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ABSTRACT

Natural products comprise a rich reservoir for innovative drug leads and are a constant source of
bioactive compounds. To find pharmacological targets for new or already known natural products
using modern computer-aided methods is a current endeavor in drug discovery. Nature’s treasures,
however, could be used more effectively. Yet, reliable pipelines for large scale target prediction
of natural products are still rare. We have developed an in silico workflow consisting of four
independent, stand-alone target prediction tools and evaluated its performance on
dihydrochalcones (DHCs) — a well-known class of natural products. Thereby, we revealed four
previously unreported protein targets for DHCs, namely 5-lipoxygenase, cyclooxygenase-1, 173-
hydroxysteroid dehydrogenase 3, and aldo-keto reductase 1C3. Moreover, we provide a thorough
strategy on how to perform computational target prediction and guidance on using the respective

tools.
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INTRODUCTION

Finding new chemical entities that alter biological response — the quintessence of drug discovery
— is a constant endeavor in pharmaceutical science. In contrast, the need for novel, improved
clinical candidates has also remained consistently high, urging drug discovery scientists to explore
fresh ground. The integration of chemoinformatic and bioinformatic tools into drug discovery in
the early 1990s and the recent advances in big data handling have leveraged access to a myriad of
massive public datasets (Campbell et al., 2018; Chen et al., 2017) and powerful tools, e.g. virtual
screening (VS) (Sliwoski et al., 2014). In the past decade, the concept of drug repurposing has
emerged as an attractive strategy to rededicate approved drugs or partially developed compounds
to new molecular targets (Aronson, 2007; Ashburn et al., 2004). This development is, next to the
intention to reduce R&D costs, also owed to advances in computational chemistry (Hurle et al.,
2013). The latter can be achieved by a so-called ‘inverse VS’ utilizing techniques like 2D-
similarity searches (Keiser et al., 2009), 3D-similarity searches (Rush et al., 2005), and
pharmacophore-based VS (Schuster, 2010; Steindl et al., 2006). Many of such tools have been
made public in the past decade (Cereto-Massagué et al., 2015; Huang et al., 2001; Sydow et al.,
2019), aiming to boost both drug repurposing efforts and drug discovery as a whole.

Natural products are remarkable in many regards, particularly for being the main source of drugs
in the past and nowadays by serving as a source for innovative leads (Newman et al., 2016). Natural
products bear privileged structural features that were “shaped” by evolution, yielding compounds
that that can serve as promising starting points for drug development (Harvey, 2008; Koehn et al.,
2005). Further, natural products often show polypharmacological properties, interacting with more
than one target (Koeberle et al., 2014). The two groups around Gisbert Schneider and Stuart L.
Schreiber found that natural products are more likely to act as true polypharmacological agents
rather than unspecific binders — a property instead associated with synthetic compounds (Clemons
et al., 2010; Rodrigues et al., 2016).

Based on this concept, tools or workflows, which allow for the accurate prediction of new
molecular targets for natural products, are of great interest. We here propose a workflow to
specifically search for yet unreported protein targets of known compounds, using a combination
of in silico and in vitro methods (Figure 1). The compounds of interest are virtually screened

against our in-house resources, representing a panel of 39 drug targets expressed as 387
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pharmacophore models (a comprehensive list of all models is provided in Supplementary
Information S-1). Additionally, the compounds are subjected to three independent open access
target prediction servers in parallel. The results generated by these four diverse methods are
combined and those with the highest degree of consent (protein targets predicted by several
methods independently of each other) are selected for in vitro evaluation. Moreover, already
known protein targets are excluded from further investigations by checking their appearance in
PubChem (https://pubchem.ncbi.nlm.nih.gov/), a pertinent open knowledge base for bioactivities
(Kim et al., 2018).
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Figure 1. Workflow of the dihydrochalcone (DHC) target prediction campaign. The dataset is
assembled (DHC chemical space) and used to retrieve corresponding bioactivity data from
PubChem (known DHC biological space) and as input to inverse VS. First, the DHC chemical
space is mapped onto the Pharmacophore DB and the resulting matrix extended by the predictions
of three individual target prediction servers Similarity Ensemble Approach (SEA),
SwissTargetPrediction (STP), and SuperPred (SP), resulting in the predicted DHC biological
space. Activities already known from PubChem (the known DHC biological space) are then
removed from the predicted DHC biological space and the reduced matrix scored according to
consensus predictions of ligand-target interactions (unknown DHC biological space). Protein
targets of the unknown DHC biological space are selected according to their consensus score (CS)

and chosen for in vitro biological evaluation.
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99  We evaluated our workflow for fitness by performing a target prediction of a complete class of
100 established natural products, namely dihydrochalcones (DHCs). DHCs are readily available from
101  nature, since several representatives are highly accumulated in both fresh and withered leaves of
102  apple trees (Riviére, 2016). On the other hand, phloridzin, one of the most frequently found DHCs
103  served as lead structure for the development of sodium/glucose co-transporter 2 (SGLT2)
104 inhibitors like dapagliflozin, approved drugs for the treatment of type 2 diabetes (Meng et al.,
105 2008). DHCs have recently returned into focus, since their descendants, in clinical use now for
106  about eight years, have shown therapeutic benefits that go beyond SGLT2 inhibition like e.g. in
107  heart failure (Uthman et al., 2018). This instance points towards a high polypharmacological
108 potential of the drugs and its parental template. However, phloridzin research has so far been
109 focused on its anti-diabetic, anti-oxidative, and estrogenic effects. Thus, we prepared a
110  comprehensive virtual library of DHCs (naturally occurring ones and those with modest semi-
111  synthetic modifications), predicted and selected promising, potentially new DHC targets, and

112  tested ten common DHCs in respective in vitro assays.

113 RESULTS

114  Data Basis, Curation and Technical Setup of In Silico Predictions

115  Torealistically mirror the true diversity of DHCs, we gathered 425 DHCs from literature that were
116  either naturally occurring or roughly resembled physicochemical properties of natural DHCs
117  (molecular weight, ratio glycosides/aglyca, physicochemical properties). Accordingly, we called
118  this virtual library ‘DHC chemical space’ (see Figure 1, Data Preparation). A panel of ten
119  commonly found DHCs (1 — 10, see Table 1) that were physically available to us and intended for
120  invitro testing were also included in the DHC chemical space. The DHC chemical space was then
121  screened against our historically grown pharmacophore model database (Ph-DB) and the results
122 written to a matrix (e.g. compound 1 is predicted to act on protein A). The DHC chemical space
123  was in parallel also subjected to the three target prediction servers SEA, STP, and SP, each of them
124 predicting potential targets for each of the 425 DHCs. All results were combined into one matrix
125  called ‘predicted DHC biological space’ (see Figure 1, ‘Virtual Screening’). In addition, all of the
126 known bioactivities of the 425 compounds in the DHC chemical space were downloaded from
127  PubChem and the resulting matrix called ‘known DHC biological space’ (see Figure 1,

128  ‘Bioactivity Mining’). The known DHC biological space was additionally depicted as network, as
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129  shown in Figure 2. Next, compound-target interactions present in the known DHC biological space
130  were removed from the predicted DHC biological space and a CS was assigned to each prediction
131  (see Figure 1, ‘Scoring & Selecting’). The CS is an expression on how many consents a prediction
132  has in addition to a positive prediction by our Ph-DB. We introduced the requirement of a hit with
133 our own models since they are well-validated and for most targets, experimental testing of hits was
134  available. For instance, if compound 1 was predicted to bind to protein A by our in-house
135  pharmacophore models and two further target prediction servers, the CS was three. Finally, based
136  onthe CS and other criteria, the six most promising protein targets were selected and compounds
137  1-10 assayed in vitro.

138 To automate the in silico part of the workflow, operations made for screening our Ph-DB,
139  submission and reconciliation to target prediction servers, and bioactivity mining were performed
140  via custom-made scripts. All input and output files generated in this workflow, including the
141 scripts and a corresponding Jupyter Notebook containing all data manipulations are provided via
142  GitHub (https://github.com/fmayr/DHC_TargetPrediction). For better clarity, the relationships

143  and data flow are schematically shown in Supporting Information S-3.
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144  Table 1. Compounds 1 — 10, which were used for biological evaluation.

Rs l OH ! R,
sz
R, O

No. Name Ri1 R2 R3 R4
1 phloretin OH H OH OH
2 3-OH-phloretin OH OH OH OH
3 2°,6 -dihydroxy-4"-methoxy DHC H H OMe OH
4 asebogenin OH H OMe OH
5 calomelanen OMe H OMe OH
6 sieboldin OH OH O-Glc* OH
7 phloridzin OH H OH O-Glc*
8 trilobatin OH H O-Glc* OH
9 phloretin-2”-xyloglucoside OH H OH O-Rutf
10 neohesperidin DHC OMe OH O-Neoi OH

145  * Glc: glucose (O-B-D-glucosyl). f Rut: rutinose (6-O-(a-L-rhamnosyl)-D-glucos-1-O-B-yl).
146 Neo: neohesperidose (2-O-(a-L-rhamnosyl)-D-glucos-1-O-B-yl).
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148  Figure 2. Known DHC biological space illustrated as network. Shown are only DHCs with
149 interactions reported in PubChem (grey edges), as well as the respective interactions predicted for
150 these compounds (dashed green arrows for correct predictions and dashed magenta arrows for
151  interactions that either proved incorrect in vitro or were not tested). Blue nodes indicate protein
152  targets, and yellow nodes indicate compounds with respective compound numbers. Grey edges
153 indicate known compound-target interactions, while the line thickness is proportional to the

154  interaction weight (see Materials and Methods).
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155  Predicted and Unknown DHC Biological Space

156  The final selection of targets to be evaluated in vitro was made based on four criteria (summarized
157  for twelve frequently predicted targets in Table 2): First, interactions of 1 — 10 that were predicted
158 by Ph-DB and had a CS of two or higher (see Figure 3) were included (Table 2, Selection Criterion
159 1). Thereby, 5-lipoxygenase (5-LO) was highlighted for 4 (CS = 2) and 5 (CS = 3) and aromatase
160  was highlighted for 1, 5, 6, 7, 8, and 9 (CS = 2). Figure 3 also shows that a handful of other targets
161 achieved high CSs, e.g. acetylcholinesterase (AChE), estrogen receptor a (ERa), protein-tyrosine
162  phosphatase B1 (PTP1B), and nuclear factor kB (NFxB). However, ERa and NFkB were neglected
163  since they were already reported targets for at least one DHC (Dodds et al., 1938; Orlikova et al.,
164  2012), while suitable assays for AChE and PTP1B were not available.

