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ABSTRACT Microbial and viral communities transform the chemistry of Earth’s ecosystems, yet the
specific reactions catalyzed by these biological engines are hard to decode due to the absence of a
scalable, metabolically resolved, annotation software. Here, we present DRAM (Distilled and Refined
Annotation of Metabolism), a framework to translate the deluge of microbiome-based genomic
information into a catalog of microbial traits. To demonstrate the applicability of DRAM across
metabolically diverse genomes, we evaluated DRAM performance on a defined, in silico soil
community and previously published human gut metagenomes. We show that DRAM accurately
assigned microbial contributions to geochemical cycles, and automated the partitioning of gut
microbial carbohydrate metabolism at substrate levels. DRAM-v, the viral mode of DRAM,
established rules to identify virally-encoded auxiliary metabolic genes (AMGs), resulting in the
metabolic categorization of thousands of putative AMGs from soils and guts. Together DRAM and
DRAM-v provide critical metabolic profiling capabilities that decipher mechanisms underpinning

microbiome function.

INTRODUCTION

DNA sequencing advances have offered new opportunities for cultivation-independent
assessment of microbial community membership and function. Initially, single gene approaches
established taxonomic profiling capabilities, providing innumerable intellectual leaps in microbial
composition across biomes (1, 2). Recently, the field has expanded from gene-based methods towards
metagenome-assembled-genome (MAG) studies, which offer population level inferences of microbial
functional underpinnings (3—5). Across ecosystems, these MAGs illuminated new biological
feedbacks to climate-induced changes (6—8), revolutionized personalized microbiota-based
therapeutics for human health (9, 10), and dramatically expanded the tree of life (11-13).
Metagenomic advances have also transformed our ability to study viruses, and since they lack a
universal barcode gene, viral MAG (VMAG) enabled studies are required for even viral taxonomic
surveys (14, 15).

At this point, there are hundreds of thousands of MAGs and vMAGs available from the

human gut and other diverse environments (7, 14-23). This inundation of data required development
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of scalable, genome-based taxonomic approaches, which are now largely in place for both microbes
(24, 25) and viruses (26, 27). However, there is a growing consensus that for any of these habitats the
taxonomic composition of the microbiome alone is not a good predictor of ecosystem functions,
properties which are often better predicted from microbial and viral traits (28, 29). Therefore, there is
an absolute need to develop gene annotation software that can simultaneously highly resolve trait
prediction from vast amounts of genomic content.

While there are several tools for annotating genes from microbial genomes (30-33), a single
tool has yet to translate current knowledge of microbial metabolism into a format that can be applied
across thousands of genomes. Most online annotators are only useful for a handful of genomes or for
profiling genes using a single database (34-36). Other recently developed tools have advanced to
annotate thousands of genomes with multiple databases, which expands the biological information
queried (30-32). However, biological interpretation is still burdened by challenges in data synthesis
and visualization, thereby preventing efficient metabolic profiling of microbial traits with known
ecosystem relevance. In addition, viruses can encode Auxiliary Metabolic Genes (AMGs) that directly
reprogram key microbial metabolisms like photosynthesis, carbon metabolism, and nitrogen and
sulfur cycling (37, 38), but identifying and insuring these AMGs are not ‘contaminating’ microbial
DNA (39) remains a painfully manual process.

Here we present a new tool, DRAM (Distilled and Refined Annotation of Metabolism), and
the companion tool DRAM-v for viruses, and apply these tools to existing, assembled metagenomic
datasets to demonstrate the expanded utility over past approaches. DRAM was designed to profile
microbial (meta)genomes for metabolisms known to impact ecosystem function across biomes and is
highly customizable to user annotations. DRAM-v leverages DRAM’s functional profiling
capabilities, and adds a ruleset for defining and annotating AMGs in viral genomes. Together DRAM

and DRAM-v decode the metabolic functional potential harbored in microbiomes.
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MATERIAL AND METHODS
DRAM annotation overview

The DRAM workflow overview is detailed in Figure 1. DRAM does not use unassembled
reads, but instead uses assembly-derived FASTA files input by the user. Input files may come from
unbinned data (metagenome contig or scaffold files) or genome-resolved data from one or many
organisms (isolate genomes, single-amplified genome (SAGs), MAGs). First each file is filtered to
remove short contigs (by default contigs <2500bp, but this can be user defined). Then Prodigal (40) is
used to detect open reading frames (ORFs) and subsequently predict their amino acid sequences,
supporting all genetic codes on defined on NCBI (Figure 1, Supplementary Figure 1). Specifically,
we use the anonymous/metagenome mode of Prodigal (40), which is recommended for metagenome
assembled contigs and scaffolds. By default, first Prodigal (40) tests genetic code 11, then uses other
genetic codes to resolve short genes, or notifies user that no code resolves gene length.

Next, DRAM searches all amino acid sequences against multiple databases and provides all
database hits in a single output file called the Raw output (Supplementary File 1, Supplementary
Figure 1). Specifically, ORF predicted amino acid sequences are searched against KEGG (41),
Uniref90 (42), and MEROPS (43) using MMseqs2 (44), with the best hits (defined by bitscore,
default minimum threshold of 60) reported for each database in the Raw output. Note, the use of the
Uniref90 (42) database is not default due to the increased memory requirements which can be
prohibitive to many users, thus a user should specify the --use_uniref flag to search amino acid
sequences against Uniref90 (42). If there is no hit for a given gene in a given database above the
minimum bit score threshold, no annotation is reported for the given gene (unannotated) and database
in the Raw output. Reciprocal best hits (RBHs) are defined by searches where the database sequence
that is the top hit from a forward search of the input gene has a bit score greater than 60 (by default)
and is the top hit from the reverse search of the database hit against the all genes from the input
FASTA file with a bit score greater than 350 (by default) (3, 45). DRAM also uses MMSeqs2 (44) to
perform HMM profile searches of the Pfam database (46), while HHMER3 (47) is used for HMM

profile searches of dbCAN (48) and VOGDB (http://vogdb.org/). For these HMM searches of Pfam,

dbCAN, and VOGDB, a hit is recorded if the coverage length is greater than 35% of the model and
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102 the e-value is less than 107" (48). If the user does not have access to the KEGG database, DRAM

103 automatically searches the KOfam (49) database with HMMER in order to assign KOs, using gene
104  specific e-value and percent coverage cutoffs provided here

105  ftp:/ftp.genome.jp/pub/db/kofam/ko_list.gz (49). Users should note that using KOfam (49) rather
106  than KEGG genes (41), may result in less annotation recovery, thereby resulting in some false

107  negatives in the DRAM Product (described below). After ORF annotation, tRNAs are detected using

108  tRNAscan-SE (50) and rRNAs are detected using barrnap (https://github.com/tseemann/barrnap).

109 When gene annotation is complete, the results are merged to a single tab-delimited annotation
110  table that includes the best hit from each database for user comparison. (Supplementary File 1,

111 Supplementary Figure 1). For each gene annotated, DRAM provides a single, summary rank (A-E),
112 which represents the confidence of the annotation (Supplementary Figure 1). The highest rank

113 includes reciprocal best hits (RBH) with a bit score >350, against KEGG (41) genes (A rank) (41),
114  followed by reciprocal best hits to Uniref90 (42) with a bit score >350 (B rank), hits to KEGG (41)
115  genes (41) with a bit score >60 (C rank), and UniRef90 (42) with a bit score greater than 60 (C rank)
116  (45). The next rank represents proteins that only had Pfam (46), dbCAN (48), or MEROPS (43)

117  matches (D rank), but hits to KEGG (41) or UniRef90 (42) were below 60 bit score. The lowest rank
118  (E) represents proteins that had no significant hits to any DRAM database including KEGG (41),

119  Uniref90 (42), dbCAN (48), Pfam (46), MEROPS (43), or only had significant hits to VOGDB.

120 Supplementary Figure 1 provides a schematic summarizing this annotation system. If one or more of
121 the databases used for determining annotation ranks (KEGG, Uniref90, Pfam) is not used during

122 DRAM annotation, all genes are considered to not have any hits against the unused database(s) and
123 the respective annotation rank (e.g. B in the case of UniRef90) would be absent depending on which
124 database was not used. In summary, the Raw output of DRAM provides for each gene in the dataset a
125 summary rank (A-E), as well as the hits across up to 6 databases including KEGG, Uniref90, Pfam,
126  CAZY, MEROPS, and VOGDB, allowing users to easily compare annotation content provided by
127  different sources.

