

1 **Population Pharmacokinetics of an Anti-PD-1 Antibody**
2 **Camrelizumab in Patients with Multiple tumor types and model**
3 **informed dosing strategy**

4 Chen-yu Wang^{a, #}; Chang-cheng Sheng^{b, #}; Guang-li Ma^c; Da Xu^c; Xiao-qin Liu^d;
5 Yu-ya Wang^c; Li Zhang^e; Chuan-liang Cui^f; Bing-he Xu^g; Yu-qin Song^h, Jun Zhu^h;
6 Zheng Jiao^{a*}

7 a Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University,
8 Shanghai, P.R.China.

9 b Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang,
10 P.R.China.

11 c Department of Clinical Pharmacology, Jiangsu Hengrui Medicine Co. Ltd, Shanghai,
12 P.R.China

13 d Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, P.R.China

14 e Department of Medical Oncology; Sun Yat-sen Universicty Cancer Center,
15 Guangzhou, P.R.China

16 f Key Laboratory of Carcinogenesis and Translational Research (Ministry of
17 Education/Beijing), Department of Renal Cancer and Melanoma, Peking University
18 Cancer Hospital & Institute, Beijing, P.R.China.

19 g Department of Medical Oncology, National Cancer Hospital, Chinese Academy of
20 Medical Sciences, Beijing, P.R.China.

21 h Key Laboratory of Carcinogenesis and Translational Research (Ministry of
22 Education), Department of Lymphoma, Peking University Cancer Hospital & Institute,
23 Beijing, China.

24

25 # Chen-yu Wang and Chang-cheng Sheng made equal contributions to this work.

26

27

28 *Corresponding author:

29 Zheng Jiao, Professor

30 Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University

31 241 Huaihai West Road, Shanghai, China, 200030

32 Tel.: +86 (21) 2220 0000 ext 3021

33 E-mail: jiaozhen@online.sh.cn;

34 ORCID: 0000-0001-7999-7162

35

36 **Abbreviations:** AIC, Akaike's information criterion; AUC, area under the
37 concentration-time curve; AUC_{ss}, steady-state area under the concentration-time curve;
38 BSV, Between-subject variability; C, camrelizumab concentration; C₁, concentration
39 of central compartment; C_{average,ss}, steady-state average concentration; CL, clearance;
40 CL_{linear}, clearance of linear elimination; C_{max,ss}, steady-state peak concentration;
41 CL_{nonlinear}, clearance of nonlinear elimination; C_{min,ss}, steady-state trough
42 concentration; CWRES, conditional weighted residuals; DV, observed concentration;
43 IPRED, individual predicted concentrations; k₀, infusion rate; k₂₃, elimination rate
44 from central compartment to peripheral compartment; k₃₂, elimination rate from
45 peripheral compartment to central compartment; k_{linear}, linear elimination rate;
46 k_{nonlinear}, nonlinear elimination rate; K_m, Michaelis–Menten constant; mAb,
47 monoclonal antibody; NONMEM, nonlinear mixed effect modeling; PD-1,
48 programmed cell death 1 receptor; PK, pharmacokinetics; PRED, population
49 predicted concentration; Q, inter-compartmental clearance; Q2W, every 2 weeks; V_m,
50 maximum elimination rate; VPC, visual predictive check; V₁, distribution volume of
51 central compartment; V₂, distribution volume of peripheral compartment; WBC,
52 white blood cell.

54 **Abstract**

55 **Objective:** Camrelizumab, a programmed cell death 1 (PD-1) inhibitor, has been
56 approved for the treatment of relapsed or refractory classical Hodgkin lymphoma. The
57 aim of this study was to perform a population pharmacokinetics (PK) analysis of
58 camrelizumab to quantify the impact of patient characteristics on PK and to
59 investigate the appropriateness of flat dose in the dosing regimen.

60 **Methods:** A total of 3298 camrelizumab concentrations from 133 patients from four
61 studies were analyzed using nonlinear mixed effects modeling. Covariate model
62 building was conducted using stepwise forward addition and backward elimination.
63 Monte Carlo simulation was conducted to compare exposures of 200 mg and 3 mg/kg
64 every 2-week regimens.

65 **Results:** The PK of camrelizumab were adequately described by a two-compartment
66 model with parallel linear and nonlinear clearances. Baseline albumin had significant
67 effects on linear clearance, and weight had effects on inter-compartmental clearance.
68 Moreover, 200 mg and 3 mg/kg regimens provide similar exposure distributions with
69 no advantage to either dosing approach.

70 **Conclusion:** Population PK analysis provided an integrated evaluation of the impact
71 of albumin and weight on the PK of camrelizumab. It also provided evidence that
72 neither the flat-dose nor the weight-based dose regimen was advantageous over the
73 other for most patients with tumors.

74

75 **Keywords:** Camrelizumab; Programmed cell death 1 inhibitor; population
76 pharmacokinetics; Monte Carlo simulation; dosing regimen

77

78 **1 Introduction**

79 The programmed cell death 1 (PD-1) pathway plays a critical role in maintaining
80 an immunosuppressive tumor microenvironment, and blockade of the PD-1 pathway
81 has become the key component of cancer immunotherapy.¹ Camrelizumab (SHR-1210,
82 AiRuiKa™) is a humanized high-affinity IgG4-kappa monoclonal antibody (mAb) to
83 PD-1.² In May 2019, the National Medical Products Administration of China
84 approved camrelizumab for the treatment of patients with relapsed or refractory
85 classical Hodgkin lymphoma.^{3, 4} Camrelizumab is also being investigated as a
86 treatment for other various malignancies, including gastric/gastroesophageal junction
87 cancer, hepatocellular carcinoma, and nasopharyngeal cancer.⁵⁻⁷

88 The pharmacokinetics (PK) characteristics of camrelizumab are consistent with
89 other typical IgG4 antibodies.⁸ Non-compartmental analysis indicated a half-life of 3
90 – 11 days from 1 mg/kg to 10 mg/kg after a single dose. While C_{max} increased
91 proportionally with dose from 1 mg/kg to 10 mg/kg, area under the
92 concentration-time curve (AUC) increased in a supralinear manner over the same
93 dose range.⁸ In phase I clinical studies of 60 to 400 mg infusions of camrelizumab, the
94 coefficient of variation of AUC was more than 30%.⁹ Therefore, it is necessary to
95 analyze the factors that affect PK properties of camrelizumab and to investigate the
96 effect of these factors on dosing regimen.¹⁰

97 Early clinical studies of camrelizumab employed bodyweight-based dosing
98 strategies of 1 mg/kg to 10 mg/kg every 2 weeks (Q2W) and compared 3 mg/kg with
99 a flat-dose regimen of 200 mg Q2W. Although the flat-dose was selected for the
100 subsequent expansion phase based on the PK and receptor occupancy data, the
101 relevance of body weight to the exposure of camrelizumab has not been established. A
102 dose adjustment of camrelizumab may be required when there is a large variation in
103 the weight of patients.^{7, 11} Population PK analysis of data obtained in patients across
104 multiple trials was the most efficient approach to answer this question.¹²

105 In this study, a population-PK model of camrelizumab was developed using
106 pooled data from four Phase I and Phase II clinical trials to evaluate the impact of
107 covariates on exposure, to support dose recommendations in subpopulations, and to
108 assess the adequacy of a weight-based dosing regimen.