165  Second, protein targets that were particularly frequently predicted for the whole DHC chemical
166  space (425 compounds) with a positive prediction of Ph-DB and CSs of two or higher (Table 2,
167  Selection Criterion Il) were included. We hypothesized that these targets were generally well
168  suited for the DHC scaffold. 17p HSD2 and 178 HSD3 were the fourth and fifth most frequently
169  predicted targets with a CS of 3, behind AChE (assays not available), ERa. (already established
170  target for some DHCs), and 5-LO (already selected for in vitro testing, see Figure 3 Supplement
171 1, D). Moreover, cyclooxygenase 1 (COX-1) and aldo-keto reductase 1C3 (AKR1C3) were the
172  fourth and sixth most frequently predicted targets, respectively, with CSs of two (see Figure 3
173 Supplement 1, C). Higher ranked targets were all either already known (ERa and ERP) or already
174  included in our selection (aromatase, 5-LO).

175  Third, the overall predictions were evaluated for their novelty, their consistency and whether our
176  approach could produce high scores for known ligand-target interactions (Table 2, Selection
177  Criterion I1l). Novelty means that only unreported targets were selected, while prediction
178  consistency means that predicted targets are more credible, if they are biologically related to one
179  another, e.g. isoenzymes, or proteins that belong to the same pathway. It is actually oftentimes the
180 case that one compound binds to several closely related targets (lack of specificity), which should
181  be reflected in the virtual predictions (Hert et al., 2008; Jalencas et al., 2013). Further, great value
182 is added if, e.g., a closely related target was already reported, or if known targets are enriched in
183 the predictions generated by the in silico workflow. In our case, we observed targets belonging to
184  steroid metabolism (aromatase, 173 HSD2, 173 HSD3, and AKR1C3) or to arachidonic acid (AA)
185  metabolism (5-LO, COX-1). Targets of the steroid metabolism are obviously closely related to

10
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186 ERs; aromatase, 17 HSD2, and ERs even share the same substrate or ligand, respectively, namely
187  estradiol. The shape and pharmacophore of those targets’ binding sites must, therefore, be
188  somewhat similar. On this basis, we hypothesized that the four predicted targets of the steroid
189  metabolism are promising DHC targets, given that ERs are confirmed targets of several DHCs.
190  Similarly, COX-1 and 5-LO share the same substrate, namely AA, implying that also the binding
191  sites of the latter two must be similar to a certain extent. Moreover, 7 has been confirmed to inhibit
192  15-hydroxyprostaglandin dehydrogenase and soluble epoxide hydrolase — two enzymes in the AA
193  pathway related to COX-1 and 5-LO with again presumably similar binding sites (see Figure 2,
194  A). Steroid metabolism and AA metabolism are on their side interconnected by AKR1C3, which
195 s also commonly referred to as 17p-hydroxysteroid dehydrogenase 5 or prostaglandin F synthase
196  (see Figure 4-Figure supplement 2, A-C). Indeed, this enzyme converts both steroids and AA-like
197  fatty acids using the same binding site (Matsuura et al., 1998). From there it was concluded that
198 those six proteins’ binding sites may share substantial similarities and the predictions of the latter
199  can be considered consistent. Finally, we checked if targets of the known DHC biological space
200  could be enriched by our target prediction workflow. Effectively, we observed a clear enrichment
201  of the consensus scored target frequencies (see Figure 3 Supplement 1, C and D and Figure 4-
202  Figure supplement 1) compared to the stand-alone target prediction tools (see Figure 3 Supplement
203 1, AandB).

204  Fourth, the availability of a suitable assay was logically a pivotal criterion for targets to be selected
205  (Table 2, Selection Criterion IV).

11


https://doi.org/10.1101/2020.07.01.181859
http://creativecommons.org/licenses/by-nc-nd/4.0/

206
207

208
209
210
211

Table 2. Twelve frequently predicted targets for DHC chemical space assessed according to

available under aCC-BY-NC-ND 4.0 International license.

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.181859; this version posted July 2, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

selection criteria I — IV and final selection statement.
Candidate Selection Selection Selection Selection Selected
Target criterion I criterion ¥ criterion 113 criterion V8
5t (CS=3)
17 HSD2 n.a. 12" (CS=2) 1-ER o/ Yes Yes
41 (CS=3)
17p HSD3 n.a. 7™ (CS=2) 1-ER o/p Yes Yes
4 (CS=2) 34 (CS=3)
- 1-PGDH Y Y
5-LO 5 (CS=3) 34 (CS=3) G es es
4 (CS=2) 1% (CS=3)
AChE 5 (CS=3) 10" (CS=2) n.a. No No
AKR1C3 n.a. 6" (CS=2) 1—AKR1B10 Yes Yes
1(CS=2)
5(CS=2) 1 - aromatase
6 (CS=2) o e 1-ER o/P
Aromatase 7(CS=2) 1% (CS=2) 1 - several Yes Yes
8 (CS=2) CYPs
9 (CS=2)
COX-1 n.a. 4" (CS=3) 1-PGDH Yes Yes
1(CS=3)
2 (CS=2)
4 (CS=3)
2nd =
ERa 5(CS=3) ond Eg:_g 1-ER o/P Yes No
6 (CS=2) -
7 (CS=2)
8 (CS=2)
5t (CS=3)
ERp n.a. 6" (CS=2) 1-ER o/ Yes No
1 - NFxB
th —
NFxB n.a. 8" (CS=2) 5 - NFB No No
PPARy n.a. o (CS=2) 1-PPARy No No
PTP1B 6 (CS=2) 10" (CS=2) n.a. Yes No

* Targets that were predicted with high CSs for compounds 1 — 10. 1 Most frequently predicted
targets with high CSs for DHC chemical space. { Prediction consistency: Similar or associated
targets that are being predicted or similar bioactivities that were already reported. § Availability

of a suitable assay.
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< Cpd.  Target D 1
% AChE 1.09-08 nan  nan 058 E in-house pharmacophore models (Ph-DB)
= 5-LO 3.22¢-06 nan  nan 0.44 ! Similarity Ensemble Approach (SEA)
NFkB 6.94e-07 nan _ nan 0.86 H SwissTargetPrediction (STP)
! SuperPred (SP)
E Cpd. Target o= 0 i
cl 1 ERa 1.17¢-07  nan 1.00 0.95 i :
g 4 ERe 71209 nan 014 096 I i 1118 17
g 5 Acke 276e-11 nan 011 059 i
i 5 ER ¢ 550e-07 nan  0.19 097 i | &
&os 5-LO 3.68¢-14  nan 0.11 0.48 i !_ _________ 3 n
:
Cpd. Target D Lho . 5 2
1 aromatase nan nan 0.10 0.49 :
2 ER a nan nan 0.30 0.95 i 51 0
o 5 aromatase nan nan 0.11 0.76 E 0
‘2 6 aromatase nan nan 0.11 0.64 :
= 6 ER o nan nan 0.11 0.93 b N 1 1
;L 6 PTPIB nan nan 0.11 0.94 0 0
7 aromatase nan nan 0.12 0.56
7 ERa nan nan 0.12 0.95 0
8 aromatase nan nan 0.12 0.48
8 ERa nan nan 0.12 0.95
2 12 9 aromatase nan nan 0.11 0.67

213  Figure 3. Predicted compound — target interactions (predicted DHC chemical space) illustrated as
214 Venn diagram. Predicted DHC chemical space was filtered for compounds 1 — 10 and a positive
215  prediction by Ph-DB. Sets of predictions by any method are represented as ellipses (green: Ph-DB,
216  blue: SEA, vyellow: STP, and red: SP) and consents among different methods as
217  overlaps/intersections each with an integer indicating the size of the intersection. Values indicate
218  the original model fit values, ‘not a number’ (for short ‘nan’) indicates no prediction by the
219  respective tool. Fit values of SEA and SP are E-values similar as in the Basic Local Alignment
220  Search Tool (BLAST), meaning the lower the better the model fit (Altschul et al., 1990; Dunkel
221 etal., 2008; Keiser et al., 2007). Fit values for STP and Ph-DB are 0 — 1 normalized probability
222  (STP) or relative pharmacophore fit-scores (Ph-DB) (Gfeller et al., 2013; Wolber et al., 2006).
223 Enrichment of targets reported for DHCs in literature are shown for predictions made with stand-
224 alone Ph-DB (Figure 3-Figure supplement — 1, A), SEA, STP, and SP combined (Figure 3-Figure
225  supplement -1, B), and all approaches combined and the consensus score applied (Figure 3-Figure

226  supplement — 1, C-D), each as green overlays.

