

1 **Research Article**

2 **Genomic and TCR Repertoire Intratumor Heterogeneity of Small-cell Lung Cancer**
3 **and its Impact on Survival**

4 **Authors:** Ming Chen^{1,2,3,12,13,*}, Runzhe Chen^{4,5,12}, Ying Jin^{1,2,3,12}, Jun Li^{5,12}, Jiexin
5 Zhang^{6,12}, Junya Fujimoto⁷, Won-Chul Lee⁵, Xin Hu⁵, Shawna Maria Hubert^{4,5}, Julie
6 George⁸, Xiao Hu^{1,2,3}, Yamei Chen^{1,2,3}, Carmen Behrens⁴, Chi-Wan Chow⁷, Hoa H.N.
7 Pham⁹, Junya Fukuoka⁹, Edwin Roger Parra⁷, Carl M. Gay⁴, Latasha D. Little⁵, Curtis
8 Gumbs⁵, Xingzhi Song⁵, Lixia Diao⁶, Qi Wang⁶, Robert Cardnell⁴, Jianhua Zhang⁵, Jing
9 Wang⁶, Don L. Gibbons⁴, John V. Heymach⁴, J. Jack Lee⁶, William N. William Jr.⁴,
10 Bonnie Glisson⁴, Ignacio Wistuba⁷, P. Andrew Futreal⁵, Roman K. Thomas^{8,10,11,13},
11 Alexandre Reuben^{4,13}, Lauren A. Byers^{4,13}, and Jianjun Zhang^{4,5,13,*}

12

13 **Affiliations:**

14 ¹ Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer
15 Hospital), Hangzhou, Zhejiang, China

16 ² Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences,
17 Hangzhou, Zhejiang, China

18 ³ Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang, China

19 ⁴ Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD
20 Anderson Cancer Center, Houston, Texas 77030, USA

21 ⁵ Department of Genomic Medicine, the University of Texas MD Anderson Cancer
22 Center, Houston, Texas 77030, USA

23 ⁶ Department of Biostatistics, the University of Texas MD Anderson Cancer Center,
24 Houston, Texas 77030, USA

25 ⁷ Department of Translational Molecular Pathology, the University of Texas MD
26 Anderson Cancer Center, Houston, Texas 77030, USA

27 ⁸ Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn,
28 Medical Faculty, University of Cologne, 50931 Cologne, Germany

29 ⁹ Department of Pathology, Nagasaki University Graduate school of Biomedical
30 Sciences

31 ¹⁰ Department of Pathology, Medical Faculty, University Hospital Cologne, 50937
32 Cologne, Germany

33 ¹¹ DKFZ, German Cancer Research Center and German Cancer Consortium (DKTK),
34 Heidelberg, Germany

35 ¹² These authors contributed equally

36 ¹³ Lead Contact

37 * Correspondence: chenming@zjcc.org.cn (M.C.), jzhang20@mdanderson.org (J.Z.)

38

39 **Corresponding authors**

40 Dr. Ming Chen,

41 Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer
42 Hospital), Hangzhou, Zhejiang; Institute of Cancer and Basic Medicine (IBMC), Chinese
43 Academy of Sciences; Zhejiang Key Laboratory of Radiation Oncology, Zhejiang, China

44 Phone: 86-571-88122391

45 Fax: 86-571-88122391

46 E-mail: chenming@zjcc.org.cn

47

48 Dr. Jianjun Zhang,

49 Departments of Thoracic and Head and Neck Medical Oncology; Genomic Medicine,
50 the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd Unit 428,
51 Houston, TX 77030, USA

52 Phone: 01-713-563-6096

53 E-mail: jzhang20@mdanderson.org

54

55

56

57 **Declaration of interests**

58 L.A.B. serves on advisory committees for AstraZeneca, AbbVie, GenMab, BergenBio,
59 Pharma Mar SA, Sierra Oncology, Merck, Bristol Myers Squibb, Genentech, and Pfizer
60 and has research support from AbbVie, AstraZeneca, GenMab, Sierra Oncology and
61 Tolero Pharmaceuticals. I.W reports grants and personal fees from Genentech/Roche,
62 grants and personal fees from Bayer, grants and personal fees from Bristol-Myers
63 Squibb, grants and personal fees from AstraZeneca/Medimmune, grants and personal
64 fees from Pfizer, grants and personal fees from HTG Molecular, grants and personal
65 fees from Merck, personal fees from GlaxoSmithKline, grants and personal fees from
66 Guardant Health, personal fees from MSD, grants from Oncoplex, grants from DepArray,
67 grants from Adaptive, grants from Adaptimmune, grants from EMD Serono, grants from
68 Takeda, grants from Amgen, grants from Karus, grants from Johnson & Johnson, grants
69 from Iovance, grants from 4D, grants from Novartis, grants from Oncocyte, grants from
70 Akoya. J.Z reports research funding and personal fees from BMS, Johnson and
71 Johnson, AstraZeneca, Geneplus, OrigMed, Innovent and Merck, outside the submitted
72 work. The remaining authors declare no competing interests.

73 **Running title:** Immunogenomic intratumor heterogeneity of SCLC

74

75 **Abstract**

76 Small-cell lung cancer (SCLC) is speculated to harbor complex genomic intratumor
77 heterogeneity (ITH) associated with high recurrence rate and suboptimal response to
78 immunotherapy. Here, we revealed a rather homogeneous mutational landscape but
79 extremely suppressed and heterogeneous T cell receptor (TCR) repertoire in SCLCs.
80 Higher mutational burden, lower chromosomal copy number aberration (CNA) burden,
81 less CNA ITH and less TCR ITH were associated with longer overall survival of SCLC
82 patients. Compared to non-small cell lung cancers (NSCLCs), SCLCs had similar
83 predicted neoantigen burden and mutational ITH, but significantly more suppressed and
84 heterogeneous TCR repertoire that may be associated with higher CNA burden and

85 CNA ITH in SCLC. Novel therapeutic strategies targeting CNA could potentially improve
86 the tumor immune microenvironment and response to immunotherapy in SCLC.

87

88 **Keywords:** small-cell lung cancer, intratumor heterogeneity, genomic, T cell receptor,
89 survival

90 **Introduction**

91 Small-cell lung cancer (SCLC) accounts for ~15% of all newly diagnosed lung cancers
92 leading to ~30,000 deaths in the United States annually¹. SCLC is a highly aggressive
93 cancer characterized by rapid growth and high rates of early local and distant
94 metastases^{2,3}. At initial diagnosis, around one third of SCLC patients present with
95 cancer confined to one hemithorax, defined as limited-stage disease (LD) that can be
96 treated with chemotherapy combined with radiotherapy or surgical resection, while the
97 remaining patients present with extensive-stage disease (ED) exhibiting extensive
98 lymph node involvement and/or distant metastases usually treated with palliative
99 chemotherapy with or without immune checkpoint blockade (ICB)⁴⁻⁶. Although most
100 SCLC patients experience an initial response, nearly all patients recur with rapidly
101 progressing disease resistant to late-line treatments. Despite extensive research, only
102 modest advances have been achieved in the treatment of SCLC over the past 30
103 years with median survival less than a year and 5-year overall survival (OS) is below 7%
104 for ED SCLC^{1,7-9}. Recently, the addition of ICB to chemotherapy has become a new
105 standard of care for advanced SCLC, although it confers only an improvement of 2-3
106 months in survival⁸. National Cancer Institute (NCI) has identified SCLC as a
107 recalcitrant malignancy¹. Translational studies to understand the mechanisms
108 underlying recurrence and therapeutic resistance remain an unmet need to design novel
109 therapeutic strategies^{8,10,11}.

110 Tumors are composed of cancer cells and stromal cells of distinct molecular and
111 phenotypic features, a phenomenon termed intratumor heterogeneity (ITH). ITH has
112 been shown to impact response to therapy and patient survival¹²⁻¹⁵. We and others have
113 previously delineated the ITH architecture of non-small cell lung cancers (NSCLCs) at
114 genomic, epigenetic and gene expression levels utilizing multiregional sequencing and
115 demonstrated that complex ITH was associated with inferior survival¹⁶⁻²². It has been
116 speculated that SCLC has extremely complex ITH architecture that lead to poor
117 prognosis²³. Another plausible explanation for the poor outcome is that SCLC is
118 associated with an immunosuppressive tumor microenvironment, particularly T cell
119 responses^{24,25}. In localized NSCLC, our recent work has revealed that a suppressed

120 and heterogeneous T cell receptor (TCR) repertoire is associated with inferior
121 survival^{18,26}.

122 The genomic and TCR ITH architecture of SCLC and their potential clinical impact have
123 not been well studied, largely due to lack of available tumor specimens²⁷⁻³⁰. Through
124 international collaboration, we conducted multiregional whole exome sequencing (WES)
125 and TCR sequencing of 50 tumor samples from 19 resected LD SCLCs (**Figure S1**) to
126 depict the immunogenomic ITH architecture of SCLC. We further compared these
127 SCLCs to a cohort of 216 localized NSCLCs (PROSPECT cohort)²⁶ and assessed the
128 impact of genomic and TCR attributes on patient survival.

129

130 **Results**

131 **Mutational landscape of LD SCLC tumors is overall homogeneous**

132 A total of 50 tumor regions (hereafter referred as region) from 19 resected LD SCLC
133 tumors (hereafter referred as tumor) were subjected to WES (**Figure S1**,
134 **Supplementary Table 1**). In total, 3,773 nonsilent (nonsynonymous, stop-gain and
135 stop-loss) mutations were identified from these 50 tumor regions (**Supplementary Data**
136 **1**) for a median nonsilent tumor mutational burden (TMB) of 4.69/Mb. TMB was similar
137 between different tumor regions within the same tumors, but varied substantially
138 between patients (**Figure S2**).

