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A controlled thermoalgesic stimulation device to
identify novel pain perception biomarkers

Maider Nunez Iberol’T, Borja Camino—PontesQ’T, Ibai Diez>*, Asier Erramuzpe“’, Endika
Martinez Gutiérrez>%, Sebastiano Stramaglia®, Javier Ortiz Alvarez-Cienfuegos”?, and
Jesus M. Cortes?8:9+*

Abstract—Objective: To develop a new device that will
help identify physiological markers of pain perception
by reading the brain’s electrical activity and the bodies
hemodynamic interactions while applying thermoalgesic
stimulation. Methods: We designed a compact prototype
that generates well-controlled thermal stimuli using a com-
puter driven Peltier cell while simultaneously capturing
electroencephalography (EEG) and photoplethysmography
(PPG) signals as the stimuli are varied. The study was
performed on 35 healthy subjects (mean age 30.46 years,
SD 4.93 years; 20 males, 15 females) and to account for
the inter-subject variability in the tolerance to thermal
pain, we first determined the heat pain threshold (HPT)
for each subject, defined as the maximum temperature that
the subject can withstand when the Peltier cell gradually
increases the temperature. Subsequently, we defined the
pain parameters associated with a stimulation temperature
equivalent to 90% of the HPT, comparing this to the
no-pain state (control) in the absence of thermoalgesic
stimulation. Results: Both the one-dimensional and the
two-dimensional spectral entropy (SE) obtained from both
the EEG and PPG signals could differentiate the condition
of pain. In particular, the PPG SE was significantly
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reduced in association with pain, while the SE for EEG
increased slightly. Moreover, significant discrimination
occurred within a specific range of frequencies, 26-30
Hz for EEG and about 5-10 Hz for PPG. Conclusion:
Hemodynamics, brain dynamics and their interactions can
discriminate thermal pain perception. Significance: The
possibility of monitoring on-line variations in thermal
pain perception using a similar device and algorithms
may be of interest to study different pathologies that
affect the peripheral nervous system, such as small fiber
neuropathies, fibromyalgia or painful diabetic neuropathy.

Index Terms—Thermoalgesic Stimulation, Heat Pain
Threshold, Spectral Entropy, Pain perception, Photo-
plethysmography, Electroencephalography, BioPac.

I. INTRODUCTION

HE synergy between electronic technology and

state-of-the-art instrumentation, together with
the incorporation of statistical analysis and data
science, provides tremendous possibilities in neu-
roscience research [1]. Here we have designed a
new, compact hardware-device to measure systemic
responses of the peripheral nervous system (PNS),
such as the perception of pain, by progressively
increasing a Peltier cell’s temperature in contact
with a subjects skin or hand. The device allows si-
multaneously recording of brain and heart dynamics
by measuring electroencephalography (EEG) and
photoplethysmography (PPG)!, respectively. There-
fore, our device can be used to quantitatively mea-
sure systemic physiological responses to thermal
stimulation, allowing the underlying structural and

'PPG signals provide an indirect measure of the heart’s physio-
logical response. When the variability in the heart rate associated
with the signal is assessed, both PPG and a direct measure like an
electrocardiogram (ECG) provide very similar values, which makes
PPG a good proxy to study dynamic the variations in the response
of the heart.
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functional changes to be elucidated, and offering an
insight into the physiological interactions provoked,
the so-called physiolome [2]-[4].

But what exactly is pain perception and how can
it be measured? A definition of pain was formulated
more than 50 years ago [5]: Pain is an unpleasant
experience that we primarily associate with tissue
damage or describe in terms of tissue damage or
both. Since then, multidisciplinary approaches and
the emergence of models for chronic pain-related
disease have produced substantial advances in our
understanding of pain, its assessment and treatment.
As such, a more refined IASP’s definition has been
proposed, whereby: Pain is an unpleasant sensory
and emotional experience associated with actual or
potential tissue damage, or described in terms of
such damage. Accordingly, it is now well-accepted
that pain encompasses a systemic response that can
be detected or perceived over quite different scales
and systems.