13


https://doi.org/10.1101/2020.07.01.181859
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.181859; this version posted July 2, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Pharmacophore-based Parallel vS Consensus = 2
10
A C .
100
&
©
" "
o &
0 o
° = z z =z = =z =z =z =z =z =z =z = =z = =z = = =z = z =z = °
L 2L L)L, L L, L, LR L TR R Of R OTERLLELEOGLE LR 2 2 £ 2 2 £ 2 2 2 2 2 2 2 22 EZ LR 2
AR EEEE R R R N ] O R < (i - B = - O R - = -
§EfsfgiEsaupgsgiiferucgiEgiioe EEeea¢§iiieceiaeggegzed gzt
Online Target Prediction Tools Consensus = 3
w
B = D .
=0 »
™ L= O Known DHC biological space
] 2
810 g®
®
e ® Targets tested in vitro during this study
@
s
° = 0
55553333 §§3F 33 5523 5435533563532 2 M
SEEEIRRRR IR RN NNy R
EEEMNEE%%gﬁ@égg’éizigﬁﬁiﬁﬁéggi FEEI -
a8 R L 3 % 3 L “ 3 8588 £ § 8 3 8 E ¢
H
3BHSI_HUMAN 3P hydroxysteroid dehydrogenase 1 DHB2_HUMAN 175 HSD2 MKI4_HUMAN  MAP kinase 14 049PX0_SPOXV NIL
AOAOC7ACN7_P. 3-oxoacyl-ACP synthase DHB3 HUMAN  17BHSD3 NFKBI HUMAN NF «B pl05 subunit 053150 TRYCR  Phosphodiesterase
ABCG2 HUMAN ATP-binding cassette G2 DHB{ HUMAN 17BHSD4 NRIH2 HUMAN Osysterols receptor B O6INT] XENLA MGC80376 protein
ACES HUMAN  Acetylcholinesterase DHB7 HUMAN  3-keto-steroid reductase ANRIH{Y HUMAN Bile acid receptor RASH HUMAN  GTPase HRas
AKIBA HUMAN Aldo-keto reductase 1B10 DHII_HUMAN 11 HSD1 P2RX] MOUSE P2X purinoceptor 1 52843 HUMAN  Solute carrier 28A3
AKIC3 HUMAN Aldo-keto reductase 1C3 ESRI_HUMAN  Estrogen receptor o PDK] HUMAN Pynwvate dehydrogenase  SCSA] HUMAN Sodium/glucose cotransporter 1
ALDR RAT Aldo-keto reductase 1B1 (raf) ESR2 HUMAN  Estrogen receptor B PGHI HUMAN COX-1 5C54] RAT Sodium/glucose cotransporter 1
CIIBI HUMAN Cytochrome P450 11B1 FFAR] HUMAN  Free fatty acid receptor 1 PGH? HUMAN COX-2 5C542 HUMAN  Sodium/glucose cotransporter 2
CAHI2 HUMAN Carbonic anhydrase 12 GCR HUMAN  Glucocorticoid receptor PPARA HUMAN PPAR a SC542 RAT Sodium/glucose cotransporter 2
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CAH7 HUMAN  Carbonic anhydrase 7 LOXI5 RAT 15-lipoxygenase (rat) PPARG HUMAN PPAR y TBBI HUMAN  Tubulin B chain
CALMI_HUMAN Calmodulin-1 LOXS_HUMAN  5-lipoxygenase PPO2_AGABI Mushroom tyrosinase TYRO_HUMAN  Tyrosinase
CPI94_HUMAN Aromatase MCR_HUMAN  Mineralocorticoid receptor PTGES_HUMAN Prostaglandin E synthase
CP2D6_HUMAN Cytochrome P450 2D6 MDRI_HUMAN  ATP-dependent translocase ABCB1 PINI_HUMAN PIPIB

227

228  Figure supplement 1. Enrichment of known DHC targets (known DHC biological space) in

229  differently scored predictions for DHC chemical space.

230
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231 New DHC Biological Space

232  Following the definition of the six protein targets issued for biological evaluation, the respective
233  in vitro assays were performed using compounds 1 — 10 (see Figure 4 and Table 3). Biological
234  activities were expressed as percent inhibition at 10 M compound concentration relative to the
235 mock control (= 0%). Three independent experiments (n = 3) were conducted and the mean
236 inhibition plus/minus standard deviation depicted. Mean inhibition values that were below 30%
237  were regarded as inactive, negative inhibition values and relative standard deviations larger than
238  20% were regarded as ambiguous assay results and thus as inactive. Unfortunately, 17 HSD2
239  measurements yielded ambiguous assay results for all compounds, which were regarded as
240 inactive, as well as aromatase, where all ten compounds were inactive. For 5-LO, COX-1,
241 AKRI1CS3, and 173 HSD3 at least one of the ten compounds exhibited weak inhibitory activities
242  towards the respective target. Thus, 4 and 5 showed weak inhibition of AKR1C3, 2 showed weak
243  inhibition of 17 HSD3 and 1, 2, 3, and 5 showed weak inhibition of COX-1. The ten DHCs
244 showed the best results of this study in 5-LO inhibition, where 1, 2, 7, 8, and 10 showed weak to
245  moderate inhibitory activities, 1 and 2 even reaching mean inhibition values of 85.4 + 9.3% and
246 99.2 + 1.2%, respectively. In the course of this study, six further protein targets were evaluated in
247  vitro due to availability of the respective assays, rather than based on in silico predictions. Most
248  of the measured activities were not affected, however, to not withhold those results to the

249  community, the results are shown in Figure 4-Figure supplement — 3.

15


https://doi.org/10.1101/2020.07.01.181859
http://creativecommons.org/licenses/by-nc-nd/4.0/

250

251
252
253
254
255
256
257
258
259
260
261
262

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.181859; this version posted July 2, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ACOX_1 CE 100 17p HSD3 £ . AKRIC3
25 = EA
5-LO 3 * 5 [ I j [ bl [ ok
g 20 5 [ 1 i I ! 5 T | |
17p HSD3 > = z i
3t < s <
178 HSD2 §
5| fe
aromatase 51 1 2 3 4 5 6 7 8 9 10 PC 1 2 3 4 5 6 7 8 9 10 PC
05 100 -
AKRIC3 s 17f HSD2 | < B 5-LO .
%0 g % by l Ly B
m © 1T
B § o1 . | ; § s
Al Wi ¥
COX-1 * -50 ‘ ‘ [ [ 2
2 80
5-LO =, 1 2 3 4 5 6 7 8 9 10 PC 1 2 3 4 5 6 7 8 9 10 PC
[
17p HSD3 el 100 COX-1 L aromatase
5 g ]
178 HSD2 =l PEERIETT I
% g ! [ g I l I . ie o ]
aromatase - £ o 1 2 T +—F
| 20 £ £
AKRI1C3 8 =50 2
1 2 3 4 5 13 7 8 9 10 ° 12 3 4 5 6 7 8 9 10 PC 1 2 3 4 5 6 7 8 9 10 PC

Figure 4. Comparison of unknown DHC biological space (COX-1, 5-LO, 17 HSD3, 17 HSD2,
aromatase, and AKR1C3) and actual in vitro test results of compounds 1 — 10. (A) CSs of
compounds 1 — 10 on all of the six targets of the unknown DHC biological space plotted as
heatmap. (B) Means (n = 3) of percent inhibition at 10 uM (0 — 100%) of compounds 1 — 10 on all
of the six targets of the unknown DHC biological space plotted as heatmap. Observations with
mean inhibition values smaller than 30% or relative standard deviations greater than 20% were
regarded as inactive. (C) Bar charts of the six targets of the unknown DHC biological space
showing compounds 1 — 10 with the respective means (n = 3) of percent inhibition at 10 uM (0 —
100%) and standard deviation. A cut-off of 30% mean inhibition at 10 uM was chosen (black
dashed line), separating active from inactive observations. DMSO was used to measure baseline
enzyme activities, on which samples were normalized (not shown) and positive controls (PC) were

used as indicated in Materials and Methods.
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Metrics Computed for the Isolated and Combined Target Prediction Tools

e @ a 2 True/False Positives/Negatives
S 8 a a 2 = g
E - 172} 2] " 8 o = True Positives (TPs) refer to actives that were predicted as active,
g § E_ E_ E = =) g while False Positives (FPs) refer to inactives that were predicted as
« = = g o active. Vice versa, True Negatives (TNs) are inactives predicted as
active, while False Negatives (FNs) are actives predicted as inactive.
Recall 1.00 0 0 0 086 075 044
Consencnsus Precision 0.67 0 0 0 086 050 034 Recall/Sensitivity
Score (CS) . Proportion of true actives a model is able to retrieve from the
Relative EF 0.67 0 0 0 086 050 034 .
screening dataset (0 - 1).
pharmacophore- Recall 0 0 0 0 057 050  0.18 TP
pased parallel VS Precision 0 0 0 o o0so oso o2 | U= 1wy
(Ph-DB) Relative EF 0 0 0 0 080 050 022 Precision
Similarity Recall 1.00 0 0 0 029 0 022 Proportion of true actives in a hitlist produced by a model (0 - 1).
Ensemble Approach Precision 0.67 0 0 (4] 0.67 (4] 0.22
. TP
(SEA) Relative EF 0.67 0 0 0 0.67 0 0.22 ision = ———
precision TP n FP
Recall 0 0 0 0 029 025 027
Swwfn’f'g“ Precision 0 0 0 0 067 050 020 Relative Enrichment Factor
Prediction (STP) Relative EF 0 0 0 0 067 050 020 gbﬂit)y of a model to enrich a hitlist with true positive predictions
Recall 0 0 0 0 0 0 0 ' rp
SuperPred (SP) Precision 0 0 0 0 0 0 0 relative FF = TPFFP 1
) actives actives
Relative EF 0 0 0 0 0 0 0 inactives  inactives
264  Figure supplement - 1. Metrics computed for the isolated and combined target prediction tools.
A B Nodel Node2
STRING Score
STRING name alternative name STRING name alternative name
AKRIC3 AKRIC3 CYPI9A1 aromatase 0.952
AKRIC3 AKRIC3 HSD17B2 17p HSD2 0.924
AKRI1C3 AKRI1C3 HSD17B3 17p HSD3 0.935
AKRI1C3 AKRI1C3 PTGS1 COX-1 0.452
ALOXS5 5-LO PTGS1 COX-1 0.973
CYPI19A1 aromatase AKRI1C3 AKRI1C3 0.952
ferics CYPI9A1 aromatase HSD17B2 17p HSD2 0.962
CYPIQAL aromatase HSD17B3 17p HSD3 0.958
HSD17B2 17p HSD2 AKRI1C3 AKRI1C3 0.924
HSD17B2 17p HSD2 CYPI19A1 aromatase 0.962
H2DI7E2 HSD17B2 17B HSD2 HSD17B3 17 HSD3 0.979
HSD17B3 17p HSD3 AKRI1C3 AKRI1C3 0.935
HSD17B3 17pHSD3 CYP19A1 aromatase 0.958
HSD17B3 17p HSD3 HSD17B2 17p HSD2 0.979
PTGS1 COX-1 AKRI1C3 AKRI1C3 0.452
C PTGS1 COX-1 ALOXS 5-LO 0.973
Edges represent protein-protein associations  Known Interactions Predicted Interactions Others
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266  Figure supplement - 2. Six potential protein targets for DHCs input to STRING, which creates a

