

1 Finding New Molecular Targets of Familiar

2 Natural Products Using In Silico Target

3 Prediction

4 *Fabian Mayr¹, Gabriele Möller², Ulrike Garscha³, Jana Fischer³, Patricia Rodríguez Castaño^{4,5},*
5 *Silvia G. Inderbinen⁶, Veronika Temml¹, Birgit Waltenberger¹, Stefan Schwaiger¹, Rolf W.*
6 *Hartmann^{7,8}, Christian Gege⁹, Stefan Martens¹⁰, Alex Odermatt⁶, Amit V. Pandey^{4,5}, Oliver*
7 *Werz¹¹, Jerzy Adamski^{2,12,13}, Hermann Stuppner¹ and Daniela Schuster^{14,15,*}*

8 ¹ Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University
9 of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria

10 ² Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Ingolstädter
11 Landstraße 1, 85764 Neuherberg, Germany

12 ³ Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University Greifswald,
13 Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany

14 ⁴ Pediatric Endocrinology, Diabetology, and Metabolism, University Children's Hospital Bern,
15 Freiburgstrasse 15, 3010 Bern, Switzerland

16 ⁵ Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland

17 ⁶ Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of
18 Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland

19 ⁷ Helmholtz Institut für Pharmazeutische Forschung, Department für Drug Design und Optimierung,
20 Campus E8.1, 66123 Saarbrücken, Germany

21 ⁸ Universität des Saarlandes, Pharmazeutische und Medizinische Chemie, Campus E8.1, 66123
22 Saarbrücken

23 ⁹ Universität Heidelberg, Medizinische Chemie, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany

24 ¹⁰ Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via Mach 1, 38010 San Michele
25 all'Adige, Italy

26 ¹¹ Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-
27 University Jena, Philosophenweg 14, 07743 Jena, Germany

28 ¹² Lehrstuhl für Experimentelle Genetik, Technische Universität München, Emil-Erlenmeyer-Forum 5,
29 85356 Freising-Weihenstephan, Germany

30 ¹³ Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8
31 Medical Drive, Singapore 117597, Singapore

32 ¹⁴ Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical
33 University Salzburg, Strubergasse 21, 5020 Salzburg, Austria

34 ¹⁵ Institute of Pharmacy/Pharmaceutical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI),
35 University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria

36

37 ABSTRACT

38 Natural products comprise a rich reservoir for innovative drug leads and are a constant source of
39 bioactive compounds. To find pharmacological targets for new or already known natural products
40 using modern computer-aided methods is a current endeavor in drug discovery. Nature's treasures,
41 however, could be used more effectively. Yet, reliable pipelines for large scale target prediction
42 of natural products are still rare. We have developed an in silico workflow consisting of four
43 independent, stand-alone target prediction tools and evaluated its performance on
44 dihydrochalcones (DHCs) – a well-known class of natural products. Thereby, we revealed four
45 previously unreported protein targets for DHCs, namely 5-lipoxygenase, cyclooxygenase-1, 17 β -
46 hydroxysteroid dehydrogenase 3, and aldo-keto reductase 1C3. Moreover, we provide a thorough
47 strategy on how to perform computational target prediction and guidance on using the respective
48 tools.

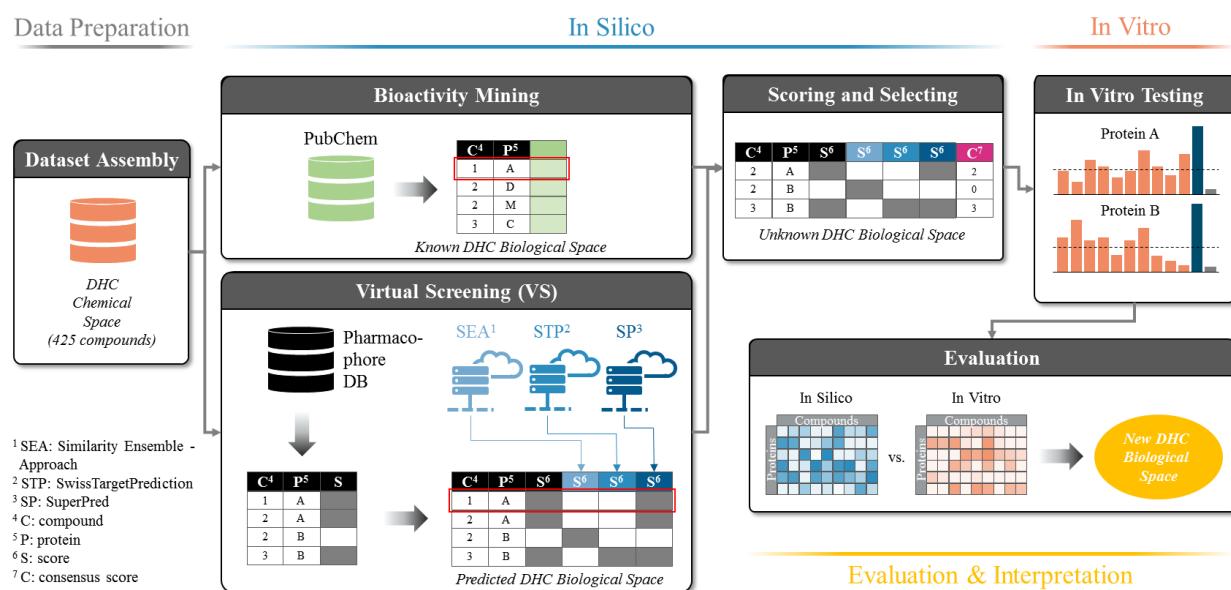
49 INTRODUCTION

50 Finding new chemical entities that alter biological response – the quintessence of drug discovery
51 – is a constant endeavor in pharmaceutical science. In contrast, the need for novel, improved
52 clinical candidates has also remained consistently high, urging drug discovery scientists to explore
53 fresh ground. The integration of chemoinformatic and bioinformatic tools into drug discovery in
54 the early 1990s and the recent advances in big data handling have leveraged access to a myriad of
55 massive public datasets (Campbell et al., 2018; Chen et al., 2017) and powerful tools, e.g. virtual
56 screening (VS) (Sliwoski et al., 2014). In the past decade, the concept of drug repurposing has
57 emerged as an attractive strategy to rededicate approved drugs or partially developed compounds
58 to new molecular targets (Aronson, 2007; Ashburn et al., 2004). This development is, next to the
59 intention to reduce R&D costs, also owed to advances in computational chemistry (Hurle et al.,
60 2013). The latter can be achieved by a so-called ‘inverse VS’ utilizing techniques like 2D-
61 similarity searches (Keiser et al., 2009), 3D-similarity searches (Rush et al., 2005), and
62 pharmacophore-based VS (Schuster, 2010; Steindl et al., 2006). Many of such tools have been
63 made public in the past decade (Cereto-Massagué et al., 2015; Huang et al., 2001; Sydow et al.,
64 2019), aiming to boost both drug repurposing efforts and drug discovery as a whole.

65 Natural products are remarkable in many regards, particularly for being the main source of drugs
66 in the past and nowadays by serving as a source for innovative leads (Newman et al., 2016). Natural
67 products bear privileged structural features that were “shaped” by evolution, yielding compounds
68 that can serve as promising starting points for drug development (Harvey, 2008; Koehn et al.,
69 2005). Further, natural products often show polypharmacological properties, interacting with more
70 than one target (Koeberle et al., 2014). The two groups around Gisbert Schneider and Stuart L.
71 Schreiber found that natural products are more likely to act as true polypharmacological agents
72 rather than unspecific binders – a property instead associated with synthetic compounds (Clemons
73 et al., 2010; Rodrigues et al., 2016).

74 Based on this concept, tools or workflows, which allow for the accurate prediction of new
75 molecular targets for natural products, are of great interest. We here propose a workflow to
76 specifically search for yet unreported protein targets of known compounds, using a combination
77 of in silico and in vitro methods (Figure 1). The compounds of interest are virtually screened
78 against our in-house resources, representing a panel of 39 drug targets expressed as 387

79 pharmacophore models (a comprehensive list of all models is provided in Supplementary
80 Information S-1). Additionally, the compounds are subjected to three independent open access
81 target prediction servers in parallel. The results generated by these four diverse methods are
82 combined and those with the highest degree of consent (protein targets predicted by several
83 methods independently of each other) are selected for in vitro evaluation. Moreover, already
84 known protein targets are excluded from further investigations by checking their appearance in
85 PubChem (<https://pubchem.ncbi.nlm.nih.gov/>), a pertinent open knowledge base for bioactivities
86 (Kim et al., 2018).



87
88 Figure 1. Workflow of the dihydrochalcone (DHC) target prediction campaign. The dataset is
89 assembled (DHC chemical space) and used to retrieve corresponding bioactivity data from
90 PubChem (known DHC biological space) and as input to inverse VS. First, the DHC chemical
91 space is mapped onto the Pharmacophore DB and the resulting matrix extended by the predictions
92 of three individual target prediction servers Similarity Ensemble Approach (SEA),
93 SwissTargetPrediction (STP), and SuperPred (SP), resulting in the predicted DHC biological
94 space. Activities already known from PubChem (the known DHC biological space) are then
95 removed from the predicted DHC biological space and the reduced matrix scored according to
96 consensus predictions of ligand-target interactions (unknown DHC biological space). Protein
97 targets of the unknown DHC biological space are selected according to their consensus score (CS)
98 and chosen for in vitro biological evaluation.

99 We evaluated our workflow for fitness by performing a target prediction of a complete class of
100 established natural products, namely dihydrochalcones (DHCs). DHCs are readily available from
101 nature, since several representatives are highly accumulated in both fresh and withered leaves of
102 apple trees (Rivière, 2016). On the other hand, phloridzin, one of the most frequently found DHCs
103 served as lead structure for the development of sodium/glucose co-transporter 2 (SGLT2)
104 inhibitors like dapagliflozin, approved drugs for the treatment of type 2 diabetes (Meng et al.,
105 2008). DHCs have recently returned into focus, since their descendants, in clinical use now for
106 about eight years, have shown therapeutic benefits that go beyond SGLT2 inhibition like e.g. in
107 heart failure (Uthman et al., 2018). This instance points towards a high polypharmacological
108 potential of the drugs and its parental template. However, phloridzin research has so far been
109 focused on its anti-diabetic, anti-oxidative, and estrogenic effects. Thus, we prepared a
110 comprehensive virtual library of DHCs (naturally occurring ones and those with modest semi-
111 synthetic modifications), predicted and selected promising, potentially new DHC targets, and
112 tested ten common DHCs in respective in vitro assays.

113 RESULTS

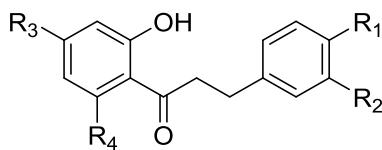
114 Data Basis, Curation and Technical Setup of In Silico Predictions

115 To realistically mirror the true diversity of DHCs, we gathered 425 DHCs from literature that were
116 either naturally occurring or roughly resembled physicochemical properties of natural DHCs
117 (molecular weight, ratio glycosides/aglyca, physicochemical properties). Accordingly, we called
118 this virtual library ‘DHC chemical space’ (see Figure 1, Data Preparation). A panel of ten
119 commonly found DHCs (**1 – 10**, see Table 1) that were physically available to us and intended for
120 in vitro testing were also included in the DHC chemical space. The DHC chemical space was then
121 screened against our historically grown pharmacophore model database (Ph-DB) and the results
122 written to a matrix (e.g. compound 1 is predicted to act on protein A). The DHC chemical space
123 was in parallel also subjected to the three target prediction servers SEA, STP, and SP, each of them
124 predicting potential targets for each of the 425 DHCs. All results were combined into one matrix
125 called ‘predicted DHC biological space’ (see Figure 1, ‘Virtual Screening’). In addition, all of the
126 known bioactivities of the 425 compounds in the DHC chemical space were downloaded from
127 PubChem and the resulting matrix called ‘known DHC biological space’ (see Figure 1,
128 ‘Bioactivity Mining’). The known DHC biological space was additionally depicted as network, as

129 shown in Figure 2. Next, compound-target interactions present in the known DHC biological space
130 were removed from the predicted DHC biological space and a CS was assigned to each prediction
131 (see Figure 1, ‘Scoring & Selecting’). The CS is an expression on how many consents a prediction
132 has in addition to a positive prediction by our Ph-DB. We introduced the requirement of a hit with
133 our own models since they are well-validated and for most targets, experimental testing of hits was
134 available. For instance, if compound 1 was predicted to bind to protein A by our in-house
135 pharmacophore models and two further target prediction servers, the CS was three. Finally, based
136 on the CS and other criteria, the six most promising protein targets were selected and compounds
137 **1 – 10** assayed in vitro.

138 To automate the in silico part of the workflow, operations made for screening our Ph-DB,
139 submission and reconciliation to target prediction servers, and bioactivity mining were performed
140 via custom-made scripts. All input and output files generated in this workflow, including the
141 scripts and a corresponding Jupyter Notebook containing all data manipulations are provided via
142 GitHub (https://github.com/fmayr/DHC_TargetPrediction). For better clarity, the relationships
143 and data flow are schematically shown in Supporting Information S-3.

