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ABSTRACT 37 

Natural products comprise a rich reservoir for innovative drug leads and are a constant source of 38 

bioactive compounds. To find pharmacological targets for new or already known natural products 39 

using modern computer-aided methods is a current endeavor in drug discovery. Nature’s treasures, 40 

however, could be used more effectively. Yet, reliable pipelines for large scale target prediction 41 

of natural products are still rare. We have developed an in silico workflow consisting of four 42 

independent, stand-alone target prediction tools and evaluated its performance on 43 

dihydrochalcones (DHCs) – a well-known class of natural products. Thereby, we revealed four 44 

previously unreported protein targets for DHCs, namely 5-lipoxygenase, cyclooxygenase-1, 17β- 45 

hydroxysteroid dehydrogenase 3, and aldo-keto reductase 1C3. Moreover, we provide a thorough 46 

strategy on how to perform computational target prediction and guidance on using the respective 47 

tools.  48 
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INTRODUCTION 49 

Finding new chemical entities that alter biological response – the quintessence of drug discovery 50 

– is a constant endeavor in pharmaceutical science. In contrast, the need for novel, improved 51 

clinical candidates has also remained consistently high, urging drug discovery scientists to explore 52 

fresh ground. The integration of chemoinformatic and bioinformatic tools into drug discovery in 53 

the early 1990s and the recent advances in big data handling have leveraged access to a myriad of 54 

massive public datasets (Campbell et al., 2018; Chen et al., 2017) and powerful tools, e.g. virtual 55 

screening (VS) (Sliwoski et al., 2014). In the past decade, the concept of drug repurposing has 56 

emerged as an attractive strategy to rededicate approved drugs or partially developed compounds 57 

to new molecular targets (Aronson, 2007; Ashburn et al., 2004). This development is, next to the 58 

intention to reduce R&D costs, also owed to advances in computational chemistry (Hurle et al., 59 

2013). The latter can be achieved by a so-called ‘inverse VS’ utilizing techniques like 2D-60 

similarity searches (Keiser et al., 2009), 3D-similarity searches (Rush et al., 2005), and 61 

pharmacophore-based VS (Schuster, 2010; Steindl et al., 2006). Many of such tools have been 62 

made public in the past decade (Cereto-Massagué et al., 2015; Huang et al., 2001; Sydow et al., 63 

2019), aiming to boost both drug repurposing efforts and drug discovery as a whole.  64 

Natural products are remarkable in many regards, particularly for being the main source of drugs 65 

in the past and nowadays by serving as a source for innovative leads (Newman et al., 2016). Natural 66 

products bear privileged structural features that were “shaped” by evolution, yielding compounds 67 

that that can serve as promising starting points for drug development (Harvey, 2008; Koehn et al., 68 

2005). Further, natural products often show polypharmacological properties, interacting with more 69 

than one target (Koeberle et al., 2014). The two groups around Gisbert Schneider and Stuart L. 70 

Schreiber found that natural products are more likely to act as true polypharmacological agents 71 

rather than unspecific binders – a property instead associated with synthetic compounds (Clemons 72 

et al., 2010; Rodrigues et al., 2016). 73 

Based on this concept, tools or workflows, which allow for the accurate prediction of new 74 

molecular targets for natural products, are of great interest. We here propose a workflow to 75 

specifically search for yet unreported protein targets of known compounds, using a combination 76 

of in silico and in vitro methods (Figure 1). The compounds of interest are virtually screened 77 

against our in-house resources, representing a panel of 39 drug targets expressed as 387 78 
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pharmacophore models (a comprehensive list of all models is provided in Supplementary 79 

Information S-1). Additionally, the compounds are subjected to three independent open access 80 

target prediction servers in parallel. The results generated by these four diverse methods are 81 

combined and those with the highest degree of consent (protein targets predicted by several 82 

methods independently of each other) are selected for in vitro evaluation. Moreover, already 83 

known protein targets are excluded from further investigations by checking their appearance in 84 

PubChem (https://pubchem.ncbi.nlm.nih.gov/), a pertinent open knowledge base for bioactivities 85 

(Kim et al., 2018). 86 

  87 

Figure 1. Workflow of the dihydrochalcone (DHC) target prediction campaign. The dataset is 88 

assembled (DHC chemical space) and used to retrieve corresponding bioactivity data from 89 

PubChem (known DHC biological space) and as input to inverse VS. First, the DHC chemical 90 

space is mapped onto the Pharmacophore DB and the resulting matrix extended by the predictions 91 

of three individual target prediction servers Similarity Ensemble Approach (SEA), 92 

SwissTargetPrediction (STP), and SuperPred (SP), resulting in the predicted DHC biological 93 

space. Activities already known from PubChem (the known DHC biological space) are then 94 

removed from the predicted DHC biological space and the reduced matrix scored according to 95 

consensus predictions of ligand-target interactions (unknown DHC biological space). Protein 96 

targets of the unknown DHC biological space are selected according to their consensus score (CS) 97 

and chosen for in vitro biological evaluation.  98 
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We evaluated our workflow for fitness by performing a target prediction of a complete class of 99 

established natural products, namely dihydrochalcones (DHCs). DHCs are readily available from 100 

nature, since several representatives are highly accumulated in both fresh and withered leaves of 101 

apple trees (Rivière, 2016). On the other hand, phloridzin, one of the most frequently found DHCs 102 

served as lead structure for the development of sodium/glucose co-transporter 2 (SGLT2) 103 

inhibitors like dapagliflozin, approved drugs for the treatment of type 2 diabetes (Meng et al., 104 

2008). DHCs have recently returned into focus, since their descendants, in clinical use now for 105 

about eight years, have shown therapeutic benefits that go beyond SGLT2 inhibition like e.g. in 106 

heart failure (Uthman et al., 2018). This instance points towards a high polypharmacological 107 

potential of the drugs and its parental template. However, phloridzin research has so far been 108 

focused on its anti-diabetic, anti-oxidative, and estrogenic effects. Thus, we prepared a 109 

comprehensive virtual library of DHCs (naturally occurring ones and those with modest semi-110 

synthetic modifications), predicted and selected promising, potentially new DHC targets, and 111 

tested ten common DHCs in respective in vitro assays. 112 

RESULTS 113 

Data Basis, Curation and Technical Setup of In Silico Predictions 114 

To realistically mirror the true diversity of DHCs, we gathered 425 DHCs from literature that were 115 

either naturally occurring or roughly resembled physicochemical properties of natural DHCs 116 

