showed poor
140 correlation with the two bulk ATAC-seq libraries from the same sample (Fig. S2). We therefore
141 concluded that FANS has a clear negative impact on 10X snATAC-seq results.
142

143 Next we examined the four snRNA-seq libraries. All four libraries showed high correlation,
144 indicating that FANS does not substantially alter snRNA-seq results, at least at the pseudobulk
145 gene expression level (Fig. 1E). In order to determine if FANS altered the yield of quality nuclei,
146 we used read counts and mitochondrial contamination to select quality nuclei from each library,
147 additionally removing doublets using doubletfinder (Fig. S3) (32). We found that FANS
148 substantially increased the number of quality nuclei obtained (2,004 and 2,078 for non-FANS
149 libraries; 7,715 and 7,118 for FANS libraries). We therefore concluded that FANS has little effect
150 on pseudobulk gene expression measurements, but may alter nucleus yield.
151
152

153 snATAC-seq and snRNA-seq results are robust to nucleus loading concentrations

154

155 The concentration at which nuclei are loaded onto the 10X platform is an important parameter
156 affecting data quality and the number of nuclei available for downstream analysis. Increasing the
157 loading concentration increases the maximum number of nuclei from which data can be obtained;
158 however, it also increases the probability that multiple nuclei end up with the same gel bead,
159 thereby increasing the doublet rate. Balancing these outcomes is important to maximize the
160 amount of quality data and number of nuclei available for downstream analysis. To evaluate the
161 effect of increasing the number of nuclei loaded onto the platform, we performed a separate
162 experiment in which we isolated nuclei from two muscle samples, mixed them together, and then
163 loaded either 20k or 40k nuclei (as quantified by a Countess II FL Automated Cell Counter) into
164 a 10X well for snRNA-seq and for snATAC-seq (Fig. 1F). We also generated two independent
165 bulk ATAC-seq libraries from the biological sample for which bulk ATAC-seq profiles were not
166 already available, allowing us to compare snATAC-seq profiles to comparable bulk ATAC-seq
167 profiles.
168

169 The snATAC-seq libraries displayed the expected fragment length distributions and comparable
170 TSS enrichments (Fig. 1G, H). We examined the aggregate signal of the snATAC-seq libraries
171 next to bulk ATAC-seq libraries from the same samples and confirmed that both libraries showed
172 strong signal, comparable to that of bulk data (Fig. 1I). Overlap between TSS-distal ATAC-seq
173 peaks called on both libraries and chromatin states were likewise similar, showing relatively high
174 overlap with skeletal muscle enhancers (Fig. S4), and the ATAC-seq signal in the libraries
175 correlated with bulk ATAC-seq signal to an extent comparable to the correlation between two bulk

176 ATAC-seq libraries (Fig. S5). After selecting quality nuclei (Fig. S6), we found that the higher
177 loading concentration yielded 2,035 nuclei while the lower concentration yielded 855 nuclei (after
178 doublet removal).

179
180 Correlation between the snRNA-seq libraries was high, indicating that the loading concentration
181 could be changed substantially without compromising data quality (Fig. 1J). We again found the
182 higher loading concentration yielded more quality nuclei than the lower concentration (3,839 vs
183 2,118; Fig. S7) after doublet removal.

184
185 10X guidelines recommend loading up to 15k nuclei into a well; however, our results indicate that
186 exceeding this loading concentration can still yield quality snATAC-seq results (as measured by
187 standard quality control metrics relative to bulk ATAC-seq data) and, for both snATAC-seq and
188 snRNA-seq, increase the number of quality nuclei even after accounting for the increase in
189 doublet rate. The aggregate gene expression/ATAC-seq signal profile was comparable between
190 loading concentrations. One caveat to these conclusions is that the actual number of nuclei
191 loaded into the well may differ from our estimated numbers, as debris in the nuclei preps may
192 affect the accuracy of the nuclei counts.

193
194
195 **Joint clustering of human and rat snATAC-seq and snRNA-seq identifies skeletal muscle**
196 **cell types**

197
198 To determine cell types present in skeletal muscle samples, we selected high-quality ATAC and
199 RNA nuclei from the FANS/non-FANS libraries and the 20k/40k nuclei libraries generated above
200 and performed joint clustering. snATAC-seq libraries that underwent FANS were excluded as they
201 failed to provide quality data. We generated and included a snATAC-seq library containing a mix
202 of human and rat nuclei (Fig. S8, S9; Tables S1, S2). Information about the biological samples
203 and post-QC nucleus summary statistics for each library is provided in Table S3. In total we
204 obtained 24,866 human snRNA-seq (mean UMs = 7,482), 5,053 human snATAC-seq (mean
205 fragments = 41,655), and 612 rat snATAC-seq (mean fragments = 60,875) nuclei. We used
206 integrative nonnegative matrix factorization (iNMF) as implemented in the LIGER (linked inference
207 of genomic experimental relationships) software package (Welch et al., 2019) to perform joint
208 clustering on snRNA-seq and snATAC-seq nuclei and identified seven cell type clusters (Fig. 2A).
209 Nuclei from different modalities, species, and libraries integrated well, indicating that clustering
210 was not driven by technical factors (Fig. 2B).

211
212 We used marker genes to assign cell types to each cluster (Table S4) and found clear
213 concordance between human snRNA-seq and snATAC-seq (Fig. 2C, D). We found marker gene
214 accessibility in the rat snATAC-seq data to be largely consistent with the human data, though
215 examination of the myosin heavy chain genes, often used to distinguish between different muscle
216 fiber types, indicated that a considerable number of rat type II muscle fiber nuclei were likely
217 present in the type I muscle fiber cluster (the opposite did not seem to occur; i.e., the type II
218 muscle fiber cluster appeared to be relatively free of rat type I muscle fiber nuclei; Fig. S10). This
219 mixing of some rat muscle fiber nuclei is a limitation of our data; because only 612 of 30,531

220 (2.0%) of all nuclei come from rat, the human data drive the clustering. As expected the vast
221 majority of the profiled nuclei (90.4%) came from muscle fiber (Fig. 2E).

222
223 We sought to independently assess cluster identity without relying on marker gene patterns and
224 therefore focused on cluster-level TSS-distal ATAC-seq peaks, many of which would not be taken
225 into account when assigning cell types using marker genes. We developed a logistic regression
226 approach to score the similarity between these peaks and enhancer chromatin states from 127
227 Roadmap Epigenomics cell types (Fig. 2F) (31). We found concordance with the marker gene-
228 based cell type assignment approach (Fig. 2G). Remarkably this approach worked relatively well
229 in assigning rat nuclei, despite the fact that the number of nuclei per cluster for rat ranged between
230 six and twenty for the smallest four cell types (Table S5; Fig. 2H).

231
232 The majority of the nuclei were assigned as type I or type II muscle fibers. Genes previously
233 discovered to be preferentially expressed in type I vs. type II muscle fibers (13) were usually
234 similarly preferentially expressed in our snRNA-seq data (Fig. S11), validating the quality of the
235 data and accuracy of muscle fiber type assignments.

236
237 **Integration of cell-type-specific ATAC-seq peaks with UK Biobank GWAS reveals cell type**
238 **roles in complex phenotypes**

239
240 Genetic variants associated with complex traits and disease are frequently located in non-coding
241 regions of the genome (33–35). Variants associated with a given complex trait are expected to be
242 enriched specifically in non-coding regulatory elements of the trait-relevant cell types; for
243 example, T2D-associated genetic variants are enriched in regulatory elements specific to
244 pancreatic islets and beta cells (34,36–44), and variants associated with autoimmune disorders
245 are enriched in immune cell-specific regulatory elements (36). Variant enrichment in cell-specific
246 regulatory elements can therefore be used to determine which cell types are relevant to a given
247 trait or disease. Variants in high linkage disequilibrium (LD) with trait-influencing SNPs are often
248 statistically associated with the trait as well, making it difficult to infer the causal SNP through
249 statistical association alone. Epigenomic data, such as chromatin accessibility in trait-relevant cell
250 types, can be used to nominate causal genetic variants under the assumption that non-coding
251 SNPs in accessible regions of the genome are more likely to be causally related to a trait than
252 non-coding SNPs in inaccessible regions.

253
254 To explore the relationship between complex traits and the cell types present in our data, as well
255 as demonstrate the value of our muscle cell type chromatin data in narrowing the post-GWAS
256 search space, we used LD score regression (LDSC) (36,45) to perform a partitioned heritability
257 analysis using GWAS of 404 heritable traits from the UK Biobank (46) (<http://www.nealelab.is/uk-biobank/>) and our muscle cell type open chromatin regions (Table S6; see Methods) (36,45).
258 Results for all traits in which at least one of our cell types showed significant ($P < 0.05$) enrichment
259 after Benjamini-Yekutieli correction are displayed in Fig. 3A. Due to the heavy multiple testing
260 correction burden, relatively few traits meet this threshold. However, we observed immune cell
261 abundance traits show enrichment for the immune cell cluster, and diastolic blood pressure
262 GWAS SNPs are enriched in smooth muscle ATAC-seq peaks. In addition, we see that several

264 skeletal trait GWAS SNPs are enriched in mesenchymal stem cell peaks. Previous work has
265 shown a central role of bone mesenchymal stem cells in osteoblast development (47,48). In
266 addition, SNPs for several corneal traits are also enriched in mesenchymal stem cell peaks,
267 consistent with previously observed enrichment of corneal thickness GWAS SNPs in
268 mesenchymal stem cell/connective tissue cell annotations (49). Results using rat peaks projected
269 into human coordinates largely mirror the human mesenchymal stem cell enrichment findings
270 (Fig. S12).

271

272 One muscle-related trait included in the UK Biobank is creatinine level. In humans most serum
273 creatinine is produced by skeletal muscle and is filtered by the kidneys (50). Creatinine levels are
274 commonly used as a biomarker for kidney function but correlate with muscle mass and have been
275 used to score sarcopenia (51–53). In our enrichment analysis, the cell type with the highest LDSC
276 coefficient Z-score was type II muscle fibers (z-score = 2.5; Fig. 3B).

277

278 Integrating the ATAC-seq results with the GWAS summary statistics can help nominate causal
279 SNPs. One example is the *C17orf67* locus in the creatinine GWAS (Fig. 3C). The lead SNP at
280 this locus (rs227727; $p = 5.38e-18$) lies in an intergenic region 92 kb from *C17orf67* and 104 kb
281 from *NOG*. This SNP is in an ATAC-seq peak in several muscle cell types, though the signal is
282 largest in type II muscle fibers (Fig. 3D). The peak corresponds to an enhancer chromatin state
283 in muscle, amongst other cell types (31). We used the Probabilistic Identification of Causal SNPs
284 (PICS) tool (54) to estimate the probability that nearby SNPs were causal given the pattern of
285 linkage disequilibrium at the locus. PICS assigned the index SNP, rs227727, a probability of 0.766
286 of being the causal SNP. A tightly linked SNP, rs227731 ($R^2 = 0.99$), had a probability of 0.221;
287 no other SNPs had probability greater than 0.01. SNP rs227731 is not in an ATAC-seq peak in
288 any of the muscle cell types we identified nor is it in any of ENCODE's 1.3 million candidate cis-
289 regulatory elements (55,56) or any of the approximately 3.6 million DNasel hypersensitive sites
290 (DHS) annotated in (57), suggesting that the index SNP rs227727 is indeed the causal SNP. A
291 previous study found that the A allele of rs227727 was associated with higher activity in an allelic
292 luciferase assay in both human fetal oral epithelial cells (GMSM-K) and murine osteoblastic cells
293 (MC3T3) (58). To predict allelic effects at this SNP in type II muscle fibers, we trained a gapped-
294 kmer support vector machine model (gkm-SVM) (59,60) to detect kmers associated with
295 increased or decreased chromatin accessibility using the top ATAC-seq peaks for each of our cell
296 types and then ran deltaSVM (61) to predict this SNP's effect on chromatin accessibility.
297 DeltaSVM predicts a SNP's effect by comparing the gkm-SVM inferred kmer weights for kmers
298 created by the reference vs the alt allele; we transformed the deltaSVM score to a z-score based
299 on the distribution of the predicted impacts of all autosomal 1000 Genomes SNPs (62). The type
300 II muscle fiber deltaSVM z-score for this SNP was 0.73 (directionally favoring the alt allele, T,
301 having higher chromatin accessibility, although the z-score is not statistically significant). We also
302 attempted to interpret how each allele of the SNP affects the gkm-SVM model's score for the
303 sequence using the gkmexplain software package, which scores the importance of each base in
304 a sequence to the gkm-SVM model score for the sequence (63). We ran gkmexplain on the
305 sequence surrounding the SNP in the presence of either the reference or the alternative allele
306 and compared the results (Fig. 3E). The change in the gkmexplain importance scores in the
307 presence of the reference vs alternative allele resembled several known homeodomain TF motifs

308 predicted to be disrupted by the reference allele such as that of PITX2, suggesting that the
309 alternate allele may have directionally (non-significant) greater predicted chromatin accessibility
310 because it is a better match to these homeodomain TF motifs (Fig. 3E) (64). We note, however,
311 that the deltaSVM z-score of the SNP as well as the gkmexplain importance scores of the SNP
312 and surrounding nucleotides are of low magnitude, suggesting that the reference allele may
313 reduce the binding of PITX2 or another homeodomain TF without such a dramatic effect on local
314 chromatin accessibility. Biologically, the nearby *NOG* gene is a particularly compelling candidate
315 target gene of this regulatory element, as its product (noggin) regulates BMP signaling and is
316 involved in muscle growth and maintenance (65–70). Integrated with the GWAS summary
317 statistics and these additional resources, our ATAC-seq data adds to existing evidence that SNP
318 rs227727 alters the activity of a gene regulatory element and is a prime candidate to impact
319 creatinine levels.

320
321

322 Integration of cell type-specific ATAC-seq peaks with T2D GWAS credible sets nominates 323 causal cell types, regulatory elements, and SNPs

324

325 It is well-established that T2D GWAS SNPs overlap pancreatic islet/beta cell enhancers
326 (34,37,38,41,43); however, some SNPs may act through other T2D-relevant tissues, such as
327 muscle, adipose, or liver. We therefore used LDSC to perform a partitioned heritability analysis
328 for T2D-associated SNPs (38) in each of the muscle cell types as well as in beta cell ATAC-seq
329 peaks, adipose ATAC-seq peaks, and liver DNaseI hypersensitive sites (see Methods) (Figs. 4A,
330 S13A). When modeling each cell type separately (adjusting for the cell type-agnostic LDSC
331 baseline annotations and common open chromatin regions), we found significant enrichment
332 (after Bonferroni correction for 40 tests) in type II muscle fibers and beta cells, though when
333 modeling all cell types in a single joint model only beta cell open chromatin regions showed
334 significant enrichment (Fig. S13A). We performed a similar analysis on GWAS SNPs for a T2D-
335 related trait, fasting insulin (Figs. 4A, S13A) (71). For fasting insulin, we found significant
336 enrichment in mesenchymal stem cells, immune cells, and bulk adipose when modeling each cell
337 type individually, but only adipose showed significant enrichment when modeling all cell types
338 jointly. For fasting insulin, we note that the small sample size of that GWAS means the analysis
339 was likely underpowered, leaving open the possibility that other cell types will show significant
340 enrichment when GWAS with larger sample sizes are available. We also note that the adipose
341 open chromatin regions are derived from bulk tissue open chromatin profiling; it is therefore
342 possible that at least some of the signal from adipose is being driven by cell types shared between
343 our muscle samples and adipose tissue, such as mesenchymal stem cells. This is an area for
344 further exploration when single-cell/single-nucleus data from adipose is available.

345

346 We performed similar GWAS enrichments using the rat muscle cell type peaks projected into
347 human coordinates (Fig. 4A, S13B). For T2D we found muscle fiber types and mesenchymal stem
348 cells were significantly enriched after Bonferroni correction, but as with human muscle cell types
349 these enrichments did not persist in a joint model with all cell types (Fig S13B). For fasting insulin
350 no rat muscle cell types showed enrichment after Bonferroni correction.

351

352 While none of our cell types showed significant enrichment in 10-cell-type models after Bonferroni
353 correction, it is still possible that some T2D GWAS loci act through muscle cell types or cell types
354 shared between muscle and other tissues such as adipose. There are a substantial number of
355 T2D GWAS credible sets that show no overlap with pancreatic islet functional annotations (38).
356 We therefore overlapped 380 previously-published T2D GWAS signals with 99% genetic credible
357 set SNPs (38) with our snATAC-seq peaks to nominate SNPs that may be acting through the
358 muscle cell types, including those that are expected to be shared with adipose (Table S7).
359

360 One locus highlighted by our data is the *ITPR2* locus on chromosome 12 (Fig. 4B). This locus
361 contains 22 credible set SNPs, none with a particularly high posterior probability of association
362 (PPA) in the DIAMANTE genetic fine-mapping (maximum across all credible set SNPs = 0.06).
363 Only one SNP (rs7132434; PPA = 0.042) overlaps any of our muscle cell type peak calls (Fig.
364 4C). This SNP is in a large mesenchymal stem cell ATAC-seq peak, and also overlaps peak calls
365 in smooth muscle and blood, though the chromatin accessibility signal in those cell types is lower
366 in our data. The SNP also overlaps a peak call in a subset of adipose and islet samples (Fig.
367 S14). We found that this SNP had a large deltaSVM z-score in several of the muscle cell types
368 (absolute z-score = 2.88 in mesenchymal stem cells; the T2D risk allele, A, is predicted to result
369 in greater chromatin accessibility). We ran gkmexplain on the sequence surrounding the SNP and
370 found the gkmexplain importance scores for the sequence in the presence of the risk allele
371 resembled an AP-1 motif (Fig. 4D) (64). A literature search revealed that the element underlying
372 this SNP has been validated for enhancer activity using a luciferase assay (in the 786-O cell line)
373 and the risk allele showed preferential binding of the AP-1 transcription factor in an EMSA assay
374 in the same study and cell line (Bigot et al., 2016), consistent with our findings. We note that this
375 SNP is also a 95% credible set SNP for waist-hip ratio (one of eight SNPs in the credible set)
376 (72). We therefore hypothesize that rs7132434 is the causal SNP at this locus, and that it may be
377 acting through mesenchymal stem cells.
378

379 A second locus highlighted by our data is an intronic locus in the *ARL15* gene (Fig 4E). The
380 DIAMANTE genetic fine-mapping narrowed the list of potentially causal SNPs at this locus to
381 three (two other, larger DIAMANTE genetic fine-mapping credible sets are also annotated to
382 *ARL15*). SNPs in this credible set are statistically associated with fasting insulin (73), and more
383 broadly variants in or near *ARL15* associate with metabolic traits including adiponectin, HDL
384 cholesterol levels, and BMI (73–75), suggesting that the locus may affect T2D risk not through
385 islets but through adipose or a related cell type. Interestingly, none of the SNPs overlap with any
386 of ENCODE's 1.3 million candidate cis-regulatory elements (55,56) or any of the approximately
387 3.6 million DNaseI hypersensitive sites (DHS) annotated in (57); however, in our data we find that
388 one of the SNPs (rs702634) is in the center of a mesenchymal stem cell specific ATAC-seq peak
389 (Fig. 4F), and a mesenchymal stem cell peak is likewise present in the corresponding position in
390 the rat genome (Fig. 4G), indicating that this is a regulatory element that has been conserved
391 across species. The DIAMANTE genetic fine-mapping assigned this SNP a probability of 0.48 of
392 being the causal SNP at this locus, higher than either of the other two SNPs (0.33 and 0.19,
393 respectively). We examined publicly-available beta cell (n = 1), islet (n = 10) (41), and adipose (n
394 = 3) (76) ATAC-seq data to see if hints of this peak are present in these T2D-relevant cell types.
395 No convincing signal appears to be present in beta cell or islet data; a weak increase in signal at

396 that SNP is evident in the adipose samples and a peak is called (Fig. S15). As mesenchymal
397 stem cells are one component of adipose tissue, it is possible that the weak signal in adipose is
398 due to mesenchymal stem cell populations within adipose; this is one area for follow-up when
399 adipose single-nucleus ATAC-seq data is available. The absolute deltaSVM z-score in
400 mesenchymal stem cells for this SNP was 0.48, indicating it does not have a large impact on
401 predicted chromatin accessibility; however, the risk allele is predicted to disrupt a MEF2 motif
402 (64,77), and we found the change in gkmexplain importance scores between the reference and
403 alternative allele showed similarity to this motif (Fig. 4H). This data is consistent with a model in
404 which rs702634 is the causal SNP and acts through mesenchymal stem cells.

