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Abstract

Background: Skeletal muscle accounts for the largest proportion of human body mass, on
average, and is a key tissue in complex diseases, mobility, and quality of life. It is composed of
several different cell and muscle fiber types.

Results: Here, we optimize single-nucleus ATAC-seq (snATAC-seq) to map skeletal muscle cell-
specific chromatin accessibility landscapes in frozen human and rat samples, and single-nucleus
RNA-seq (snRNA-seq) to map cell-specific transcriptomes in human. We capture type | and type
I muscle fiber signatures, which are generally missed by existing single-cell RNA-seq methods.
We perform cross-modality and cross-species integrative analyses on 30,531 nuclei, representing
11 libraries, profiled in this study, and identify seven distinct cell types ranging in abundance from
63% (type Il fibers) to 0.9% (muscle satellite cells) of all nuclei. We introduce a regression-based
approach to infer cell types by comparing transcription start site-distal ATAC-seq peaks to
reference enhancer maps and show consistency with RNA-based marker gene cell type
assignments. We find heterogeneity in enrichment of genetic variants linked to complex
phenotypes from the UK Biobank and diabetes genome wide association studies in cell-specific
ATAC-seq peaks, with the most striking enrichment patterns in muscle mesenchymal stem cells
(~3% of nuclei). Finally, we overlay these chromatin accessibility maps on GWAS data to
nominate causal cell types, SNPs, and transcription factor motifs for creatinine levels and type 2
diabetes signals.
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Conclusions: These chromatin accessibility profiles for human and rat skeletal muscle cell types
are a useful resource for investigating specific cell types and nominating causal GWAS SNPs and
cell types.

Background

Skeletal muscle tissue accounts for 30-40% of body mass, which is the largest tissue, on average,
in adult humans and is central to basic quality of life and complex diseases (1,2). Like other
tissues, skeletal muscle is composed of a mixture of different cell types. Most of the tissue is
composed of muscle fibers, which may be categorized into different fiber types, each of which
display distinct metabolic and molecular phenotypes. The proportion of muscle fibers accounted
for by each fiber type varies across individuals (3). Muscle-related diseases may differentially
impact different fiber types, and fiber type proportions are associated with complex phenotypes,
including aerobic and anaerobic exercise capacity and type 2 diabetes (T2D) status (4). Muscle
satellite cells are progenitors to muscle fibers, indispensable for the generation and regeneration
of muscle (5); these cells are present in skeletal muscle tissue, as are several other cell types,
such as mesenchymal stem cells, that cooperate in muscle regeneration (6,7). Molecular
associations with skeletal muscle tissue/muscle fiber characteristics and muscle-related complex
diseases could be mediated in part by these stem cell-like populations; for example a genetic
variant that alters the developmental of a satellite cell could carry important implications for later
muscle function, just as some T2D-associated variants are proposed to impact pancreatic/beta
cell development rather than the function of mature beta cells (8,9) and facial morphology
associated variants may act through progenitor cell populations (10). Immune cells infiltrate
muscle tissue and communicate with muscle cells as well, playing a particularly important role
following injury (11). Profiling the transcriptomic and epigenomic landscapes of these cell types
and muscle fiber types may therefore contribute to our understanding of the biology of muscle
development and muscle-related complex traits.

Bulk profiling of skeletal muscle tissue ignores this heterogeneity and is dominated by the most
common cell types (muscle fibers), but single-cell/-nucleus methods overcome this and allow
profiling of the constituent cell types. In the case of skeletal muscle, the distinction between single-
nucleus and single-cell profiling is particularly important as (1) skeletal muscle fibers have an
elongated shape that may make them difficult to capture in single-cell suspensions, and (2)
muscle fibers are multinucleated, meaning that a single-cell measurement will capture the output
of many nuclei. Previous single-cell RNA-seq studies of human (12—-14), mouse (15-20), and pig
(21) skeletal muscle tissue either capture no muscle fiber nuclei or capture them in
unrepresentative proportions. Bulk analysis of pooled, dissected muscle fibers have generated
fiber-type specific transcriptional profiles (22—-25) and analysis of specific isolated muscle resident
cell populations (26—28) have generated insights into targeted cell subpopulations but these
studies are necessarily biased towards specific cell types. To date no single nucleus ATAC-seq
(snATAC-seq) studies of whole human or rat skeletal muscle tissue samples has been performed.
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88  Here, we employ single-nucleus RNA-sequencing (snRNA-seq) and ATAC-seq (snATAC-seq) on
89 the 10X Genomics platform to profile gene expression and chromatin accessibility of frozen
90 skeletal muscle cell populations in human and rat. First we examine the influence of fluorescence
91  activated nucleus sorting (FANS) and nucleus loading concentration on the performance of the
92 platform. Next, we perform joint clustering of the snRNA-seq and snATAC-seq libraries to
93 determine the cell types detected in skeletal muscle tissue samples and map their respective
94  transcriptomes and chromatin landscapes. We then integrate the resulting genomic maps with
95 UK Biobank and T2D-related GWAS results to explore the relationship between these cell types
96 and a broad range of human phenotypes and diseases and nominate causal SNPs at several
97  genomic loci.
98
99
100 Results
101
102 FANS negatively impacts 10X snATAC-seq results
103
104  Before being loaded onto the 10X platform, nuclei must be isolated from the samples of interest.
105  This process involves cell lysis, which produces viable nuclei as well as substantial cellular debris
106  and dead nuclei, some of which inevitably remains in the final nuclei suspension. By staining the
107  DNA in live nuclei and using FANS to selectively filter the suspension for stained entities, one
108 should be able to remove dead nuclei and cellular debris in the suspension, improving the purity
109  and quality of the suspension loaded onto the 10X platform. However, the FANS process could
110  stress the nuclei or otherwise alter the snRNA-seq and snATAC-seq results. Comparing quality
111 control metrics and (in the case of snRNA-seq) aggregate gene expression or (in the case of
112  snATAC-seq) aggregate ATAC-seq peaks/signal between snRNA-seq and snATAC-seq libraries
113  generated from nuclei that either did or did not undergo FANS allows one to detect substantial
114  changes that FANS may introduce. Also, because the aggregate of reads from a snATAC-seq
115 library should resemble the profile of an ATAC-seq library on the same biological sample, one
116  can generate bulk and single-nucleus libraries from a single sample and compare quality control
117  metrics and ATAC-seq signal between them. Therefore, to determine the effect of FANS on 10X
118  snRNA-seq and snATAC-seq results, we performed three nuclear isolations from a single human
119  muscle sample, mixed the resulting nuclei together, and performed FANS (using DRAQY staining)
120  on one half of the suspension (Fig. 1A). The FANS and non-FANS suspensions were then each
121 used to produce two replicate snATAC-seq and two replicate snRNA-seq libraries, resulting in
122 eight total libraries (four snATAC and four snRNA). We also generated two independent bulk
123  ATAC-seq libraries from the same biological sample, allowing us to compare snATAC-seq
124  profiles, with and without FANS, to a comparable bulk ATAC-seq profile.
125
126  First we examined the four snATAC-seq libraries, comparing the aggregate signal for each library
127  to bulk ATAC-seq libraries from the same biological sample. We called peaks for the four libraries
128 and ran the ataqv quality control software package (29) on the aggregated data to examine the
129  overall transcription start site (TSS) enrichment and fragment length distributions. The fragment
130 length distributions for each library resembled the expected stereotypical ATAC-seq fragment
131 length distribution, showing an abundance of short fragments as well as mononucleosomal
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132  fragments (Fig. 1B) (Buenrostro et al., 2013); however, the TSS enrichment was lower in the
133  FANS libraries (Fig. 1C), indicating the FANS libraries had a lower signal to noise ratio. This
134  difference in signal-to-noise ratio is demonstrated when visualizing the ATAC-seq signal at
135 genomic regions active in muscle, such as the ANK7 locus (Fig. 1D) (30). We additionally
136  overlapped TSS-distal ATAC-seq peaks from each of the libraries with existing chromatin states
137  from diverse tissues and cell types (31) and found that the peaks from the non-FANS libraries
138 showed considerable overlap with skeletal muscle enhancers, while the peaks from the FANS
139 libraries showed poor overlap (Fig. S1). ATAC-seq signal across FANS libraries showed poor
140  correlation with the two bulk ATAC-seq libraries from the same sample (Fig. S2). We therefore
141 concluded that FANS has a clear negative impact on 10X snATAC-seq results.

142

143  Next we examined the four snRNA-seq libraries. All four libraries showed high correlation,
144  indicating that FANS does not substantially alter snRNA-seq results, at least at the pseudobulk
145  gene expression level (Fig. 1E). In order to determine if FANS altered the yield of quality nuclei,
146  we used read counts and mitochondrial contamination to select quality nuclei from each library,
147  additionally removing doublets using doubletfinder (Fig. S3) (32). We found that FANS
148  substantially increased the number of quality nuclei obtained (2,004 and 2,078 for non-FANS
149 libraries; 7,715 and 7,118 for FANS libraries). We therefore concluded that FANS has little effect
150  on pseudobulk gene expression measurements, but may alter nucleus yield.