128 Beyond annotation, DRAM is intended to be a data compiler. Users can provide output files

129  from GTDB-tk (24) and checkM (51) (or other user defined taxonomy and completion estimates),
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130 which are input into DRAM to provide taxonomy and genome quality information of the MAGs,
131 respectively. For downstream analyses, DRAM provides a FASTA file of all entries from all input
132 files, a GFF3- formatted file containing all annotation information, FASTA files of nucleotide and
133 amino acid sequences of all genes, and text files with the count and position of the detected tRNAs
134 and rRNAs (Supplementary Figure 1). Finally, a folder containing one GenBank formatted file for
135  each input FASTA is created.

136 DRAM Raw annotations are distilled to create genome statistics and metabolism summary
137 files, which are found in the Distillate output (Supplementary File 2). The genome statistics file
138  provides most genome quality information required for MIMAG (25) reporting, including GTDB-tk
139 (24) and checkM (51) information, if provided by the user. The summarized metabolism table

140  contains the number of genes with specific metabolic function identifiers (KO, CAZY ID etc.) for
141  each genome, with information distilled from multiple sources, including custom-defined metabolism
142 modules (see

143 https://raw.githubusercontent.com/shafferm/DR AM/master/data/genome_summary_form.tsv). For

144 ecase of metabolic interpretation, in the Distillate, many of the genes annotated in the Raw that can be
145  assigned to pathways are output to multiple sheets assigned by functional category and organized by
146  pathway (e.g. energy, carbon utilization, transporters) (Figure 2ab). Thus, the Distillate provides

147  users with a pathway-centric organization of genes annotated in the Raw, while also summarizing the
148  genome quality statistics.

149 The Distillate output is further distilled to the Product, an HTML file displaying a heatmap
150  (Supplementary File 3), created using Altair (52), as well as a corresponding data table. The Product
151  has three primary parts: pathway coverage (e.g. glycolysis), electron transport chain component

152 completion (e.g. NADH dehydrogenase), and presence of specific functions (e.g. mcrA,

153  methanogenesis). The pathways selected for completion analysis were chosen because of their central
154 role in metabolism. Pathway coverage is measured using the structure of KEGG (41) modules.

155  Modules are broken up into steps and then each step is divided into paths. Paths can be additionally
156  subdivided into substeps with subpaths. Coverage is given as the percent of steps with at least one

157  gene present, substeps and subpaths are considered (Supplementary Figure 2a). This requires that at
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158  least one subunit of each gene in the pathway to be present. Electron transport chain component

159  completion is measured similarly. Modules are represented as directed networks where KOs are nodes
160  and outgoing edges connect to the next KO in the module. Completion is the percent coverage of the
161  path through the network with the largest percentage of genes present (Supplementary Figure 2b).
162  Function presence is measured based on the presence of genes with a set of identifiers. The gene sets
163  were made via expert-guided, automatic curation of specific metabolisms (See Supplementary Text,
164  section Interpreting results from DRAM and DRAM-v). Some functions require the presence of a
165  single gene while others only require one or more annotations from sets of genes to be present

166  (Supplementary Figure 2c¢). Specifics of the logic behind pathway completion, subunit completion,
167  and specific functional potential calls are detailed in the Supplementary Text (section DRAM

168  pathways and enzyme modularity completion).

169

170 Benchmarking DRAM against commonly used annotators

171 In order to compare the performance in terms of runtime, memory usage and annotation

172 coverage we compared DRAM to other commonly used genome or MAG annotation tools including
173 Prokka (30), (v1.14.0), DFAST (31) (v1.2.3), and MetaErg (32) (v1.2.0) using three separate datasets:
174 (i) E. coli strain K-12 MG1655, (ii) an in silico soil community we created (15 phylogenetically and
175  metabolically distinct genomes from isolate and uncultivated Archaea and Bacteria), and (iii) a set of
176 76 MAGs generated from the largest HMP1(53) fecal metagenome (described below).

177 To compare annotation database size of each tool (Prokka, DFAST, and MetaErg) to DRAM,
178  we counted the entries of each database used by default for each tool (Figure 2cd, Supplementary
179  File 4). Specifically, for BLAST-based searches, the number of FASTA entries were counted for a
180  given database, and for HMM-based searches, the number of model entries were counted for a given
181  database.

182 To evaluate the annotation recovery by each tool, we compared the number of annotated,

183  hypothetical, and unannotated genes assigned by each annotation tool to an in silico soil community
184  and a set of MAGs generated from the largest HMP fecal metagenome (Figure 2e-g). A gene was

185  considered annotated in DRAM if it had at least one annotation from KEGG (41), UniRef90 (42),
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186  MEROPs (43), Pfam (46) or dbCAN that was not "hypothetical", "uncharacterized" or "domain of
187  unknown function" gene. A gene is defined as hypothetical in DRAM if hits for a gene lacked defined
188  annotation, and at least one of the annotations from KEGG (41), UniRef90 (42), MEROPs (43), Pfam
189  (46) and dbCAN were "hypothetical", "uncharacterized" or "domain of unknown function". A gene
190  was defined as unannotated in DRAM if no annotation was assigned from KEGG (41), UniRef90
191  (42), MEROPs (43), Pfam (46) or dbCAN (48). This is in contrast to other annotators, like Prokka
192 (30) and DFAST (31) that remove many to all hypothetical genes from their databases and

193  subsequently all genes are called as hypothetical, even genes that lack an annotation. Since these

194  programs mask conserved hypothetical genes, the user loses the ability for broader biological context
195  and further non-homology based discovery of protein function. In our performance analyses we

196  considered DFAST and Prokka hypothetical labels as unannotated, as it was not possible to discern
197  the difference between a gene that had no representatives in a database (unannotated) and a gene that
198  had best hits to hypothetical genes in other organisms that were annotated in the database

199  (hypothetical). In MetaErg (32), a gene was considered unannotated if in the master tab separated
200  table there was no Swiss-Prot (54), TIGRFAM or Pfam (46) description. In MetaErg, a gene was

201  considered hypothetical if hits lacked a defined annotation, and had at least one annotation from

202 Swiss-Prot (54), TIGRFAM and Pfam (46) that contained "hypothetical", "uncharacterized" or

203  "domain of unknown function”.

204 Beyond differences in definition, we note that the summation of annotated, hypothetical, and
205  unannotated genes is different for each tool due to the use of different gene callers or different filters
206  on called genes, despite using the same input file (Supplementary File 4). Specifically, Prokka (30),
207  MetaErg (32), and DRAM use Prodigal to call genes, while DFAST (31) uses MetaGeneAnnotator
208  (55). But compared to DRAM, Prokka (30) filters out called genes that overlap with any RNA feature
209  or CRISPR spacer cassette, while MetaErg (32) filters out all called genes <180 nucleotides. Default
210  parameters were used for all annotation tools except for DRAM, which employed the --use_uniref
211  flag to use UniRef to maximize the annotation recovery.