405

406

407 **Discussion**

408

409 Here we present snATAC-seq and snRNA-seq for human skeletal muscle and snATAC-seq for
410 rat skeletal muscle, which we use to map the transcriptomes and chromatin accessibility of cell
411 types present in skeletal muscle samples. The cell types identified are consistent with known
412 biology and with previous studies of human (13) and mouse (16,17,20) skeletal muscle tissue.
413 However, our use of single-nucleus rather than single-cell techniques allows us to capture muscle
414 fiber nuclei, cell types missing from previously published snRNA-seq datasets. To our knowledge
415 this is the first published snATAC-seq dataset for human and rat skeletal muscle tissue. We
416 therefore anticipate that this dataset will be useful in nominating causal GWAS SNPs and
417 demonstrate this by integrating the data with UK Biobank and previously published T2D GWAS
418 credible sets, highlighting potentially causal SNPs at the *NOG*, *ARL15*, and *ITPR2* loci.

419

420 Additionally, we explore the effect of two technical parameters on snRNA-seq and snATAC-seq
421 results. First, we find that FANS (using DRAQ7 staining) substantially alters snATAC-seq results.
422 Though the stereotypical ATAC-seq fragment length distribution is observed, signal-to-noise (as
423 measured by TSS enrichment and fraction of reads in peaks, as well as by visual inspection)
424 appears to decrease substantially relative to non-FANS libraries. We note that the effect of FANS
425 (nucleus sorting) may differ from that of FACS (cell sorting). snRNA-seq results appear to be
426 substantially less sensitive to FANS -- the pseudobulk gene expression from FANS libraries
427 correlates strongly with that from non-FANS libraries -- suggesting that chromatin is more
428 sensitive to FANS than is RNA. We also observed higher nucleus yield in our FANS snRNA-seq
429 libraries than our non-FANS libraries. There are several potential explanations for this. One is that
430 the nuclei counting step that necessarily precedes loading of the 10X platform may be sensitive
431 to debris. If greater amounts of debris are observed in non-FANS libraries, nucleus concentration
432 may be systematically overestimated in non-FANS libraries, resulting in more nuclei actually being
433 loaded onto the 10X platform from FANS libraries. While not mutually exclusive, FANS may also
434 decrease the amount of debris being loaded into the 10X platform, and thereby improve nucleus
435 capture.

436

437 We found snATAC-seq and snRNA-seq results were remarkably consistent at different loading
438 concentrations. One clear caveat is that this may change as the loading concentration is further
439 reduced or increased. It is also important to note that the actual number of nuclei loaded may

440 differ from the estimated 20k or 40k nuclei. As discussed above, it is possible that debris in the
441 input preparation makes nucleus counting less accurate, in which case our cited values may not
442 reflect the true values. However, because the same nuclear preparation was used as input for the
443 20k and 40k nuclei libraries, the two-fold difference in loading concentration should be reliable,
444 even if the absolute values are skewed.

445
446 The GWAS enrichments presented here will be one interesting area to follow up on as more
447 snATAC-seq data is published. Interpretation of the results is complicated by the fact that many
448 tissues share cell types. For example, mesenchymal stem cell-like populations exist in many
449 tissues besides muscle, such as adipose tissue and bone marrow. Taking the fasting insulin
450 enrichments as an example, we found that the enrichment of GWAS SNPs in muscle cell type
451 ATAC-seq peaks disappeared when adipose tissue was included in the enrichment model.
452 However, it is possible that the adipose enrichment is being driven in part by mesenchymal stem
453 cell populations within adipose itself. Direct comparison of snATAC-seq and snRNA-seq profiles
454 from mesenchymal stem cells from a wider array of tissues will help tease apart commonalities
455 and tissue-specific differences in this interesting population.

456

457

458

459 **Methods**

460

461 Reproducibility of computational analyses

462

463 Code used for analyses in this manuscript are available at <https://github.com/ParkerLab/2020-sn->
464 muscle.

465

466

467 snATAC-seq and snRNA-seq, FANS vs no FANS experiment

468 Three separate pieces of tissue were cut from a single human skeletal muscle sample (weighing
469 60mg, 50mg and 50mg; sample HSM1, quadriceps femoris muscle group). Nuclei were isolated
470 using a modified version of the ENCODE protocol (protocol S1) (56,56), customized from Step 5
471 onwards to accommodate FANS (Fluorescence assisted nuclei sorting). In step 5, the nuclei were
472 resuspended in 700 μ L of Sort buffer (1% BSA, 1mM EDTA in PBS) and filtered through a 30 μ m
473 filter. Three different nuclei isolations were performed and the nuclei suspended in sort buffer
474 were mixed, pooled together and divided into two groups, one with FANS and one without FANS.
475 FANS nuclei were sorted according to the previously published FANS protocol using DRAQ7 (78).
476 DRAQ7 (0.3mM from Cell Signaling Technology) was added to the FANS nuclei suspension, at
477 100 fold dilution to get a final concentration of 3 μ M. Nuclei were gently mixed and incubated for
478 10 minutes on ice. Nuclei were analyzed in the presence of DRAQ7 and sorted for high DRAQ7
479 positive signal using Beckman Coulter's Astrios MoFlo. We followed the gating strategy outlined
480 in the FANS protocol (Preissl et al, 2018). The sorted nuclei were collected in a recovery buffer
481 (5% BSA in PBS). The nuclei with and without FANS were spun at 1000g for 15 min at 4°C. The
482 nuclei were resuspended in 100 μ L of 1X diluted nuclei buffer and counted in the Countess II FL
483 Automated Cell Counter. The appropriate amount of nuclei were split for snRNA-seq and spun

484 down at 500g for 10 min at 4°C and resuspended in RNA nuclei buffer (1%BSA+PBS in 0.2U
485 RNase inhibitor). The nuclei at appropriate concentration for snATAC-seq and snRNA-seq were
486 submitted to the Advanced Genomics core for all the snATAC-seq and snRNA-seq processing on
487 the 10X Genomics Chromium platform (v. 3.1 chemistry for snRNA-seq). For each modality nuclei
488 were loaded at 15.4K nuclei/well.

489

490 snATAC-seq and snRNA-seq, loading 20k or 40k nuclei

491 Two pieces of tissue (weighing 85.3 mg and 85.8 mg) were cut from one human skeletal muscle
492 sample (HSM1) and two tissue pieces (weighing 95.9 mg and 92.6 mg) were cut from a second
493 human skeletal muscle sample (HSM2; quadriceps femoris muscle group). Each of the samples
494 was cut on dry ice using a frozen scalpel to prevent thawing. The samples were pulverized using
495 a CP02 cryoPREP automated dry pulverizer (Covaris 500001). We developed a customized
496 protocol (protocol S2) derived from the previously published ENCODE protocol (56,56) and used
497 it to isolate nuclei, which is compatible with both snATAC-seq and snRNA-seq. All four pulverized
498 tissues pieces were mixed and redistributed to perform four different nuclei isolations. The desired
499 concentration of nuclei was achieved by resuspending the appropriate number of nuclei in 1X
500 diluted nuclei buffer for snATAC-seq and RNA nuclei buffer (1% BSA in PBS containing 0.2U/uL
501 of RNase inhibitor) for snRNA-seq. The nuclei at appropriate concentration for snATAC-seq and
502 snRNA-seq were submitted to the Advanced Genomics core for all the snATAC-seq and snRNA-
503 seq processing on the 10X Genomics Chromium platform (v. 3.1 chemistry for snRNA-seq). For
504 each modality nuclei were loaded at two different concentrations, 20K nuclei/well and 40K
505 nuclei/well.

506

507 snATAC-seq, human and rat mixed library

508 Tissue from human (49mg of pulverized human skeletal muscle; sample HSM1) and rat (45mg of
509 pulverized gastrocnemius samples) were used in this single nuclei ATAC experiment. We used
510 the previously published ENCODE protocol (protocol S1) (56,56) to isolate nuclei, which is
511 compatible with both snATAC-seq and snRNA-seq. After isolating nuclei from each sample
512 (species) individually, the nuclei were mixed in equal proportions. The desired concentration of
513 nuclei was achieved by resuspending the appropriate number of nuclei in 1X diluted nuclei buffer
514 for snATAC-seq. The nuclei at the appropriate concentration for snATAC were submitted to the
515 Advanced Genomics core for all the snATAC-seq processing on the 10X Genomics Chromium
516 platform. 15.4K nuclei were loaded into a single well.

517

518 Bulk ATAC-seq

519 2 tissue pieces weighing 99.4 mg and 80.7 mg were cut from one human skeletal muscle sample
520 (HSM1) and 2 pieces weighing 67.6 mg and 103.5 mg were cut from a second human skeletal
521 muscle sample (HSM2). Each of the samples was cut on dry ice using frozen scalpel to prevent
522 thawing. The samples were pulverized using a CP02 cryoPREP automated dry pulverizer
523 (Covaris 500001). For bulk ATAC seq we followed the nuclei isolation protocol outlined in protocol
524 S2, except in the final step the nuclei were resuspended in 250 μ L of 1% BSA. The nuclei were
525 counted in Countess II FL Automated Cell Counter, and the appropriate volume of the suspension
526 for 50K nuclei was spun down and used for the downstream transposition reaction (a modified
527 version of the ENCODE protocol; protocol S3) (56,56).

528

529 Processing of muscle bulk ATAC-seq data

530 Adapters were trimmed using cta (v. 0.1.2; <https://github.com/ParkerLab/cta>). Reads were
531 mapped to hg19 using bwa mem (-I 200,200,5000 -M; v. 0.7.15-r1140) (79). Duplicates were
532 marked using picard MarkDuplicates (v. 2.21.3; <https://broadinstitute.github.io/picard/>). We used
533 samtools to filter to high-quality, properly-paired autosomal read pairs (-f 3 -F 4 -F 8 -F 256 -F
534 1024 -F 2048 -q 30; v. 1.9 using htllib v. 1.9) (80). To call peaks, we used bedtools bamtobed to
535 convert to a bed file (v. 2.27.1) and then used that file as input to MACS2 callpeak (--nomodel --
536 shift -100 --seed 762873 --extsize 200 --broad --keep-dup all --SPMR; v. 2.1.1.20160309) (81,82).
537 To visualize the signal, we converted the bedgraph files output by MACS2 to bigwig files using
538 bedGraphToBigWig (v. 4) (83).

539

540 Processing of snATAC-seq data

541 Adapters were trimmed using cta. We used a custom python script (available in the GitHub repo)
542 for barcode correction. Barcodes were corrected in a similar manner as in the 10X Genomics Cell
543 Ranger ATAC v. 1.0 software. In brief, barcodes were checked against the 10X Genomics
544 whitelist. If a barcode was not on the whitelist, then we found all whitelisted barcodes within a
545 hamming distance of two from the bad barcode. For each of these whitelisted barcodes, we
546 calculated the probability that the bad barcode should be assigned to the whitelisted barcode
547 using the phred scores of the mismatched base(s) and the prior probability of a read coming from
548 the whitelisted barcode (based on the whitelisted barcode's abundance in the rest of the data). If
549 there was at least a 97.5% chance that the bad barcode was derived from one specific whitelisted
550 barcode, it was corrected to the whitelisted barcode.

551

552 Reads were mapped using bwa mem with flags '-I 200,200,5000 -M'. We used Picard
553 MarkDuplicates to mark duplicates, and filtered to high-quality, non-duplicate autosomal read
554 pairs using samtools view with flags '-f 3 -F 4 -F 8 -F 256 -F 1024 -F 2048 -q 30'. Quality control
555 metrics were gathered on a per-nucleus basis using ataqv (v. 1.1.1) on the bam file with duplicates
556 marked. In the case of the mixed rat and human snATAC-seq library, all reads were mapped to
557 the hg19 and rn6 genomes separately, and then a nucleus was assigned as either rat or human
558 by counting the number of high-quality, non-duplicate autosomal reads after mapping to either
559 genome. If at least three times as many high-quality reads were present after mapping to one
560 genome than to the other, the nucleus was assigned to either the rat or human sample as
561 appropriate. In the case that fewer than three times as many high-quality reads mapped to one
562 genome as to the other, the nucleus was not assigned to either species and was dropped.

563

564 For the two snATAC-seq libraries that contained a mix of nuclei from the two human individuals,
565 we assigned nuclei to biological samples (and determined doublets) using demuxlet (84) with
566 SNP calls from the bulk ATAC-seq libraries. To call SNPs on the bulk ATAC-seq bam files, we
567 first merged the two bulk technical replicate ATAC-seq bam files for each individual, then filtered
568 out reads with edit distance > 2 from the hg19 reference. Used samtools mpileup (-R -Q 20 -d
569 10000 -E) on these two bam files as input to bcftools call (-v -f GQ; v. 1.9). We then used bcftools
570 filter to filter to those positions where both individuals had genotype quality (GQ) > 90. This VCF

571 file was used as input to demuxlet (option '--field PL'; git commit b7453fc, modified as described
572 in GitHub issue #15).

573
574 When comparing aggregate snATAC-seq signal to bulk ATAC-seq signal (Fig. 1), we eliminated
575 sequencing reads corresponding to nucleus barcodes that couldn't be matched to the 10X
576 barcode whitelist, but otherwise processed it as bulk ATAC-seq data (i.e., marking duplicates
577 ignoring cell-level information, and not filtering to quality nuclei).

578
579 To select quality nuclei from each library, we selected nuclei (barcodes) meeting the thresholds
580 in Table S1. In addition to setting a threshold for minimum fragments (to filter out barcodes that
581 only capture ambient DNA fragments), we set a threshold for maximum fragments, because
582 barcodes with very high fragment counts may be enriched for doublets (41). We also set a
583 threshold for minimum TSS enrichment (because ATAC-seq signal for healthy nuclei is expected
584 to be enriched near TSS (41,85,86)), and we filtered out barcodes that showed an unexpectedly
585 large fraction of reads coming from a single autosome (see (29)).

586
587 Processing of snRNA-seq data
588 snRNA-seq data was processed using starSOLO (STAR v. 2.7.3a), which outputs the count
589 matrices needed for most of the analyses (87). To select quality nuclei from each library, we
590 selected nuclei meeting the thresholds in Table S2 (we set a threshold for minimum UMIs to filter
591 out barcodes that only capture ambient RNA; a threshold for maximum fragments, since barcodes
592 with very high UMI counts may be enriched for doublets; and a threshold for maximum
593 mitochondrial contamination, since barcodes with quality nuclei and low ambient RNA should
594 show reduced mitochondrial contamination (88)). We used souporcell (as contained in the
595 Singularity container downloaded from the souporcell GitHub on Dec. 10, 2019, and setting -k 2)
596 to detect doublets in the libraries that were a mix of nuclei from two human individuals (89). We
597 additionally ran doubletfinder (v. 2.0.2) (32) on each of the snRNA-seq libraries, and removed any
598 nuclei that were called as a doublet by either souporcell or doubletfinder. When running Seurat
599 (v. 3.0.2) for doubletfinder, we set selection.method = "vst" and nfeatures = 2000, and used the
600 top 20 PCs to find neighbors and resolution = 0.8 to find clusters (90,91). When calling the
601 doubletfinder_v3 function, we selected the doubletfinder pK based on the maximum 'BCmetric'
602 after running the paramSweep_v3 function, set nExp assuming a 7.5% doublet rate (adjusting for
603 the homotypic proportion as in the doubletfinder documentation example), and used the top 20
604 PCs.