267  network of both direct and functional protein-protein interactions (Szklarczyk et al., 2018).
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268

269  Figure supplement - 3. Results of other protein targets tested in the course of this study due to
270  assay availability shown as bar charts. Compounds 1 — 10 indicated with the respective means (n
271 = 3) of percent inhibition at 10 uM (0 — 100%) and standard deviation. Black dashed line again
272 indicates arbitrarily chosen 30% activity cut-off. DMSO was used to measure baseline enzyme
273  activities, on which samples were normalized (not shown) and positive controls (PC) were used as
274  indicated in Materials and Methods.
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Table 3. In vitro inhibitory activities of compounds 1 — 10 towards targets of DHC biological

space, expressed as percent inhibition (0 — 100%) at 10 uM compound concentration relative to
mock control. Shown is the mean of three independent experiments (n = 3) plus/minus standard
deviation. Different compounds were used as positive controls (PC) as indicated in Materials and
Methods. Highly negative values of 178 HSD2 assays are believed to be technical artefacts, as
enzyme activation seems unlikely.
Compound aromatase 17 HSD2 17pHSD3 AKRIC3 5-LO COX-1
1 13.8+20 -50.7+227 17+ 45 248+59 854+93 435%7.2
2 21.1+11.7 -141+271 438x47 155%+49 992+12 481+120
3 -10+120 -263%+288 -28.0+20.5 138+10.0 541+116 539+53
4 35+19.0 -31.2+81 527+49.6 344+51 392+111 244+42
5 170+£20 -176+39.0 321x272 352+38 472x242 495%19
6 13.8+44 -39+299 16.7x145 -6.1+6.8 348x14.2 1234+29.0
7 94+35 -405+229 202+17.7 -72+89 408+41 -42+456
8 59+35 -498+214 -06+100 53+£115 455+27 153+264
9 0.67+4.0 -37.1+443 458+142 -13+19 318+294 -114+151
10 0+58 -322+154 375%+239 74+1138 7.7+6.0 111+132
PC 70.2+05* 76.1+114f 101.2+24% 905+1.28 79.26 +5.957 81.3+7.5#

* 10 nM anastrozole (CAS: 120511-73-1). ¥ 1 uM ML376 (CAS: 1340482-23-6). 1 1 uM
compound 24 (CAS: 873206-61-2) (Moller et al., 2009), § 1 uM compound 2-9 (CAS: 745028-
76-6) (Schuster et al., 2011), 1 3 uM zileuton (CAS: 111406-87-2). # 10 uM indomethacin

(CAS: 53-86-1).
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285 DISCUSSION

286  Inthe current study, we present an in silico target prediction workflow capable of prioritizing new
287  molecular targets for known chemical entities, here exemplified on DHCs. Even though in silico
288 target prediction is common today for synthetic compounds (Cereto-Massagué et al., 2015; Keiser
289 etal, 2007; Keiser et al., 2009; Lounkine et al., 2012), it is still challenging for natural products
290  (Reker et al., 2014; Rodrigues et al., 2015; Rollinger, 2009; Rollinger et al., 2009). To our
291  knowledge, this is the first study performing in silico target prediction on a natural product class
292  while systematically combining diverse established tools. We have recently observed that,
293  especially when predicting targets for natural products, none of the established tools (including
294  our own) performed perfectly, but owed to different methods, all of them performed differently
295  (Mayr et al., 2019b). Exploiting the complementarity of the methods’ strengths should therefore
296  correct for this shortcoming and result in better predictive performance. This strategy might be of
297  great interest to the community since it underlines the benefits of predicting targets of a closely
298 related compound series, rather than single compounds and it provides a thorough use case of
299  publicly available tools and how to interpret its predictions. Also, we have recently predicted
300 DHCs to be inhibitors of mushroom tyrosinase, albeit they turned out to be alternative substrates
301  ofthe latter — an unexpected form of bioactivity that an in silico target prediction cannot distinguish
302  from competitive inhibitors (Mayr et al., 2019a).

303  Finally, six potential DHC targets were selected of which four could be experimentally confirmed
304  (5-LO, COX-1, 17p HSD3, and AKR1C3) as molecular targets of at least one of the ten DHCs 1
305 - 10. These four proteins are all new DHC targets and thus expanded the DHC biological space,
306  which we were aiming for (see Figure 2). In terms of accuracy, our yield of novel targets (four out
307  ofsix)is clearly superior to the yield of a “random selection” (test a random panel of protein targets
308 towards compounds 1 - 10), which typically lies below 1% (Doman et al., 2002; Ferreira et al.,
309  2010; Polgér et al., 2005; Young et al., 2005). 173 HSD2 and aromatase could not be confirmed
310 as targets, however, a thorough literature search revealed that 1 was reported once in literature to
311 inhibit aromatase with an ICso value > 50 uM (Le Bail et al., 2001). Activities at such high
312  concentrations are considered inactive by PubChem and were thus not retrieved by our bioactivity
313  mining approach. This activity is indeed negligible, however, this value seems consistent with the
314  result generated by us (13.8 = 2.0% inhibition at 10 pM, see Table 3). The observed activities were
315 all in typical ranges for non-optimized lead structures discovered by VS. Ripphausen et al.
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316  conducted a survey in 2010, showing that hit-compounds identified by VS have defined potency
317  endpoints (ICso, ECso, Ki, or Kg) of 4 to 19 uM in average, which is arguably high. However, the
318  true value of VS lies in the ability to identify new chemotypes as leads, or in its turn, to identify
319  new targets for known compounds in target prediction (Ripphausen et al., 2010). The exciting fact
320  of this study is that our workflow could successfully prioritize new molecular targets of well-
321  known compounds with noteworthy accuracy, opening up new avenues for DHC research (see

322  Figure 4-Figure supplement 1).

323  The results can now be utilized in manifold ways: First, our findings revealed polypharmacology
324  of some DHCs as a sideline. Thus, 1 and 2 seem to have promising anti-inflammatory properties,
325 by simultaneously inhibiting 5-LO and COX-1. Investigating whether this property was inherited
326  to gliflozin drugs could be the subject of another study. Potential anti-inflammatory properties of
327  gliflozin drugs could contribute to the currently observed beneficial effects of those drugs in e.g.
328  heart failure (Dutka et al., 2019). Several authors have described anti-inflammatory properties of
329  gliflozin drugs on a functional level, however a distinct mode of action and association to distinct
330  molecular targets is still to be elucidated (Hattori, 2018; lannantuoni et al., 2019; Xu et al., 2018).

331  Second, to remain with polypharmacology, e.g. 4 and 5 could serve as lead to develop dual
332 inhibitors of AKR1C3 and 5-LO. Analogously, 2 could be used as a starting point for the
333  development of a dual 173 HSD3/5-LO inhibitor. Both options would represent a new compound
334  class with potentially interesting pharmacological properties. These agents could be beneficial e.g.
335 in the treatment of prostate cancer since AKR1C3 and 17 HSD3 are frequently linked to this
336  condition (Margiotti et al., 2002; Vicker et al., 2009) and malignant tumors are usually surrounded
337 by a pro-inflammatory microenvironment (Neuwirt et al., 2020). Apart from the two just
338  mentioned possibilities, several other scenarios of utilization are reasonable.

339  Third, our target prediction workflow revealed the great potential of DHCs as lead structures. As
340 mentioned above, DHCs are incredibly well accessible from biomass like apple leaves, in
341  concentrations up to 20% dry mass (Gaucher et al., 2013). According to the principle of
342  bioprospection, meaning the harnessing of resources from nature for medical purposes, apple

343  leaves could play an interesting role in future lead optimization campaigns.
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Fourth, the established in silico prediction workflow can be applied to several other compound
classes alike DHCs. Therefore, this study blueprints a strategy to predict targets for known
compounds, by mostly using open-source platforms, thereby empowering a great number of
researchers to actively re-dedicate their compounds. This technology however is greatly enabled
by the growing body of known bioactivities, hinting towards increasing accuracies reachable with

target prediction campaigns in the near future, as this knowledge keeps on expanding.
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350 MATERIALS AND METHODS

351 Dataset Assembly. A dataset representing the chemical space of DHCs was gathered, containing
352  naturally occurring DHCs as well as semi-synthetic derivatives of the latter. First, compounds 1 —
353 10 were included. Then, a thorough literature search was conducted in SciFinder, using
354  substructure search function for 1,2-diphenyl-propan-1-one. The SciFinder query was conducted
355 on the 8" of August 2017 and yielded 5457 DHCs. The resulting compounds were checked
356  manually for their origin (natural product vs. semi-synthetic), created in ChemDraw Professional
357  (version 16.0.0.82 (68), PerkinElmer, Waltham, MA, USA) with assigned stereochemistry, and
358 double checked with SciFinder using the ‘search SciFinder’ function in ChemDraw. For
359  compounds, especially natural products, with lacking absolute configuration, all possible
360  stereoisomers were included. Finally, the dataset ‘DHC full’ contained 425 natural or semi-
361  synthetic DHCs (corrected for stereochemistry) and was converted with a custom-built Pipeline
362  Pilot protocol (version 9.5.0.831, Dassault Systemes BIOVIA, Vélizy-Villacoublay, France) to an
363  sd-file (DHC _full.sdf) and a csv-file (DHC_full.csv). The Pipeline Pilot protocol is outlined in
364  Supplementary Information S-1. The files are provided on GitHub (see Supplementary
365  Information S-2).