151

152

153 snATAC-seq and snRNA-seq results are robust to nucleus loading concentrations

154

155  The concentration at which nuclei are loaded onto the 10X platform is an important parameter
156  affecting data quality and the number of nuclei available for downstream analysis. Increasing the
157  loading concentration increases the maximum number of nuclei from which data can be obtained;
158 however, it also increases the probability that multiple nuclei end up with the same gel bead,
159 thereby increasing the doublet rate. Balancing these outcomes is important to maximize the
160  amount of quality data and number of nuclei available for downstream analysis. To evaluate the
161 effect of increasing the number of nuclei loaded onto the platform, we performed a separate
162  experiment in which we isolated nuclei from two muscle samples, mixed them together, and then
163 loaded either 20k or 40k nuclei (as quantified by a Countess Il FL Automated Cell Counter) into
164 a 10X well for snRNA-seq and for snATAC-seq (Fig. 1F). We also generated two independent
165 bulk ATAC-seq libraries from the biological sample for which bulk ATAC-seq profiles were not
166  already available, allowing us to compare snATAC-seq profiles to comparable bulk ATAC-seq
167  profiles.

168

169 The snATAC-seq libraries displayed the expected fragment length distributions and comparable
170  TSS enrichments (Fig. 1G, H). We examined the aggregate signal of the snATAC-seq libraries
171 next to bulk ATAC-seq libraries from the same samples and confirmed that both libraries showed
172  strong signal, comparable to that of bulk data (Fig. 11). Overlap between TSS-distal ATAC-seq
173  peaks called on both libraries and chromatin states were likewise similar, showing relatively high
174  overlap with skeletal muscle enhancers (Fig. S4), and the ATAC-seq signal in the libraries
175  correlated with bulk ATAC-seq signal to an extent comparable to the correlation between two bulk
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176  ATAC-seq libraries (Fig. S5). After selecting quality nuclei (Fig. S6), we found that the higher
177  loading concentration yielded 2,035 nuclei while the lower concentration yielded 855 nuclei (after
178  doublet removal).

179

180  Correlation between the snRNA-seq libraries was high, indicating that the loading concentration
181  could be changed substantially without compromising data quality (Fig. 1J). We again found the
182  higher loading concentration yielded more quality nuclei than the lower concentration (3,839 vs
183  2,118; Fig. S7) after doublet removal.

184

185 10X guidelines recommend loading up to 15k nuclei into a well; however, our results indicate that
186  exceeding this loading concentration can still yield quality snATAC-seq results (as measured by
187  standard quality control metrics relative to bulk ATAC-seq data) and, for both snATAC-seq and
188 snRNA-seq, increase the number of quality nuclei even after accounting for the increase in
189  doublet rate. The aggregate gene expression/ATAC-seq signal profile was comparable between
190 loading concentrations. One caveat to these conclusions is that the actual number of nuclei
191 loaded into the well may differ from our estimated numbers, as debris in the nuclei preps may
192  affect the accuracy of the nuclei counts.

193

194

195  Joint clustering of human and rat snATAC-seq and snRNA-seq identifies skeletal muscle
196  cell types

197

198 To determine cell types present in skeletal muscle samples, we selected high-quality ATAC and
199  RNA nuclei from the FANS/non-FANS libraries and the 20k/40k nuclei libraries generated above
200 and performed joint clustering. snATAC-seq libraries that underwent FANS were excluded as they
201 failed to provide quality data. We generated and included a snATAC-seq library containing a mix
202  of human and rat nuclei (Fig. S8, S9; Tables S1, S2). Information about the biological samples
203  and post-QC nucleus summary statistics for each library is provided in Table S3. In total we
204  obtained 24,866 human snRNA-seq (mean UMIs = 7,482), 5,053 human snATAC-seq (mean
205 fragments = 41,655), and 612 rat snATAC-seq (mean fragments = 60,875) nuclei. We used
206 integrative nonnegative matrix factorization (iNMF) as implemented in the LIGER (linked inference
207  of genomic experimental relationships) software package (Welch et al., 2019) to perform joint
208 clustering on snRNA-seq and snATAC-seq nuclei and identified seven cell type clusters (Fig. 2A).
209 Nuclei from different modalities, species, and libraries integrated well, indicating that clustering
210  was not driven by technical factors (Fig. 2B).

211

212  We used marker genes to assign cell types to each cluster (Table S4) and found clear
213  concordance between human snRNA-seq and snATAC-seq (Fig. 2C, D). We found marker gene
214  accessibility in the rat snATAC-seq data to be largely consistent with the human data, though
215  examination of the myosin heavy chain genes, often used to distinguish between different muscle
216 fiber types, indicated that a considerable number of rat type Il muscle fiber nuclei were likely
217  present in the type | muscle fiber cluster (the opposite did not seem to occur; i.e., the type Il
218  muscle fiber cluster appeared to be relatively free of rat type | muscle fiber nuclei; Fig. S10). This
219  mixing of some rat muscle fiber nuclei is a limitation of our data; because only 612 of 30,531
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220 (2.0%) of all nuclei come from rat, the human data drive the clustering. As expected the vast
221 majority of the profiled nuclei (90.4%) came from muscle fiber (Fig. 2E).

222

223  We sought to independently assess cluster identity without relying on marker gene patterns and
224  therefore focused on cluster-level TSS-distal ATAC-seq peaks, many of which would not be taken
225 into account when assigning cell types using marker genes. We developed a logistic regression
226  approach to score the similarity between these peaks and enhancer chromatin states from 127
227  Roadmap Epigenomics cell types (Fig. 2F) (31). We found concordance with the marker gene-
228 based cell type assignment approach (Fig. 2G). Remarkably this approach worked relatively well
229 inassigning rat nuclei, despite the fact that the number of nuclei per cluster for rat ranged between
230 six and twenty for the smallest four cell types (Table S5; Fig. 2H).

231

232  The majority of the nuclei were assigned as type | or type Il muscle fibers. Genes previously
233 discovered to be preferentially expressed in type | vs. type Il muscle fibers (13) were usually
234  similarly preferentially expressed in our snRNA-seq data (Fig. S11), validating the quality of the
235 data and accuracy of muscle fiber type assignments.

236

237 Integration of cell-type-specific ATAC-seq peaks with UK Biobank GWAS reveals cell type
238 roles in complex phenotypes

239

240  Genetic variants associated with complex traits and disease are frequently located in non-coding
241  regions of the genome (33-35). Variants associated with a given complex trait are expected to be
242  enriched specifically in non-coding regulatory elements of the trait-relevant cell types; for
243  example, T2D-associated genetic variants are enriched in regulatory elements specific to
244  pancreatic islets and beta cells (34,36—44), and variants associated with autoimmune disorders
245  are enriched in immune cell-specific regulatory elements (36). Variant enrichment in cell-specific
246  regulatory elements can therefore be used to determine which cell types are relevant to a given
247  trait or disease. Variants in high linkage disequilibrium (LD) with trait-influencing SNPs are often
248  statistically associated with the trait as well, making it difficult to infer the causal SNP through
249  statistical association alone. Epigenomic data, such as chromatin accessibility in trait-relevant cell
250 types, can be used to nominate causal genetic variants under the assumption that non-coding
251  SNPs in accessible regions of the genome are more likely to be causally related to a trait than
252  non-coding SNPs in inaccessible regions.

253

254  To explore the relationship between complex traits and the cell types present in our data, as well
255  as demonstrate the value of our muscle cell type chromatin data in narrowing the post-GWAS
256  search space, we used LD score regression (LDSC) (36,45) to perform a partitioned heritability
257  analysis using GWAS of 404 heritable traits from the UK Biobank (46) (http://www.nealelab.is/uk-
258 biobank/) and our muscle cell type open chromatin regions (Table S6; see Methods) (36,45).
259  Results for all traits in which at least one of our cell types showed significant (P < 0.05) enrichment
260 after Benjamini-Yekutieli correction are displayed in Fig. 3A. Due to the heavy multiple testing
261  correction burden, relatively few traits meet this threshold. However, we observed immune cell
262 abundance traits show enrichment for the immune cell cluster, and diastolic blood pressure
263 GWAS SNPs are enriched in smooth muscle ATAC-seq peaks. In addition, we see that several
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264  skeletal trait GWAS SNPs are enriched in mesenchymal stem cell peaks. Previous work has
265 shown a central role of bone mesenchymal stem cells in osteoblast development (47,48). In
266  addition, SNPs for several corneal traits are also enriched in mesenchymal stem cell peaks,
267 consistent with previously observed enrichment of corneal thickness GWAS SNPs in
268 mesenchymal stem cell/connective tissue cell annotations (49). Results using rat peaks projected
269 into human coordinates largely mirror the human mesenchymal stem cell enrichment findings
270  (Fig. S12).