Here we have asked whether pain perception
might be encoded through different physiological
signals and we sought to assess their possible inter-
actions. The physiological response to pain has been
addressed previously using approaches like EEG
[6], [7] and PPG [8], [9], yet these signals are typ-
ically analyzed separately. Moreover, the paradigm
to produce painful stimulation relies on human in-
tervention [10] or environmental factors [11], which
may compromise the reliability of these results.
By contrast, the device we have designed produces
well-controlled painful stimulation. Although not
yet approved by the Food and Drug Administration
(FDA), General Electric Healthcare introduced the
Surgical Pleth Index (SPI) to measure the increase
in sympathetic activity from the PPG signal in
response to painful (nociceptive) stimuli [12]. How-
ever, the SPI only works in conjunction with general
anesthesia and thus, much of the cortical processing
that occurs when a painful stimulus is received
will be ignored. Moreover, the precise relationship
between the entropy of physiological responses and
pain perception remains unclear. Nevertheless, the
relationship between variations in entropy following
exposure to a nociceptive stimulus has been assessed
previously [13], showing an increase in the spatial
entropic patterns in response to painful stimuli.

Here we have studied the dynamic physiologi-
cal interactions that are produced in response to
a painful stimulus in an attempt to define the

perception of pain. In contrast to other studies,
we designed and used a device that objectively
controls the painful thermal stimulus generated,
whilst synchronously recording electrical neuronal
activity and some hemodynamic parameters. The
main working hypothesis was that by simultane-
ously monitoring these variables in response to a
painful stimulus and comparing them to the basal
response, novel aspects of sympathetic excitation
and regulation will be revealed that are related to
the perception of pain. From the data obtained, we
intend to validate the usefulness of our system to
evaluate groups of patients with different patholo-
gies associated with abnormalities in the PNS.

II. METHODS
A. Hardware

To design and manufacture an electronic device
to generate the stimuli, we used OrCAD (version
16.6 Lite) to automate the production of the printed
circuit, the board design and photolithography, and
for the chemical etching to finally manufacture
the boards. Once the circuit boards were designed
and manufactured, the electronic components were
inserted and soldered onto them at the Electronic
Technology laboratory in the Bilbao School of
Engineering. We used MATLAB (version R2017a,
MathWorks Inc., Natick, MA, USA) to create the
user interface, connecting it to the hardware de-
vice that generates the stimuli, and to process the
physiological signals, run the spectral entropy (SE)
algorithms, presents the results and prepare the
final images. The BioPac system (BioPac Systems,
Inc, Student Lab MP36) was configured to read
the physiological variables and the data obtained
was processed using the AcqKnowledge software
(version BSL PRO 3.7), which records, analyses
and filters the data in real-time, presenting it as a
continuous record, an X-Y chart or a histogram.

B. Participants and Ethical considerations

The study was carried out on 35 healthy volun-
teers (20 men; 15 women) recruited at the Univer-
sity of the Basque Country and with a mean age
of 30.46 years (SD 4.93 years). All the partici-
pants provided their signed informed consent and
the study was approved by the Ethical Committee
of the University of the Basque Country (project
2017/092). The data were acquired according to the
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guidelines laid down by the University’s Ethical
Committee and the Ethical Principles for Medical
Research Involving Human Subjects set out in the
Helsinki Declaration. The inclusion criteria were to
be aged between 20 and 40 years-old and to have
provided signed informed consent. The exclusion
criteria were any diagnosed illness, medication use
or drug consumption in the month prior to testing,
the refusal of the volunteer to participate in the study
or the consumption of energetic drinks immediately
prior to testing.