605
606 Clustering with LIGER
607 Nuclei were clustered using LIGER (v. 0.4.2; with R v. 3.5.1 and Seurat v. 2.3.0) (90–92). For
608 snATAC-seq libraries, per-gene scores were computed by calculating the number of reads
609 overlapping with each gene's promoter/gene body using bedtools intersect. Gene promoter/body
610 were calculated based on NCBI annotation GTF files (NCBI Rattus norvegicus Annotation
611 Release 106 and Homo sapiens Updated Annotation Release 105.20190906), filtered to include
612 only protein-coding/lncRNA genes with source 'BestRefSeq'/BestRefSeq%2CGnomon'/'Curated
613 Genomic'. Genes assigned to multiple chromosomes/strands were excluded, and then the
614 regions for each gene were merged to get the gene body. Promoters were taken as the 3kb

615 upstream of the TSS; after this, genes represented by multiple non-contiguous genomic stretches
616 were excluded. For input to LIGER, all count matrices for a given modality and biological sample
617 were concatenated together, so that there was 1 rat snATAC matrix, 2 human snATAC matrices,
618 and 2 human snRNA matrices. For factorization, we used $k = 15$, $\lambda = 5$, and $nrep=5$, using
619 the smaller human snRNA matrix to select variable genes (as all the nuclei for that matrix were
620 processed on a single day, and should therefore reflect less technical variation). For each of the
621 downstream steps we dropped factors 3 and 5, as these had highly-loading ribosomal genes or
622 showed relatively high specificity for one of the two omics modalities. For normalization, we set
623 $knnk$ (and $small.clust.thresh$) to 10 and resolution to 0.05, and centered the data. For the UMAP,
624 we used $n_neighbors = 15$. We then called the `clusterLouvainJaccard` function to re-cluster cells
625 using the normalized factors, with $k = 17$, and resolution = 0.05.

626
627

628 Per-cluster processing of snATAC-seq data

629 The filtered reads from all snATAC-seq nuclei in each cluster were merged using samtools merge.
630 Peaks were called and bigwig files produced as described for the bulk ATAC-seq data. Peak files
631 were filtered against blacklist files available from
632 <http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncodeDacMapabilityConsensusExcludable.bed.gz> and
633 <http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncodeDukeMapabilityRegionsExcludable.bed.gz> (hg19) (56) and
634 https://github.com/shwetaramdas/maskfiles/tree/master/rataccessibleregionsmaskfiles/strains_intersect.bed for rn6 (93).

635
636

637 For analysis of rat peak overlap with human GWAS data, rat peaks were projected into the human
638 genome using bnMapper (v. 0.8.6) and the chain file at
639 <http://hgdownload.cse.ucsc.edu/goldenpath/rn6/liftOver/rn6ToHg19.over.chain.gz>.

640
641

642 Roadmap enhancer regression

643 We called peaks on the aggregate of the nuclei in each cluster, and then took the union of peaks
644 across all clusters to generate a master peak list. We then used logistic regression to model, for
645 each cluster and each Roadmap Epigenomics cell type in the Roadmap 15-state chromHMM
646 model, the accessibility of each TSS-distal master peak (> 5kb from a RefSeq TSS) in that cluster
647 as a function of the posterior probability that that master peak is an enhancer in that Roadmap
648 cell type according to the Roadmap chromHMM model (31). Since the posteriors are given in 200
649 bp windows, and there are also 3 different enhancer states ('Genic enhancers', 'Enhancers', and
650 'Bivalent Enhancer'), multiple windows overlap with each master peak -- the posterior for the
651 master peak is therefore taken as the maximum of the 200 bp window posteriors, across all 3 of
652 the enhancer states. The model coefficient was used as the (unnormalized) score for that
653 Roadmap cell type in that cluster, and the normalized score was simply the score for that
654 Roadmap cell type in that cluster divided by the max score across all cell types for that cluster.

655
656

658 For rat peaks, in addition to removing master peaks near TSS in rat coordinates, we additionally
659 removed master peaks that were within 5 kb of a TSS after projecting into human coordinates.
660

661

662 Non-muscle cell type open chromatin annotations used in GWAS

663 To create the adipose open chromatin regions, we processed the three adipose ATAC-seq
664 libraries from (76). Adapter sequences were removed using Cutadapt (v. 1.12) (94) before
665 mapping to hg19 with bwa mem (-l 200,200,5000 -M). Duplicates were marked using picard
666 MarkDuplicates and BAM files were filtered using samtools view (-F 4 -F 256 -F 1024 -F 2048 -q
667 30) before converting to BED format (bamtools bamtobed) and calling peaks with MACS2 (--
668 nomodel --shift -100 --seed 2018 --extsize 200 --broad --keep-dup all --SPMR). We then took the
669 union of peaks across the three samples, keeping those merged peaks that appeared in at least
670 two samples.

671

672 The beta cell ATAC-seq peaks were taken from (41). We used the peaks called using all beta cell
673 nuclei.

674

675 Common open chromatin regions were derived from the DNasel hypersensitive sites from (57).
676 The DHS index from Meuleman et al. was downloaded from
677 https://www.meuleman.org/DHS_Index_and_Vocabulary_hg38_WM20190703.txt.gz on March
678 21, 2020. We lifted open chromatin regions from hg38 to hg19 using liftOver with the chain file
679 from <http://hgdownload.cse.ucsc.edu/goldenpath/hg38/liftOver/hg38ToHg19.over.chain.gz> (95).
680 We then kept those that were labeled as 'tissue invariant' and that appeared in at least 500 of the
681 733 samples.

682

683 We also used open chromatin regions from (57) for adrenal gland, bone, brain, eye, gonad, gum,
684 heart, kidney, large intestine, liver, lung, mammary, mesoderm, ovary, placenta, prostate, skin,
685 small intestine, spinal cord, spleen, stomach, and umbilical cord. For each tissue, we took the
686 non-cancerous samples labeled 'Primary' from that tissue and kept those DNasel hypersensitive
687 sites that appeared in at least 50% of the samples from that tissue.

688

689 UK Biobank GWAS enrichment

690 We downloaded UK Biobank GWAS summary statistics made available by the Benjamin Neale
691 lab (v2 of their analysis, initially made public on August 1, 2018; <http://www.nealelab.is/uk-biobank/>) (46). Specifically, we downloaded the 'both sex' GWAS summary statistic files listed in
693 the 'UKBB GWAS Imputed v3 - File Manifest Release 20180731' spreadsheet available at
694 <https://docs.google.com/spreadsheets/d/1kvPoupSzsSFBNSztMzl04xMoSC3Kcx3CrjVf4yBmESU> (downloaded on April 9, 2020). Because some traits may not be appropriate for such an
696 enrichment analysis (because they are not strongly polygenic, because the phenotypes are
697 untrustworthy, etc.), we kept only traits deemed as 'high confidence' and with estimated heritability
698 > 0.01 (and z-score > 7) based on the Neale Lab's own LD score regression heritability analysis
699 of the GWAS results. Their rating criteria are described on their UKBB LDSC GitHub page
700 (https://nealelab.github.io/UKBB_Idsc/confidence.html) and their LD score regression results
701 (with confidence ratings) were downloaded from

702 https://www.dropbox.com/s/ipeqyhrpdqav5uh/ukb31063_h2_all.02Oct2019.tsv.gz?dl=1. For
703 each trait, we used the ‘primary’ GWAS result, as indicated in that file. Any traits that did not have
704 a combined male and female GWAS analysis were dropped. The creatinine GWAS highlighted in
705 the text was trait 30700_irnt (“Creatinine (quantile)”).
706

707 The LDSC software package (v. 1.0.1) includes a ‘baseline’ model with 59 categories derived
708 from 28 genomic annotations (36,45). Many of these annotations are cell type agnostic; e.g. a
709 SNP’s minor allele frequency does not change between cell types. However, other annotations in
710 the baseline model are not cell type agnostic; for example, the FANTOM5 enhancer annotation
711 is derived from experiments performed on a range of different cell types, and may change
712 substantially if the cell types used to create the annotation were to change. When performing the
713 UK Biobank GWAS enrichments, we utilized the cell-type agnostic annotations from the LDSC
714 baseline model (Table S8). In order to reduce the likelihood of model misspecification, we then
715 added common open chromatin regions and open chromatin regions from a range of cell types.
716 Specifically, we added (1) beta cell ATAC-seq peaks, (2) adipose ATAC-seq peaks, (3) DNase-
717 seq peaks derived from the 22 tissues/organs listed above, and (4) the ATAC-seq peaks from all
718 seven of our snATAC-seq cell types. The various annotation files (regression weights,
719 frequencies, etc.) required for running LDSC were downloaded from
720 <https://data.broadinstitute.org/alkesgroup/LDSCORE>. LD scores were calculated using the Phase
721 3 1000 Genomes data, keeping only the HapMap3 SNPs as recommended by the LDSC authors
722 and using only SNPs with minimum MAF of 0.01. GWAS summary statistics were prepared for
723 LDSC using the `munge_sumstats.py` script, with option `--merge-alleles w_hm3.snplist` (where
724 `w_hm3.snplist` is the file in the data download). When running the regression, we required a
725 minimum MAF of 0.05, and utilized the Phase 3 1000 Genomes SNP frequencies/weights.
726

727 T2D and fasting insulin GWAS enrichment

728 We used the T2D (BMI unadjusted) and fasting insulin (BMI adjusted) GWAS summary statistics
729 from (Mahajan et al., 2018) and (Manning et al., 2012), respectively.
730

731 Because the cell types relevant to T2D are generally thought to be pancreatic beta cells, adipose,
732 muscle, and liver, we performed enrichments using each of these cell types, common open
733 chromatin, and the cell type-agnostic LDSC baseline annotations. First, for each of these
734 muscle/beta cell/adipose/liver cell types, we ran one model containing the open chromatin from
735 that cell type, the common open chromatin regions, and the cell type-agnostic LDSC baseline
736 annotations. Then, we ran one joint model containing all of those cell types and annotations.
737 LDSC parameters were the same as for the UK Biobank GWAS enrichments.
738

739 T2D GWAS locus genome browser screenshots and peak overlaps

740 All signal tracks in the genome browser were created by converting the normalized bedgraph files
741 output by MACS2 to bigwig files using `bedGraphToBigWig` (v. 4) (83).
742

743 Processing and provenance of adipose ATAC-seq and beta cell ATAC-seq is described above.
744 The 10 bulk islet libraries were from (41). These libraries were processed as described in that

745 manuscript, except we used the 10% FDR peak set from peak calling on the unsubsmpled
746 libraries.

747

748

749 Predicting SNP regulatory impact

750 We used the lsgkm package modified by the Kundaje lab with gkmexplain
751 (<https://github.com/kundajelab/lsgkm>; commit c3758d5bee7) (59,60,63). For each cell type, we
752 took the 150 bps on either side of the summits of the top 40,000 narrowPeaks (by p-value) as the
753 positive sequences for gkmSVM. To generate negative sequences, we took windows across the
754 genome (step size = 200), removed those containing Ns, overlapping hg19 blacklists, overlapping
755 any FDR 10% broadPeaks from that cell type, or having repeat content > 60%, and then for each
756 positive sequence selected a negative sequence with matching GC content and repeat content
757 (repeat content was calculated based on the hg19 simpleRepeat table from the UCSC genome
758 browser (96,97), downloaded on March 29, 2020, which contains simple tandem repeats
759 annotated by Tandem Repeats Finder (98); GC content and repeat content for the negative
760 sequence was required to be within 2% of that of the positive sequence; in the case that no such
761 negative sequence could be found, the positive sequence was dropped from the analysis). We
762 held out 15% of sequences as test data, and trained the gkmSVM model on the remaining 85%
763 of sequences, setting $l = 10$ and $k = 6$ and using the gkm kernel. Using this model and deltaSVM
764 (61), we predicted the effect of all autosomal 1000 Genomes phase 3 SNPs (downloaded on May
765 27, 2015 from <ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502>) (62). For each muscle
766 cell type, deltaSVM scores were converted to z-scores based on the distribution of scores across
767 all SNPs for that cell type. We additionally passed the gkmSVM model to gkmexplain to generate
768 importance scores for sequences containing the ref/alt alleles.

769

770 Overlap of SNPs and peaks with ENCODE candidate cis-regulatory elements

771 The set of 1,310,152 candidate cis-regulatory elements in ENCODE's 'Registry of candidate
772 Regulatory Elements' (in hg19 coordinates) were fetched from the ENCODE web portal on April
773 7, 2020 (55,56).

774

775

776 Locuszoom plots

777 Locuszoom plots were created for the DIAMANTE T2D GWAS summary statistics with the
778 locuszoom standalone v. 1.4, using the Nov. 2014 EUR 1000 Genomes data included in the
779 download (--pop EUR --source 1000G_Nov2014) (99).

780

781 PICS

782 We used the online PICS tool (54) (<https://pubs.broadinstitute.org/pubs/finemapping/pics.php>)
783 with the EUR LD structure. The tool was accessed on April 13, 2020.

784

785 Motif scan

786 The MEF2 motif scan was performed using FIMO (v. 5.0.4) with a background model calculated
787 from the hg19 reference genome (77).

788

789

790 **Declarations**

791

792 **Ethics approval and consent to participate**

793 Human samples were approved by the University of Michigan IRB protocol # HUM 000060733.

794 Collection of the rat muscle sample was approved by the University of Michigan Institutional
795 Animal Care and Use Committee.

796

797 **Consent for publication**

798 Not applicable.

799

800 **Availability of data and materials**

801 Raw sequencing reads generated during this study are not publicly available due to privacy
802 restrictions. Processed data is available in a Zenodo repository (10.5281/zenodo.3926660).

803

804 Code used for analyses in this manuscript are available at <https://github.com/ParkerLab/2020-sn->
805 muscle.

806

807 **Competing interests**

808 The authors declare that they have no competing interests.

809

810 **Funding**

811 This work was supported by National Institute of Diabetes and Digestive and Kidney Diseases
812 grant R01 DK117960 and American Diabetes Association Pathway to Stop Diabetes grant 1-14-
813 INI-07 to SCJP, and National Institutes of Health grant R01 DK099034 to CFB. PO was funded
814 by a University of Michigan Rackham Predoctoral Fellowship and grant T32 HG00040 from the
815 National Human Genome Research Institute of the National Institutes of Health. The funding
816 agencies had no role in the study design, sample collection, data analysis/interpretation, and
817 writing of the manuscript.

818

819 **Authors' contributions**

820 NM generated the bulk ATAC-seq data and performed the nuclear isolations for the single-
821 nucleus datasets. AV and VR processed existing islet and adipose ATAC-seq data. JK helped set
822 up gkm-SVM models. CL helped coordinate production of the single-nucleus data. CFB provided
823 the rat muscle sample, and KG provided human muscle samples. PO performed all computational
824 processing and analyses of the data not attributed to others, and contributed to manuscript writing.
825 SCJP designed and supervised the study and contributed to manuscript writing. All authors read
826 and approved the manuscript.

827

828 **Acknowledgements**

829 We wish to thank the University of Michigan Advanced Genomics Core for their assistance in
830 generating the snRNA-seq and snATAC-seq libraries, and the University of Michigan Flow
831 Cytometry Core for their help performing FANS. We are grateful to the Benjamin Neale lab for

832 providing their UK Biobank GWAS and LDSC results to the scientific community. We also thank
833 members of the Parker lab for their helpful feedback.

834

835

836 **Figure legends**

837 Figure 1: (A) Study design to determine the effect of FANS on snRNA-seq and snATAC-seq
838 results. Muscle cartoon adapted from Scott et al. 2016. HSM1 refers to one specific skeletal
839 muscle sample ('human skeletal muscle 1'). Bulk ATAC-seq was performed on HSM1 as well (two
840 replicates, each separate nuclei isolations). (B) Fragment length distribution and (C) TSS
841 enrichment for two snATAC-seq libraries that did not undergo FANS and two that did, as well as
842 two bulk ATAC-seq replicates from the same sample ('Bulk'). (D) ATAC-seq signal at the *ANK1*
843 locus for FANS or non-FANS input snATAC-seq libraries, and the two bulk ATAC-seq libraries.
844 All tracks are normalized to 1M reads. Gene model (GENCODE v19 basic) displays protein coding
845 genes only. (E) Correlation between FANS and non-FANS snRNA-seq libraries; each point
846 represents one gene. (F) Study design to determine the effect of loading 20k vs 40k nuclei into
847 the 10X platform, utilizing HSM1 as well as a second sample, HSM2 ('human skeletal muscle 2').
848 Bulk ATAC-seq was performed on HSM1 (same libraries as in (a)) and on HSM2 (two replicates,
849 each separate nuclei isolations). (G) Fragment length distribution and (H) TSS enrichment for
850 snATAC-seq libraries after loading 20k vs 40k nuclei, as well as for the four bulk ATAC-seq
851 libraries (two each from the two muscle samples, 'HSM1 bulk' and 'HSM2 bulk'). (I) ATAC-seq
852 signal at the *ANK1* locus for the 20k and 40k libraries and the four bulk ATAC-seq libraries. All
853 tracks are normalized to 1M reads. Gene model (GENCODE v19 basic) displays protein coding
854 genes only. (J) Correlation between snRNA-seq libraries resulting from loading 20k vs 40k nuclei.

