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Running title: Immunogenomic intratumor heterogeneity of SCLC

Abstract

Small-cell lung cancer (SCLC) is speculated to harbor complex genomic intratumor
heterogeneity (ITH) associated with high recurrence rate and suboptimal response to
immunotherapy. Here, we revealed a rather homogeneous mutational landscape but
extremely suppressed and heterogeneous T cell receptor (TCR) repertoire in SCLCs.
Higher mutational burden, lower chromosomal copy number aberration (CNA) burden,
less CNA ITH and less TCR ITH were associated with longer overall survival of SCLC
patients. Compared to non-small cell lung cancers (NSCLCs), SCLCs had similar
predicted neoantigen burden and mutational ITH, but significantly more suppressed and

heterogeneous TCR repertoire that may be associated with higher CNA burden and
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CNA ITH in SCLC. Novel therapeutic strategies targeting CNA could potentially improve

the tumor immune microenvironment and response to immunotherapy in SCLC.

Keywords: small-cell lung cancer, intratumor heterogeneity, genomic, T cell receptor,

survival
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90 Introduction

91  Small-cell lung cancer (SCLC) accounts for ~15% of all newly diagnosed lung cancers
92 leading to ~30,000 deaths in the United States annually’. SCLC is a highly aggressive
93 cancer characterized by rapid growth and high rates of early local and distant
94 metastases®®. At initial diagnosis, around one third of SCLC patients present with
95 cancer confined to one hemithorax, defined as limited-stage disease (LD) that can be
96 treated with chemotherapy combined with radiotherapy or surgical resection, while the
97 remaining patients present with extensive-stage disease (ED) exhibiting extensive
98 lymph node involvement and/or distant metastases usually treated with palliative
99  chemotherapy with or without immune checkpoint blockade (ICB)*®. Although most
100 SCLC patients experience an initial response, nearly all patients recur with rapidly
101  progressing disease resistant to late-line treatments. Despite extensive research, only
102 modest advances have been achieved in the treatment of SCLC over the past 30
103  years with median survival less than a year and 5-year overall survival (OS) is below 7%
104 for ED SCLC""®. Recently, the addition of ICB to chemotherapy has become a new
105 standard of care for advanced SCLC, although it confers only an improvement of 2-3
106 months in survival®. National Cancer Institute (NCI) has identified SCLC as a
107 recalcitrant malignancy’. Translational studies to understand the mechanisms
108  underlying recurrence and therapeutic resistance remain an unmet need to design novel

109 therapeutic strategies®'%*!,

110 Tumors are composed of cancer cells and stromal cells of distinct molecular and
111 phenotypic features, a phenomenon termed intratumor heterogeneity (ITH). ITH has
112 been shown to impact response to therapy and patient survival***>. We and others have
113 previously delineated the ITH architecture of non-small cell lung cancers (NSCLCs) at
114  genomic, epigenetic and gene expression levels utilizing multiregional sequencing and
115  demonstrated that complex ITH was associated with inferior survival'®??. It has been
116  speculated that SCLC has extremely complex ITH architecture that lead to poor
117  prognosis®. Another plausible explanation for the poor outcome is that SCLC is
118  associated with an immunosuppressive tumor microenvironment, particularly T cell

24,25

119 responses“ . In localized NSCLC, our recent work has revealed that a suppressed
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120 and heterogeneous T cell receptor (TCR) repertoire is associated with inferior

121 survival*®?,

122 The genomic and TCR ITH architecture of SCLC and their potential clinical impact have
123 not been well studied, largely due to lack of available tumor specimens®”*. Through
124  international collaboration, we conducted multiregional whole exome sequencing (WES)
125 and TCR sequencing of 50 tumor samples from 19 resected LD SCLCs (Figure S1) to
126  depict the immunogenomic ITH architecture of SCLC. We further compared these
127  SCLCs to a cohort of 216 localized NSCLCs (PROSPECT cohort) ?° and assessed the
128 impact of genomic and TCR attributes on patient survival.

