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ABSTRACT Microbial and viral communities transform the chemistry of Earth’s ecosystems, yet the 18 

specific reactions catalyzed by these biological engines are hard to decode due to the absence of a 19 

scalable, metabolically resolved, annotation software. Here, we present DRAM (Distilled and Refined 20 

Annotation of Metabolism), a framework to translate the deluge of microbiome-based genomic 21 

information into a catalog of microbial traits. To demonstrate the applicability of DRAM across 22 

metabolically diverse genomes, we evaluated DRAM performance on a defined, in silico soil 23 

community and previously published human gut metagenomes. We show that DRAM accurately 24 

assigned microbial contributions to geochemical cycles, and automated the partitioning of gut 25 

microbial carbohydrate metabolism at substrate levels. DRAM-v, the viral mode of DRAM, 26 

established rules to identify virally-encoded auxiliary metabolic genes (AMGs), resulting in the 27 

metabolic categorization of thousands of putative AMGs from soils and guts. Together DRAM and 28 

DRAM-v provide critical metabolic profiling capabilities that decipher mechanisms underpinning 29 

microbiome function. 30 

 31 

INTRODUCTION 32 

DNA sequencing advances have offered new opportunities for cultivation-independent 33 

assessment of microbial community membership and function. Initially, single gene approaches 34 

established taxonomic profiling capabilities, providing innumerable intellectual leaps in microbial 35 

composition across biomes (1, 2). Recently, the field has expanded from gene-based methods towards 36 

metagenome-assembled-genome (MAG) studies, which offer population level inferences of microbial 37 

functional underpinnings (3–5). Across ecosystems, these MAGs illuminated new biological 38 

feedbacks to climate-induced changes (6–8), revolutionized personalized microbiota-based 39 

therapeutics for human health (9, 10), and dramatically expanded the tree of life (11–13). 40 

Metagenomic advances have also transformed our ability to study viruses, and since they lack a 41 

universal barcode gene, viral MAG (vMAG) enabled studies are required for even viral taxonomic 42 

surveys (14, 15).  43 

At this point, there are hundreds of thousands of MAGs and vMAGs available from the 44 

human gut and other diverse environments (7, 14–23). This inundation of data required development 45 
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of scalable, genome-based taxonomic approaches, which are now largely in place for both microbes 46 

(24, 25) and viruses (26, 27). However, there is a growing consensus that for any of these habitats the 47 

taxonomic composition of the microbiome alone is not a good predictor of ecosystem functions, 48 

properties which are often better predicted from microbial and viral traits (28, 29). Therefore, there is 49 

an absolute need to develop gene annotation software that can simultaneously highly resolve trait 50 

prediction from vast amounts of genomic content.  51 

While there are several tools for annotating genes from microbial genomes (30–33), a single 52 

tool has yet to translate current knowledge of microbial metabolism into a format that can be applied 53 

across thousands of genomes. Most online annotators are only useful for a handful of genomes or for 54 

profiling genes using a single database (34–36).  Other recently developed tools have advanced to 55 

annotate thousands of genomes with multiple databases, which expands the biological information 56 

queried (30–32). However, biological interpretation is still burdened by challenges in data synthesis 57 

and visualization, thereby preventing efficient metabolic profiling of microbial traits with known 58 

ecosystem relevance. In addition, viruses can encode Auxiliary Metabolic Genes (AMGs) that directly 59 

reprogram key microbial metabolisms like photosynthesis, carbon metabolism, and nitrogen and 60 

sulfur cycling (37, 38), but identifying and insuring these AMGs are not ‘contaminating’ microbial 61 

DNA (39) remains a painfully manual process.  62 

Here we present a new tool, DRAM (Distilled and Refined Annotation of Metabolism), and 63 

the companion tool DRAM-v for viruses, and apply these tools to existing, assembled metagenomic 64 

datasets to demonstrate the expanded utility over past approaches. DRAM was designed to profile 65 

microbial (meta)genomes for metabolisms known to impact ecosystem function across biomes and is 66 

highly customizable to user annotations. DRAM-v leverages DRAM’s functional profiling 67 

capabilities, and adds a ruleset for defining and annotating AMGs in viral genomes. Together DRAM 68 

and DRAM-v decode the metabolic functional potential harbored in microbiomes.  69 