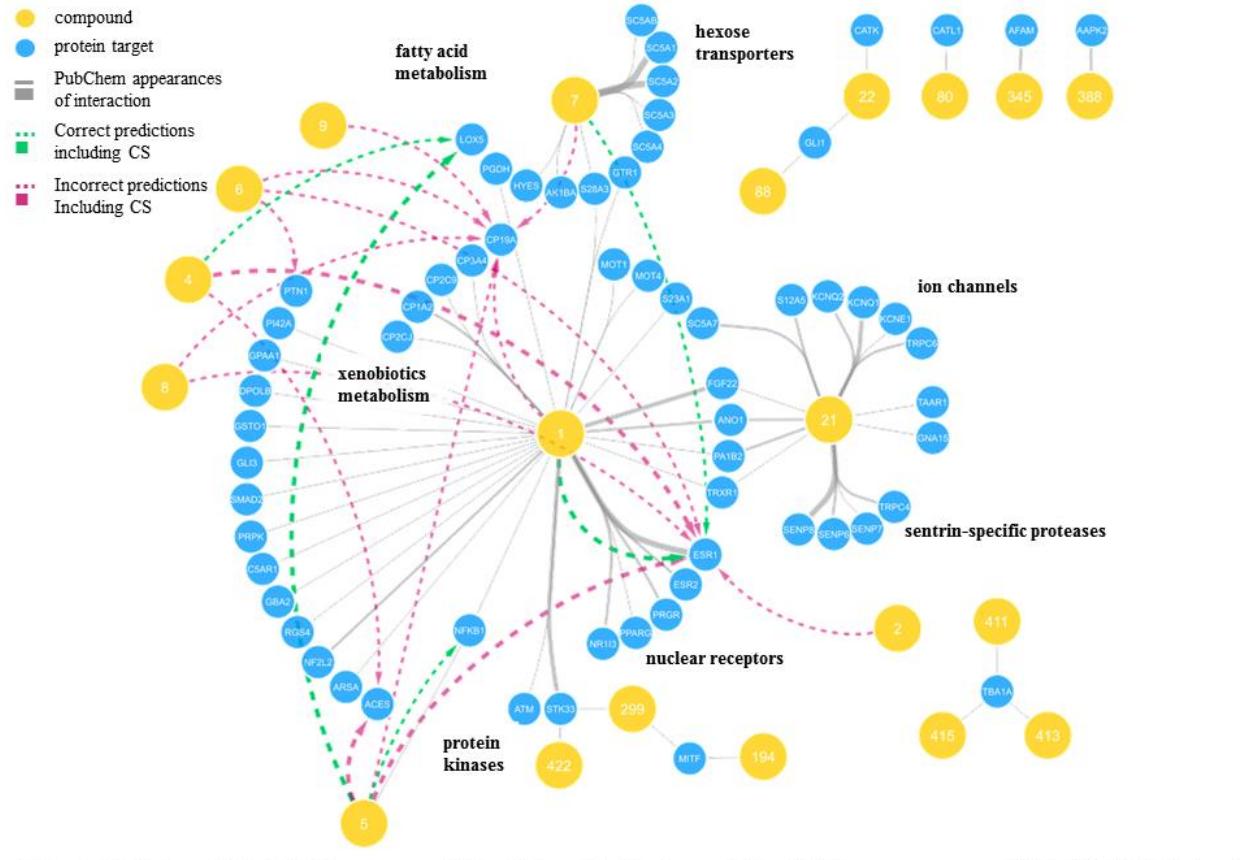
144 Table 1. Compounds **1** – **10**, which were used for biological evaluation.



No.	Name	R ₁	R ₂	R ₃	R ₄
1	phloretin	OH	H	OH	OH
2	3-OH-phloretin	OH	OH	OH	OH
3	2',6'-dihydroxy-4'-methoxy DHC	H	H	OMe	OH
4	asebogenin	OH	H	OMe	OH
5	calomelanen	OMe	H	OMe	OH
6	sieboldin	OH	OH	O-Glc*	OH
7	phloridzin	OH	H	OH	O-Glc*
8	trilobatin	OH	H	O-Glc*	OH
9	phloretin-2'-xyloglucoside	OH	H	OH	O-Rut†
10	neohesperidin DHC	OMe	OH	O-Neo‡	OH

145 * Glc: glucose (*O*- β -D-glucosyl). † Rut: rutinose (6-*O*-(α -L-rhamnosyl)-D-glucos-1-*O*- β -yl). ‡

146 Neo: neohesperidose (2-*O*-(α -L-rhamnosyl)-D-glucos-1-*O*- β -yl).



ACES	Acetylcholinesterase	CP2CJ	CYP2C19	HYES	Soluble epoxide hydrolase 2	PI424	PIP4KII- α	SC547	High-affinity choline transp. 1
AAPK2	AMPK subunit α 2	CP344	CYP3A4	KCNE1	Potassium volt-gated channel E1	PPARG	PPAR γ	SC54B	Sodium/myo-inositol cotransp.
AFAM	Afamin	DPOLB	DNA polymerase β	KCNQ1	Potassium volt-gated channel KQT1	PRGR	Progesterone receptor	SENPO	Sentrin-specific protease 6
AKIBA	AKR1B10	ESRI	Estrogen α	KCNQ2	Potassium volt-gated channel KQT2	PRPK	EKC/KEOPS complex sub. TP53RK	SENPO	Sentrin-specific protease 7
AN01	Anoactamin-1	ESR2	Estrogen β	LOX5	5-lipoxygenase	PTN1	PTP1B	SENPO	Sentrin-specific protease 8
ARSA	Arylsulfatase A	FGF22	FGF-22	MTIF	Microphthalmia-associated TF	RG45	Regulator of G-protein signaling 4	SMAD2	MAD homolog 2
ATM	Serine-protein kinase	GBA2	β -glucosidase 2	MOT1	Monocarboxylate transporter 1	S12A5	Solute carrier 12A5	STK33	Serine/threonine-prot. kinase 33
C5ARI	C5aR	GLI1	Zinc finger protein GLI1	MOT4	Monocarboxylate transporter 4	S23A1	Solute carrier 23A1	TAAR1	Trace amine-assoc. receptor 1
CATL1	Cathepsin L1	GLI3	GLI3-190	NF2L2	NF erythroid 2-related factor 2	S28A3	Solute carrier 28A3	TBA1A	Tubulin α -1A chain
CATL1	Cathepsin L1	GN415	G α -15	NFKB1	NF κ B p105 subunit	SC541	Sodium/glucose cotransporter 1	TRPC4	TRPC4
CPIA2	CYP1A2	GP441	GPI anchor attachment 1 prot.	NR113	Nuclear receptor 11B	SC542	Sodium/glucose cotransporter 2	TRPC6	TRPC6
CPIA4	Aromatase	GSTO1	Glutathione S-transferase Ω -1	PA1B2	PAFAH subunit β	SC543	Sodium/myo-inositol cotransporter	TRXR1	Thioredoxin reductase 1
CP2C9	CYP2C9	GTR1	GTP-binding protein GTR1	PGDH	15-hydroxy- Δ -PG dehydrogenase	SC544	Solute carrier 5A4		

147

148 Figure 2. Known DHC biological space illustrated as network. Shown are only DHCs with
 149 interactions reported in PubChem (grey edges), as well as the respective interactions predicted for
 150 these compounds (dashed green arrows for correct predictions and dashed magenta arrows for
 151 interactions that either proved incorrect in vitro or were not tested). Blue nodes indicate protein
 152 targets, and yellow nodes indicate compounds with respective compound numbers. Grey edges
 153 indicate known compound-target interactions, while the line thickness is proportional to the
 154 interaction weight (see Materials and Methods).

155 **Predicted and Unknown DHC Biological Space**

156 The final selection of targets to be evaluated in vitro was made based on four criteria (summarized
157 for twelve frequently predicted targets in Table 2): First, interactions of **1 – 10** that were predicted
158 by Ph-DB and had a CS of two or higher (see Figure 3) were included (Table 2, Selection Criterion
159 I). Thereby, 5-lipoxygenase (5-LO) was highlighted for **4** (CS = 2) and **5** (CS = 3) and aromatase
160 was highlighted for **1, 5, 6, 7, 8, and 9** (CS = 2). Figure 3 also shows that a handful of other targets
161 achieved high CSs, e.g. acetylcholinesterase (AChE), estrogen receptor α (ER α), protein-tyrosine
162 phosphatase B1 (PTP1B), and nuclear factor κ B (NF κ B). However, ER α and NF κ B were neglected
163 since they were already reported targets for at least one DHC (Dodds et al., 1938; Orlikova et al.,
164 2012), while suitable assays for AChE and PTP1B were not available.

165 Second, protein targets that were particularly frequently predicted for the whole DHC chemical
166 space (425 compounds) with a positive prediction of Ph-DB and CSs of two or higher (Table 2,
167 Selection Criterion II) were included. We hypothesized that these targets were generally well
168 suited for the DHC scaffold. 17β HSD2 and 17β HSD3 were the fourth and fifth most frequently
169 predicted targets with a CS of 3, behind AChE (assays not available), ER α (already established
170 target for some DHCs), and 5-LO (already selected for in vitro testing, see Figure 3 Supplement
171 1, D). Moreover, cyclooxygenase 1 (COX-1) and aldo-keto reductase 1C3 (AKR1C3) were the
172 fourth and sixth most frequently predicted targets, respectively, with CSs of two (see Figure 3
173 Supplement 1, C). Higher ranked targets were all either already known (ER α and ER β) or already
174 included in our selection (aromatase, 5-LO).

175 Third, the overall predictions were evaluated for their novelty, their consistency and whether our
176 approach could produce high scores for known ligand-target interactions (Table 2, Selection
177 Criterion III). Novelty means that only unreported targets were selected, while prediction
178 consistency means that predicted targets are more credible, if they are biologically related to one
179 another, e.g. isoenzymes, or proteins that belong to the same pathway. It is actually oftentimes the
180 case that one compound binds to several closely related targets (lack of specificity), which should
181 be reflected in the virtual predictions (Hert et al., 2008; Jalencas et al., 2013). Further, great value
182 is added if, e.g., a closely related target was already reported, or if known targets are enriched in
183 the predictions generated by the in silico workflow. In our case, we observed targets belonging to
184 steroid metabolism (aromatase, 17β HSD2, 17β HSD3, and AKR1C3) or to arachidonic acid (AA)
185 metabolism (5-LO, COX-1). Targets of the steroid metabolism are obviously closely related to

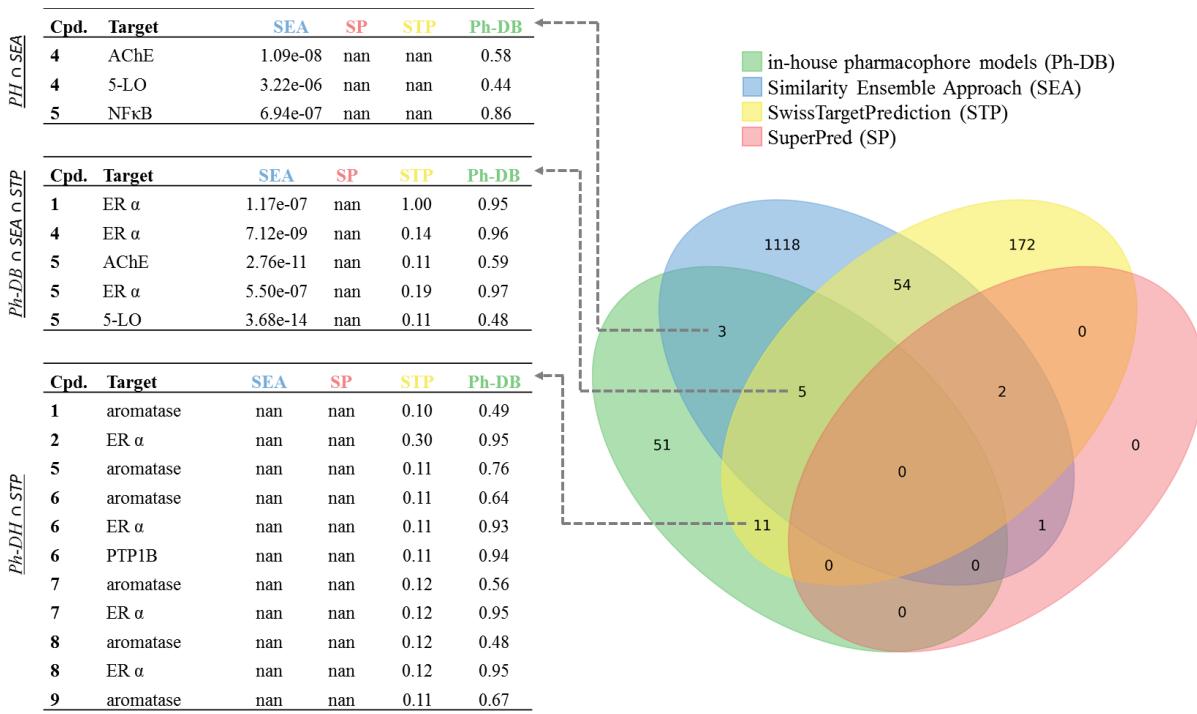
186 ERs; aromatase, 17 β HSD2, and ERs even share the same substrate or ligand, respectively, namely
187 estradiol. The shape and pharmacophore of those targets' binding sites must, therefore, be
188 somewhat similar. On this basis, we hypothesized that the four predicted targets of the steroid
189 metabolism are promising DHC targets, given that ERs are confirmed targets of several DHCs.
190 Similarly, COX-1 and 5-LO share the same substrate, namely AA, implying that also the binding
191 sites of the latter two must be similar to a certain extent. Moreover, **7** has been confirmed to inhibit
192 15-hydroxyprostaglandin dehydrogenase and soluble epoxide hydrolase – two enzymes in the AA
193 pathway related to COX-1 and 5-LO with again presumably similar binding sites (see Figure 2,
194 A). Steroid metabolism and AA metabolism are on their side interconnected by AKR1C3, which
195 is also commonly referred to as 17 β -hydroxysteroid dehydrogenase 5 or prostaglandin F synthase
196 (see Figure 4-Figure supplement 2, A-C). Indeed, this enzyme converts both steroids and AA-like
197 fatty acids using the same binding site (Matsuura et al., 1998). From there it was concluded that
198 those six proteins' binding sites may share substantial similarities and the predictions of the latter
199 can be considered consistent. Finally, we checked if targets of the known DHC biological space
200 could be enriched by our target prediction workflow. Effectively, we observed a clear enrichment
201 of the consensus scored target frequencies (see Figure 3 Supplement 1, C and D and Figure 4-
202 Figure supplement 1) compared to the stand-alone target prediction tools (see Figure 3 Supplement
203 1, A and B).