271

272  One muscle-related trait included in the UK Biobank is creatinine level. In humans most serum
273  creatinine is produced by skeletal muscle and is filtered by the kidneys (50). Creatinine levels are
274  commonly used as a biomarker for kidney function but correlate with muscle mass and have been
275  used to score sarcopenia (51-53). In our enrichment analysis, the cell type with the highest LDSC
276  coefficient Z-score was type Il muscle fibers (z-score = 2.5; Fig. 3B).

277

278 Integrating the ATAC-seq results with the GWAS summary statistics can help nominate causal
279  SNPs. One example is the C170rf67 locus in the creatinine GWAS (Fig. 3C). The lead SNP at
280 this locus (rs227727; p = 5.38e-18) lies in an intergenic region 92 kb from C170rf67 and 104 kb
281  from NOG. This SNP is in an ATAC-seq peak in several muscle cell types, though the signal is
282 largest in type Il muscle fibers (Fig. 3D). The peak corresponds to an enhancer chromatin state
283  in muscle, amongst other cell types (31). We used the Probabilistic Identification of Causal SNPs
284  (PICS) tool (54) to estimate the probability that nearby SNPs were causal given the pattern of
285 linkage disequilibrium at the locus. PICS assigned the index SNP, rs227727, a probability of 0.766
286  of being the causal SNP. A tightly linked SNP, rs227731 (R? = 0.99), had a probability of 0.221;
287  no other SNPs had probability greater than 0.01. SNP rs227731 is not in an ATAC-seq peak in
288 any of the muscle cell types we identified nor is it in any of ENCODE’s 1.3 million candidate cis-
289  regulatory elements (55,56) or any of the approximately 3.6 million DNasel hypersensitive sites
290 (DHS) annotated in (57), suggesting that the index SNP rs227727 is indeed the causal SNP. A
291  previous study found that the A allele of rs227727 was associated with higher activity in an allelic
292 luciferase assay in both human fetal oral epithelial cells (GMSM-K) and murine osteoblastic cells
293 (MC3T3) (58). To predict allelic effects at this SNP in type Il muscle fibers, we trained a gapped-
294  kmer support vector machine model (gkm-SVM) (59,60) to detect kmers associated with
295 increased or decreased chromatin accessibility using the top ATAC-seq peaks for each of our cell
296 types and then ran deltaSVM (61) to predict this SNP’s effect on chromatin accessibility.
297  DeltaSVM predicts a SNP’s effect by comparing the gkm-SVM inferred kmer weights for kmers
298 created by the reference vs the alt allele; we transformed the deltaSVM score to a z-score based
299  on the distribution of the predicted impacts of all autosomal 1000 Genomes SNPs (62). The type
300 Il muscle fiber deltaSVM z-score for this SNP was 0.73 (directionally favoring the alt allele, T,
301 having higher chromatin accessibility, although the z-score is not statistically significant). We also
302 attempted to interpret how each allele of the SNP affects the gkm-SVM model’s score for the
303 sequence using the gkmexplain software package, which scores the importance of each base in
304 a sequence to the gkm-SVM model score for the sequence (63). We ran gkmexplain on the
305 sequence surrounding the SNP in the presence of either the reference or the alternative allele
306 and compared the results (Fig. 3E). The change in the gkmexplain importance scores in the
307  presence of the reference vs alternative allele resembled several known homeodomain TF motifs
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308 predicted to be disrupted by the reference allele such as that of PITX2, suggesting that the
309 alternate allele may have directionally (non-significant) greater predicted chromatin accessibility
310  because it is a better match to these homeodomain TF motifs (Fig. 3E) (64). We note, however,
311 that the deltaSVM z-score of the SNP as well as the gkmexplain importance scores of the SNP
312  and surrounding nucleotides are of low magnitude, suggesting that the reference allele may
313  reduce the binding of PITX2 or another homeodomain TF without such a dramatic effect on local
314  chromatin accessibility. Biologically, the nearby NOG gene is a particularly compelling candidate
315  target gene of this regulatory element, as its product (noggin) regulates BMP signaling and is
316  involved in muscle growth and maintenance (65-70). Integrated with the GWAS summary
317  statistics and these additional resources, our ATAC-seq data adds to existing evidence that SNP
318  rs227727 alters the activity of a gene regulatory element and is a prime candidate to impact
319  creatinine levels.

320

321

322 Integration of cell type-specific ATAC-seq peaks with T2D GWAS credible sets nominates
323 causal cell types, requlatory elements, and SNPs

324

325 It is well-established that T2D GWAS SNPs overlap pancreatic islet/beta cell enhancers
326  (34,37,38,41,43); however, some SNPs may act through other T2D-relevant tissues, such as
327  muscle, adipose, or liver. We therefore used LDSC to perform a partitioned heritability analysis
328 for T2D-associated SNPs (38) in each of the muscle cell types as well as in beta cell ATAC-seq
329 peaks, adipose ATAC-seq peaks, and liver DNasel hypersensitive sites (see Methods) (Figs. 4A,
330 S13A). When modeling each cell type separately (adjusting for the cell type-agnostic LDSC
331 baseline annotations and common open chromatin regions), we found significant enrichment
332  (after Bonferroni correction for 40 tests) in type Il muscle fibers and beta cells, though when
333 modeling all cell types in a single joint model only beta cell open chromatin regions showed
334  significant enrichment (Fig. S13A). We performed a similar analysis on GWAS SNPs for a T2D-
335 related trait, fasting insulin (Figs. 4A, S13A) (71). For fasting insulin, we found significant
336  enrichment in mesenchymal stem cells, immune cells, and bulk adipose when modeling each cell
337  type individually, but only adipose showed significant enrichment when modeling all cell types
338 jointly. For fasting insulin, we note that the small sample size of that GWAS means the analysis
339 was likely underpowered, leaving open the possibility that other cell types will show significant
340 enrichment when GWAS with larger sample sizes are available. We also note that the adipose
341 open chromatin regions are derived from bulk tissue open chromatin profiling; it is therefore
342  possible that at least some of the signal from adipose is being driven by cell types shared between
343  our muscle samples and adipose tissue, such as mesenchymal stem cells. This is an area for
344  further exploration when single-cell/single-nucleus data from adipose is available.

345

346  We performed similar GWAS enrichments using the rat muscle cell type peaks projected into
347  human coordinates (Fig. 4A, S13B). For T2D we found muscle fiber types and mesenchymal stem
348  cells were significantly enriched after Bonferroni correction, but as with human muscle cell types
349  these enrichments did not persist in a joint model with all cell types (Fig S13B). For fasting insulin
350 no rat muscle cell types showed enrichment after Bonferroni correction.

351
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352  While none of our cell types showed significant enrichment in 10-cell-type models after Bonferroni
353  correction, it is still possible that some T2D GWAS loci act through muscle cell types or cell types
354  shared between muscle and other tissues such as adipose. There are a substantial number of
355 T2D GWAS credible sets that show no overlap with pancreatic islet functional annotations (38).
356  We therefore overlapped 380 previously-published T2D GWAS signals with 99% genetic credible
357  set SNPs (38) with our snATAC-seq peaks to nominate SNPs that may be acting through the
358 muscle cell types, including those that are expected to be shared with adipose (Table S7).

359

360  One locus highlighted by our data is the ITPR2 locus on chromosome 12 (Fig. 4B). This locus
361  contains 22 credible set SNPs, none with a particularly high posterior probability of association
362 (PPA) in the DIAMANTE genetic fine-mapping (maximum across all credible set SNPs = 0.06).
363  Only one SNP (rs7132434; PPA = 0.042) overlaps any of our muscle cell type peak calls (Fig.
364  4C). This SNP is in a large mesenchymal stem cell ATAC-seq peak, and also overlaps peak calls
365 in smooth muscle and blood, though the chromatin accessibility signal in those cell types is lower
366 in our data. The SNP also overlaps a peak call in a subset of adipose and islet samples (Fig.
367  S14). We found that this SNP had a large deltaSVM z-score in several of the muscle cell types
368 (absolute z-score = 2.88 in mesenchymal stem cells; the T2D risk allele, A, is predicted to result
369 in greater chromatin accessibility). We ran gkmexplain on the sequence surrounding the SNP and
370 found the gkmexplain importance scores for the sequence in the presence of the risk allele
371 resembled an AP-1 motif (Fig. 4D) (64). A literature search revealed that the element underlying
372  this SNP has been validated for enhancer activity using a luciferase assay (in the 786-O cell line)
373  and the risk allele showed preferential binding of the AP-1 transcription factor in an EMSA assay
374  in the same study and cell line (Bigot et al., 2016), consistent with our findings. We note that this
375 SNP is also a 95% credible set SNP for waist-hip ratio (one of eight SNPs in the credible set)
376  (72). We therefore hypothesize that rs7132434 is the causal SNP at this locus, and that it may be
377  acting through mesenchymal stem cells.