129
130 Results
131  Mutational landscape of LD SCLC tumors is overall homogeneous

132 A total of 50 tumor regions (hereafter referred as region) from 19 resected LD SCLC
133  tumors (hereafter referred as tumor) were subjected to WES (Figure S1,
134  Supplementary Table 1). In total, 3,773 nonsilent (nonsynonymous, stop-gain and
135  stop-loss) mutations were identified from these 50 tumor regions (Supplementary Data
136 1) for a median nonsilent tumor mutational burden (TMB) of 4.69/Mb. TMB was similar
137  between different tumor regions within the same tumors, but varied substantially

138  between patients (Figure S2).

139  Next we constructed phylogenetic trees of 18 SCLCs for which multiregional WES
140 data available (P13 only had one tumor region and was excluded from this analysis)
141  to depict the genomic ITH and the evolutionary trajectory of these SCLCs as
142 described previously*’. A median of 80.4% (28%-93%) of mutations were mapped to
143  the trunks of these 18 SCLCs (Figure 1 and Figure 2A) representing ubiquitous
144  mutations present in all tumor regions within the same tumor, comparing to 73% (8%-
145  99.6%) trunk mutations in 100 early-stage NSCLC in TRACERXx cohort (p=0.218)"°.
146 Furthermore, using PyClone*!, we classified mutations as clonal (defined as estimated

147  cancer cell fraction=1, indicating mutations present in all cancer cells) or subclonal
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148 (defined as estimated cancer cell fraction<l, indicating mutations only present in a
149  subset of cancer cells) in each tumor specimen. A median of 92.8% (37%-99.9%) of
150 mutations were clonal in these 50 SCLC specimens (Figure 2B). Taken together,
151 these results suggested the mutational landscape is overall homogeneous in these
152 SCLCs.

153  The most frequently mutated cancer genes in this cohort included TP53, RB1, and
154 LRP1B identified in 14, 10 and 7 patients respectively (Figure S3). Of note, these
155  mutations were trunk mutations detected in all regions from the same SCLC tumors
156  (Figure 1 and Figure S3) and these canonical mutations were clonal in each tumor
157  specimen where they were identified. These results suggest that these canonical cancer

158  gene mutations were all early genomic events during evolution of SCLC.

159  Mutational processes in this cohort of SCLC

160 Understanding how mutational processes shape cancer evolution may inform
161  mechanisms underlying tumor adaptation. We next analyzed the mutational spectrum
162  and signatures in these SCLCs*. C>A transversions were the most common nucleotide
163  substitutions (Figure S4) and Cosmic Signature 4 (associated with cigarette smoking)
164  was the predominant mutational signature (Figure 3A) as expected, given 15 of the 19

165  patients were smokers.

166  To further dissect the mutational processes associated with early clonal expansion
167  versus subsequent subclonal diversification, we delineated the mutational signatures of
168 trunk mutations representing early genomic events and non-trunk mutations
169  representing later subclonal events, respectively. As shown in Figure 3B-C, Cosmic
170  Signature 4 remained as the predominant signature in trunk mutations consistent with
171 previous reports that smoking associated mutational processes play critical roles
172 during early mutagenesis of lung cancers'’***3. On the other hand, the contribution
173 of Signature 4 was significantly reduced (p=0.002) while Cosmic Signature 3
174  (associated with defect of DNA double-strand break-repair) emerged as the
175 predominant signature for non-trunk mutations (p< 0.0001). Taken together, these

176  results highlight the dynamic nature of mutagenesis at different times during evolution
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of SCLC and suggest that smoking-associated mutational processes play essential
roles during early clonal expansion while subclonal diversification of this cohort of
SCLC may be associated with other mutational processes such as DNA repair defect.