139 Next we constructed phylogenetic trees of 18 SCLCs for which multiregional WES
140 data available (P13 only had one tumor region and was excluded from this analysis)
141 to depict the genomic ITH and the evolutionary trajectory of these SCLCs as
142 described previously¹⁷. A median of 80.4% (28%-93%) of mutations were mapped to
143 the trunks of these 18 SCLCs (**Figure 1** and **Figure 2A**) representing ubiquitous
144 mutations present in all tumor regions within the same tumor, comparing to 73% (8%-
145 99.6%) trunk mutations in 100 early-stage NSCLC in TRACERx cohort ($p=0.218$)¹⁹.
146 Furthermore, using PyClone³¹, we classified mutations as clonal (defined as estimated
147 cancer cell fraction=1, indicating mutations present in all cancer cells) or subclonal

148 (defined as estimated cancer cell fraction<1, indicating mutations only present in a
149 subset of cancer cells) in each tumor specimen. A median of 92.8% (37%-99.9%) of
150 mutations were clonal in these 50 SCLC specimens (**Figure 2B**). Taken together,
151 these results suggested the mutational landscape is overall homogeneous in these
152 SCLCs.

153 The most frequently mutated cancer genes in this cohort included *TP53*, *RB1*, and
154 *LRP1B* identified in 14, 10 and 7 patients respectively (**Figure S3**). Of note, these
155 mutations were trunk mutations detected in all regions from the same SCLC tumors
156 (**Figure 1** and **Figure S3**) and these canonical mutations were clonal in each tumor
157 specimen where they were identified. These results suggest that these canonical cancer
158 gene mutations were all early genomic events during evolution of SCLC.

159 **Mutational processes in this cohort of SCLC**

160 Understanding how mutational processes shape cancer evolution may inform
161 mechanisms underlying tumor adaptation. We next analyzed the mutational spectrum
162 and signatures in these SCLCs³². C>A transversions were the most common nucleotide
163 substitutions (**Figure S4**) and Cosmic Signature 4 (associated with cigarette smoking)
164 was the predominant mutational signature (**Figure 3A**) as expected, given 15 of the 19
165 patients were smokers.

166 To further dissect the mutational processes associated with early clonal expansion
167 versus subsequent subclonal diversification, we delineated the mutational signatures of
168 trunk mutations representing early genomic events and non-trunk mutations
169 representing later subclonal events, respectively. As shown in **Figure 3B-C**, Cosmic
170 Signature 4 remained as the predominant signature in trunk mutations consistent with
171 previous reports that smoking associated mutational processes play critical roles
172 during early mutagenesis of lung cancers^{17,19,33}. On the other hand, the contribution
173 of Signature 4 was significantly reduced (p=0.002) while Cosmic Signature 3
174 (associated with defect of DNA double-strand break-repair) emerged as the
175 predominant signature for non-trunk mutations (p< 0.0001). Taken together, these
176 results highlight the dynamic nature of mutagenesis at different times during evolution

177 of SCLC and suggest that smoking-associated mutational processes play essential
178 roles during early clonal expansion while subclonal diversification of this cohort of
179 SCLC may be associated with other mutational processes such as DNA repair defect.

180 **Suppressed TCR repertoire in SCLC**

181 We next performed TCR sequencing in 36 tumor specimens (1 to 3 regions per tumor)
182 and 16 tumor-adjacent lung tissues from patients with adequate DNA remaining. T-cell
183 density, an estimate of the proportion of T cells in a specimen, ranged from 0.11% to 33%
184 with a median of 1.7% (**Figure S5A**). T-cell richness, a measure of T-cell diversity,
185 ranged from 38 to 8,286 unique T-cells (median: 510) per specimen (**Figure S5B**) and
186 T-cell clonality, a metric indicating T-cell expansion and reactivity, ranged from 0.002 to
187 0.139 (median=0.009) (**Figure S5C**). Density, richness and clonality were positively
188 correlated with each other (Density vs. Richness: $r=0.87$, $p<0.0001$; Density vs.
189 Clonality: $r=0.88$, $p<0.0001$; Clonality vs. Richness: $r=0.97$, $p<0.0001$) (**Figure S5D**).
190 Compared to tumor-adjacent lung tissues ($\geq 2\text{ cm}$ from tumor margin), SCLC tumors
191 demonstrated lower T-cell density, richness and clonality ($p=0.0580$, $p=0.0067$,
192 $p=0.0166$, respectively; **Figure S6A-C**), indicating a suppressed T-cell repertoire in
193 tumor tissues consistent with NSCLC²⁶. Of particular interest, all three TCR metrics
194 were significantly lower than those of the 216 localized NSCLCs from PROSPECT
195 cohort (T-cell density 0.014 vs. 0.21, $p<0.0001$ (**Figure S7A**); diversity 510 vs. 3,246,
196 $p<0.0001$ (**Figure S7B**); and T-cell clonality 0.009 vs. 0.14, $p<0.0001$ (**Figure S7C**))²⁶.
197 Additionally, we derived immune scores quantifying the density of immune-cells within
198 tumors by deconvoluting RNA seq data of 81 SCLCs²⁸ and compared those to 1,027
199 NSCLCs from TCGA^{33,34}. In line with TCR repertoire findings, the immune scores in
200 SCLCs were significantly lower than NSCLCs (**Figure S8**, $p<0.0001$). Taken together,
201 these results suggested that SCLC may have more suppressed immune
202 microenvironment than NSCLC.

203 **Substantial TCR repertoire heterogeneity in SCLC**

204 To gain insights into TCR heterogeneity, we calculated Jaccard index (JI), a metric
205 measuring the proportion of shared T-cell clonotypes between two samples. Substantial
206 TCR heterogeneity was evident across all tumors, with a median JI of 0.05 (0.02 to 0.15)
207 in the 10 SCLCs with multiregional TCR data available (**Figure 4A**), significantly lower
208 than the 11 localized NSCLCs¹⁸ (median 0.05 in SCLC vs. 0.16 in NSCLC, p<0.0001)
209 (**Figure S7D**). Furthermore, 79.9%-97.7% of T-cell clones were restricted to individual
210 tumor regions while only 0.2%-14.6% were identified in all regions within the same
211 tumors (**Figure 4B**), significantly lower than NSCLC (1.6% to 14.5%, p=0.0048)¹⁸
212 demonstrating profound TCR ITH in SCLC even beyond NSCLC.

213 **High-level and heterogeneous copy number alterations may be the underlying**
214 **genomic basis for suppressed and heterogeneous TCR repertoire in SCLC**

215 To identify genomic aberrations that could contribute to the suppressive TCR repertoire
216 and ITH in SCLC, we first looked at somatic mutations that play central roles in anti-
217 tumor T cell response by producing non-self proteins that can be recognized by T cells –
218 so called neoantigens^{35,36}. We performed *in silico* prediction of HLA-A-, -B-, and -C-
219 presented neoantigens. A median of 78 (26-463) predicted neoantigens (IC₅₀< 500
220 nmol/L) per tumor were detected (**Figure S9A**), which was similar to NSCLCs from the
221 PROSPECT cohort (median: 72/tumor, 2-801, **Figure S9B**, p=0.31). Similar to somatic
222 mutations, 81% (43%-93%) of predicted neoantigens were present across different
223 regions within the same tumors (**Figure S9C**) suggesting the suppressed and
224 heterogeneous TCR repertoire in SCLC was unlikely due to low clonal neoantigen
225 burden.

226 Next, we explored whether SCLC had higher incidence of loss of heterozygosity (LOH)
227 of human leukocyte antigen (HLA), a potential immune evasion mechanism in cancer
228^{37,38}. Evidence of HLA LOH was revealed in 9 of 19 SCLCs, higher than NSCLCs from
229 the PROSPECT cohort, but the difference did not reach statistical difference (9/19 vs.
230 60/216, p=0.11) suggesting that HLA LOH is a common mechanism underlying immune
231 evasion in both SCLC and NSCLC, but may not be the main determinant of more
232 suppressed TCR repertoire in SCLC *versus* NSCLC.

233 As a higher chromosomal copy number aberration (CNA) burden has been reported to
234 associate with immunosuppression in multiple cancer types^{39,40}, we next assessed the
235 CNA burden in this cohort of SCLC. A median of 2,180 CNA events per tumor (26 to
236 7622) were identified from these SCLCs (**Figure S10A**), significantly higher than 622
237 per tumor (range: 0-7741) in NSCLCs from PROSPECT cohort ($p<0.0001$) (**Figure**
238 **S10B**)²⁶. Additionally, in this cohort of SCLC tumors, CNA burden was negatively
239 associated with T-cell density, richness and clonality ($r=-0.4$, $p=0.0157$; $r=-0.36$,
240 $p=0.0317$; $r=-0.33$, $p=0.0484$; respectively) (**Figure S11A-C**). Furthermore, CNA JI, a
241 surrogate for CNA ITH was positively associated with TCR JI ($r=0.74$, $p=0.0141$)
242 (**Figure 4C**). Taken together, these data suggest that higher CNA burden and higher
243 level of CNA ITH could be important genomic basis for profoundly suppressed and
244 heterogeneous TCR ITH in these SCLCs.

245 **Genomic and TCR ITH were associated with survival of SCLC**

246 With small sample size fully acknowledged, we attempted to assess whether the
247 genomic and T cell features impact clinical outcome. We focused on overall survival
248 since recurrence status was unavailable for some patients. With a median of 45 months
249 of postsurgical follow up, 9 patients have expired with a median of OS of 45 months,
250 comparable to previous reports⁴¹⁻⁴⁴. Interestingly, higher TMB was associated with
251 significantly longer OS (**Figure 5A**, $HR=0.13$, $p=0.0281$), consistent with previous
252 reports in NSCLC⁴⁵. Conversely, higher CNA burden was associated with significantly
253 shorter OS (**Figure 5B**, $HR=13.8$, $p=0.0033$), while significantly longer OS was
254 observed in patients with low level of copy number ITH (high CNA JI, **Figure 5C**,
255 $HR=4.21E-10$, $p=0.0019$). No TCR parameter (T-cell density, richness and clonality)
256 was associated with OS (**Figure S12A-C**), however, patients with a more homogenous
257 TCR repertoire (higher TCR JI) exhibited significantly longer OS (**Figure 5D**, $HR=0.16$,
258 $p=0.0496$).