378

379 A second locus highlighted by our data is an intronic locus in the ARL15 gene (Fig 4E). The
380 DIAMANTE genetic fine-mapping narrowed the list of potentially causal SNPs at this locus to
381 three (two other, larger DIAMANTE genetic fine-mapping credible sets are also annotated to
382  ARL15). SNPs in this credible set are statistically associated with fasting insulin (73), and more
383  broadly variants in or near ARL15 associate with metabolic traits including adiponectin, HDL
384  cholesterol levels, and BMI (73—75), suggesting that the locus may affect T2D risk not through
385 islets but through adipose or a related cell type. Interestingly, none of the SNPs overlap with any
386 of ENCODE’s 1.3 million candidate cis-regulatory elements (55,56) or any of the approximately
387 3.6 million DNasel hypersensitive sites (DHS) annotated in (57); however, in our data we find that
388  one of the SNPs (rs702634) is in the center of a mesenchymal stem cell specific ATAC-seq peak
389  (Fig. 4F), and a mesenchymal stem cell peak is likewise present in the corresponding position in
390 the rat genome (Fig. 4G), indicating that this is a regulatory element that has been conserved
391  across species. The DIAMANTE genetic fine-mapping assigned this SNP a probability of 0.48 of
392  being the causal SNP at this locus, higher than either of the other two SNPs (0.33 and 0.19,
393 respectively). We examined publicly-available beta cell (n = 1), islet (n = 10) (41), and adipose (n
394  =3) (76) ATAC-seq data to see if hints of this peak are present in these T2D-relevant cell types.
395 No convincing signal appears to be present in beta cell or islet data; a weak increase in signal at
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396 that SNP is evident in the adipose samples and a peak is called (Fig. S15). As mesenchymal
397  stem cells are one component of adipose tissue, it is possible that the weak signal in adipose is
398 due to mesenchymal stem cell populations within adipose; this is one area for follow-up when
399 adipose single-nucleus ATAC-seq data is available. The absolute deltaSVM z-score in
400 mesenchymal stem cells for this SNP was 0.48, indicating it does not have a large impact on
401 predicted chromatin accessibility; however, the risk allele is predicted to disrupt a MEF2 motif
402 (64,77), and we found the change in gkmexplain importance scores between the reference and
403 alternative allele showed similarity to this motif (Fig. 4H). This data is consistent with a model in
404  which rs702634 is the causal SNP and acts through mesenchymal stem cells.

405

406

407 Discussion

408

409 Here we present snATAC-seq and snRNA-seq for human skeletal muscle and snATAC-seq for
410 rat skeletal muscle, which we use to map the transcriptomes and chromatin accessibility of cell
411 types present in skeletal muscle samples. The cell types identified are consistent with known
412  biology and with previous studies of human (13) and mouse (16,17,20) skeletal muscle tissue.
413  However, our use of single-nucleus rather than single-cell techniques allows us to capture muscle
414  fiber nuclei, cell types missing from previously published snRNA-seq datasets. To our knowledge
415  this is the first published snATAC-seq dataset for human and rat skeletal muscle tissue. We
416 therefore anticipate that this dataset will be useful in nominating causal GWAS SNPs and
417  demonstrate this by integrating the data with UK Biobank and previously published T2D GWAS
418  credible sets, highlighting potentially causal SNPs at the NOG, ARL15, and ITPR2 loci.

419

420  Additionally, we explore the effect of two technical parameters on snRNA-seq and snATAC-seq
421  results. First, we find that FANS (using DRAQY staining) substantially alters snATAC-seq results.
422  Though the stereotypical ATAC-seq fragment length distribution is observed, signal-to-noise (as
423 measured by TSS enrichment and fraction of reads in peaks, as well as by visual inspection)
424  appears to decrease substantially relative to non-FANS libraries. We note that the effect of FANS
425  (nucleus sorting) may differ from that of FACS (cell sorting). snRNA-seq results appear to be
426  substantially less sensitive to FANS -- the pseudobulk gene expression from FANS libraries
427  correlates strongly with that from non-FANS libraries -- suggesting that chromatin is more
428  sensitive to FANS than is RNA. We also observed higher nucleus yield in our FANS snRNA-seq
429 libraries than our non-FANS libraries. There are several potential explanations for this. One is that
430 the nuclei counting step that necessarily precedes loading of the 10X platform may be sensitive
431  todebris. If greater amounts of debris are observed in non-FANS libraries, nucleus concentration
432  may be systematically overestimated in non-FANS libraries, resulting in more nuclei actually being
433 loaded onto the 10X platform from FANS libraries. While not mutually exclusive, FANS may also
434  decrease the amount of debris being loaded into the 10X platform, and thereby improve nucleus
435  capture.

436

437  We found snATAC-seq and snRNA-seq results were remarkably consistent at different loading
438 concentrations. One clear caveat is that this may change as the loading concentration is further
439 reduced or increased. It is also important to note that the actual number of nuclei loaded may
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440  differ from the estimated 20k or 40k nuclei. As discussed above, it is possible that debris in the
441 input preparation makes nucleus counting less accurate, in which case our cited values may not
442  reflect the true values. However, because the same nuclear preparation was used as input for the
443 20k and 40k nuclei libraries, the two-fold difference in loading concentration should be reliable,
444  even if the absolute values are skewed.

445

446  The GWAS enrichments presented here will be one interesting area to follow up on as more
447  snATAC-seq data is published. Interpretation of the results is complicated by the fact that many
448  tissues share cell types. For example, mesenchymal stem cell-like populations exist in many
449 tissues besides muscle, such as adipose tissue and bone marrow. Taking the fasting insulin
450 enrichments as an example, we found that the enrichment of GWAS SNPs in muscle cell type
451  ATAC-seq peaks disappeared when adipose tissue was included in the enrichment model.
452  However, it is possible that the adipose enrichment is being driven in part by mesenchymal stem
453  cell populations within adipose itself. Direct comparison of snATAC-seq and snRNA-seq profiles
454  from mesenchymal stem cells from a wider array of tissues will help tease apart commonalities
455  and tissue-specific differences in this interesting population.

456

457

458

459  Methods

460

461 Reproducibility of computational analyses

462

463  Code used for analyses in this manuscript are available at https://github.com/ParkerLab/2020-sn-
464  muscle.

465

466

467  snATAC-seq and snRNA-seq, FANS vs no FANS experiment

468  Three separate pieces of tissue were cut from a single human skeletal muscle sample (weighing
469 60mg, 50mg and 50mg; sample HSM1, quadriceps femoris muscle group). Nuclei were isolated
470  using a modified version of the ENCODE protocol (protocol S1) (56,56), customized from Step 5
471  onwards to accommodate FANS (Fluorescence assisted nuclei sorting). In step 5, the nuclei were
472  resuspended in 700 pL of Sort buffer (1% BSA, 1mM EDTA in PBS) and filtered through a 30 ym
473  filter. Three different nuclei isolations were performed and the nuclei suspended in sort buffer
474  were mixed, pooled together and divided into two groups, one with FANS and one without FANS.
475  FANS nuclei were sorted according to the previously published FANS protocol using DRAQ7 (78).
476  DRAQ7 (0.3mM from Cell Signaling Technology) was added to the FANS nuclei suspension, at
477 100 fold dilution to get a final concentration of 3 uM. Nuclei were gently mixed and incubated for
478 10 minutes on ice. Nuclei were analyzed in the presence of DRAQ7 and sorted for high DRAQ7
479  positive signal using Beckman Coulter’s Astrios MoFlo. We followed the gating strategy outlined
480 in the FANS protocol (Preissl et al, 2018). The sorted nuclei were collected in a recovery buffer
481 (5% BSA in PBS). The nuclei with and without FANS were spun at 1000g for 15 min at 4°C. The
482  nuclei were resuspended in 100 pL of 1X diluted nuclei buffer and counted in the Countess Il FL
483  Automated Cell Counter. The appropriate amount of nuclei were split for snRNA-seq and spun
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484  down at 500g for 10 min at 4°C and resuspended in RNA nuclei buffer (1%BSA+PBS in 0.2U
485 RNAse inhibitor). The nuclei at appropriate concentration for snATAC-seq and snRNA-seq were
486  submitted to the Advanced Genomics core for all the snATAC-seq and snRNA-seq processing on
487  the 10X Genomics Chromium platform (v. 3.1 chemistry for shnRNA-seq). For each modality nuclei
488  were loaded at 15.4K nuclei/well.