366  Bioactivity Mining. The mining of bioactivity data of DHCs was done through a script coded in
367  Python 3 (version 3.7.3, https://www.python.org/) called
368  ‘bioactivity_network_generator SMILES.py’. This script iterates over a two-column csv-table
369  (name, SMILES) while fetching one SMILES code at a time. The script interacts with various
370  application programming interfaces (APIs) of  PubChem (PUG REST,
371  https://pubchem.ncbi.nim.nih.gov/) (Kim et al., 2018), UniProt (https://www.uniprot.org/) (The
372  UniProt Consortium, 2018), and Reactome (https://reactome.org/) (Fabregat et al., 2017). At the
373  first stage, the SMILES code is posted as a query to the PubChem API, which returns the desired
374 PubChem compound ID (CID), if present. The CID is then used to post a second query to the PUG
375 REST API, fetching all assay IDs (AIDs) associated with the posted CID, for which the assay
376  result was flagged as ‘active’. The produced list of AIDs is then annotated with the respective gene
377  names from PubChem. This step eliminates all AIDs that are not associated to a single protein (e.g.
378  cell-based assays). The gene name from PubChem can be translated to UniProt names and the

379  respective entry names used in UniProt using the UniProt KB API. In a last step, the UniProt entry
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380 name was used to retrieve associated human pathways from the Reactome API. The gathered
381  bioactivity data of all provided SMILES codes was processed in Pandas (version 0.24.2,
382  https://pandas.pydata.org/) (McKinney, 2010) and finally written to a csv-file in the simple
383 interaction file (sif) format, which can be visualized in e.g. Cytoscape (https://cytoscape.org/)
384  (Shannon et al., 2003). Interaction weights were calculated by using the ‘group by’ method
385 implemented in Pandas chained with the ‘count() " method. Interaction weights thus are an integer
386  representing the appearances of a particular interaction in PubChem. The script
387  ‘bioactivity_network_generator SMILES.py’ is provided on GitHub (see Supplementary
388 Information S-2).

389  Pharmacophore-based Parallel Virtual Screening. Pharmacophore-based parallel VS was
390 performed using the historically grown in-house pharmacophore model databased built and
391 maintained by Prof. Daniela Schuster. The database consists of 387 ligand-based and structure-
392  based pharmacophore models for 39 protein targets built in two different software environments,
393  namely Discovery Studio (version 4.5.0.15071, Dassault Systemes BIOVIA, Vélizy-Villacoublay,
394  FR) and various versions of LigandScout (Inte:Ligand, Vienna, AT). For the Discovery Studio
395  models, parallel screening was performed using the ‘ligand profiler’ protocol (for settings refer to
396  Supplementary Information Table S-4). Screening of the LigandScout models was performed
397  using the ‘iscreen.exe’ program via command line and the databases created for every LigandScout
398  version by using the ‘idbgen.exe’ via command line for the respective LigandScout versions. Thus,
399 Omega (OpenEye Scientific Software, Santa Fe, NM, USA) with ‘best’ settings was used. The
400 targets represented by these models are predominantly targets belonging to the arachidonic acid
401 (AA) cascade as well as corresponding downstream signaling and steroid metabolism and
402  signaling. The targets are often associated with inflammation, neoplasm, or are popular off-targets.

403 A detailed compilation of all models is provided in Supplementary Information Table S-3.

404  Target Prediction with Publicly Available Tools. Next to the pharmacophore-based parallel
405  screening, three target prediction tools that are available as web servers were used, namely SEA
406  (http://seal6.docking.org/) (Keiser et al., 2007), STP (http://www.swisstargetprediction.ch/)
407 (Dainaetal., 2019; Gfeller et al., 2014; Gfeller et al., 2013), and SP (http://prediction.charite.de/)
408 (Dunkel et al., 2008; Nickel et al., 2014). SEA is a 2D ligand-based, similarity ensemble method.
409  Each target present in SEA is described by a set of its known ligands of various size. An input
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410 ligand is then compared against all ligands of all target sets via Tanimoto similarity of the ECFP4
411  fingerprints. For each target, the Tanimoto similarities are summed up and z-scores calculated.
412  Since the authors computed the distribution of z-scores obtained between random similarity
413  ensembles, the z-scores of a screening ligand to each target can be used to calculate expectation
414 values (E-values). Those E-values, similar as in the BLAST algorithm, express the likelihood that
415  the observed similarity happened due to coincidence. SEA uses bioactivity data derived from
416 ChEMBL (Gaulton et al., 2017) and is maintained by the University of California, San Francisco
417  (UCSF). SP operates in a very similar way to SEA, being a 2D similarity ensemble approach and
418  using ECFP4 fingerprints as well. Bioactivities that were used to build reference target sets in SP
419  were derived from ChEMBL (Gaulton et al., 2012), Binding DB (Liu et al., 2007), and SuperTarget
420  (Guinther et al., 2008; Hecker et al., 2012). SP is maintained by the structural bioinformatics group
421  of the Charité - University Medicine Berlin in Germany. In contrast to SEA and SP, STP makes
422  use of the ligand-based similarity ensembles principle as well, however it is a hybrid method
423  between 2D and 3D. 2D similarity is computed via Tanimoto similarity using FP2 fingerprints,
424 while 3D similarity is described as Manhattan distance between the Electroshape (Armstrong et
425  al., 2010) vectors. Finally, a logistic regression classifies the input ligand based on 2D and 3D
426  similarities. STP derived its bioactivity data also from ChEMBL. It was developed by the Swiss
427 Institute of Bioinformatics (SIB). The online servers described above were accessed via a web
428  scraper script called ‘TarPredCrawler.py’ written in python 3. The script uses selenium
429  (https://www.seleniumhg.org/, version 3.141.0) to send post requests of smiles codes to the four
430  servers and downloads the resulting prediction as a table. The script ‘TarPredCrawler.py.py’ is

431  provided on GitHub (https://github.com/fmayr/DHC_TargetPrediction).

432  Biochemical Assays. Aromatase assays were performed as previously described (Pandey et al.,
433  2007). Briefly, genes for human wild-type aromatase and NADPH P450 oxidoreductase were
434 transfected into E. coli, to express both proteins in the recombinant form and proteins were purified
435  using multiple chromatograpgic procedures as described previously. Liposomes containing both
436  enzymes were formed for the assay of enzymatic activities. aromatase activity was quantified by
437  measuring the release of tritiated water after incubation with 1p-*H androstenedione, a method
438 introduced by Lephart and Simpson (Lephart et al., 1991). Ten nM Anastrozole (CAS: 120511-
439  73-1) were used as positive control.
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440 Inhibitory activities towards AKR1C3, 173 HSD3, and 178 HSD2 were assayed as described in
441  Schuster et al. (Schuster et al., 2011). Briefly, AKR1C3 and 17 HSD2 were transformed into E.
442  coli BL21 (DE3) and 178 HSD3 transfected into HEK293 cells. For assaying inhibitory activities
443  towards 17 HSD2, bacterial suspensions were used, while cell suspensions were used to assay
444 173 HSD3 and bacterial lysates were used to assay AKR1C3. The protein containing lysates and
445  suspensions; were incubated with tritiated substrates and cofactors (21 nM 17p-estradiol (6,7->H)
446  and 750 nM NAD* for 17 HSD2 and 10,6 nM 4-androstene-3,17-dione (1,2,6,7-3H) and 600 puM
447  NADPH for 178 HSD3 and AKR1C3) in the presence of test compounds in a final concentration
448 of 10 pM (compounds supplied in DMSO; 1% final DMSO in the assay). After a defined
449  incubation time, substrates and products were extracted using solid phase extraction (SPE) and
450 analyzed by RP-HPLC and online scintillation counting. Quantification of relative conversion
451  occurred via chromatographic peak integration and the percentage of inhibition was calculated
452  relative to a mock control (1% DMSO). As positive controls compound 2-9 (CAS: 745028-76-6)
453  (Schuster et al., 2011) was used for AKR1C3 assays, compound 24 (CAS: 873206-61-2) (Mdller
454 et al., 2009) for 17 HSD3 assays and compound 19 (CAS: 1340482-23-6) (Wetzel et al., 2011)
455  for 173 HSD2 assays, all in 1 uM concentration. Inhibitory activities towards 5-LO and COX-1
456  were determined as described earlier by Schaible et al (Schaible et al., 2014). and Koeberle et al.
457  (Koeberle et al., 2008), respectively. Briefly, polymorphonuclear leukocytes (for 5-LO) and
458  human platelets (for COX-1) were freshly isolated from the blood of healthy volunteers, pre-
459  incubated with the potential inhibitors and stimulated with 2.5 uM Ca?*-ionophore A23187 or
460 arachidonic acid, respectively. The reaction was stopped, substrates and products isolated and
461  analysed on RP-HPLC. 5-LO products included LTBg, its trans-isomers, 5-HPETE, and 5-HETE,
462  while the COX-1 product was quantified as 12-HHT. Again, quantification occurred via
463  chromatographic peak integration and the percentage calculated relative to a mock control.
464  Indomethacin (CAS: 53-86-1) in 10 uM concentration was used as positive control for COX-1
465  assays and Zileuton (CAS: 111406-87-2) in 3 UM concentration for 5-LO assays.