109 **2 Methods**

110 **2.1 Population-pharmacokinetic Data**

111 Data from three phase I and one phase II clinical trials in patients with advanced
112 solid tumors, melanoma, or relapsed/refractory classical Hodgkin lymphoma were
113 pooled to conduct this population PK analysis (Table 1). A total of 133 patients were
114 enrolled in this analysis. The three phase 1 trials (SHR-1210-101, SHR-1210-102,
115 SHR-1210-103) and one phase 2 trial (SHR-1210-II-204) were registered at Chinese
116 Clinical Trial Registry (CTR20160175, CTR20160207, CTR20160248,
117 CTR20170500, respectively). All studies were carried out in accordance with
118 principles as defined in the Declaration of Helsinki (October 2013)¹³. The protocol
119 and all amendments were approved by the institutional review board and independent
120 ethics committee of each trial center. Informed consent was obtained from each
121 patient before enrollment.

122 For the assessment of camrelizumab PK, serum samples were collected at
123 prespecified time points in each of the studies. An intensive sampling strategy was
124 employed in the first cycle of the three phase 1 trials (SHR-1210-101, SHR-1210-102,
125 SHR-1210-103). Subsequent cycles of the phase 1 trials and all cycles of the phase 2
126 trial (SHR-1210-204) employed a sparse sampling strategy. The details of the study
127 design in each trial are listed in Table 1.

128 Camrelizumab concentrations were measured by enzyme linked immunosorbent
129 assay using a calibration range of 157 - 10,000 ng/mL for the three phase 1 trials, and
130 180 - 10,000 ng/mL for the phase 2 trial.^{7,9}

131 Patients were defined as evaluable for PK analysis if they had ≥ 1 adequately

132 dose and ≥ 1 corresponding concentration sample. Covariates with data missing
133 for $>10\%$ of the patients were not included in the analysis. The data of covariates with
134 data missing for $\leq 10\%$ of the patients were imputed to the population median for
135 continuous covariates and values with higher frequency for categorical covariates.

136 **2.2 Population PK Analyses**

137 Population PK models were developed using a nonlinear mixed effect modeling
138 (NONMEM) approach, as implemented in the NONMEM software (version 7.4.0,
139 ICON Development Solutions, Ellicott City, MD, USA) using first-order conditional
140 estimation with interaction. Graphical and statistical analyses, including evaluation of
141 NONMEM outputs, were performed with Perl speaks NONMEM (PsN, version 4.7.0,
142 Department of Pharmaceutical Biosciences, Uppsala University, Sweden), R (version
143 3.4.1, R Foundation for Statistical Computing, Vienna, Austria), R packages Xpose
144 (version 4.5.3, Department of Pharmaceutical Biosciences, Uppsala University,
145 Sweden), and Pirana (version 2.9.7, Certara, Inc. Princeton, USA).

146 **2.2.1 Base Model**

147 In the development of the structural PK model, the concentration-time data were
148 fitted to one- and two-compartment models with linear and nonlinear clearance
149 ($CL_{nonlinear}$), and the suitability of the models was assessed. Nonlinear elimination
150 pathways were explored by incorporating CL described by Michaelis–Menten
151 kinetics¹⁴ (Eq. 1):

152
$$CL_{nonlinear} = \frac{V_m}{K_m + C} \quad (\text{Eq. 1})$$

153 where $CL_{nonlinear}$ is the nonlinear elimination rate, V_m is the maximum elimination
154 rate, C is the camrelizumab concentration, and K_m is the Michaelis–Menten constant,
155 the concentration at which 50% of the maximum elimination rate is reached.

156 Between-subject variability (BSV) was assumed to follow a log-normal
157 distribution and was therefore implemented into the model as follows¹⁵ (Eq. 2):

158
$$P_i = P_{pop} \times e^{(\eta_i)} \quad (\text{Eq. 2})$$

159 where P_i depicts the individual or *post hoc* value of the parameter for the i th

160 individual, P_{pop} depicts the population mean for the parameter, and η_i depicts the
161 empirical Bayes estimate of BSV for the i^{th} individual, sampled from a normal
162 distribution with a mean of zero and a variance of ω^2 .

163 Residual error was evaluated as a proportional or additive error, or as a
164 combination of both (Eq. 3).

165
$$Y = IPRED \times (1 + \varepsilon_{proportional}) + \varepsilon_{additive} \quad (\text{Eq. 3})$$

166 where Y is the observed concentration, IPRED is the individual predicted
167 concentration, $\varepsilon_{proportional}$ is the proportional error component, and $\varepsilon_{additive}$ is the
168 additive error component. Residual error components are sampled from a normal
169 distribution with a mean of zero and variance of σ^2 .

170 The base model selection was based on Akaike's information criterion (AIC)¹⁶,
171 precision of parameter estimates, condition number, and goodness-of-fit plots.

172 **2.2.2 Covariate model**

173 A three-step approach was used for the covariate analysis. In the first step, the
174 relationship between PK parameters and covariates was screened by plotting the
175 individual empirical Bayes estimates for PK parameters versus potential covariates.
176 This was followed by linear regression for continuous covariates and analysis of
177 variance testing for categorical covariates. Only those covariates with a significant
178 effect ($r>0.2$, $p<0.001$) on the estimated PK variables, which could be meaningfully
179 explained from both a clinical and scientific perspective, were carried through to the
180 next stage.

181 In the second step, the identified covariates were added to the base model one at a
182 time. Significance was assessed using the likelihood ratio test, where the addition of
183 one parameter required a reduction in objective function value >3.84 ($p<0.05$)
184 obtained by NONMEM during the forward inclusion. All significant covariates were
185 included in the full model and additional covariates of borderline significance were
186 only included if the covariate was highly likely to be influential based on scientific
187 judgment.

188 The final step involved a stepwise backward elimination process, starting with the
189 full model and removing each covariate one at a time. The covariate that was the least
190 significant was removed and the process was repeated. The criterion for retention of a
191 covariate in the model was a change in likelihood ratio >6.63 for one parameter
192 ($p<0.01$) during the stepwise backward elimination stage.

193 Continuous covariates were evaluated using both a linear function and a power
194 function (Eq. 4 and 5). Categorical covariates were tested using (Eq. 6):

$$195 P_i = \theta_1 \times \left(1 + \theta_2 \times \frac{cov_i}{cov_{median}}\right) \quad (\text{Eq. 4})$$

$$196 P_i = \theta_1 \times \left(\frac{cov_i}{cov_{median}}\right)^{\theta_2} \quad (\text{Eq. 5})$$

$$197 P_i = \theta_1 \times (1 + \theta_2^{cov_i}) \quad (\text{Eq. 6})$$

198 where P_i and Cov_i are the parameter and covariate value for the i th individual,
199 respectively, Cov_{median} is the median value for the covariate, θ_s are the parameters to
200 be estimated, and θ_1 represents the typical value of a pharmacokinetic parameter in an
201 individual with the median value for the covariate.

202 The shrinkage derived from the final model was assessed for each BSV term, as
203 well as for residual variability.

204 **2.3 Model evaluation**

205 Goodness-of-fit plots were used for model evaluation including observed
206 concentration (DV) vs. population predicted concentration (PRED), DV vs. individual
207 predicted concentrations (IPRED), conditional weighted residuals (CWRES) vs.
208 PRED, and CWRES vs. time.

209 The PK parameters were estimated repeatedly by fitting the final model to 1000
210 bootstrap datasets, sampled from the original dataset with replacement¹⁷. The median
211 values and 2.5%~97.5% of the population PK parameter estimates from these 1000
212 bootstrap datasets were compared with the point estimates from the final model.

213 The predictive performance of the final model was assessed using a visual
214 predictive check (VPC) approach, which compared the distribution of observed

215 concentrations and model predictions. A total of 1000 simulated datasets were
216 generated using the final model.