855

856 Figure 2: (A) UMAP after clustering human snATAC-seq, human snRNA-seq, and rat snATAC-
857 seq nuclei with LIGER. (B) UMAP faceted by species and modality. (C) Gene expression
858 (snRNA-seq) or accessibility (snATAC-seq; gene promoter + gene body) of marker genes. Values
859 are column-normalized. (D) ATAC-seq signal for human snATAC-seq nuclei in each cluster. All
860 tracks are normalized to 1M reads. (E) Fraction of nuclei, across both species and modalities,
861 assigned to each cell type. (F) Logistic regression-based approach to score similarity between
862 TSS-distal ATAC-seq peaks (> 5 kb from TSS) and Roadmap Epigenomics enhancer states. For
863 all TSS-distal ATAC-seq peaks across all muscle cell types, we scored the accessibility of the
864 peak (0/1) in each of the muscle cell types based on the presence or absence of a peak call in
865 that cell type. Then, for a given one of the 127 Roadmap Epigenomics cell types, we determined
866 the maximum posterior probability of the enhancer states in the Roadmap Epigenomics
867 chromHMM model within each peak. We then used logistic regression to model the relationship
868 between the peak accessibility and the enhancer posteriors (running one model per muscle cell
869 type per Roadmap Epigenomics cell type). Then, for each muscle cell type, the model coefficient
870 was normalized to 1 by dividing by the maximum coefficient across all 127 Roadmap Epigenomics
871 cell types, and this value was used as the enhancer similarity score for that muscle cell type and
872 Roadmap Epigenomics cell type. (G) Similarity of snATAC-seq peak calls for each cell type and
873 species to Roadmap Epigenomics chromHMM enhancer states based on the logistic regression
874 procedure outlined in (F). The Roadmap Epigenomics cell type names have been adjusted slightly
875 for clarity and the sake of space. The full names and the identifiers from the Roadmap

876 Epigenomics paper are: Psoas muscle (E100), Mesenchymal Stem Cell Derived Adipocyte
877 Cultured Cells (E023), HUVEC Umbilical Vein Endothelial Primary Cells (E122), Stomach Smooth
878 Muscle (E111), Primary monocytes from peripheral blood (E029), and Fetal Muscle Trunk (E089).
879 (H) Nucleus counts per species for snATAC-seq data.
880

881 Figure 3: (A) UK Biobank LDSC partitioned heritability results for traits for which one of the muscle
882 cell types was significant after Benjamini-Yekutieli correction. (B) LDSC partitioned heritability
883 results for creatinine (UK Biobank trait 30700). Red y-axis labels refer to the muscle snATAC-seq
884 cell type annotations. (C) Locuszoom plot for *C17orf67* locus in the UK Biobank creatinine GWAS.
885 (D) ATAC-seq signal in the region highlighted in (C). The red line represents the location of SNP
886 rs227727. All tracks are normalized to 1M reads. SNPs shown have LD > 0.8 with the lead SNP
887 based on the European samples in 1000 Genomes Phase 3 (Version 5; 1000 Genomes Project
888 Consortium et al., 2015). (E). gkmexplain importance scores for the ref and alt allele-containing
889 sequences (top two rows), and the difference between the ref and alt allele importance scores
890 (third row), which resembles the PITX2_2 motif predicted to be disrupted by the A allele (bottom
891 row).
892

893 Figure 4: (A) LDSC partitioned heritability results for T2D (BMI-unadjusted) and Fasting insulin
894 GWAS (BMI-adjusted), using human peak calls. For each of the cell types, one model was run
895 adjusting for cell type-agnostic annotations from the LDSC baseline model and common open
896 chromatin regions. Asterisks represent Bonferroni significance ($p < 0.05$ after adjusting for 40
897 tests). (B) locuszoom plot for *ITPR2* locus in the DIAMANTE data. (C) DIAMANTE credible set
898 near the *ITPR2* gene, consisting of 22 SNPs. One SNP (rs7132434; highlighted in red) overlaps
899 a peak call in any of the muscle cell types. (D) gkmexplain importance scores for the ref and alt
900 allele (top two rows) and the difference between the ref and alt importance scores (third row); the
901 G allele disrupts an AP1 motif (bottom row). (E). locuszoom plot for *ARL15* locus in the
902 DIAMANTE data. (F). DIAMANTE credible set SNPs near the *ARL15* gene. The three SNPs
903 represent the three-SNP credible set discussed in the text. One of these SNPs (rs702634;
904 highlighted in red) overlaps a mesenchymal stem cell specific peak. (G). Projecting the SNP
905 highlighted in (F), rs702634, into the rat genome (projected SNP position indicated by the red
906 vertical line) shows the corresponding region has open chromatin in rat mesenchymal stem cells.
907 (H). gkmexplain importance scores for the ref and alt alleles (top two rows), the difference
908 between them (third row), and a MEF2 motif disrupted by rs702634.
909

910 Figure S1: Chromatin state overlap for TSS-distal (> 5kb from TSS) ATAC-seq peaks from the
911 FANS and non-FANS snATAC-seq libraries.
912

913 Figure S2: Correlation between FANS snATAC-seq, non-FANS snATAC-seq, and standard bulk
914 ATAC-seq libraries. Each point represents one peak.
915

916 Figure S3: QC thresholds for FANS and non-FANS snRNA-seq libraries. Dashed lines represent
917 thresholds for minimum number of UMIs, maximum number of UMIs, and maximum fraction of
918 mitochondrial UMIs.
919

920 Figure S4: Chromatin state overlap for TSS-distal (>5 kb from TSS) ATAC-seq peaks from the
921 20k and 40k nucleus FANS snATAC-seq libraries.

922

923 Figure S5: Correlation between 20k and 40k nucleus snATAC-seq libraries and standard bulk
924 ATAC-seq libraries. Each point represents one peak.

925

926 Figure S6: QC thresholding for the 20k and 40k nuclei input snATAC-seq libraries. (a) Dashed
927 lines represent thresholds for minimum number of reads, maximum number of reads, and
928 minimum TSS enrichment. (b) Dashed lines represent thresholds for minimum number of reads,
929 maximum number of reads, and the maximum fraction of reads derived from a single autosome
930 (imposed to filter out nuclei showing aberrant per-chromosome coverage).

931

932 Figure S7: QC thresholds for the 20k and 40k nuclei input snRNA-seq libraries. Dashed lines
933 represent thresholds for minimum number of UMIs, maximum number of UMIs, and maximum
934 fraction of mitochondrial UMIs.

935

936 Figure S8: QC thresholds for all snATAC-seq libraries used in cell type clustering and downstream
937 analyses. (a) Dashed lines represent thresholds for minimum number of reads, maximum number
938 of reads, and minimum TSS enrichment. (b) Dashed lines represent thresholds for minimum
939 number of reads, maximum number of reads, and the maximum fraction of reads derived from a
940 single autosome (imposed to filter out nuclei showing aberrant per-chromosome coverage).

941

942 Figure S9: QC thresholds for all snRNA-seq libraries used in cell type clustering and downstream
943 analyses. Dashed lines represent thresholds for minimum number of UMIs, maximum number of
944 UMIs, and maximum fraction of mitochondrial UMIs.

945

946 Figure S10: snATAC-seq read counts (gene promoter + gene body) derived from the Type II
947 muscle fiber myosin heavy chain genes (MYH1, MYH2, MYH4) or the Type I muscle fiber myosin
948 heavy chain gene (MYH7) for human and rat nuclei. Each point represents a single nucleus. Type
949 I muscle fibers/Type II muscle fibers headers represent the cluster to which each nucleus was
950 assigned.

951

952 Figure S11: Log2(fold change) for Type II vs Type I muscle fiber gene expression, showing the
953 genes with the largest fold changes between fiber types based on data from Rubenstein et al.
954 (Rubenstein et al. Table S4). Rubenstein et al. performed RNA-seq on pooled type I and pooled
955 type II muscle fibers, and determined the 20 genes with the largest fold change in type II relative
956 to type I fibers, and the 20 genes with the largest fold change in the other direction, along with p-
957 values for differential expression. The 34 genes (of those 40 genes) that were differentially
958 expressed are shown here. The gene fold changes based on the muscle snRNA-seq data are
959 often lower in magnitude than the fold changes based on Rubenstein et. al's pooled RNA-seq
960 data; this is unsurprising, as ambient RNA in the snRNA-seq data as well as any errors in nucleus
961 fiber type assignments in snRNA-seq data clustering will reduce the observed fiber type
962 differences.

963

964 Figure S12: UK Biobank LDSC partitioned heritability results for traits for which one of the muscle
965 cell types was significant after Benjamini-Yekutieli correction. (A) human, (B) rat.

966

967 Figure S13: (A) LDSC partitioned heritability results for T2D (BMI-unadjusted) and Fasting insulin
968 GWAS (BMI-adjusted), using human peak calls. Results are shown for pancreatic beta cell,
969 adipose, and liver open chromatin regions as well. First, for each of the ten cell types, one model
970 was run adjusting for cell type-agnostic annotations from the LDSC baseline model and common
971 open chromatin regions (this is the joint model with open chromatin). Then, a single model
972 containing those same annotations and all ten cell types was run (this is the joint model with open
973 chromatin and all other cell types). Asterisk represents Bonferroni significance ($p < 0.05$ after
974 adjusting for two traits, ten cell types, and two models per cell type = 40 tests). (B) Same as (A),
975 but using the rat peak calls projected into human coordinates for the muscle cell types.

976

977 Figure S14: ATAC-seq signal in bulk adipose, bulk islet, single-nucleus pancreatic beta cell, or
978 our muscle cell types at the *ITPR2* locus. Position of SNP rs7132434 is indicated by the long
979 vertical red line. All tracks are normalized to 1M reads.

980

981 Figure S15: ATAC-seq signal in bulk adipose, bulk islet, single-nucleus pancreatic beta cell, or
982 our muscle cell types at the *ARL15* locus. Position of SNP rs702634 is indicated by the long
983 vertical red line. All tracks are normalized to 1M reads.

984

985 Table legends

986 Table S1: snATAC-seq per-nucleus QC thresholds.

987 Table S2: snRNA-seq per-nucleus QC thresholds.

988 Table S3: Per library summary statistics (number nuclei per sample, mean and median fragments
989 per library).

990 Table S4: Marker genes used for cluster cell type assignment.

991 Table S5: Nucleus counts per cell type, species, and modality.

992 Table S6: LDSC partitioned heritability z-scores for human snATAC-seq peaks.

993 Table S7: Cell type annotation overlap summary for credible sets from Mahajan et al. 2018.
994 Values represent the number of credible set SNPs at each locus that overlap with the specified
995 annotation. The *ARL15* locus discussed in the text (5_53271420) indicates one SNP overlaps
996 with an Islet ATAC-seq peak; however, visual inspection of the locus reveals no convincing signal
997 in any of the 10 examined islet ATAC-seq libraries (Fig. S15).

998 Table S8: LDSC baseline model annotations used.

999

1000

1001

1002 References

1003

1. Frontera WR, Ochala J. Skeletal muscle: a brief review of structure and function. *Calcif Tissue Int.* 2015 Mar;96(3):183–95.
2. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. *J Appl Physiol.* 2000 Jul 1;89(1):81–8.
3. Simoneau JA, Bouchard C. Human variation in skeletal muscle fiber-type proportion and

1009 enzyme activities. *Am J Physiol.* 1989 Oct;257(4 Pt 1):E567-572.

1010 4. Talbot J, Maves L. Skeletal muscle fiber type: using insights from muscle developmental
1011 biology to dissect targets for susceptibility and resistance to muscle disease. *Wiley
1012 Interdiscip Rev Dev Biol.* 2016 Jul;5(4):518-34.

1013 5. Relaix F, Zammit PS. Satellite cells are essential for skeletal muscle regeneration: the cell
1014 on the edge returns centre stage. *Development.* 2012 Aug;139(16):2845-56.

1015 6. Judson RN, Zhang R-H, Rossi FMA. Tissue-resident mesenchymal stem/progenitor cells in
1016 skeletal muscle: collaborators or saboteurs? *FEBS J.* 2013 Sep;280(17):4100-8.

1017 7. Klimczak A, Kozlowska U, Kurpisz M. *Muscle Stem/Progenitor Cells and Mesenchymal
1018 Stem Cells of Bone Marrow Origin for Skeletal Muscle Regeneration in Muscular
1019 Dystrophies. Arch Immunol Ther Exp (Warsz).* 2018;66(5):341-54.

1020 8. Mattis KK, Gloyn AL. From Genetic Association to Molecular Mechanisms for Islet-cell
1021 Dysfunction in Type 2 Diabetes. *J Mol Biol.* 2020 Mar 6;432(5):1551-78.

1022 9. Travers ME, Mackay DJG, Nitert MD, Morris AP, Lindgren CM, Berry A, et al. Insights Into
1023 the Molecular Mechanism for Type 2 Diabetes Susceptibility at the KCNQ1 Locus From
1024 Temporal Changes in Imprinting Status in Human Islets. *Diabetes.* 2013 Mar 1;62(3):987-
1025 92.

1026 10. Xiong Z, Dankova G, Howe LJ, Lee MK, Hysi PG, de Jong MA, et al. Novel genetic loci
1027 affecting facial shape variation in humans. McCarthy MI, Morris AP, Morris AP, Cha S,
1028 editors. *eLife.* 2019 Nov 25;8:e49898.

1029 11. Pillon NJ, Bilan PJ, Fink LN, Klip A. Cross-talk between skeletal muscle and immune cells:
1030 muscle-derived mediators and metabolic implications. *Am J Physiol-Endocrinol Metab.*
1031 2012 Dec 31;304(5):E453-65.

1032 12. Micheli AJD, Spector JA, Elemento O, Cosgrove BD. A reference single-cell transcriptomic
1033 atlas of human skeletal muscle tissue reveals bifurcated muscle stem cell populations.
1034 *bioRxiv.* 2020 Jan 23;2020.01.21.914713.

1035 13. Rubenstein AB, Smith GR, Raue U, Begue G, Minchev K, Ruf-Zamojski F, et al. Single-cell
1036 transcriptional profiles in human skeletal muscle. *Sci Rep.* 2020 Jan 14;10(1):1-15.

1037 14. Xi H, Langerman J, Sabri S, Chien P, Young CS, Younesi S, et al. A Human Skeletal
1038 Muscle Atlas Identifies the Trajectories of Stem and Progenitor Cells across Development
1039 and from Human Pluripotent Stem Cells. *Cell Stem Cell.* 2020 May 10;

1040 15. De Micheli AJ, Laurilliard EJ, Heinke CL, Ravichandran H, Fraczek P, Soueid-Baumgarten
1041 S, et al. Single-Cell Analysis of the Muscle Stem Cell Hierarchy Identifies Heterotypic
1042 Communication Signals Involved in Skeletal Muscle Regeneration. *Cell Rep.* 2020 Mar
1043 10;30(10):3583-3595.e5.

1044 16. Dell'Orso S, Juan AH, Ko K-D, Naz F, Perovanovic J, Gutierrez-Cruz G, et al. Single cell
1045 analysis of adult mouse skeletal muscle stem cells in homeostatic and regenerative
1046 conditions. *Development [Internet].* 2019 Jun 15 [cited 2019 Dec 19];146(12). Available
1047 from: <http://dev.biologists.org/content/146/12/dev174177>

1048 17. Giordani L, He GJ, Negroni E, Sakai H, Law JYC, Siu MM, et al. High-Dimensional Single-
1049 Cell Cartography Reveals Novel Skeletal Muscle-Resident Cell Populations. *Mol Cell.* 2019
1050 May 2;74(3):609-621.e6.

1051 18. Oprescu SN, Yue F, Qiu J, Brito LF, Kuang S. Temporal Dynamics and Heterogeneity of
1052 Cell Populations during Skeletal Muscle Regeneration. *iScience [Internet].* 2020 Mar 20
1053 [cited 2020 May 24];23(4). Available from:
1054 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7125354/>

1055 19. Pawlikowski B, Betta ND, Elston T, O'Rourke R, Jones K, Olwin BB. A cellular atlas of
1056 skeletal muscle regeneration and aging. *bioRxiv.* 2019 May 13;635805.

1057 20. Tabula Muris Consortium, Overall coordination, Logistical coordination, Organ collection
1058 and processing, Library preparation and sequencing, Computational data analysis, et al.
1059 Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. *Nature.*

1060 21. 2018;562(7727):367–72.

1061 21. Qiu K, Xu D, Wang L, Zhang X, Jiao N, Gong L, et al. Association Analysis of Single-Cell

1062 RNA Sequencing and Proteomics Reveals a Vital Role of Ca²⁺ Signaling in the

1063 Determination of Skeletal Muscle Development Potential. *Cells*. 2020 Apr 22;9(4).

1064 22. Alessio E, Buson L, Chemello F, Peggion C, Grespi F, Martini P, et al. Single cell analysis

1065 reveals the involvement of the long non-coding RNA Pvt1 in the modulation of muscle

1066 atrophy and mitochondrial network. *Nucleic Acids Res*. 2019 Feb 28;47(4):1653–70.

1067 23. Chemello F, Bean C, Cancellara P, Laveder P, Reggiani C, Lanfranchi G. Microgenomic

1068 analysis in skeletal muscle: expression signatures of individual fast and slow myofibers.

1069 *PLoS One*. 2011 Feb 22;6(2):e16807.

1070 24. Chemello F, Grespi F, Zulian A, Cancellara P, Hebert-Chatelain E, Martini P, et al.

1071 Transcriptomic Analysis of Single Isolated Myofibers Identifies miR-27a-3p and miR-142-

1072 3p as Regulators of Metabolism in Skeletal Muscle. *Cell Rep*. 2019 26;26(13):3784–

1073 3797.e8.

1074 25. Raue U, Trappe TA, Estrem ST, Qian H-R, Helvering LM, Smith RC, et al. Transcriptome

1075 signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles

1076 in young and old adults. *J Appl Physiol*. 2012 May;112(10):1625–36.

1077 26. Cho DS, Doles JD. Single cell transcriptome analysis of muscle satellite cells reveals

1078 widespread transcriptional heterogeneity. *Gene*. 2017 Dec 15;636:54–63.

1079 27. Fukada S, Uezumi A, Ikemoto M, Masuda S, Segawa M, Tanimura N, et al. Molecular

1080 signature of quiescent satellite cells in adult skeletal muscle. *Stem Cells*. 2007

1081 Oct;25(10):2448–59.

1082 28. Liu Y, Wu B, Gong L, An C, Lin J, Li Q, et al. Dissecting cell diversity and connectivity in

1083 skeletal muscle for myogenesis. *Cell Death Dis* [Internet]. 2019 Jun 3 [cited 2020 May

1084 24];10(6). Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6546706/>

1085 29. Orchard P, Kyono Y, Hensley J, Kitzman JO, Parker SCJ. Quantification, Dynamic

1086 Visualization, and Validation of Bias in ATAC-Seq Data with ataqv. *Cell Syst*. 2020 Mar

1087 25;10(3):298–306.e4.

1088 30. Scott LJ, Erdos MR, Huyghe JR, Welch RP, Beck AT, Wolford BN, et al. The genetic

1089 regulatory signature of type 2 diabetes in human skeletal muscle. *Nat Commun*. 2016

1090 Jun;7:1–12.

1091 31. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A,

1092 et al. Integrative analysis of 111 reference human epigenomes. *Nature*. 2015

1093 Feb;518(7539):317–30.

1094 32. McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: Doublet Detection in Single-Cell

1095 RNA Sequencing Data Using Artificial Nearest Neighbors. *Cell Syst*. 2019 24;8(4):329–

1096 337.e4.

1097 33. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic

1098 Localization of Common Disease-Associated Variation in Regulatory DNA. *Science*. 2012

1099 Sep 7;337(6099):1190–5.

1100 34. Parker SCJ, Stitzel ML, Taylor DL, Orozco JM, Erdos MR, Akiyama JA, et al. Chromatin

1101 stretch enhancer states drive cell-specific gene regulation and harbor human disease risk

1102 variants. *Proc Natl Acad Sci*. 2013 Oct 29;110(44):17921–6.

1103 35. Schaub MA, Boyle AP, Kundaje A, Batzoglou S, Snyder M. Linking disease associations

1104 with regulatory information in the human genome. *Genome Res*. 2012 Sep 1;22(9):1748–

1105 59.

1106 36. Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh P-R, et al. Partitioning

1107 heritability by functional annotation using genome-wide association summary statistics. *Nat*

1108 *Genet*. 2015 Nov;47(11):1228–35.