C. Capture and cleaning of physiological signals

Before starting the experiments, the subjects were
seated near a table with a computer on it, listening to
relaxing music so that the experiments commenced
in a calm and emotional state. In order to minimize
eye-blinking artifacts, all subjects were asked to
remain silent with their eyes closed, and to stay
still without crossing their legs throughout the ex-
periment. The physiological variables captured were
the EEG signals from both cerebral hemispheres and
the PPG signals from the contralateral hand to that
being heated by the Peltier cell (see figure 1A).

The EEG signals were obtained through six elec-
trodes situated in accordance with the Electrode Po-
sition Modified Combinatorial Nomenclature [14],
two on one cerebral hemisphere, another two on the
other hemisphere and two more as reference points.
The electrodes used were silver/silver chloride gel
types. The EEG electrodes were located on the
forehead using a bipolar arrangement, measuring
the differentiated voltages between the FP1 (Frontal
Pole) and AF7 (Anterior Frontal) electrodes in one
of the channels, and between the symmetrical FP2
and AF8 points in the second channel. For the ref-
erence electrodes, the first channel uses an electrode
in the lower front central position, while the second
channel uses the upper front central position. A
differential distribution was employed with sepa-
rate but analogous reference points, such that the
readings from the left and right hemispheres are
largely comparable. The EEG electrode location at
the frontal positions guarantees a superior amplitude
and integrity of the signals acquired, resulting in
a lower impedance of the electrode-skin interface.
Moreover, the prefrontal locations of the EEG might
modulate the pain-related autonomic response [15].

The PPG signal was acquired by attaching a trans-
ducer to the tip of the index finger, consisting of a

matched infrared emitter and a photodiode detector
that transmits the changes in infrared reflectance
resulting from the variation in blood flow. When the
PPG transducer is placed on the skin, close to the
capillaries, the reflectance of the infrared light from
the emitter to the detector will change in accordance
with the capillary blood volume, enabling the blood
volume pulse waveform to be recorded. It is impor-
tant to note that the PPG signal is an efficient and
interesting alternative to measure heartbeat intervals,
since it is simpler than the electrocardiogram while
achieving a precise measurement for heart rate vari-
ability [16].

All the signals were filtered with a 38.5 Hz
Low Pass Notch Filter incorporated into the series
amplifier modules of BioPac, thereby eliminating
the 50 Hz mains interference. Two differentiated
signals (FP1 minus AF7 and FP2 minus AFS)
were obtained and filtered using a recent data-
driven algorithm that removes ocular and muscle
artifacts from the single-channel data, referred to
as the surrogate-based artifact removal (SuBAR)
method [17]. Although the full details are given
elsewhere [17], the algorithm follows the pipeline:
1, Z-score of the data; 2, Maximal Overlap Wavelet
Transform (MODWT) of the data, using symlets
of order 5 and with 5 levels of decomposition; 3,
Removal of artifacts, defined as the values of the
wavelet coefficients that are outliers relative to the
distribution of the values obtained from the data
surrogates (to identify outliers, we considered a
5% significance level and the outlier coefficients
were eliminated by substituting their values with the
average coefficients obtained from the surrogates);
4. Reconstruction of the time-domain signal using
the inverse MODWT and the cleaned coefficients.
All the calculations were implemented in MATLAB
(version R2019a, MathWorks Inc., Natick, MA,
USA).

D. Stimulation protocol

The system for data capture is shown in Figure
1A. There are two main elements to this set-up, the
BioPac and the equipment to generate the stimulus
connected to a portable unit. The AcqKnowledge
program displays the signals received from the PPG
sensor (1), the sensor temperature (2) and the EEG
(3,4), as well as the reference points inserted by
a push-button to mark the point the heat pain
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threshold is reached (5), the maximum temperature
that the subject can withstand in terms of exposure
to heat pain. The no-pain condition (control) was
obtained in complete absence of a painful stimula-
tion (figure 1B), measuring the electrophysiological
signals while keeping the participant’s hand off
the Peltier cell. This condition persisted for two
minutes.