Suppressed TCR repertoire in SCLC

We next performed TCR sequencing in 36 tumor specimens (1 to 3 regions per tumor)
and 16 tumor-adjacent lung tissues from patients with adequate DNA remaining. T-cell
density, an estimate of the proportion of T cells in a specimen, ranged from 0.11% to 33%
with a median of 1.7% (Figure S5A). T-cell richness, a measure of T-cell diversity,
ranged from 38 to 8,286 unique T-cells (median: 510) per specimen (Figure S5B) and
T-cell clonality, a metric indicating T-cell expansion and reactivity, ranged from 0.002 to
0.139 (median=0.009) (Figure S5C). Density, richness and clonality were positively
correlated with each other (Density vs. Richness: r=0.87, p<0.0001; Density vs.
Clonality: r=0.88, p<0.0001; Clonality vs. Richness: r=0.97, p<0.0001) (Figure S5D).
Compared to tumor-adjacent lung tissues (220 Icm from tumor margin), SCLC tumors
demonstrated lower T-cell density, richness and clonality (p=0.0580, p=0.0067,
p=0.0166, respectively; Figure S6A-C), indicating a suppressed T-cell repertoire in
tumor tissues consistent with NSCLC?®. Of particular interest, all three TCR metrics
were significantly lower than those of the 216 localized NSCLCs from PROSPECT
cohort (T-cell density 0.014 vs. 0.21, p<0.0001 (Figure S7A); diversity 510 vs. 3,246,
p<0.0001 (Figure S7B); and T-cell clonality 0.009 vs. 0.14, p<0.0001 (Figure S7C))®.

Additionally, we derived immune scores quantifying the density of immune-cells within
tumors by deconvoluting RNA seq data of 81 SCLCs?® and compared those to 1,027
NSCLCs from TCGA*3* In line with TCR repertoire findings, the immune scores in
SCLCs were significantly lower than NSCLCs (Figure S8, p<0.0001). Taken together,
these results suggested that SCLC may have more suppressed immune
microenvironment than NSCLC.

Substantial TCR repertoire heterogeneity in SCLC
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204 To gain insights into TCR heterogeneity, we calculated Jaccard index (JI), a metric
205 measuring the proportion of shared T-cell clonotypes between two samples. Substantial
206 TCR heterogeneity was evident across all tumors, with a median JI of 0.05 (0.02 to 0.15)
207 in the 10 SCLCs with multiregional TCR data available (Figure 4A), significantly lower
208 than the 11 localized NSCLCs'® (median 0.05 in SCLC vs. 0.16 in NSCLC, p<0.0001)
209 (Figure S7D). Furthermore, 79.9%-97.7% of T-cell clones were restricted to individual
210 tumor regions while only 0.2%-14.6% were identified in all regions within the same
211 tumors (Figure 4B), significantly lower than NSCLC (1.6% to 14.5%, p=0.0048)®
212 demonstrating profound TCR ITH in SCLC even beyond NSCLC.

213  High-level and heterogeneous copy number alterations may be the underlying

214 genomic basis for suppressed and heterogeneous TCR repertoire in SCLC

215  To identify genomic aberrations that could contribute to the suppressive TCR repertoire
216 and ITH in SCLC, we first looked at somatic mutations that play central roles in anti-
217 tumor T cell response by producing non-self proteins that can be recognized by T cells —
218 so called neoantigens®=®. We performed in silico prediction of HLA-A-, -B-, and -C-
219 presented neoantigens. A median of 78 (26-463) predicted neoantigens (ICso< 500
220  nmol/L) per tumor were detected (Figure S9A), which was similar to NSCLCs from the
221 PROSPECT cohort (median: 72/tumor, 2-801, Figure S9B, p=0.31). Similar to somatic
222 mutations, 81% (43%-93%) of predicted neoantigens were present across different
223 regions within the same tumors (Figure S9C) suggesting the suppressed and
224  heterogeneous TCR repertoire in SCLC was unlikely due to low clonal neoantigen
225  burden.

226 Next, we explored whether SCLC had higher incidence of loss of heterozygosity (LOH)
227  of human leukocyte antigen (HLA), a potential immune evasion mechanism in cancer
228 *"*_ Evidence of HLA LOH was revealed in 9 of 19 SCLCs, higher than NSCLCs from
229 the PROSPECT cohort, but the difference did not reach statistical difference (9/19 vs.
230 60/216, p=0.11) suggesting that HLA LOH is a common mechanism underlying immune
231 evasion in both SCLC and NSCLC, but may not be the main determinant of more
232 suppressed TCR repertoire in SCLC versus NSCLC.