 70 

 71 

 72 

 73 
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MATERIAL AND METHODS 74 

DRAM annotation overview 75 

The DRAM workflow overview is detailed in Figure 1. DRAM does not use unassembled 76 

reads, but instead uses assembly-derived FASTA files input by the user. Input files may come from 77 

unbinned data (metagenome contig or scaffold files) or genome-resolved data from one or many 78 

organisms (isolate genomes, single-amplified genome (SAGs), MAGs). First each file is filtered to 79 

remove short contigs (by default contigs <2500bp, but this can be user defined). Then Prodigal (40) is 80 

used to detect open reading frames (ORFs) and subsequently predict their amino acid sequences, 81 

supporting all genetic codes on defined on NCBI (Figure 1, Supplementary Figure 1). Specifically, 82 

we use the anonymous/metagenome mode of Prodigal (40), which is recommended for metagenome 83 

assembled contigs and scaffolds. By default, first Prodigal (40) tests genetic code 11, then uses other 84 

genetic codes to resolve short genes, or notifies user that no code resolves gene length.  85 

Next, DRAM searches all amino acid sequences against multiple databases and provides all 86 

database hits in a single output file called the Raw output (Supplementary File 1, Supplementary 87 

Figure 1). Specifically, ORF predicted amino acid sequences are searched against KEGG (41), 88 

Uniref90 (42), and MEROPS (43) using MMseqs2 (44), with the best hits (defined by bitscore, 89 

default minimum threshold of 60) reported for each database in the Raw output. Note, the use of the 90 

Uniref90 (42) database is not default due to the increased memory requirements which can be 91 

prohibitive to many users, thus a user should specify the --use_uniref flag to search amino acid 92 

sequences against Uniref90 (42). If there is no hit for a given gene in a given database above the 93 

minimum bit score threshold, no annotation is reported for the given gene (unannotated) and database 94 

in the Raw output. Reciprocal best hits (RBHs) are defined by searches where the database sequence 95 

that is the top hit from a forward search of the input gene has a bit score greater than 60 (by default) 96 

and is the top hit from the reverse search of the database hit against the all genes from the input 97 

FASTA file with a bit score greater than 350 (by default) (3, 45). DRAM also uses MMSeqs2 (44) to 98 

perform HMM profile searches of the Pfam database (46), while HHMER3 (47) is used for HMM 99 

profile searches of dbCAN (48) and VOGDB (http://vogdb.org/).  For these HMM searches of Pfam, 100 

dbCAN, and VOGDB, a hit is recorded if the coverage length is greater than 35% of the model and 101 
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the e-value is less than 10-15 (48). If the user does not have access to the KEGG database, DRAM 102 

automatically searches the KOfam (49) database with HMMER in order to assign KOs, using gene 103 

specific e-value and percent coverage cutoffs provided here 104 

ftp://ftp.genome.jp/pub/db/kofam/ko_list.gz (49). Users should note that using KOfam (49) rather 105 

than KEGG genes (41), may result in less annotation recovery, thereby resulting in some false 106 

negatives in the DRAM Product (described below).  After ORF annotation, tRNAs are detected using 107 

tRNAscan-SE (50) and rRNAs are detected using barrnap (https://github.com/tseemann/barrnap). 108 

When gene annotation is complete, the results are merged to a single tab-delimited annotation 109 

table that includes the best hit from each database for user comparison.  (Supplementary File 1, 110 

Supplementary Figure 1). For each gene annotated, DRAM provides a single, summary rank (A-E), 111 

which represents the confidence of the annotation (Supplementary Figure 1). The highest rank 112 

includes reciprocal best hits (RBH) with a bit score >350, against KEGG (41) genes (A rank) (41) , 113 

followed by reciprocal best hits to Uniref90 (42) with a bit score >350 (B rank), hits to KEGG (41) 114 

genes (41) with a bit score >60 (C rank), and UniRef90 (42) with a bit score greater than 60 (C rank) 115 

(45). The next rank represents proteins that only had Pfam (46), dbCAN (48), or MEROPS (43) 116 

matches (D rank), but hits to KEGG (41) or UniRef90 (42) were below 60 bit score. The lowest rank 117 

(E) represents proteins that had no significant hits to any DRAM database including KEGG (41), 118 

Uniref90 (42), dbCAN (48), Pfam (46), MEROPS (43), or only had significant hits to VOGDB. 119 

Supplementary Figure 1 provides a schematic summarizing this annotation system. If one or more of 120 

the databases used for determining annotation ranks (KEGG, Uniref90, Pfam) is not used during 121 

DRAM annotation, all genes are considered to not have any hits against the unused database(s) and 122 

the respective annotation rank (e.g. B in the case of UniRef90) would be absent depending on which 123 

database was not used. In summary, the Raw output of DRAM provides for each gene in the dataset a 124 

summary rank (A-E), as well as the hits across up to 6 databases including  KEGG, Uniref90, Pfam, 125 