217 **2.4 Dosing regimen**

218 Monte Carlo simulations, using the individual empirical Bayes PK parameters,
219 were used to evaluate the effect of body weight on the PK of camrelizumab when
220 administered at a dose of 200 mg Q2W and compared to the effects of a body
221 weight-adjusted dose of 3 mg/kg Q2W.

222 To predict camrelizumab PK in each dosing regimen group, 1000 virtual patients
223 were created by randomly drawing covariate values with replacement from the pooled
224 modeling data.

225 BSV and residual variability in the model were sampled from the established
226 distributions, together with PK parameters and covariate relationships for each virtual
227 patient, which were in turn used to determine steady-state peak concentration ($C_{\max,ss}$),
228 steady-state trough concentration ($C_{\min,ss}$), steady-state average concentration
229 ($C_{\text{average},ss}$), and steady-state AUC (AUC_{ss}). $C_{\text{average},ss}$ was calculated as (Eq. 7):

230
$$C_{\text{average},ss} = \frac{AUC_{ss}(\text{mg} \times \text{weeks}/L)}{\text{dosing interval (weeks)}} \quad (\text{Eq. 7})$$

231 where $C_{\max,ss}$ and $C_{\min,ss}$ were determined from the concentration-time profile
232 using each individual's *pos-hoc* estimated pharmacokinetic parameters. AUC_{ss} is AUC
233 in one dosing interval at steady state. Summary statistics (median, 5% – 95%) were
234 determined using R software.

235

236 **3 Results**

237 **3.1 Demographics**

238 The dataset included 133 patients who provided a total of 3298 plasma
239 concentrations, of which 206 samples were excluded: 203 (6.16%) samples below the
240 limit of quantification and 3 (0.09%) samples with missed values. For covariates, no
241 data were missing. In total, 3092 observations (93.75%) were used in the population
242 PK analysis. A summary of patient demographics for the analysis dataset is presented
243 in [Table 2](#). The patients presented various tumor types, and two-third of the patients
244 were male.

245 **3.2 Population-Pharmacokinetic Model**

246 **3.2.1 Base Model**

247 Two compartment models were found to better describe the camrelizumab
248 pharmacokinetics than the one compartment model, resulting in a decrease of >300
249 points in AIC. Inclusion of first order and nonlinear elimination resulted in a further
250 decrease in AIC of 60 points compared with the linear model. The model was
251 parameterized by clearance of linear elimination (CL_{linear}), inter-compartmental
252 clearance (Q), distribution volume of central compartment (V_1), distribution volume
253 of peripheral compartment (V_2), V_m and K_m . The model structure is shown in [Figure 1](#).

255 BSV was estimated for CL_{linear} , V_1 , and V_m for the acceptable precision of
256 parameter estimates. The residual error was best described by a combined
257 proportional and additive error model.

258 **3.2.2 Covariate Model**

259 The covariates investigated included baseline age, weight, sex, race, creatinine
260 clearance, aspartate aminotransferase, alanine aminotransferase, total bilirubin,
261 albumin, hemoglobin, platelet count, and white blood cell (WBC) count. Initial
262 graphical screening showed significant effects of albumin, hemoglobin, platelets, and
263 WBC on CL_{linear} , weight on V_1 , and weight on Q ($r > 0.2$, $p < 0.001$). When these

264 covariates were tested in a forward inclusion step, the effects of albumin, platelets,
265 WBCs, and weight were significant ($p < 0.05$) and retained in the model. The effects
266 of WBCs and platelets on CL_{linear} , and weight on V_1 , were excluded using a stepwise
267 backward elimination method ($p > 0.01$). After covariate screening, the effects of
268 albumin on CL_{linear} and weight on Q were retained in the final model. The main steps
269 in the covariate model building from the base model to the final model are
270 summarized in [Supplementary Materials Table S1](#).

271 The parameters of the final model are presented in [Table 3](#). The final model is
272 listed below (Eq. 8):

$$\left. \begin{array}{l} CL_{linear} = 0.224 \times (albumin/44)^{-1.4} \times e^{\eta CL_t} \\ Q = 0.433 \times (weight/61)^{1.33} \\ V_m = 2.86 \times e^{\eta V_m} \\ K_m = 1.28 \\ V_1 = 3.08 \times e^{\eta V_1} \\ V_2 = 2.88 \end{array} \right\} \quad (Eq. 8)$$

275 CL_{linear} decreases with albumin, and a decrease from albumin 50 g/L to
276 albumin 25 g/L is associated with a 10.3% decrease in CL_{linear} ; BSV was reduced
277 from 57.0 to 50.8% for CL_{linear} , indicating 10.8% of the BSV in CL_{linear} was explained
278 by albumin; Q exhibits a linear correlation with weight.

279 The shrinkages of both BSV and residual variability were less than 30%, which
280 indicates a reliable estimate of the individual empirical Bayes PK parameter ([Table 3](#)).

281 **3.3 Model Evaluation**

282 The goodness-of-fit for the final model ([Figure. 2](#)) showed a good agreement
283 between observed and predicted values. The scatterplots of DV vs. PRED and DV vs
284 IPRED showed random scatter around the identity line, indicating the absence of
285 systematic bias.

286 A non-parametric bootstrap with 1000 replicates was performed for the final
287 model, with 915 of the replicates successfully presenting the minimization step. The

288 final model parameters and bootstrap results are presented in [Table 3](#). Overall, the
289 population estimates for the final model were close to the median of the bootstrap
290 replicates and were within the 2.5 – 97.5 percentiles obtained from the bootstrap
291 analysis. The precision of these parameter estimates was also satisfactory. The 95%
292 CIs did not contain any null values for any parameters.

293 The VPC showed that the median and 95% CI of the observed data were in line
294 with those from the simulation-based predictions from the model for all strata ([Figure](#).
295 [3](#)).

296 **3.4 Simulations for Dosing Regimens**

297 Summary statistics for the observed camrelizumab exposures across the 200 mg
298 and 3 mg/kg Q2W are presented in [Table 4](#). The 2.5% – 97.5% of $C_{\text{average,ss}}$ for 3
299 mg/kg Q2W are from 12.81 to 113.87 $\mu\text{g}/\text{mL}$, which are similar to 200 mg Q2W
300 (15.28-112.08 $\mu\text{g}/\text{mL}$). The median $C_{\text{max,ss}}$, $C_{\text{min,ss}}$, and $C_{\text{average,ss}}$ values for 200 mg
301 Q2W are higher than those for 3 mg/kg Q2W.

302

303 **4 Discussion**

304 This is the first study to report a population PK model of camrelizumab in
305 subjects with advanced melanoma, advanced solid tumors, and relapsed or refractory
306 classical Hodgkin lymphoma. Camrelizumab PK were well described using a
307 two-compartment model with parallel first-order and Michaelis–Menten CL from the
308 central compartment.

309 The final model is in line with known characteristics of antibody PK, where the
310 nonlinear pathway is thought to be related to clearance of the mAb via saturable
311 target-mediated mechanisms (such as receptor-mediated endocytosis), while the linear
312 component represents clearance pathways that are not saturable at therapeutic mAb
313 concentrations (such as Fc-mediated elimination)¹⁸. The Michaelis–Menten constant
314 in the model is 1.38 µg/mL, indicating that at low camrelizumab concentrations
315 (<1.38 µg/mL), target-mediated elimination contributes a significant portion of the
316 total CL. With increasing camrelizumab concentrations, the CL decreases
317 dramatically as the target-mediated elimination pathway becomes saturated. When
318 above the median of simulated concentration of 200 mg Q2W, the CL approaches that
319 of the first-order process, and the contribution from the nonlinear pathway becomes
320 negligible.