9
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233 As a higher chromosomal copy number aberration (CNA) burden has been reported to

3940 \we next assessed the

234  associate with immunosuppression in multiple cancer types
235  CNA burden in this cohort of SCLC. A median of 2,180 CNA events per tumor (26 to
236  7622) were identified from these SCLCs (Figure S10A), significantly higher than 622
237  per tumor (range: 0-7741) in NSCLCs from PROSPECT cohort (p<0.0001) (Figure
238 S10B)®°. Additionally, in this cohort of SCLC tumors, CNA burden was negatively
239 associated with T-cell density, richness and clonality (r=-0.4, p=0.0157; r=-0.36,
240 p=0.0317; r=-0.33, p=0.0484; respectively) (Figure S11A-C). Furthermore, CNA JI, a
241  surrogate for CNA ITH was positively associated with TCR JI (r=0.74, p=0.0141)
242  (Figure 4C). Taken together, these data suggest that higher CNA burden and higher
243  level of CNA ITH could be important genomic basis for profoundly suppressed and

244  heterogeneous TCR ITH in these SCLCs.

245 Genomic and TCR ITH were associated with survival of SCLC

246 With small sample size fully acknowledged, we attempted to assess whether the
247 genomic and T cell features impact clinical outcome. We focused on overall survival
248  since recurrence status was unavailable for some patients. With a median of 45 months
249  of postsurgical follow up, 9 patients have expired with a median of OS of 45 months,

250 comparable to previous reports***

. Interestingly, higher TMB was associated with
251  significantly longer OS (Figure 5A, HR=0.13, p=0.0281), consistent with previous
252 reports in NSCLC®. Conversely, higher CNA burden was associated with significantly
253  shorter OS (Figure 5B, HR=13.8, p=0.0033), while significantly longer OS was
254  observed in patients with low level of copy number ITH (high CNA JI, Figure 5C,
255 HR=4.21E-10, p=0.0019). No TCR parameter (T-cell density, richness and clonality)
256  was associated with OS (Figure S12A-C), however, patients with a more homogenous
257 TCR repertoire (higher TCR Jl) exhibited significantly longer OS (Figure 5D, HR=0.16,

258 p=0.0496).
259

260 Discussion
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261  Evolutionary theory suggests populations of high genetic variation have survival
262 advantages®®. Similarly, tumors of complex ITH may be difficult to eradicate. Higher
263  level of molecular ITH has been demonstrated to associate with inferior outcome of
264  cancer patients***!’. In SCLC, however, although pioneering studies have revealed

265 some pivotal molecular features®’ %4

, the genomic ITH architecture has not been
266 defined, primarily due to the lack of adequate tumor specimens for multiregional
267  profiling. Because SCLC is sensitive to initial treatment but nearly all patients
268  experience relapse with refractory disease, it has been speculated that SCLC may
269 have profound mutational ITH, where cancer cells highly resistant to
270 chemotherapy/radiotherapy hide in the treatment-naive SCLC tumors as minor
271 subclones that give rise to relapse’*. Surprisingly, all SCLCs in the current study
272 demonstrated homogeneous mutational ITH with the majority of mutations present in
273 all regions within the same tumors (Figure 1 and 2A) and a median of 92.8% of
274  mutations being clonal in each tumor specimen (Figure 2B). Additionally, previous
275 work from Wagner and colleagues has demonstrated striking similarity of the
276  mutational landscape between primary and relapsed SCLC*’. Taken together, these
277 data indicate that complex mutational ITH and selection of chemo-/radio-resistant
278  minor subclones may not be the main mechanisms underlying therapeutic resistance
279 in SCLC.

280  Cancer evolution with or without treatment may be shaped by the dynamic interaction
281  between cancer cells and host factors, particularly through immune surveillance®.
282  Our study delineates for the first time, the TCR repertoire of SCLC and demonstrates
283 a suppressed T-cell repertoire in SCLC. All TCR attributes were extremely low
284  quantitatively (density) and qualitatively (richness and clonality), compared to not only
285 matched normal lung tissues (Figure S6) but also compared to NSCLC tumors
286 (Figure S7A-C). Similarly, comparing a previously published large SCLC cohort
287 (n=81)?® to TCGA NSCLC cohorts (n=1,027) also revealed more suppressed immune
288  contexture in SCLC than NSCLC (Figure S8).