466  Activities for assaying 11p hydroxysteroid dehydrogenase 1 (113 HSD1) and 11 hydroxysteroid
467  dehydrogenase 2 (113 HSD2) were determined as previously described by Kratschmar et al.
468  (Kratschmar et al., 2011). Briefly, lysates of HEK-293 cells stably expressing human 11 HSD1
469  were incubated with 200 nM cortisone (including 10 nM [1,2-3H]-cortisone), 500 uM NADPH
470  and the test substance. For 113 HSD2, lysate of HEK-239 cells stably expressing human 113 HSD2
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471  was incubated with 50 nM cortisol (including 10 nM [1,2,6,7-3H]-cortisol), 500 uM NAD" and the
472  test compounds. Conversion of radiolabeled substrate was determined and compared to enzyme
473  activity in the control sample. 18B-Glycyrrhetinic acid (CAS: 471-53-4) was used as positive
474 control for both enzymes. Inhibitory activities for 33 hydroxysteroid dehydrogenase 1 (3 HSD1)
475  and cytochrome P450 17A1 (CYP17A) were assayed as described before by Samadari et al. and
476  Udhane et al (Samandari et al., 2007; Udhane et al., 2017). Activities were measured in cell-based
477  assays, using Human adrenocortical NCI-H295R cells obtained from American Type Culture
478  Collection (ATCC; CRL-2128). The cells were treated with tritiated substrates and the product
479  mix separated by thin layer chromatography (TLC) and the resulting spots subsequently
480  densiometrically quantified. Trilostane (CAS: 13647-35-3) was used as positive control. Inhibitory
481  activities towards soluble epoxide hydrolase (SEH) were assayed using the purified enzyme as
482  described by Wixtrom et al. and Morisseau et al. (Morisseau et al., 2000; Wixtrom et al., 1988). A
483  baculovirus was used to transduce sEH into Sf9 insect cells, which were subsequently lysed and
484  and the enzyme purified using affinity chromatography. Enzyme inhibition could then by
485  quantified using the purified SEH and substrate which turned into a fluorophore by the latter, which
486 can be read at 465 nm after excitation at 300 nm (Waltenberger et al., 2016). AUDA (CAS:
487  479413-70-2) was used as positive control. Inhibitory activities towards 173 HSD4 were assayed
488  according to the description in Schuster et al. (Schuster et al., 2011). Briefly, a plasmid coding for
489  17p hydroxysteroid dehydrogenase 4 (178 HSD4) was transformed into E. coli BL21 (DE3) Codon
490 Plus RP (Stratagene). Subsequently, bacterial suspensions were prepared and incubated in the
491  presence of 21 nM 17B-estradiol (6,7-3H), 750 nM NAD", and 10uM test compound (1% DMSO
492  final). After a defined incubation time, substrate and product were extracted using solid phase
493  extraction (SPE) and analyzed with RP-HPLC in a Beckman-Coulter system and online
494  scintillation counting. Enzymatic conversion was calculated by integrating substrate and product
495  peaks and calculating percent inhibition relative to a control assay without inhibitor (1% DMSO).
496  Compound 19 (CAS: 1340482-23-6) from (Wetzel et al., 2011) served as positive control.

497  Materials. Compounds 1 — 10 were purchased at TransMIT GmbH (PlantMetaChem, Giel3en,
498  Germany) with the following product numbers: 1: P 036; 2: H 031; 3: D 017; 4: A 020; 5: D 018;
499  6:S025; 7: P 037; 8: T017; 9: P 064; 10: N 019. Purity was assessed by HPLC-DAD (280 nm)
500  found to be above 95% for all compounds.
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Table 4. Files used and produced during this study. Every file is freely available at GitHub

(https://github.com/fmayr/DHC_TargetPrediction). For greater clarity, a file scheme is provided

in Supplementary Information S-2

describing all dependencies.

File Name Contains Subfolder in GitHub
DHC_full.csv DHC chemical space as csv-file /dataset

(name, smiles).
DHC_full.sdf DHC chemical space as 3D- /dataset

molecule files.

DHC_full_lit_network.csv

DHC_full_online.csv

DHC_full_LS_ mergedhits.csv
DHC_full_ligandprofiler.csv
DHC_full_inhouse.csv

DHC_full_pivoted.csv

DHC_10 pivoted.csv

DHC_10_network.csv

Bioactivity network_generator
_SMILES.py

TarPredCrawler.py

DHC _targetpreidction_datatrea
tment.ipynb

Known DHC biological space and
result of bioactivity mining. Ready
to be imported to Cytoscape.
Result produced by online target
prediction servers (SEA, STP, SP)
and DHC_full.csv as input.
Csv-file of hitlists produced by
LigandScout models in Ph-DB.
Csv-file of hitlists produced by
Discovery Studio model in Ph-DB.
Joined results of LigandScout and
Discovery Studio outputs.

Joined results of SEA, STP, SP,
and Ph-DB predictions for DHC
chemical space.
DHC_full_pivoted.csv filtered for
compounds 1 — 10.

DHC_10 pivoted.csv joined with
DHC_full_lit_network.csv.
Network file ready to be imported
to Cytoscape. Contains known and
predicted compound-target
associations.

Python script used for literature
mining. For installation instruction
see README.

Python script used for submitting
and collecting results from SEA,
STP, and SP.

Jupyter Notebook containing all
data treatment and plotting
performed in this study.

/bioactivity%20mining

/TarPredCrawler

/pharmacophore-based
parallel VS
/pharmacophore-based
parallel VS
/pharmacophore-based
parallel VS

29


https://doi.org/10.1101/2020.07.01.181859
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.181859; this version posted July 2, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

523 REFERENCES
524  Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment

525 search tool. J. Mol. Biol., 215(3), 403-410. doi: https://doi.org/10.1016/S0022-
526 2836(05)80360-2

527  Armstrong, S. M., Morris, G. M., Finn, P. W., Sharma, R., Moretti, L., Cooper, R. I., & Richards,
528 W. G. (2010). ElectroShape: fast molecular similarity calculations incorporating shape,
529 chirality and electrostatics. J. Comput. Aid. Mol. Des., 24, 789-801. doi: 10.1007/s10822-
530 010-9374-0

531  Aronson, J. K. (2007). Old drugs — new uses. Br. J. Clin. Pharmacol., 64(5), 563-565. doi:
532 10.1111/j.1365-2125.2007.03058.x

533  Ashburn, T. T., & Thor, K. B. (2004). Drug repositioning: identifying and developing new uses
534 for existing drugs. Nat. Rev. Drug Discovery, 3(8), 673-683. doi: 10.1038/nrd1468

535 Campbell, I. B., Macdonald, S. J. F., & Procopiou, P. A. (2018). Medicinal chemistry in drug
536 discovery in big pharma: past, present and future. Drug Discovery Today, 23(2), 219-234.
537 doi: https://doi.org/10.1016/j.drudis.2017.10.007

538  Cereto-Massagué, A., Ojeda, M. J., Valls, C., Mulero, M., Pujadas, G., & Garcia-Vallve, S. (2015).
539 Tools for in silico target fishing. = Methods, 71, 98-103. doi:
540 http://dx.doi.org/10.1016/j.ymeth.2014.09.006

541  Chen, C., Huang, H., & Wu, C. H. C. Chen, H. Huang, & C. H. Wu. (2017). Protein bioinformatics
542 databases and resources. Fundamentals of protein bioinformatics. VVol. 1558, pp. 3-39. doi:
543 10.1007/978-1-4939-6783-4_1New York, NY: Humana Press.

544  Clemons, P. A., Bodycombe, N. E., Carrinski, H. A., Wilson, J. A., Shamji, A. F., Wagner, B. K.,
545 ... Schreiber, S. L. (2010). Small molecules of different origins have distinct distributions
546 of structural complexity that correlate with protein-binding profiles. Proc. Natl. Acad. Sci.
547 U.S. A, 107(44), 18787. doi: 10.1073/pnas.1012741107

548 Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: updated data and new
549 features for efficient prediction of protein targets of small molecules. Nucleic Acids Res.,
550 47(W1), W357-W364. doi: 10.1093/nar/gkz382

551 Dodds, E. C., Lawson, W., & Dale, H. H. (1938). Molecular structure in relation to oestrogenic
552 activity. Compounds without a phenanthrene nucleus. Proc. R. Soc. B, 125(839), 222-232.
553 doi: 10.1098/rsph.1938.0023

30


https://doi.org/10.1101/2020.07.01.181859
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.181859; this version posted July 2, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

554  Doman, T. N., McGovern, S. L., Witherbee, B. J., Kasten, T. P., Kurumbail, R., Stallings, W. C.,

555 ... Shoichet, B. K. (2002). Molecular docking and high-throughput screening for novel
556 inhibitors of protein tyrosine phosphatase-1B. J. Med. Chem., 45(11), 2213-2221. doi:
557 10.1021/jm010548w

558  Dunkel, M., Ginther, S., Ahmed, J., Wittig, B., & Preissner, R. (2008). SuperPred: drug
559 classification and target prediction. Nucleic Acids Res., 36(suppl_2), W55-W59. doi:
560 10.1093/nar/gkn307

561 Dutka, M., Bobinski, R., Ulman-Wlodarz, 1., Hajduga, M., Bujok, J., Pajak, C., & Cwiertnia, M.
562 (2019). Various aspects of inflammation in heart failure. Heart Failure Rev. doi:
563 10.1007/s10741-019-09875-1

564  Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P., . .. D’Eustachio,
565 P. (2017). The reactome pathway knowledgebase. Nucleic Acids Res., 46(D1), D649-
566 D655. doi: 10.1093/nar/gkx1132

567  Ferreira, R. S., Simeonov, A., Jadhav, A., Eidam, O., Mott, B. T., Keiser, M. J., . .. Shoichet, B.
568 K. (2010). Complementarity between a docking and a high-throughput screen in
569 discovering new cruzain inhibitors. J. Med. Chem., 53(13), 4891-4905. doi:
570 10.1021/jm100488w

571  Gaucher, M., Dugé de Bernonville, T., Lohou, D., Guyot, S., Guillemette, T., Brisset, M.-N., &
572 Dat, J. F. (2013). Histolocalization and physico-chemical characterization of
573 dihydrochalcones: Insight into the role of apple major flavonoids. Phytochemistry, 90, 78-
574 89. doi: https://doi.org/10.1016/j.phytochem.2013.02.009

575  Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M., Hersey, A., . .. Overington, J. P.
576 (2012). ChEMBL.: a large-scale bioactivity database for drug discovery. Nucleic Acids
577 Res., 40(D1), D1100-D1107. doi: 10.1093/nar/gkr777

578  Gaulton, A., Hersey, A., Nowotka, M., Bento, A. P., Chambers, J., Mendez, D., . . . Leach, A. R.
579 (2017). The ChEMBL database in 2017. Nucleic Acids Res., 45(D1), D945-D954. doi:
580 10.1093/nar/gkw1074

581  Gfeller, D., Grosdidier, A., Wirth, M., Daina, A., Michielin, O., & Zoete, V. (2014).
582 SwissTargetPrediction: a web server for target prediction of bioactive small molecules.
583 Nucleic Acids Res., 42(W1), W32-W38. doi: 10.1093/nar/gku293

31


https://doi.org/10.1101/2020.07.01.181859
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.181859; this version posted July 2, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

584  Gfeller, D., Michielin, O., & Zoete, V. (2013). Shaping the interaction landscape of bioactive

585 molecules. Bioinformatics, 29(23), 3073-3079. doi: 10.1093/bioinformatics/btt540