204 Fourth, the availability of a suitable assay was logically a pivotal criterion for targets to be selected
205 (Table 2, Selection Criterion IV).

206 Table 2. Twelve frequently predicted targets for DHC chemical space assessed according to
 207 selection criteria I – IV and final selection statement.

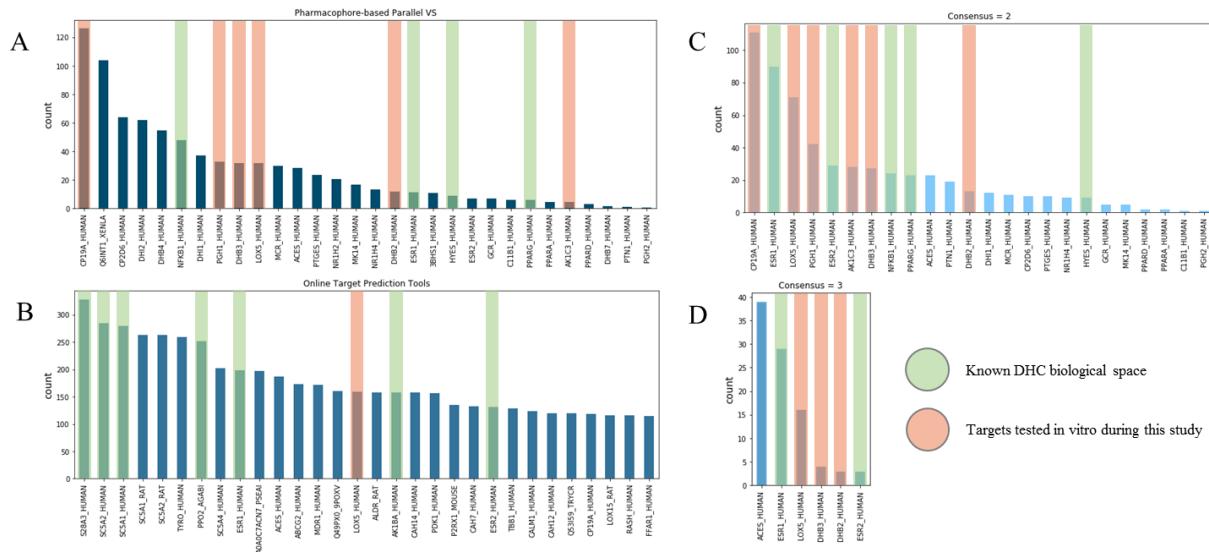
Candidate Target	Selection criterion I*	Selection criterion II†	Selection criterion III‡	Selection criterion IV§	Selected
17β HSD2	n.a.	5 th (CS=3) 12 th (CS=2)	1 - ER α/β	Yes	<i>Yes</i>
17β HSD3	n.a.	4 th (CS=3) 7 th (CS=2)	1 - ER α/β	Yes	<i>Yes</i>
5-LO	4 (CS=2) 5 (CS=3)	3 rd (CS=3) 3 rd (CS=3)	1 - PGDH	Yes	<i>Yes</i>
AChE	4 (CS=2) 5 (CS=3)	1 st (CS=3) 10 th (CS=2)	n.a.	No	<i>No</i>
AKR1C3	n.a.	6 th (CS=2)	1 – AKR1B10	Yes	<i>Yes</i>
Aromatase	1 (CS=2)				
	5 (CS=2)		1 - aromatase		
	6 (CS=2)		1 - ER α/β		
	7 (CS=2)	1 st (CS=2)	1 - several	Yes	<i>Yes</i>
	8 (CS=2)		CYPs		
COX-1	9 (CS=2)				
	n.a.	4 th (CS=3)	1 - PGDH	Yes	<i>Yes</i>
ERα	1 (CS=3)				
	2 (CS=2)				
	4 (CS=3)				
	5 (CS=3)	2 nd (CS=3)	1 - ER α/β	Yes	<i>No</i>
	6 (CS=2)	2 nd (CS=2)			
	7 (CS=2)				
	8 (CS=2)				
ERβ	n.a.	5 th (CS=3) 6 th (CS=2)	1 - ER α/β	Yes	<i>No</i>
NFκB	n.a.	8 th (CS=2)	1 - NF κ B 5 - NF κ B	No	<i>No</i>
PPARγ	n.a.	9 th (CS=2)	1 - PPAR γ	No	<i>No</i>
PTP1B	6 (CS=2)	10 th (CS=2)	n.a.	Yes	<i>No</i>

208 * Targets that were predicted with high CSs for compounds **1** – **10**. † Most frequently predicted
 209 targets with high CSs for DHC chemical space. ‡ Prediction consistency: Similar or associated
 210 targets that are being predicted or similar bioactivities that were already reported. § Availability
 211 of a suitable assay.



212

213 Figure 3. Predicted compound – target interactions (predicted DHC chemical space) illustrated as
214 Venn diagram. Predicted DHC chemical space was filtered for compounds **1 – 10** and a positive
215 prediction by Ph-DB. Sets of predictions by any method are represented as ellipses (green: Ph-DB,
216 blue: SEA, yellow: STP, and red: SP) and consents among different methods as
217 overlaps/intersections each with an integer indicating the size of the intersection. Values indicate
218 the original model fit values, ‘not a number’ (for short ‘nan’) indicates no prediction by the
219 respective tool. Fit values of SEA and SP are E-values similar as in the Basic Local Alignment
220 Search Tool (BLAST), meaning the lower the better the model fit (Altschul et al., 1990; Dunkel
221 et al., 2008; Keiser et al., 2007). Fit values for STP and Ph-DB are 0 – 1 normalized probability
222 (STP) or relative pharmacophore fit-scores (Ph-DB) (Gfeller et al., 2013; Wolber et al., 2006).
223 Enrichment of targets reported for DHCs in literature are shown for predictions made with stand-
224 alone Ph-DB (Figure 3-Figure supplement – 1, A), SEA, STP, and SP combined (Figure 3-Figure
225 supplement – 1, B), and all approaches combined and the consensus score applied (Figure 3-Figure
226 supplement – 1, C-D), each as green overlays.



<i>3BHS1_HUMAN</i>	3 β hydroxysteroid dehydrogenase 1	<i>DHB2_HUMAN</i>	17 β HSD2	<i>MK14_HUMAN</i>	MAP kinase 14	<i>Q49PX0_9POXV</i>	N1L
<i>A040C7ACN7_P</i>	3-oxoacyl-ACP synthase	<i>DHB3_HUMAN</i>	17 β HSD3	<i>NFKB1_HUMAN</i>	NF- κ B p105 subunit	<i>Q53I59_TRYCR</i>	Phosphodiesterase
<i>ABCG2_HUMAN</i>	ATP-binding cassette G2	<i>DHB4_HUMAN</i>	17 β HSD4	<i>NRIH2_HUMAN</i>	Oxysterols receptor β	<i>MGC50376</i>	protein
<i>ACES_HUMAN</i>	Acetylcholinesterase	<i>DHB7_HUMAN</i>	3-keto-steroid reductase	<i>NRIH4_HUMAN</i>	Bile acid receptor	<i>R4SH_HUMAN</i>	GTPase HRas
<i>AK1B1_HUMAN</i>	Aldo-keto reductase 1B10	<i>DHII_HUMAN</i>	11 β HSD1	<i>P2RX1_MOUSE</i>	P2X purinoreceptor 1	<i>S28A3_HUMAN</i>	Solute carrier 28A3
<i>AK1C3_HUMAN</i>	Aldo-keto reductase 1C3	<i>ESR1_HUMAN</i>	Estrogen receptor α	<i>PDK1_HUMAN</i>	Pyruvate dehydrogenase	<i>SC5A1_HUMAN</i>	Sodium/glucose cotransporter 1
<i>ALDR_RAT</i>	Aldo-keto reductase 1B1 (rat)	<i>ESR2_HUMAN</i>	Estrogen receptor β	<i>PGH1_HUMAN</i>	COX-1	<i>SC5A1_RAT</i>	Sodium/glucose cotransporter 1
<i>C11B1_HUMAN</i>	Cytochrome P450 1B1	<i>FFAR1_HUMAN</i>	Free fatty acid receptor 1	<i>PGH2_HUMAN</i>	COX-2	<i>SC5A2_HUMAN</i>	Sodium/glucose cotransporter 2
<i>CAH12_HUMAN</i>	Carbonic anhydrase 12	<i>GCR_HUMAN</i>	Glucocorticoid receptor	<i>PPAR4_HUMAN</i>	PPAR α	<i>SC5A2_RAT</i>	Sodium/glucose cotransporter 2
<i>CAH4_HUMAN</i>	Carbonic anhydrase 14	<i>HYES_HUMAN</i>	Soluble epoxide hydrolase 2	<i>PPARD_HUMAN</i>	PPAR δ	<i>SC5A4_HUMAN</i>	Solute carrier family 5 member 4
<i>CAH7_HUMAN</i>	Carbonic anhydrase 7	<i>LOX15_RAT</i>	15-lipoxygenase (rat)	<i>PPARG_HUMAN</i>	PPAR γ	<i>TBB1_HUMAN</i>	Tubulin β chain
<i>CALM1_HUMAN</i>	Calmodulin-1	<i>LOX5_HUMAN</i>	5-lipoxygenase	<i>PPO2_AGAB1</i>	Mushroom tyrosinase	<i>TIRO_HUMAN</i>	Tyrosinase
<i>CP194_HUMAN</i>	Aromatase	<i>MCR_HUMAN</i>	Mineralocorticoid receptor	<i>PTGES_HUMAN</i>	Prostaglandin E synthase		
<i>CP2D6_HUMAN</i>	Cytochrome P450 2D6	<i>MDR1_HUMAN</i>	ATP-dependent translocase ABCB1	<i>PTN1_HUMAN</i>	PTP1B		

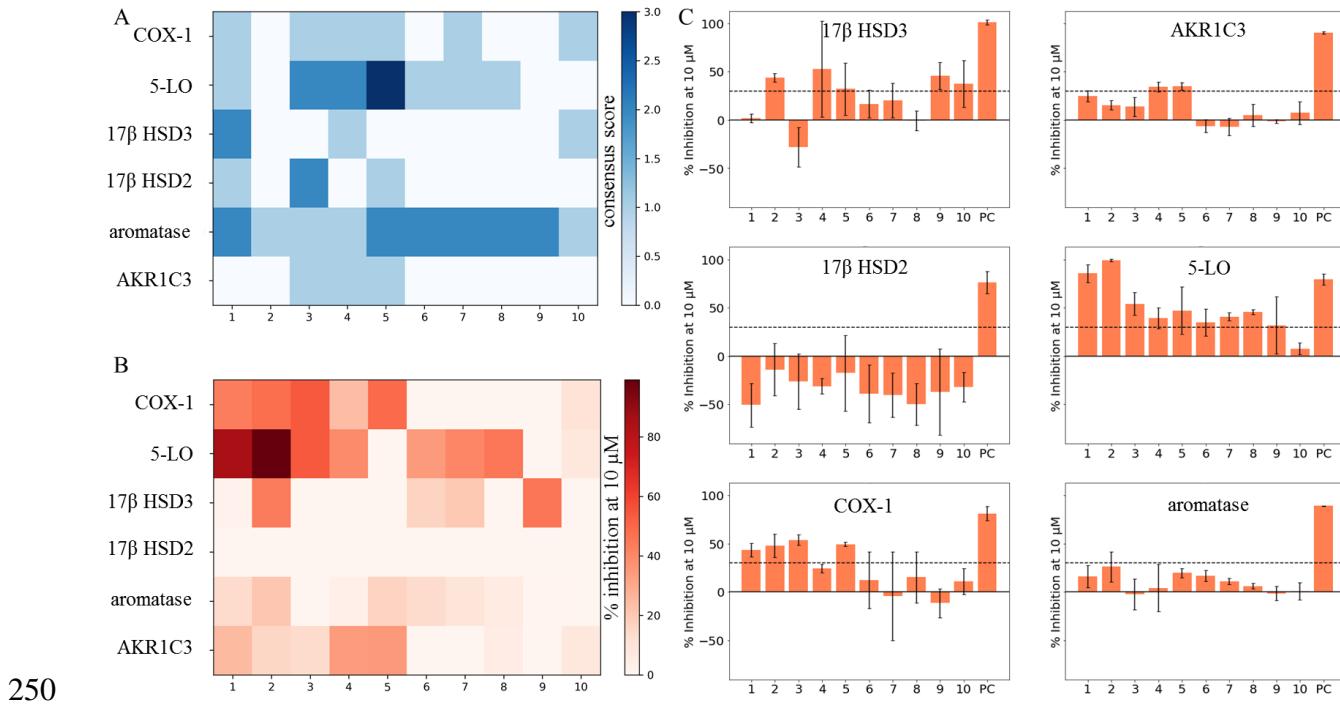
227

228 Figure supplement 1. Enrichment of known DHC targets (known DHC biological space) in
229 differently scored predictions for DHC chemical space.