259

260 **Discussion**

261 Evolutionary theory suggests populations of high genetic variation have survival
262 advantages⁴⁶. Similarly, tumors of complex ITH may be difficult to eradicate. Higher
263 level of molecular ITH has been demonstrated to associate with inferior outcome of
264 cancer patients^{12,16,17}. In SCLC, however, although pioneering studies have revealed
265 some pivotal molecular features^{27-30,47}, the genomic ITH architecture has not been
266 defined, primarily due to the lack of adequate tumor specimens for multiregional
267 profiling. Because SCLC is sensitive to initial treatment but nearly all patients
268 experience relapse with refractory disease, it has been speculated that SCLC may
269 have profound mutational ITH, where cancer cells highly resistant to
270 chemotherapy/radiotherapy hide in the treatment-naïve SCLC tumors as minor
271 subclones that give rise to relapse^{7,11}. Surprisingly, all SCLCs in the current study
272 demonstrated homogeneous mutational ITH with the majority of mutations present in
273 all regions within the same tumors (**Figure 1 and 2A**) and a median of 92.8% of
274 mutations being clonal in each tumor specimen (**Figure 2B**). Additionally, previous
275 work from Wagner and colleagues has demonstrated striking similarity of the
276 mutational landscape between primary and relapsed SCLC⁴⁷. Taken together, these
277 data indicate that complex mutational ITH and selection of chemo-/radio-resistant
278 minor subclones may not be the main mechanisms underlying therapeutic resistance
279 in SCLC.

280 Cancer evolution with or without treatment may be shaped by the dynamic interaction
281 between cancer cells and host factors, particularly through immune surveillance⁴⁸.
282 Our study delineates for the first time, the TCR repertoire of SCLC and demonstrates
283 a suppressed T-cell repertoire in SCLC. All TCR attributes were extremely low
284 quantitatively (density) and qualitatively (richness and clonality), compared to not only
285 matched normal lung tissues (**Figure S6**) but also compared to NSCLC tumors
286 (**Figure S7A-C**). Similarly, comparing a previously published large SCLC cohort
287 (n=81)²⁸ to TCGA NSCLC cohorts (n=1,027) also revealed more suppressed immune
288 contexture in SCLC than NSCLC (**Figure S8**).

289 In addition to the suppressed TCR repertoire, SCLC also demonstrated extremely
290 heterogeneous TCR repertoire with only 0.2%-14.6% of all T cells identified across all

291 tumor regions within the same tumors. TCR ITH was even more pronounced than that
292 in NSCLC (**Figure S7D**)¹⁸, which may further impair the efficacy of anti-tumor immune
293 response. Interestingly, even with such a small sample size, higher TCR JI indicating
294 less TCR ITH was associated with better survival in these SCLC patients (**Figure 5B**)
295 indicating the potential clinical impact of TCR ITH. SCLC is among the cancers with
296 high TMB⁴⁹ and our study also demonstrated homogenous mutational landscape,
297 both of which have been reported to associate with benefit from ICB⁵⁰. However,
298 compared to NSCLC and other tumor types, fewer SCLC patients benefit from ICB⁵¹.
299 The suppressed and heterogeneous TCR repertoire may be one potential reason
300 underlying suboptimal response to immunotherapy.

301 As the TCR repertoire attributes in this cohort of SCLC were significantly suppressed
302 compared to NSCLC from PROSPECT cohort (**Figure S7A-C**), we compared the
303 genomic landscape of tumors of these two cohorts to understand the potential genomic
304 bases for the more suppressed TCR repertoire in SCLC. These analyses revealed
305 significantly higher CNA burden in SCLC (**Figure S10B**). Moreover, the CNA burden
306 was negatively associated with both T cell quantity (density) and quality (richness and
307 clonality) (**Figure S11**) and CNA ITH was positively associated with TCR ITH (**Figure**
308 **4C**) in this cohort of SCLC. These results suggest that high CNA burden and high level
309 of CNA ITH may be one of the underlying genomic bases for the suppressed and
310 heterogeneous TCR repertoire in this cohort of SCLC.

311 High CNA burden has been reported to correlate with immunosuppressive
312 microenvironment and inferior benefit from ICB across different cancer types^{39,52,53}. The
313 mechanisms underlying the association between high CNA burden and
314 immunosuppression are not well understood. Several hypotheses have been proposed
315 such as relatively low neoantigen concentration due to protein imbalance leading to
316 impaired cancer cell signals in tumors^{39,52}. From a therapeutic standpoint, the
317 significantly higher CNA burden suggests targeting CNA could be a potential effective
318 strategy for treating SCLC. Although CNA can potentially lead to gene dosage effects
319 that could promote tumor growth and provide the immune evasive advantage for cancer

320 proliferation^{39,52,53}, excessive CNA beyond a certain level could be lethal to cancer
321 cells^{54,55}. Genes and pathways involved in CNA (e.g. spindle assembly checkpoint,
322 supernumerary centrosome clustering, Aurora kinase family members, etc.) have been
323 exploited as candidate therapeutic targets for different cancer types including SCLC⁵⁶.
324 Unfortunately, none of these agents has shown substantial efficacy to make the way to
325 clinical practice in treating SCLC although anti-tumor activities have been observed
326 from several agents of this class^{54,56,57}. One plausible explanation is the profound CNA
327 ITH in SCLC as observed in the current study where different cancer cells may have
328 vastly different CNA profiles. As such, these CNA promoting agents could kill cancer
329 cells with excessive CNA while spare cancer cells with less CNA leading to therapeutic
330 failure. Moreover, increasing CNA potentially turns formerly CNA-low cancer cells into
331 relatively CNA-high cells starting the cycle again that further suppressing host anti-
332 tumor immune response. This is a similar quandary with inhibiting DNA damage
333 response (DDR) pathway where deficient DDR pathways could increase DNA-
334 damaging chemo-/radio-therapy sensitivity but conversely promote tumorigenesis^{58,59}.
335 Therefore, in order to effectively eliminate heterogeneous cancer cells with different
336 CNA profiles, CNA targeting agents may be combined with ICB, which has already been
337 tested in treating SCLC in both preclinical murine models⁶⁰ and clinical trials
338 (NCT03041311)⁶¹.

339 To the best of our knowledge, the current study is the first study on genomic and TCR
340 ITH of SCLC. Our study was limited by the small sample size due to the scarcity of
341 resected SCLC specimens. However, WES and TCR data from multiregional specimens
342 made it valuable to the field. In summary, we demonstrate that despite a
343 homogeneous mutational landscape, SCLC exhibits a suppressed and
344 heterogeneous TCR repertoire that could lead to ineffective anti-tumor immune
345 surveillance, which could be one potential molecular mechanism underlying high
346 recurrence rate and suboptimal response to immunotherapy in SCLC. Our results
347 also suggest that high CNA burden may be one of the underlying reasons for the
348 suppressed T-cell repertoire, therefore a potential therapeutic target to improve the
349 efficacy of immune checkpoint blockade in patients with SCLC.

350 **Methods**

351 **Patients**

352 A total of 19 patients with lymph node negative LD SCLC, who underwent surgical
353 resection at Zhejiang Cancer Hospital, Hangzhou, China from 2010 to 2015 were
354 enrolled. With a median of 45 months of postsurgical follow up, 7 patients have
355 relapsed and deceased, 10 patients were still alive with no evidence of recurrence and
356 2 patients deceased with unknown recurrence status. The median survival of this cohort
357 was 45 months. The study was approved by the Institutional Review Boards (IRB) at
358 MD Anderson Cancer Center and Zhejiang Cancer Hospital.

359 **Sample processing and DNA extraction**

360 Hematoxylin and eosin slides from each tumor were reviewed by experienced lung
361 cancer pathologists to confirm the diagnosis, assess necrosis, tumor purity and cell
362 viability. Manual macro-dissection was conducted to enrich malignant cells. DNA was
363 extracted using the AllPrep® DNA/RNA FFPE Kit (Qiagen, Hilden, Germany) from 50
364 spatially separated tumor regions (3 regions per tumor from 13 patients, 2 regions per
365 tumor from 5 patients and 1 tumor piece from one patient) and paired matched
366 adjacent normal lung ($\geq 2\text{ cm}$ from tumor margin, morphologically negative for
367 malignant cells assessed by two lung cancer pathologists independently) as
368 previously described⁶².

369 **Whole exome sequencing**

370 WES was performed using the Illumina protocol in MD Anderson. Exome capture was
371 performed on 500ng of genomic DNA per sample based on KAPA library prep (Kapa
372 Biosystems) using the Agilent SureSelect Human All Exon V4 kit according to the
373 manufacturer's instructions and paired-end multiplex sequencing of samples was
374 performed on the Illumina HiSeq 2000 sequencing platform. The average sequencing
375 depth was 180x for tumor DNA (ranging from 64x to 224x), 161x for germline DNA
376 (ranging from 96x to 194x).

377 **Mutation calling**

378 The BWA aligner (bwa-0.7.5a) was applied to map the raw reads to the human hg19
379 reference genome (UCSC genome browser: genome.ucsc.edu). The Picard
380 (v1.112, <http://broadinstitute.github.io/picard/>) “MarkDuplicates” module was applied to
381 mark the duplicate reads. Then the “IndelRealigner” and “BaseRecalibrator” modules
382 of the Genome Analysis Toolkit were applied to perform indel realignment and base
383 quality recalibration. Mutect (v1.1.4)⁶³ was applied identify somatic single nucleotide
384 variants (SNVs) and small insertions/deletions. To ensure high-quality mutation calls,
385 the following filtering criteria were applied: 1) sequencing depth $\geq 20\times$ in tumor DNA
386 and $\geq 10\times$ in germline DNA; and 2) variant allele frequency (VAF) ≥ 0.02 in tumor
387 DNA and < 0.01 in germline DNA; and 3) the total number of reads supporting the
388 variant calls is ≥ 4 ; and 4) variant frequency is < 0.01 in ESP6500, 1000 genome and
389 EXAC databases; and 5) LOD score > 18 (MuTect default is 6.3). We kept the
390 mutations that passed all filtering criteria except LOD score < 18 only if the identical
391 mutations were present with LOD score ≥ 18 in other regions within the same tumors.
392 Cancer gene mutations were defined as identical oncogene mutations previously
393 reported; stop gains and frameshift of tumor suppressor genes; other non-synonymous
394 mutations with Combined Annotation Dependent Depletion (ACDD) score > 20 ⁶⁴.