586  Gunther, S., Kuhn, M., Dunkel, M., Campillos, M., Senger, C., Petsalaki, E., . . . Preissner, R.
587 (2008). SuperTarget and Matador: resources for exploring drug-target relationships.
588 Nucleic Acids Res., 36(suppl_1), D919-D922. doi: 10.1093/nar/gkm862

589  Harvey, A. L. (2008). Natural products in drug discovery. Drug Discovery Today, 13(19), 894-
590 901. doi: https://doi.org/10.1016/j.drudis.2008.07.004

591  Hattori, S. (2018). Anti-inflammatory effects of empagliflozin in patients with type 2 diabetes and
592 insulin resistance. Diabetol. Metab. Syndr., 10, 93-93. doi: 10.1186/s13098-018-0395-5
593  Hecker, N., Ahmed, J., von Eichborn, J., Dunkel, M., Macha, K., Eckert, A., . . . Preissner, R.
594 (2012). SuperTarget goes quantitative: update on drug—target interactions. Nucleic Acids
595 Res., 40(D1), D1113-D1117. doi: 10.1093/nar/gkr912

596  Hert, J., Keiser, M. J., Irwin, J. J., Oprea, T. I., & Shoichet, B. K. (2008). Quantifying the
597 relationships among drug classes. J. Chem. Inf. Model., 48(4), 755-765. doi:
598 10.1021/ci8000259

599  Huang, Y.-W., Pineau, I., Chang, H.-J., Azzi, A., Bellemare, V. r., Laberge, S., & Lin, S.-X.
600 (2001). Critical residues for the specificity of cofactors and substrates in human estrogenic
601 17B-hydroxysteroid dehydrogenase 1: variants designed from the three-dimensional
602 structure of the enzyme. Mol. Endocrinol., 15(11), 2010-2020. doi:
603 10.1210/mend.15.11.0730

604  Hurle, M. R, Yang, L., Xie, Q., Rajpal, D. K., Sanseau, P., & Agarwal, P. (2013). Computational
605 drug repositioning: from data to therapeutics. Clin. Pharmacol. Ther., 93(4), 335-341. doi:
606 10.1038/clpt.2013.1

607 lannantuoni, F., M de Marafion, A., Diaz-Morales, N., Falcon, R., Bafiuls, C., Abad-Jimenez, Z.,
608 . . . Rovira-Llopis, S. (2019). The SGLT2 inhibitor empagliflozin ameliorates the
609 inflammatory profile in type 2 diabetic patients and promotes an antioxidant response in
610 leukocytes. J. Clin. Med., 8(11), 1814. doi: 10.3390/jcm8111814

611  Jalencas, X., & Mestres, J. (2013). On the origins of drug polypharmacology. MedChemComm,
612 4(1), 80-87. doi: 10.1039/C2MD20242E

32


https://doi.org/10.1101/2020.07.01.181859
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.181859; this version posted July 2, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

613  Keiser, M. J., Roth, B. L., Armbruster, B. N., Ernsberger, P., Irwin, J. J., & Shoichet, B. K. (2007).

614 Relating protein pharmacology by ligand chemistry. Nat. Biotechnol., 25(2), 197-206. doi:
615 d0i:10.1038/nbt1284

616  Keiser, M. J.,, Setola, V., Irwin, J. J., Laggner, C., Abbas, A. I., Hufeisen, S. J., . . . Roth, B. L.
617 (2009). Predicting new molecular targets for known drugs. Nature, 462, 175. doi:
618 https://doi.org/10.1038/nature08506

619 Kim, S, Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., . . . Bolton, E. E. (2018). PubChem
620 2019 update: improved access to chemical data. Nucleic Acids Res., 47(D1), D1102-
621 D1109. doi: 10.1093/nar/gky1033

622  Koeberle, A., Siemoneit, U., Buhring, U., Northoff, H., Laufer, S., Albrecht, W., & Werz, O.
623 (2008). Licofelone suppresses prostaglandin E> formation by interference with the
624 inducible microsomal prostaglandin E2 synthase-1. J. Pharmacol. Exp. Ther., 326(3), 975.
625 doi: 10.1124/jpet.108.139444

626  Koeberle, A., & Werz, O. (2014). Multi-target approach for natural products in inflammation.
627 Drug Discovery Today, 19(12), 1871-1882. doi:
628 https://doi.org/10.1016/j.drudis.2014.08.006

629  Koehn, F. E., & Carter, G. T. (2005). The evolving role of natural products in drug discovery. Nat.
630 Rev. Drug Discovery, 4(3), 206-220. doi: 10.1038/nrd1657

631  Kratschmar, D. V., Vuorinen, A., Da Cunha, T., Wolber, G., Classen-Houben, D., Doblhoff, O., .
632 .. Odermatt, A. (2011). Characterization of activity and binding mode of glycyrrhetinic
633 acid derivatives inhibiting 11p-hydroxysteroid dehydrogenase type 2. J. Steroid Biochem.
634 Mol. Biol., 125(1), 129-142. doi: https://doi.org/10.1016/j.jsbmb.2010.12.019

635 Le Bail, J.-C., Pouget, C., Fagnere, C., Basly, J.-P., Chulia, A.-J., & Habrioux, G. (2001).
636 Chalcones are potent inhibitors of aromatase and 17p-hydroxysteroid dehydrogenase
637 activities. Life Sci., 68(7), 751-761. doi: https://doi.org/10.1016/S0024-3205(00)00974-7
638 Lephart, E. D., & Simpson, E. R. (1991). Assay of aromatase activity. Methods in Enzymology.
639 Vol. 206, pp. 477-483. doi: https://doi.org/10.1016/0076-6879(91)06116-K: Academic
640 Press.

641 Liu, T., Lin, Y., Wen, X,, Jorissen, R. N., & Gilson, M. K. (2007). BindingDB: a web-accessible
642 database of experimentally determined protein—ligand binding affinities. Nucleic Acids
643 Res., 35(suppl_1), D198-D201. doi: 10.1093/nar/gkl999

33


https://doi.org/10.1101/2020.07.01.181859
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.181859; this version posted July 2, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

644  Lounkine, E., Keiser, M. J., Whitebread, S., Mikhailov, D., Hamon, J., Jenkins, J. L., . .. Urban,

645 L. (2012). Large-scale prediction and testing of drug activity on side-effect targets. Nature,
646 486(7403), 361-367. doi: 10.1038/nature11159

647  Margiotti, K., Kim, E., Pearce, C. L., Spera, E., Novelli, G., & Reichardt, J. K. V. (2002).
648 Association of the G289S single nucleotide polymorphism in the HSD17B3 gene with
649 prostate cancer in italian men. The Prostate, 53(1), 65-68. doi: 10.1002/pros.10134

650 Matsuura, K., Shiraishi, H., Hara, A., Sato, K., Deyashiki, Y., Ninomiya, M., & Sakai, S. (1998).
651 Identification of a principal mRNA species for human 3a-hydroxysteroid dehydrogenase
652 isoform (AKR1C3) that exhibits high prostaglandin D2 11-ketoreductase activity. J.
653 Biochem., 124(5), 940-946. doi: 10.1093/oxfordjournals.jbchem.a022211

654  Mayr, F., Sturm, S., Ganzera, M., Waltenberger, B., Martens, S., Schwaiger, S., . . . Stuppner, H.
655 (2019a). Mushroom tyrosinase-based enzyme inhibition assays are not suitable for
656 bioactivity-guided fractionation of extracts. J. Nat. Prod., 82(1), 136-147. doi:
657 10.1021/acs.jnatprod.8b00847

658 Mayr, F., Vieider, C., Temml, V., Stuppner, H., & Schuster, D. A. D. Kinghorn, H. Falk, S.
659 Gibbons, J. i. Kobayashi, Y. Asakawa, & J.-K. Liu. (2019b). Open-access activity
660 prediction tools for natural products. Case study: hERG blockers. Progress in the
661 Chemistry of Organic Natural Products 110: Cheminformatics in Natural Product
662 Research. pp. 177-238. doi: 10.1007/978-3-030-14632-0_6Cham: Springer International
663 Publishing.

664  McKinney, W. (2010). Data structures for statistical computing in python. Paper presented at the
665 Proceedings of the 9th Python in Science Conference.

666  Meng, W., Ellsworth, B. A., Nirschl, A. A., McCann, P. J., Patel, M., Girotra, R. N., . .. Washburn,
667 W. N. (2008). Discovery of dapagliflozin: a potent, selective renal sodium-dependent
668 glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J. Med.
669 Chem., 51(5), 1145-1149. doi: 10.1021/jm701272q

670  Modller, G., Deluca, D., Gege, C., Rosinus, A., Kowalik, D., Peters, O., . . . Hillisch, A. (2009).
671 Structure-based design, synthesis and in vitro characterization of potent 17p-
672 hydroxysteroid dehydrogenase type 1 inhibitors based on 2-substitutions of estrone and D-
673 homo-estrone.  Bioorg. Med. Chem. Lett, 19(23), 6740-6744. doi:
674 https://doi.org/10.1016/j.bmcl.2009.09.113

34


https://doi.org/10.1101/2020.07.01.181859
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.181859; this version posted July 2, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

675 Morisseau, C., Beetham, J. K., Pinot, F., Debernard, S., Newman, J. W., & Hammock, B. D.

676 (2000). Cress and potato soluble epoxide hydrolases: Purification, biochemical
677 characterization, and comparison to mammalian enzymes. Arch. Biochem. Biophys.,
678 378(2), 321-332. doi: https://doi.org/10.1006/abbi.2000.1810

679  Neuwirt, H., Bouchal, J., Kharaishvili, G., Ploner, C., Johrer, K., Pitterl, F., . . . Eder, I. E. (2020).
680 Cancer-associated fibroblasts promote prostate tumor growth and progression through
681 upregulation of cholesterol and steroid biosynthesis. Cell Commun. Signaling, 18(1), 11.
682 doi: 10.1186/s12964-019-0505-5

683 Newman, D. J., & Cragg, G. M. (2016). Natural products as sources of new drugs from 1981 to
684 2014. J. Nat. Prod., 79(3), 629-661. doi: 10.1021/acs.jnatprod.5b01055