212 To measure speed and memory usage the three test sets were used with each annotation tool.

213 All tools were run with default parameters. Each dataset and tool combination was run four times on
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214  the same machine using 10 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz processors. Average and
215  standard deviations of run time and the maximum memory usage were reported. Performance data is
216  reported in Supplementary Figure 3a-c, and Supplementary File 4.

217 The unit of annotation in DRAM is at the level of the gene, thus the number of genes (and not
218  the number of genomes) in a dataset is the primary factor in determining runtime. In other words,
219  assuming the same number of genes in the dataset, there would be no run time difference between the
220  DRAM annotation of 100 unbinned, deeply sequenced, assembled metagenome samples and 10,000
221 binned, partial MAGs. For the datasets reported here, the gene numbers are 55,040 for a “mock™ soil
222 community and 143,551 for 76 MAGs assembled and binned from a HMP fecal metagenome, with
223 the average run times for these data listed in Supplementary Figure 3b. To demonstrate scalability
224 of DRAM, we also included the DRAM annotations for one of the largest MAG studies from a single
225  ecosystem (21), with annotations provided for 2,535 MAGs (and including 6,273,162 total genes

226 across the dataset) (https://zenodo.org/record/3777237). Summarizing, DRAM is scalable to an

227  unlimited number of genes, however run time will be increased based on the number of genes

228  annotated. In terms of the Product output, DRAM is not limited, but the Product heatmap is broken
229  into sets of 1,000 genomes or metagenomes to facilitate effective visualization.

230 To address the accuracy of DRAM in recovering annotations for organisms with different
231  levels of database representation, we used the most experimentally validated microbial genome, E.
232 coli K12 MG1655 to annotate protein sequences with DRAM using different databases. We evaluated
233 the 1) the full set of DRAM databases, 2) the full set of DRAM databases with all Escherichia genera
234 removed, and 3) the full set of DRAM databases with all Enterobacteriaceae family members

235  removed. The latter two databases (2 and 3) are meant to address assigning annotations of a microbial
236  genome that may not have close representatives in the database (Supplementary Figure 3d).

237

238  Selection of 15 Representative Soil Genomes for Annotation Benchmarking

239 To validate DRAM, we chose a set of phylogenetically diverse genomes from organisms with
240  varying and known energy generating metabolisms. All genomes included in this analysis are from

241  isolates, except for a member of the Patescibacteria, which was included to highlight the applicability
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242 of DRAM to Candidate Phyla Radiation (CPR) (Supplementary File 4). This dataset is not meant to
243 represent an entire soil community, but rather was selected to highlight the metabolic repertoire (e.g.
244 carbon, nitrogen, sulfur metabolisms) and phylogenetic divergence (different phyla across Bacteria
245  and Archaea domains) commonly annotated in soil datasets.

246 Assembled nucleotide FASTA files for each genome or MAG were downloaded from NCBI
247  or JGI-IMG. Genomes were annotated using DRAM.py annotate and summarized using DRAM.py
248  distill (Figure 3a-c, Supplementary Figure 1, Supplementary Files 3, 5). Genomes were quality
249  checked with checkM (51) and taxonomically classified using GTDB-Tk (v0.3.3) (24). Genome

250  statistics and accession numbers are reported in Supplementary File 4.

251

252 Human Gut Metagenome Samples Download and Processing

253 Forty-four human gut metagenomes were downloaded from the HMP data portal

254  (https://portal.hmpdacc.org/) (Supplementary File 4) (53). All samples are from the HMP study (56)

255  and are healthy adult subjects. All reads were trimmed for quality and filtered for host reads using
256  bbtools suite (sourceforge.net/projects/bbmap/) (57). Samples were then assembled separately using
257  IDBA-UD (58) using default parameters. The resulting assemblies were annotated using DRAM.py

258  annotate and distilled using DRAM.py distill, resulting in 2,815,248 genes. To calculate coverage of

259  genes, coverM (https://github.com/wwood/CoverM) was used in contig mode with the count

260  measurement. These counts were then transformed to gene per million (GPM), which was calculated
261  in the same manner as transcripts per million (TPM), with data reported in Figure 4a-c. To compare

262 the variability of bulk level (Distillate categories) and substrate level categories across 44 human gut
263  metagenomes, we calculated Bray-Curtis distances between all pairs of samples and used the Levene
264  test to compare the variability of distances between annotations (Supplementary Figure 4).

265

266  Human Gut Metagenome for MAG Generation, Sample Download and Processing

267 To examine DRAMs ability to assign functionalities relevant to the human gut, we annotated
268  MAGs present in a single Human Microbiome Project (53) sample. Raw reads from SRA accession

269  number SRS019068 (the largest HMP metagenome collected to date, with 29 Gbp/sample) were
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270  downloaded from the NCBI Sequence Read Archive using wget (link:
271  http://downloads.hmpdacc.org/dacc/hhs/genome/

272 microbiome/wgs/analysis/hmwgsqc/v2/SRS019068.tar.bz2). Reads were trimmed for quality using

273 sickle (https://github.com/najoshi/sickle) and subsequently assembled via IDBA-UD (58) using

274  default parameters. Resulting scaffolds were binned using Metabat2 (59). We recovered 135 MAGs
275  from this sample, that were dereplicated into 76 medium and high quality MAGs (60). Bins were
276  quality checked with checkM (51), taxonomically classified using GTDB-Tk (v0.3.3) (24), and

277  annotated and distilled using DRAM (Figure 5, Supplementary Figure 5, Supplementary Files 1-
278  2). All assembly statistics and MAG statistics can be found in Supplementary File 4. To interrogate
279  the importance of carbon metabolism in the human gut, the DRAM annotated CAZyme and SCFA
280  production potential was profiled across the 76 medium and high quality MAGs using the DRAM
281  Distill function. MAGs were clustered using hierarchal clustering via the hclust complete method in R
282  (Figure 5).

283

284  DRAM-v viral annotation and AMG prediction overview

285 The DRAM-v workflow to annotate VM AGs and predict potential AMGs is detailed in

286  Figures 1, 6 and Supplementary Figure 6. DRAM-v uses VirSorter (61) outputs to find viral

287  genomic (genomes or contigs) information in assembled metagenomic data. DRAM-v inputs must
288  include a VirSorter (61) predicted vVMAGs FASTA file and VIRSorter affi -contigs.tab file. Each
289  VMAG is processed independently using the same pipeline as in DRAM, with the addition of a

290  BLAST-type annotation against all viral proteins in NCBI RefSeq. All database annotations in the
291  DRAM-v results are merged into as single table as the Raw DRAM output.

292 After the annotation step, auxiliary scores are assigned to each gene. The auxiliary scores are
293  onascale from 1 to 5, and provide the user with confidence that a gene is on a vMAG (and not

294 contaminating source). Here a score of 1 represents a gene that is confidently virally encoded and a
295  score of 4 or 5 represents a gene that users should take caution in treating as a viral gene. These scores
296  are based on previous manually curated data provided in Supplementary File 4. Auxiliary scores are

297  assigned based on DRAM mining the category of flanking viral protein clusters from the VIRSorter


https://doi.org/10.1101/2020.06.29.177501
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.29.177501; this version posted June 29, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

298  affi-contigs.tab file (Figure 6a). A gene is given an auxiliary score of 1 if there is at least one

299  hallmark gene on both the left and right flanks, indicating the gene is likely viral. An auxiliary score
300  of 2 is assigned when the gene has a viral hallmark gene on one flank and a viral-like gene on the
301  other flank. An auxiliary score of 3 is assigned to genes that have a viral-like gene on both flanks. An
302  auxiliary score of 4 is given to genes with either a viral-like or hallmark gene on one flank and no
303  viral-like or hallmark gene on the other flank, indicating the possibility that the non-viral supported
304  flank could be the beginning of microbial genome content and thus not an AMG. An auxiliary score
305  of'4isalso given to genes that are part of a stretch with three or more adjacent genes with non-viral
306  metabolic function. An auxiliary score of 5 is given to genes on contigs with no viral-like or hallmark
307  genes and genes on the end of contigs.