230

231 **New DHC Biological Space**

232 Following the definition of the six protein targets issued for biological evaluation, the respective
233 in vitro assays were performed using compounds **1 – 10** (see Figure 4 and Table 3). Biological
234 activities were expressed as percent inhibition at 10 μ M compound concentration relative to the
235 mock control (= 0%). Three independent experiments ($n = 3$) were conducted and the mean
236 inhibition plus/minus standard deviation depicted. Mean inhibition values that were below 30%
237 were regarded as inactive, negative inhibition values and relative standard deviations larger than
238 20% were regarded as ambiguous assay results and thus as inactive. Unfortunately, 17 β HSD2
239 measurements yielded ambiguous assay results for all compounds, which were regarded as
240 inactive, as well as aromatase, where all ten compounds were inactive. For 5-LO, COX-1,
241 AKR1C3, and 17 β HSD3 at least one of the ten compounds exhibited weak inhibitory activities
242 towards the respective target. Thus, **4** and **5** showed weak inhibition of AKR1C3, **2** showed weak
243 inhibition of 17 β HSD3 and **1**, **2**, **3**, and **5** showed weak inhibition of COX-1. The ten DHCs
244 showed the best results of this study in 5-LO inhibition, where **1**, **2**, **7**, **8**, and **10** showed weak to
245 moderate inhibitory activities, **1** and **2** even reaching mean inhibition values of $85.4 \pm 9.3\%$ and
246 $99.2 \pm 1.2\%$, respectively. In the course of this study, six further protein targets were evaluated in
247 vitro due to availability of the respective assays, rather than based on in silico predictions. Most
248 of the measured activities were not affected, however, to not withhold those results to the
249 community, the results are shown in Figure 4-Figure supplement – 3.



251 Figure 4. Comparison of unknown DHC biological space (COX-1, 5-LO, 17 β HSD3, 17 β HSD2,
252 aromatase, and AKR1C3) and actual in vitro test results of compounds **1** – **10**. (A) CSs of
253 compounds **1** – **10** on all of the six targets of the unknown DHC biological space plotted as
254 heatmap. (B) Means ($n = 3$) of percent inhibition at 10 μ M (0 – 100%) of compounds **1** – **10** on all
255 of the six targets of the unknown DHC biological space plotted as heatmap. Observations with
256 mean inhibition values smaller than 30% or relative standard deviations greater than 20% were
257 regarded as inactive. (C) Bar charts of the six targets of the unknown DHC biological space
258 showing compounds **1** – **10** with the respective means ($n = 3$) of percent inhibition at 10 μ M (0 –
259 100%) and standard deviation. A cut-off of 30% mean inhibition at 10 μ M was chosen (black
260 dashed line), separating active from inactive observations. DMSO was used to measure baseline
261 enzyme activities, on which samples were normalized (not shown) and positive controls (PC) were
262 used as indicated in Materials and Methods.

Metrics Computed for the Isolated and Combined Target Prediction Tools

	Metric	AKR1C3	17 β HSD3	17 β HSD2	Aromatase	5-LO	COX-1	Mean
Consensus Score (CS)	Recall	1.00	0	0	0	0.86	0.75	0.44
	Precision	0.67	0	0	0	0.86	0.50	0.34
	Relative EF	0.67	0	0	0	0.86	0.50	0.34
pharmacophore- based parallel VS (Ph-DB)	Recall	0	0	0	0	0.57	0.50	0.18
	Precision	0	0	0	0	0.80	0.50	0.22
	Relative EF	0	0	0	0	0.80	0.50	0.22
Similarity	Recall	1.00	0	0	0	0.29	0	0.22
Ensemble Approach (SEA)	Precision	0.67	0	0	0	0.67	0	0.22
	Relative EF	0.67	0	0	0	0.67	0	0.22
SwissTarget Prediction (STP)	Recall	0	0	0	0	0.29	0.25	0.27
	Precision	0	0	0	0	0.67	0.50	0.20
	Relative EF	0	0	0	0	0.67	0.50	0.20
SuperPred (SP)	Recall	0	0	0	0	0	0	0
	Precision	0	0	0	0	0	0	0
	Relative EF	0	0	0	0	0	0	0

True/False Positives/Negatives

True Positives (TPs) refer to actives that were predicted as active, while False Positives (FPs) refer to inactives that were predicted as active. Vice versa, True Negatives (TNs) are inactives predicted as inactive, while False Negatives (FNs) are actives predicted as inactive.

Recall/Sensitivity

Proportion of true actives a model is able to retrieve from the screening dataset (0 - 1).

$$recall = \frac{TP}{TP + FN}$$

Precision

Proportion of true actives in a hitlist produced by a model (0 - 1).

$$precision = \frac{TP}{TP + FP}$$

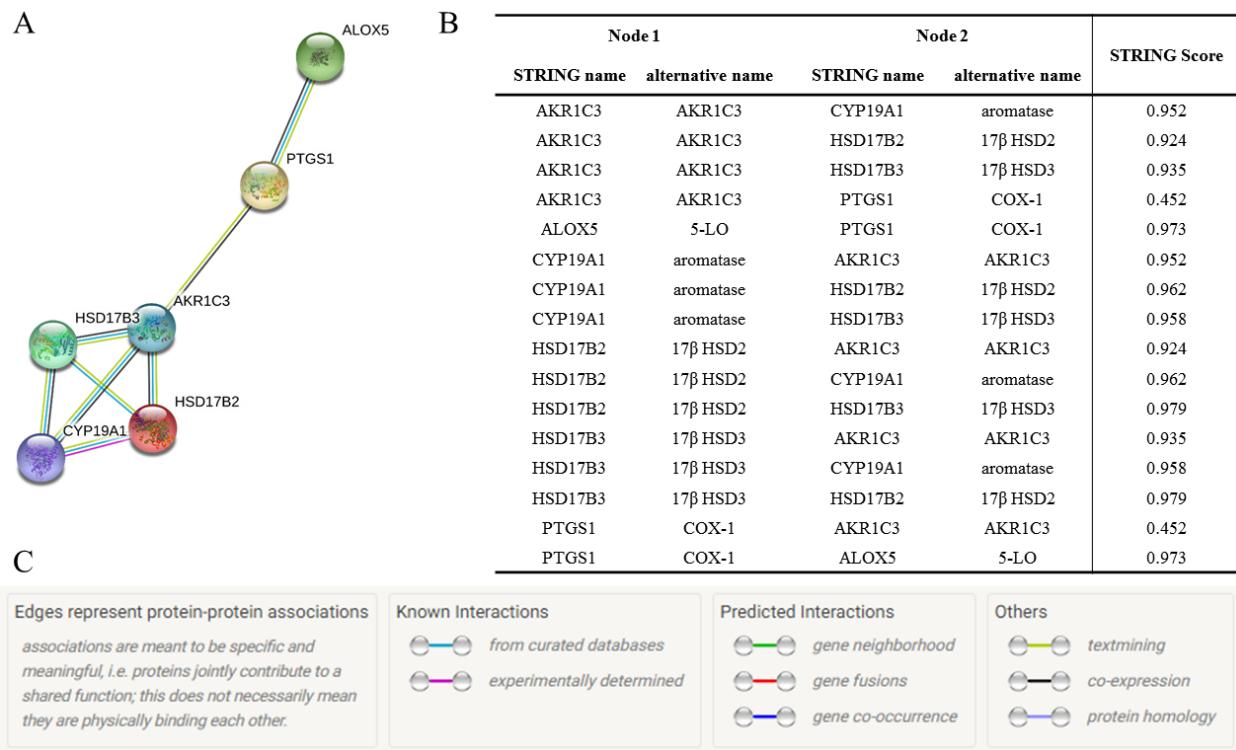
Relative Enrichment Factor

Ability of a model to enrich a hitlist with true positive predictions (0 - 1).

$$relative\ EF = \frac{\frac{TP}{actives}}{\frac{TP+FP}{actives}} * \frac{1}{\frac{actives}{inactives}}$$

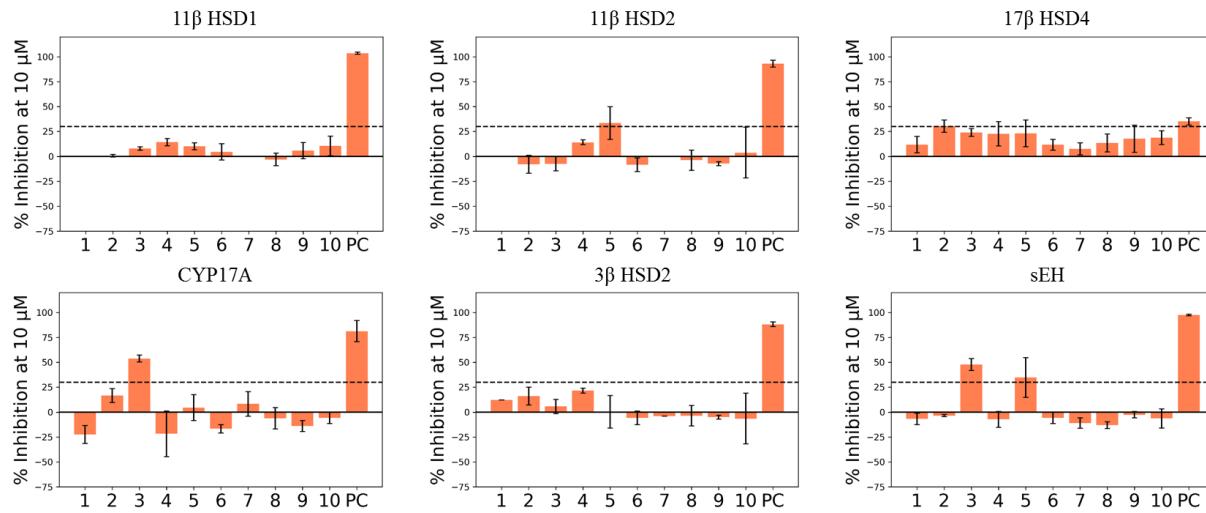
263

264 Figure supplement - 1. Metrics computed for the isolated and combined target prediction tools.



265

266 Figure supplement - 2. Six potential protein targets for DHCs input to STRING, which creates a
267 network of both direct and functional protein-protein interactions (Szklarczyk et al., 2018).



268
269 Figure supplement - 3. Results of other protein targets tested in the course of this study due to
270 assay availability shown as bar charts. Compounds **1** – **10** indicated with the respective means (n
271 = 3) of percent inhibition at 10 μ M (0 – 100%) and standard deviation. Black dashed line again
272 indicates arbitrarily chosen 30% activity cut-off. DMSO was used to measure baseline enzyme
273 activities, on which samples were normalized (not shown) and positive controls (PC) were used as
274 indicated in Materials and Methods.

275 Table 3. In vitro inhibitory activities of compounds **1** – **10** towards targets of DHC biological
276 space, expressed as percent inhibition (0 – 100%) at 10 μ M compound concentration relative to
277 mock control. Shown is the mean of three independent experiments ($n = 3$) plus/minus standard
278 deviation. Different compounds were used as positive controls (PC) as indicated in Materials and
279 Methods. Highly negative values of 17 β HSD2 assays are believed to be technical artefacts, as
280 enzyme activation seems unlikely.