289 In addition to the suppressed TCR repertoire, SCLC also demonstrated extremely

290 heterogeneous TCR repertoire with only 0.2%-14.6% of all T cells identified across all
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291  tumor regions within the same tumors. TCR ITH was even more pronounced than that
292 in NSCLC (Figure S7D)'®, which may further impair the efficacy of anti-tumor immune
293  response. Interestingly, even with such a small sample size, higher TCR JI indicating
294 less TCR ITH was associated with better survival in these SCLC patients (Figure 5B)
295 indicating the potential clinical impact of TCR ITH. SCLC is among the cancers with
296 high TMB* and our study also demonstrated homogenous mutational landscape,
297 both of which have been reported to associate with benefit from ICB®°. However,
298 compared to NSCLC and other tumor types, fewer SCLC patients benefit from ICB>".
299 The suppressed and heterogeneous TCR repertoire may be one potential reason

300 underlying suboptimal response to immunotherapy.

301 As the TCR repertoire attributes in this cohort of SCLC were significantly suppressed
302 compared to NSCLC from PROSPECT cohort (Figure S7A-C), we compared the
303 genomic landscape of tumors of these two cohorts to understand the potential genomic
304 bases for the more suppressed TCR repertoire in SCLC. These analyses revealed
305  significantly higher CNA burden in SCLC (Figure S10B). Moreover, the CNA burden
306 was negatively associated with both T cell quantity (density) and quality (richness and
307 clonality) (Figure S11) and CNA ITH was positively associated with TCR ITH (Figure
308 4C) in this cohort of SCLC. These results suggest that high CNA burden and high level
309 of CNA ITH may be one of the underlying genomic bases for the suppressed and

310 heterogeneous TCR repertoire in this cohort of SCLC.

311  High CNA burden has been reported to correlate with immunosuppressive
312 microenvironment and inferior benefit from ICB across different cancer types®*°**. The
313 mechanisms underlying the association between high CNA burden and
314 immunosuppression are not well understood. Several hypotheses have been proposed
315 such as relatively low neoantigen concentration due to protein imbalance leading to

316 impaired cancer cell signals in tumors®¥*2

From a therapeutic standpoint, the
317  significantly higher CNA burden suggests targeting CNA could be a potential effective
318  strategy for treating SCLC. Although CNA can potentially lead to gene dosage effects

319  that could promote tumor growth and provide the immune evasive advantage for cancer
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320 proliferation®*°%%3

, excessive CNA beyond a certain level could be lethal to cancer
321 cells®®. Genes and pathways involved in CNA (e.g. spindle assembly checkpoint,
322 supernumerary centrosome clustering, Aurora kinase family members, etc.) have been
323 exploited as candidate therapeutic targets for different cancer types including SCLC.
324  Unfortunately, none of these agents has shown substantial efficacy to make the way to
325 clinical practice in treating SCLC although anti-tumor activities have been observed
326 from several agents of this class®***°’. One plausible explanation is the profound CNA
327 ITH in SCLC as observed in the current study where different cancer cells may have
328 vastly different CNA profiles. As such, these CNA promoting agents could kill cancer
329  cells with excessive CNA while spare cancer cells with less CNA leading to therapeutic
330 failure. Moreover, increasing CNA potentially turns formerly CNA-low cancer cells into
331 relatively CNA-high cells starting the cycle again that further suppressing host anti-
332 tumor immune response. This is a similar quandary with inhibiting DNA damage
333 response (DDR) pathway where deficient DDR pathways could increase DNA-
334 damaging chemo-/radio-therapy sensitivity but conversely promote tumorigenesis®®>°.
335 Therefore, in order to effectively eliminate heterogeneous cancer cells with different
336 CNA profiles, CNA targeting agents may be combined with ICB, which has already been

60

337 tested in treating SCLC in both preclinical murine models and clinical trials

338 (NCT03041311)%.