Signals were recorded over another two or three
minutes to estimate the heat pain threshold (HPT)
[18]. This was calculated while the participant
placed one hand on the Peltier cell, recording
the variables using the BioPac and progressively
increasing the cell’s temperature in a controlled
fashion, varying it in increments of 0.5°C up to
the maximum temperature that the participant with-
stood, the HPT. This value was subject-dependent.
The strategy of progressively increasing the temper-
ature was critical in these experiments and it was
performed in this way to achieve dual activation of
the C receptors responsible for heat sensing and the
AJ fiber receptors that process noxious stimuli [19],
[20].

A 2 minute recording was obtained during the
pain stimulus, defined at a temperature equal to
90% of the HPT and chosen in this way as the
maximum as possible without exceeding the Ethical
Committee’s recommendations. All the temperature
values were transformed to values relative to the
HPT and this normalization permits a comparative
analysis across subjects.

E. Spectral entropy to detect pain perception

The SE is a generalization of the Shannon en-
tropy, where the state probability p(x) is replaced
by a normalized power spectral density p(f), which
represents the probability density function of the
power as a function of frequency. Here, the power
SE was calculated through the absolute square of
the Fast Fourier Transformation, calculated with the
function fft in MATLAB. After normalization, we
obtained p(f) and from there, the one-dimensional
spectral entropy was calculated as:

SEL ==Y p(f)logp(f), (1)
f

and applied individually to the three signals: EEG1

(left hemisphere), EEG2 (right hemisphere), and

PPG.

For the two-dimensional SE we made use of the
two-dimensional Fast Fourier ff#2 transformation in
MATLAB, and after normalization, we defined:

SE2=—> > p(fi. fo)logp(fi, f2),

fi fo

applied to any pairs of variables in the triplet EEGI,
EEG?2 and PPG.

Here, both SE1 and SE2 were calculated in
80%-of-overlapping windows of 5 Hz, and the
code can be downloaded at https://github.com/
compneurobilbao/spectral-entropy-maider.

F. Statistical Analyses

For both SE1 and SE2, we calculated the FFT
using the Blackman window function (implemented
as blackman in Matlab) over time windows of 500
time points, and with a sampling frequency of 500
Hz, corresponding to 1 sec. After sliding the time
window, we obtained a time series for SE1 and SE2,
the latter representing a temporal sequence of the
SE2 matrices. For each frequency value, the final
SE1 and SE2 values were obtained by averaging all
the entropy values in the temporal dimension. These
temporal mean values of SE1 and SE2 were those
used for the statistical comparison between the pain
and no-pain conditions.

The discriminability between conditions was cal-
culated as D = log,,(pvalue) and four stages were
followed to obtain the p-values. We first calculated
the SE1 and SE2 time series for each condition
and subject, and we then averaged the two metrics
over the entire time dimension. We then employed a
Wilcoxon signed-rank test between the conditions,
with the different subject measures considered as
observations. Finally, to correct for multiple com-
parisons we applied a false-discovery-rate (FDR)
and Bonferroni corrections, the latter using a sig-
nificance threshold equal to p* = %, where F
corresponds to the number of different frequencies
used to compare the SE values (40 EEG and 10 for
PPG). All the statistical analyses were performed
in MATLAB (version R2019a, MathWorks Inc.,
Natick, MA, USA).

III. RESULTS

A cohort of N = 35 subjects participated in the
study and we obtained a HPT value for each subject
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when stimulated with our device (figure 1C, Table
I), with a mean HPT of 42.68°C (SD 1.36). There
were apparently no significant gender differences in
the HPT, as witnessed when the HPT of a subgroup
of males (N=16, mean age 30.04 years: t-test=-0.46,
p-value=0.64) was compared with an age matched
group of females (N=16, mean age 29.23 years: t-
test=-0.45, p-value=0.63). This result was consistent
with previous studies showing no differences over
an age range similar to ours [21]. Importantly,
normalization of the temperature values to the HPT
allowed the two conditions of pain and no-pain to be
defined independently of the participant, making the
different metrics across participants and conditions
comparable.