Compound	aromatase	17 β HSD2	17 β HSD3	AKR1C3	5-LO	COX-1
1	13.8 \pm 2.0	-50.7 \pm 22.7	1.7 \pm 4.5	24.8 \pm 5.9	85.4 \pm 9.3	43.5 \pm 7.2
2	21.1 \pm 11.7	-14.1 \pm 27.1	43.8 \pm 4.7	15.5 \pm 4.9	99.2 \pm 1.2	48.1 \pm 12.0
3	-1.0 \pm 12.0	-26.3 \pm 28.8	-28.0 \pm 20.5	13.8 \pm 10.0	54.1 \pm 11.6	53.9 \pm 5.3
4	3.5 \pm 19.0	-31.2 \pm 8.1	52.7 \pm 49.6	34.4 \pm 5.1	39.2 \pm 11.1	24.4 \pm 4.2
5	17.0 \pm 2.0	-17.6 \pm 39.0	32.1 \pm 27.2	35.2 \pm 3.8	47.2 \pm 24.2	49.5 \pm 1.9
6	13.8 \pm 4.4	-39 \pm 29.9	16.7 \pm 14.5	-6.1 \pm 6.8	34.8 \pm 14.2	12.34 \pm 29.0
7	9.4 \pm 3.5	-40.5 \pm 22.9	20.2 \pm 17.7	-7.2 \pm 8.9	40.8 \pm 4.1	-4.2 \pm 45.6
8	5.9 \pm 3.5	-49.8 \pm 21.4	-0.6 \pm 10.0	5.3 \pm 11.5	45.5 \pm 2.7	15.3 \pm 26.4
9	0.67 \pm 4.0	-37.1 \pm 44.3	45.8 \pm 14.2	-1.3 \pm 1.9	31.8 \pm 29.4	-11.4 \pm 15.1
10	0 \pm 5.8	-32.2 \pm 15.4	37.5 \pm 23.9	7.4 \pm 11.8	7.7 \pm 6.0	11.1 \pm 13.2
PC	70.2 \pm 0.5*	76.1 \pm 11.4†	101.2 \pm 2.4‡	90.5 \pm 1.2§	79.26 \pm 5.95¶	81.3 \pm 7.5#

281 * 10 nM anastrozole (CAS: 120511-73-1). † 1 μ M ML376 (CAS: 1340482-23-6). ‡ 1 μ M
282 compound 24 (CAS: 873206-61-2) (Möller et al., 2009), § 1 μ M compound 2-9 (CAS: 745028-
283 76-6) (Schuster et al., 2011), ¶ 3 μ M zileuton (CAS: 111406-87-2). # 10 μ M indomethacin
284 (CAS: 53-86-1).

285 **DISCUSSION**

286 In the current study, we present an in silico target prediction workflow capable of prioritizing new
287 molecular targets for known chemical entities, here exemplified on DHCs. Even though in silico
288 target prediction is common today for synthetic compounds (Cereto-Massagué et al., 2015; Keiser
289 et al., 2007; Keiser et al., 2009; Lounkine et al., 2012), it is still challenging for natural products
290 (Reker et al., 2014; Rodrigues et al., 2015; Rollinger, 2009; Rollinger et al., 2009). To our
291 knowledge, this is the first study performing in silico target prediction on a natural product class
292 while systematically combining diverse established tools. We have recently observed that,
293 especially when predicting targets for natural products, none of the established tools (including
294 our own) performed perfectly, but owed to different methods, all of them performed differently
295 (Mayr et al., 2019b). Exploiting the complementarity of the methods' strengths should therefore
296 correct for this shortcoming and result in better predictive performance. This strategy might be of
297 great interest to the community since it underlines the benefits of predicting targets of a closely
298 related compound series, rather than single compounds and it provides a thorough use case of
299 publicly available tools and how to interpret its predictions. Also, we have recently predicted
300 DHCs to be inhibitors of mushroom tyrosinase, albeit they turned out to be alternative substrates
301 of the latter – an unexpected form of bioactivity that an in silico target prediction cannot distinguish
302 from competitive inhibitors (Mayr et al., 2019a).

303 Finally, six potential DHC targets were selected of which four could be experimentally confirmed
304 (5-LO, COX-1, 17 β HSD3, and AKR1C3) as molecular targets of at least one of the ten DHCs **1**
305 – **10**. These four proteins are all new DHC targets and thus expanded the DHC biological space,
306 which we were aiming for (see Figure 2). In terms of accuracy, our yield of novel targets (four out
307 of six) is clearly superior to the yield of a “random selection” (test a random panel of protein targets
308 towards compounds **1** - **10**), which typically lies below 1% (Doman et al., 2002; Ferreira et al.,
309 2010; Polgár et al., 2005; Young et al., 2005). 17 β HSD2 and aromatase could not be confirmed
310 as targets, however, a thorough literature search revealed that **1** was reported once in literature to
311 inhibit aromatase with an IC₅₀ value \geq 50 μ M (Le Bail et al., 2001). Activities at such high
312 concentrations are considered inactive by PubChem and were thus not retrieved by our bioactivity
313 mining approach. This activity is indeed negligible, however, this value seems consistent with the
314 result generated by us ($13.8 \pm 2.0\%$ inhibition at 10 μ M, see Table 3). The observed activities were
315 all in typical ranges for non-optimized lead structures discovered by VS. Ripphausen et al.

316 conducted a survey in 2010, showing that hit-compounds identified by VS have defined potency
317 endpoints (IC_{50} , EC_{50} , K_i , or K_d) of 4 to 19 μM in average, which is arguably high. However, the
318 true value of VS lies in the ability to identify new chemotypes as leads, or in its turn, to identify
319 new targets for known compounds in target prediction (Ripphausen et al., 2010). The exciting fact
320 of this study is that our workflow could successfully prioritize new molecular targets of well-
321 known compounds with noteworthy accuracy, opening up new avenues for DHC research (see
322 Figure 4-Figure supplement 1).

323 The results can now be utilized in manifold ways: First, our findings revealed polypharmacology
324 of some DHCs as a sideline. Thus, **1** and **2** seem to have promising anti-inflammatory properties,
325 by simultaneously inhibiting 5-LO and COX-1. Investigating whether this property was inherited
326 to gliflozin drugs could be the subject of another study. Potential anti-inflammatory properties of
327 gliflozin drugs could contribute to the currently observed beneficial effects of those drugs in e.g.
328 heart failure (Dutka et al., 2019). Several authors have described anti-inflammatory properties of
329 gliflozin drugs on a functional level, however a distinct mode of action and association to distinct
330 molecular targets is still to be elucidated (Hattori, 2018; Iannantuoni et al., 2019; Xu et al., 2018).

331 Second, to remain with polypharmacology, e.g. **4** and **5** could serve as lead to develop dual
332 inhibitors of AKR1C3 and 5-LO. Analogously, **2** could be used as a starting point for the
333 development of a dual 17β HSD3/5-LO inhibitor. Both options would represent a new compound
334 class with potentially interesting pharmacological properties. These agents could be beneficial e.g.
335 in the treatment of prostate cancer since AKR1C3 and 17β HSD3 are frequently linked to this
336 condition (Margiotti et al., 2002; Vicker et al., 2009) and malignant tumors are usually surrounded
337 by a pro-inflammatory microenvironment (Neuwirt et al., 2020). Apart from the two just
338 mentioned possibilities, several other scenarios of utilization are reasonable.

339 Third, our target prediction workflow revealed the great potential of DHCs as lead structures. As
340 mentioned above, DHCs are incredibly well accessible from biomass like apple leaves, in
341 concentrations up to 20% dry mass (Gaucher et al., 2013). According to the principle of
342 bioprospection, meaning the harnessing of resources from nature for medical purposes, apple
343 leaves could play an interesting role in future lead optimization campaigns.

344 Fourth, the established in silico prediction workflow can be applied to several other compound
345 classes alike DHCs. Therefore, this study blueprints a strategy to predict targets for known
346 compounds, by mostly using open-source platforms, thereby empowering a great number of
347 researchers to actively re-dedicate their compounds. This technology however is greatly enabled
348 by the growing body of known bioactivities, hinting towards increasing accuracies reachable with
349 target prediction campaigns in the near future, as this knowledge keeps on expanding.

350 MATERIALS AND METHODS

351 **Dataset Assembly.** A dataset representing the chemical space of DHCs was gathered, containing
352 naturally occurring DHCs as well as semi-synthetic derivatives of the latter. First, compounds **1** –
353 **10** were included. Then, a thorough literature search was conducted in SciFinder, using
354 substructure search function for 1,2-diphenyl-propan-1-one. The SciFinder query was conducted
355 on the 8th of August 2017 and yielded 5457 DHCs. The resulting compounds were checked
356 manually for their origin (natural product vs. semi-synthetic), created in ChemDraw Professional
357 (version 16.0.0.82 (68), PerkinElmer, Waltham, MA, USA) with assigned stereochemistry, and
358 double checked with SciFinder using the ‘search SciFinder’ function in ChemDraw. For
359 compounds, especially natural products, with lacking absolute configuration, all possible
360 stereoisomers were included. Finally, the dataset ‘DHC_full’ contained 425 natural or semi-
361 synthetic DHCs (corrected for stereochemistry) and was converted with a custom-built Pipeline
362 Pilot protocol (version 9.5.0.831, Dassault Systèmes BIOVIA, Vélizy-Villacoublay, France) to an
363 sd-file (DHC_full.sdf) and a csv-file (DHC_full.csv). The Pipeline Pilot protocol is outlined in
364 Supplementary Information S-1. The files are provided on GitHub (see Supplementary
365 Information S-2).

366 **Bioactivity Mining.** The mining of bioactivity data of DHCs was done through a script coded in
367 Python 3 (version 3.7.3, <https://www.python.org/>) called
368 ‘bioactivity_network_generator_SMILES.py’. This script iterates over a two-column csv-table
369 (name, SMILES) while fetching one SMILES code at a time. The script interacts with various
370 application programming interfaces (APIs) of PubChem (PUG REST, <https://pubchem.ncbi.nlm.nih.gov/>) (Kim et al., 2018), UniProt (<https://www.uniprot.org/>) (The
371 UniProt Consortium, 2018), and Reactome (<https://reactome.org/>) (Fabregat et al., 2017). At the
372 first stage, the SMILES code is posted as a query to the PubChem API, which returns the desired
373 PubChem compound ID (CID), if present. The CID is then used to post a second query to the PUG
374 REST API, fetching all assay IDs (AIDs) associated with the posted CID, for which the assay
375 result was flagged as ‘active’. The produced list of AIDs is then annotated with the respective gene
376 names from PubChem. This step eliminates all AIDs that are not associated to a single protein (e.g.
377 cell-based assays). The gene name from PubChem can be translated to UniProt names and the
378 respective entry names used in UniProt using the UniProt KB API. In a last step, the UniProt entry

380 name was used to retrieve associated human pathways from the Reactome API. The gathered
381 bioactivity data of all provided SMILES codes was processed in Pandas (version 0.24.2,
382 <https://pandas.pydata.org/>) (McKinney, 2010) and finally written to a csv-file in the simple
383 interaction file (sif) format, which can be visualized in e.g. Cytoscape (<https://cytoscape.org/>)
384 (Shannon et al., 2003). Interaction weights were calculated by using the ‘group by’ method
385 implemented in Pandas chained with the ‘count()’ method. Interaction weights thus are an integer
386 representing the appearances of a particular interaction in PubChem. The script
387 ‘bioactivity_network_generator_SMILES.py’ is provided on GitHub (see Supplementary
388 Information S-2).

389 **Pharmacophore-based Parallel Virtual Screening.** Pharmacophore-based parallel VS was
390 performed using the historically grown in-house pharmacophore model databased built and
391 maintained by Prof. Daniela Schuster. The database consists of 387 ligand-based and structure-
392 based pharmacophore models for 39 protein targets built in two different software environments,
393 namely Discovery Studio (version 4.5.0.15071, Dassault Systèmes BIOVIA, Vélizy-Villacoublay,
394 FR) and various versions of LigandScout (Inte:Ligand, Vienna, AT). For the Discovery Studio
395 models, parallel screening was performed using the ‘ligand profiler’ protocol (for settings refer to
396 Supplementary Information Table S-4). Screening of the LigandScout models was performed
397 using the ‘iscreen.exe’ program via command line and the databases created for every LigandScout
398 version by using the ‘idbgen.exe’ via command line for the respective LigandScout versions. Thus,
399 Omega (OpenEye Scientific Software, Santa Fe, NM, USA) with ‘best’ settings was used. The
400 targets represented by these models are predominantly targets belonging to the arachidonic acid
401 (AA) cascade as well as corresponding downstream signaling and steroid metabolism and
402 signaling. The targets are often associated with inflammation, neoplasm, or are popular off-targets.
403 A detailed compilation of all models is provided in Supplementary Information Table S-3.