321 Our study also showed that camrelizumab CL decreased with increasing albumin
322 level. The impact of albumin on PK of mAbs has been previously reported for
323 infliximab, bevacizumab, ustekinumab, and pertuzumab.¹⁹ Because albumin and IgG
324 share the same Fc receptor salvaging pathway, Fc receptor also binds and protects
325 albumin from intracellular catabolism, thereby playing an important role in the
326 homeostasis of both IgG and albumin.¹⁰ A higher albumin concentration could be an
327 indicator of an increased number of Fc receptor s and a related reduction in the rate of
328 camrelizumab elimination.²⁰ Although albumin had a statistically significant impact
329 on CL_{linear}, simulation analyses demonstrated that the magnitude of its effect on
330 camrelizumab exposure was limited (Figure 4). As albumin levels increased from 20

331 to 50 g/L, the median $C_{min,ss}$ increased from 61 to 78 $\mu\text{g}/\text{mL}$, which are comparable to
332 the 10 – 90% percentiles of the $C_{min,ss}$ (39 to 123 $\mu\text{g}/\text{mL}$). Therefore, a dose
333 adjustment for albumin is not warranted.

334 Therapeutic mAb dosing is usually based on body weight²¹. However, this dosing
335 paradigm has recently been re-evaluated because of the wide dose range for the
336 therapeutic efficacy and tolerability for camrelizumab. Flat dose is considered and
337 applied in the clinical settings due to increased convenience, elimination of wastage,
338 improved safety, and improved compliance.⁹ Our study showed that only weight has
339 an impact on Q of camrelizumab, and it has little effect on camrelizumab exposure.
340 Meanwhile, the mean exposure profile for the 200 mg flat dose is essentially similar
341 to that of the 3 mg/kg profile. Although patients with increased weight had lower
342 exposures with the 200 mg flat dose compared to the 3 mg/kg regimen, the
343 distribution of exposures obtained in these patients was within the range of exposures
344 from the prior clinical reports.²² It was demonstrated in this study that both
345 weight-based and fixed flat dosing are appropriate for camrelizumab, with neither
346 regimen providing a PK advantage over the other.

347 There are several limitations in this study. The study was based solely on
348 dose-exposure analysis and all patients were from China. Whether the results could be
349 applied to population of North American and European countries, remains to be
350 elucidated. In addition, comprehensive safety and efficacy data were lacking. Further
351 research including an exposure-response study is needed to inform clinical dosing
352 strategy.

353 **5 Conclusions**

354 In this study, a population PK model of camrelizumab was developed to quantify
355 the impact of patient characteristics on PK. The PK of camrelizumab were described
356 by a two compartment model with parallel linear and nonlinear clearance from the
357 central compartment. Although albumin levels and patient weight had statistically
358 significant impacts on the PK of camrelizumab, the magnitude was limited and dose

359 adjustments were not required. Doses of 200 mg and 3 mg/kg provided similar
360 exposure distributions with no advantage to either dosing approach with respect to
361 controlling PK variability.

362 **Acknowledgements:**

363 We thank Wei-wei Wang, Qing Yang and Xiao-jing Zhang from Jiangsu Hengrui
364 Medicine Co. Ltd for critical review of the manuscript. We would like to thank
365 Editage (www.editage.cn) for English language editing.

366 **CRedit author statement**

367 **Chen-yu Wang:** Methodology, Software, Formal analysis, Validation, Visualization,
368 Writing – Original Draft, Writing - Review & Editing. **Chang-cheng Sheng:**
369 Methodology, Software, Formal analysis, Writing - Review & Editing. **Guang-li Ma:**
370 Methodology, Data Curation, Supervision, Writing - Review & Editing. **Da Xu:** Data
371 Curation, Writing - Review & Editing. **Xiao-qin Liu:** Software, Formal analysis.
372 **Yu-ya Wang:** Data Curation. **Li Zhang:** Data Curation. **Chuan-liang Cui:** Data
373 Curation. **Bing-he Xu:** Data Curation. **Yu-qin Song:** Data Curation. **Jun Zhu:** Data
374 Curation. **Zheng Jiao:** Conceptualization, Methodology, Writing – Original Draft,
375 Writing - Review & Editing.

376 **Conflicts of interest**

377 This study was sponsored by Jiangsu Hengrui Medicine Co. Ltd. Guang-li Ma, Da
378 Xu and Yu-ya Wang are employees of Jiangsu Hengrui Medicine Co. Ltd.

379 **Reference**

- 380 1. Huang J, Xu B, Mo H, Zhang W, Chen X, Wu D, et al. Safety, Activity, and
381 Biomarkers of SHR-1210, an Anti-PD-1 Antibody, for Patients with Advanced
382 Esophageal Carcinoma. *Clin Cancer Res* 2018; 24: 1296-304.
- 383 2. Markham A, Keam SJ. Camrelizumab: First Global Approval. *Drugs* 2019; 79:
384 1355-61.
- 385 3. AiRuiKa®. [package insert], Lianyungang, China. *Jiangsu Hengrui Medicine Co*
386 *Ltd* 2019.
- 387 4. Song Y, Wu J, Chen X, Lin T, Cao J, Liu Y, et al. A Single-Arm, Multicenter,
388 Phase II Study of Camrelizumab in Relapsed or Refractory Classical Hodgkin
389 Lymphoma. *Clin Cancer Res* 2019; 25: 7363-69.
- 390 5. Huang J, Mo H, Zhang W, Chen X, Qu D, Wang X, et al. Promising efficacy of
391 SHR-1210, a novel anti-programmed cell death 1 antibody, in patients with
392 advanced gastric and gastroesophageal junction cancer in China. *Cancer* 2019;
393 125: 742-49.
- 394 6. Zhang Z, Zhou Y, Hu K, Li Z, Wang Z, Huang Y. Complete response of early
395 stage hepatocellular carcinoma in a patient treated with combination therapy of
396 camrelizumab (SHR-1210) and apatinib. *Dig Liver Dis* 2019; 51: 1488-90.
- 397 7. Fang W, Yang Y, Ma Y, Hong S, Lin L, He X, et al. Camrelizumab (SHR-1210)
398 alone or in combination with gemcitabine plus cisplatin for nasopharyngeal
399 carcinoma: results from two single-arm, phase 1 trials. *The Lancet Oncology*
400 2018; 19: 1338-50.
- 401 8. Lickliter JD, Gan HK, Voskoboynik M, Arulananda S, Gao B, Nagrial A, et al. A
402 First-in-Human Dose Finding Study of Camrelizumab in Patients with Advanced
403 or Metastatic Cancer in Australia. *Drug Des Devel Ther* 2020; 14: 1177-89.
- 404 9. Mo H, Huang J, Xu J, Chen X, Wu D, Qu D, et al. Safety, anti-tumour activity,
405 and pharmacokinetics of fixed-dose SHR-1210, an anti-PD-1 antibody in
406 advanced solid tumours: a dose-escalation, phase 1 study. *Br J Cancer* 2018; 119:
407 538-45.
- 408 10. Dirks NL, Meibohm B. Population pharmacokinetics of therapeutic monoclonal
409 antibodies. *Clin Pharmacokinet* 2010; 49: 633-59.
- 410 11. Lv JW, Li JY, Luo LN, Wang ZX, Chen YP. Comparative safety and efficacy of
411 anti-PD-1 monotherapy, chemotherapy alone, and their combination therapy in
412 advanced nasopharyngeal carcinoma: findings from recent advances in landmark
413 trials. *Journal for immunotherapy of cancer* 2019; 7: 159.
- 414 12. Wang Y, Booth B, Rahman A, Kim G, Huang SM, Zineh I. Toward greater
415 insights on pharmacokinetics and exposure-response relationships for therapeutic
416 biologics in oncology drug development. *Clin Pharmacol Ther* 2017; 101:
417 582-84.
- 418 13. Czarkowski M. [Helsinki Declaration--next version]. *Polski merkuriusz lekarski :*
419 *organ Polskiego Towarzystwa Lekarskiego* 2014; 36: 295-7.
- 420 14. Fajsz C, Endrenyi L. New linear plots for the separate estimation of

421 Michaelis-Menten parameters. *FEBS Lett* 1974; 44: 240-6.

422 15. Ahamadi M, Largajolli A, Diderichsen PM, de Greef R, Kerbusch T, Witjes H, et
423 al. Operating characteristics of stepwise covariate selection in pharmacometric
424 modeling. *J Pharmacokinet Pharmacodyn* 2019; 46: 273-85.