The SE values obtained from the different phys-
iological signals between the pain and no-pain
conditions were compared following the procedure
explained in figure 2. The statistical significance
of all the possible comparisons was assessed with
the discriminability (D) obtained from the p-values
after a Wilcoxon signed-rank test was performed on
the data from the different conditions (Methods, the
discriminability is illustrated in figure 3A for the 1D
case). Initially, the SE1 time series was calculated
for each condition and participant, and the temporal
averages were then calculated. These values were
compared between conditions and across the differ-
ent subjects (Figure 3A), representing the value of
D as a function of the different frequencies over
which the comparisons were performed, i.e.: in the
range of 1 to 40 Hz for the EEG and 1 to 10 Hz
for the PPG. As explained in the methods, SE1 was
calculated within a window of size 5 Hz for each
frequency value on the x-axis. Thus, the entropy
was calculated in the range from 1 to 6 Hz for the
value of 1 Hz on the x-axis, and in the range from
2 to 7 Hz for the value of 2, etc. Because the EEG
and the PPG had different upper limits along the
x-axis?, the Bonferroni significance threshold also
differed for the two modalities, as F was equal to
40 for the EEG and 10 for the PPG.

SE1 was able to discriminate the pain condition
for the three sets of sensory data, EEG1 (purple
line), EEG2 (yellow line) and PPG (green line), with
the major discriminability found at 25-30 Hz for the

“The upper limits of 40 Hz for the EEG and 10 Hz for the PPG
were estimated by examining their corresponding spectrograms for
the conditions (figure S1), simply choosing a value at which the
spectrum was negligible for frequency values above the chosen limit.

EEG and at 5-10 Hz for the PPG (the region of
Bonferroni significance is illustrated in figure 3A
with a transparent dark-gray rectangle, while that
for FDR correction is marked in light-gray). The
evolution of SEI over time was obtained from the
three signals during 20 sec, which corresponded to
10,000 time points for a sampling frequency of 500
HZ (figure 3B). After taking the temporal average of
SEI1, the mean entropy across participants provided
significant differences between the conditions, as
illustrated in figure 3C. The values of maximum
discriminability of SE1 for the three classes of
signals EEG1, EEG2 and PPG were achieved at
29 Hz (p< 1072), 28 Hz (p< 1073) and 7 Hz
(p< 1073), respectively.

We also assessed the discriminability between
the conditions that achieved SE2, analyzing the 2D
SE values at different frequencies for the pairs of
signals (EEG1, EEG2), (EEGI1, PPG) and (EEG?2,
PPG), as well as across different frequency ranges
(figure 4). Like SE1, SE2 was also calculated in
squared windows of size 5 x 5 Hz?. None of
the comparisons of SE2 survived the Bonferroni
correction or the FDR and thus, we only report
here the uncorrected p-values. The values of max-
imum discriminability and the associated p-values
occurred at (2,5) Hz for (PPG, EEGI1: p< 1072)
and at (33,31) Hz for (EEG1, EEG2: p ~ 0.01), yet
they were not significant for PPG,EEG2 (p=0.05).

IV. DISCUSSION

Pain perception is a prototypic example of a well-
orchestrated systemic response. Here, we have de-
veloped a compact device to simultaneously record
physiological brain and heart parameters in response
to a well-controlled painful thermal stimulus. The
device consists of a Peltier cell that allows the
temperature to be precisely varied under the control
of an external computer, two EEG frontal electrodes
(attached to the left and right hemispheres) and a
PPG sensor located on one finger of the opposite
hand to that on which the Peltier cell is placed.
This platform can provide very precise information
on the thresholds of maximum thermal tolerance to
heat, which can potentially serve to assess novel
strategies for both the diagnosis and follow-up of
different pathological conditions.