CAZY, MEROPS, and VOGDB, allowing users to easily compare annotation content provided by 126 

different sources.  127 

Beyond annotation, DRAM is intended to be a data compiler. Users can provide output files 128 

from GTDB-tk (24) and checkM (51) (or other user defined taxonomy and completion estimates), 129 
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which are input into DRAM to provide taxonomy and genome quality information of the MAGs, 130 

respectively. For downstream analyses, DRAM provides a FASTA file of all entries from all input 131 

files, a GFF3- formatted file containing all annotation information, FASTA files of nucleotide and 132 

amino acid sequences of all genes, and text files with the count and position of the detected tRNAs 133 

and rRNAs (Supplementary Figure 1). Finally, a folder containing one GenBank formatted file for 134 

each input FASTA is created. 135 

DRAM Raw annotations are distilled to create genome statistics and metabolism summary 136 

files, which are found in the Distillate output (Supplementary File 2). The genome statistics file 137 

provides most genome quality information required for MIMAG (25) reporting, including GTDB-tk 138 

(24) and checkM (51) information, if provided by the user. The summarized metabolism table 139 

contains the number of genes with specific metabolic function identifiers (KO, CAZY ID etc.) for 140 

each genome, with information distilled from multiple sources, including custom-defined metabolism 141 

modules (see 142 

https://raw.githubusercontent.com/shafferm/DRAM/master/data/genome_summary_form.tsv). For 143 

ease of metabolic interpretation, in the Distillate, many of the genes annotated in the Raw that can be 144 

assigned to pathways are output to multiple sheets assigned by functional category and organized by 145 

pathway (e.g. energy, carbon utilization, transporters) (Figure 2ab). Thus, the Distillate provides 146 

users with a pathway-centric organization of genes annotated in the Raw, while also summarizing the 147 

genome quality statistics.  148 

The Distillate output is further distilled to the Product, an HTML file displaying a heatmap 149 

(Supplementary File 3), created using Altair (52), as well as a corresponding data table. The Product 150 

has three primary parts: pathway coverage (e.g. glycolysis), electron transport chain component 151 

completion (e.g. NADH dehydrogenase), and presence of specific functions (e.g. mcrA, 152 

methanogenesis). The pathways selected for completion analysis were chosen because of their central 153 

role in metabolism. Pathway coverage is measured using the structure of KEGG (41) modules. 154 

Modules are broken up into steps and then each step is divided into paths. Paths can be additionally 155 

subdivided into substeps with subpaths. Coverage is given as the percent of steps with at least one 156 

gene present, substeps and subpaths are considered (Supplementary Figure 2a). This requires that at 157 
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least one subunit of each gene in the pathway to be present. Electron transport chain component 158 

completion is measured similarly. Modules are represented as directed networks where KOs are nodes 159 

and outgoing edges connect to the next KO in the module. Completion is the percent coverage of the 160 

path through the network with the largest percentage of genes present (Supplementary Figure 2b). 161 

Function presence is measured based on the presence of genes with a set of identifiers. The gene sets 162 

were made via expert-guided, automatic curation of specific metabolisms (See Supplementary Text, 163 

section Interpreting results from DRAM and DRAM-v). Some functions require the presence of a 164 

single gene while others only require one or more annotations from sets of genes to be present 165 

(Supplementary Figure 2c). Specifics of the logic behind pathway completion, subunit completion, 166 

and specific functional potential calls are detailed in the Supplementary Text (section DRAM 167 

pathways and enzyme modularity completion).  168 

 169 

Benchmarking DRAM against commonly used annotators 170 

In order to compare the performance in terms of runtime, memory usage and annotation 171 

coverage we compared DRAM to other commonly used genome or MAG annotation tools including 172 

Prokka (30), (v1.14.0), DFAST (31) (v1.2.3), and MetaErg (32) (v1.2.0) using three separate datasets: 173 

(i) E. coli strain K-12 MG1655, (ii) an in silico soil community we created (15 phylogenetically and 174 

metabolically distinct genomes from isolate and uncultivated Archaea and Bacteria), and (iii) a set of 175 

76 MAGs generated from the largest HMP1(53) fecal metagenome (described below).  176 

To compare annotation database size of each tool (Prokka, DFAST, and MetaErg) to DRAM, 177 

we counted the entries of each database used by default for each tool (Figure 2cd, Supplementary 178 