425 16. Donohue MC, Overholser R, Xu R, Vaida F. Conditional Akaike information
426 under generalized linear and proportional hazards mixed models. *Biometrika*
427 2011; 98: 685-700.

428 17. Ette EI, Williams PJ, Kim YH, Lane JR, Liu MJ, Capparelli EV. Model
429 appropriateness and population pharmacokinetic modeling. *J Clin Pharmacol*
430 2003; 43: 610-23.

431 18. Bensalem A, Ternant D. Pharmacokinetic Variability of Therapeutic Antibodies
432 in Humans: A Comprehensive Review of Population Pharmacokinetic Modeling
433 Publications. *Clinical pharmacokinetics* 2020.

434 19. Baverel PG, Dubois VFS, Jin CY, Zheng Y, Song X, Jin X, et al. Population
435 Pharmacokinetics of Durvalumab in Cancer Patients and Association With
436 Longitudinal Biomarkers of Disease Status. *Clin Pharmacol Ther* 2018; 103:
437 631-42.

438 20. Cho J, Park J, Tae G, Jin MS, Kwon I. The Minimal Effect of Linker Length for
439 Fatty Acid Conjugation to a Small Protein on the Serum Half-Life Extension.
440 *Biomedicines* 2020; 8.

441 21. Temrikar ZH, Suryawanshi S, Meibohm B. Pharmacokinetics and Clinical
442 Pharmacology of Monoclonal Antibodies in Pediatric Patients. *Paediatr Drugs*
443 2020; 22: 199-216.

444 22. Freshwater T, Kondic A, Ahamadi M, Li CH, de Greef R, de Alwis D, et al.
445 Evaluation of dosing strategy for pembrolizumab for oncology indications. *J*
446 *Immunother Cancer* 2017; 5: 43.

447

Tables

Table 1. Summary of clinical studies used in this population-pharmacokinetic modeling study.

Study	Dosing regimen	Indication	Number of subjects	Number of PK Samples	Scheduled PK time points
SHR-1210-101	1mg/kg, 3mg/kg, 10mg/kg and 200mg, Q2W	Advanced solid tumors	49	1140	Cycle 1: 30 min before and 0.1, 2, 6, 24, 48, 168, 336, 504 h after end of infusion on day 1 Cycle 2 and subsequent cycles: 30 min before and 0.1 h after end of infusion on day 1 and 15.
SHR-1210-102	60mg, 200mg and 400mg, Q2W	Advanced Melanoma	36	986	Same as above
SHR-1210-103	60mg, 200mg and 400mg, Q2W	Advanced solid tumors	36	1052	Same as above
SHR-1210-II-204	200mg, Q2W	Relapsed or refractory classical Hodgkin lymphoma	12	120	Cycle 1: 30 min before and 0.1, 2 h after end of infusion Cycle 2, Cycle 4 and Cycle 6: 30 min before and 0.1 h after end of infusion

Table 2. Baseline demographic and disease characteristics of 133 patients.

Covariate	SHR-1210-101	SHR-1210-102	SHR-1210-103	SHR-1210-II-204	Total
Number of patients	49 (36.8%)	36 (27.1%)	36 (27.1%)	12 (9.0%)	133 (100%)
Number of PK Samples	1140 (34.6%)	986 (29.9%)	1052 (31.9%)	120 (3.6%)	3298 (100%)
Age (years)	47 (23 - 69)	52 (29 - 68)	54.5 (35 - 65)	28.5 (21 - 50)	50 (21 - 69)
Weight (kg)	56.5 (36.8 - 72.1)	64 (41 - 90)	65.5 (47 - 91)	63 (42 - 86)	61 (36.8 - 91)
Sex					
Male	37 (75.5%)	17 (47.2%)	28 (77.8%)	6 (50%)	88 (66.2%)
Female	12 (24.5%)	19 (52.8%)	8 (22.2%)	6 (50%)	45 (33.8%)
Race					
Han	49 (100%)	34 (94.4%)	34 (94.4%)	11 (91.7%)	128 (96.2%)
Others	0 (100%)	2 (5.6%)	2 (5.6%)	1 (8.3%)	5 (3.8%)
Creatinine clearance (mL/min)	89.07 (51.5 - 159.0)	108.33 (52.8 - 178.7)	101.1 (61.3 - 160.9)	136.93 (110.7 - 210.8)	100.69 (51.5 - 210.8)
Aspartate aminotransferase (U/L)	15.4 (6.4 - 72.8)	23.5 (13 - 82)	21 (12 - 49)	19 (13 - 38)	21.7 (8 - 115.4)
Alanine aminotransferase (U/L)	22.9 (8 - 115.4)	16 (5 - 88)	15 (7 - 55)	13 (5 - 54)	15 (5 - 88)
Total bilirubin (umol/L)	8.3 (5.1 - 20.6)	11.45 (5.9 - 24.1)	9.8 (4.9 - 22.3)	11.25 (8.4 - 24.2)	9.7 (4.9 - 24.2)
Albumin (g/L)	43.2 (29.7 - 50.4)	45.3 (32.7 - 52.5)	44.1 (38.2 - 50.2)	41.7 (35.3 - 48.1)	44 (29.7 - 52.5)
Tumor					
Nasopharyngeal carcinoma	31 (63.3%)	/	3 (8.3%)	/	34 (25.6%)
Lung cancer	18 (36.7%)	/	3 (8.3%)	/	21 (15.8%)
Melanoma	/	36 (100%)	/	/	36 (27.1%)
Esophageal cancer	/	/	14 (38.9%)	/	14 (10.1%)
Gastric cancer	/	/	5 (13.9%)	/	5 (3.8%)
Classical Hodgkin lymphoma	/	/	/	12 (100%)	12 (9.0%)
Others	/	/	11 (30.6%)	/	11 (8.2%)
Co-administration					
Monotherapy	48 (98.0%)	33 (91.7%)	36 (100%)	12 (100%)	129 (97.0%)
Combination therapy	1 (2%)	3 (8.3%)	/	/	4 (3%)

Parameters	Base model		Final model		
	Parameter estimates (%CV)	Shrinkage (%)	Parameter estimates (%CV)	Shrinkage (%)	Bootstrap Median (2.5% - 97.5%)
CL _{linear} (L/day)	0.242 (2.7)	/	0.231 (6.1)	/	0.23 (0.20 - 0.26)
V _m (mg/day)	2.86 (3)	/	2.94 (7.5)	/	3.00 (2.26 - 3.71)
K _m (mg/L)	1.28 (1.4)	/	1.38 (13)	/	1.40 (0.91 - 2.76)
V ₁ (L)	3.08 (2.7)	/	3.07 (3.7)	/	3.08 (2.77 - 3.33)
Q (L/day)	0.385 (3.8)	/	0.414 (6.7)	/	0.41 (0.34 - 0.51)

Table 3. Population-pharmacokinetic parameter estimates and bootstrap evaluation.