Several studies have assessed the brain’s response
to heat induced pain using EEG [22]-[24], yet
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the novelty of this study is that a compact set-
up has been developed to record the physiological
responses of the heart and the brain while a sub-
ject receives a painful heat stimulus. This device
enabled the mean heat pain threshold to be assessed
in the cohort, defining a threshold of 42.68°C in
a population with a mean age of 30-years-old.
This result was consistent with previous studies
using quantitative sensory testing (QST) [18], [21],
thereby validating the reliability of our device to
measure heat pain thresholds.

From a methodological point of view, it is im-
portant to note that these values were obtained
when heating one of the subject’s hands for the
first time. When we repeated the same procedure
a second time on the contralateral hand soon after
heating the other hand, the physiological responses
in the PPG differed from that reported here (data
not shown). Hence, heating one hand affected the
physiological response of the subsequent heating of
the contralateral hand. Accordingly, further studies
will be needed to fully clarify these relationships as
here we focused on signals from the initial heating
of a naive hand, the right hand in 23 subjects and
the left hand in the remaining 12 participants (for
exact values see Table I).

Our study shows that thermal pain is character-
ized by a reduction in the entropy of the heart
response measured by PPG, which suggests that
in addition to the autonomic nervous system’s re-
sponse, exposure to a thermal pain stimulus de-
creases the unpredictability of physiological systems
as measured by their SE. In agreement with previous
studies, we propose that upper supraspinal centers
might fulfil a critical role in this physiological
process [25]. Moreover, the posterior ventral nu-
cleus of the thalamus might also coordinate the
visceral sensitivity as it is activated by mechanical
and thermal stimuli in a nociceptive range [26].
Furthermore, we suggest that the primary and the
secondary somatosensorial cortex, in addition to the
Anterior Cingulate Cortex might be involved in this
physiological mechanism [27], [28].

Other algorithms based on SE in different fre-
quency bands have been introduced to monitor
physiological states. The most widely known is
the bispectral index (BIS), which is used in daily
clinical practice to monitor the depth of anesthesia
during surgical interventions in real-time [29], [30].
Through a device that uses four EEG electrodes

located on the patient’s forehead to measure the
brain’s electrical activity, BIS calculates the SEs
in different frequency bands and combines them
using a proprietary algorithm to produce a numeric
index between 100 (no anesthesia) and 0 (maxi-
mum anesthesia, where the level of consciousness
measured by the frontal EEG activity is zero). The
FDA have validated that BIS levels between 40
and 60 are adequate for general anesthesia during
surgical interventions. For pain perception, such
FDA-approved indices do not exist to date.

It 1s well-known that several chronic pain syn-
dromes are associated with alterations to the activity
of the Descending Nociceptive Inhibitory System
(DNIS), such as fibromyalgia, painful diabetic neu-
ropathy and lower back pain [31]—[33]. The DNIS is
comprised of a network of cortical and subcortical
brain areas, including the anterior insula, middle
frontal gyri and amygdala, and the rostral ventro-
medial medulla and periaqueductal gray brainstem
regions, which can inhibit nociceptive afferent brain
input [34], [35]. A relationship between the DNIS
and Heart Rate Variability (HRV) has been shown,
whereby patients with an impaired DNIS have a
lower resting HRV [36], consistent with the re-
duced entropy found here [37], [38]. Moreover, an
abnormally low HRV was detected in a group of
individuals with Chronic Fatigue Syndrome, indi-
cating that they might have weaker parasympathetic
modulation of their heart rate [39]. In other chronic
pain syndromes like fibromyalgia, a reduced HRV
was thought to reflect weaker emotional adaptability
and resistance to stress [40].