1109 37. Gaulton KJ, Ferreira T, Lee Y, Raimondo A, Mägi R, Reschen ME, et al. Genetic fine

1110 mapping and genomic annotation defines causal mechanisms at type 2 diabetes

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

susceptibility loci. *Nat Genet*. 2015 Dec;47(12):1415–25.
38. Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. *Nat Genet*. 2018 Nov;50(11):1505.
39. Pasquali L, Gaulton KJ, Rodríguez-Seguí SA, Mularoni L, Miguel-Escalada I, Akerman I, et al. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. *Nat Genet*. 2014 Feb;46(2):136–43.
40. Quang DX, Erdos MR, Parker SCJ, Collins FS. Motif signatures in stretch enhancers are enriched for disease-associated genetic variants. *Epigenetics Chromatin*. 2015;8:23.
41. Rai V, Quang DX, Erdos MR, Cusanovich DA, Daza RM, Narisu N, et al. Single-cell ATAC-Seq in human pancreatic islets and deep learning upscaling of rare cells reveals cell-specific type 2 diabetes regulatory signatures. *Mol Metab*. 2020 Feb;32:109–21.
42. Thurner M, van de Bunt M, Torres JM, Mahajan A, Nylander V, Bennett AJ, et al. Integration of human pancreatic islet genomic data refines regulatory mechanisms at Type 2 Diabetes susceptibility loci. *eLife*. 2018 07;7.
43. Varshney A, Scott LJ, Welch RP, Erdos MR, Chines PS, Narisu N, et al. Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. *Proc Natl Acad Sci*. 2017 Feb;114(9):2301–2306.
44. Varshney A, Kyono Y, Elangovan VR, Wang C, Erdos MR, Narisu N, et al. A transcriptional regulatory atlas of human pancreatic islets reveals non-coding functional signatures at GWAS loci. *bioRxiv*. 2020 Jan 6;812552.
45. Gazal S, Finucane HK, Furlotte NA, Loh P-R, Palamara PF, Liu X, et al. Linkage disequilibrium–dependent architecture of human complex traits shows action of negative selection. *Nat Genet*. 2017 Sep 11;49(10):1421–7.
46. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. *PLoS Med* [Internet]. 2015 Mar 31 [cited 2020 Apr 7];12(3). Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380465/>
47. Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. *Npj Regen Med*. 2019 Dec 2;4(1):1–15.
48. Xian L, Wu X, Pang L, Lou M, Rosen C, Qiu T, et al. Matrix IGF-1 regulates bone mass by activation of mTOR in mesenchymal stem cells. *Nat Med*. 2012 Jul;18(7):1095–101.
49. Iglesias AI, Mishra A, Vitart V, Bykhovskaya Y, Höhn R, Springelkamp H, et al. Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases. *Nat Commun*. 2018 May 14;9(1):1–11.
50. Kashani K, Rosner MH, Ostermann M. Creatinine: From physiology to clinical application. *Eur J Intern Med*. 2020 Feb;72:9–14.
51. Baxmann AC, Ahmed MS, Marques NC, Menon VB, Pereira AB, Kirsztajn GM, et al. Influence of Muscle Mass and Physical Activity on Serum and Urinary Creatinine and Serum Cystatin C. *Clin J Am Soc Nephrol CJASN*. 2008 Mar;3(2):348–54.
52. Kashani KB, Frazee EN, Kukrálová L, Sarvottam K, Herasevich V, Young PM, et al. Evaluating Muscle Mass by Using Markers of Kidney Function: Development of the Sarcopenia Index. *Crit Care Med*. 2017 Jan;45(1):e23–9.
53. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. *Ann Intern Med*. 1999 Mar 16;130(6):461–70.
54. Farh KK-H, Marson A, Zhu J, Kleinewietfeld M, Housley WJ, Beik S, et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. *Nature*. 2015 Feb 19;518(7539):337–43.

1162 55. ENCODE Project Consortium. A user's guide to the encyclopedia of DNA elements
1163 (ENCODE). *PLoS Biol.* 2011 Apr;9(4):e1001046.

1164 56. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human
1165 genome. *Nature.* 2012 Sep 6;489(7414):57–74.

1166 57. Meuleman W, Muratov A, Rynes E, Halow J, Lee K, Bates D, et al. Index and biological
1167 spectrum of accessible DNA elements in the human genome. *bioRxiv.* 2019 Nov
1168 15;822510.

1169 58. Leslie EJ, Taub MA, Liu H, Steinberg KM, Koboldt DC, Zhang Q, et al. Identification of
1170 functional variants for cleft lip with or without cleft palate in or near PAX7, FGFR2, and
1171 NOG by targeted sequencing of GWAS loci. *Am J Hum Genet.* 2015 Mar 5;96(3):397–411.

1172 59. Ghandi M, Lee D, Mohammad-Noori M, Beer MA. Enhanced regulatory sequence
1173 prediction using gapped k-mer features. *PLoS Comput Biol.* 2014 Jul;10(7):e1003711.

1174 60. Lee D. LS-GKM: a new gkm-SVM for large-scale datasets. *Bioinformatics.* 2016
1175 15;32(14):2196–8.

1176 61. Lee D, Gorkin DU, Baker M, Strober BJ, Asoni AL, McCallion AS, et al. A method to predict
1177 the impact of regulatory variants from DNA sequence. *Nat Publ Group.* 2015
1178 Jun;47(8):955–961.

1179 62. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang
1180 HM, et al. A global reference for human genetic variation. *Nature.* 2015 Oct
1181 1;526(7571):68–74.

1182 63. Shrikumar A, Prakash E, Kundaje A. GkmExplain: fast and accurate interpretation of
1183 nonlinear gapped k-mer SVMs. *Bioinformatics.* 2019 Jul 15;35(14):i173–82.

1184 64. Kheradpour P, Kellis M. Systematic discovery and characterization of regulatory motifs in
1185 ENCODE TF binding experiments. *Nucleic Acids Res.* 2014 Mar;42(5):2976–87.

1186 65. Costamagna D, Mommaerts H, Sampaolesi M, Tylzanowski P. Noggin inactivation affects
1187 the number and differentiation potential of muscle progenitor cells in vivo. *Sci Rep.* 2016
1188 Aug 30;6(1):1–16.

1189 66. Friedrichs M, Wirsdoerfer F, Flohé SB, Schneider S, Wuelling M, Vortkamp A. BMP
1190 signaling balances proliferation and differentiation of muscle satellite cell descendants.
1191 *BMC Cell Biol.* 2011 Jun 6;12(1):26.

1192 67. Sartori R, Schirwis E, Blaauw B, Bortolanza S, Zhao J, Enzo E, et al. BMP signaling
1193 controls muscle mass. *Nat Genet.* 2013 Nov;45(11):1309–18.

1194 68. Sartori R, Gregorevic P, Sandri M. TGFB and BMP signaling in skeletal muscle: potential
1195 significance for muscle-related disease. *Trends Endocrinol Metab.* 2014 Sep;25(9):464–
1196 71.

1197 69. Ugarte G, Cappellari O, Perani L, Pistocchi A, Cossu G. Noggin recruits mesoderm
1198 progenitors from the dorsal aorta to a skeletal myogenic fate. *Dev Biol.* 2012 May
1199 1;365(1):91–100.

1200 70. Wang H, Noulet F, Edom-Vovard F, Le Grand F, Duprez D. Bmp Signaling at the Tips of
1201 Skeletal Muscles Regulates the Number of Fetal Muscle Progenitors and Satellite Cells
1202 during Development. *Dev Cell.* 2010 Apr 20;18(4):643–54.

1203 71. Manning AK, Hivert M-F, Scott RA, Grimsby JL, Bouatia-Naji N, Chen H, et al. A genome-
1204 wide approach accounting for body mass index identifies genetic variants influencing
1205 fasting glycemic traits and insulin resistance. *Nat Genet.* 2012 May 13;44(6):659–69.

1206 72. Liu C-T, Buchkovich ML, Winkler TW, Heid IM, African Ancestry Anthropometry Genetics
1207 Consortium, GIANT Consortium, et al. Multi-ethnic fine-mapping of 14 central adiposity
1208 loci. *Hum Mol Genet.* 2014 Sep 1;23(17):4738–44.

1209 73. Mahajan A, Go MJ, Zhang W, Below JE, Gaulton KJ, Ferreira T, et al. Genome-wide trans-
1210 ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes
1211 susceptibility. *Nat Genet.* 2014 Mar;46(3):234–44.

1212 74. Richards JB, Waterworth D, O'Rahilly S, Hivert M-F, Loos RJF, Perry JRB, et al. A

1213 Genome-Wide Association Study Reveals Variants in ARL15 that Influence Adiponectin
1214 Levels. *PLoS Genet* [Internet]. 2009 Dec 11 [cited 2020 Apr 7];5(12). Available from:
1215 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781107/>

1216 75. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al.
1217 Biological, clinical and population relevance of 95 loci for blood lipids. *Nature*. 2010 Aug
1218 5;466(7307):707–13.

1219 76. Cannon ME, Currin KW, Young KL, Perrin HJ, Vadlamudi S, Safi A, et al. Open Chromatin
1220 Profiling in Adipose Tissue Marks Genomic Regions with Functional Roles in
1221 Cardiometabolic Traits. *G3 GenesGenomesGenetics*. 2019 Jun 11;9(8):2521–33.

1222 77. Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif.
1223 *Bioinformatics*. 2011 Mar;27(7):1017–1018.

1224 78. Preissl S, Fang R, Huang H, Zhao Y, Raviram R, Gorkin DU, et al. Single-nucleus analysis
1225 of accessible chromatin in developing mouse forebrain reveals cell-type-specific
1226 transcriptional regulation. *Nat Neurosci*. 2018;21(3):432–9.

1227 79. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform.
1228 *Bioinformatics*. 2009 Jul;25(14):1754–1760.

1229 80. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
1230 Alignment/Map format and SAMtools. *Bioinformatics*. 2009 Aug 15;25(16):2078–9.

1231 81. Quinlan AR. BEDTools: The Swiss-Army Tool for Genome Feature Analysis: BEDTools:
1232 the Swiss-Army Tool for Genome Feature Analysis. In: Bateman A, Pearson WR, Stein LD,
1233 Stormo GD, Yates JR, editors. *Current Protocols in Bioinformatics* [Internet]. Hoboken, NJ,
1234 USA: John Wiley & Sons, Inc.; 2014 [cited 2017 Dec 11]. p. 11.12.1-11.12.34. Available
1235 from: <http://doi.wiley.com/10.1002/0471250953.bi1112s47>

1236 82. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based
1237 analysis of ChIP-Seq (MACS). *Genome Biol*. 2008;9(9):R137.

1238 83. Kent WJ, Zweig AS, Barber G, Hinrichs AS, Karolchik D. BigWig and BigBed: enabling
1239 browsing of large distributed datasets. *Bioinformatics*. 2010 Sep 1;26(17):2204–7.

1240 84. Kang HM, Subramaniam M, Targ S, Nguyen M, Maliskova L, McCarthy E, et al.
1241 Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. *Nat
1242 Biotechnol*. 2018;36(1):89–94.

1243 85. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native
1244 chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding
1245 proteins and nucleosome position. *Nat Methods*. 2013 Dec;10(12):1213–8.

1246 86. Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, et al. Single-
1247 cell chromatin accessibility reveals principles of regulatory variation. *Nature*. 2015 Jul
1248 23;523(7561):486–90.

1249 87. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast
1250 universal RNA-seq aligner. *Bioinformatics*. 2012 Dec;29(1):15–21.

1251 88. Alvarez M, Rahmani E, Jew B, Garske KM, Miao Z, Benhammou JN, et al. Enhancing
1252 droplet-based single-nucleus RNA-seq resolution using the semi-supervised machine
1253 learning classifier DIEM. *bioRxiv*. 2019 Oct 2;786285.

1254 89. Heaton H, Talman AM, Knights A, Imaz M, Gaffney D, Durbin R, et al. souporcell: Robust
1255 clustering of single cell RNASeq by genotype and ambient RNA inference without
1256 reference genotypes. *bioRxiv*. 2019 Sep 10;699637.

1257 90. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic
1258 data across different conditions, technologies, and species. *Nat Biotechnol*. 2018
1259 May;36(5):411–20.

1260 91. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al.
1261 Comprehensive Integration of Single-Cell Data. *Cell*. 2019 Jun 13;177(7):1888–1902.e21.

1262 92. Welch JD, Kozareva V, Ferreira A, Vanderburg C, Martin C, Macosko EZ. Single-Cell
1263 Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity. *Cell*. 2019

1264 Jun;177(7):1873-1887.e17.

1265 93. Ramdas S, Ozel AB, Treutelaar MK, Holl K, Mandel M, Woods LCS, et al. Extended
1266 regions of suspected mis-assembly in the rat reference genome. *Sci Data*. 2019 Apr
1267 23;6(1):39.

1268 94. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads.
1269 *EMBnet.journal*. 2011 May 2;17(1):10–2.

1270 95. Hinrichs AS, Karolchik D, Baertsch R, Barber GP, Bejerano G, Clawson H, et al. The
1271 UCSC Genome Browser Database: update 2006. *Nucleic Acids Res*. 2006 Jan
1272 1;34(Database issue):D590-598.

1273 96. Casper J, Zweig AS, Villarreal C, Tyner C, Speir ML, Rosenbloom KR, et al. The UCSC
1274 Genome Browser database: 2018 update. *Nucleic Acids Res*. 2018 Jan 4;46(D1):D762–9.

1275 97. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human
1276 genome browser at UCSC. *Genome Res*. 2002;12(6):996–1006.

1277 98. Benson G. Tandem repeats finder: a program to analyze DNA sequences. *Nucleic Acids
1278 Res*. 1999 Jan 15;27(2):573–80.

1279 99. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al. LocusZoom:
1280 regional visualization of genome-wide association scan results. *Bioinformatics*. 2010 Sep
1281 15;26(18):2336–7.

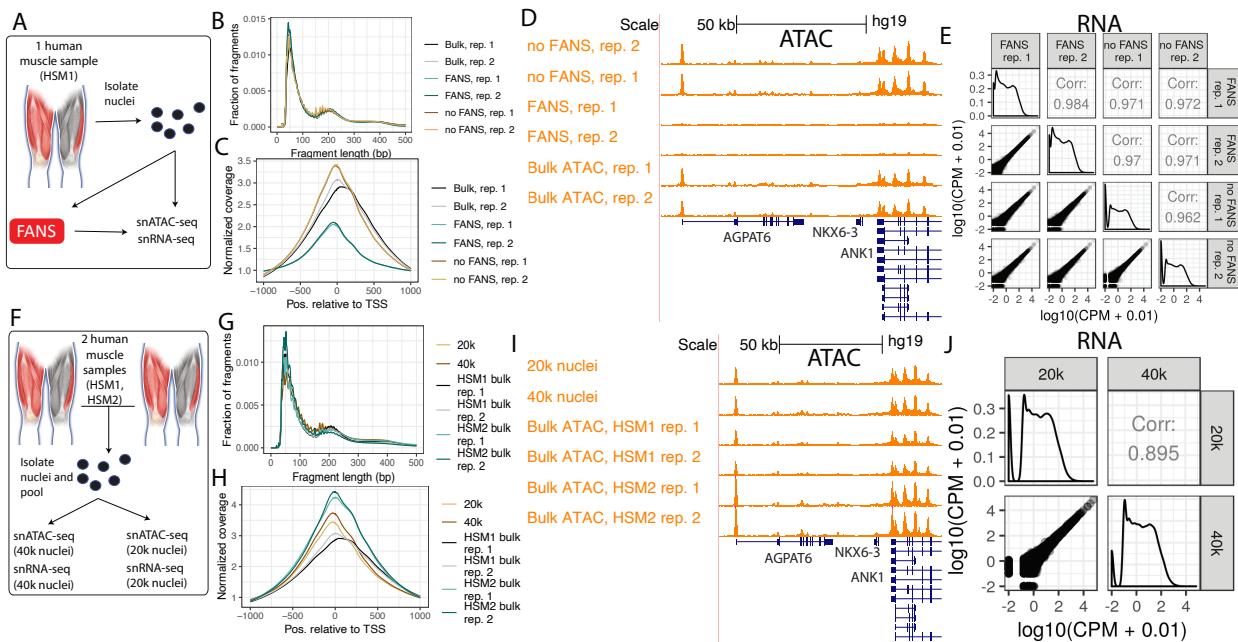


Figure 1.

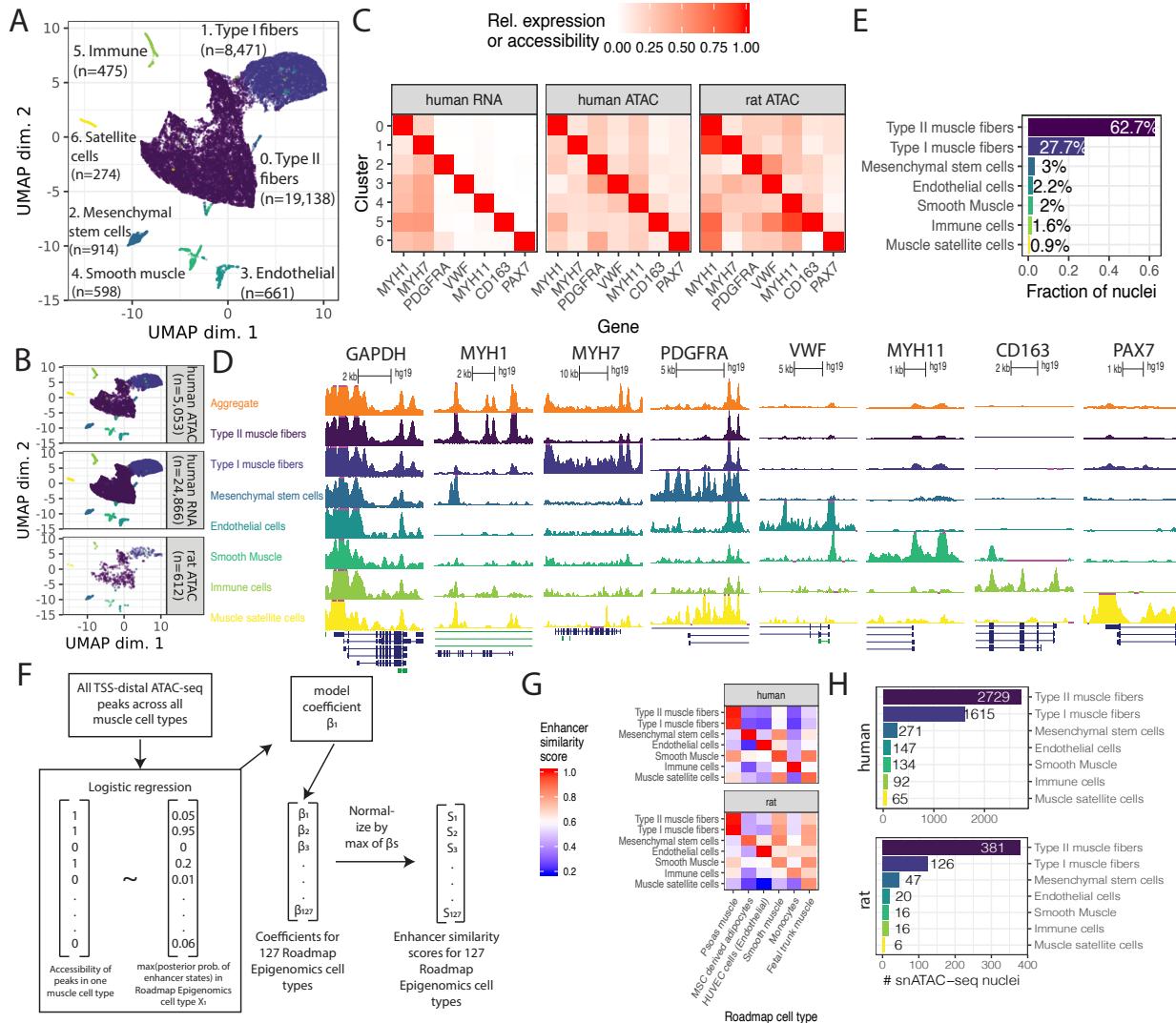


Figure 2.