(molecular weight, ratio glycosides/aglyca, physicochemical properties). Accordingly, we called 117 

this virtual library ‘DHC chemical space’ (see Figure 1, Data Preparation). A panel of ten 118 

commonly found DHCs (1 – 10, see Table 1) that were physically available to us and intended for 119 

in vitro testing were also included in the DHC chemical space. The DHC chemical space was then 120 

screened against our historically grown pharmacophore model database (Ph-DB) and the results 121 

written to a matrix (e.g. compound 1 is predicted to act on protein A). The DHC chemical space 122 

was in parallel also subjected to the three target prediction servers SEA, STP, and SP, each of them 123 

predicting potential targets for each of the 425 DHCs. All results were combined into one matrix 124 

called ‘predicted DHC biological space’ (see Figure 1, ‘Virtual Screening’). In addition, all of the 125 

known bioactivities of the 425 compounds in the DHC chemical space were downloaded from 126 

PubChem and the resulting matrix called ‘known DHC biological space’ (see Figure 1, 127 

‘Bioactivity Mining’). The known DHC biological space was additionally depicted as network, as 128 
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shown in Figure 2. Next, compound-target interactions present in the known DHC biological space 129 

were removed from the predicted DHC biological space and a CS was assigned to each prediction 130 

(see Figure 1, ‘Scoring & Selecting’). The CS is an expression on how many consents a prediction 131 

has in addition to a positive prediction by our Ph-DB. We introduced the requirement of a hit with 132 

our own models since they are well-validated and for most targets, experimental testing of hits was 133 

available. For instance, if compound 1 was predicted to bind to protein A by our in-house 134 

pharmacophore models and two further target prediction servers, the CS was three. Finally, based 135 

on the CS and other criteria, the six most promising protein targets were selected and compounds 136 

1 – 10 assayed in vitro.  137 

To automate the in silico part of the workflow, operations made for screening our Ph-DB, 138 

submission and reconciliation to target prediction servers, and bioactivity mining were performed 139 

via custom-made scripts. All input and output files generated in this workflow, including the 140 

scripts and a corresponding Jupyter Notebook containing all data manipulations are provided via 141 

GitHub (https://github.com/fmayr/DHC_TargetPrediction). For better clarity, the relationships 142 

and data flow are schematically shown in Supporting Information S-3.  143 
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Table 1. Compounds 1 – 10, which were used for biological evaluation. 144 

 

No. Name R1 R2 R3 R4 

1 phloretin OH H OH OH 

2 3-OH-phloretin OH OH OH OH 

3 2´,6´-dihydroxy-4´-methoxy DHC H H OMe OH 

4 asebogenin OH H OMe OH 

5 calomelanen OMe H OMe OH 

6 sieboldin OH OH O-Glc* OH 

7 phloridzin OH H OH O-Glc* 

8 trilobatin OH H O-Glc* OH 

9 phloretin-2´-xyloglucoside OH H OH O-Rut† 

10 neohesperidin DHC OMe OH O-Neo‡ OH 

* Glc: glucose (O-β-D-glucosyl). † Rut: rutinose (6-O-(α-L-rhamnosyl)-D-glucos-1-O-β-yl). ‡ 145 

Neo: neohesperidose (2-O-(α-L-rhamnosyl)-D-glucos-1-O-β-yl). 146 
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 147 

Figure 2. Known DHC biological space illustrated as network. Shown are only DHCs with 148 

interactions reported in PubChem (grey edges), as well as the respective interactions predicted for 149 

these compounds (dashed green arrows for correct predictions and dashed magenta arrows for 150 

interactions that either proved incorrect in vitro or were not tested). Blue nodes indicate protein 151 

targets, and yellow nodes indicate compounds with respective compound numbers. Grey edges 152 

indicate known compound-target interactions, while the line thickness is proportional to the 153 

interaction weight (see Materials and Methods).   154 
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Predicted and Unknown DHC Biological Space 155 

The final selection of targets to be evaluated in vitro was made based on four criteria (summarized 156 

for twelve frequently predicted targets in Table 2): First, interactions of 1 – 10 that were predicted 157 

by Ph-DB and had a CS of two or higher (see Figure 3) were included (Table 2, Selection Criterion 158 

I). Thereby, 5-lipoxygenase (5-LO) was highlighted for 4 (CS = 2) and 5 (CS = 3) and aromatase 159 

was highlighted for 1, 5, 6, 7, 8, and 9 (CS = 2). Figure 3 also shows that a handful of other targets 160 

achieved high CSs, e.g. acetylcholinesterase (AChE), estrogen receptor α (ERα), protein-tyrosine 161 

phosphatase B1 (PTP1B), and nuclear factor κB (NFκB). However, ERα and NFκB were neglected 162 

since they were already reported targets for at least one DHC (Dodds et al., 1938; Orlikova et al., 163 

2012), while suitable assays for AChE and PTP1B were not available.  164 

Second, protein targets that were particularly frequently predicted for the whole DHC chemical 165 

space (425 compounds) with a positive prediction of Ph-DB and CSs of two or higher (Table 2, 166 

Selection Criterion II) were included. We hypothesized that these targets were generally well 167 

suited for the DHC scaffold. 17β HSD2 and 17β HSD3 were the fourth and fifth most frequently 168 

predicted targets with a CS of 3, behind AChE (assays not available), ERα (already established 169 

target for some DHCs), and 5-LO (already selected for in vitro testing, see Figure 3 Supplement 170 

1, D). Moreover, cyclooxygenase 1 (COX-1) and aldo-keto reductase 1C3 (AKR1C3) were the 171 

fourth and sixth most frequently predicted targets, respectively, with CSs of two (see Figure 3 172 