308 Next, various flags that highlight the metabolic potential of a gene and/or qualify the

309  confidence in a gene being viral are assigned (Figure 6b). The “viral” flag (V) is assigned when the
310  gene has been associated with a VOGDB identifier with the replication or structure categories. The
311  “metabolism” flag (M) is assigned if the gene has been assigned an identifier present in DRAM’s
312 Distillate. The “known AMG” flag (K) is assigned when the gene has been annotated with a database
313 identifier representing a function from a previously identified AMG in the literature. The

314  “experimentally verified” flag (E) is similar to the (K) flag, but the AMG has to be an experimentally
315  verified AMG in a previous study, meaning it has been shown in a host to provide a specific function
316  (e.g. psbA photosystem II gene for photosynthesis (62, 63)). Both the (K) and (E) flags are called
317  based on an expert-curated AMG database composed of 257 and 12 genes, respectively. The

318  “attachment” flag (A) is given when the gene, while metabolic has been given identifiers associated
319  with viral host attachment and entry (as is the case with many CAZymes). The viral “peptidase” flag
320  (P) is similar to the (A) flag but when the gene is given identifiers that are peptidases previously

321 identified as potentially-viral using, not AMGs, based on the distribution of peptidase families

322 provided in the MEROPS (43) database. The “near the end of the contig” flag (F) is given when the
323 gene is within 5,000 bases of the end of a contig, signifying that the user should confirm viral genes
324  surrounding the putative AMG, as there is less gene content to surrounding the putative AMG. The

325  “transposon” flag (T) is given when the gene is on a contig that contains a transposon, highlighting to
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326  the user that this contig requires further inspection as it may be a non-viral mobile genetic element
327 (64, 65) (Figure 6b). The “B” flag is given to genes within a set of three or more consecutive genes
328  assigned a metabolism flag “M”, signifying that this gene may not be an AMG and instead located in
329  astretch of non-viral genes (Figure 6b). Specifics of the logic behind the AMG flags (e.g. (P), (A),
330 (B) flags) is detailed in the Supplementary Text and Supplementary File 4. In summary, DRAM-v
331 flags automate expert curation of AMGs, with the intention to provide the user with known AMG
332 reference sequences, indicate to the user viral genes that should not be considered AMGs, and cue the
333 user to genes that require additional curation before reporting.

334 The distillation of DRAM-v annotations is based on the detection of potential AMGs. By
335  default, a gene is considered a potential AMG if the auxiliary score is less than 4, the gene has been
336  assigned an (M) flag, and has not been assigned as a peptidase or CAZyme involved in viral entry or
337  metabolism (P or A flag), as a homolog to a VOGDB identifier associated with viral replication or
338  structure (V flag), or the gene is not in a row of 3 metabolic genes (B flag) (Figure 6). The reported
339  flags and minimum auxiliary score threshold can be changed by the user. All flags and scores were
340  defined using experimentally validated AMGs (Supplementary File 4), and then were validated

341  using a set of published AMGs from soil.

342 DRAM-v annotations are distilled to create a VMAG summary (DRAM-v Distillate) and a
343 potential AMG summary (DRAM-v Product). The vYMAG summary is a table with each contig and
344  information about the contigs satisfying many MIUViG requirements'®. Other information is also
345  included in this output such as the VirSorter'’ category of the virus, if the virus was circular, if the
346  virus is a prophage, the number of genes in the virus, the number of strand switches along the contig,
347  if a transposase is present on the contig, and the number of potential AMGs. We also summarize the
348  potential AMGs giving the metabolic information associated with each AMG as found in Distillate.
349  DRAM-v’s Product further summarizes the potential AMGs showing all VYMAGs, the number of
350  potential AMGs in each contig, and a heatmap of all possible Distillate categories to which each

351  AMG (category 1-3, default) belongs.

352

353 Retrieval and Processing of Emerson et al. Data
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354 1,907 vMAGs reported by Emerson et al. (14) were retrieved from DDBJ/ENA/GenBank via
355  the accession number QGNH00000000. These contigs were processed with VirSorter 1.0.3 (61) in
356  virome decontamination mode to obtain categories and viral gene information necessary for DRAM-
357  v. Viral sequences with viral categories 1 and 2 and prophage categories 4 and 5 retained (1,867

358  contigs). DRAM-v was then run with default parameters, and the Distillate table is reported in

359  Supplementary File 6 and the Product is in Supplementary File 7.

360

361  Processing of HMP Viral Sequences

362 Viral sequences were identified in the assembled HMP metagenomes using VirSorter 1.0.3
363  (61) hosted on the CyVerse discovery environment. VirSorter (61) was run with default parameters
364  using the ‘virome’ database and viral sequences with viral categories 1 and 2 and prophage categories
365 4 and 5 were retained (2,932 contigs). Resulting viral sequences were annotated using DRAM-v.py
366  annotate (min_contig_size flag set to 10,000) and summarized using DRAM-v.py distill

367  (Supplementary File 8-9). All viral genomes used or recovered in this study are reported in

368  Supplementary File 10.

369

370  Generation of AMG Sequence Similarity Network

371 To identify the AMGs shared across systems, sequence similarity networks were generated
372  viathe EFI-EST webtool (66) using putative AMGs recovered from soil (n=547) and stool (n=2,094)
373  metagenomes via DRAM-v as the input. A minimum sequence length of 100 amino acids, no

374  maximum length, and 80% amino acid identity was specified from initial edge values. Representative
375  networks were generated and visualized in Cytoscape 3.7.2 (67). Edge scores were further refined and
376  Distillate categories and system information were overlaid in Cytoscape (67). Figure 6 contains the
377  resulting network filtered to clusters >5.

378

379  Virus host matching in a single HMP sample

380 For the single binned HMP sample (SRS019068), viral sequences were matched to host

381  MAGs using the CRISPR Recognition Tool (68) plugin (version 1.2) in Geneious. To identify
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382  matches between viral protospacers and host CRISPR—Cas array spacers, we used BLASTn with an e-
383  value cutoff of 1 x 10—5. All matches were manually confirmed by aligning sequences in Geneious,
384  with zero mismatches allowed. There was one virus (scaffold 938) that had a CRISPR host match and
385  aputative AMG (genes HMP1_viralSeqs 398 VIRSorter scaffold 938-cat 2 58-

386  HMPI1 viralSeqs 398 VIRSorter scaffold 938-cat 2 59), with details provided in the

387  Supplementary Text, section Integration of DRAM and DRAM-v to begin to infer virocell metabolism.
388

389  Adding metabolisms to DRAM

390 DRAM is a community resource, as such we welcome metabolism experts to help us build
391  and refine metabolisms analyzed in DRAM. Visit this (link) to fill out the google form, your

392  metabolism will be vetted, and you receive an email from our team.

393

394  RESULTS

395  Enhanced annotation and distillation of genome attributes with DRAM

396 Like the process of distillation, DRAM generates and summarizes gene annotations across
397  genomes into three levels of refinement: (1) Raw, (2) Distillate, and (3) Product (Figure 1). The Raw
398  is a synthesized annotation of all genes in a dataset across multiple databases, the Distillate assigns
399  many of these genes to specific functional categories, and the Product visualizes the presence of key
400  functional genes across genomes. Through this high-throughput distillation process, DRAM (Figure
401  1a), and the companion program DRAM-v (Figure 1b), annotates and organizes high volumes of
402  microbial and viral genomic data, enabling users to discern metabolically relevant information from
403  large amounts of assembled microbial and viral community sequencing information.