V_2 (L)	2.88 (2.8)	/	2.9 (3.6)	/	2.91 (2.35 - 3.35)
albumin on CL_{linear}	/	/	-1.98 (24.2)	/	-1.93 (-2.94 - -0.89)
weight on Q	/	/	1.22 (26.9)	/	1.18 (0.31 - 2.28)
Between subject variability					
CL_{linear} (%)	57.0 (8.6)	11.6	50.8 (9)	13	50.2 (32.7 - 68.9)
V_m (%)	48.3 (8.7)	17.5	49.5 (9)	18	47.8 (29.4 - 70.9)
V_1 (%)	40.2 (6.7)	3	40.7 (7)	3	39.0 (17.0 - 70.68)
Residual variability					
proportional error (%)	29.4 (1.7)	4.5	29.3 (3)	4.5	28.9 (23.8 - 33.9)
additive error (mg/L)	0.0812 (3.2)	4.5	0.0827 (32)	4.5	0.0823 (0.0293-0.112)

CL_{linear} , clearance of linear elimination; V_m , maximum elimination rate; K_m , Michaelis–Menten constant; V_1 , distribution volume of central compartment; Q , inter-compartmental clearance; V_2 , distribution volume of peripheral compartment;

Table 4. Predicted summary statistics of camrelizumab exposure metrics.

	3mg/kg every 2 weeks		200mg every 2 weeks	
	Median	2.5%-97.5%	Median	2.5%-97.5%
$C_{\max, ss}$ ($\mu\text{g/mL}$)	89.55	39.27-195.41	96.40	47.26-190.36
$C_{\min, ss}$ ($\mu\text{g/mL}$)	23.11	1.22-92.70	26.13	1.78-90.96
$C_{\text{average, ss}}$ ($\mu\text{g/mL}$)*	41.27	12.81-113.87	45.48	15.28-112.08

$C_{\max, ss}$, steady-state peak concentration; $C_{\min, ss}$, steady-state trough concentration; $C_{\text{average, ss}}$, steady-state average concentration.

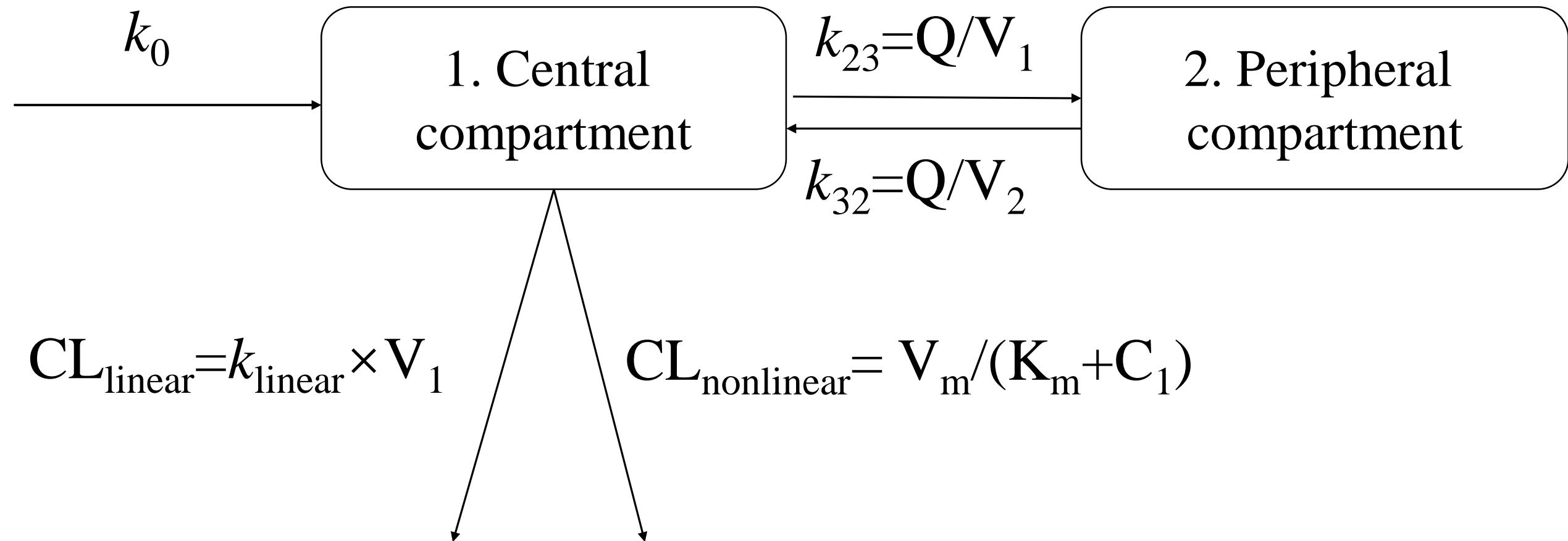
$$*C_{\text{average, ss}} = \frac{AUC_{ss}(\text{mg} \times \text{weeks}/L)}{\text{dosing interval (weeks)}}$$

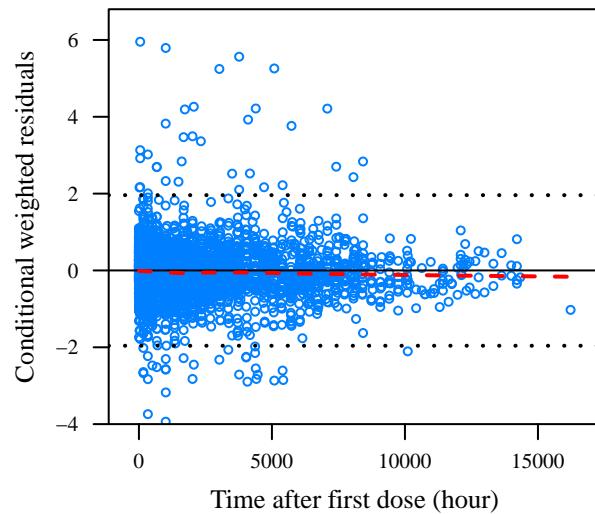
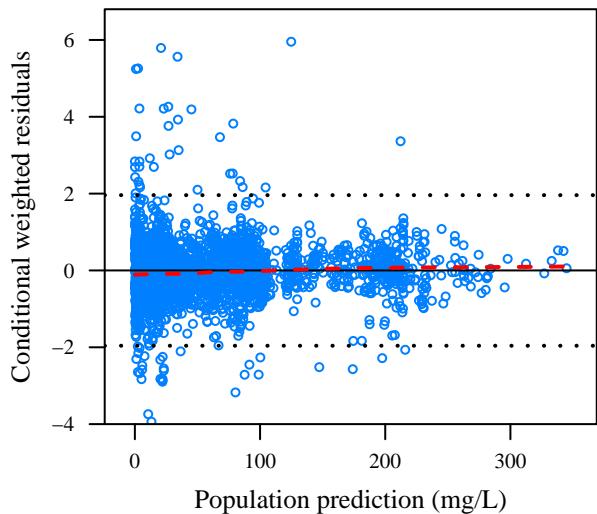
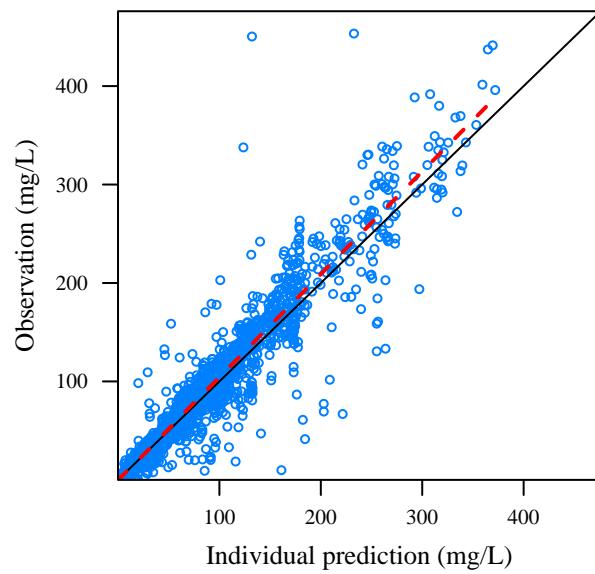
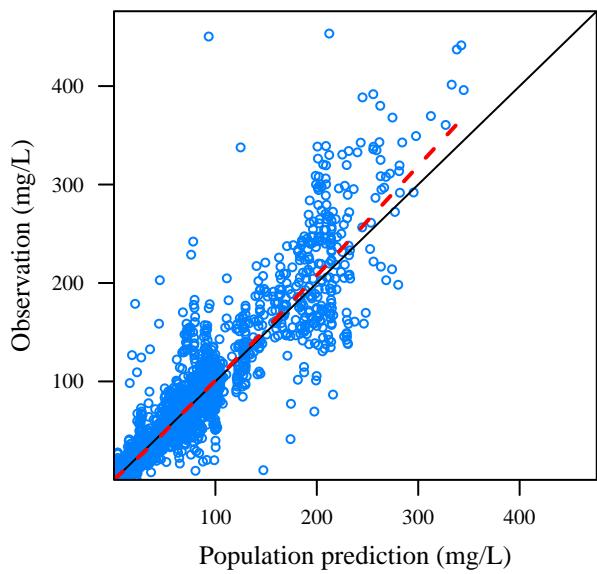
Figure legends