Supplement 1, C). Higher ranked targets were all either already known (ERα and ERβ) or already 173 

included in our selection (aromatase, 5-LO).  174 

Third, the overall predictions were evaluated for their novelty, their consistency and whether our 175 

approach could produce high scores for known ligand-target interactions (Table 2, Selection 176 

Criterion III). Novelty means that only unreported targets were selected, while prediction 177 

consistency means that predicted targets are more credible, if they are biologically related to one 178 

another, e.g. isoenzymes, or proteins that belong to the same pathway. It is actually oftentimes the 179 

case that one compound binds to several closely related targets (lack of specificity), which should 180 

be reflected in the virtual predictions (Hert et al., 2008; Jalencas et al., 2013). Further, great value 181 

is added if, e.g., a closely related target was already reported, or if known targets are enriched in 182 

the predictions generated by the in silico workflow. In our case, we observed targets belonging to 183 

steroid metabolism (aromatase, 17β HSD2, 17β HSD3, and AKR1C3) or to arachidonic acid (AA) 184 

metabolism (5-LO, COX-1). Targets of the steroid metabolism are obviously closely related to 185 
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ERs; aromatase, 17β HSD2, and ERs even share the same substrate or ligand, respectively, namely 186 

estradiol. The shape and pharmacophore of those targets’ binding sites must, therefore, be 187 

somewhat similar. On this basis, we hypothesized that the four predicted targets of the steroid 188 

metabolism are promising DHC targets, given that ERs are confirmed targets of several DHCs. 189 

Similarly, COX-1 and 5-LO share the same substrate, namely AA, implying that also the binding 190 

sites of the latter two must be similar to a certain extent. Moreover, 7 has been confirmed to inhibit 191 

15-hydroxyprostaglandin dehydrogenase and soluble epoxide hydrolase – two enzymes in the AA 192 

pathway related to COX-1 and 5-LO with again presumably similar binding sites (see Figure 2, 193 

A). Steroid metabolism and AA metabolism are on their side interconnected by AKR1C3, which 194 

is also commonly referred to as 17β-hydroxysteroid dehydrogenase 5 or prostaglandin F synthase 195 

(see Figure 4-Figure supplement 2, A-C). Indeed, this enzyme converts both steroids and AA-like 196 

fatty acids using the same binding site (Matsuura et al., 1998). From there it was concluded that 197 

those six proteins’ binding sites may share substantial similarities and the predictions of the latter 198 

can be considered consistent. Finally, we checked if targets of the known DHC biological space 199 

could be enriched by our target prediction workflow. Effectively, we observed a clear enrichment 200 

of the consensus scored target frequencies (see Figure 3 Supplement 1, C and D and Figure 4-201 

Figure supplement 1) compared to the stand-alone target prediction tools (see Figure 3 Supplement 202 

1, A and B).  203 

Fourth, the availability of a suitable assay was logically a pivotal criterion for targets to be selected 204 

(Table 2, Selection Criterion IV).  205 
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Table 2. Twelve frequently predicted targets for DHC chemical space assessed according to 206 

selection criteria I – IV and final selection statement. 207 

Candidate 

Target 

Selection 

criterion I* 

Selection 

criterion II† 

Selection 

criterion III‡ 

Selection 

criterion IV§ 
Selected 

17β HSD2 n.a. 
5th (CS=3) 

12th (CS=2) 
1 - ER α/β Yes Yes 

17β HSD3 n.a. 
4th (CS=3) 

7th (CS=2) 
1 - ER α/β Yes Yes 

5-LO 
4 (CS=2) 

5 (CS=3) 

3rd (CS=3) 

3rd (CS=3) 
1 - PGDH Yes Yes 

AChE 
4 (CS=2) 

5 (CS=3) 

1st (CS=3) 

10th (CS=2) 
n.a. No No 

AKR1C3 n.a. 6th (CS=2) 1 – AKR1B10 Yes Yes 

Aromatase 

1 (CS=2) 

5 (CS=2) 

6 (CS=2) 

7 (CS=2) 

8 (CS=2) 

9 (CS=2) 

1st (CS=2) 

1 - aromatase 

1 - ER α/β 

1 - several 

CYPs 

Yes Yes 

COX-1 n.a. 4th (CS=3) 1 - PGDH Yes Yes 

ERα 

1 (CS=3) 

2 (CS=2) 

4 (CS=3) 

5 (CS=3) 

6 (CS=2) 

7 (CS=2) 

8 (CS=2) 

2nd (CS=3) 

2nd (CS=2) 
1 - ER α/β Yes No 

ERβ n.a. 
5th (CS=3) 

6th (CS=2) 
1 - ER α/β Yes No 

NFκB n.a. 8th (CS=2) 
1 - NFκB 

5 - NFκB 
No No 

PPARγ n.a. 9th (CS=2) 1 - PPARγ No No 

PTP1B 6 (CS=2) 10th (CS=2) n.a. Yes No 

* Targets that were predicted with high CSs for compounds 1 – 10. † Most frequently predicted 208 

targets with high CSs for DHC chemical space. ‡ Prediction consistency: Similar or associated 209 

targets that are being predicted or similar bioactivities that were already reported. § Availability 210 

of a suitable assay.  211 
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 212 

Figure 3. Predicted compound – target interactions (predicted DHC chemical space) illustrated as 213 

Venn diagram. Predicted DHC chemical space was filtered for compounds 1 – 10 and a positive 214 

prediction by Ph-DB. Sets of predictions by any method are represented as ellipses (green: Ph-DB, 215 

blue: SEA, yellow: STP, and red: SP) and consents among different methods as 216 

overlaps/intersections each with an integer indicating the size of the intersection. Values indicate 217 

the original model fit values, ‘not a number’ (for short ‘nan’) indicates no prediction by the 218 

respective tool. Fit values of SEA and SP are E-values similar as in the Basic Local Alignment 219 