339 To the best of our knowledge, the current study is the first study on genomic and TCR
340 ITH of SCLC. Our study was limited by the small sample size due to the scarcity of
341 resected SCLC specimens. However, WES and TCR data from multiregional specimens
342 made it valuable to the field. In summary, we demonstrate that despite a
343 homogeneous mutational landscape, SCLC exhibits a suppressed and
344 heterogeneous TCR repertoire that could lead to ineffective anti-tumor immune
345 surveillance, which could be one potential molecular mechanism underlying high
346  recurrence rate and suboptimal response to immunotherapy in SCLC. Our results
347 also suggest that high CNA burden may be one of the underlying reasons for the
348 suppressed T-cell repertoire, therefore a potential therapeutic target to improve the

349 efficacy of immune checkpoint blockade in patients with SCLC.
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350 Methods
351 Patients

352 A total of 19 patients with lymph node negative LD SCLC, who underwent surgical
353 resection at Zhejiang Cancer Hospital, Hangzhou, China from 2010 to 2015 were
354 enrolled. With a median of 45 months of postsurgical follow up, 7 patients have
355 relapsed and deceased, 10 patients were still alive with no evidence of recurrence and
356 2 patients deceased with unknown recurrence status. The median survival of this cohort
357 was 45 months. The study was approved by the Institutional Review Boards (IRB) at

358 MD Anderson Cancer Center and Zhejiang Cancer Hospital.
359 Sample processing and DNA extraction

360 Hematoxylin and eosin slides from each tumor were reviewed by experienced lung
361 cancer pathologists to confirm the diagnosis, assess necrosis, tumor purity and cell
362  viability. Manual macro-dissection was conducted to enrich malignant cells. DNA was
363  extracted using the AllPrep® DNA/RNA FFPE Kit (Qiagen, Hilden, Germany) from 50
364  spatially separated tumor regions (3 regions per tumor from 13 patients, 2 regions per
365 tumor from 5 patients and 1 tumor piece from one patient) and paired matched
366 adjacent normal lung (2200cm from tumor margin, morphologically negative for
367 malignant cells assessed by two lung cancer pathologists independently) as

368  previously described®.
369 Whole exome sequencing

370 WES was performed using the Illumina protocol in MD Anderson. Exome capture was
371 performed on 500ng of genomic DNA per sample based on KAPA library prep (Kapa
372  Biosystems) using the Agilent SureSelect Human All Exon V4 kit according to the
373  manufacturer’s instructions and paired-end multiplex sequencing of samples was
374  performed on the lllumina HiSeq 2000 sequencing platform. The average sequencing
375 depth was 180x for tumor DNA (ranging from 64x to 224x), 161x for germline DNA
376  (ranging from 96x to 194x).

377 Mutation calling
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378 The BWA aligner (bwa-0.7.5a) was applied to map the raw reads to the human hg19
379 reference genome (UCSC genome browser: genome.ucsc.edu). The Picard

380  (v1.112, http://broadinstitute.github.io/picard/) “MarkDuplicates” module was applied to
381  mark the duplicate reads. Then the “IndelRealigner” and “BaseRecalibrator’” modules
382 of the Genome Analysis Toolkit were applied to perform indel realignment and base
383 quality recalibration. Mutect (v1.1.4) °® was applied identify somatic single nucleotide
384 variants (SNVs) and small insertions/deletions. To ensure high-quality mutation calls,
385 the following filtering criteria were applied: 1) sequencing depth 220x in tumor DNA
386 and =210xJin germline DNA; and 2) variant alleleve frequency (VAF) = 0.02 in tumor
387 DNA and < 0.01 in germline DNA; and 3) the total number of reads supporting the
388 variant calls is 24; and 4) variant frequency is < 0.01 in ESP6500, 1000 genome and
389 EXAC databases; and 5) LOD score >18 (MuTect default is 6.3). We kept the
390 mutations that passed all filtering criteria except LOD score < 18 only if the identical

391  mutations were present with LOD score >=18 in other regions within the same tumors.