685  Nickel, J., Gohlke, B.-O., Erehman, J., Banerjee, P., Rong, W. W., Goede, A., . . . Preissner, R.
686 (2014). SuperPred: update on drug classification and target prediction. Nucleic Acids Res.,
687 42(W1), W26-W31. doi: 10.1093/nar/gku477

688  Orlikova, B., Schnekenburger, M., Zloh, M., Golais, F., Diederich, M., & Tasdemir, D. (2012).
689 Natural chalcones as dual inhibitors of HDACs and NF-«B. Oncol. Rep., 28, 797-805. doi:
690 https://doi.org/10.3892/0r.2012

691 Pandey, A. V., Kempna, P., Hofer, G., Mullis, P. E., & Fliick, C. E. (2007). Modulation of human
692 CYP19A1 activity by mutant NADPH P450 oxidoreductase. Mol. Endocrinol., 21(10),
693 2579-2595. doi: 10.1210/me.2007-0245

694  Polgar, T., Baki, A., Szendrei, G. 1., & Kesertiu, G. M. (2005). Comparative virtual and
695 experimental high-throughput screening for glycogen synthase kinase-3f3 inhibitors. J.
696 Med. Chem., 48(25), 7946-7959. doi: 10.1021/jm050504d

697 Reker, D., Perna, A. M., Rodrigues, T., Schneider, P., Reutlinger, M., Mdnch, B., . . . Schneider,
698 G. (2014). Revealing the macromolecular targets of complex natural products. Nat. Chem.,
699 6(12), 1072-1078. doi: 10.1038/nchem.2095

700 Ripphausen, P., Nisius, B., Peltason, L., & Bajorath, J. (2010). Quo vadis virtual Screening? A
701 comprehensive survey of prospective applications. J. Med. Chem., 53, 8461-8467. doi:
702 10.1021/jm101020z

703  Riviere, C. R. Atta ur. (2016). Chapter 7 - dihydrochalcones: occurrence in the plant kingdom,
704 chemistry and biological activities. Studies in Natural Products Chemistry. Vol. 51, pp.
705 253-381. doi: https://doi.org/10.1016/B978-0-444-63932-5.00007-3: Elsevier.

35


https://doi.org/10.1101/2020.07.01.181859
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.181859; this version posted July 2, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

706  Rodrigues, T., Reker, D., Kunze, J., Schneider, P., & Schneider, G. (2015). Revealing the

707 macromolecular targets of fragment-like natural products. Angew. Chem., Int. Ed., 54(36),
708 10516-10520. doi: 10.1002/anie.201504241

709  Rodrigues, T., Reker, D., Schneider, P., & Schneider, G. (2016). Counting on natural products for
710 drug design. Nat. Chem., 8, 531. doi: 10.1038/nchem.2479

711  Rollinger, J. M. (2009). Accessing target information by virtual parallel screening—The impact
712 on natural  product research. Phytochem. Lett., 2(2), 53-58. doi:
713 https://doi.org/10.1016/j.phytol.2008.12.002

714 Rollinger, J. M., Schuster, D., Danzl, B., Schwaiger, S., Markt, P., Schmidtke, M., . . . Stuppner,
715 H. (2009). In silico target fishing for rationalized ligand discovery exemplified on
716 constituents of Ruta graveolens. Planta Med., 75(03), 195-204. doi: 10.1055/s-0028-
717 1088397

718 Rush, T. S., Grant, J. A., Mosyak, L., & Nicholls, A. (2005). A shape-based 3-D scaffold hopping
719 method and its application to a bacterial protein—protein interaction. J. Med. Chem., 48(5),
720 1489-1495. doi: 10.1021/jm0401630

721  Samandari, E., Kempna, P., Nuoffer, J.-M., Hofer, G., E. Mullis, P., & E. Fluck, C. (2007). Human
722 adrenal corticocarcinoma NCI-H295R cells produce more androgens than NCI-H295A
723 cells and differ in 3B-hydroxysteroid dehydrogenase type 2 and 17,20 lyase activities. J.
724 Endocrinol., 195(3), 459-472. doi: 10.1677/JOE-07-0166

725  Schaible, A. M., Filosa, R., Temml, V., Krauth, V., Matteis, M., Peduto, A., . . . Werz, O. (2014).
726 Elucidation of the molecular mechanism and the efficacy in vivo of a novel 1,4-
727 benzoquinone that inhibits 5-lipoxygenase. Br. J. Pharmacol., 171(9), 2399-2412. doi:
728 10.1111/bph.12592

729  Schuster, D. (2010). 3D pharmacophores as tools for activity profiling. Drug Discovery Today:
730 Technol., 7(4), e205-e211. doi: https://doi.org/10.1016/j.ddtec.2010.11.006

731  Schuster, D., Kowalik, D., Kirchmair, J., Laggner, C., Markt, P., Aebischer-Gumy, C., . . .
732 Adamski, J. (2011). Identification of chemically diverse, novel Inhibitors of 17 beta
733 hydroxysteroid dehydrogenase type 3 and 5 pharmacophore-based virtual screening. J.
734 Steroid Biochem. Mol. Biol., 125(1-2), 148-161.

36


https://doi.org/10.1101/2020.07.01.181859
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.181859; this version posted July 2, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

735  Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., . . . Ideker, T. (2003).

736 Cytoscape: a software environment for integrated models of biomolecular interaction
737 networks. Genome Res., 13(11), 2498-2504. doi: 10.1101/gr.1239303

738  Sliwoski, G., Kothiwale, S., Meiler, J., Lowe, E. W., & Barker, E. L. (2014). Computational
739 methods in drug discovery. Pharmacol. Rev., 66(1), 334-395. doi:
740 https://doi.org/10.1124/pr.112.007336

741  Steindl, T., Schuster, D., Laggner, C., & Langer, T. (2006). Parallel Screening: A novel concept
742 in pharmacophore based modeling and virtual screening. J. Chem. Inf. Model., 45(3), 716-
743 724. doi: 10.1021/ci6002043

744  Sydow, D., Burggraaff, L., Szengel, A., van Vlijmen, H. W. T., ljzerman, A. P., van Westen, G. J.
745 P., & Volkamer, A. (2019). Advances and challenges in computational target prediction.
746 J. Chem. Inf. Model., 59(5), 1728-1742. doi: 10.1021/acs.jcim.8b00832

747  Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., . . . Mering,
748 Christian v. (2018). STRING v11: protein—protein association networks with increased
749 coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic
750 Acids Research, 47(D1), D607-D613. doi: 10.1093/nar/gky1131

751  The UniProt Consortium. (2018). UniProt: a worldwide hub of protein knowledge. Nucleic Acids
752 Res., 47(D1), D506-D515. doi: 10.1093/nar/gky1049

753  Udhane, S. S., Parween, S., Kagawa, N., & Pandey, A. V. (2017). Altered CYP19A1 and CYP3A4
754 activities due to mutations A115V, T142A, Q153R and P284L in the human P450
755 oxidoreductase. Front. Pharmacol., 8(580). doi: 10.3389/fphar.2017.00580

756  Uthman, L., Baartscheer, A., Schumacher, C. A,, Fiolet, J. W. T., Kuschma, M. C., Hollmann, M.
757 W., . .. Zuurbier, C. J. (2018). Direct cardiac actions of sodium glucose cotransporter 2
758 inhibitors target pathogenic mechanisms underlying heart failure in diabetic patients.
759 Frontiers in Physiology., 9(1575). doi: 10.3389/fphys.2018.01575

760  Vicker, N., Sharland, C. M., Heaton, W. B., Gonzalez, A. M. R., Bailey, H. V., Smith, A., . ..
761 Potter, B. V. L. (2009). The design of novel 17p-hydroxysteroid dehydrogenase type 3
762 inhibitors. Mol. Cell. Endocrinol., 301(1), 259-265. doi:
763 https://doi.org/10.1016/j.mce.2008.08.005

764  Waltenberger, B., Garscha, U., Temml, V., Liers, J., Werz, O., Schuster, D., & Stuppner, H.
765 (2016). Discovery of potent soluble Epoxide hydrolase (SEH) Inhibitors by

37


https://doi.org/10.1101/2020.07.01.181859
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.181859; this version posted July 2, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

766 pharmacophore-based virtual screening. J. Chem. Inf. Model., 56, 747-762. doi:
767 10.1021/acs.jcim.5b00592

768  Wetzel, M., Marchais-Oberwinkler, S., Perspicace, E., Moéller, G., Adamski, J., & Hartmann, R.
769 W. (2011). Introduction of an electron withdrawing group on the hydroxyphenylnaphthol
770 scaffold improves the potency of 17B-hydroxysteroid dehydrogenase type 2 (178-HSD2)
771 inhibitors. J. Med. Chem., 54(21), 7547-7557. doi: 10.1021/jm2008453

772  Wixtrom, R. N., Silva, M. H., & Hammock, B. D. (1988). Affinity purification of cytosolic epoxide
773 hydrolase using derivatized epoxy-activated sepharose gels. Anal. Biochem., 169(1), 71-
774 80. doi: https://doi.org/10.1016/0003-2697(88)90256-4

775  Wolber, G., Dornhofer, A. A., & Langer, T. (2006). Efficient overlay of small organic molecules
776 using 3D pharmacophores. J. Comput. Aided Mol. Des., 20, 773-788. doi: 10.1007/s10822-
777 006-9078-7

778  Xu, C., Wang, W., Zhong, J., Lei, F., Xu, N., Zhang, Y., & Xie, W. (2018). Canagliflozin exerts
779 anti-inflammatory effects by inhibiting intracellular glucose metabolism and promoting
780 autophagy in immune cells. Biochem. Pharmacol. (Amsterdam, Neth.), 152, 45-59. doi:
781 https://doi.org/10.1016/j.bcp.2018.03.013

782 Young, S. M., Bologa, C., Prossnitz, E. R., Oprea, T. I., Sklar, L. A., & Edwards, B. S. (2005).
783 High-throughput screening with HyperCyt® flow cytometry to detect small molecule
784 formylpeptide receptor ligands. J. Biomol. Screen., 10(4), 374-382. doi:
785 10.1177/1087057105274532

786

38


https://doi.org/10.1101/2020.07.01.181859
http://creativecommons.org/licenses/by-nc-nd/4.0/