Search Tool (BLAST), meaning the lower the better the model fit (Altschul et al., 1990; Dunkel 220 

et al., 2008; Keiser et al., 2007). Fit values for STP and Ph-DB are 0 – 1 normalized probability 221 

(STP) or relative pharmacophore fit-scores (Ph-DB) (Gfeller et al., 2013; Wolber et al., 2006). 222 

Enrichment of targets reported for DHCs in literature are shown for predictions made with stand-223 

alone Ph-DB (Figure 3-Figure supplement – 1, A), SEA, STP, and SP combined (Figure 3-Figure 224 

supplement – 1, B), and all approaches combined and the consensus score applied (Figure 3-Figure 225 

supplement – 1, C-D), each as green overlays. 226 
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 227 

Figure supplement 1. Enrichment of known DHC targets (known DHC biological space) in 228 

differently scored predictions for DHC chemical space. 229 

  230 
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New DHC Biological Space 231 

Following the definition of the six protein targets issued for biological evaluation, the respective 232 

in vitro assays were performed using compounds 1 – 10 (see Figure 4 and Table 3). Biological 233 

activities were expressed as percent inhibition at 10 µM compound concentration relative to the 234 

mock control (= 0%). Three independent experiments (n = 3) were conducted and the mean 235 

inhibition plus/minus standard deviation depicted. Mean inhibition values that were below 30% 236 

were regarded as inactive, negative inhibition values and relative standard deviations larger than 237 

20% were regarded as ambiguous assay results and thus as inactive. Unfortunately, 17β HSD2 238 

measurements yielded ambiguous assay results for all compounds, which were regarded as 239 

inactive, as well as aromatase, where all ten compounds were inactive. For 5-LO, COX-1, 240 

AKR1C3, and 17β HSD3 at least one of the ten compounds exhibited weak inhibitory activities 241 

towards the respective target. Thus, 4 and 5 showed weak inhibition of AKR1C3, 2 showed weak 242 

inhibition of 17β HSD3 and 1, 2, 3, and 5 showed weak inhibition of COX-1. The ten DHCs 243 

showed the best results of this study in 5-LO inhibition, where 1, 2, 7, 8, and 10 showed weak to 244 

moderate inhibitory activities, 1 and 2 even reaching mean inhibition values of 85.4 ± 9.3% and 245 

99.2 ± 1.2%, respectively. In the course of this study, six further protein targets were evaluated in 246 

vitro due to availability of the respective assays, rather than based on in silico predictions. Most 247 

of the measured activities were not affected, however, to not withhold those results to the 248 

community, the results are shown in Figure 4-Figure supplement – 3. 249 
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 250 

Figure 4. Comparison of unknown DHC biological space (COX-1, 5-LO, 17β HSD3, 17β HSD2, 251 

aromatase, and AKR1C3) and actual in vitro test results of compounds 1 – 10. (A) CSs of 252 

compounds 1 – 10 on all of the six targets of the unknown DHC biological space plotted as 253 

heatmap. (B) Means (n = 3) of percent inhibition at 10 µM (0 – 100%) of compounds 1 – 10 on all 254 

of the six targets of the unknown DHC biological space plotted as heatmap. Observations with 255 

mean inhibition values smaller than 30% or relative standard deviations greater than 20% were 256 

regarded as inactive. (C) Bar charts of the six targets of the unknown DHC biological space 257 

showing compounds 1 – 10 with the respective means (n = 3) of percent inhibition at 10 µM (0 – 258 

100%) and standard deviation. A cut-off of 30% mean inhibition at 10 µM was chosen (black 259 

dashed line), separating active from inactive observations. DMSO was used to measure baseline 260 

enzyme activities, on which samples were normalized (not shown) and positive controls (PC) were 261 

used as indicated in Materials and Methods. 262 
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 263 

Figure supplement - 1. Metrics computed for the isolated and combined target prediction tools. 264 

 265 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.07.01.181859doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.01.181859
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

Figure supplement - 2. Six potential protein targets for DHCs input to STRING, which creates a 266 

network of both direct and functional protein-protein interactions (Szklarczyk et al., 2018). 267 

 268 

Figure supplement - 3. Results of other protein targets tested in the course of this study due to 269 

assay availability shown as bar charts. Compounds 1 – 10 indicated with the respective means (n 270 

= 3) of percent inhibition at 10 µM (0 – 100%) and standard deviation. Black dashed line again 271 

indicates arbitrarily chosen 30% activity cut-off. DMSO was used to measure baseline enzyme 272 

activities, on which samples were normalized (not shown) and positive controls (PC) were used as 273 

indicated in Materials and Methods.  274 
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Table 3. In vitro inhibitory activities of compounds 1 – 10 towards targets of DHC biological 275 

space, expressed as percent inhibition (0 – 100%) at 10 µM compound concentration relative to 276 

mock control. Shown is the mean of three independent experiments (n = 3) plus/minus standard 277 

deviation. Different compounds were used as positive controls (PC) as indicated in Materials and 278 

Methods. Highly negative values of 17β HSD2 assays are believed to be technical artefacts, as 279 