Our findings reveal a close relationship between
pain perception and the brain’s physiological en-
tropy at different frequencies, in agreement with
previous studies showing that pain is associated
with a spatially extended network of dynamically
recruited brain areas, resulting in complex tem-
poral—spectral patterns of brain activity [41]. In
particular, pain produces individual variations in the
SE of both EEG and PPG at different frequen-
cies (measured by SEl), as well as in their bi-
dimensional interaction (as by SE2). Pain-related
neuronal oscillations were observed previously at
Theta (4-7 Hz), Alpha (8-13 Hz), Beta (14-29 Hz),
and Gamma (30-200 Hz) frequencies [42]-[45].
Here, we found that both left-hemisphere EEG and
right-hemisphere EEG have the best discrimination
of the painful stimulus in the Beta and Theta band,
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and then in the Alpha and Gamma bands, as seen
elsewhere [41], [42], [46]. EEG responses in the two
hemispheres at frequencies around 28 Hz were seen
to discriminate the painful state, in agreement with
a previous assessment of the adequacy of analgesia
in which such oscillations were shown to participate
in discriminating painful events [47].

Our study has also some limitations. First, al-
though we tried to keep the volunteers calm by
playing relaxing music while recording the physi-
ological response to the thermoalgesic stimulus, we
did not control the arousal, attention or salience,
nor did we assess cognitive appraisal before or
during the experiment. Second, we focused this
study on thermoalgesic stimulation, yet different
painful stimuli could be incorporated into our device
for future studies, for instance mechanical pain,
providing greater sensitivity and specificity to dis-
criminate different classes of painful stimulation.
Finally, the temperature of the Peltier cell was varied
in increments of 0.5°C to achieve the activation of C
receptors (responsible for heat processing) together
with that of the A fiber receptors (responsible for
noxious processing stimuli) [19], [20], a critical
constraint to our design. However, this protocol did
not allow the thermoalgesic exposure to heat to be
randomized, which could possibly be incorporated
into the stimulation protocol in future studies.

In summary, our compact device allows brain and
heart physiological signals to be recorded simulta-
neously in response to well-controlled thermal pain
stimuli. We show that the SE of the physiological
signals can discriminate pain states. Future work
should validate similar metrics based on SE for the
on-line variation of painful stimuli, or the dynamic
on-line interaction between PPG and EEG signals,
for instance using Granger causality [48]-[51] or
transfer entropy [52], [53], as used previously to
establish different dynamic brain mechanisms in
pain-related conditions like migraine [54], [55]. Last
but not least, future studies should assess whether
our dual EEG and PPG system is useful to study
some pathological conditions in which the auto-
nomic nervous system functions abnormally, such
as small fiber neuropathies, fibromyalgia or painful
diabetic neuropathy.
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Fig. 1. Device for pain perception studies. A: System for the capture and recording of physiological signals. The PPG sensor (1) is
attached to the distal phalanx of the index finger of the subject’s hand, while the opposite hand is placed on the Peltier cell (2). The electrodes
for the EEG signals (3,4) are placed on both sides of the forehead. Finally, the push-button is used to determine the thermoalgesic threshold.
B: Pain stimulation is divided into four distinct regions, the first lasts 2 min in the absence of any painful stimulation to define the no pain
condition. The second focuses on calculating the heat pain threshold (HPT) of x min, which was different for each participant. This phase
was achieved by increasing the temperature in increments of 0.5°C up to the HPT, the maximum temperature that the subject withstood.
After a rest period of 3 min, a final regime to define the pain condition was achieved at the temperature equivalent to 90% of the HPT,
lasting for 2 min. C: HPT histogram of all the participants, indicating the mean p and standard deviation o.
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Fig. 2. Signal processing workflow and statistical analysis. For the analysis, we first separated the signals belonging to the different
conditions, pain or no pain, applying a low-pass filter and artifact removal to each signal. The fft MATLAB function was then used to
calculate the power spectrum, which was used to assess the spectral entropy (SE) at different frequency bands and with frequency windows
of 5 Hz. Finally, we compared the SE across different conditions over different frequency ranges and across different participants.
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Fig. 3. Discriminability of painful stimulation by 1D spectral entropy. A: Discriminability D = log,,(pvalue) as a function of the
different frequencies over which the conditions were compared for values of SE1 using a Wilcoxon signed-rank test (Methods). For each
signal and condition, SE1 was calculated over the entire time series. The temporal average was then taken and the resulting mean values
of SE1 compared between the two conditions. Frequencies range from 1 to 40 Hz for the EEG and from 1 to 10 Hz for the PPG. For
each frequency value on the x-axis, SE1 was calculated within a window of 5 Hz. Thus, for the value of 1 Hz in the x-axis, entropy was
calculated in the range 1-6 Hz and similarly, for a value of 2 Hz it is in the range from 2-7 Hz. The FDR region and Bonferroni correction
significance is marked by light and dark gray rectangles, respectively. B: SE1 as a function of time for fixed frequency values (29 Hz for
EEG1, 28 Hz for EEG2 and 7 Hz for PPG) over a time interval of 20 sec. C: After averaging the temporal signal of SEI1 (illustrated in
panel B), comparing the conditions highlighted significant differences between pain and no pain for all signals. The gray rectangles within
the violins represent the first and third quartiles, and the white dot within those rectangles represents the median of the distributions: ***
indicates p < 0.005.
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Fig. 4. Discriminability of painful stimulation by 2D spectral entropy. A similar strategy was followed to the SE1 strategy (figure 3)
but now calculating the 2D spectral entropy (SE2). After comparing the values of the temporal mean of SE2 matrix entries using a Wilcoxon
signed-rank test for different conditions (pain vs no pain). The surfaces of discriminability achieved by pairs of different signals (EEGI,
EEG?2), (EEG1, PPG) and (EEG2, PPG) were represented across different frequency ranges. Similar to SE1, SE2 was also calculated in