395 **Clonal and subclonal analysis**

396 Tumor contents and major/minor copy number changes were estimated by Sequenza
397 (v2.1.2).⁶⁵ The cancer cell fraction (CCF) and mutant allele copy number for each SNV
398 was inferred using Pyclone 12.3³¹. In brief, PyClone implements a Dirichlet process
399 clustering model that simultaneously estimates the distribution of the cellular prevalence
400 for each mutation. Copy numbers of somatic mutations were inferred by integrating
401 integer copy numbers determined by Sequenza on single sample basis. The outputs
402 were cellular prevalence value distributions per SNV estimated from Markov-chain
403 Monte Carlo (MCMC) sampling. The median value of the MCMC sampling-derived
404 distribution was used as a representative cellular prevalence for each mutation. A given
405 mutation was classified as “clonal” if the 95% confidence interval of CCF overlapped 1
406 and “subclonal” otherwise.

407 **Phylogenetic analysis**

408 Mutation profiles were converted into binary format with 1 being mutated and 0
409 otherwise. Ancestors were germ line DNA assuming with no mutations. Multistate
410 discrete-characters Wagner parsimony method in PHYLIP (Phylogeny Inference
411 Package) was used to generate phylogenetic tree⁶⁶.

412 **Mutational signature analysis**

413 The R package “DeconstructSigs” package⁶⁷ was applied to estimate the proportions
414 of 30 COSMIC mutational signatures (<http://cancer.sanger.ac.uk/cosmic/signatures>).

415 **Somatic copy number analysis**

416 Somatic copy number analysis were performed applying CNVkit (v0.9.6)⁶⁸, through
417 which both the targeted reads and the nonspecifically captured off-target reads were
418 used to infer copy number evenly across the genome, and DNA segmentation of log2
419 ratios in the tumor samples were calculated, then segment data were processed using
420 the “CNTools” package to generate segmented DNA copy number profile at gene level
421 by assigning segment means to the genes within the chromosome segments for each
422 sample. Genes with mean segment more than 0.6 was defined as copy number gain
423 and less than -0.6 was defined as copy number loss. Copy number gain and loss
424 burden were defined as the number of genes located in the segments with copy number
425 gains and losses.

426 **Neoantigen prediction**

427 WES data were reviewed for non-synonymous exonic mutations. The binding affinity
428 with patient-restricted MHC Class I molecules of all possible 9- and 10-mer peptides
429 was evaluated with the NetMHC3.4 algorithm based on patient HLA-A, HLA-B, and
430 HLA-C alleles⁶⁹⁻⁷¹. Candidate peptides were considered HLA binders when IC50<500
431 nM.

432 **TCRβ sequencing and comparison parameters**

433 Immunosequencing of the CDR3 regions of human TCR β chains was performed using
434 ImmunoSeq (Adaptive Biotechnologies, hsTCR β Kit)^{18,26}. T-cell density was calculated
435 by normalizing TCR- β template counts to the total amount of DNA for TCR sequencing,
436 where the amount of total DNA was determined by PCR-amplification and sequencing
437 of housekeeping genes expected to be present in all nucleated cells. T-cell richness is
438 calculated using the unique rearrangements. T-cell clonality is defined as 1-Peilou's
439 evenness and is calculated on productive rearrangements as previously described^{18,26}.
440 Jaccard index (JI) was calculated by the number of rearrangements shared/sum of total
441 number of rearrangements between any two specimens.

442 **Human leukocyte antigen loss of heterozygosity analysis**

443 For Human Leukocyte Antigen Loss Of Heterozygosity (HLA LOH) analysis, we first
444 performed HLA typing using PHLAT⁷². For each patient, we merged tumor and normal
445 BAM files and inferred 4-digit HLA types for the major class I HLA genes (HLA-A, HLA-
446 B and HLA-C). To evaluate HLA loss, we used a computational tool, LOHHHLA⁷³ using
447 purity and ploidy information estimated by Sequenza⁷⁴. Sample as being subject to HLA
448 loss was defined when any of the two alleles of HLA-A, HLA-B or HLA-C showed a copy
449 number < 0.5 with a paired Student's *t* test $p < 0.01$.

450 **Analysis of published data**

451 RNA sequencing data from 81 SCLCs²⁸ and 1,027 NSCLCs from TCGA^{33,34} were
452 downloaded. Immune scores were calculated by taking the average of normalized
453 expression levels of genes including cytolytic markers, HLA molecules, IFN- γ pathway,
454 chemokines and adhesion molecules as previously described⁷⁵.

455 **Statistical Analysis**

456 Graphs were generated with GraphPad Prism 8.0 (La Jolla, CA). Pearson's correlations
457 were calculated to assess association between 2 continuous variables. Wilcoxon
458 signed-rank test was applied to compare paired TCR metrics. Mann-Whitney test was
459 used to compare differences between two independent groups. Log-rank test was used
460 for survival analysis.

461 **Acknowledgements**

462 Barbanti Small Cell Lung Cancer Award, Conquer Cancer Foundation ASCO Young
463 Investigator Award, MD Anderson Physician Scientist Award, University Cancer
464 Foundation Sister Institution Network Fund, Cancer Prevention & Research Institute of
465 Texas (CPRIT) Multiple Investigator Award, TJ Martell Foundation, NIH/NCI R01-
466 CA207295, NIH/NCI U01-CA213273, Department of Defense (LC170171), National
467 Natural Science Foundation of China (grant No. 81672972); Major Program of
468 Provincial Ministry of Health Science Foundation (grant No. WKJ-ZJ-1701).

469 **Author contributions**

470 M.C. and J.Z. conceived the study. R.C., J.L. and Jiexin Z. led the data analysis. J.Y.,
471 J.F., H.P., C.W.C. and J.F. led the pathological assessment, multi-region sample
472 preparation and DNA extraction. J.Y, Y.C. and X.H. collected resected specimens and
473 clinical data. L.L and C.G. performed DNA preparation and whole-exome sequencing.
474 X.S. and Jianhua Z. performed sequencing raw data processing. J.L., W.L. and X.H.
475 performed downstream bioinformatics analyses. R.C., S.M.H, J.G., C.B., E.R.P., C.G.,
476 Robert C., D.G., J.H., W.W., B.G., I.W., P.A.F., R.K.T., A.R., L.A.B. and J.Z. interpreted
477 the data for clinical and pathological correlation. L.D., Q.W., J.W., and J.J.L. performed
478 statistical analyses. R.C., A.R., C.G. and J.Z. wrote the paper. All authors edited the
479 manuscript.

480

481 **References**

- 482 1. Howlader, N., *et al.* SEER Cancer Statistics Review, 1975-2016. *National Cancer
483 Institute* (2019).
- 484 2. Alvarado-Luna, G. & Morales-Espinosa, D. Treatment for small cell lung cancer,
485 where are we now?—a review. *Translational lung cancer research* **5**, 26 (2016).
- 486 3. Govindan, R., *et al.* Changing epidemiology of small-cell lung cancer in the
487 United States over the last 30 years: analysis of the surveillance, epidemiologic,
488 and end results database. *Journal of clinical oncology : official journal of the
489 American Society of Clinical Oncology* **24**, 4539-4544 (2006).
- 490 4. Kalemkerian, G.P., *et al.* Small cell lung cancer. *Journal of the National
491 Comprehensive Cancer Network* **11**, 78-98 (2013).

492 5. Micke, P., *et al.* Staging small cell lung cancer: Veterans Administration Lung
493 Study Group versus International Association for the Study of Lung Cancer—
494 what limits limited disease? *Lung cancer* **37**, 271-276 (2002).

495 6. Horn, L., *et al.* First-Line Atezolizumab plus Chemotherapy in Extensive-Stage
496 Small-Cell Lung Cancer. *The New England journal of medicine* **379**, 2220-2229
497 (2018).

498 7. Pietanza, M.C. & Ladanyi, M. Bringing the genomic landscape of small-cell lung
499 cancer into focus. *Nature genetics* **44**, 1074 (2012).

500 8. Horn, L., *et al.* First-line atezolizumab plus chemotherapy in extensive-stage
501 small-cell lung cancer. *New England Journal of Medicine* **379**, 2220-2229 (2018).

502 9. Paz-Ares, L., *et al.* Durvalumab plus platinum–etoposide versus
503 platinum–etoposide in first-line treatment of extensive-stage small-cell
504 lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial. *The
505 Lancet* **394**, 1929-1939 (2019).

506 10. Byers, L.A. & Rudin, C.M. Small cell lung cancer: where do we go from here?
507 *Cancer* **121**, 664-672 (2015).

508 11. Gazdar, A.F., Bunn, P.A. & Minna, J.D. Small-cell lung cancer: what we know,
509 what we need to know and the path forward. *Nature Reviews Cancer* **17**, 725
510 (2017).

511 12. Yap, T.A., Gerlinger, M., Futreal, P.A., Pusztai, L. & Swanton, C. Intratumor
512 heterogeneity: seeing the wood for the trees. *Science translational medicine* **4**,
513 127ps110-127ps110 (2012).

514 13. Swanton, C. Intratumor heterogeneity: evolution through space and time. *Cancer
515 research* **72**, 4875-4882 (2012).

516 14. Fisher, R., Pusztai, L. & Swanton, C. Cancer heterogeneity: implications for
517 targeted therapeutics. *British journal of cancer* **108**, 479 (2013).

518 15. Gerlinger, M., *et al.* Genomic architecture and evolution of clear cell renal cell
519 carcinomas defined by multiregion sequencing. *Nature genetics* **46**, 225 (2014).

520 16. Gerlinger, M., *et al.* Intratumor heterogeneity and branched evolution revealed by
521 multiregion sequencing. *New England journal of medicine* **366**, 883-892 (2012).

522 17. Zhang, J., *et al.* Intratumor heterogeneity in localized lung adenocarcinomas
523 delineated by multiregion sequencing. *Science* **346**, 256-259 (2014).

524 18. Reuben, A., *et al.* TCR repertoire intratumor heterogeneity in localized lung
525 adenocarcinomas: an association with predicted neoantigen heterogeneity and
526 postsurgical recurrence. *Cancer discovery* **7**, 1088-1097 (2017).

527 19. Jamal-Hanjani, M., *et al.* Tracking the Evolution of Non-Small-Cell Lung Cancer.
528 *The New England journal of medicine* **376**, 2109-2121 (2017).

529 20. Lee, W.C., *et al.* Multiregion gene expression profiling reveals heterogeneity in
530 molecular subtypes and immunotherapy response signatures in lung cancer.
531 *Modern pathology : an official journal of the United States and Canadian
532 Academy of Pathology, Inc* **31**, 947-955 (2018).