enzyme activation seems unlikely. 280 

Compound aromatase 17β HSD2 17β HSD3 AKR1C3 5-LO COX-1 

1 13.8 ± 2.0 -50.7 ± 22.7 1.7 ±  4.5 24.8 ± 5.9 85.4 ± 9.3 43.5 ± 7.2 

2 21.1 ± 11.7 -14.1 ± 27.1 43.8 ± 4.7 15.5 ± 4.9 99.2 ± 1.2 48.1 ± 12.0 

3 -1.0 ± 12.0 -26.3 ± 28.8 -28.0 ± 20.5 13.8 ± 10.0 54.1 ± 11.6 53.9 ± 5.3 

4 3.5 ± 19.0 -31.2 ± 8.1 52.7 ± 49.6 34.4 ± 5.1 39.2 ± 11.1 24.4 ± 4.2 

5 17.0 ± 2.0 -17.6 ± 39.0 32.1 ± 27.2 35.2 ± 3.8 47.2 ± 24.2 49.5 ± 1.9 

6 13.8 ± 4.4 -39 ± 29.9 16.7 ± 14.5 -6.1 ± 6.8 34.8 ± 14.2 12.34 ± 29.0 

7 9.4 ± 3.5 -40.5 ± 22.9 20.2 ± 17.7 -7.2 ± 8.9 40.8 ± 4.1 -4.2 ± 45.6 

8 5.9 ± 3.5 -49.8 ± 21.4 -0.6 ± 10.0 5.3 ± 11.5 45.5 ± 2.7 15.3 ± 26.4 

9 0.67 ± 4.0 -37.1 ± 44.3 45.8 ± 14.2 -1.3 ± 1.9 31.8 ± 29.4 -11.4 ± 15.1 

10 0 ± 5.8 -32.2 ± 15.4 37.5 ± 23.9 7.4 ± 11.8 7.7 ± 6.0 11.1 ± 13.2 

PC 70.2 ± 0.5* 76.1 ± 11.4† 101.2 ± 2.4‡ 90.5 ± 1.2§ 79.26 ± 5.95¶ 81.3 ± 7.5# 

* 10 nM anastrozole (CAS: 120511-73-1). † 1 µM ML376 (CAS: 1340482-23-6). ‡ 1 µM 281 

compound 24 (CAS: 873206-61-2) (Möller et al., 2009), § 1 µM compound 2-9 (CAS: 745028-282 

76-6) (Schuster et al., 2011), ¶ 3 µM zileuton (CAS: 111406-87-2). # 10 µM indomethacin 283 

(CAS: 53-86-1).  284 
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DISCUSSION 285 

In the current study, we present an in silico target prediction workflow capable of prioritizing new 286 

molecular targets for known chemical entities, here exemplified on DHCs. Even though in silico 287 

target prediction is common today for synthetic compounds (Cereto-Massagué et al., 2015; Keiser 288 

et al., 2007; Keiser et al., 2009; Lounkine et al., 2012), it is still challenging for natural products 289 

(Reker et al., 2014; Rodrigues et al., 2015; Rollinger, 2009; Rollinger et al., 2009). To our 290 

knowledge, this is the first study performing in silico target prediction on a natural product class 291 

while systematically combining diverse established tools. We have recently observed that, 292 

especially when predicting targets for natural products, none of the established tools (including 293 

our own) performed perfectly, but owed to different methods, all of them performed differently 294 

(Mayr et al., 2019b). Exploiting the complementarity of the methods’ strengths should therefore 295 

correct for this shortcoming and result in better predictive performance. This strategy might be of 296 

great interest to the community since it underlines the benefits of predicting targets of a closely 297 

related compound series, rather than single compounds and it provides a thorough use case of 298 

publicly available tools and how to interpret its predictions. Also, we have recently predicted 299 

DHCs to be inhibitors of mushroom tyrosinase, albeit they turned out to be alternative substrates 300 

of the latter – an unexpected form of bioactivity that an in silico target prediction cannot distinguish 301 

from competitive inhibitors (Mayr et al., 2019a). 302 

Finally, six potential DHC targets were selected of which four could be experimentally confirmed 303 

(5-LO, COX-1, 17β HSD3, and AKR1C3) as molecular targets of at least one of the ten DHCs 1 304 

– 10. These four proteins are all new DHC targets and thus expanded the DHC biological space, 305 

which we were aiming for (see Figure 2). In terms of accuracy, our yield of novel targets (four out 306 

of six) is clearly superior to the yield of a “random selection” (test a random panel of protein targets 307 

towards compounds 1 - 10), which typically lies below 1% (Doman et al., 2002; Ferreira et al., 308 

2010; Polgár et al., 2005; Young et al., 2005). 17β HSD2 and aromatase could not be confirmed 309 

as targets, however, a thorough literature search revealed that 1 was reported once in literature to 310 

inhibit aromatase with an IC50 value ≥ 50 µM (Le Bail et al., 2001). Activities at such high 311 

concentrations are considered inactive by PubChem and were thus not retrieved by our bioactivity 312 

mining approach. This activity is indeed negligible, however, this value seems consistent with the 313 

result generated by us (13.8 ± 2.0% inhibition at 10 µM, see Table 3). The observed activities were 314 

all in typical ranges for non-optimized lead structures discovered by VS. Ripphausen et al. 315 
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conducted a survey in 2010, showing that hit-compounds identified by VS have defined potency 316 

endpoints (IC50, EC50, Ki, or Kd) of 4 to 19 µM in average, which is arguably high. However, the 317 

true value of VS lies in the ability to identify new chemotypes as leads, or in its turn, to identify 318 

new targets for known compounds in target prediction (Ripphausen et al., 2010). The exciting fact 319 

of this study is that our workflow could successfully prioritize new molecular targets of well-320 

known compounds with noteworthy accuracy, opening up new avenues for DHC research (see 321 

Figure 4-Figure supplement 1).  322 

The results can now be utilized in manifold ways: First, our findings revealed polypharmacology 323 

of some DHCs as a sideline. Thus, 1 and 2 seem to have promising anti-inflammatory properties, 324 

by simultaneously inhibiting 5-LO and COX-1. Investigating whether this property was inherited 325 

to gliflozin drugs could be the subject of another study. Potential anti-inflammatory properties of 326 

gliflozin drugs could contribute to the currently observed beneficial effects of those drugs in e.g. 327 

heart failure (Dutka et al., 2019). Several authors have described anti-inflammatory properties of 328 

gliflozin drugs on a functional level, however a distinct mode of action and association to distinct 329 

molecular targets is still to be elucidated (Hattori, 2018; Iannantuoni et al., 2019; Xu et al., 2018).  330 

Second, to remain with polypharmacology, e.g. 4 and 5 could serve as lead to develop dual 331 

inhibitors of AKR1C3 and 5-LO. Analogously, 2 could be used as a starting point for the 332 

development of a dual 17β HSD3/5-LO inhibitor. Both options would represent a new compound 333 

class with potentially interesting pharmacological properties. These agents could be beneficial e.g. 334 

in the treatment of prostate cancer since AKR1C3 and 17β HSD3 are frequently linked to this 335 

condition (Margiotti et al., 2002; Vicker et al., 2009) and malignant tumors are usually surrounded 336 

by a pro-inflammatory microenvironment (Neuwirt et al., 2020). Apart from the two just 337 

mentioned possibilities, several other scenarios of utilization are reasonable.  338 