squared windows of 5x5 Hz?.
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TABLE I

Sex | Age | Hand Heated | Heat Pain Threshold HPT
Subject 1 | M 32 Right 43.23
”2 F 28 Right 45.02
” 3 M 24 Right 41.23
74 F 30 Right 44.12
75 M 30 Right 43.00
76 M 33 Right 42.75
” T M 36 Right 38.80
78 M 33 Right 41.89
”9 F 36 Right 42.13
710 F 31 Right 41.60
711 F 31 Right 44.42
712 M 23 Right 44.03
713 F 30 Right 43.47
714 M 31 Right 40.98
715 F 40 Left 42.82
716 F 20 Right 42.60
” 17 M 20 Right 44.67
718 M 38 Right 41.22
”19 M 26 Right 42.32
” 20 F 25 Right 42.49
” 21 F 31 Right 43.07
” 22 M 30 Right 42.89
723 M 36 Right 44.10
” 24 M 36 Right 44.23
” 25 M 31 Left 44.10
” 26 M 31 Left 41.52
” 27 F 24 Left 43.10
728 F 30 Left 41.35
” 29 M 33 Left 41.56
” 30 F 27 Left 41.84
7 31 M 33 Left 44.10
” 32 M 28 Left 443
” 33 F 22 Left 40.95
” 34 M 35 Left 41.83
7 35 F 26 Left 41.91

14
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Fig. S1. Population spectrograms of the different signals across conditions. Population spectrograms were obtained by simply averaging
individual spectrograms from all the participants. The power spectrums are represented in units of decibels (dB) by simply calculating the
transformation of 201log;,(S), where S is the mean value of all the subjects of the complex modulus of a short-time Fourier transform of the
signal. From these spectrograms, we chose an upper limit of 40 Hz for the EEG and 10 Hz for the PPG. These limits defined the maximum
value of frequencies used to calculate SE1 and SE2, and therefore, to compare SE1 and SE2 between the conditions of pain and no-pain.
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