489

490 snATAC-seq and snRNA-seq, loading 20k or 40k nuclei

491  Two pieces of tissue (weighing 85.3 mg and 85.8 mg) were cut from one human skeletal muscle
492  sample (HSM1) and two tissue pieces (weighing 95.9 mg and 92.6 mg) were cut from a second
493  human skeletal muscle sample (HSM2; quadriceps femoris muscle group). Each of the samples
494  was cut on dry ice using a frozen scalpel to prevent thawing. The samples were pulverized using
495 a CP02 cryoPREP automated dry pulverizer (Covaris 500001). We developed a customized
496  protocol (protocol S2) derived from the previously published ENCODE protocol (56,56) and used
497 ittoisolate nuclei, which is compatible with both snATAC-seq and snRNA-seq. All four pulverized
498 tissues pieces were mixed and redistributed to perform four different nuclei isolations. The desired
499  concentration of nuclei was achieved by resuspending the appropriate number of nuclei in 1X
500 diluted nuclei buffer for snATAC-seq and RNA nuclei buffer (1% BSA in PBS containing 0.2U/uL
501 of RNAse inhibitor) for snRNA-seq. The nuclei at appropriate concentration for snATAC-seq and
502 snRNA-seq were submitted to the Advanced Genomics core for all the snATAC-seq and snRNA-
503 seq processing on the 10X Genomics Chromium platform (v. 3.1 chemistry for snRNA-seq). For
504 each modality nuclei were loaded at two different concentrations, 20K nuclei/well and 40K
505 nuclei/well.

506

507 snATAC-seq, human and rat mixed library

508  Tissue from human (49mg of pulverized human skeletal muscle; sample HSM1) and rat (45mg of
509 pulverized gastrocnemius samples) were used in this single nuclei ATAC experiment. We used
510 the previously published ENCODE protocol (protocol S1) (56,56) to isolate nuclei, which is
511 compatible with both snATAC-seq and snRNA-seq. After isolating nuclei from each sample
512  (species) individually, the nuclei were mixed in equal proportions. The desired concentration of
513  nuclei was achieved by resuspending the appropriate number of nuclei in 1X diluted nuclei buffer
514  for snATAC-seq. The nuclei at the appropriate concentration for snATAC were submitted to the
515  Advanced Genomics core for all the snATAC-seq processing on the 10X Genomics Chromium
516  platform. 15.4K nuclei were loaded into a single well.

517

518 Bulk ATAC-seq

519 2 tissue pieces weighing 99.4 mg and 80.7 mg were cut from one human skeletal muscle sample
520 (HSM1) and 2 pieces weighing 67.6 mg and 103.5 mg were cut from a second human skeletal
521  muscle sample (HSM2). Each of the samples was cut on dry ice using frozen scalpel to prevent
522  thawing. The samples were pulverized using a CP02 cryoPREP automated dry pulverizer
523  (Covaris 500001). For bulk ATAC seq we followed the nuclei isolation protocol outlined in protocol
524  S2, except in the final step the nuclei were resuspended in 250 pL of 1% BSA. The nuclei were
525  counted in Countess Il FL Automated Cell Counter, and the appropriate volume of the suspension
526  for 50K nuclei was spun down and used for the downstream transposition reaction (a modified
527  version of the ENCODE protocol; protocol S3) (56,56).
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528

529  Processing of muscle bulk ATAC-seq data

530 Adapters were trimmed using cta (v. 0.1.2; https://github.com/ParkerLab/cta). Reads were
531 mapped to hg19 using bwa mem (-1 200,200,5000 -M; v. 0.7.15-r1140) (79). Duplicates were
532  marked using picard MarkDuplicates (v. 2.21.3; https://broadinstitute.github.io/picard/). We used
533  samtools to filter to high-quality, properly-paired autosomal read pairs (-f 3 -F 4 -F 8 -F 256 -F
534 1024 -F 2048 -q 30; v. 1.9 using htslib v. 1.9) (80). To call peaks, we used bedtools bamtobed to
535 convert to a bed file (v. 2.27.1) and then used that file as input to MACS2 callpeak (--nomodel --
536  shift-100 --seed 762873 --extsize 200 --broad --keep-dup all --SPMR; v. 2.1.1.20160309) (81,82).
537  To visualize the signal, we converted the bedgraph files output by MACS2 to bigwig files using
538 bedGraphToBigWig (v. 4) (83).

539

540  Processing of snATAC-seq data

541  Adapters were trimmed using cta. We used a custom python script (available in the GitHub repo)
542  for barcode correction. Barcodes were corrected in a similar manner as in the 10X Genomics Cell
543 Ranger ATAC v. 1.0 software. In brief, barcodes were checked against the 10X Genomics
544  whitelist. If a barcode was not on the whitelist, then we found all whitelisted barcodes within a
545  hamming distance of two from the bad barcode. For each of these whitelisted barcodes, we
546  calculated the probability that the bad barcode should be assigned to the whitelisted barcode
547  using the phred scores of the mismatched base(s) and the prior probability of a read coming from
548 the whitelisted barcode (based on the whitelisted barcode’s abundance in the rest of the data). If
549  there was at least a 97.5% chance that the bad barcode was derived from one specific whitelisted
550 barcode, it was corrected to the whitelisted barcode.

551

552 Reads were mapped using bwa mem with flags ‘-I 200,200,5000 -M’. We used Picard
553  MarkDuplicates to mark duplicates, and filtered to high-quality, non-duplicate autosomal read
554  pairs using samtools view with flags -f 3 -F 4 -F 8 -F 256 -F 1024 -F 2048 -q 30’. Quality control
555  metrics were gathered on a per-nucleus basis using ataqv (v. 1.1.1) on the bam file with duplicates
556  marked. In the case of the mixed rat and human snATAC-seq library, all reads were mapped to
557  the hg19 and rn6 genomes separately, and then a nucleus was assigned as either rat or human
558 by counting the number of high-quality, non-duplicate autosomal reads after mapping to either
559 genome. If at least three times as many high-quality reads were present after mapping to one
560 genome than to the other, the nucleus was assigned to either the rat or human sample as
561  appropriate. In the case that fewer than three times as many high-quality reads mapped to one
562 genome as to the other, the nucleus was not assigned to either species and was dropped.

563

564 For the two snATAC-seq libraries that contained a mix of nuclei from the two human individuals,
565 we assigned nuclei to biological samples (and determined doublets) using demuxlet (84) with
566  SNP calls from the bulk ATAC-seq libraries. To call SNPs on the bulk ATAC-seq bam files, we
567 first merged the two bulk technical replicate ATAC-seq bam files for each individual, then filtered
568  out reads with edit distance > 2 from the hg19 reference. Used samtools mpileup (-R -Q 20 -d
569 10000 -E) on these two bam files as input to bcftools call (-v -f GQ; v. 1.9). We then used bcftools
570 filter to filter to those positions where both individuals had genotype quality (GQ) > 90. This VCF
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571  file was used as input to demuxlet (option ‘--field PL’; git commit b7453fc, modified as described
572  in GitHub issue #15).

573

574  When comparing aggregate snATAC-seq signal to bulk ATAC-seq signal (Fig. 1), we eliminated
575 sequencing reads corresponding to nucleus barcodes that couldn’t be matched to the 10X
576  barcode whitelist, but otherwise processed it as bulk ATAC-seq data (i.e., marking duplicates
577  ignoring cell-level information, and not filtering to quality nuclei).

578

579  To select quality nuclei from each library, we selected nuclei (barcodes) meeting the thresholds
580 in Table S1. In addition to setting a threshold for minimum fragments (to filter out barcodes that
581  only capture ambient DNA fragments), we set a threshold for maximum fragments, because
582  barcodes with very high fragment counts may be enriched for doublets (41). We also set a
583  threshold for minimum TSS enrichment (because ATAC-seq signal for healthy nuclei is expected
584  to be enriched near TSS (41,85,86)), and we filtered out barcodes that showed an unexpectedly
585 large fraction of reads coming from a single autosome (see (29)).

586

587  Processing of snRNA-seq data

588 snRNA-seq data was processed using starSOLO (STAR v. 2.7.3a), which outputs the count
589 matrices needed for most of the analyses (87). To select quality nuclei from each library, we
590 selected nuclei meeting the thresholds in Table S2 (we set a threshold for minimum UMls to filter
591  outbarcodes that only capture ambient RNA; a threshold for maximum fragments, since barcodes
592  with very high UMI counts may be enriched for doublets; and a threshold for maximum
593  mitochondrial contamination, since barcodes with quality nuclei and low ambient RNA should
594  show reduced mitochondrial contamination (88)). We used souporcell (as contained in the
595  Singularity container downloaded from the souporcell GitHub on Dec. 10, 2019, and setting -k 2)
596 to detect doublets in the libraries that were a mix of nuclei from two human individuals (89). We
597  additionally ran doubletfinder (v. 2.0.2) (32) on each of the snRNA-seq libraries, and removed any
598 nuclei that were called as a doublet by either souporcell or doubletfinder. When running Seurat
599  (v. 3.0.2) for doubletfinder, we set selection.method = "vst" and nfeatures = 2000, and used the
600 top 20 PCs to find neighbors and resolution = 0.8 to find clusters (90,91). When calling the
601  doubletFinder_v3 function, we selected the doubletfinder pK based on the maximum ‘BCmetric’
602  after running the paramSweep_v3 function, set nExp assuming a 7.5% doublet rate (adjusting for
603 the homotypic proportion as in the doubletfinder documentation example), and used the top 20
604 PCs.