533 21. Quek, K., *et al.* DNA methylation intratumor heterogeneity in localized lung
534 adenocarcinomas. *Oncotarget* **8**, 21994-22002 (2017).

535 22. Rosenthal, R., *et al.* Neoantigen-directed immune escape in lung cancer
536 evolution. *Nature* **567**, 479-485 (2019).

537 23. van Meerbeeck, J.P., Fennell, D.A. & De Ruysscher, D.K. Small-cell lung cancer.
538 *Lancet (London, England)* **378**, 1741-1755 (2011).

539 24. Hendriks, L.E., Menis, J. & Reck, M. Prospects of targeted and immune therapies
540 in SCLC. *Expert review of anticancer therapy* **19**, 151-167 (2019).

541 25. Bonanno, L., *et al.* The role of immune microenvironment in small-cell lung
542 cancer: Distribution of PD-L1 expression and prognostic role of FOXP3-positive
543 tumour infiltrating lymphocytes. *European journal of cancer (Oxford, England :
544 1990)* **101**, 191-200 (2018).

545 26. Reuben, A., *et al.* Comprehensive T cell repertoire characterization of non-small
546 cell lung cancer. *Nat Commun* **11**, 603 (2020).

547 27. Peifer, M., *et al.* Integrative genome analyses identify key somatic driver
548 mutations of small-cell lung cancer. *Nat Genet* **44**, 1104-1110 (2012).

549 28. George, J., *et al.* Comprehensive genomic profiles of small cell lung cancer.
550 *Nature* **524**, 47-53 (2015).

551 29. Rudin, C.M., *et al.* Comprehensive genomic analysis identifies SOX2 as a
552 frequently amplified gene in small-cell lung cancer. *Nat Genet* **44**, 1111-1116
553 (2012).

554 30. Nong, J., *et al.* Circulating tumor DNA analysis depicts subclonal architecture and
555 genomic evolution of small cell lung cancer. *Nature communications* **9**, 3114
556 (2018).

557 31. Roth, A., *et al.* PyClone: statistical inference of clonal population structure in
558 cancer. *Nature methods* **11**, 396-398 (2014).

559 32. Alexandrov, L.B., Nik-Zainal, S., Wedge, D.C., Campbell, P.J. & Stratton, M.R.
560 Deciphering signatures of mutational processes operative in human cancer. *Cell
561 reports* **3**, 246-259 (2013).

562 33. Comprehensive genomic characterization of squamous cell lung cancers. *Nature*
563 **489**, 519-525 (2012).

564 34. Comprehensive molecular profiling of lung adenocarcinoma. *Nature* **511**, 543-
565 550 (2014).

566 35. Schumacher, T.N. & Schreiber, R.D. Neoantigens in cancer immunotherapy.
567 *Science* **348**, 69-74 (2015).

568 36. Strønen, E., *et al.* Targeting of cancer neoantigens with donor-derived T cell
569 receptor repertoires. *Science* **352**, 1337-1341 (2016).

570 37. McGranahan, N., *et al.* Allele-Specific HLA Loss and Immune Escape in Lung
571 Cancer Evolution. *Cell* **171**, 1259-- (2017).

572 38. Tran, E., *et al.* T-Cell Transfer Therapy Targeting Mutant KRAS in Cancer. *N
573 Engl J Med* **375**, 2255-2262 (2016).

574 39. Davoli, T., Uno, H., Wooten, E.C. & Elledge, S.J. Tumor aneuploidy correlates
575 with markers of immune evasion and with reduced response to immunotherapy.
576 *Science* **355**(2017).

577 40. Xie, F., *et al.* Multifactorial Deep Learning Reveals Pan-Cancer Genomic Tumor
578 Clusters with Distinct Immunogenomic Landscape and Response to
579 Immunotherapy. *Clinical cancer research : an official journal of the American
580 Association for Cancer Research* (2020).

581 41. Yang, C.-F.J., *et al.* Role of Adjuvant Therapy in a Population-Based Cohort of
582 Patients With Early-Stage Small-Cell Lung Cancer. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology* **34**, 1057-1064 (2016).

584 42. Li, G.H., Wu, Y., Zhang, X.J. & Cui, Y.S. [A comparative study of survival time of
585 surgery combined with chemotherapy and non-surgical chemotherapy in SCLC].
586 *Zhonghua yi xue za zhi* **90**, 2212-2214 (2010).

587 43. Brock, M.V., *et al.* Surgical resection of limited disease small cell lung cancer in
588 the new era of platinum chemotherapy: Its time has come. *The Journal of thoracic and cardiovascular surgery* **129**, 64-72 (2005).

590 44. Jin, K., *et al.* 从早期小细胞肺癌患者中选择以手术作为局部治疗的候选者: 基于人
591 群的分析. *癌症*, 3 (2018).

592 45. Devarakonda, S., *et al.* Tumor Mutation Burden as a Biomarker in Resected Non-
593 Small-Cell Lung Cancer. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology* **36**, 2995-3006 (2018).

595 46. Orr, H.A. Fitness and its role in evolutionary genetics. *Nature Reviews Genetics* **10**, 531-539 (2009).

597 47. Wagner, A.H., *et al.* Recurrent WNT pathway alterations are frequent in relapsed
598 small cell lung cancer. *Nat Commun* **9**, 3787 (2018).

599 48. Kim, R., Emi, M. & Tanabe, K. Cancer immunoediting from immune surveillance
600 to immune escape. *Immunology* **121**, 1-14 (2007).

601 49. Alexandrov, L.B., *et al.* Signatures of mutational processes in human cancer.
602 *Nature* **500**, 415-421 (2013).

603 50. McGranahan, N., *et al.* Clonal neoantigens elicit T cell immunoreactivity and
604 sensitivity to immune checkpoint blockade. *Science* **351**, 1463-1469 (2016).

605 51. Hellmann, M.D., *et al.* Tumor mutational burden and efficacy of nivolumab
606 monotherapy and in combination with ipilimumab in small-cell lung cancer.
607 *Cancer cell* **33**, 853-861. e854 (2018).

608 52. Liu, L., *et al.* Combination of TMB and CNA Stratifies Prognostic and Predictive
609 Responses to Immunotherapy Across Metastatic Cancer. *Clinical cancer research : an official journal of the American Association for Cancer Research* **25**,
610 7413-7423 (2019).

612 53. Hutchinson, L. Biomarkers: Aneuploidy and immune evasion - a biomarker of
613 response. *Nature reviews. Clinical oncology* **14**, 140 (2017).

614 54. Kawakami, M., Liu, X. & Dmitrovsky, E. New Cell Cycle Inhibitors Target
615 Aneuploidy in Cancer Therapy. *Annual review of pharmacology and toxicology* **59**, 361-377 (2019).

617 55. Birkbak, N.J., *et al.* Paradoxical relationship between chromosomal instability and
618 survival outcome in cancer. *Cancer research* **71**, 3447-3452 (2011).

619 56. Beroukhim, R., *et al.* The landscape of somatic copy-number alteration across
620 human cancers. *Nature* **463**, 899-905 (2010).

621 57. Eymin, B. & Gazzeri, S. Role of cell cycle regulators in lung carcinogenesis. *Cell Adh Migr* **4**, 114-123 (2010).

623 58. Tian, H., *et al.* DNA damage response—a double-edged sword in cancer
624 prevention and cancer therapy. *Cancer letters* **358**, 8-16 (2015).

625 59. Curtin, N.J. DNA repair dysregulation from cancer driver to therapeutic target.
626 *Nature reviews. Cancer* **12**, 801-817 (2012).

627 60. Zhang, H., et al. CDK7 Inhibition Potentiates Genome Instability Triggering Anti-
628 tumor Immunity in Small Cell Lung Cancer. *Cancer Cell* **37**, 37-54.e39 (2020).

629 61. Daniel, D., et al. Trilaciclib (T) decreases myelosuppression in extensive-stage
630 small cell lung cancer (ES-SCLC) patients receiving first-line chemotherapy plus
631 atezolizumab. *Annals of Oncology* **30**, v713 (2019).

632 62. Hu, X., et al. Multi-region exome sequencing reveals genomic evolution from
633 preneoplasia to lung adenocarcinoma. *Nat Commun* **10**, 2978 (2019).

634 63. Cibulskis, K., et al. Sensitive detection of somatic point mutations in impure and
635 heterogeneous cancer samples. *Nature biotechnology* **31**, 213-219 (2013).

636 64. Rentzsch, P., Witten, D., Cooper, G.M., Shendure, J. & Kircher, M. CADD:
637 predicting the deleteriousness of variants throughout the human genome. *Nucleic
638 acids research* **47**, D886-d894 (2019).

639 65. Favero, F., et al. Sequenza: allele-specific copy number and mutation profiles
640 from tumor sequencing data. *Ann Oncol* **26**, 64-70 (2015).

641 66. Felsenstein, J. *PHYLIP (phylogeny inference package), version 3.5 c*, (Joseph
642 Felsenstein., 1993).

643 67. Rosenthal, R., McGranahan, N., Herrero, J., Taylor, B.S. & Swanton, C.
644 DeconstructSigs: delineating mutational processes in single tumors distinguishes
645 DNA repair deficiencies and patterns of carcinoma evolution. *Genome Biol* **17**,
646 31-31 (2016).

647 68. Talevich, E., Shain, A.H., Botton, T. & Bastian, B.C. CNVkit: Genome-Wide Copy
648 Number Detection and Visualization from Targeted DNA Sequencing. *PLoS
649 Comput Biol* **12**, e1004873 (2016).

650 69. Lundegaard, C., et al. NetMHC-3.0: accurate web accessible predictions of
651 human, mouse and monkey MHC class I affinities for peptides of length 8-11.
652 *Nucleic acids research* **36**, W509-512 (2008).

653 70. Lundegaard, C., Lund, O. & Nielsen, M. Accurate approximation method for
654 prediction of class I MHC affinities for peptides of length 8, 10 and 11 using
655 prediction tools trained on 9mers. *Bioinformatics (Oxford, England)* **24**, 1397-
656 1398 (2008).

657 71. Nielsen, M., et al. NetMHCpan, a method for quantitative predictions of peptide
658 binding to any HLA-A and -B locus protein of known sequence. *PLoS one* **2**, e796
659 (2007).