404 The Raw annotations provided by DRAM are a comprehensive inventory of multiple

405  annotations from many databases. These Raw annotations are where most other annotators stop, with
406  analyses in the DRAM Distillate and Product uniquely designed to expedite the functional and

407  structural trait profiling within and across genomes (Figure 2a). In the Distillate, the DRAM Raw
408  data is parsed into five categories and subsequent subcategories (Figure 2b). With the goal to

409  standardize the reporting of genome quality across publications, the minimum suggested standards for
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410  reporting MAGs (25) are also summarized in the Distillate. Specifically, DRAM compiles the

411  quantification of tRNAs, rRNAs, and genome size metrics (e.g. length, number of contigs) with user
412  provided estimates of genome completeness, contamination (51), and genome taxonomy (24). This
413  summation is synthesized into a quality metric for each genome that includes a rank of high, medium,
414  or low quality based on established standards (25).

415 The Product is the most refined level of DRAM, and uses functional marker genes to infer
416  broad metabolic descriptors of a genome. This summary of genes enables classification of the

417  respiratory or fermentative metabolisms encoded in a genome, while also accounting for selected
418  carbon metabolic pathways (Figure 3, Supplementary File 3). Morecover, completion estimates are
419  calculated for electron transport chain complexes or pathways (Figure 3). We note these completion
420  metrics are based on the percentage of genes recovered for unique subunits or physiological steps
421  (Figure 3a), which is in contrast to analyses from other tools that recognize all non-redundant routes
422 as equivalent (Supplementary Figure 2). This provides more accurate pathway completion estimates,
423  as certain pathways are often underestimated when less physiologically refined approaches are used.
424  The Product provides an interactive HTML heatmap that visualizes the presence of specific genes,
425  including the gene identifiers which allow the user to link data across all DRAM levels (in the Raw
426  and Distillate).

427 We recognize that DRAM is a first step in the annotation process, and thus the DRAM

428  outputs are designed to make it convenient to export content at the gene, pathway, or genome level
429  (e.g. FASTA or GenBank files). To help the user navigate the DRAM levels, we constructed a

430  genome metabolic cartoon based on DRAM annotations of an isolate genome (Dechloromonas

431  aromatica strain RCB) (Figure 2a, Supplementary File 4). We use this figure to illustrate where
432 different genetic attributes reside in DRAM. Notably, DRAM has the ability to distill microbial

433 metabolism for thousands of individual genomes simultaneously, which allows users to easily

434 compare and identify patterns of functional partitioning within an entire microbial community.

435

436  DRAM recovers more annotations compared to other assembly-based annotation software
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437 We first compared the overall features of DRAM to common genome annotators or viewers
438  (Supplementary Table 1), finding that published annotation systems often lack the ability to scale
439  across thousands of genomes, visually summarize metabolism, or annotate virally encoded metabolic
440  functions. Next to benchmark DRAM performance, we compared the DRAM database content and
441  performance criteria to results from published MAG annotation tools (Prokka (30), DFAST (31), and
442 MetaErg (32)), which are three commonly used pipelines for genome annotation with multi-genome
443  files (Supplementary Table 1). To maximize annotation recovery, DRAM incorporates 7 different
444  databases that provide functionally disparate, physiologically informative data (e.g. MEROPS (43),
445  dbCAN?2 (48)), rather than overlapping content (¢.g. HAMAP, UniProt) (Figure 2¢). Beyond just
446  using more databases for annotation, DRAM also provides expert curation of this content (e.g.

447  dbCAN2, MEROPS) (see Supplementary Information, Interpreting results from DRAM and DRAM-
448  v). Moreover, for the UniProt database (69) shared across these annotators, DRAM uses the most
449  comprehensive version (Uniref90 (42)) compared to other annotators that use a proprietarily culled
450  version of the database resulting in 132- to 3,412-fold less entries. Summing all the databases used for
451  each annotator, DRAM has millions more entries (from 21M to 104M) (Figure 2d, Supplementary
452  File 4).

453 We next evaluated the annotation recovery of DRAM relative to published annotation tools
454 by quantifying the number of annotated, hypothetical, and unannotated genes assigned by each tool
455  (30-32) from an in silico soil community we created (15 phylogenetically and metabolically distinct
456  genomes from isolate and uncultivated Archaea and Bacteria) (Supplementary File 4). Compared to
457  the other annotators, for the in silico soil community, DRAM recovered 44,911 annotated genes,

458  which was on par with MetaErg (32) (42,478 genes), but 1.4-1.8 times more than Prokka (30) and
459  DFAST (31) (25,466 and 31,258 genes, respectively). Compared to other tools, DRAM better

460  differentiates homologs with a hypothetical annotation from unannotated genes (see Methods, Figure
461  2e-g, Supplementary Figure 3). This increased identification of hypothetical annotations allows
462  users to find homologs conserved in other organisms, providing hypotheses for gene function that can
463  be further validated by experimental characterization (70). The reduction of unannotated genes is

464  most notable for the Patescibacteria genome, a MAG from an uncultivated lineage in our in silico soil
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465  community. For this genome, DRAM produced 825 annotated, 362 hypothetical, and 7 unannotated
466  genes, compared to 802 annotated, 11 hypothetical, and 342 unannotated genes output from the next
467  closest annotator (32). Beyond increased annotation and hypothetical yield, DRAM also produced
468  more meaningful annotations that can be readily incorporated into models, with DRAM recovering
469  more EC numbers for this Patescibacteria genome compared to other tools (Supplementary File 4).
470  To further test the performance of DRAM, we annotated the E. coli K-12 MG1655 genome using

471  filtered versions of the KEGG Genes database to quantify precision and recall. Performance metrics
472 were highest when the genes from the E. coli K-12 MG1655 genome were present in the database, but
473  even when the entire genus of Escherichia was removed, performance remained high, with precision
474  falling by 0.1% and recall falling by 0.8%, suggesting DRAM with default settings is relatively

475  conservative and sacrifices recall for high levels of precision (Supplementary Figure 3).

476 We note, however, that this increased annotation quality and synthesis comes at expense of
477  run time and potentially overall memory usage (depending on database selection), with genomes from
478  the in silico soil community having an average complete annotation time (Raw, Distillate, Product) of
479 15 minutes per genome (Supplementary Figure 3). Unlike run time, memory usage is only minorly
480  impacted by the number of genes analyzed (~1 MB per genome, (Supplementary Figure 3)), but is
481  impacted by the database selection (especially UniRef90 (42)). For example, DRAM memory use
482  doubled from running the same samples with (~200 GB) and without (~100 GB) UniRef90 (42).

483  Thus, if memory usage or access to databases is limited, we provide the option to modify the DRAM
484  databases (see Methods). In summary, DRAM is scalable to thousands of genomes albeit run time is
485  impacted by number of genes analyzed. To demonstrate the scalability of DRAM, we annotated one
486  of the largest MAG datasets from a single ecosystem (21), highlighting the ability of DRAM to

487  summarize the metabolic potential of thousands of genomes at once

488  (https://zenodo.org/record/3777237). Beyond annotation recovery and resolution, DRAM has more

489  downstream functionalities and synthesis than other tools (Supplementary Table 1).
490

491  DRAM profiles diverse metabolisms in an in silico soil community
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492 To evaluate the capacity of DRAM to rapidly profile different metabolic regimes across

493  genomes, we created an in silico soil community made up of phylogenetically distinct and

494 metabolically versatile organisms (Supplementary File 4). For 13 of the 14 genomes with a

495  cultivated representative in our in silico soil community, the findings from DRAM were consistent
496  with prior broad-scale physiological classifications for each isolate (Figure 3). For a single genome in
497  our dataset, a known ammonia oxidizing isolate that has not been reported to perform methane

498  oxidation (Nitrosoarcheaum koreense MY 1), DRAM reports the presence of a functional gene for
499  methanotrophy (pmoA). We include this example to highlight how the well-documented sequence
500  similarity between amoA for ammonia oxidation and pmoA for methane oxidation causes difficulty in
501  reconciling proper function through homology based queries used in all multi-genome annotators
502  today including Prokka, DFAST, and MetaErg (30-32, 71, 72). Consequently, DRAM is only a first
503  step in identifying key functional genes, as subsequent non-homology based methods (e.g.