605

606  Clustering with LIGER

607  Nuclei were clustered using LIGER (v. 0.4.2; with R v. 3.5.1 and Seurat v. 2.3.0) (90-92). For
608 snATAC-seq libraries, per-gene scores were computed by calculating the number of reads
609 overlapping with each gene’s promoter/gene body using bedtools intersect. Gene promoter/body
610 were calculated based on NCBI annotation GTF files (NCBI Rattus norvegicus Annotation
611 Release 106 and Homo sapiens Updated Annotation Release 105.20190906), filtered to include
612  only protein-coding/IncRNA genes with source ‘BestRefSeq’/BestRefSeq%2CGnomon’/'Curated
613  Genomic’. Genes assigned to multiple chromosomes/strands were excluded, and then the
614  regions for each gene were merged to get the gene body. Promoters were taken as the 3kb
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615  upstream of the TSS; after this, genes represented by multiple non-contiguous genomic stretches
616  were excluded. For input to LIGER, all count matrices for a given modality and biological sample
617  were concatenated together, so that there was 1 rat snATAC matrix, 2 human snATAC matrices,
618 and 2 human snRNA matrices. For factorization, we used k = 15, lambda = 5, and nrep=5, using
619 the smaller human snRNA matrix to select variable genes (as all the nuclei for that matrix were
620 processed on a single day, and should therefore reflect less technical variation). For each of the
621 downstream steps we dropped factors 3 and 5, as these had highly-loading ribosomal genes or
622  showed relatively high specificity for one of the two omics modalities. For normalization, we set
623  knnk (and small.clust.thresh) to 10 and resolution to 0.05, and centered the data. For the UMAP,
624  we used n_neighbors = 15. We then called the clusterLouvainJaccard function to re-cluster cells
625  using the normalized factors, with k = 17, and resolution = 0.05.

626

627

628  Per-cluster processing of snATAC-seq data

629  The filtered reads from all snATAC-seq nuclei in each cluster were merged using samtools merge.
630 Peaks were called and bigwig files produced as described for the bulk ATAC-seq data. Peak files

631  were filtered against blacklist files available from
632  http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncode
633 DacMapabilityConsensusExcludable.bed.gz and
634  http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncode
635 DukeMapabilityRegionsExcludable.bed.gz (hg19) (56) and

636  https://github.com/shwetaramdas/maskfiles/tree/master/rataccessibleregionsmaskfiles/strains_i
637  ntersect.bed for 6 (93).

638

639  For analysis of rat peak overlap with human GWAS data, rat peaks were projected into the human
640 genome using bnMapper (v. 0.8.6) and the chain file at
641  http://hgdownload.cse.ucsc.edu/goldenpath/rn6/liftOver/rn6ToHg19.over.chain.gz.

642

643

644 Roadmap enhancer regression

645  We called peaks on the aggregate of the nuclei in each cluster, and then took the union of peaks
646  across all clusters to generate a master peak list. We then used logistic regression to model, for
647 each cluster and each Roadmap Epigenomics cell type in the Roadmap 15-state chromHMM
648 model, the accessibility of each TSS-distal master peak (> 5kb from a RefSeq TSS) in that cluster
649 as a function of the posterior probability that that master peak is an enhancer in that Roadmap
650 cell type according to the Roadmap chromHMM model (31). Since the posteriors are given in 200
651 bp windows, and there are also 3 different enhancer states (‘Genic enhancers’, ‘Enhancers’, and
652  ‘Bivalent Enhancer’), multiple windows overlap with each master peak -- the posterior for the
653  master peak is therefore taken as the maximum of the 200 bp window posteriors, across all 3 of
654 the enhancer states. The model coefficient was used as the (unnormalized) score for that
655 Roadmap cell type in that cluster, and the normalized score was simply the score for that
656 Roadmap cell type in that cluster divided by the max score across all cell types for that cluster.
657
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658  For rat peaks, in addition to removing master peaks near TSS in rat coordinates, we additionally
659 removed master peaks that were within 5 kb of a TSS after projecting into human coordinates.
660

661

662 Non-muscle cell type open chromatin annotations used in GWAS

663 To create the adipose open chromatin regions, we processed the three adipose ATAC-seq
664 libraries from (76). Adapter sequences were removed using Cutadapt (v. 1.12) (94) before
665 mapping to hg19 with bwa mem (-1 200,200,5000 -M). Duplicates were marked using picard
666  MarkDuplicates and BAM files were filtered using samtools view (-F 4 -F 256 -F 1024 -F 2048 -q
667  30) before converting to BED format (bamtools bamtobed) and calling peaks with MACS2 (--
668  nomodel --shift -100 --seed 2018 --extsize 200 --broad --keep-dup all --SPMR). We then took the
669  union of peaks across the three samples, keeping those merged peaks that appeared in at least
670 two samples.

671

672  The beta cell ATAC-seq peaks were taken from (41). We used the peaks called using all beta cell
673 nuclei.

674
675 Common open chromatin regions were derived from the DNasel hypersensitive sites from (57).
676 The DHS index from Meuleman et al. was downloaded from

677  https://www.meuleman.org/DHS_Index_and_Vocabulary_hg38 WM20190703.txt.gz on March
678 21, 2020. We lifted open chromatin regions from hg38 to hg19 using liftOver with the chain file
679 from http://hgdownload.cse.ucsc.edu/goldenpath/hg38/liftOver/hg38ToHg19.over.chain.gz (95).
680  We then kept those that were labeled as ‘tissue invariant’ and that appeared in at least 500 of the
681 733 samples.

682

683  We also used open chromatin regions from (57) for adrenal gland, bone, brain, eye, gonad, gum,
684  heart, kidney, large intestine, liver, lung, mammary, mesoderm, ovary, placenta, prostate, skin,
685 small intestine, spinal cord, spleen, stomach, and umbilical cord. For each tissue, we took the
686  non-cancerous samples labeled ‘Primary’ from that tissue and kept those DNasel hypersensitive
687  sites that appeared in at least 50% of the samples from that tissue.

688

689 UK Biobank GWAS enrichment

690 We downloaded UK Biobank GWAS summary statistics made available by the Benjamin Neale
691 lab (v2 of their analysis, initially made public on August 1, 2018; http://www.nealelab.is/uk-
692  biobank/) (46). Specifically, we downloaded the ‘both sex’ GWAS summary statistic files listed in
693 the ‘UKBB GWAS Imputed v3 - File Manifest Release 20180731’ spreadsheet available at
694  https://docs.google.com/spreadsheets/d/1kvPoupSzsSFBNSztMzl04xMoSC3Kcx3CrjVf4yBmES
695 U (downloaded on April 9, 2020). Because some traits may not be appropriate for such an
696 enrichment analysis (because they are not strongly polygenic, because the phenotypes are
697  untrustworthy, etc.), we kept only traits deemed as ‘high confidence’ and with estimated heritability
698 > 0.01 (and z-score > 7) based on the Neale Lab’s own LD score regression heritability analysis
699 of the GWAS results. Their rating criteria are described on their UKBB LDSC GitHub page
700 (https://nealelab.github.io/UKBB_ldsc/confidence.html) and their LD score regression results
701 (with confidence ratings) were downloaded from
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702  https://www.dropbox.com/s/ipeqyhrpdqav5uh/ukb31063_h2_all.020ct2019.tsv.gz?dI=1. For
703  each trait, we used the ‘primary’ GWAS result, as indicated in that file. Any traits that did not have
704  acombined male and female GWAS analysis were dropped. The creatinine GWAS highlighted in
705  the text was trait 30700 _irnt (“Creatinine (quantile)”).

706

707  The LDSC software package (v. 1.0.1) includes a ‘baseline’ model with 59 categories derived
708 from 28 genomic annotations (36,45). Many of these annotations are cell type agnostic; e.g. a
709  SNP’s minor allele frequency does not change between cell types. However, other annotations in
710  the baseline model are not cell type agnostic; for example, the FANTOMS5 enhancer annotation
711 is derived from experiments performed on a range of different cell types, and may change
712 substantially if the cell types used to create the annotation were to change. When performing the
713 UK Biobank GWAS enrichments, we utilized the cell-type agnostic annotations from the LDCS
714 baseline model (Table S8). In order to reduce the likelihood of model misspecification, we then
715  added common open chromatin regions and open chromatin regions from a range of cell types.
716  Specifically, we added (1) beta cell ATAC-seq peaks, (2) adipose ATAC-seq peaks, (3) DNase-
717  seq peaks derived from the 22 tissues/organs listed above, and (4) the ATAC-seq peaks from all
718 seven of our snATAC-seq cell types. The various annotation files (regression weights,
719  frequencies, etc.) required for running LDSC were downloaded from
720  https://data.broadinstitute.org/alkesgroup/LDSCORE. LD scores were calculated using the Phase
721 31000 Genomes data, keeping only the HapMap3 SNPs as recommended by the LDSC authors
722  and using only SNPs with minimum MAF of 0.01. GWAS summary statistics were prepared for
723 LDSC using the munge_sumstats.py script, with option --merge-alleles w_hm3.snplist (where
724  w_hm3.snplist is the file in the data download). When running the regression, we required a
725  minimum MAF of 0.05, and utilized the Phase 3 1000 Genomes SNP frequencies/weights.