File 4). Specifically, for BLAST-based searches, the number of FASTA entries were counted for a 179 

given database, and for HMM-based searches, the number of model entries were counted for a given 180 

database. 181 

To evaluate the annotation recovery by each tool, we compared the number of annotated, 182 

hypothetical, and unannotated genes assigned by each annotation tool to an in silico soil community 183 

and a set of MAGs generated from the largest HMP fecal metagenome (Figure 2e-g). A gene was 184 

considered annotated in DRAM if it had at least one annotation from KEGG (41), UniRef90 (42), 185 
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MEROPs (43), Pfam (46) or dbCAN that was not "hypothetical", "uncharacterized" or "domain of 186 

unknown function" gene. A gene is defined as hypothetical in DRAM if hits for a gene lacked defined 187 

annotation, and at least one of the annotations from KEGG (41), UniRef90 (42), MEROPs (43), Pfam 188 

(46) and dbCAN were "hypothetical", "uncharacterized" or "domain of unknown function". A gene 189 

was defined as unannotated in DRAM if no annotation was assigned from KEGG (41), UniRef90 190 

(42), MEROPs (43), Pfam (46) or dbCAN (48). This is in contrast to other annotators, like Prokka 191 

(30) and DFAST (31) that remove many to all hypothetical genes from their databases and 192 

subsequently all genes are called as hypothetical, even genes that lack an annotation. Since these 193 

programs mask conserved hypothetical genes, the user loses the ability for broader biological context 194 

and further non-homology based discovery of protein function. In our performance analyses we 195 

considered DFAST and Prokka hypothetical labels as unannotated, as it was not possible to discern 196 

the difference between a gene that had no representatives in a database (unannotated) and a gene that 197 

had best hits to hypothetical genes in other organisms that were annotated in the database 198 

(hypothetical). In MetaErg (32), a gene was considered unannotated if in the master tab separated 199 

table there was no Swiss-Prot (54), TIGRFAM or Pfam (46) description. In MetaErg, a gene was 200 

considered hypothetical if hits lacked a defined annotation, and had at least one annotation from 201 

Swiss-Prot (54), TIGRFAM and Pfam (46) that contained "hypothetical", "uncharacterized" or 202 

"domain of unknown function”.  203 

Beyond differences in definition, we note that the summation of annotated, hypothetical, and 204 

unannotated genes is different for each tool due to the use of different gene callers or different filters 205 

on called genes, despite using the same input file (Supplementary File 4). Specifically, Prokka (30), 206 

MetaErg (32), and DRAM use Prodigal to call genes, while DFAST (31) uses  MetaGeneAnnotator 207 

(55). But compared to DRAM, Prokka (30) filters out called genes that overlap with any RNA feature 208 

or CRISPR spacer cassette, while MetaErg (32) filters out all called genes <180 nucleotides. Default 209 

parameters were used for all annotation tools except for DRAM, which employed the --use_uniref 210 

flag to use UniRef to maximize the annotation recovery. 211 

To measure speed and memory usage the three test sets were used with each annotation tool. 212 

All tools were run with default parameters. Each dataset and tool combination was run four times on 213 
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the same machine using 10 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz processors. Average and 214 

standard deviations of run time and the maximum memory usage were reported. Performance data is 215 

reported in Supplementary Figure 3a-c, and Supplementary File 4. 216 

The unit of annotation in DRAM is at the level of the gene, thus the number of genes (and not 217 

the number of genomes) in a dataset is the primary factor in determining runtime. In other words, 218 

assuming the same number of genes in the dataset, there would be no run time difference between the 219 

DRAM annotation of 100 unbinned, deeply sequenced, assembled metagenome samples and 10,000 220 

binned, partial MAGs. For the datasets reported here, the gene numbers are 55,040 for a “mock” soil 221 

community and 143,551  for 76 MAGs assembled and binned from a HMP fecal metagenome, with 222 

the average run times for these data listed in Supplementary Figure 3b. To demonstrate scalability 223 

of DRAM, we also included the DRAM annotations for one of the largest MAG studies from a single 224 

ecosystem (21), with annotations provided for 2,535 MAGs (and including 6,273,162 total genes 225 

across the dataset) (https://zenodo.org/record/3777237). Summarizing, DRAM is scalable to an 226 

unlimited number of genes, however run time will be increased based on the number of genes 227 

annotated. In terms of the Product output, DRAM is not limited, but the Product heatmap is broken 228 

into sets of 1,000 genomes or metagenomes to facilitate effective visualization. 229 

To address the accuracy of DRAM in recovering annotations for organisms with different 230 

levels of database representation, we used the most experimentally validated microbial genome, E. 231 

coli K12 MG1655 to annotate protein sequences with DRAM using different databases. We evaluated 232 

the 1) the full set of DRAM databases, 2) the full set of DRAM databases with all Escherichia genera 233 

removed, and 3) the full set of DRAM databases with all Enterobacteriaceae family members 234 

removed. The latter two databases (2 and 3) are meant to address assigning annotations of a microbial 235 

genome that may not have close representatives in the database (Supplementary Figure 3d).  236 