504  phylogenetic analyses, protein modeling (73), gene synteny, Bayesian inference framework (74, 75))
505  or physiological or biochemical characterization are often required to validate findings from any

506  homology-based annotator.

507 Within organisms reported to have the potential to respire (11/15 genomes), all were correctly
508  identified in the DRAM Product by the presence of a complete NADH or NADPH dehydrogenase
509  complex and a complete TCA pathway in the genome (Figure 3ab). The DRAM Product profiles the
510  capacity to respire oxygen (e.g. Pseudomonas putida), nitrate (Dechloromonas aromatica), sulfate
511  (Desulfovibrio desulfuricans), and others (Figure 3¢). Additionally, photorespiration and

512 methanogenesis are summarized in the Distillate and Product, exemplified by the photosynthetic

513 Synechocystis sp. PCC 6803 and methanogenic Methanosarcina acetivorans (Figure 3¢). Using two
514  model genomes that encode the capacity for obligate fermentation (3, 76), one cultivated (Candidatus
515  Prometheoarchaeum syntrophicum strain MK-D1) and one MAG from an uncultivated

516  Patescibacteria (24) (also Parcubacteria genome GW2011_GWF2 (3)), we show that DRAM

517  reasonably profiles carbon use and fermentation products. The value of using enzyme complex

518  completion to reduce misannotations is demonstrated (Supplementary Figure 2), as the partial

519  completion (3 genes) of the multi-subunit NADH dehydrogenase is not due to a complete complex I,
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520  but rather the presence of a trimeric hydrogenase common in obligate fermenters (3, 77). These

521  hydrogenases are further annotated in detail by their type and function in the Distillate. In summary,
522 the Product accurately assigns broad biogeochemical roles to this mock soil community,

523  demonstrating the breadth of metabolisms that can be visualized and rapidly analyzed across multiple
524  genomes from isolate and metagenome sources.

525

526  DRAM uncovers personalized, substrate specific carbohydrate utilization profiles in the human gut
527 While mock communities like our prior soil community are commonly used for software
528  performance criteria, they typically represent simpler communities than what is found in real-world
529  samples. To demonstrate the feasibility of DRAM to apply to contemporary, complex, authentic

530  samples, we analyzed the metabolic features of 44 HMP unbinned fecal metagenome samples. These
531  samples had an average of 6.1 Gbp (with a maximum of 17 Gbp) per sample, consistent with or

532 exceeding the average sequencing depth per sample reported in recent human gut studies in the last
533  two years (56, 78, 79) (Supplementary File 4). These HMP metagenomes were selected from a

534  landmark study that used COG defined categories to describe the microbially encoded traits in a

535  cohort of healthy humans (56). Using broad process level categories (e.g. central carbohydrate

536  metabolism), it was concluded in this publication (56) that microbial functional gene profiles were
537  consistent across humans. DRAM is also able to evaluate gene content at broad categories, showing
538  that CAZymes and peptidases are most prevalent in these datasets (Figure 4a). From this data, we
539  hypothesized that increasing the resolution to the substrate level would reveal more personalized
540  phenotypic patterns that were previously undefined in this cohort. To test this hypothesis for

541  carbohydrate use, we used DRAM to classify bacterial and archaeal glycoside hydrolases,

542 polysaccharide lyases, and enzymes with auxiliary activities related to carbohydrate-active enzymes
543  (CAZymes (48)). DRAM then parsed this information, producing a microbial substrate utilization
544  profile for the gut microbial community in each human. We note, that this assignment is not

545  unambiguous as some CAZymes are promiscuous for multiple substrates (79), a functionality DRAM
546  accounts for in the Distillate and Product (Supplementary Figure 2, Supplementary File 4).

547  Consistent with our hypothesis, carbohydrate substrate use profiles predicted by DRAM were more
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548  variable than bulk level DRAM Distillate annotations across humans (Supplementary Figure 4).
549  This more resolved annotation showed a 3-fold difference in CAZyme gene relative abundance across
550  the cohort (Figure 4bc). In summary, using more resolved annotations will likely reveal that the gut
551  gene content is not as stable as historically perceived (56). Specifically, CAZymes with the capacity
552  to degrade hemicellulose components had the greatest mean abundance (3x10” GPM), pectin was the
553 most variable (7-fold change), and mucin had the most variable detection (only in 50% of cohort)
554  (Figure 4d). Interestingly, the dominance of hemicellulose and the variability of pectin is reflective of
555  the western diet, which is high in the consumption of cereal grains and not uniform in the

556  consumption of fruit and vegetables (80—82). Our findings illustrate how DRAM substrate inventories
557  could uncover linkages between gut microbiota gene content and host lifestyle or host genetics.

558  Similarly, shifts in carbohydrate use patterns have been shown to be predictive of human health and
559  disease (83, 84), thus this added level of annotation refinement provided by DRAM in an easy-to-
560  understand format makes it possible to resolve biochemical transformations occluded by bulk level
561  annotations.

562

563  MAG profiles for utilization of specific organic carbon and nitrogen substrates generated by DRAM
564 To show that DRAM can not only profile the function of an entire microbial community, but
565  can also parse metabolisms to specific genomes within this community, we assembled the largest (29
566  Gbp) publicly available Human Microbiome Project (HMP) fecal metagenome. We recovered 135
567  MAGs, of which 75 were medium quality and 1 was high-quality as assessed by DRAM. The

568  taxonomic assignment of these MAGs according to DRAM taxonomy summary from GTDB (24) was
569  predominantly Firmicutes and Bacteroidota, with rare members affiliated with the Proteobacteria and
570  Desulfobacterota (Supplementary Figure 7). The taxonomic identity of the MAGs we recovered
571  using this binning approach (previously the sample was unbinned), are similar to the membership
572 reported in the healthy, western human gut (85), indicating this sample can serve as a reasonable

573  representative to demonstrate DRAMs annotation capabilities of gut MAGs.

574 In the mammalian gut, beyond the digestion of carbohydrates with CAZymes,

575  microorganisms also play critical roles in processing dietary protein into amino acids via peptidases
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576  (86) and producing short chain fatty acids for host energy as a fermentation byproduct (87). From
577  these 76 HMP genomes, DRAM identified 7,197 and 5,471 CAZymes and peptidases, respectively
578  (Figure 5, Supplementary Figure 5, 8, Supplementary Files 1-2). The capacity to degrade chitin
579  was the most widely encoded (81%) across the genomes, a capacity reported to increase during gut
580  inflammation (88). We also show that the capacity to cleave glutamate from proteinaceous

581  compounds is the most commonly detected in our genomes, likely reflecting high concentrations of
582 this amino acid in the gut(89). The substrate resolution provided by DRAM will enable more detailed
583  analysis of microbial community inputs and outputs relevant to understanding the gut microbiomes
584  impact on human health and disease (9, 84, 90, 91).