404 **Target Prediction with Publicly Available Tools.** Next to the pharmacophore-based parallel
405 screening, three target prediction tools that are available as web servers were used, namely SEA
406 (<http://sea16.docking.org/>) (Keiser et al., 2007), STP (<http://www.swisstargetprediction.ch/>)
407 (Daina et al., 2019; Gfeller et al., 2014; Gfeller et al., 2013), and SP (<http://prediction.charite.de/>)
408 (Dunkel et al., 2008; Nickel et al., 2014). SEA is a 2D ligand-based, similarity ensemble method.
409 Each target present in SEA is described by a set of its known ligands of various size. An input

410 ligand is then compared against all ligands of all target sets via Tanimoto similarity of the ECFP4
411 fingerprints. For each target, the Tanimoto similarities are summed up and z-scores calculated.
412 Since the authors computed the distribution of z-scores obtained between random similarity
413 ensembles, the z-scores of a screening ligand to each target can be used to calculate expectation
414 values (E-values). Those E-values, similar as in the BLAST algorithm, express the likelihood that
415 the observed similarity happened due to coincidence. SEA uses bioactivity data derived from
416 ChEMBL (Gaulton et al., 2017) and is maintained by the University of California, San Francisco
417 (UCSF). SP operates in a very similar way to SEA, being a 2D similarity ensemble approach and
418 using ECFP4 fingerprints as well. Bioactivities that were used to build reference target sets in SP
419 were derived from ChEMBL (Gaulton et al., 2012), Binding DB (Liu et al., 2007), and SuperTarget
420 (Günther et al., 2008; Hecker et al., 2012). SP is maintained by the structural bioinformatics group
421 of the Charité - University Medicine Berlin in Germany. In contrast to SEA and SP, STP makes
422 use of the ligand-based similarity ensembles principle as well, however it is a hybrid method
423 between 2D and 3D. 2D similarity is computed via Tanimoto similarity using FP2 fingerprints,
424 while 3D similarity is described as Manhattan distance between the Electroshape (Armstrong et
425 al., 2010) vectors. Finally, a logistic regression classifies the input ligand based on 2D and 3D
426 similarities. STP derived its bioactivity data also from ChEMBL. It was developed by the Swiss
427 Institute of Bioinformatics (SIB). The online servers described above were accessed via a web
428 scraper script called ‘TarPredCrawler.py’ written in python 3. The script uses selenium
429 (<https://www.seleniumhq.org/>, version 3.141.0) to send post requests of smiles codes to the four
430 servers and downloads the resulting prediction as a table. The script ‘TarPredCrawler.py.py’ is
431 provided on GitHub (https://github.com/fmayr/DHC_TargetPrediction).

432 **Biochemical Assays.** Aromatase assays were performed as previously described (Pandey et al.,
433 2007). Briefly, genes for human wild-type aromatase and NADPH P450 oxidoreductase were
434 transfected into *E. coli*, to express both proteins in the recombinant form and proteins were purified
435 using multiple chromatographic procedures as described previously. Liposomes containing both
436 enzymes were formed for the assay of enzymatic activities. aromatase activity was quantified by
437 measuring the release of tritiated water after incubation with 1β -³H androstenedione, a method
438 introduced by Lephart and Simpson (Lephart et al., 1991). Ten nM Anastrozole (CAS: 120511-
439 73-1) were used as positive control.

440 Inhibitory activities towards AKR1C3, 17 β HSD3, and 17 β HSD2 were assayed as described in
441 Schuster et al. (Schuster et al., 2011). Briefly, AKR1C3 and 17 β HSD2 were transformed into *E.*
442 *coli* BL21 (DE3) and 17 β HSD3 transfected into HEK293 cells. For assaying inhibitory activities
443 towards 17 β HSD2, bacterial suspensions were used, while cell suspensions were used to assay
444 17 β HSD3 and bacterial lysates were used to assay AKR1C3. The protein containing lysates and
445 suspensions, were incubated with tritiated substrates and cofactors (21 nM 17 β -estradiol (6,7- 3 H)
446 and 750 nM NAD $^+$ for 17 β HSD2 and 10,6 nM 4-androstene-3,17-dione (1,2,6,7- 3 H) and 600 μ M
447 NADPH for 17 β HSD3 and AKR1C3) in the presence of test compounds in a final concentration
448 of 10 μ M (compounds supplied in DMSO; 1% final DMSO in the assay). After a defined
449 incubation time, substrates and products were extracted using solid phase extraction (SPE) and
450 analyzed by RP-HPLC and online scintillation counting. Quantification of relative conversion
451 occurred via chromatographic peak integration and the percentage of inhibition was calculated
452 relative to a mock control (1% DMSO). As positive controls compound 2-9 (CAS: 745028-76-6)
453 (Schuster et al., 2011) was used for AKR1C3 assays, compound 24 (CAS: 873206-61-2) (Möller
454 et al., 2009) for 17 β HSD3 assays and compound 19 (CAS: 1340482-23-6) (Wetzel et al., 2011)
455 for 17 β HSD2 assays, all in 1 μ M concentration. Inhibitory activities towards 5-LO and COX-1
456 were determined as described earlier by Schaible et al (Schaible et al., 2014). and Koeberle et al.
457 (Koeberle et al., 2008), respectively. Briefly, polymorphonuclear leukocytes (for 5-LO) and
458 human platelets (for COX-1) were freshly isolated from the blood of healthy volunteers, pre-
459 incubated with the potential inhibitors and stimulated with 2.5 μ M Ca $^{2+}$ -ionophore A23187 or
460 arachidonic acid, respectively. The reaction was stopped, substrates and products isolated and
461 analysed on RP-HPLC. 5-LO products included LTB₄, its trans-isomers, 5-HPETE, and 5-HETE,
462 while the COX-1 product was quantified as 12-HHT. Again, quantification occurred via
463 chromatographic peak integration and the percentage calculated relative to a mock control.
464 Indomethacin (CAS: 53-86-1) in 10 μ M concentration was used as positive control for COX-1
465 assays and Zileuton (CAS: 111406-87-2) in 3 μ M concentration for 5-LO assays.

466 Activities for assaying 11 β hydroxysteroid dehydrogenase 1 (11 β HSD1) and 11 β hydroxysteroid
467 dehydrogenase 2 (11 β HSD2) were determined as previously described by Kratschmar et al.
468 (Kratschmar et al., 2011). Briefly, lysates of HEK-293 cells stably expressing human 11 β HSD1
469 were incubated with 200 nM cortisone (including 10 nM [1,2- 3 H]-cortisone), 500 μ M NADPH
470 and the test substance. For 11 β HSD2, lysate of HEK-239 cells stably expressing human 11 β HSD2

471 was incubated with 50 nM cortisol (including 10 nM [1,2,6,7-³H]-cortisol), 500 μ M NAD⁺ and the
472 test compounds. Conversion of radiolabeled substrate was determined and compared to enzyme
473 activity in the control sample. 18 β -Glycyrrhetic acid (CAS: 471-53-4) was used as positive
474 control for both enzymes. Inhibitory activities for 3 β hydroxysteroid dehydrogenase 1 (3 β HSD1)
475 and cytochrome P450 17A1 (CYP17A) were assayed as described before by Samadari et al. and
476 Udhane et al (Samadari et al., 2007; Udhane et al., 2017). Activities were measured in cell-based
477 assays, using Human adrenocortical NCI-H295R cells obtained from American Type Culture
478 Collection (ATCC; CRL-2128). The cells were treated with tritiated substrates and the product
479 mix separated by thin layer chromatography (TLC) and the resulting spots subsequently
480 densiometrically quantified. Trilostane (CAS: 13647-35-3) was used as positive control. Inhibitory
481 activities towards soluble epoxide hydrolase (sEH) were assayed using the purified enzyme as
482 described by Wixtrom et al. and Morrisseau et al. (Morrisseau et al., 2000; Wixtrom et al., 1988). A
483 baculovirus was used to transduce sEH into Sf9 insect cells, which were subsequently lysed and
484 and the enzyme purified using affinity chromatography. Enzyme inhibition could then be
485 quantified using the purified sEH and substrate which turned into a fluorophore by the latter, which
486 can be read at 465 nm after excitation at 300 nm (Waltenberger et al., 2016). AUDA (CAS:
487 479413-70-2) was used as positive control. Inhibitory activities towards 17 β HSD4 were assayed
488 according to the description in Schuster et al. (Schuster et al., 2011). Briefly, a plasmid coding for
489 17 β hydroxysteroid dehydrogenase 4 (17 β HSD4) was transformed into *E. coli* BL21 (DE3) Codon
490 Plus RP (Stratagene). Subsequently, bacterial suspensions were prepared and incubated in the
491 presence of 21 nM 17 β -estradiol (6,7-³H), 750 nM NAD⁺, and 10 μ M test compound (1% DMSO
492 final). After a defined incubation time, substrate and product were extracted using solid phase
493 extraction (SPE) and analyzed with RP-HPLC in a Beckman-Coulter system and online
494 scintillation counting. Enzymatic conversion was calculated by integrating substrate and product
495 peaks and calculating percent inhibition relative to a control assay without inhibitor (1% DMSO).
496 Compound 19 (CAS: 1340482-23-6) from (Wetzel et al., 2011) served as positive control.

497 **Materials.** Compounds **1** – **10** were purchased at TransMIT GmbH (PlantMetaChem, Gießen,
498 Germany) with the following product numbers: **1**: P 036; **2**: H 031; **3**: D 017; **4**: A 020; **5**: D 018;
499 **6**: S 025; **7**: P 037; **8**: T 017; **9**: P 064; **10**: N 019. Purity was assessed by HPLC-DAD (280 nm)
500 found to be above 95% for all compounds.

501 **ACKNOWLEDGEMENTS**

502 The research was funded by GECT Euregio Tirol–Südtirol–Trentino (IPN55). F.M. and D.S. thank
503 OpenEye Scientific Software and Inte:Ligand for their academic licenses. D.S. is an Ingeborg
504 Hochmair professor at the University of Innsbruck.

505 **AUTHOR CONTRIBUTIONS**

506 Fabian Mayr, Stefan Martens, Birgit Waltenberger, Veronika Temml, Stefan Schwaiger, Hermann
507 Stuppner, and Daniela Schuster designed the study. Fabian Mayr, Veronika Temml and Daniela
508 Schuster performed the in silico screening and evaluated the results. Stefan Martens provided
509 physical samples. Rolf W. Hartmann discovered and provided the positive control for 17 β HSD2
510 testing, Christian Gege discovered and provided the positive control for 17 β HSD3 testing.
511 Gabriele Möller, Jerzy Adamski, Ulrike Garscha, Jana Fischer, Oliver Werz, Silvia G. Inderbinen,
512 Alex Odermatt, Patricia Rodríguez Castaño, and Amit Pandey planned and performed the in vitro
513 assays. Fabian Mayr and Daniela Schuster wrote the manuscript with the contributions of all
514 authors.

515 **COMPETING INTERESTS**

516 The authors declare no competing financial interests.

517

518 DATA AVAILABILITY

519 Table 4. Files used and produced during this study. Every file is freely available at GitHub
520 (https://github.com/fmayr/DHC_TargetPrediction). For greater clarity, a file scheme is provided
521 in Supplementary Information S-2 describing all dependencies.

File Name	Contains	Subfolder in GitHub
DHC_full.csv	DHC chemical space as csv-file (name, smiles).	/dataset
DHC_full.sdf	DHC chemical space as 3D-molecule files.	/dataset
DHC_full_lit_network.csv	Known DHC biological space and result of bioactivity mining. Ready to be imported to Cytoscape.	/bioactivity%20mining
DHC_full_online.csv	Result produced by online target prediction servers (SEA, STP, SP) and DHC_full.csv as input.	/TarPredCrawler
DHC_full_LS_mergedhits.csv	Csv-file of hitlists produced by LigandScout models in Ph-DB.	/pharmacophore-based parallel VS
DHC_full_ligandprofiler.csv	Csv-file of hitlists produced by Discovery Studio model in Ph-DB.	/pharmacophore-based parallel VS
DHC_full_inhouse.csv	Joined results of LigandScout and Discovery Studio outputs.	/pharmacophore-based parallel VS
DHC_full_pivoted.csv	Joined results of SEA, STP, SP, and Ph-DB predictions for DHC chemical space.	
DHC_10_pivoted.csv	DHC_full_pivoted.csv filtered for compounds 1 – 10 .	
DHC_10_network.csv	DHC_10_pivoted.csv joined with DHC_full_lit_network.csv. Network file ready to be imported to Cytoscape. Contains known and predicted compound-target associations.	
Bioactivity_network_generator_SMILES.py	Python script used for literature mining. For installation instruction see README.	
TarPredCrawler.py	Python script used for submitting and collecting results from SEA, STP, and SP.	
DHC_targetpreidction_datatreatment.ipynb	Jupyter Notebook containing all data treatment and plotting performed in this study.	