660 72. Bai, Y., Wang, D. & Fury, W. PHLAT: Inference of High-Resolution HLA Types
661 from RNA and Whole Exome Sequencing. *Methods in molecular biology (Clifton,
662 N.J.)* **1802**, 193-201 (2018).

663 73. McGranahan, N., et al. Allele-specific HLA loss and immune escape in lung
664 cancer evolution. *Cell* **171**, 1259-1271. e1211 (2017).

665 74. Favero, F., et al. Sequenza: allele-specific copy number and mutation profiles
666 from tumor sequencing data. *Annals of oncology : official journal of the European
667 Society for Medical Oncology* **26**, 64-70 (2015).

668 75. Roh, W., et al. Integrated molecular analysis of tumor biopsies on sequential
669 CTLA-4 and PD-1 blockade reveals markers of response and resistance. *Sci
670 Transl Med* **9**(2017).

671

672

673 **Figure Legends**

674 **Figure 1. Phylogenetic trees of 18 SCLC tumors with multiregional whole exome**
675 **sequencing (WES).** Blue, brown and red lines represent trunk, branch, and private

676 mutations, respectively. The length of trunk, branch and private branch are proportional
677 to the numbers of mutations. Commonly mutated cancer genes *TP53*, *RB1* and are
678 mapped to the phylogenetic trees as indicated. Patient ID: pink = alive; green = expired.

679

680 **Figure 2. Genomic intra-tumor heterogeneity of small cell lung cancers. (A)**

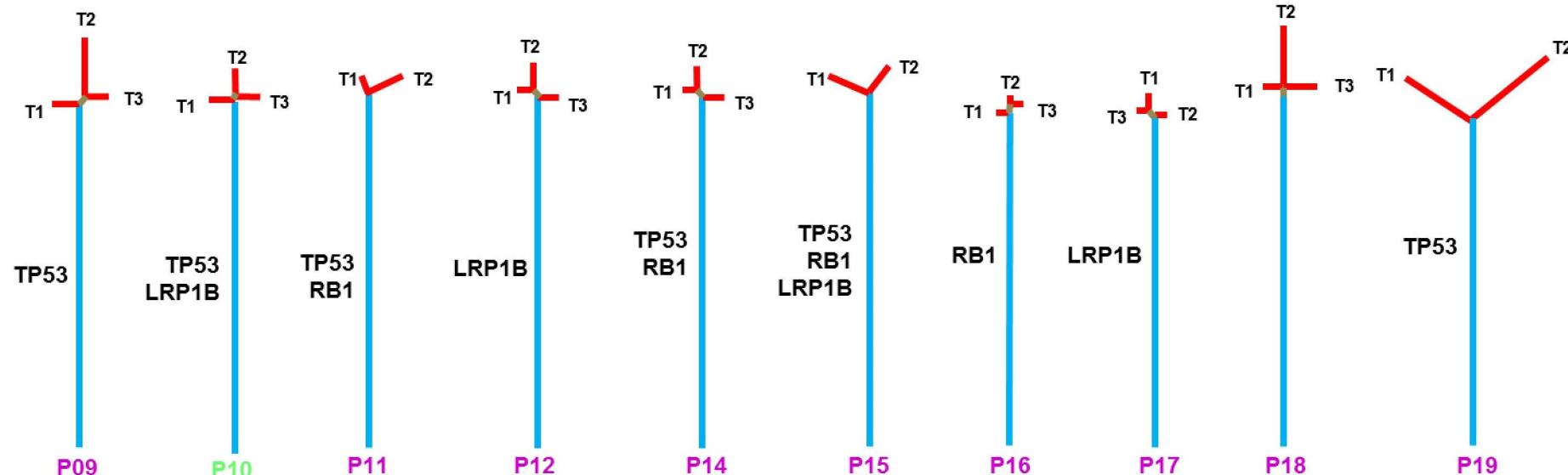
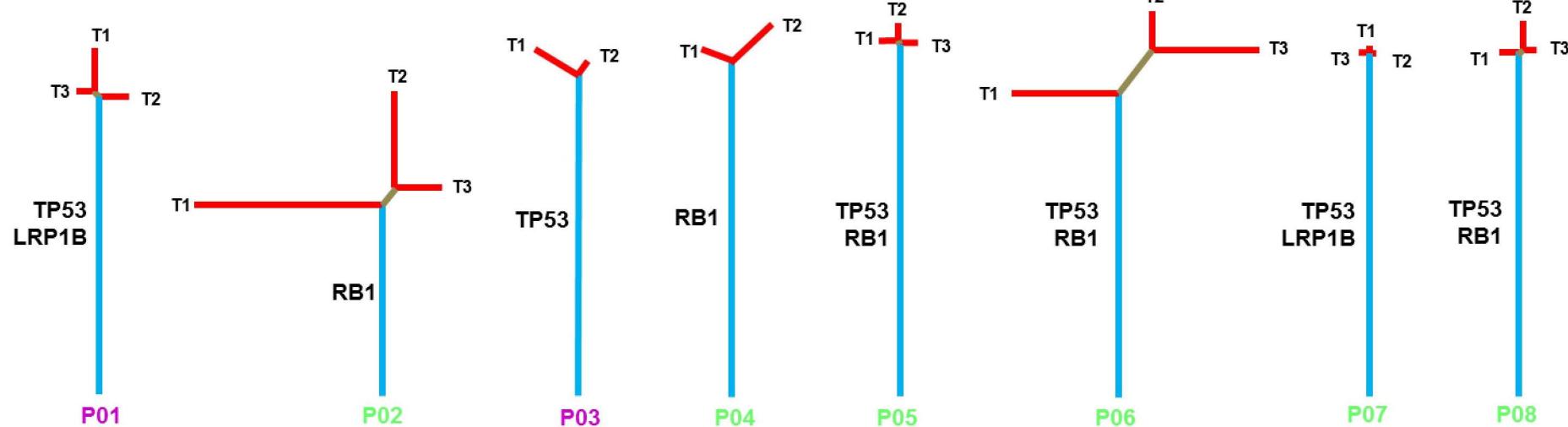
681 Proportion of trunk (blue), branch (brown), and private (red) mutations representing
682 mutations detected in all tumor regions, some but not all and only in one single tumor
683 region from any given tumor. Purple patient IDs = patients who were alive; Green
684 patient IDs = patients who were deceased. **(B)** Proportion of clonal *versus* subclonal
685 mutations defined by PyClone in 50 SCLC tumor specimens. Mutations were classified
686 as clonal (estimated cancer cell fraction = 1, indicating mutations presenting in all
687 cancer cells, blue) or subclonal (estimated cancer cell fraction < 1, indicating mutations
688 only present in a subset of cancer cells, orange) in each tumor specimen.

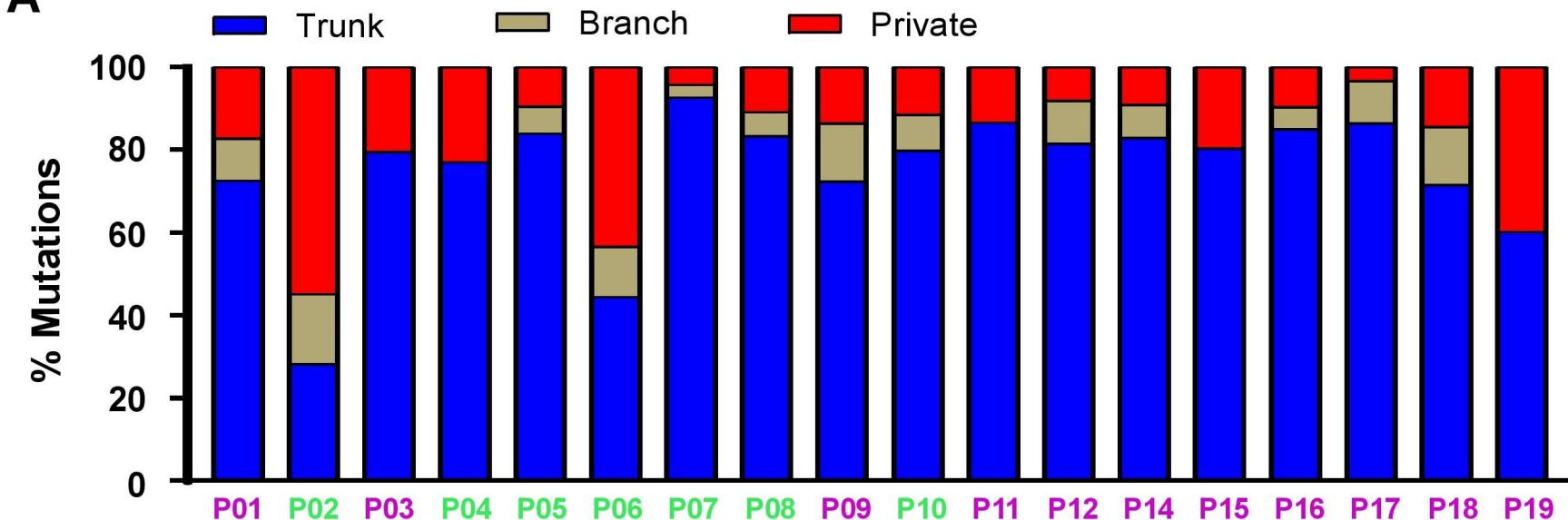
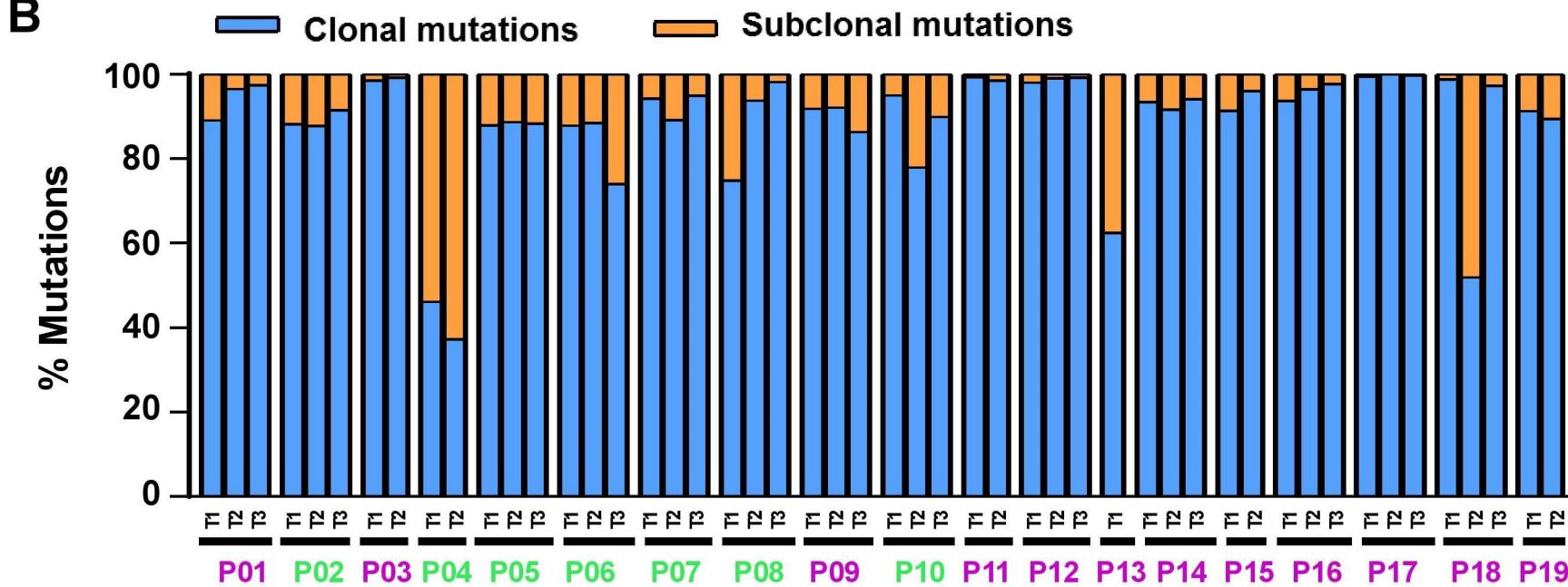
689