 237 

Selection of 15 Representative Soil Genomes for Annotation Benchmarking 238 

To validate DRAM, we chose a set of phylogenetically diverse genomes from organisms with 239 

varying and known energy generating metabolisms. All genomes included in this analysis are from 240 

isolates, except for a member of the Patescibacteria, which was included to highlight the applicability 241 
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of DRAM to Candidate Phyla Radiation (CPR) (Supplementary File 4). This dataset is not meant to 242 

represent an entire soil community, but rather was selected to highlight the metabolic repertoire (e.g. 243 

carbon, nitrogen, sulfur metabolisms) and phylogenetic divergence (different phyla across Bacteria 244 

and Archaea domains) commonly annotated in soil datasets. 245 

 Assembled nucleotide FASTA files for each genome or MAG were downloaded from NCBI 246 

or JGI-IMG. Genomes were annotated using DRAM.py annotate and summarized using DRAM.py 247 

distill (Figure 3a-c, Supplementary Figure 1, Supplementary Files 3, 5). Genomes were quality 248 

checked with checkM (51) and taxonomically classified using GTDB-Tk (v0.3.3) (24). Genome 249 

statistics and accession numbers are reported in Supplementary File 4.  250 

 251 

Human Gut Metagenome Samples Download and Processing  252 

 Forty-four human gut metagenomes were downloaded from the HMP data portal 253 

(https://portal.hmpdacc.org/) (Supplementary File 4) (53). All samples are from the HMP study (56) 254 

and are healthy adult subjects. All reads were trimmed for quality and filtered for host reads using 255 

bbtools suite (sourceforge.net/projects/bbmap/) (57). Samples were then assembled separately using 256 

IDBA-UD (58) using default parameters. The resulting assemblies were annotated using DRAM.py 257 

annotate and distilled using DRAM.py distill, resulting in 2,815,248 genes. To calculate coverage of 258 

genes, coverM (https://github.com/wwood/CoverM) was used in contig mode with the count 259 

measurement. These counts were then transformed to gene per million (GPM), which was calculated 260 

in the same manner as transcripts per million (TPM), with data reported in Figure 4a-c. To compare 261 

the variability of bulk level (Distillate categories) and substrate level categories across 44 human gut 262 

metagenomes, we calculated Bray-Curtis distances between all pairs of samples and used the Levene 263 

test to compare the variability of distances between annotations (Supplementary Figure 4).  264 

 265 

Human Gut Metagenome for MAG Generation, Sample Download and Processing 266 

 To examine DRAMs ability to assign functionalities relevant to the human gut, we annotated 267 

MAGs present in a single Human Microbiome Project (53) sample. Raw reads from SRA accession 268 

number SRS019068 (the largest HMP metagenome collected to date, with 29 Gbp/sample) were 269 
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downloaded from the NCBI Sequence Read Archive using wget (link: 270 

http://downloads.hmpdacc.org/dacc/hhs/genome/ 271 

microbiome/wgs/analysis/hmwgsqc/v2/SRS019068.tar.bz2). Reads were trimmed for quality using 272 

sickle (https://github.com/najoshi/sickle) and subsequently assembled via IDBA-UD (58) using 273 

default parameters. Resulting scaffolds were binned using Metabat2 (59). We recovered 135 MAGs 274 

from this sample, that were dereplicated into 76 medium and high quality MAGs (60). Bins were 275 

quality checked with checkM (51), taxonomically classified using GTDB-Tk (v0.3.3) (24), and 276 

annotated and distilled using DRAM (Figure 5, Supplementary Figure 5, Supplementary Files 1-277 

2). All assembly statistics and MAG statistics can be found in Supplementary File 4. To interrogate 278 

the importance of carbon metabolism in the human gut, the DRAM annotated CAZyme and SCFA 279 

production potential was profiled across the 76 medium and high quality MAGs using the DRAM 280 

Distill function. MAGs were clustered using hierarchal clustering via the hclust complete method in R 281 

(Figure 5).   282 

 283 

DRAM-v viral annotation and AMG prediction overview 284 

The DRAM-v workflow to annotate vMAGs and predict potential AMGs is detailed in 285 

Figures 1, 6 and Supplementary Figure 6. DRAM-v uses VirSorter (61) outputs to find viral 286 

genomic (genomes or contigs) information in assembled metagenomic data. DRAM-v inputs must 287 

include a VirSorter (61) predicted vMAGs FASTA file and VIRSorter_affi -contigs.tab file. Each 288 

vMAG is processed independently using the same pipeline as in DRAM, with the addition of a 289 

BLAST-type annotation against all viral proteins in NCBI RefSeq. All database annotations in the 290 