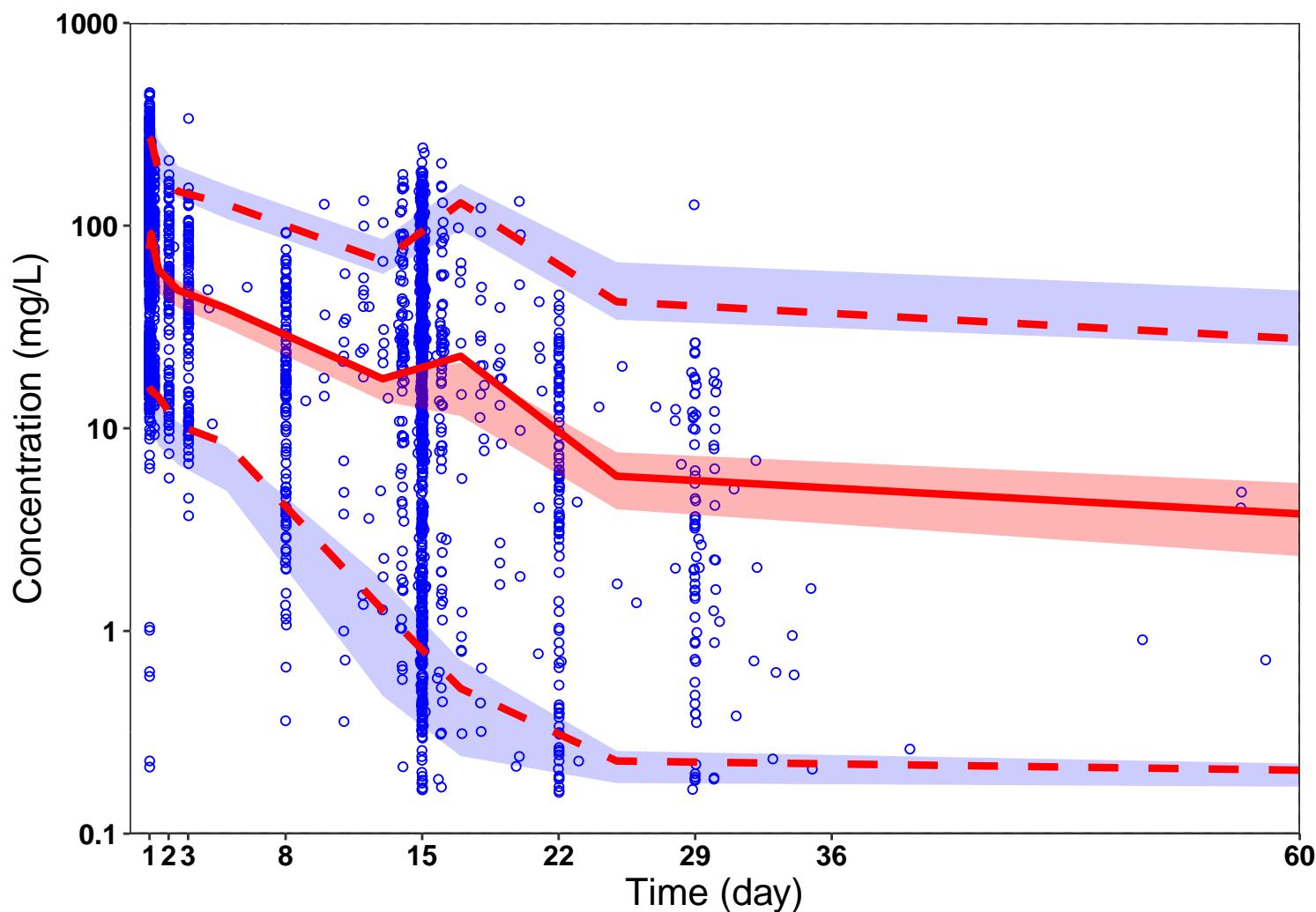
Figure 1. Model Structure.