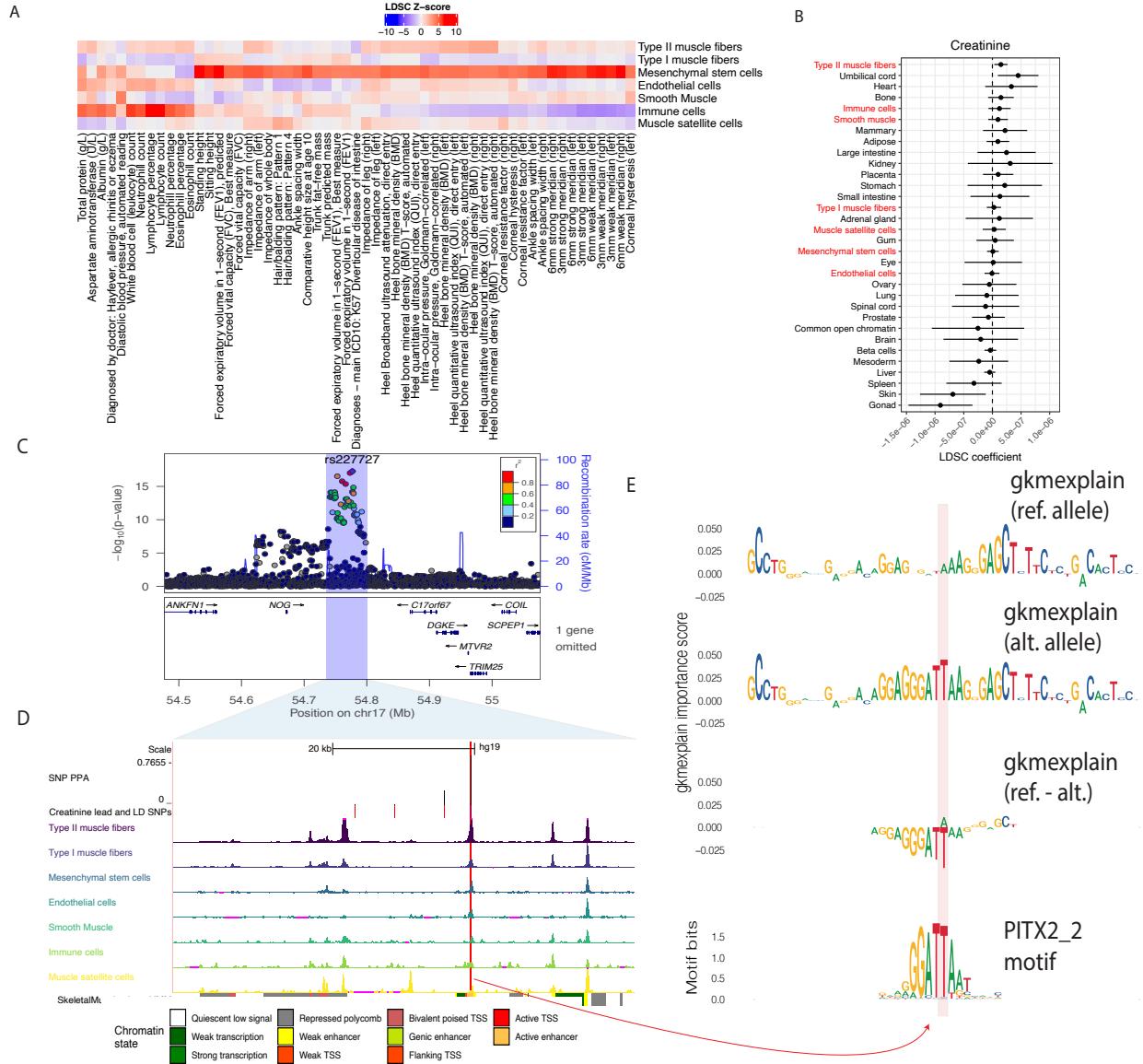


Figure 3.

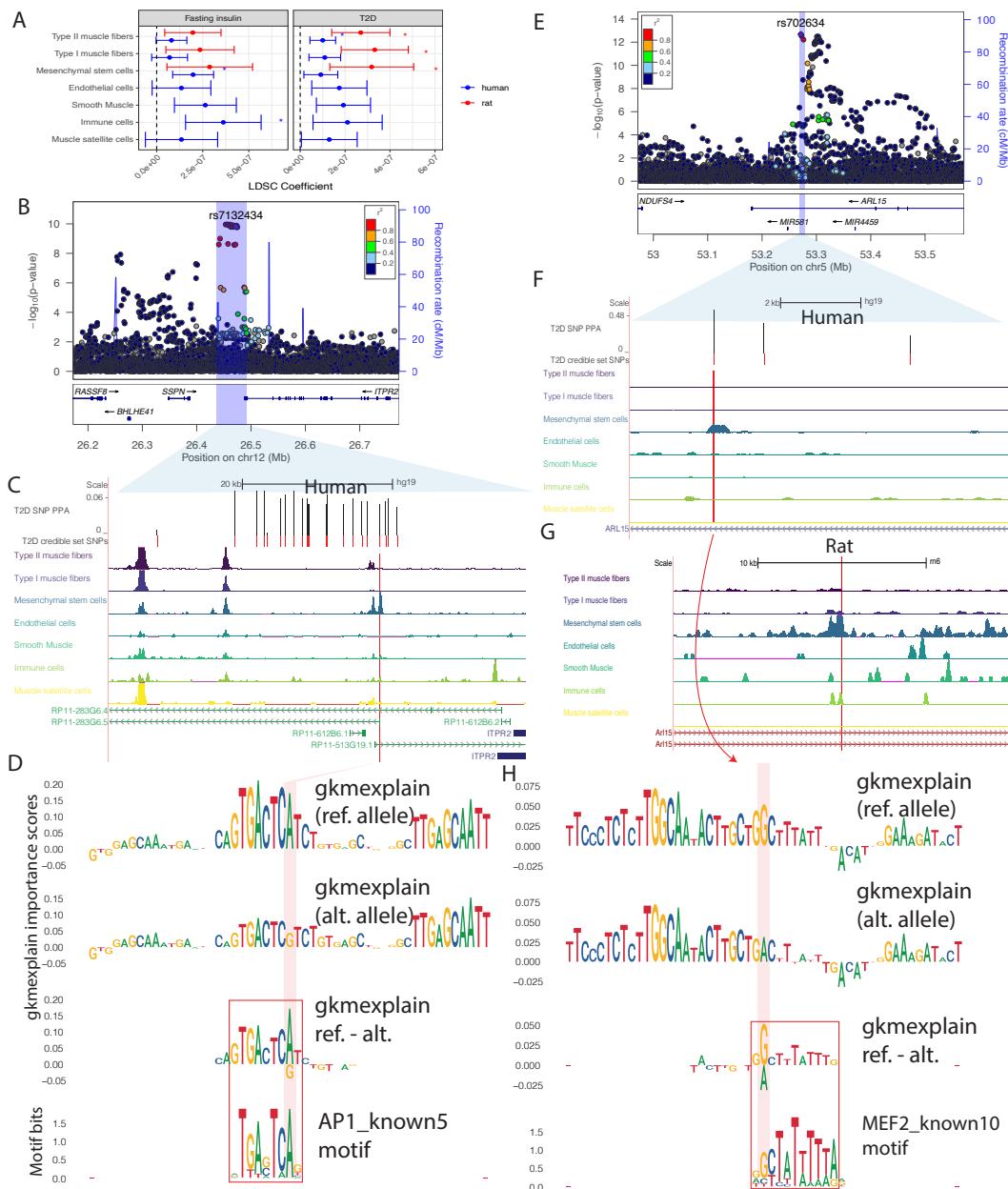


Figure 4.

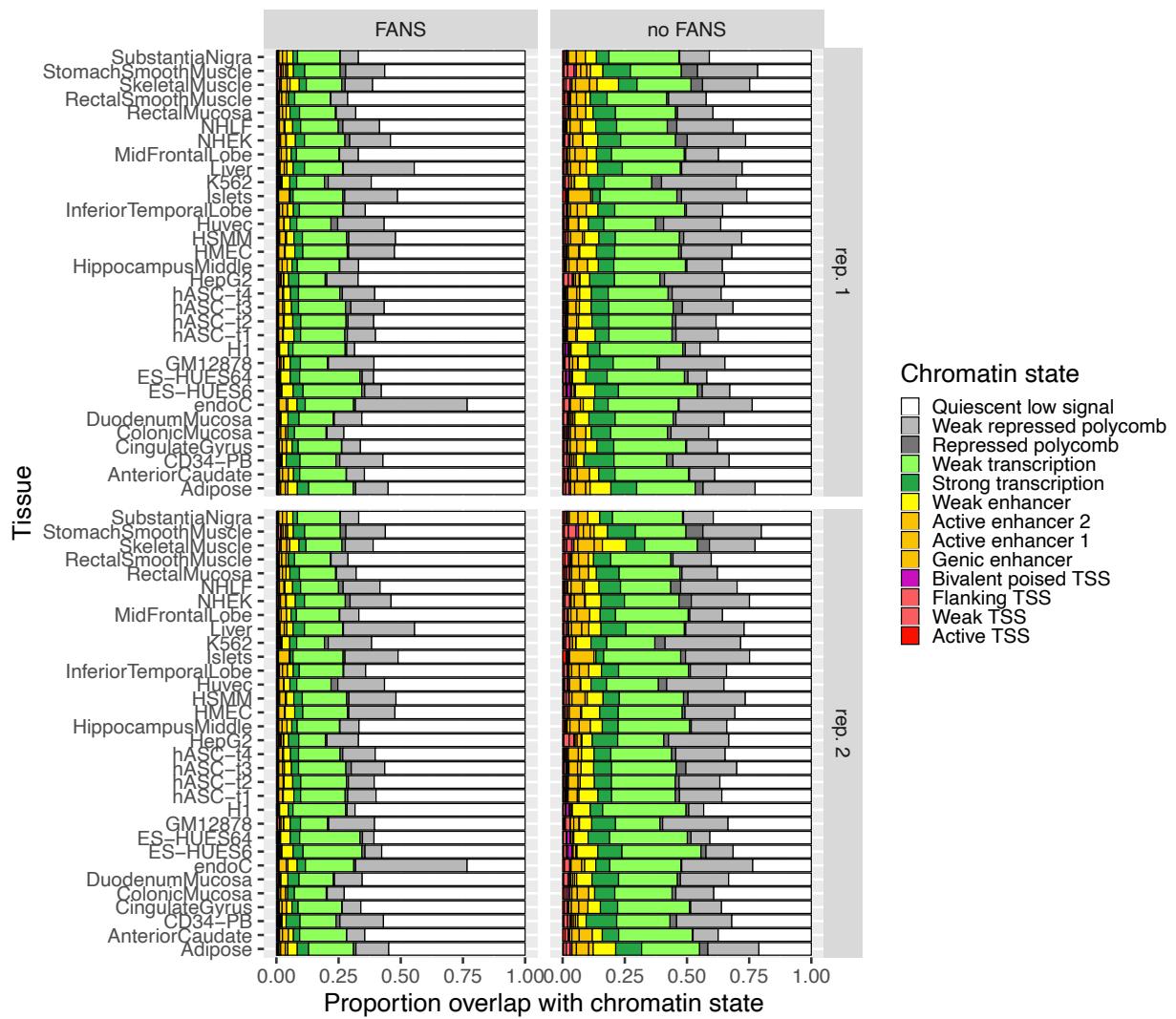


Figure S1.

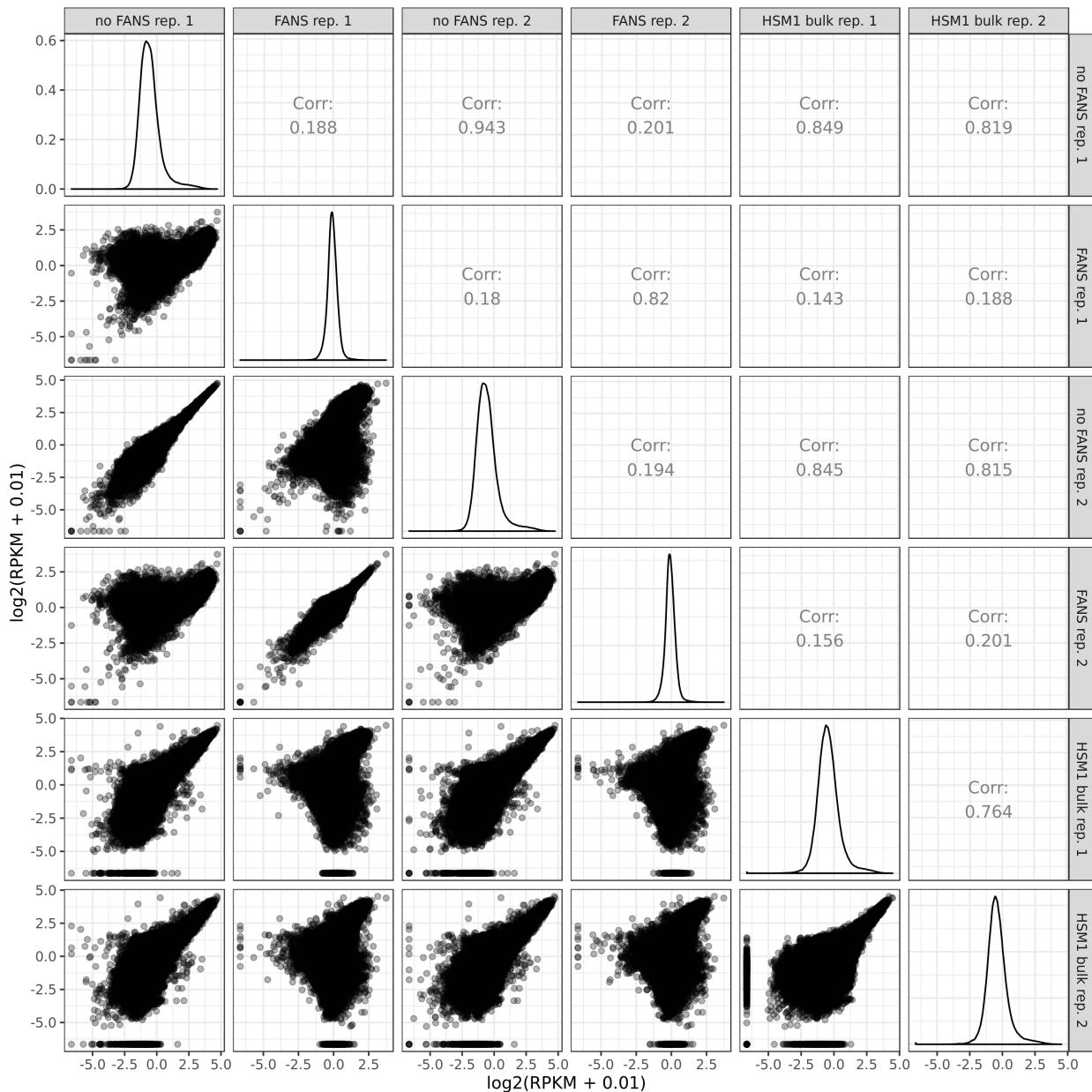


Figure S2.