523 **REFERENCES**

524 Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment
525 search tool. *J. Mol. Biol.*, 215(3), 403-410. doi: [https://doi.org/10.1016/S0022-2836\(05\)80360-2](https://doi.org/10.1016/S0022-2836(05)80360-2)

526

527 Armstrong, S. M., Morris, G. M., Finn, P. W., Sharma, R., Moretti, L., Cooper, R. I., & Richards,
528 W. G. (2010). ElectroShape: fast molecular similarity calculations incorporating shape,
529 chirality and electrostatics. *J. Comput. Aid. Mol. Des.*, 24, 789–801. doi: 10.1007/s10822-
530 010-9374-0

531 Aronson, J. K. (2007). Old drugs – new uses. *Br. J. Clin. Pharmacol.*, 64(5), 563-565. doi:
532 10.1111/j.1365-2125.2007.03058.x

533 Ashburn, T. T., & Thor, K. B. (2004). Drug repositioning: identifying and developing new uses
534 for existing drugs. *Nat. Rev. Drug Discovery*, 3(8), 673-683. doi: 10.1038/nrd1468

535 Campbell, I. B., Macdonald, S. J. F., & Procopiou, P. A. (2018). Medicinal chemistry in drug
536 discovery in big pharma: past, present and future. *Drug Discovery Today*, 23(2), 219-234.
537 doi: <https://doi.org/10.1016/j.drudis.2017.10.007>

538 Cereto-Massagué, A., Ojeda, M. J., Valls, C., Mulero, M., Pujadas, G., & Garcia-Vallve, S. (2015).
539 Tools for in silico target fishing. *Methods*, 71, 98-103. doi:
540 <http://dx.doi.org/10.1016/j.ymeth.2014.09.006>

541 Chen, C., Huang, H., & Wu, C. H. C. Chen, H. Huang, & C. H. Wu. (2017). Protein bioinformatics
542 databases and resources. *Fundamentals of protein bioinformatics*. Vol. 1558, pp. 3-39. doi:
543 10.1007/978-1-4939-6783-4_1New York, NY: Humana Press.

544 Clemons, P. A., Bodycombe, N. E., Carrinski, H. A., Wilson, J. A., Shamji, A. F., Wagner, B. K.,
545 . . . Schreiber, S. L. (2010). Small molecules of different origins have distinct distributions
546 of structural complexity that correlate with protein-binding profiles. *Proc. Natl. Acad. Sci.*
547 *U. S. A.*, 107(44), 18787. doi: 10.1073/pnas.1012741107

548 Daina, A., Michelin, O., & Zoete, V. (2019). SwissTargetPrediction: updated data and new
549 features for efficient prediction of protein targets of small molecules. *Nucleic Acids Res.*,
550 47(W1), W357-W364. doi: 10.1093/nar/gkz382

551 Dodds, E. C., Lawson, W., & Dale, H. H. (1938). Molecular structure in relation to oestrogenic
552 activity. Compounds without a phenanthrene nucleus. *Proc. R. Soc. B*, 125(839), 222-232.
553 doi: 10.1098/rspb.1938.0023

554 Doman, T. N., McGovern, S. L., Witherbee, B. J., Kasten, T. P., Kurumbail, R., Stallings, W. C.,
555 . . . Shoichet, B. K. (2002). Molecular docking and high-throughput screening for novel
556 inhibitors of protein tyrosine phosphatase-1B. *J. Med. Chem.*, *45*(11), 2213-2221. doi:
557 10.1021/jm010548w

558 Dunkel, M., Günther, S., Ahmed, J., Wittig, B., & Preissner, R. (2008). SuperPred: drug
559 classification and target prediction. *Nucleic Acids Res.*, *36*(suppl_2), W55-W59. doi:
560 10.1093/nar/gkn307

561 Dutka, M., Bobiński, R., Ulman-Włodarz, I., Hajduga, M., Bujok, J., Pajak, C., & Ćwiertnia, M.
562 (2019). Various aspects of inflammation in heart failure. *Heart Failure Rev.* doi:
563 10.1007/s10741-019-09875-1

564 Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P., . . . D'Eustachio,
565 P. (2017). The reactome pathway knowledgebase. *Nucleic Acids Res.*, *46*(D1), D649-
566 D655. doi: 10.1093/nar/gkx1132

567 Ferreira, R. S., Simeonov, A., Jadhav, A., Eidam, O., Mott, B. T., Keiser, M. J., . . . Shoichet, B.
568 K. (2010). Complementarity between a docking and a high-throughput screen in
569 discovering new cruzain inhibitors. *J. Med. Chem.*, *53*(13), 4891-4905. doi:
570 10.1021/jm100488w

571 Gaucher, M., Dugé de Bernonville, T., Lohou, D., Guyot, S., Guillemette, T., Brisset, M.-N., &
572 Dat, J. F. (2013). Histolocalization and physico-chemical characterization of
573 dihydrochalcones: Insight into the role of apple major flavonoids. *Phytochemistry*, *90*, 78-
574 89. doi: <https://doi.org/10.1016/j.phytochem.2013.02.009>

575 Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M., Hersey, A., . . . Overington, J. P.
576 (2012). ChEMBL: a large-scale bioactivity database for drug discovery. *Nucleic Acids
577 Res.*, *40*(D1), D1100-D1107. doi: 10.1093/nar/gkr777

578 Gaulton, A., Hersey, A., Nowotka, M., Bento, A. P., Chambers, J., Mendez, D., . . . Leach, A. R.
579 (2017). The ChEMBL database in 2017. *Nucleic Acids Res.*, *45*(D1), D945-D954. doi:
580 10.1093/nar/gkw1074

581 Gfeller, D., Grosdidier, A., Wirth, M., Daina, A., Michelin, O., & Zoete, V. (2014).
582 SwissTargetPrediction: a web server for target prediction of bioactive small molecules.
583 *Nucleic Acids Res.*, *42*(W1), W32-W38. doi: 10.1093/nar/gku293

584 Gfeller, D., Michielin, O., & Zoete, V. (2013). Shaping the interaction landscape of bioactive
585 molecules. *Bioinformatics*, 29(23), 3073–3079. doi: 10.1093/bioinformatics/btt540

586 Günther, S., Kuhn, M., Dunkel, M., Campillos, M., Senger, C., Petsalaki, E., . . . Preissner, R.
587 (2008). SuperTarget and Matador: resources for exploring drug-target relationships.
588 *Nucleic Acids Res.*, 36(suppl_1), D919-D922. doi: 10.1093/nar/gkm862

589 Harvey, A. L. (2008). Natural products in drug discovery. *Drug Discovery Today*, 13(19), 894-
590 901. doi: <https://doi.org/10.1016/j.drudis.2008.07.004>

591 Hattori, S. (2018). Anti-inflammatory effects of empagliflozin in patients with type 2 diabetes and
592 insulin resistance. *Diabetol. Metab. Syndr.*, 10, 93-93. doi: 10.1186/s13098-018-0395-5

593 Hecker, N., Ahmed, J., von Eichborn, J., Dunkel, M., Macha, K., Eckert, A., . . . Preissner, R.
594 (2012). SuperTarget goes quantitative: update on drug–target interactions. *Nucleic Acids
595 Res.*, 40(D1), D1113-D1117. doi: 10.1093/nar/gkr912

596 Hert, J., Keiser, M. J., Irwin, J. J., Oprea, T. I., & Shoichet, B. K. (2008). Quantifying the
597 relationships among drug classes. *J. Chem. Inf. Model.*, 48(4), 755-765. doi:
598 [10.1021/ci8000259](https://doi.org/10.1021/ci8000259)

599 Huang, Y.-W., Pineau, I., Chang, H.-J., Azzi, A., Bellemare, V. r., Laberge, S., & Lin, S.-X.
600 (2001). Critical residues for the specificity of cofactors and substrates in human estrogenic
601 17 β -hydroxysteroid dehydrogenase 1: variants designed from the three-dimensional
602 structure of the enzyme. *Mol. Endocrinol.*, 15(11), 2010-2020. doi:
603 [10.1210/mend.15.11.0730](https://doi.org/10.1210/mend.15.11.0730)

604 Hurle, M. R., Yang, L., Xie, Q., Rajpal, D. K., Sanseau, P., & Agarwal, P. (2013). Computational
605 drug repositioning: from data to therapeutics. *Clin. Pharmacol. Ther.*, 93(4), 335-341. doi:
606 [10.1038/clpt.2013.1](https://doi.org/10.1038/clpt.2013.1)

607 Iannantuoni, F., M de Marañon, A., Diaz-Morales, N., Falcon, R., Bañuls, C., Abad-Jimenez, Z.,
608 . . . Rovira-Llopis, S. (2019). The SGLT2 inhibitor empagliflozin ameliorates the
609 inflammatory profile in type 2 diabetic patients and promotes an antioxidant response in
610 leukocytes. *J. Clin. Med.*, 8(11), 1814. doi: 10.3390/jcm8111814

611 Jalencas, X., & Mestres, J. (2013). On the origins of drug polypharmacology. *MedChemComm*,
612 4(1), 80-87. doi: 10.1039/C2MD20242E

613 Keiser, M. J., Roth, B. L., Armbruster, B. N., Ernsberger, P., Irwin, J. J., & Shoichet, B. K. (2007).
614 Relating protein pharmacology by ligand chemistry. *Nat. Biotechnol.*, 25(2), 197-206. doi:
615 doi:10.1038/nbt1284

616 Keiser, M. J., Setola, V., Irwin, J. J., Laggner, C., Abbas, A. I., Hufeisen, S. J., . . . Roth, B. L.
617 (2009). Predicting new molecular targets for known drugs. *Nature*, 462, 175. doi:
618 <https://doi.org/10.1038/nature08506>

619 Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., . . . Bolton, E. E. (2018). PubChem
620 2019 update: improved access to chemical data. *Nucleic Acids Res.*, 47(D1), D1102-
621 D1109. doi: 10.1093/nar/gky1033

622 Koeberle, A., Siemoneit, U., Bühring, U., Northoff, H., Laufer, S., Albrecht, W., & Werz, O.
623 (2008). Licofelone suppresses prostaglandin E₂ formation by interference with the
624 inducible microsomal prostaglandin E₂ synthase-1. *J. Pharmacol. Exp. Ther.*, 326(3), 975.
625 doi: 10.1124/jpet.108.139444

626 Koeberle, A., & Werz, O. (2014). Multi-target approach for natural products in inflammation.
627 *Drug Discovery Today*, 19(12), 1871-1882. doi:
628 <https://doi.org/10.1016/j.drudis.2014.08.006>

629 Koehn, F. E., & Carter, G. T. (2005). The evolving role of natural products in drug discovery. *Nat.*
630 *Rev. Drug Discovery*, 4(3), 206-220. doi: 10.1038/nrd1657

631 Kratschmar, D. V., Vuorinen, A., Da Cunha, T., Wolber, G., Classen-Houben, D., Doblhoff, O., .
632 . . Odermatt, A. (2011). Characterization of activity and binding mode of glycyrrhetic acid
633 derivatives inhibiting 11 β -hydroxysteroid dehydrogenase type 2. *J. Steroid Biochem. Mol. Biol.*, 125(1), 129-142. doi: <https://doi.org/10.1016/j.jsbmb.2010.12.019>

635 Le Bail, J.-C., Pouget, C., Fagnere, C., Basly, J.-P., Chulia, A.-J., & Habrioux, G. (2001).
636 Chalcones are potent inhibitors of aromatase and 17 β -hydroxysteroid dehydrogenase
637 activities. *Life Sci.*, 68(7), 751-761. doi: [https://doi.org/10.1016/S0024-3205\(00\)00974-7](https://doi.org/10.1016/S0024-3205(00)00974-7)

638 Lephart, E. D., & Simpson, E. R. (1991). Assay of aromatase activity. *Methods in Enzymology*.
639 Vol. 206, pp. 477-483. doi: [https://doi.org/10.1016/0076-6879\(91\)06116-K](https://doi.org/10.1016/0076-6879(91)06116-K): Academic
640 Press.

641 Liu, T., Lin, Y., Wen, X., Jorissen, R. N., & Gilson, M. K. (2007). BindingDB: a web-accessible
642 database of experimentally determined protein-ligand binding affinities. *Nucleic Acids Res.*, 35(suppl_1), D198-D201. doi: 10.1093/nar/gkl999

644 Lounkine, E., Keiser, M. J., Whitebread, S., Mikhailov, D., Hamon, J., Jenkins, J. L., . . . Urban,
645 L. (2012). Large-scale prediction and testing of drug activity on side-effect targets. *Nature*,
646 486(7403), 361-367. doi: 10.1038/nature11159

647 Margiotti, K., Kim, E., Pearce, C. L., Spera, E., Novelli, G., & Reichardt, J. K. V. (2002).
648 Association of the G289S single nucleotide polymorphism in the HSD17B3 gene with
649 prostate cancer in italian men. *The Prostate*, 53(1), 65-68. doi: 10.1002/pros.10134

650 Matsuura, K., Shiraishi, H., Hara, A., Sato, K., Deyashiki, Y., Ninomiya, M., & Sakai, S. (1998).
651 Identification of a principal mRNA species for human 3 α -hydroxysteroid dehydrogenase
652 isoform (AKR1C3) that exhibits high prostaglandin D2 11-ketoreductase activity. *J.*
653 *Biochem.*, 124(5), 940-946. doi: 10.1093/oxfordjournals.jbchem.a022211

654 Mayr, F., Sturm, S., Ganzera, M., Waltenberger, B., Martens, S., Schwaiger, S., . . . Stuppner, H.
655 (2019a). Mushroom tyrosinase-based enzyme inhibition assays are not suitable for
656 bioactivity-guided fractionation of extracts. *J. Nat. Prod.*, 82(1), 136-147. doi:
657 10.1021/acs.jnatprod.8b00847

658 Mayr, F., Vieider, C., Temml, V., Stuppner, H., & Schuster, D. A. D. Kinghorn, H. Falk, S.
659 Gibbons, J. i. Kobayashi, Y. Asakawa, & J.-K. Liu. (2019b). Open-access activity
660 prediction tools for natural products. Case study: hERG blockers. *Progress in the*
661 *Chemistry of Organic Natural Products 110: Cheminformatics in Natural Product*
662 *Research*. pp. 177-238. doi: 10.1007/978-3-030-14632-0_6Cham: Springer International
663 Publishing.