726

727  T2D and fasting insulin GWAS enrichment

728  We used the T2D (BMI unadjusted) and fasting insulin (BMI adjusted) GWAS summary statistics
729  from (Mahajan et al., 2018) and (Manning et al., 2012), respectively.

730

731 Because the cell types relevant to T2D are generally thought to be pancreatic beta cells, adipose,
732  muscle, and liver, we performed enrichments using each of these cell types, common open
733  chromatin, and the cell type-agnostic LDSC baseline annotations. First, for each of these
734  muscle/beta cell/adiposel/liver cell types, we ran one model containing the open chromatin from
735  that cell type, the common open chromatin regions, and the cell type-agnostic LDSC baseline
736  annotations. Then, we ran one joint model containing all of those cell types and annotations.
737  LDSC parameters were the same as for the UK Biobank GWAS enrichments.

738

739  T2D GWAS locus genome browser screenshots and peak overlaps

740  All signal tracks in the genome browser were created by converting the normalized bedgraph files
741 output by MACS2 to bigwig files using bedGraphToBigWig (v. 4) (83).

742

743  Processing and provenance of adipose ATAC-seq and beta cell ATAC-seq is described above.
744  The 10 bulk islet libraries were from (41). These libraries were processed as described in that
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745  manuscript, except we used the 10% FDR peak set from peak calling on the unsubsampled
746  libraries.

747

748

749  Predicting SNP regulatory impact

750 We used the Isgkm package modified by the Kundaje lab with gkmexplain
751  (https://github.com/kundajelab/lsgkm; commit c3758d5bee7) (59,60,63). For each cell type, we
752  took the 150 bps on either side of the summits of the top 40,000 narrowPeaks (by p-value) as the
753  positive sequences for gkmSVM. To generate negative sequences, we took windows across the
754  genome (step size = 200), removed those containing Ns, overlapping hg19 blacklists, overlapping
755  any FDR 10% broadPeaks from that cell type, or having repeat content > 60%, and then for each
756  positive sequence selected a negative sequence with matching GC content and repeat content
757  (repeat content was calculated based on the hg19 simpleRepeat table from the UCSC genome
758  browser (96,97), downloaded on March 29, 2020, which contains simple tandem repeats
759  annotated by Tandem Repeats Finder (98); GC content and repeat content for the negative
760 sequence was required to be within 2% of that of the positive sequence; in the case that no such
761 negative sequence could be found, the positive sequence was dropped from the analysis). We
762  held out 15% of sequences as test data, and trained the gkmSVM model on the remaining 85%
763  of sequences, setting | = 10 and k = 6 and using the gkm kernel. Using this model and deltaSVM
764  (61), we predicted the effect of all autosomal 1000 Genomes phase 3 SNPs (downloaded on May
765 27,2015 from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502) (62). For each muscle
766  cell type, deltaSVM scores were converted to z-scores based on the distribution of scores across
767  all SNPs for that cell type. We additionally passed the gkmSVM model to gkmexplain to generate
768  importance scores for sequences containing the ref/alt alleles.

769

770  Overlap of SNPs and peaks with ENCODE candidate cis-regulatory elements

771 The set of 1,310,152 candidate cis-regulatory elements in ENCODE'’s ‘Registry of candidate
772  Regulatory Elements’ (in hg19 coordinates) were fetched from the ENCODE web portal on April
773 7,2020 (55,56).

774

775

776  Locuszoom plots

777  Locuszoom plots were created for the DIAMANTE T2D GWAS summary statistics with the
778  locuszoom standalone v. 1.4, using the Nov. 2014 EUR 1000 Genomes data included in the
779  download (--pop EUR --source 1000G_Nov2014) (99).

780

781  PICS

782  We used the online PICS tool (54) (https://pubs.broadinstitute.org/pubs/finemapping/pics.php)
783  with the EUR LD structure. The tool was accessed on April 13, 2020.

784

785  Motif scan

786  The MEF2 motif scan was performed using FIMO (v. 5.0.4) with a background model calculated
787  from the hg19 reference genome (77).

788
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835

836  Figure legends

837  Figure 1: (A) Study design to determine the effect of FANS on snRNA-seq and snATAC-seq
838  results. Muscle cartoon adapted from Scott et al. 2016. HSM1 refers to one specific skeletal
839  muscle sample ('human skeletal muscle 1'). Bulk ATAC-seq was performed on HSM1 as well (two
840 replicates, each separate nuclei isolations). (B) Fragment length distribution and (C) TSS
841  enrichment for two snATAC-seq libraries that did not undergo FANS and two that did, as well as
842  two bulk ATAC-seq replicates from the same sample ('‘Bulk’). (D) ATAC-seq signal at the ANK1
843  locus for FANS or non-FANS input snATAC-seq libraries, and the two bulk ATAC-seq libraries.
844  Alltracks are normalized to 1M reads. Gene model (GENCODE v19 basic) displays protein coding
845 genes only. (E) Correlation between FANS and non-FANS snRNA-seq libraries; each point
846  represents one gene. (F) Study design to determine the effect of loading 20k vs 40k nuclei into
847  the 10X platform, utilizing HSM1 as well as a second sample, HSM2 (‘human skeletal muscle 2').
848  Bulk ATAC-seq was performed on HSM1 (same libraries as in (a)) and on HSM2 (two replicates,
849  each separate nuclei isolations). (G) Fragment length distribution and (H) TSS enrichment for
850 snATAC-seq libraries after loading 20k vs 40k nuclei, as well as for the four bulk ATAC-seq
851 libraries (two each from the two muscle samples, 'HSM1 bulk' and 'HSM2 bulk'). (I) ATAC-seq
852  signal at the ANKT locus for the 20k and 40k libraries and the four bulk ATAC-seq libraries. All
853  tracks are normalized to 1M reads. Gene model (GENCODE v19 basic) displays protein coding
854  genes only. (J) Correlation between snRNA-seq libraries resulting from loading 20k vs 40k nuclei.
855

856  Figure 2: (A) UMAP after clustering human snATAC-seq, human snRNA-seq, and rat snATAC-
857  seq nuclei with LIGER. (B) UMAP facetted by species and modality. (C) Gene expression
858  (snRNA-seq) or accessibility (snATAC-seq; gene promoter + gene body) of marker genes. Values
859  are column-normalized. (D) ATAC-seq signal for human snATAC-seq nuclei in each cluster. All
860 tracks are normalized to 1M reads. (E) Fraction of nuclei, across both species and modalities,
861  assigned to each cell type. (F) Logistic regression-based approach to score similarity between
862  TSS-distal ATAC-seq peaks (> 5 kb from TSS) and Roadmap Epigenomics enhancer states. For
863  all TSS-distal ATAC-seq peaks across all muscle cell types, we scored the accessibility of the
864  peak (0/1) in each of the muscle cell types based on the presence or absence of a peak call in
865 that cell type. Then, for a given one of the 127 Roadmap Epigenomics cell types, we determined
866 the maximum posterior probability of the enhancer states in the Roadmap Epigenomics
867 chromHMM model within each peak. We then used logistic regression to model the relationship
868  between the peak accessibility and the enhancer posteriors (running one model per muscle cell
869 type per Roadmap Epigenomics cell type). Then, for each muscle cell type, the model coefficient
870  was normalized to 1 by dividing by the maximum coefficient across all 127 Roadmap Epigenomics
871  cell types, and this value was used as the enhancer similarity score for that muscle cell type and
872 Roadmap Epigenomics cell type. (G) Similarity of snATAC-seq peak calls for each cell type and
873  species to Roadmap Epigenomics chromHMM enhancer states based on the logistic regression
874  procedure outlined in (F). The Roadmap Epigenomics cell type names have been adjusted slightly
875  for clarity and the sake of space. The full names and the identifiers from the Roadmap
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876  Epigenomics paper are: Psoas muscle (E100), Mesenchymal Stem Cell Derived Adipocyte
877  Cultured Cells (E023), HUVEC Umbilical Vein Endothelial Primary Cells (E122), Stomach Smooth
878  Muscle (E111), Primary monocytes from peripheral blood (E029), and Fetal Muscle Trunk (E089).
879  (H) Nucleus counts per species for snATAC-seq data.