392 Cancer gene mutations were defined as identical oncogene mutations previously
393 reported; stop gains and frameshift of tumor suppressor genes; other non-synonymous

394 mutations with Combined Annotation Dependent Depletion (ACDD) score>20%,
395 Clonal and subclonal analysis

396  Tumor contents and major/minor copy number changes were estimated by Sequenza
397  (v2.1.2).%° The cancer cell fraction (CCF) and mutant allele copy number for each SNV
398 was inferred using Pyclone 12.3%. In brief, PyClone implements a Dirichlet process
399 clustering model that simultaneously estimates the distribution of the cellular prevalence
400 for each mutation. Copy numbers of somatic mutations were inferred by integrating
401 integer copy numbers determined by Sequenza on single sample basis. The outputs
402  were cellular prevalence value distributions per SNV estimated from Markov-chain
403 Monte Carlo (MCMC) sampling. The median value of the MCMC sampling-derived
404  distribution was used as a representative cellular prevalence for each mutation. A given
405 mutation was classified as “clonal” if the 95% confidence interval of CCF overlapped 1
406  and “subclonal” otherwise.
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407 Phylogenetic analysis

408 Mutation profiles were converted into binary format with 1 being mutated and 0O
409 otherwise. Ancestors were germ line DNA assuming with no mutations. Multistate
410 discrete-characters Wagner parsimony method in PHYLIP (Phylogeny Inference

411  Package) was used to generate phylogenic tree®.

412  Mutational signature analysis

413 The R package “DeconstructSigs” package ®’ was applied to estimate the proportions

414  of 30 COSMIC mutational signatures (http://cancer.sanger.ac.uk/cosmic/signatures).

415 Somatic copy number analysis

416  Somatic copy number analysis were performed applying CNVkit (v0.9.6)%, through
417  which both the targeted reads and the nonspecifically captured off-target reads were
418 used to infer copy number evenly across the genome, and DNA segmentation of log2
419 ratios in the tumor samples were calculated, then segment data were processed using
420 the “CNTools” package to generate segmented DNA copy number profile at gene level
421 by assigning segment means to the genes within the chromosome segments for each
422  sample. Genes with mean segment more than 0.6 was defined as copy number gain
423 and less than -0.6 was defined as copy number loss. Copy number gain and loss
424  burden were defined as the number of genes located in the segments with copy number

425 gains and losses.

426  Neoantigen prediction

427 WES data were reviewed for non-synonymous exonic mutations. The binding affinity
428  with patient-restricted MHC Class | molecules of all possible 9- and 10-mer peptides
429 was evaluated with the NetMHC3.4 algorithm based on patient HLA-A, HLA-B, and
430 HLA-C alleles®® ™. Candidate peptides were considered HLA binders when IC50<500
431  nM.

432 TCRP sequencing and comparison parameters
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433  Immunosequencing of the CDR3 regions of human TCRB chains was performed using
434  ImmunoSeq (Adaptive Biotechnologies, hsTCRp Kit)'®2®. T-cell density was calculated
435 by normalizing TCR-B template counts to the total amount of DNA for TCR sequencing,
436  where the amount of total DNA was determined by PCR-amplification and sequencing
437  of housekeeping genes expected to be present in all nucleated cells. T-cell richness is
438  calculated using the unique rearrangements. T-cell clonality is defined as 1-Peilou's
439 evenness and is calculated on productive rearrangements as previously described'®%°,
440 Jaccard index (JI) was calculated by the number of rearrangements shared/sum of total

441  number of rearrangements between any two specimens.
442  Human leukocyte antigen loss of heterozygosity analysis

443  For Human Leukocyte Antigen Loss Of Heterozygosity (HLA LOH) analysis, we first
444  performed HLA typing using PHLAT"2. For each patient, we merged tumor and normal
445  BAM files and inferred 4-digit HLA types for the major class | HLA genes (HLA-A, HLA-
446 B and HLA-C). To evaluate HLA loss, we used a computational tool, LOHHLA " using
447  purity and ploidy information estimated by Sequenza’™. Sample as being subject to HLA
448 loss was defined when any of the two alleles of HLA-A, HLA-B or HLA-C showed a copy
449  number1<[]0.5 with a paired Student’s t test p1<(10.01.