DRAM-v results are merged into as single table as the Raw DRAM output. 291 

After the annotation step, auxiliary scores are assigned to each gene. The auxiliary scores are 292 

on a scale from 1 to 5, and provide the user with confidence that a gene is on a vMAG (and not 293 

contaminating source). Here a score of 1 represents a gene that is confidently virally encoded and a 294 

score of 4 or 5 represents a gene that users should take caution in treating as a viral gene. These scores 295 

are based on previous manually curated data provided in Supplementary File 4. Auxiliary scores are 296 

assigned based on DRAM mining the category of flanking viral protein clusters from the VIRSorter 297 
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_affi-contigs.tab file (Figure 6a). A gene is given an auxiliary score of 1 if there is at least one 298 

hallmark gene on both the left and right flanks, indicating the gene is likely viral. An auxiliary score 299 

of 2 is assigned when the gene has a viral hallmark gene on one flank and a viral-like gene on the 300 

other flank. An auxiliary score of 3 is assigned to genes that have a viral-like gene on both flanks. An 301 

auxiliary score of 4 is given to genes with either a viral-like or hallmark gene on one flank and no 302 

viral-like or hallmark gene on the other flank, indicating the possibility that the non-viral supported 303 

flank could be the beginning of microbial genome content and thus not an AMG. An auxiliary score 304 

of 4 is also given to genes that are part of a stretch with three or more adjacent genes with non-viral 305 

metabolic function. An auxiliary score of 5 is given to genes on contigs with no viral-like or hallmark 306 

genes and genes on the end of contigs. 307 

Next, various flags that highlight the metabolic potential of a gene and/or qualify the 308 

confidence in a gene being viral are assigned (Figure 6b). The “viral” flag (V) is assigned when the 309 

gene has been associated with a VOGDB identifier with the replication or structure categories. The 310 

“metabolism” flag (M) is assigned if the gene has been assigned an identifier present in DRAM’s 311 

Distillate. The “known AMG” flag (K) is assigned when the gene has been annotated with a database 312 

identifier representing a function from a previously identified AMG in the literature. The 313 

“experimentally verified” flag (E) is similar to the (K) flag, but the AMG has to be an experimentally 314 

verified AMG in a previous study, meaning it has been shown in a host to provide a specific function 315 

(e.g. psbA photosystem II gene for photosynthesis (62, 63)). Both the (K) and (E) flags are called 316 

based on an expert-curated AMG database composed of 257 and 12 genes, respectively. The 317 

“attachment” flag (A) is given when the gene, while metabolic has been given identifiers associated 318 

with viral host attachment and entry (as is the case with many CAZymes). The viral “peptidase” flag 319 

(P) is similar to the (A) flag but when the gene is given identifiers that are peptidases previously 320 

identified as potentially-viral using, not AMGs, based on the distribution of peptidase families 321 

provided in the MEROPS (43) database.  The “near the end of the contig” flag (F) is given when the 322 

gene is within 5,000 bases of the end of a contig, signifying that the user should confirm viral genes 323 

surrounding the putative AMG, as there is less gene content to surrounding the putative AMG. The 324 

“transposon” flag (T) is given when the gene is on a contig that contains a transposon, highlighting to 325 
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the user that this contig requires further inspection as it may be a non-viral mobile genetic element 326 

(64, 65) (Figure 6b). The “B” flag is given to genes within a set of three or more consecutive genes 327 

assigned a metabolism flag “M”, signifying that this gene may not be an AMG and instead located in 328 

a stretch of non-viral genes (Figure 6b). Specifics of the logic behind the AMG flags (e.g. (P), (A), 329 

(B) flags) is detailed in the Supplementary Text and Supplementary File 4. In summary, DRAM-v 330 

flags automate expert curation of AMGs, with the intention to provide the user with known AMG 331 

reference sequences, indicate to the user viral genes that should not be considered AMGs, and cue the 332 

user to genes that require additional curation before reporting. 333 

The distillation of DRAM-v annotations is based on the detection of potential AMGs. By 334 

default, a gene is considered a potential AMG if the auxiliary score is less than 4, the gene has been 335 

assigned an (M) flag, and has not been assigned as a peptidase or CAZyme involved in viral entry or 336 

metabolism (P or A flag), as a homolog to a VOGDB identifier associated with viral replication or 337 

structure  (V flag), or  the gene is not in a row of 3  metabolic genes (B flag) (Figure 6). The reported 338 

flags and minimum auxiliary score threshold can be changed by the user. All flags and scores were 339 

defined using experimentally validated AMGs (Supplementary File 4), and then were validated 340 

using a set of published AMGs from soil.  341 

DRAM-v annotations are distilled to create a vMAG summary (DRAM-v Distillate) and a 342 

potential AMG summary (DRAM-v Product). The vMAG summary is a table with each contig and 343 

information about the contigs satisfying many MIUViG requirements19. Other information is also 344 

included in this output such as the VirSorter17 category of the virus, if the virus was circular, if the 345 

virus is a prophage, the number of genes in the virus, the number of strand switches along the contig, 346 

if a transposase is present on the contig, and the number of potential AMGs. We also summarize the 347 

potential AMGs giving the metabolic information associated with each AMG as found in Distillate. 348 