585 Given the importance of SCFA metabolism in the gut ecosystem, we show DRAMs capability
586  to profile these metabolisms. It is no surprise that this capability is widely encoded by

587  phylogenetically distinct genomes. Among the 76 HMP MAGs, the potential for acetate production
588  was the most widely encoded, while propionate production potential was the least prevalent. The gene
589 relative abundance reflects reported metabolite concentrations in the mouse and human gut (87, 92).
590  Collectively, these results show how outputs of DRAM can be used to establish hypotheses for

591  carbohydrate utilization trophic networks, where metabolic interactions can be considered

592  simultaneously, rather than oversimplified into pairwise interactions (93). Moreover, by making it
593  easier to assay substrate and energy regimes, it is our hope that DRAM can assist in development of
594 designer cultivation strategies and the generation of synthetic communities for desired degradation
595  outcomes.

596

597  DRAM-v, a companion tool to systematically automate identification of viral auxiliary metabolic

598  genes

599 Viruses are most often thought of as agents of lysis — impacting microbial community

600  dynamics and resource landscapes. However, viruses can also impact microbial functioning and

601  biogeochemical cycling via encoding and expressing Auxiliary Metabolic Genes (AMGs) (94) that
602  directly alter host metabolisms during infection. To date, AMG annotation from viral isolates (62, 95)

603  and metagenomic files (14, 15) has not scaled with the rate of viral genome discovery. Further, there


https://doi.org/10.1101/2020.06.29.177501
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.29.177501; this version posted June 29, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

604  are now numerous examples of metabolic genes in “viromes” that are more likely to be microbial
605  DNA contamination (39), which is even a greater concern in metagenomic files where the resultant
606  viruses can include prophages whose ends are challenging to delineate (61, 96). To automate the

607  identification of putative AMGs, we sought to complement DRAM with a companion tool, DRAM-v,
608  that (i) leverages DRAM’s functional annotation capabilities to describe metabolic genes, and (ii)
609  applies a systematic scoring metric to assess the confidence for whether those metabolic genes were
610  within bona fide viral contigs and not microbial (Figure 1b, Supplementary Figure 6). To

611  demonstrate how these scoring metrics and ranks come together in our AMG annotation, see the

612  example output files (Supplementary Files 6-9).

613 For each gene on a viral contig that DRAM-v has annotated as metabolic, we developed an
614  auxiliary score, from 1 to 5 (1 being most confident), to denote the likelihood that the gene belongs to
615  aviral genome rather than a degraded prophage region or a poorly defined viral genome boundary
616  (Figure 6a). Because viral resources remain underdeveloped and several ambiguities can remain for
617  some ‘hits’ even after these auxiliary scores are applied, DRAM-v uses flags to help the user quickly
618  see where possible AMGs have been experimentally verified or previously reported. DRAM-v also
619  flags users to the probability of a gene being involved in viral benefit rather than enhancing host

620  metabolic function (e.g. certain peptidases and CAZymes are used for viral host cell entry (Figure
621  6b). DRAM-v, like DRAM, also groups viral genes into functional categories, provides quality

622  reporting standards for viral contigs (27), and visualizes the predicted high- and medium-ranked

623  AMGs (auxiliary scores 1-3) in the Product. DRAM-v and the AMG scoring system established here
624  make it possible to rapidly identify viruses capable of augmenting host metabolism.

625 To benchmark the precision of DRAM-v, we reannotated viral contigs from a soil

626  metagenomic file that our team had manually curated for glycoside hydrolase AMGs in a previous
627  study (14). In that study, we reported 14 possible glycoside hydrolase AMGs from over 66,000

628  predicted viral proteins on viral contigs >10 kbp (14). Reannotating this file using DRAM-v, we

629  recovered 100% of these AMGs according to DRAM’s defined metrics. Moreover, we recovered an
630  additional 453 genes that were ranked with high (auxiliary scores 1, 2) or medium (auxiliary score 3)

631  AMG confidence (Supplementary File 6-7). Because DRAM expands the metabolic repertoire and
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632  the speed at which metabolisms could be inventoried across hundreds of viral contigs, we were able to
633  increase the AMG recovery by 32-fold. Our DRAM-v findings show that soil viral genomes encode
634  AMGs that could play roles in host energy generation (2%), carbohydrate utilization (27%), and

635  organic nitrogen transformation (13%) (Figure 6¢). Moreover, 42% of the putative AMGs had been
636  previously reported in other files.

637

638  DRAM-v uncovers conserved and unique AMGs across ecosystems

639 We harnessed the automation and functional categorization power of DRAM-v to understand
640  how viral AMG diversity varies across ecosystems. To that end, we recovered 2,932 viral contigs,
641  containing 1,595 putative AMGs from the 44 HMP metagenome samples discussed above (Figure 4,
642  Supplementary Files 8-10) and compared these AMGs to the 467 putative AMGs that we recovered
643  from the soil metagenomes discussed above (Figure 6¢). The majority of the HMP AMGs had

644  putative roles in energy generation (7%), carbon utilization (10%), and organic nitrogen

645  transformations (30%). The human gut is nitrogen limited (97), which may explain why putative

646  AMGs for organic nitrogen transformations were the most well represented (Figure 6¢). Specifically,
647  the majority of the organic nitrogen AMGs we identified in the gut were likely involved in

648  augmenting microbial host amino acid synthesis and degradation capacities. AMGs for tyrosine (EC
649 1.3.1.12, prephenate dehydrogenase) and lysine (EC 4.1.1.20, diaminopimelate decarboxylase)

650  synthesis were of particular interest as they were uniquely encoded in specific phage genomes and had
651  high quality auxiliary scores (Supplementary File 8). These AMGs could be valuable for their

652  microbial hosts, given that increased gene copy number in these pathways was shown to enhance

653  microbial growth (98). Moreover, synthesis of these branched and aromatic amino acids is costly for
654  the microbial host and these compounds are absorbed by gut epithelial cells (99), thus there are clear
655  advantages for hosts that can rapidly synthesize these scarce resources.

656 To directly compare soil and gut viral AMGs, AMG counts were normalized to the number
657  of viral contigs in each file. Overall, stool viruses encoded more putative AMGs compared to soil

658  viruses. These soil AMGs were mostly associated with carbon utilization, while gut AMGs were more

659  linked to organic nitrogen transformations (Figure 6¢). To identify shared and unique AMGs across
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660 these two files, we built an amino acid sequence similarity network of all the recovered AMGs

661  (Figure 6d). Notably, the majority of putative soil AMGs, particularly CAZymes, do not share

662  sequence similarity with gut-derived AMGs (Figure 6e). AMGs shared between soil and human stool
663 are related to organic nitrogen or energy metabolisms.

664 AMGs within energy categories were of particular interest, as these genes may increase the
665  copy number resulting in greater activity, or expand the metabolic repertoire of the host (38). For

666  example, sulfate adenylyl transferase identified in soils is a key gene for sulfur assimilation and

667  dissimilation, while pyruvate phosphate dikinase, a gene to promote the metabolism of this key

668  central carbon metabolite, was shared by both soil and human gut ecosystems (Figure 6d). The

669  conservation and uniqueness of these AMGs across ecosystems hints at more universal and

670  environmentally tuned roles that virus may play in modulating their host and surrounding

671  environment (Supplementary Figure 9-10, Supplementary File 4). We note that while DRAM is an
672  important first step in the rapid and uniform detection of viral AMGs, contextualizing the

673  physiological and biochemical role of AMGs requires additional analyses (14).