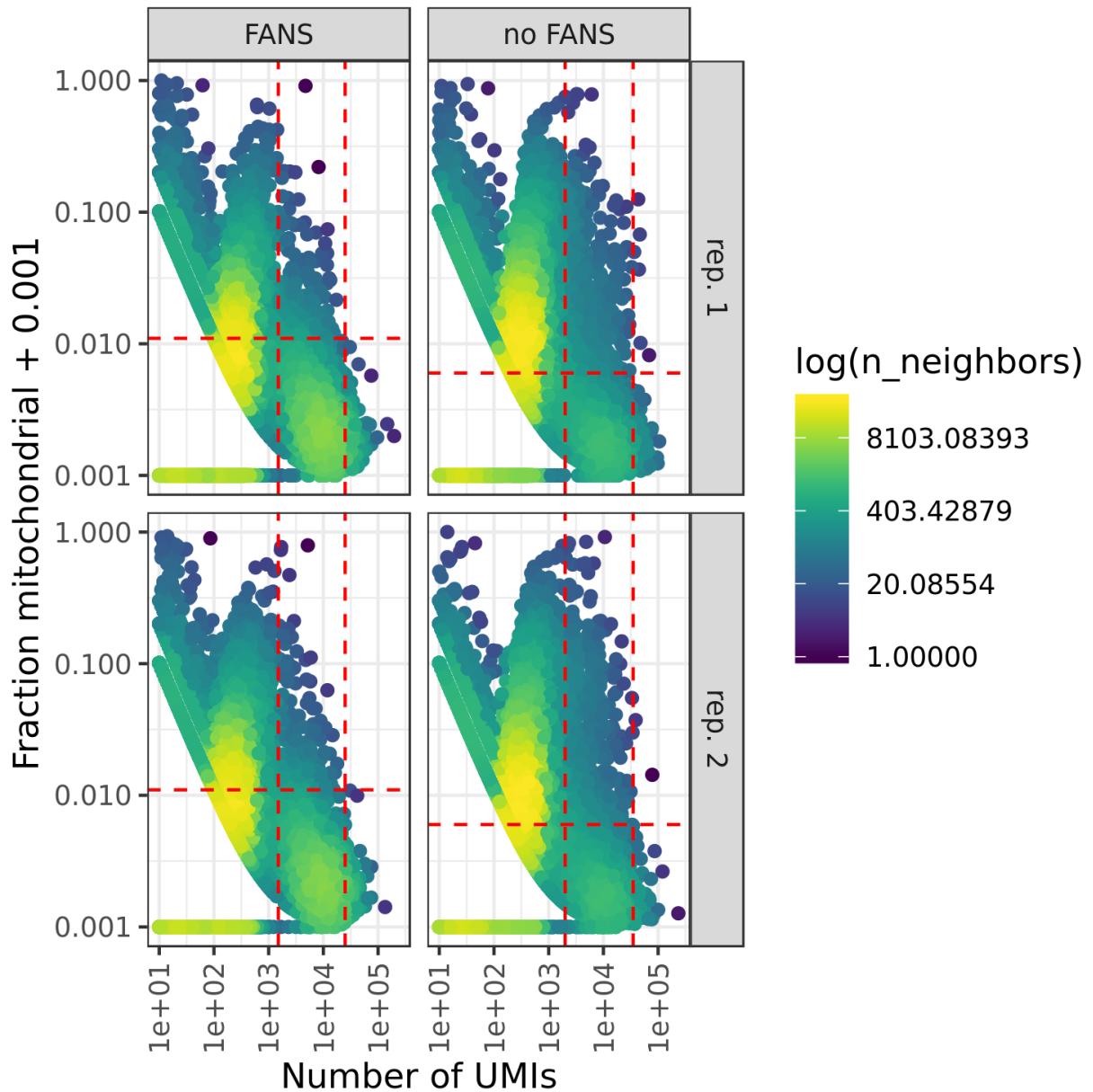


Figure S3.

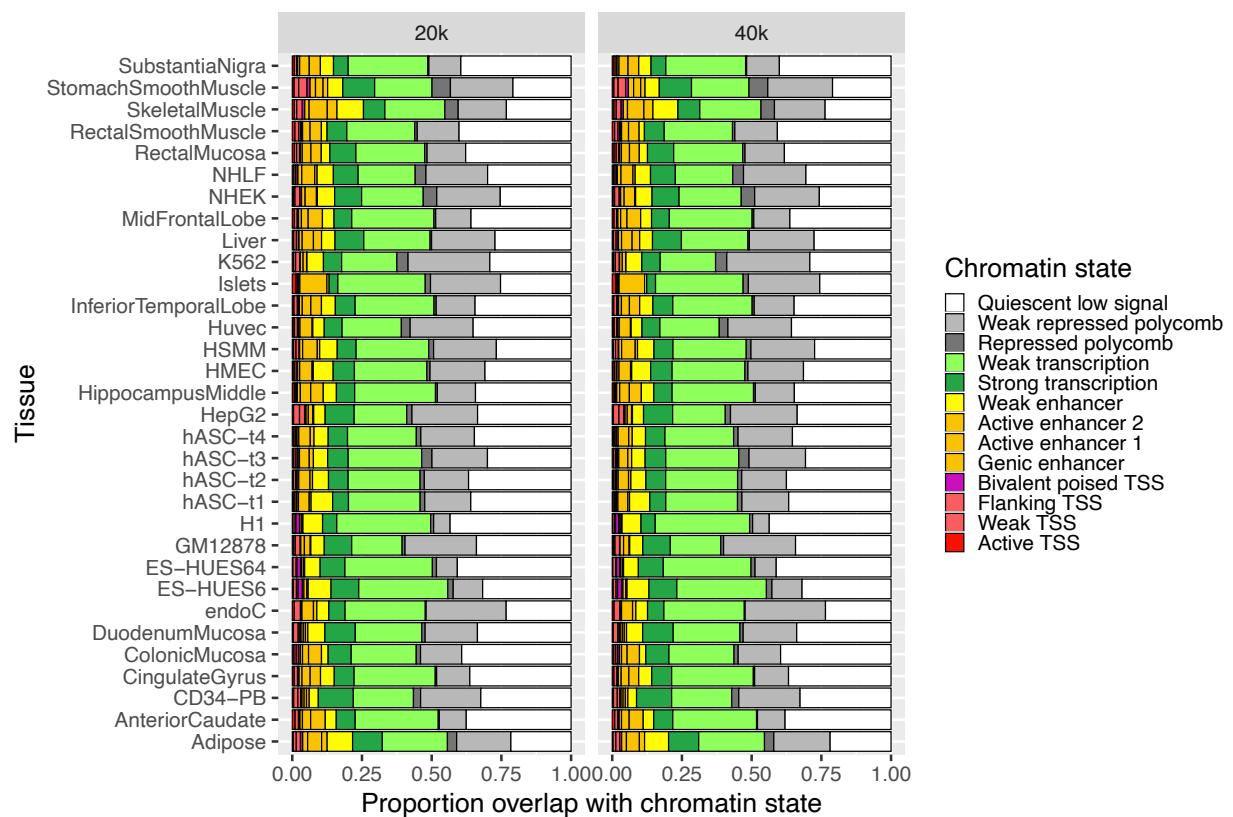


Figure S4.

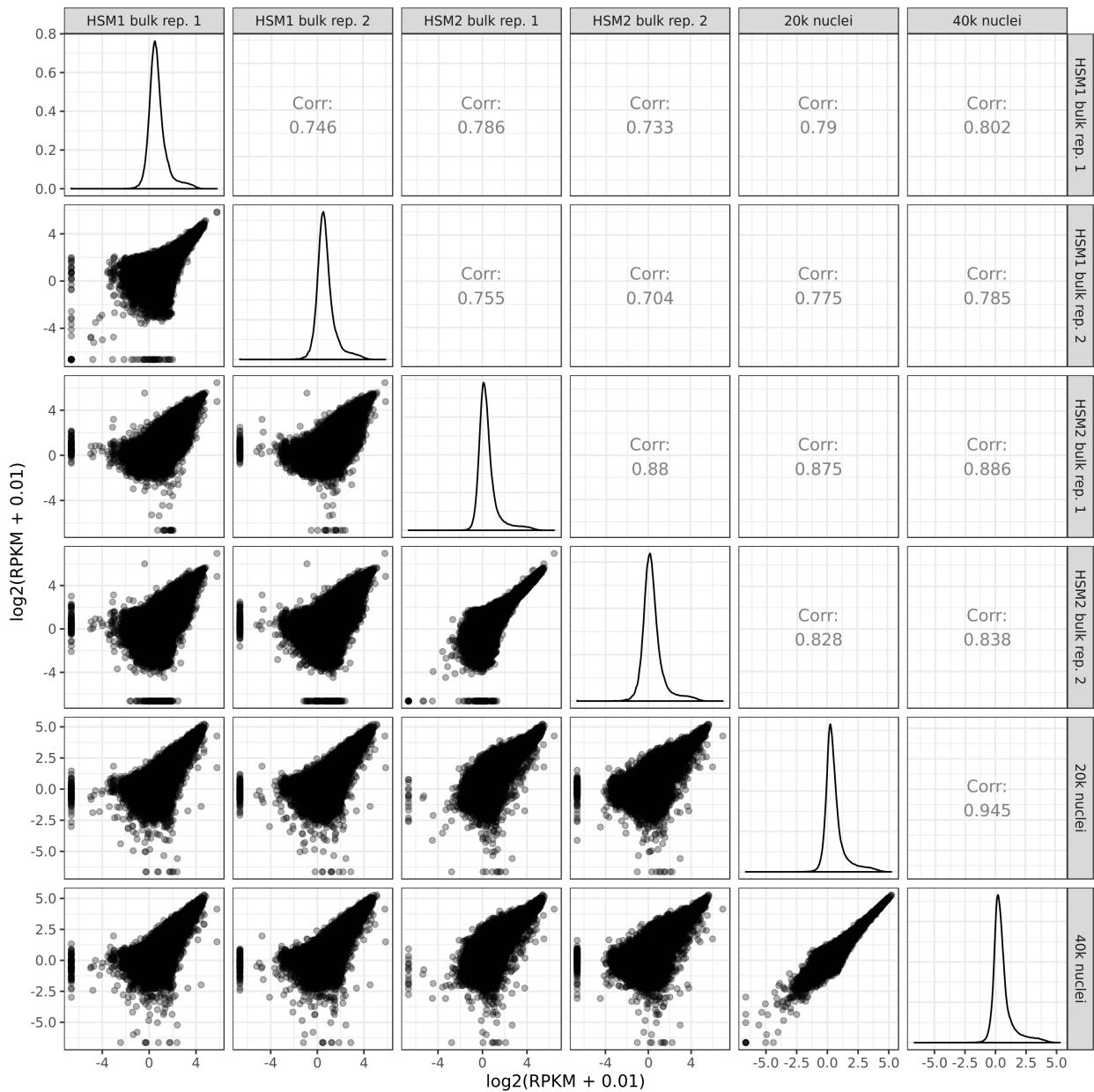


Figure S5.

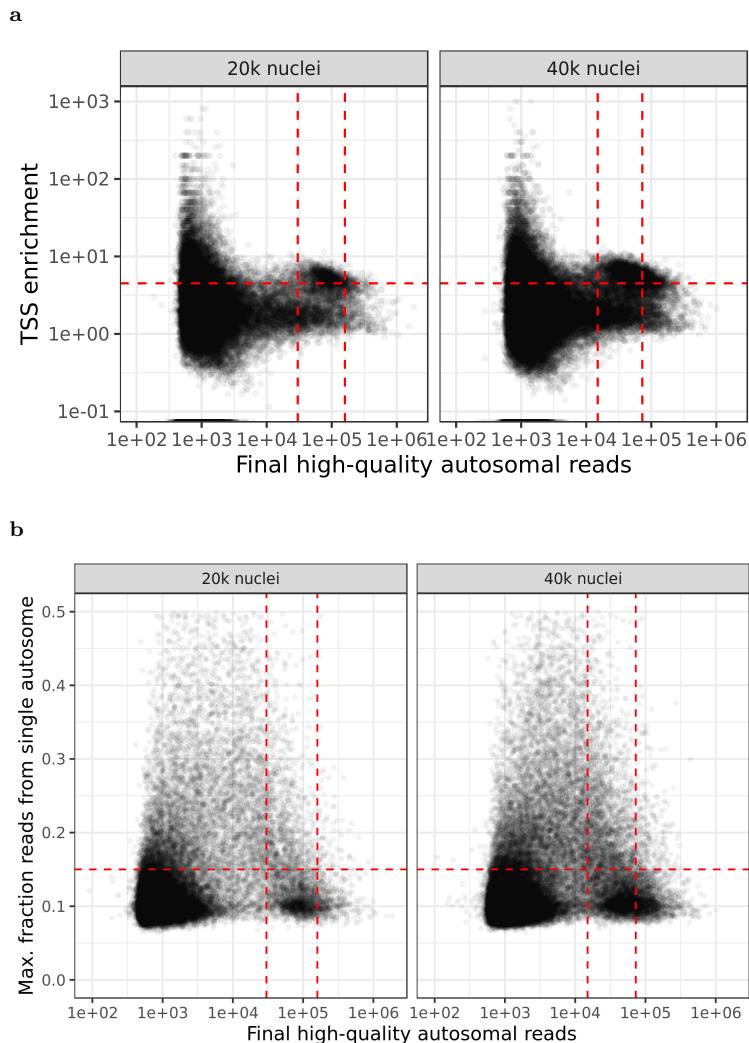
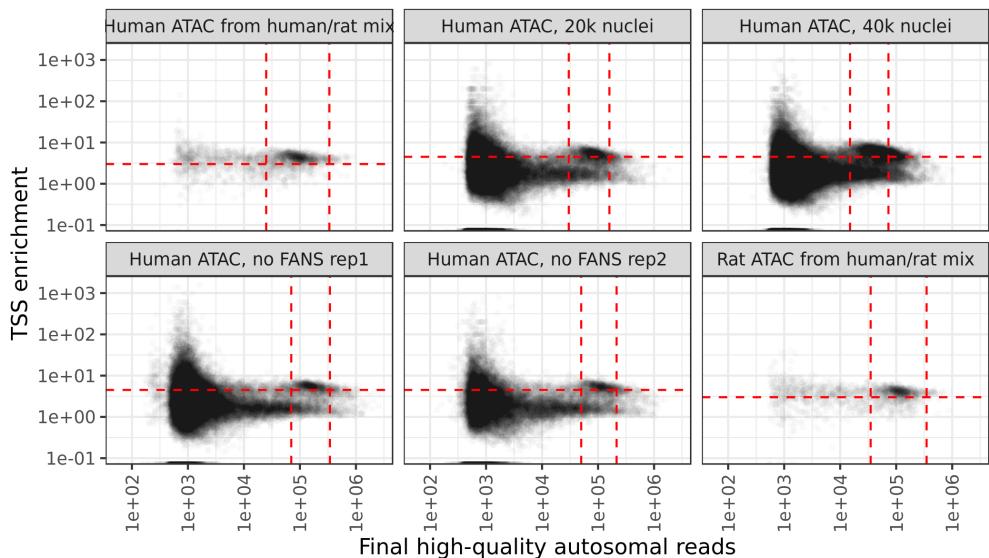


Figure S6.



Figure S7.

a



b

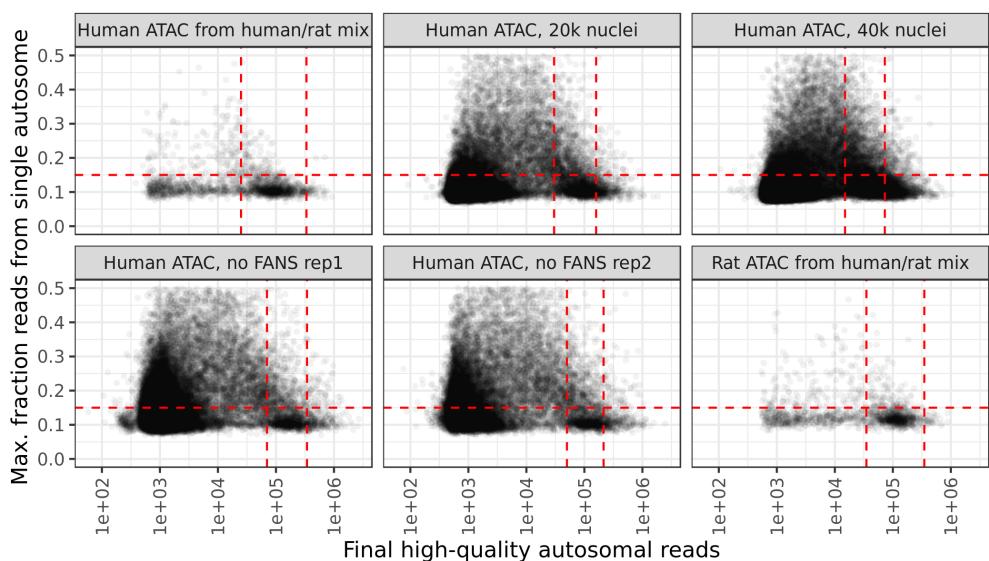


Figure S8.

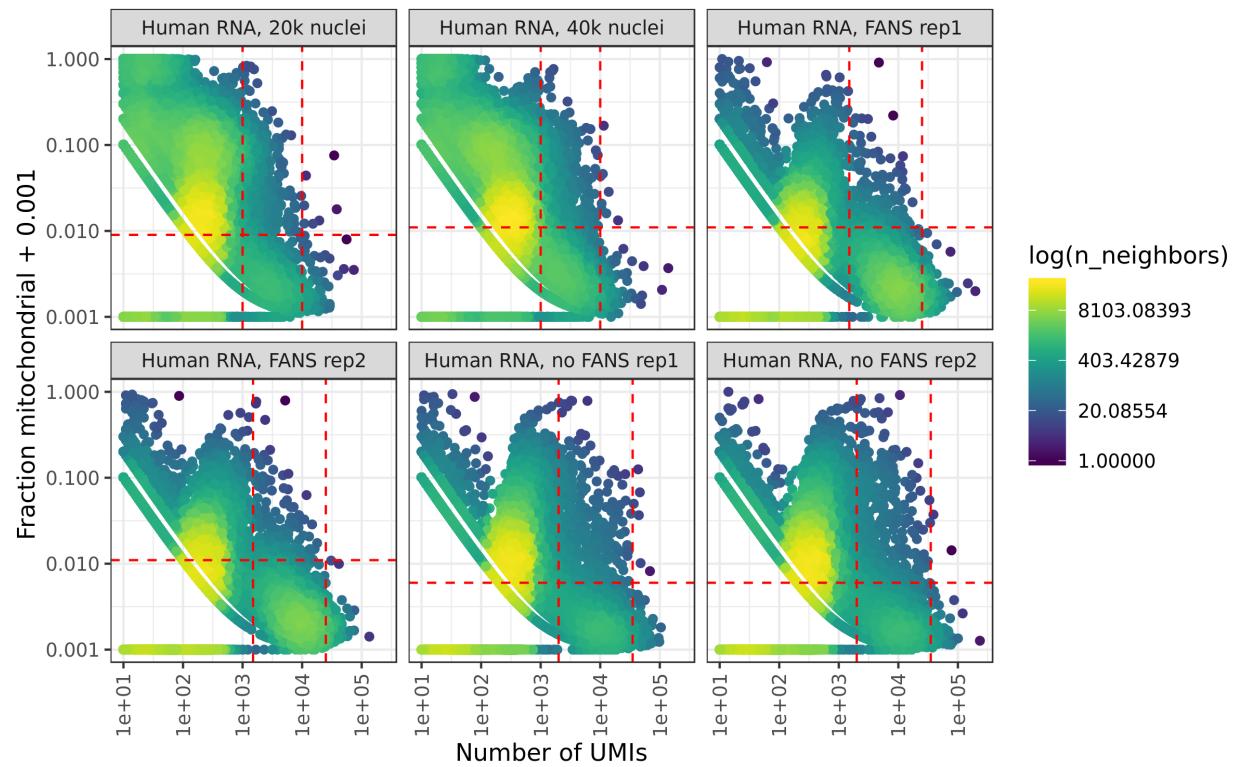


Figure S9.