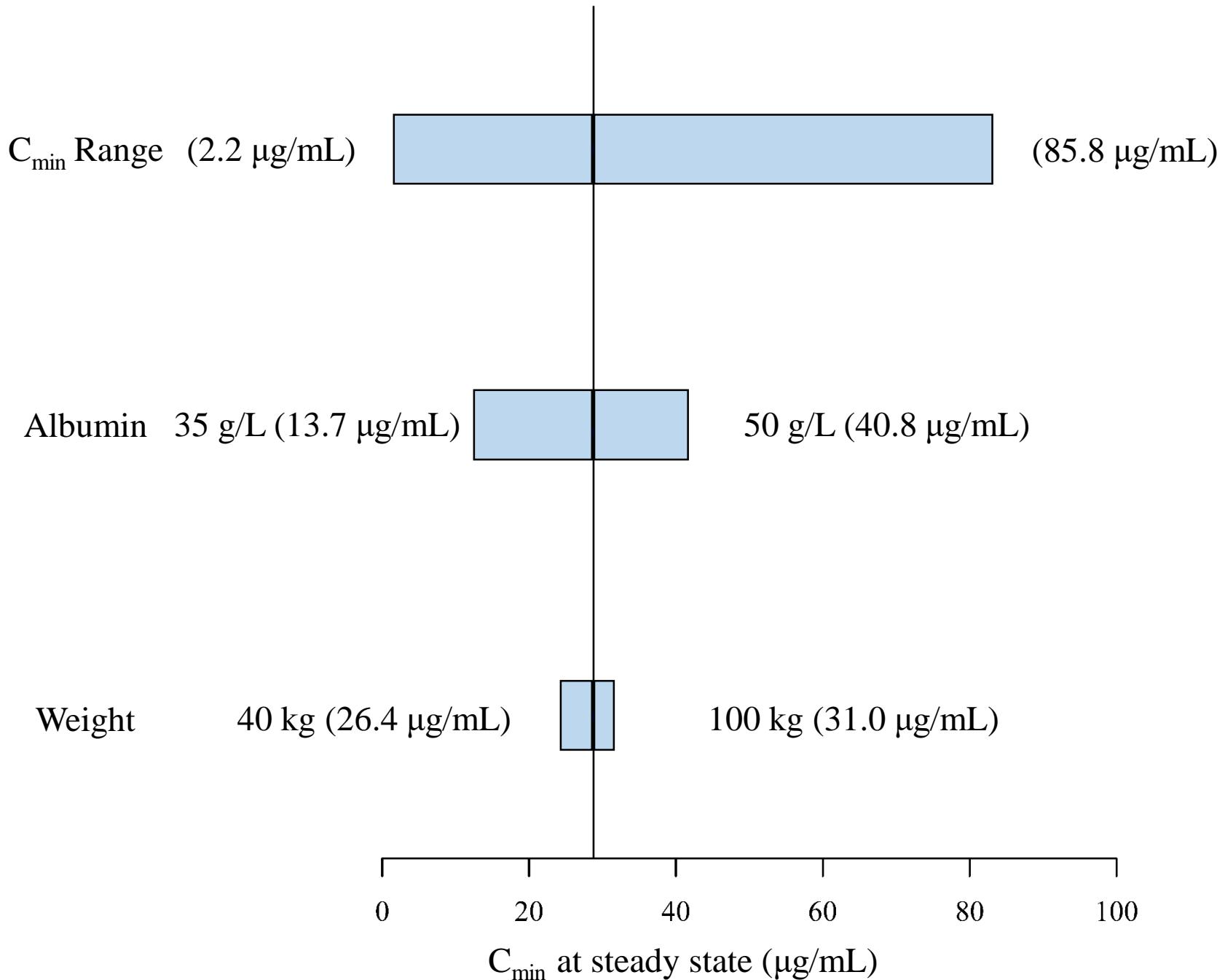
k_0 , infusion rate; k_{23} , elimination rate from central compartment to peripheral compartment; k_{32} , elimination rate from peripheral compartment to central compartment; k_{linear} , linear elimination rate; $\text{CL}_{\text{linear}}$, clearance of linear elimination; Q , inter-compartmental clearance; V_1 , apparent distribution volume of central compartment; V_2 , apparent distribution volume of peripheral compartment; $k_{\text{nonlinear}}$, nonlinear elimination rate; C_1 , concentration of central compartment; V_m , maximum elimination rate; K_m , Michaelis–Menten constant.

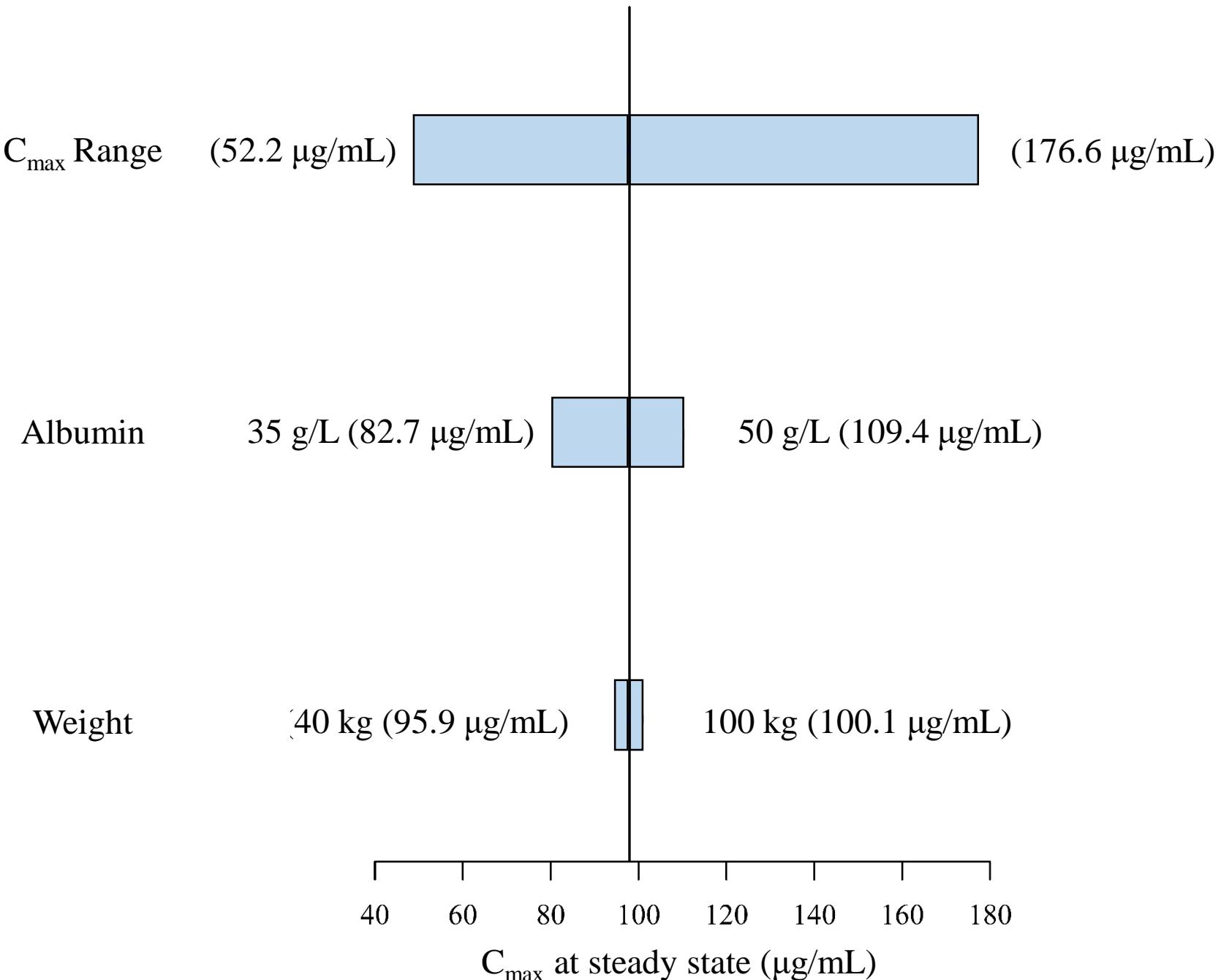
Figure 2. Goodness-of-fit plots of the final population-pharmacokinetic model.


The red line represents the locally weighted scatterplot smoothing line.





Figure 3. Visual predictive check.


Circles represent observed data. Lines represent the 5% (dashed), 50% (solid), and 95% (dashed) percentiles of the observed data. Shaded areas represent nonparametric 95% confidence intervals about the 5% (light blue), 50% (light red), and 95% (light blue) percentiles for the corresponding model-predicted percentiles.


Figure 4. Sensitivity plots comparing effect of covariates on steady state exposure.


(a) C_{min} ; (b) C_{max} ; (c) C_{average} . Vertical reference lines represent typical steady-state exposure value of a 62-kg patient with albumin of 44 g/L receiving 200 mg of camrelizumab every 2 weeks. The top bars in each plot represent the 5% – 95% exposure values across the entire population. The labels at each of the lower bars indicate range of the covariate values. The length of each bar describes the impact of that particular covariate on the observed PK parameter.