450 Analysis of published data

451 RNA sequencing data from 81 SCLCs® and 1,027 NSCLCs from TCGA**** were
452  downloaded. Immune scores were calculated by taking the average of normalized
453  expression levels of genes including cytolytic markers, HLA molecules, IFN-y pathway,
454  chemokines and adhesion molecules as previously described™.

455  Statistical Analysis

456  Graphs were generated with GraphPad Prism 8.0 (La Jolla, CA). Pearson’s correlations
457 were calculated to assess association between 2 continuous variables. Wilcoxon
458  signed-rank test was applied to compare paired TCR metrics. Mann-Whitney test was
459  used to compare differences between two independent groups. Log-rank test was used
460  for survival analysis.
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671

672

673 Figure Legends

674 Figure 1. Phylogenetic trees of 18 SCLC tumors with multiregional whole exome
675 sequencing (WES). Blue, brown and red lines represent trunk, branch, and private
676  mutations, respectively. The length of trunk, branch and private branch are proportional
677 to the numbers of mutations. Commonly mutated cancer genes TP53, RB1 and are
678 mapped to the phylogenetic trees as indicated. Patient ID: pink = alive; green = expired.
679

680 Figure 2. Genomic intra-tumor heterogeneity of small cell lung cancers. (A)
681  Proportion of trunk (blue), branch (brown), and private (red) mutations representing
682  mutations detected in all tumor regions, some but not all and only in one single tumor
683 region from any given tumor. Purple patient IDs = patients who were alive; Green
684  patient IDs = patients who were decreased. (B) Proportion of clonal versus subclonal
685 mutations defined by PyClone in 50 SCLC tumor specimens. Mutations were classified
686 as clonal (estimated cancer cell fraction = 1, indicating mutations presenting in all
687  cancer cells, blue) or subclonal (estimated cancer cell fraction < 1, indicating mutations
688  only present in a subset of cancer cells, orange) in each tumor specimen.

689

690 Figure 3. The mutational processes in small cell lung cancers. (A) The top
691 COSMIC mutational signatures in 50 SCLC specimens. (B) The top COSMIC
692 mutational signatures associated with trunk mutations. Bar chart on the left: top
693  signatures associated with trunk mutations in each patient. Pie chart on the right: the
694  average of contribution of each signature across the 19 patients. (C) The top COSMIC
695 mutational signatures associated with non-trunk mutations. Bar chart on the left: top
696  signatures associated with non-trunk mutations in each patient. Pie chart on the right:
697 the average of contribution of top signatures across the 19 patients. Patient ID: pink =
698  alive; green = expired.

699

700 Figure 4. Substantial TCR repertoire intratumor heterogeneity (ITH) in small cell
701 lung cancer. (A) Quantification of T cell receptor (TCR) ITH by Jaccard index (JI), a
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702 metric representing the proportion of shared T-cell clonotypes between two samples. (B)
703 Proportions of T-cell clonotypes detected in all regions (shared, blue), in 2/3 (brown)
704  and restricted to a single region (red) from the same tumors. Patient ID: pink = alive;
705  green = expired. (C) Correlations between TCR ITH and TCR ITH by JI.

706

707  Figure 5. Association of overall survival (OS) with genomic and TCR landscape.
708 (A) OS is longer in patients with higher (above median, blue) TMB than patients with
709  lower (below median, red) TMB. (B) OS is shorter in patients with higher (above median,
710  blue) CNA burden than patients with lower (below median, red) CNA burden. (C) OS is
711 longer in patients with less CNA ITH (higher CNA JI, blue) than patients with higher
712 level of CNA ITH (lower CNA Jl, red). (D) OS is longer in patients with more
713 homogenous TCR repertoire (higher above median TCR JI, blue) than patients with
714  more heterogeneous TCR repertoire (lower below median TCR JI, red).

715
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