DRAM-v’s Product further summarizes the potential AMGs showing all vMAGs, the number of 349 

potential AMGs in each contig, and a heatmap of all possible Distillate categories to which each 350 

AMG (category 1-3, default) belongs. 351 

 352 

Retrieval and Processing of Emerson et al. Data 353 
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1,907 vMAGs reported by Emerson et al. (14) were retrieved from DDBJ/ENA/GenBank via 354 

the accession number QGNH00000000. These contigs were processed with VirSorter 1.0.3 (61) in 355 

virome decontamination mode to obtain categories and viral gene information necessary for DRAM-356 

v. Viral sequences with viral categories 1 and 2 and prophage categories 4 and 5 retained (1,867 357 

contigs). DRAM-v was then run with default parameters, and the Distillate table is reported in 358 

Supplementary File 6 and the Product is in Supplementary File 7. 359 

 360 

Processing of HMP Viral Sequences 361 

Viral sequences were identified in the assembled HMP metagenomes using VirSorter 1.0.3 362 

(61) hosted on the CyVerse discovery environment. VirSorter (61) was run with default parameters 363 

using the ‘virome’ database and viral sequences with viral categories 1 and 2 and prophage categories 364 

4 and 5 were retained (2,932 contigs). Resulting viral sequences were annotated using DRAM-v.py 365 

annotate (min_contig_size flag set to 10,000) and summarized using DRAM-v.py distill 366 

(Supplementary File 8-9). All viral genomes used or recovered in this study are reported in 367 

Supplementary File 10.  368 

 369 

Generation of AMG Sequence Similarity Network 370 

To identify the AMGs shared across systems, sequence similarity networks were generated 371 

via the EFI-EST webtool (66) using putative AMGs recovered from soil (n=547) and stool (n=2,094) 372 

metagenomes via DRAM-v as the input. A minimum sequence length of 100 amino acids, no 373 

maximum length, and 80% amino acid identity was specified from initial edge values. Representative 374 

networks were generated and visualized in Cytoscape 3.7.2 (67). Edge scores were further refined and 375 

Distillate categories and system information were overlaid in Cytoscape (67). Figure 6 contains the 376 

resulting network filtered to clusters >5.   377 

 378 

Virus host matching in a single HMP sample 379 

For the single binned HMP sample (SRS019068), viral sequences were matched to host 380 

MAGs using the CRISPR Recognition Tool (68) plugin (version 1.2) in Geneious. To identify 381 
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matches between viral protospacers and host CRISPR–Cas array spacers, we used BLASTn with an e-382 

value cutoff of 1 × 10−5. All matches were manually confirmed by aligning sequences in Geneious, 383 

with zero mismatches allowed. There was one virus (scaffold_938) that had a CRISPR host match and 384 

a putative AMG (genes HMP1_viralSeqs_398_VIRSorter_scaffold_938-cat_2_58-385 

HMP1_viralSeqs_398_VIRSorter_scaffold_938-cat_2_59), with details provided in the 386 

Supplementary Text, section Integration of DRAM and DRAM-v to begin to infer virocell metabolism. 387 

 388 

Adding metabolisms to DRAM 389 

 DRAM is a community resource, as such we welcome metabolism experts to help us build 390 

and refine metabolisms analyzed in DRAM. Visit this (link) to fill out the google form, your 391 

metabolism will be vetted, and you receive an email from our team.  392 

 393 

RESULTS 394 

Enhanced annotation and distillation of genome attributes with DRAM 395 

Like the process of distillation, DRAM generates and summarizes gene annotations across 396 

genomes into three levels of refinement: (1) Raw, (2) Distillate, and (3) Product (Figure 1). The Raw 397 

is a synthesized annotation of all genes in a dataset across multiple databases, the Distillate assigns 398 

many of these genes to specific functional categories, and the Product visualizes the presence of key 399 

functional genes across genomes. Through this high-throughput distillation process, DRAM (Figure 400 