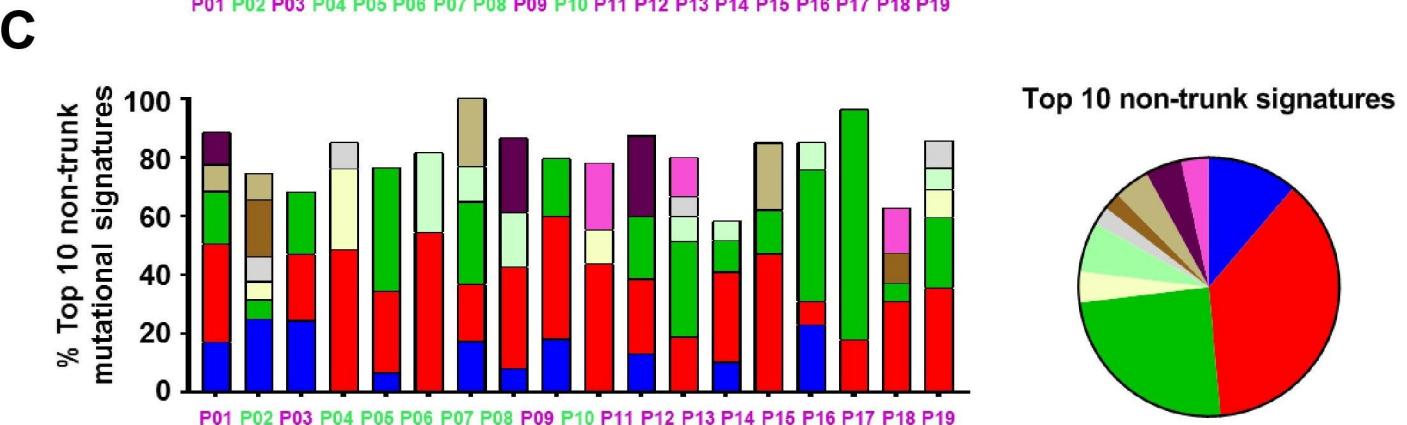
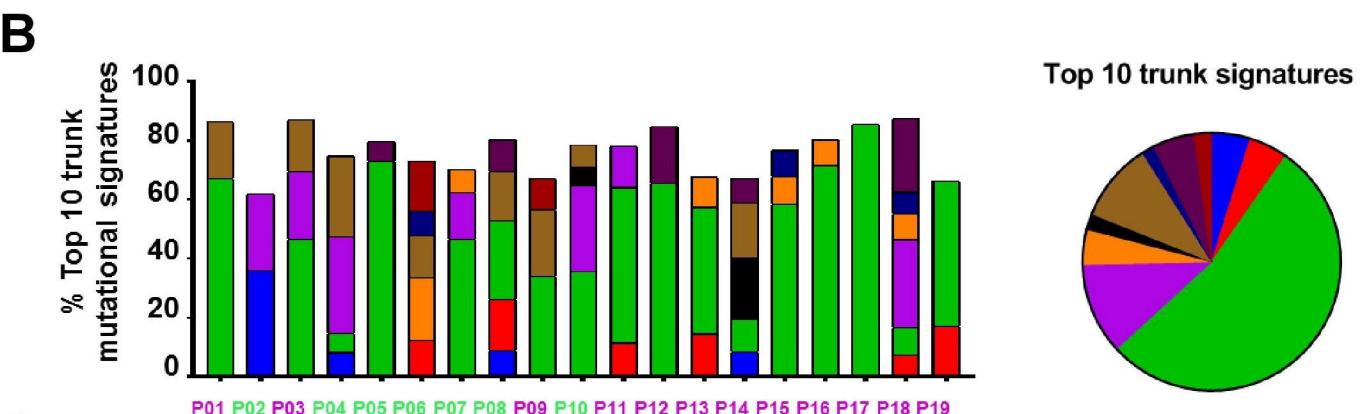
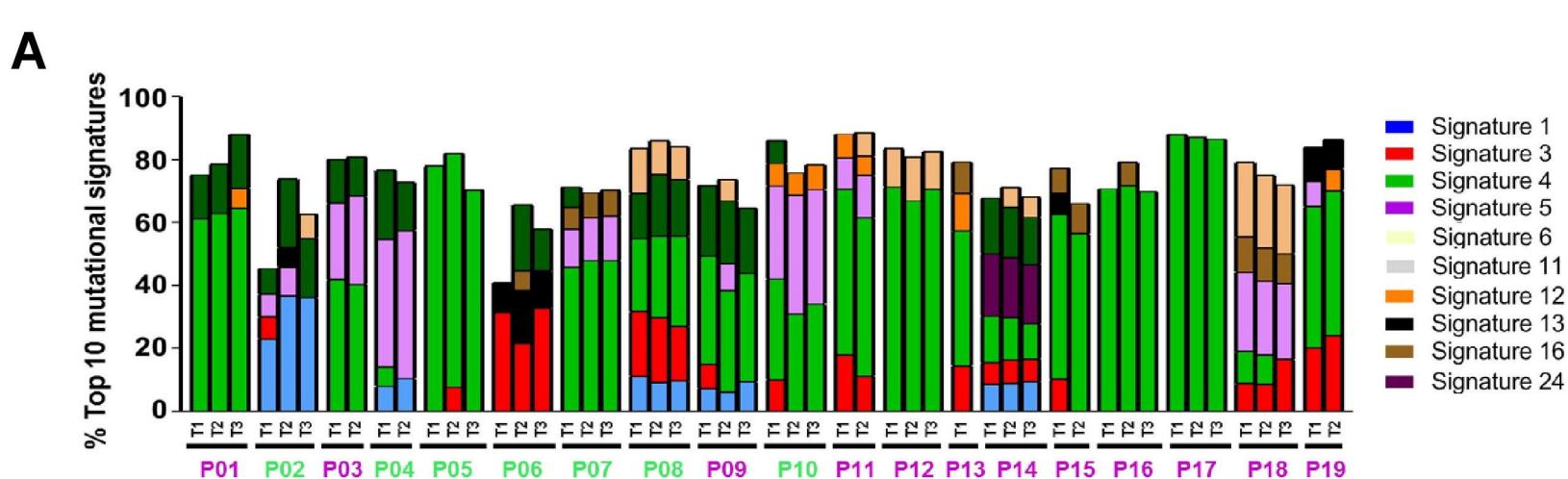
690 **Figure 3. The mutational processes in small cell lung cancers. (A)** The top