Third, our target prediction workflow revealed the great potential of DHCs as lead structures. As 339 

mentioned above, DHCs are incredibly well accessible from biomass like apple leaves, in 340 

concentrations up to 20% dry mass (Gaucher et al., 2013). According to the principle of 341 

bioprospection, meaning the harnessing of resources from nature for medical purposes, apple 342 

leaves could play an interesting role in future lead optimization campaigns. 343 
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Fourth, the established in silico prediction workflow can be applied to several other compound 344 

classes alike DHCs. Therefore, this study blueprints a strategy to predict targets for known 345 

compounds, by mostly using open-source platforms, thereby empowering a great number of 346 

researchers to actively re-dedicate their compounds. This technology however is greatly enabled 347 

by the growing body of known bioactivities, hinting towards increasing accuracies reachable with 348 

target prediction campaigns in the near future, as this knowledge keeps on expanding.  349 
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MATERIALS AND METHODS 350 

Dataset Assembly. A dataset representing the chemical space of DHCs was gathered, containing 351 

naturally occurring DHCs as well as semi-synthetic derivatives of the latter. First, compounds 1 – 352 

10 were included. Then, a thorough literature search was conducted in SciFinder, using 353 

substructure search function for 1,2-diphenyl-propan-1-one. The SciFinder query was conducted 354 

on the 8th of August 2017 and yielded 5457 DHCs. The resulting compounds were checked 355 

manually for their origin (natural product vs. semi-synthetic), created in ChemDraw Professional 356 

(version 16.0.0.82 (68), PerkinElmer, Waltham, MA, USA) with assigned stereochemistry, and 357 

double checked with SciFinder using the ‘search SciFinder’ function in ChemDraw. For 358 

compounds, especially natural products, with lacking absolute configuration, all possible 359 

stereoisomers were included. Finally, the dataset ‘DHC_full’ contained 425 natural or semi-360 

synthetic DHCs (corrected for stereochemistry) and was converted with a custom-built Pipeline 361 

Pilot protocol (version 9.5.0.831, Dassault Systèmes BIOVIA, Vélizy-Villacoublay, France) to an 362 

sd-file (DHC_full.sdf) and a csv-file (DHC_full.csv). The Pipeline Pilot protocol is outlined in 363 

Supplementary Information S-1. The files are provided on GitHub (see Supplementary 364 

Information S-2). 365 

Bioactivity Mining. The mining of bioactivity data of DHCs was done through a script coded in 366 

Python 3 (version 3.7.3, https://www.python.org/) called 367 

‘bioactivity_network_generator_SMILES.py’. This script iterates over a two-column csv-table 368 

(name, SMILES) while fetching one SMILES code at a time. The script interacts with various 369 

application programming interfaces (APIs) of PubChem (PUG REST, 370 

https://pubchem.ncbi.nlm.nih.gov/) (Kim et al., 2018), UniProt (https://www.uniprot.org/) (The 371 

UniProt Consortium, 2018), and Reactome (https://reactome.org/) (Fabregat et al., 2017). At the 372 

first stage, the SMILES code is posted as a query to the PubChem API, which returns the desired 373 

PubChem compound ID (CID), if present. The CID is then used to post a second query to the PUG 374 

REST API, fetching all assay IDs (AIDs) associated with the posted CID, for which the assay 375 

result was flagged as ‘active’. The produced list of AIDs is then annotated with the respective gene 376 

names from PubChem. This step eliminates all AIDs that are not associated to a single protein (e.g. 377 

cell-based assays). The gene name from PubChem can be translated to UniProt names and the 378 

respective entry names used in UniProt using the UniProt KB API. In a last step, the UniProt entry 379 
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name was used to retrieve associated human pathways from the Reactome API. The gathered 380 

bioactivity data of all provided SMILES codes was processed in Pandas (version 0.24.2, 381 

https://pandas.pydata.org/) (McKinney, 2010) and finally written to a csv-file in the simple 382 

interaction file (sif) format, which can be visualized in e.g. Cytoscape (https://cytoscape.org/) 383 

(Shannon et al., 2003). Interaction weights were calculated by using the ‘group by’ method 384 

implemented in Pandas chained with the ‘count()’ method. Interaction weights thus are an integer 385 

representing the appearances of a particular interaction in PubChem. The script 386 

‘bioactivity_network_generator_SMILES.py’ is provided on GitHub (see Supplementary 387 

Information S-2). 388 

Pharmacophore-based Parallel Virtual Screening. Pharmacophore-based parallel VS was 389 

performed using the historically grown in-house pharmacophore model databased built and 390 

maintained by Prof. Daniela Schuster. The database consists of 387 ligand-based and structure-391 

based pharmacophore models for 39 protein targets built in two different software environments, 392 

namely Discovery Studio (version 4.5.0.15071, Dassault Systèmes BIOVIA, Vélizy-Villacoublay, 393 

FR) and various versions of LigandScout (Inte:Ligand, Vienna, AT). For the Discovery Studio 394 

models, parallel screening was performed using the ‘ligand profiler’ protocol (for settings refer to 395 

Supplementary Information Table S-4). Screening of the LigandScout models was performed 396 

using the ‘iscreen.exe’ program via command line and the databases created for every LigandScout 397 

version by using the ‘idbgen.exe’ via command line for the respective LigandScout versions. Thus, 398 

Omega (OpenEye Scientific Software, Santa Fe, NM, USA) with ‘best’ settings was used. The 399 

targets represented by these models are predominantly targets belonging to the arachidonic acid 400 

(AA) cascade as well as corresponding downstream signaling and steroid metabolism and 401 

signaling. The targets are often associated with inflammation, neoplasm, or are popular off-targets. 402 