880

881 Figure 3: (A) UK Biobank LDSC partitioned heritability results for traits for which one of the muscle
882  cell types was significant after Benjamini-Yekutieli correction. (B) LDSC partitioned heritability
883  results for creatinine (UK Biobank trait 30700). Red y-axis labels refer to the muscle snATAC-seq
884  cell type annotations. (C) Locuszoom plot for C170rf67 locus in the UK Biobank creatinine GWAS.
885 (D) ATAC-seq signal in the region highlighted in (C). The red line represents the location of SNP
886  rs227727. All tracks are normalized to 1M reads. SNPs shown have LD > 0.8 with the lead SNP
887  based on the European samples in 1000 Genomes Phase 3 (Version 5; 1000 Genomes Project
888  Consortium et al., 2015). (E). gkmexplain importance scores for the ref and alt allele-containing
889  sequences (top two rows), and the difference between the ref and alt allele importance scores
890 (third row), which resembles the PITX2_2 motif predicted to be disrupted by the A allele (bottom
891  row).

892

893  Figure 4: (A) LDSC partitioned heritability results for T2D (BMI-unadjusted) and Fasting insulin
894  GWAS (BMI-adjusted), using human peak calls. For each of the cell types, one model was run
895  adjusting for cell type-agnostic annotations from the LDSC baseline model and common open
896  chromatin regions. Asterisks represent Bonferroni significance (p < 0.05 after adjusting for 40
897 tests). (B) locuszoom plot for ITPR2 locus in the DIAMANTE data. (C) DIAMANTE credible set
898  near the ITPR2 gene, consisting of 22 SNPs. One SNP (rs7132434; highlighted in red) overlaps
899  a peak call in any of the muscle cell types. (D) gkmexplain importance scores for the ref and alt
900 allele (top two rows) and the difference between the ref and alt importance scores (third row); the
901 G allele disrupts an AP1 motif (bottom row). (E). locuszoom plot for ARL15 locus in the
902 DIAMANTE data. (F). DIAMANTE credible set SNPs near the ARL15 gene. The three SNPs
903 represent the three-SNP credible set discussed in the text. One of these SNPs (rs702634;
904 highlighted in red) overlaps a mesenchymal stem cell specific peak. (G). Projecting the SNP
905 highlighted in (F), rs702634, into the rat genome (projected SNP position indicated by the red
906 vertical line) shows the corresponding region has open chromatin in rat mesenchymal stem cells.
907 (H). gkmexplain importance scores for the ref and alt alleles (top two rows), the difference
908 between them (third row), and a MEF2 motif disrupted by rs702634.

909

910  Figure S1: Chromatin state overlap for TSS-distal (> 5kb from TSS) ATAC-seq peaks from the
911 FANS and non-FANS snATAC-seq libraries.

912

913  Figure S2: Correlation between FANS snATAC-seq, non-FANS snATAC-seq, and standard bulk
914  ATAC-seq libraries. Each point represents one peak.

915

916  Figure S3: QC thresholds for FANS and non-FANS snRNA-seq libraries. Dashed lines represent
917  thresholds for minimum number of UMIs, maximum number of UMIs, and maximum fraction of
918  mitochondrial UMIs.

919
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920 Figure S4: Chromatin state overlap for TSS-distal (>5 kb from TSS) ATAC-seq peaks from the
921 20k and 40k nucleus FANS snATAC-seq libraries.

922

923  Figure S5: Correlation between 20k and 40k nucleus snATAC-seq libraries and standard bulk
924  ATAC-seq libraries. Each point represents one peak.

925
926  Figure S6: QC thresholding for the 20k and 40k nuclei input snATAC-seq libraries. (a) Dashed
927  lines represent thresholds for minimum number of reads, maximum number of reads, and

928 minimum TSS enrichment. (b) Dashed lines represent thresholds for minimum number of reads,
929  maximum number of reads, and the maximum fraction of reads derived from a single autosome
930 (imposed to filter out nuclei showing aberrant per-chromosome coverage).

931

932  Figure S7: QC thresholds for the 20k and 40k nuclei input snRNA-seq libraries. Dashed lines
933  represent thresholds for minimum number of UMIs, maximum number of UMIs, and maximum
934 fraction of mitochondrial UMIs.

935

936  Figure S8: QC thresholds for all sSnATAC-seq libraries used in cell type clustering and downstream
937  analyses. (a) Dashed lines represent thresholds for minimum number of reads, maximum number
938 of reads, and minimum TSS enrichment. (b) Dashed lines represent thresholds for minimum
939  number of reads, maximum number of reads, and the maximum fraction of reads derived from a
940 single autosome (imposed to filter out nuclei showing aberrant per-chromosome coverage).

941

942  Figure S9: QC thresholds for all snRNA-seq libraries used in cell type clustering and downstream
943  analyses. Dashed lines represent thresholds for minimum number of UMIs, maximum number of
944  UMIs, and maximum fraction of mitochondrial UMIs.

945

946  Figure S10: snATAC-seq read counts (gene promoter + gene body) derived from the Type Il
947  muscle fiber myosin heavy chain genes (MYH1, MYH2, MYH4) or the Type | muscle fiber myosin
948  heavy chain gene (MYH7) for human and rat nuclei. Each point represents a single nucleus. Type

949 | muscle fibers/Type Il muscle fibers headers represent the cluster to which each nucleus was
950  assigned.
951

952  Figure S11: Log2(fold change) for Type Il vs Type | muscle fiber gene expression, showing the
953 genes with the largest fold changes between fiber types based on data from Rubenstein et al.
954  (Rubenstein et al. Table S4). Rubenstein et al. performed RNA-seq on pooled type | and pooled
955 type Il muscle fibers, and determined the 20 genes with the largest fold change in type Il relative
956 totype I fibers, and the 20 genes with the largest fold change in the other direction, along with p-
957  values for differential expression. The 34 genes (of those 40 genes) that were differentially
958 expressed are shown here. The gene fold changes based on the muscle snRNA-seq data are
959  often lower in magnitude than the fold changes based on Rubenstein et. al's pooled RNA-seq
960 data; this is unsurprising, as ambient RNA in the snRNA-seq data as well as any errors in nucleus
961 fiber type assignments in snRNA-seq data clustering will reduce the observed fiber type
962 differences.

963
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964  Figure S12: UK Biobank LDSC partitioned heritability results for traits for which one of the muscle
965 cell types was significant after Benjamini-Yekutieli correction. (A) human, (B) rat.

966

967  Figure S13: (A) LDSC partitioned heritability results for T2D (BMI-unadjusted) and Fasting insulin
968 GWAS (BMl-adjusted), using human peak calls. Results are shown for pancreatic beta cell,
969 adipose, and liver open chromatin regions as well. First, for each of the ten cell types, one model
970  was run adjusting for cell type-agnostic annotations from the LDSC baseline model and common
971  open chromatin regions (this is the joint model with open chromatin). Then, a single model
972  containing those same annotations and all ten cell types was run (this is the joint model with open
973 chromatin and all other cell types). Asterisk represents Bonferroni significance (p < 0.05 after
974  adjusting for two traits, ten cell types, and two models per cell type = 40 tests). (B) Same as (A),
975  but using the rat peak calls projected into human coordinates for the muscle cell types.

976

977  Figure S14: ATAC-seq signal in bulk adipose, bulk islet, single-nucleus pancreatic beta cell, or
978  our muscle cell types at the ITPR2 locus. Position of SNP rs7132434 is indicated by the long
979  vertical red line. All tracks are normalized to 1M reads.

980

981 Figure S15: ATAC-seq signal in bulk adipose, bulk islet, single-nucleus pancreatic beta cell, or
982  our muscle cell types at the ARL15 locus. Position of SNP rs702634 is indicated by the long
983  vertical red line. All tracks are normalized to 1M reads.

984

985 Table legends

986 Table S1: snATAC-seq per-nucleus QC thresholds.

987 Table S2: snRNA-seq per-nucleus QC thresholds.

988  Table S3: Per library summary statistics (number nuclei per sample, mean and median fragments
989  per library).

990 Table S4: Marker genes used for cluster cell type assignment.

991 Table S5: Nucleus counts per cell type, species, and modality.

992 Table S6: LDSC partitioned heritability z-scores for human snATAC-seq peaks.

993 Table S7: Cell type annotation overlap summary for credible sets from Mahajan et al. 2018.
994  Values represent the number of credible set SNPs at each locus that overlap with the specified
995  annotation. The ARL15 locus discussed in the text (5_53271420) indicates one SNP overlaps
996  with an Islet ATAC-seq peak; however, visual inspection of the locus reveals no convincing signal
997  in any of the 10 examined islet ATAC-seq libraries (Fig. S15).

998 Table S8: LDSC baseline model annotations used.
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