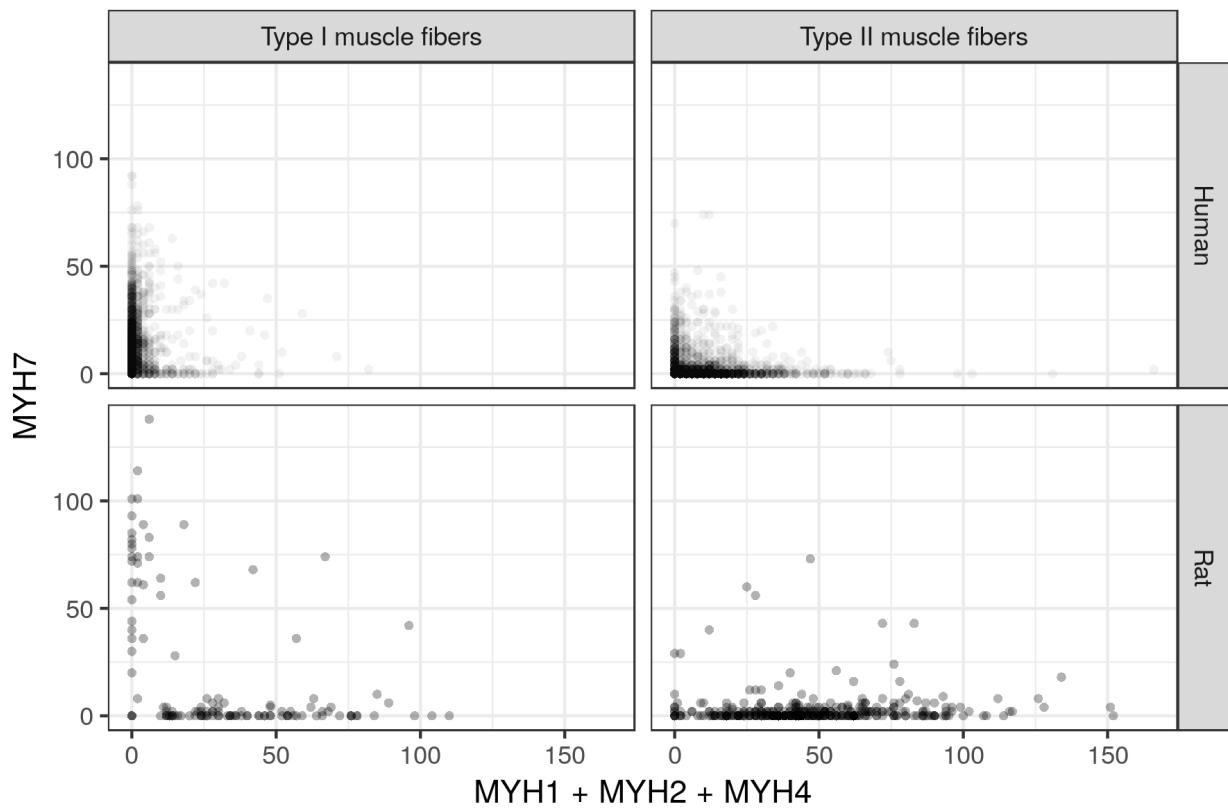


Figure S10.

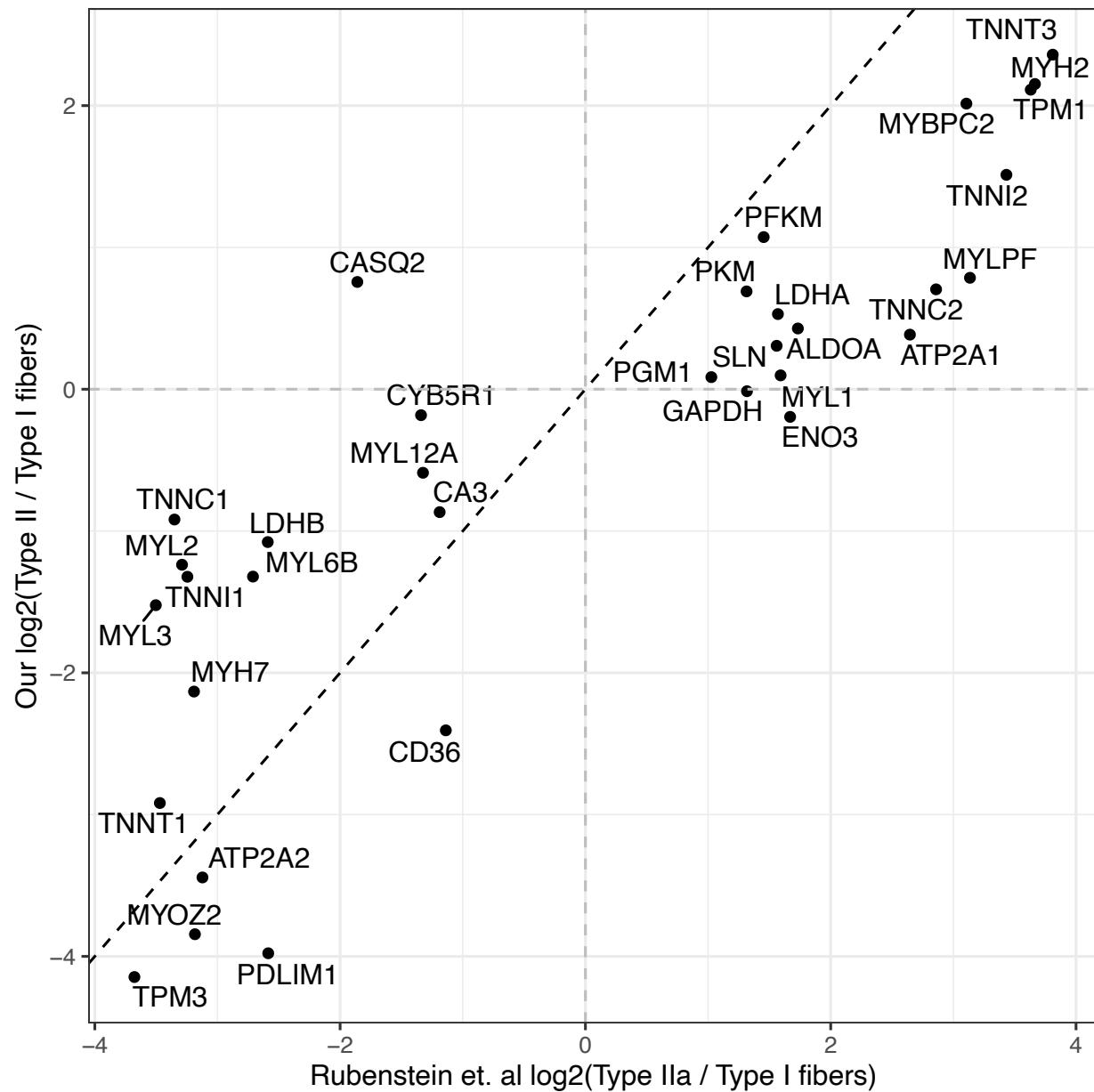


Figure S11.

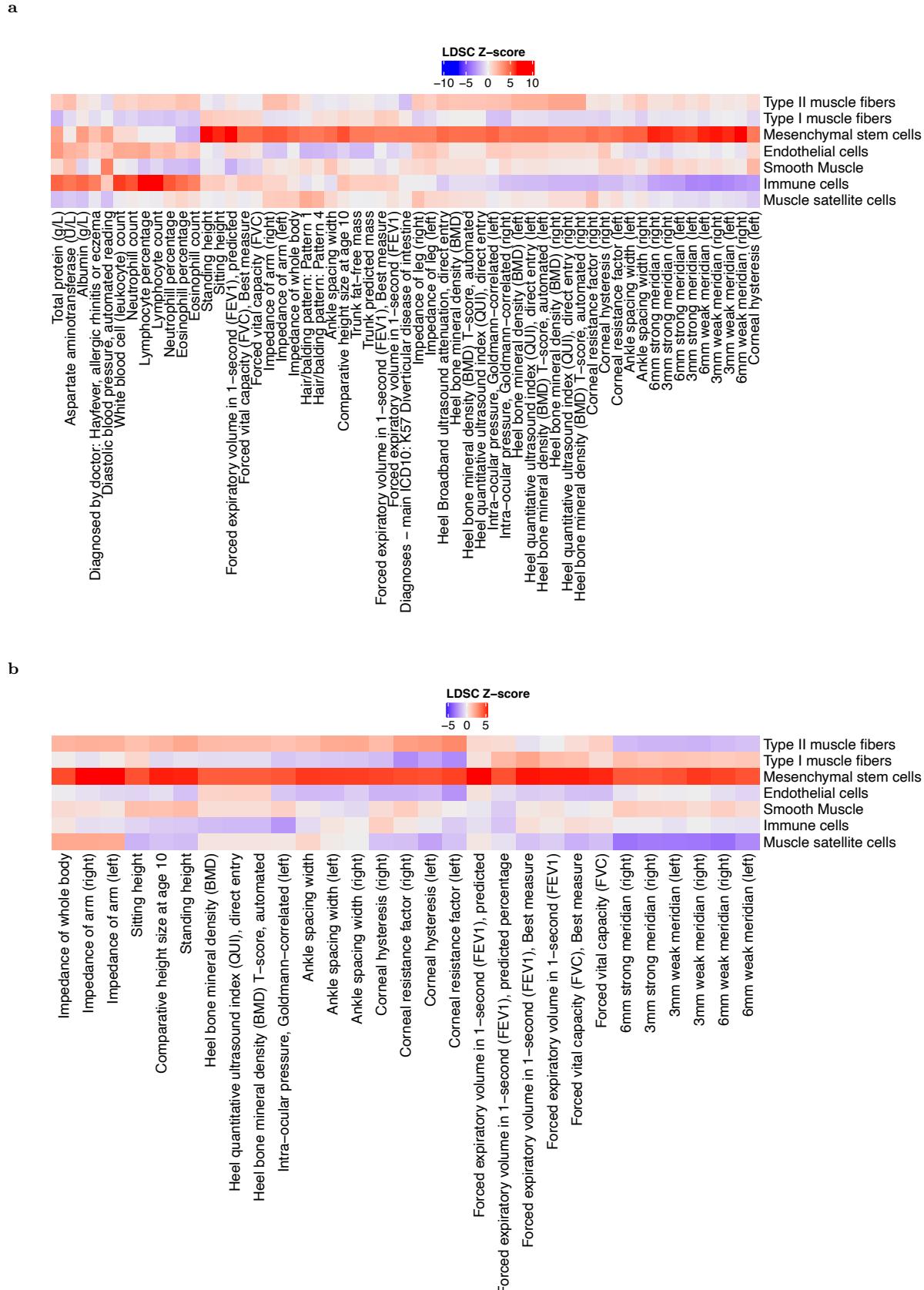
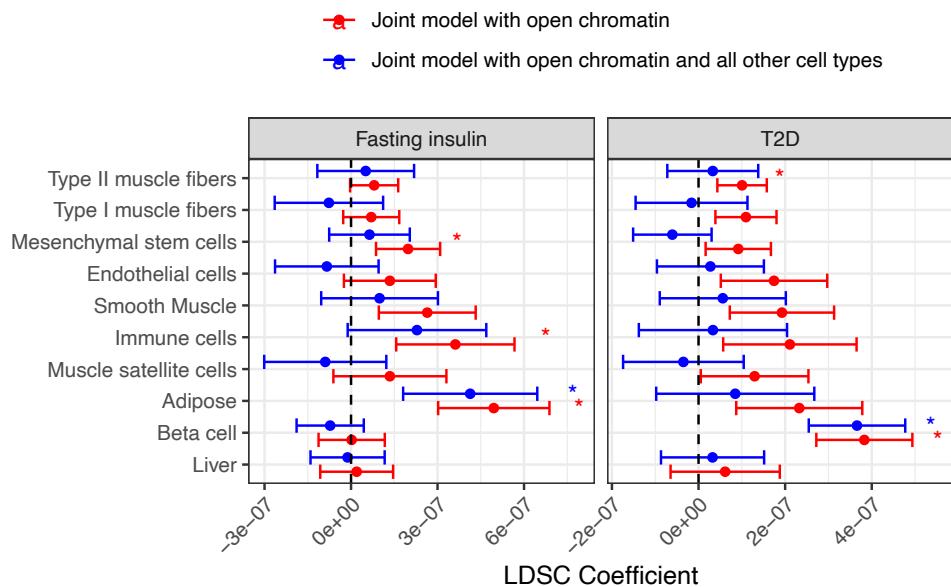


Figure S12.

a



b

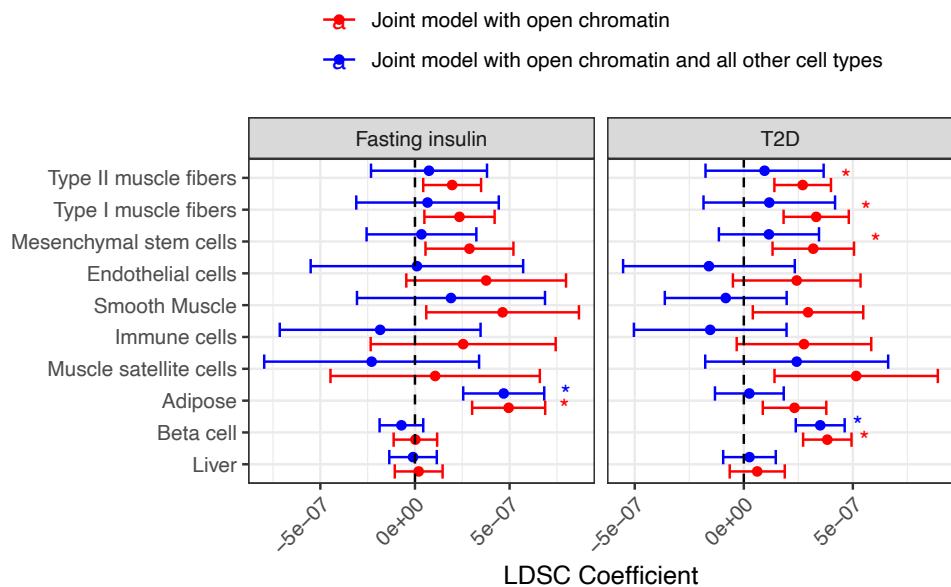


Figure S13.

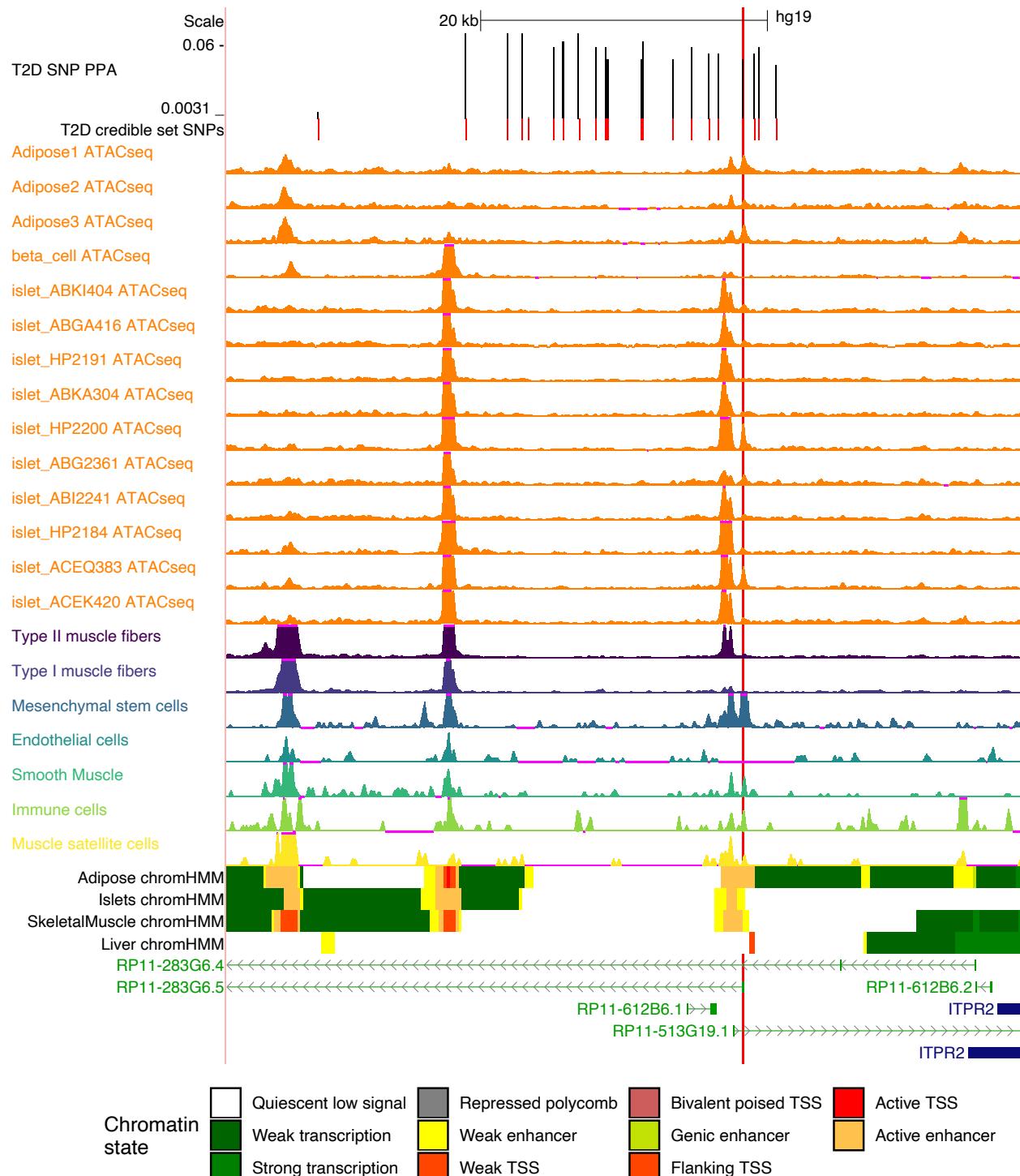


Figure S14.