A detailed compilation of all models is provided in Supplementary Information Table S-3. 403 

Target Prediction with Publicly Available Tools. Next to the pharmacophore-based parallel 404 

screening, three target prediction tools that are available as web servers were used, namely SEA 405 

(http://sea16.docking.org/) (Keiser et al., 2007), STP (http://www.swisstargetprediction.ch/) 406 

(Daina et al., 2019; Gfeller et al., 2014; Gfeller et al., 2013), and SP (http://prediction.charite.de/) 407 

(Dunkel et al., 2008; Nickel et al., 2014). SEA is a 2D ligand-based, similarity ensemble method. 408 

Each target present in SEA is described by a set of its known ligands of various size. An input 409 
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ligand is then compared against all ligands of all target sets via Tanimoto similarity of the ECFP4 410 

fingerprints. For each target, the Tanimoto similarities are summed up and z-scores calculated. 411 

Since the authors computed the distribution of z-scores obtained between random similarity 412 

ensembles, the z-scores of a screening ligand to each target can be used to calculate expectation 413 

values (E-values). Those E-values, similar as in the BLAST algorithm, express the likelihood that 414 

the observed similarity happened due to coincidence. SEA uses bioactivity data derived from 415 

ChEMBL (Gaulton et al., 2017) and is maintained by the University of California, San Francisco 416 

(UCSF). SP operates in a very similar way to SEA, being a 2D similarity ensemble approach and 417 

using ECFP4 fingerprints as well. Bioactivities that were used to build reference target sets in SP 418 

were derived from ChEMBL (Gaulton et al., 2012), Binding DB (Liu et al., 2007), and SuperTarget 419 

(Günther et al., 2008; Hecker et al., 2012). SP is maintained by the structural bioinformatics group 420 

of the Charité - University Medicine Berlin in Germany. In contrast to SEA and SP, STP makes 421 

use of the ligand-based similarity ensembles principle as well, however it is a hybrid method 422 

between 2D and 3D. 2D similarity is computed via Tanimoto similarity using FP2 fingerprints, 423 

while 3D similarity is described as Manhattan distance between the Electroshape (Armstrong et 424 

al., 2010) vectors. Finally, a logistic regression classifies the input ligand based on 2D and 3D 425 

similarities. STP derived its bioactivity data also from ChEMBL. It was developed by the Swiss 426 

Institute of Bioinformatics (SIB). The online servers described above were accessed via a web 427 

scraper script called ‘TarPredCrawler.py’ written in python 3. The script uses selenium 428 

(https://www.seleniumhq.org/, version 3.141.0) to send post requests of smiles codes to the four 429 

servers and downloads the resulting prediction as a table. The script ‘TarPredCrawler.py.py’ is 430 

provided on GitHub (https://github.com/fmayr/DHC_TargetPrediction). 431 

Biochemical Assays. Aromatase assays were performed as previously described (Pandey et al., 432 

2007). Briefly, genes for human wild-type aromatase and NADPH P450 oxidoreductase were 433 

transfected into E. coli, to express both proteins in the recombinant form and proteins were purified 434 

using multiple chromatograpgic procedures as described previously. Liposomes containing both 435 

enzymes were formed for the assay of enzymatic activities. aromatase activity was quantified by 436 

measuring the release of tritiated water after incubation with 1β-3H androstenedione, a method 437 

introduced by Lephart and Simpson (Lephart et al., 1991). Ten nM Anastrozole (CAS: 120511-438 

73-1) were used as positive control.  439 
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Inhibitory activities towards AKR1C3, 17β HSD3, and 17β HSD2 were assayed as described in 440 

Schuster et al. (Schuster et al., 2011). Briefly, AKR1C3 and 17β HSD2 were transformed into E. 441 

coli BL21 (DE3) and 17β HSD3 transfected into HEK293 cells. For assaying inhibitory activities 442 

towards 17β HSD2, bacterial suspensions were used, while cell suspensions were used to assay 443 

17β HSD3 and bacterial lysates were used to assay AKR1C3. The protein containing lysates and 444 

suspensions, were incubated with tritiated substrates and cofactors (21 nM 17β-estradiol (6,7-3H) 445 

and 750 nM NAD+ for 17β HSD2 and 10,6 nM 4-androstene-3,17-dione (1,2,6,7-3H) and 600 µM 446 

NADPH for 17β HSD3 and AKR1C3) in the presence of test compounds in a final concentration 447 

of 10 µM (compounds supplied in DMSO; 1% final DMSO in the assay). After a defined 448 

incubation time, substrates and products were extracted using solid phase extraction (SPE) and 449 

analyzed by RP-HPLC and online scintillation counting. Quantification of relative conversion 450 

occurred via chromatographic peak integration and the percentage of inhibition was calculated 451 

relative to a mock control (1% DMSO). As positive controls compound 2-9 (CAS: 745028-76-6) 452 

(Schuster et al., 2011) was used for AKR1C3 assays, compound 24 (CAS: 873206-61-2) (Möller 453 

et al., 2009) for 17β HSD3 assays and compound 19 (CAS: 1340482-23-6) (Wetzel et al., 2011) 454 

for 17β HSD2 assays, all in 1 µM concentration. Inhibitory activities towards 5-LO and COX-1 455 

were determined as described earlier by Schaible et al (Schaible et al., 2014). and Koeberle et al. 456 

(Koeberle et al., 2008), respectively. Briefly, polymorphonuclear leukocytes (for 5-LO) and 457 

human platelets (for COX-1) were freshly isolated from the blood of healthy volunteers, pre-458 

incubated with the potential inhibitors and stimulated with 2.5 μM Ca2+-ionophore A23187 or 459 

arachidonic acid, respectively. The reaction was stopped, substrates and products isolated and 460 

analysed on RP-HPLC. 5-LO products included LTB4, its trans-isomers, 5-HPETE, and 5-HETE, 461 

while the COX-1 product was quantified as 12‐HHT. Again, quantification occurred via 462 

chromatographic peak integration and the percentage calculated relative to a mock control. 463 