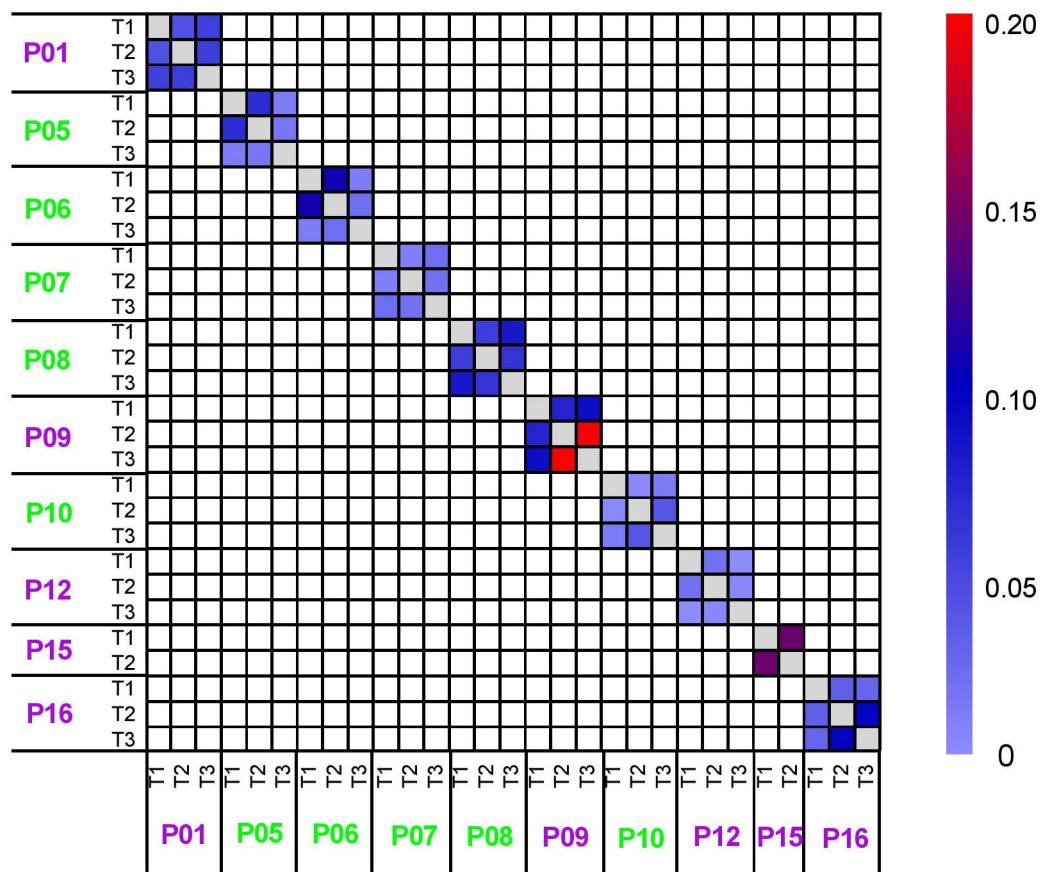
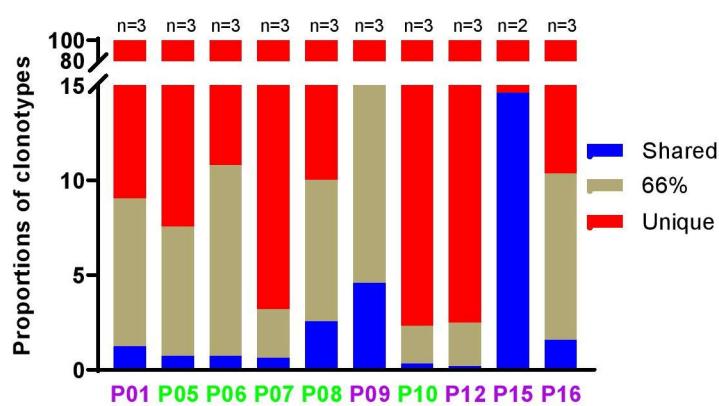
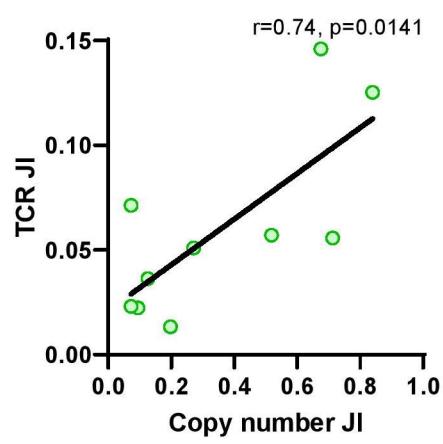
691 COSMIC mutational signatures in 50 SCLC specimens. **(B)** The top COSMIC
692 mutational signatures associated with trunk mutations. Bar chart on the left: top
693 signatures associated with trunk mutations in each patient. Pie chart on the right: the
694 average of contribution of each signature across the 19 patients. **(C)** The top COSMIC
695 mutational signatures associated with non-trunk mutations. Bar chart on the left: top
696 signatures associated with non-trunk mutations in each patient. Pie chart on the right:
697 the average of contribution of top signatures across the 19 patients. Patient ID: pink =
698 alive; green = expired.

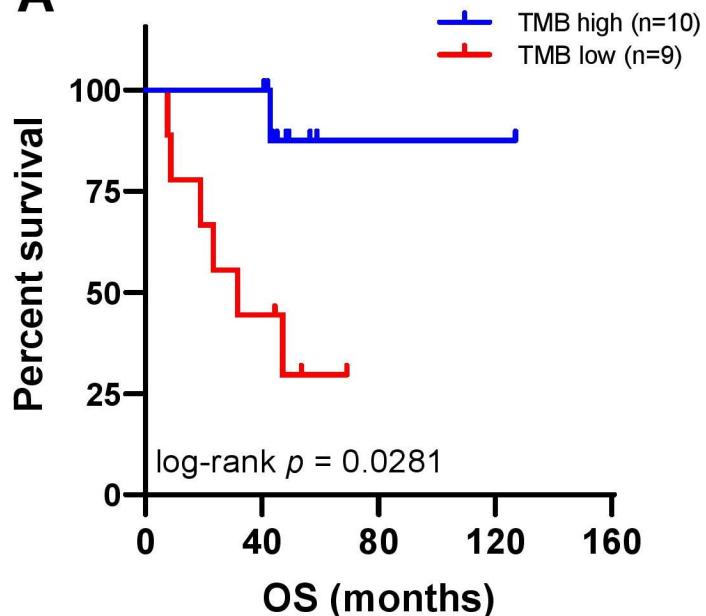
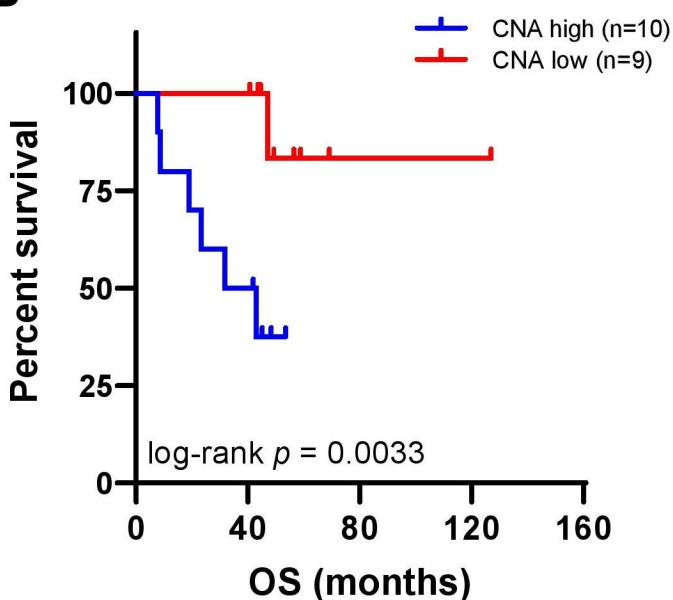
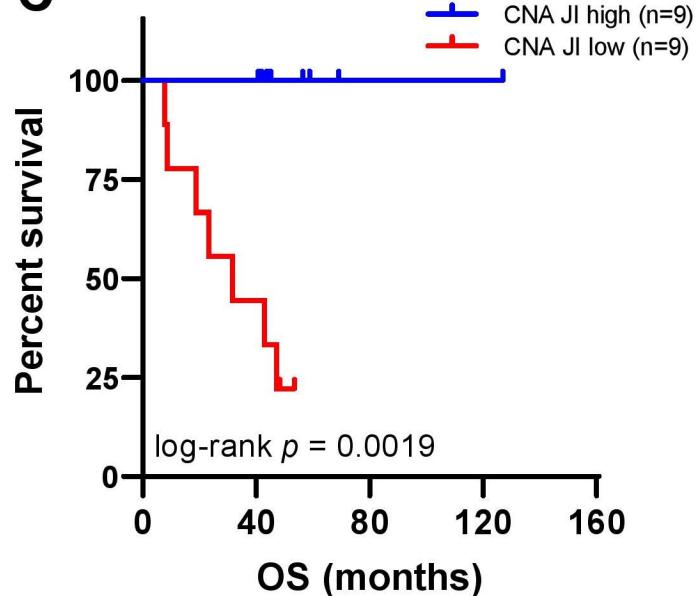
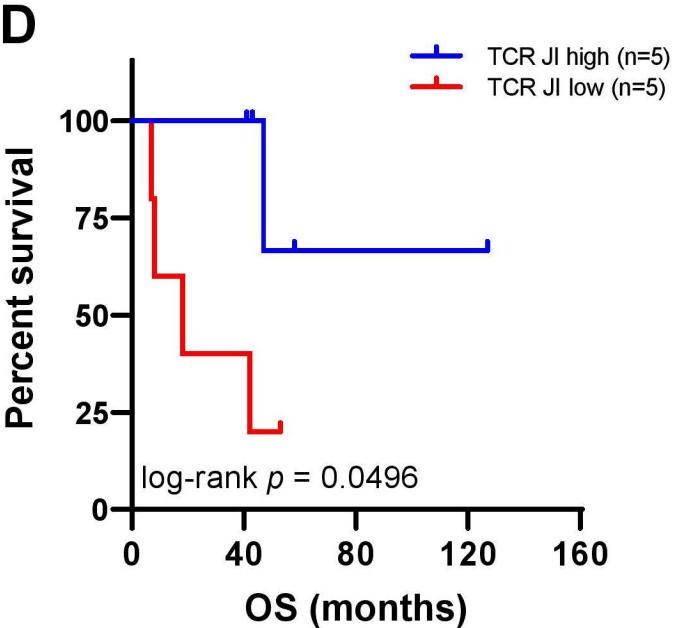
699



700 **Figure 4. Substantial TCR repertoire intratumor heterogeneity (ITH) in small cell**
701 **lung cancer. (A)** Quantification of T cell receptor (TCR) ITH by Jaccard index (JI), a



702 metric representing the proportion of shared T-cell clonotypes between two samples. **(B)**
703 Proportions of T-cell clonotypes detected in all regions (shared, blue), in 2/3 (brown)
704 and restricted to a single region (red) from the same tumors. Patient ID: pink = alive;
705 green = expired. **(C)** Correlations between TCR ITH and TCR ITH by JI.




706




707 **Figure 5. Association of overall survival (OS) with genomic and TCR landscape.**
708 **(A)** OS is longer in patients with higher (above median, blue) TMB than patients with
709 lower (below median, red) TMB. **(B)** OS is shorter in patients with higher (above median,
710 blue) CNA burden than patients with lower (below median, red) CNA burden. **(C)** OS is
711 longer in patients with less CNA ITH (higher CNA JI, blue) than patients with higher
712 level of CNA ITH (lower CNA JI, red). **(D)** OS is longer in patients with more
713 homogenous TCR repertoire (higher above median TCR JI, blue) than patients with
714 more heterogeneous TCR repertoire (lower below median TCR JI, red).





715

A**B**

A**TCR Jaccard index****B****Shared T-cell clonotypes****C**

A**B****C****D**