664 McKinney, W. (2010). *Data structures for statistical computing in python*. Paper presented at the
665 Proceedings of the 9th Python in Science Conference.

666 Meng, W., Ellsworth, B. A., Nirschl, A. A., McCann, P. J., Patel, M., Girotra, R. N., . . . Washburn,
667 W. N. (2008). Discovery of dapagliflozin: a potent, selective renal sodium-dependent
668 glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. *J. Med.*
669 *Chem.*, 51(5), 1145-1149. doi: 10.1021/jm701272q

670 Möller, G., Deluca, D., Gege, C., Rosinus, A., Kowalik, D., Peters, O., . . . Hillisch, A. (2009).
671 Structure-based design, synthesis and in vitro characterization of potent 17 β -
672 hydroxysteroid dehydrogenase type 1 inhibitors based on 2-substitutions of estrone and D-
673 homo-estrone. *Bioorg. Med. Chem. Lett.*, 19(23), 6740-6744. doi:
674 <https://doi.org/10.1016/j.bmcl.2009.09.113>

675 Morisseau, C., Beetham, J. K., Pinot, F., Debernard, S., Newman, J. W., & Hammock, B. D.
676 (2000). Cress and potato soluble epoxide hydrolases: Purification, biochemical
677 characterization, and comparison to mammalian enzymes. *Arch. Biochem. Biophys.*,
678 378(2), 321-332. doi: <https://doi.org/10.1006/abbi.2000.1810>

679 Neuwirt, H., Bouchal, J., Kharaishvili, G., Ploner, C., Jöhrer, K., Pitterl, F., . . . Eder, I. E. (2020).
680 Cancer-associated fibroblasts promote prostate tumor growth and progression through
681 upregulation of cholesterol and steroid biosynthesis. *Cell Commun. Signaling*, 18(1), 11.
682 doi: 10.1186/s12964-019-0505-5

683 Newman, D. J., & Cragg, G. M. (2016). Natural products as sources of new drugs from 1981 to
684 2014. *J. Nat. Prod.*, 79(3), 629-661. doi: 10.1021/acs.jnatprod.5b01055

685 Nickel, J., Gohlke, B.-O., Erehman, J., Banerjee, P., Rong, W. W., Goede, A., . . . Preissner, R.
686 (2014). SuperPred: update on drug classification and target prediction. *Nucleic Acids Res.*,
687 42(W1), W26-W31. doi: 10.1093/nar/gku477

688 Orlikova, B., Schnekenburger, M., Zloh, M., Golais, F., Diederich, M., & Tasdemir, D. (2012).
689 Natural chalcones as dual inhibitors of HDACs and NF-κB. *Oncol. Rep.*, 28, 797-805. doi:
690 <https://doi.org/10.3892/or.2012>

691 Pandey, A. V., Kempná, P., Hofer, G., Mullis, P. E., & Flück, C. E. (2007). Modulation of human
692 CYP19A1 activity by mutant NADPH P450 oxidoreductase. *Mol. Endocrinol.*, 21(10),
693 2579-2595. doi: 10.1210/me.2007-0245

694 Polgár, T., Baki, A., Szendrei, G. I., & Keserű, G. M. (2005). Comparative virtual and
695 experimental high-throughput screening for glycogen synthase kinase-3β inhibitors. *J.
696 Med. Chem.*, 48(25), 7946-7959. doi: 10.1021/jm050504d

697 Reker, D., Perna, A. M., Rodrigues, T., Schneider, P., Reutlinger, M., Mönch, B., . . . Schneider,
698 G. (2014). Revealing the macromolecular targets of complex natural products. *Nat. Chem.*,
699 6(12), 1072-1078. doi: 10.1038/nchem.2095

700 Ripphausen, P., Nisius, B., Peltason, L., & Bajorath, J. (2010). Quo vadis virtual Screening? A
701 comprehensive survey of prospective applications. *J. Med. Chem.*, 53, 8461-8467. doi:
702 10.1021/jm101020z

703 Rivière, C. R. Atta ur. (2016). Chapter 7 - dihydrochalcones: occurrence in the plant kingdom,
704 chemistry and biological activities. *Studies in Natural Products Chemistry*. Vol. 51, pp.
705 253-381. doi: <https://doi.org/10.1016/B978-0-444-63932-5.00007-3>: Elsevier.

706 Rodrigues, T., Reker, D., Kunze, J., Schneider, P., & Schneider, G. (2015). Revealing the
707 macromolecular targets of fragment-like natural products. *Angew. Chem., Int. Ed.*, 54(36),
708 10516-10520. doi: 10.1002/anie.201504241

709 Rodrigues, T., Reker, D., Schneider, P., & Schneider, G. (2016). Counting on natural products for
710 drug design. *Nat. Chem.*, 8, 531. doi: 10.1038/nchem.2479

711 Rollinger, J. M. (2009). Accessing target information by virtual parallel screening—The impact
712 on natural product research. *Phytochem. Lett.*, 2(2), 53-58. doi:
713 <https://doi.org/10.1016/j.phytol.2008.12.002>

714 Rollinger, J. M., Schuster, D., Danzl, B., Schwaiger, S., Markt, P., Schmidtke, M., . . . Stuppner,
715 H. (2009). In silico target fishing for rationalized ligand discovery exemplified on
716 constituents of *Ruta graveolens*. *Planta Med.*, 75(03), 195-204. doi: 10.1055/s-0028-
717 1088397

718 Rush, T. S., Grant, J. A., Mosyak, L., & Nicholls, A. (2005). A shape-based 3-D scaffold hopping
719 method and its application to a bacterial protein–protein interaction. *J. Med. Chem.*, 48(5),
720 1489-1495. doi: 10.1021/jm040163o

721 Samandari, E., Kempná, P., Nuoffer, J.-M., Hofer, G., E. Mullis, P., & E. Flück, C. (2007). Human
722 adrenal corticocarcinoma NCI-H295R cells produce more androgens than NCI-H295A
723 cells and differ in 3 β -hydroxysteroid dehydrogenase type 2 and 17,20 lyase activities. *J.*
724 *Endocrinol.*, 195(3), 459-472. doi: 10.1677/JOE-07-0166

725 Schaible, A. M., Filosa, R., Temml, V., Krauth, V., Matteis, M., Peduto, A., . . . Werz, O. (2014).
726 Elucidation of the molecular mechanism and the efficacy in vivo of a novel 1,4-
727 benzoquinone that inhibits 5-lipoxygenase. *Br. J. Pharmacol.*, 171(9), 2399-2412. doi:
728 10.1111/bph.12592

729 Schuster, D. (2010). 3D pharmacophores as tools for activity profiling. *Drug Discovery Today:*
730 *Technol.*, 7(4), e205-e211. doi: <https://doi.org/10.1016/j.ddtec.2010.11.006>

731 Schuster, D., Kowalik, D., Kirchmair, J., Laggner, C., Markt, P., Aebischer-Gumy, C., . . .
732 Adamski, J. (2011). Identification of chemically diverse, novel Inhibitors of 17 beta
733 hydroxysteroid dehydrogenase type 3 and 5 pharmacophore-based virtual screening. *J.*
734 *Steroid Biochem. Mol. Biol.*, 125(1-2), 148-161.

735 Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., . . . Ideker, T. (2003).
736 Cytoscape: a software environment for integrated models of biomolecular interaction
737 networks. *Genome Res.*, 13(11), 2498-2504. doi: 10.1101/gr.1239303

738 Sliwoski, G., Kothiwale, S., Meiler, J., Lowe, E. W., & Barker, E. L. (2014). Computational
739 methods in drug discovery. *Pharmacol. Rev.*, 66(1), 334-395. doi:
740 <https://doi.org/10.1124/pr.112.007336>

741 Steindl, T., Schuster, D., Laggner, C., & Langer, T. (2006). Parallel Screening: A novel concept
742 in pharmacophore based modeling and virtual screening. *J. Chem. Inf. Model.*, 45(3), 716-
743 724. doi: 10.1021/ci6002043

744 Sydow, D., Burggraaff, L., Szengel, A., van Vlijmen, H. W. T., Ijzerman, A. P., van Westen, G. J.
745 P., & Volkamer, A. (2019). Advances and challenges in computational target prediction.
746 *J. Chem. Inf. Model.*, 59(5), 1728-1742. doi: 10.1021/acs.jcim.8b00832

747 Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., . . . Mering,
748 Christian v. (2018). STRING v11: protein–protein association networks with increased
749 coverage, supporting functional discovery in genome-wide experimental datasets. *Nucleic
750 Acids Research*, 47(D1), D607-D613. doi: 10.1093/nar/gky1131

751 The UniProt Consortium. (2018). UniProt: a worldwide hub of protein knowledge. *Nucleic Acids
752 Res.*, 47(D1), D506-D515. doi: 10.1093/nar/gky1049

753 Udhane, S. S., Parween, S., Kagawa, N., & Pandey, A. V. (2017). Altered CYP19A1 and CYP3A4
754 activities due to mutations A115V, T142A, Q153R and P284L in the human P450
755 oxidoreductase. *Front. Pharmacol.*, 8(580). doi: 10.3389/fphar.2017.00580

756 Uthman, L., Baartscheer, A., Schumacher, C. A., Fiolet, J. W. T., Kuschma, M. C., Hollmann, M.
757 W., . . . Zuurbier, C. J. (2018). Direct cardiac actions of sodium glucose cotransporter 2
758 inhibitors target pathogenic mechanisms underlying heart failure in diabetic patients.
759 *Frontiers in Physiology*, 9(1575). doi: 10.3389/fphys.2018.01575

760 Vicker, N., Sharland, C. M., Heaton, W. B., Gonzalez, A. M. R., Bailey, H. V., Smith, A., . . .
761 Potter, B. V. L. (2009). The design of novel 17 β -hydroxysteroid dehydrogenase type 3
762 inhibitors. *Mol. Cell. Endocrinol.*, 301(1), 259-265. doi:
763 <https://doi.org/10.1016/j.mce.2008.08.005>

764 Waltenberger, B., Garscha, U., Temml, V., Liers, J., Werz, O., Schuster, D., & Stuppner, H.
765 (2016). Discovery of potent soluble Epoxide hydrolase (sEH) Inhibitors by

766 pharmacophore-based virtual screening. *J. Chem. Inf. Model.*, 56, 747-762. doi:
767 10.1021/acs.jcim.5b00592

768 Wetzel, M., Marchais-Oberwinkler, S., Perspicace, E., Möller, G., Adamski, J., & Hartmann, R.
769 W. (2011). Introduction of an electron withdrawing group on the hydroxyphenylnaphthol
770 scaffold improves the potency of 17 β -hydroxysteroid dehydrogenase type 2 (17 β -HSD2)
771 inhibitors. *J. Med. Chem.*, 54(21), 7547-7557. doi: 10.1021/jm2008453

772 Wixtrom, R. N., Silva, M. H., & Hammock, B. D. (1988). Affinity purification of cytosolic epoxide
773 hydrolase using derivatized epoxy-activated sepharose gels. *Anal. Biochem.*, 169(1), 71-
774 80. doi: [https://doi.org/10.1016/0003-2697\(88\)90256-4](https://doi.org/10.1016/0003-2697(88)90256-4)

775 Wolber, G., Dornhofer, A. A., & Langer, T. (2006). Efficient overlay of small organic molecules
776 using 3D pharmacophores. *J. Comput. Aided Mol. Des.*, 20, 773-788. doi: 10.1007/s10822-
777 006-9078-7

778 Xu, C., Wang, W., Zhong, J., Lei, F., Xu, N., Zhang, Y., & Xie, W. (2018). Canagliflozin exerts
779 anti-inflammatory effects by inhibiting intracellular glucose metabolism and promoting
780 autophagy in immune cells. *Biochem. Pharmacol. (Amsterdam, Neth.)*, 152, 45-59. doi:
781 <https://doi.org/10.1016/j.bcp.2018.03.013>

782 Young, S. M., Bologa, C., Prossnitz, E. R., Oprea, T. I., Sklar, L. A., & Edwards, B. S. (2005).
783 High-throughput screening with HyperCyt® flow cytometry to detect small molecule
784 formylpeptide receptor ligands. *J. Biomol. Screen.*, 10(4), 374-382. doi:
785 10.1177/1087057105274532

786