Indomethacin (CAS: 53-86-1) in 10 µM concentration was used as positive control for COX-1 464 

assays and Zileuton (CAS: 111406-87-2) in 3 µM concentration for 5-LO assays.  465 

Activities for assaying 11β hydroxysteroid dehydrogenase 1 (11β HSD1) and 11β hydroxysteroid 466 

dehydrogenase 2 (11β HSD2) were determined as previously described by Kratschmar et al. 467 

(Kratschmar et al., 2011). Briefly, lysates of HEK-293 cells stably expressing human 11β HSD1 468 

were incubated with 200 nM cortisone (including 10 nM [1,2-3H]-cortisone), 500 µM NADPH 469 

and the test substance. For 11β HSD2, lysate of HEK-239 cells stably expressing human 11β HSD2 470 
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was incubated with 50 nM cortisol (including 10 nM [1,2,6,7-3H]-cortisol), 500 µM NAD+ and the 471 

test compounds. Conversion of radiolabeled substrate was determined and compared to enzyme 472 

activity in the control sample. 18β-Glycyrrhetinic acid (CAS: 471-53-4) was used as positive 473 

control for both enzymes. Inhibitory activities for 3β hydroxysteroid dehydrogenase 1 (3β HSD1) 474 

and cytochrome P450 17A1 (CYP17A) were assayed as described before by Samadari et al. and 475 

Udhane et al (Samandari et al., 2007; Udhane et al., 2017). Activities were measured in cell-based 476 

assays, using Human adrenocortical NCI-H295R cells obtained from American Type Culture 477 

Collection (ATCC; CRL-2128). The cells were treated with tritiated substrates and the product 478 

mix separated by thin layer chromatography (TLC) and the resulting spots subsequently 479 

densiometrically quantified. Trilostane (CAS: 13647-35-3) was used as positive control. Inhibitory 480 

activities towards soluble epoxide hydrolase (sEH) were assayed using the purified enzyme as 481 

described by Wixtrom et al. and Morisseau et al. (Morisseau et al., 2000; Wixtrom et al., 1988). A 482 

baculovirus was used to transduce sEH into Sf9 insect cells, which were subsequently lysed and 483 

and the enzyme purified using affinity chromatography. Enzyme inhibition could then by 484 

quantified using the purified sEH and substrate which turned into a fluorophore by the latter, which 485 

can be read at 465 nm after excitation at 300 nm (Waltenberger et al., 2016). AUDA (CAS: 486 

479413-70-2) was used as positive control. Inhibitory activities towards 17β HSD4 were assayed 487 

according to the description in Schuster et al. (Schuster et al., 2011). Briefly, a plasmid coding for 488 

17β hydroxysteroid dehydrogenase 4 (17β HSD4) was transformed into E. coli BL21 (DE3) Codon 489 

Plus RP (Stratagene). Subsequently, bacterial suspensions were prepared and incubated in the 490 

presence of 21 nM 17β-estradiol (6,7-3H), 750 nM NAD+, and 10µM test compound (1% DMSO 491 

final). After a defined incubation time, substrate and product were extracted using solid phase 492 

extraction (SPE) and analyzed with RP-HPLC in a Beckman-Coulter system and online 493 

scintillation counting. Enzymatic conversion was calculated by integrating substrate and product 494 

peaks and calculating percent inhibition relative to a control assay without inhibitor (1% DMSO). 495 

Compound 19 (CAS: 1340482-23-6) from (Wetzel et al., 2011) served as positive control. 496 

Materials. Compounds 1 – 10 were purchased at TransMIT GmbH (PlantMetaChem, Gießen, 497 

Germany) with the following product numbers: 1: P 036; 2: H 031; 3: D 017; 4: A 020; 5: D 018; 498 

6: S 025; 7: P 037; 8: T 017; 9: P 064; 10: N 019. Purity was assessed by HPLC-DAD (280 nm) 499 

found to be above 95% for all compounds.  500 
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DATA AVAILABILITY 518 

Table 4. Files used and produced during this study. Every file is freely available at GitHub 519 

(https://github.com/fmayr/DHC_TargetPrediction). For greater clarity, a file scheme is provided 520 

in Supplementary Information S-2 describing all dependencies. 521 

File Name Contains Subfolder in GitHub 

DHC_full.csv DHC chemical space as csv-file 

(name, smiles). 

/dataset 

DHC_full.sdf DHC chemical space as 3D-

molecule files. 

/dataset 

DHC_full_lit_network.csv Known DHC biological space and 

result of bioactivity mining. Ready 

to be imported to Cytoscape. 

/bioactivity%20mining 

DHC_full_online.csv Result produced by online target 

prediction servers (SEA, STP, SP) 

and DHC_full.csv as input.  

/TarPredCrawler 

DHC_full_LS_mergedhits.csv Csv-file of hitlists produced by 

LigandScout models in Ph-DB. 

/pharmacophore-based 

parallel VS 

DHC_full_ligandprofiler.csv Csv-file of hitlists produced by 

Discovery Studio model in Ph-DB. 

/pharmacophore-based 

parallel VS 

DHC_full_inhouse.csv Joined results of LigandScout and 

Discovery Studio outputs. 

/pharmacophore-based 

parallel VS 

DHC_full_pivoted.csv Joined results of SEA, STP, SP, 

and Ph-DB predictions for DHC 

chemical space. 

 

DHC_10_pivoted.csv DHC_full_pivoted.csv filtered for 

compounds 1 – 10.  

 

DHC_10_network.csv DHC_10_pivoted.csv joined with 

DHC_full_lit_network.csv. 

Network file ready to be imported 

to Cytoscape. Contains known and 

predicted compound-target 

associations. 

 

Bioactivity_network_generator

_SMILES.py 

Python script used for literature 

mining. For installation instruction 

see README. 

 

TarPredCrawler.py Python script used for submitting 

and collecting results from SEA, 

STP, and SP. 

 

DHC_targetpreidction_datatrea

tment.ipynb 

Jupyter Notebook containing all 

data treatment and plotting 

performed in this study. 

 

 522 
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