674

675  DISCUSSION

676 DRAM provides a scalable and automated method for annotating features of assembled

677  microbial and viral genomic content from cultivated or environmental sequencing efforts. This

678  unparalleled annotation tool makes inferring metabolism from genomic content accessible. Here we
679  show that DRAM is a critical, first step in annotating functional traits encoded by the microbiome
680  (100). To facilitate further recommended curation, DRAM provides outputs in formats interoperable
681  with downstream phylogenetic approaches (101), membrane localization analyses (102), visualization
682 by genome browsers (103), and protein-structural modelling (73). DRAM annotations, like all

683  homology-based genome annotation tools commonly used today, are reliant on the content in

684  underlying databases. We show here that the variety of databases used in DRAM contributes to

685  enhanced annotation recovery. Moreover, looking to the future, we built the DRAM platform to be

686  robust, and with the capability to ingest non-homology based annotations as well.
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687 Beyond the content in databases, it is our hope that DRAM can ease the dissemination of
688  emerging metabolisms and biochemistry, offering a community resource to rapidly assimilate these
689  new or refined annotations (Methods), which currently have very limited, and not rapid, incorporation
690 into wide-spread annotation databases (104, 105). We are committed to keeping DRAM open to

691  support community principles, with addition of new metabolisms fueled by community expertise. We
692  call on any interested experts to join this endeavor and enable its continual development (link).

693  Collectively, DRAM and DRAM-v deliver an infrastructure that enables rapid descriptions of

694  microbial and viral contributions to ecosystem scale processes.

695

696  AVAILABILITY

697 All DRAM source code is available at https://github.com/shafferm/DRAM under the GPL3 license.

698 The DRAM user help is available at https://github.com/shafferm/DRAM/wiki. DRAM can also be

699 installed via pip.

700

701  ACCESSION NUMBERS

702 The E. coli genome was retrieved from KEGG. The set of 15 soil genomes were retrieved from NCBI.
703  The Emerson et al. viral contigs were retrieved from GenBank, accession number QGNHO00000000.
704  The 44 gut metagenome samples in Figure 4 were retrieved from HMP database. The single binned
705  HMP gut metagenome sample used in Figure 5 was retrieved from NCBI using accession number
706  SRS019068, and the respective bins generated here deposited at NCBI. All accession numbers for
707  MAGS and reads are detailed in Supplementary File 4.
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Figure 1: Conceptual overview and workflow of the assembly-based software, DRAM (Distilled

and Refined Annotation of Metabolism). DRAM (green, a) profiles microbial metabolism from

genomic sequences, while DRAM-v profiles the Auxiliary Metabolic Genes (AMGs) (orange, b) in

vMAGs. DRAM’s input data files are denoted by circles in grey, while analysis and output files are

denoted by rectangles in green for MAGs or orange for AMGs. DRAM’s outputs (from the Raw,

Distillate, and Product) provide three levels of annotation density and metabolic parsing. More details

on the output files and specific operation can be found in the Supplementary Text or at

https://github.com/shafferm/DRAM/wiki. User defined taxonomy (e.g. GTDB-Tk (24)) and

completion estimates (e.g. CheckM (51)) for MAGs and isolate genomes can be input into DRAM.
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Figure 2: DRAM provides multiple levels of metabolic and structural information. a Genome
cartoon of Dechloromonas aromatica RCB demonstrates the usability of DRAM to understand the
potential metabolism of a genome. Putative enzymes are colored by location of information in
DRAM’s outputs: Raw (black), Distillate (grey), and Product (white). Gene numbers, identifiers, or
abbreviations are colored according to metabolic categories outlined in (b) and detailed in
Supplementary File 4. Genes with an asterisk had an unidentified localization by PSORTb (102). b
Flow chart shows the metabolisms from DRAM’s Distillate. Distillate provides five major categories
of metabolism: energy, transporters, miscellaneous (MISC), carbon utilization, and organic nitrogen.

Each major category contains subcategories, with outlines denoting location of information within
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Distillate and Product. ¢ Heatmap shows presence (colored) and absence (white) of databases used in
comparable annotators to DRAM. Annotators are colored consistently in a-e, with Prokka (30) in
black, DFAST (31) in light grey, MetaErg (32) in dark grey, and DRAM in red. Barcharts in d-g show
database size (d), as well as number of annotated (e), hypotheticals (f), and unannotated (g) genes
assigned by each annotator when analyzing in silico soil community. See methods for definitions of

annotated, hypothetical, and unannotated genes, relative to each annotator.
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Figure 3: DRAM Product summarizes and visualizes ecosystem-relevant metabolisms across

4

input genomes. Heatmaps in (a-c) were automatically generated by DRAM from the Product shown
in Supplementary File 3. Sections of the heatmap are ordered to highlight information available in
Product, including pathway completion (a), subunit completion (b), and presence/absence (c) data.
Boxes colored by presence/absence in (¢) represent 1-2 genes necessary to carry out a particular

process. Hovering over the heatmap cells in the Product’s HTML outputs interactively reports the
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1054  calculated percent completion among other information. Dechloromonas aromatica RCB is
1055  represented by a genome cartoon in Figure 2a and is highlighted in blue on the heatmaps.

1056
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1079 &

1080  Figure 5: DRAM provides a metabolic inventory of microbial traits important in the human
1081  gut. Seventy-six medium and high-quality MAGs were reconstructed from a single HMP fecal
1082  metagenome. Taxonomy was assigned using GTDB-Tk (24), with colored boxes noting class and
1083  name noting genus. The presence (green) or absence (blue) of genes capable of catalyzing

1084  carbohydrate degradation or contributing to short chain fatty acid metabolism are reported in the
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heatmap. We note that the directionality of some of these SCFA conversions is difficult to infer from
gene sequence alone. Genomes are clustered by gene presence and hemicellulose substrates are shown

in red text.
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Figure 6: DRAM-v profiles putative AMGs in viral sequences. Description of DRAM-v’s rules for

auxiliary (a) and flag (b) assignments. Auxiliary metabolic scores shown in (a) are determined by the

location of a putative AMG on the contig relative to other viral hallmark or viral-like genes

(determined by VirSorter (61)), with all scores being reported in the Distillate. Scores highlighted in

red are considered high (1-2) or medium (3) confidence and thus the putative AMGs are also

represented in the Product. Flags shown in (b) highlight important details about each putative AMG

of which the user should be aware, all being reported in the Raw. Putative AMGs with a confidence

score 1-3 and a metabolic flag (flag “M”; highlighted in red) are included in the Distillate and

Product, unless flags in blue are reported. Flags in black do not decide the inclusion of a putative

AMBG. (c¢) Bar graph displaying putative AMGs recovered by DRAM-v from metagenomic files (soil

metagenomes (14), left; 44 fecal metagenomes from the HMP (56), right) and categorized by the
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1101  Distillate metabolic category: Carbon Utilization, Energy, Organic Nitrogen, Transporters and MISC.
1102 Putative AMGs labeled as “multiple” refer to genes that occur in multiple DRAM Distillate categories
1103 (e.g. transporters for organic nitrogen) and AMGs that are labeled as previously reported are in the
1104  viral AMG database compiled here. (d) Sequence similarity network (66) of all AMGs with an

1105  auxiliary score of 1-3 recovered from soil and human stool metagenomes. Nodes are connected by an
1106  edge (line) if the pairwise amino acid sequence identity is >80% (sece Methods). Only clusters of >5
1107  members are shown. Nodes are colored by the Distillate category defined in (¢), while node shape
1108  denotes soil or human stool. Back highlighting denotes if the cluster contains both soil and human
1109  stool nodes (shared), soil nodes only, or human stool nodes only. Specific AMGs highlighted in the
1110  text are shown. (e) Stacked bar chart shows the number of singletons (AMGs that do not align by at
1111 least 80% to another recovered AMG) in each sample type, with bars colored by DRAM-v’s Distillate
1112 category.

1113

1114

1115
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