1a), and the companion program DRAM-v (Figure 1b), annotates and organizes high volumes of 401 

microbial and viral genomic data, enabling users to discern metabolically relevant information from 402 

large amounts of assembled microbial and viral community sequencing information.  403 

The Raw annotations provided by DRAM are a comprehensive inventory of multiple 404 

annotations from many databases. These Raw annotations are where most other annotators stop, with 405 

analyses in the DRAM Distillate and Product uniquely designed to expedite the functional and 406 

structural trait profiling within and across genomes (Figure 2a). In the Distillate, the DRAM Raw 407 

data is parsed into five categories and subsequent subcategories (Figure 2b). With the goal to 408 

standardize the reporting of genome quality across publications, the minimum suggested standards for 409 
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reporting MAGs (25) are also summarized in the Distillate. Specifically, DRAM compiles the 410 

quantification of tRNAs, rRNAs, and genome size metrics (e.g. length, number of contigs) with user 411 

provided estimates of genome completeness, contamination (51), and genome taxonomy (24). This 412 

summation is synthesized into a quality metric for each genome that includes a rank of high, medium, 413 

or low quality based on established standards (25). 414 

 The Product is the most refined level of DRAM, and uses functional marker genes to infer 415 

broad metabolic descriptors of a genome. This summary of genes enables classification of the 416 

respiratory or fermentative metabolisms encoded in a genome, while also accounting for selected 417 

carbon metabolic pathways (Figure 3, Supplementary File 3). Moreover, completion estimates are 418 

calculated for electron transport chain complexes or pathways (Figure 3). We note these completion 419 

metrics are based on the percentage of genes recovered for unique subunits or physiological steps 420 

(Figure 3a), which is in contrast to analyses from other tools that recognize all non-redundant routes 421 

as equivalent (Supplementary Figure 2). This provides more accurate pathway completion estimates, 422 

as certain pathways are often underestimated when less physiologically refined approaches are used. 423 

The Product provides an interactive HTML heatmap that visualizes the presence of specific genes, 424 

including the gene identifiers which allow the user to link data across all DRAM levels (in the Raw 425 

and Distillate).  426 

 We recognize that DRAM is a first step in the annotation process, and thus the DRAM 427 

outputs are designed to make it convenient to export content at the gene, pathway, or genome level 428 

(e.g. FASTA or GenBank files). To help the user navigate the DRAM levels, we constructed a 429 

genome metabolic cartoon based on DRAM annotations of an isolate genome (Dechloromonas 430 

aromatica strain RCB) (Figure 2a, Supplementary File 4). We use this figure to illustrate where 431 

different genetic attributes reside in DRAM. Notably, DRAM has the ability to distill microbial 432 

metabolism for thousands of individual genomes simultaneously, which allows users to easily 433 

compare and identify patterns of functional partitioning within an entire microbial community. 434 

 435 

DRAM recovers more annotations compared to other assembly-based annotation software 436 
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We first compared the overall features of DRAM to common genome annotators or viewers 437 

(Supplementary Table 1), finding that published annotation systems often lack the ability to scale 438 

across thousands of genomes, visually summarize metabolism, or annotate virally encoded metabolic 439 

functions. Next to benchmark DRAM performance, we compared the DRAM database content and 440 

performance criteria to results from published MAG annotation tools (Prokka (30), DFAST (31), and 441 

MetaErg (32)), which are three commonly used pipelines for genome annotation with multi-genome 442 

files (Supplementary Table 1). To maximize annotation recovery, DRAM incorporates 7 different 443 

databases that provide functionally disparate, physiologically informative data (e.g. MEROPS (43), 444 

dbCAN2 (48)), rather than overlapping content (e.g. HAMAP, UniProt) (Figure 2c). Beyond just 445 

using more databases for annotation, DRAM also provides expert curation of this content (e.g. 446 

dbCAN2, MEROPS) (see Supplementary Information, Interpreting results from DRAM and DRAM-447 

v). Moreover, for the UniProt database (69) shared across these annotators, DRAM uses the most 448 

comprehensive version (Uniref90 (42)) compared to other annotators that use a proprietarily culled 449 

version of the database resulting in 132- to 3,412-fold less entries. Summing all the databases used for 450 

each annotator, DRAM has millions more entries (from 21M to 104M) (Figure 2d, Supplementary 451 

File 4).  452 

We next evaluated the annotation recovery of DRAM relative to published annotation tools 453 

by quantifying the number of annotated, hypothetical, and unannotated genes assigned by each tool 454 

(30–32) from an in silico soil community we created (15 phylogenetically and metabolically distinct 455 

genomes from isolate and uncultivated Archaea and Bacteria) (Supplementary File 4).  Compared to 456 

the other annotators, for the in silico soil community, DRAM recovered 44,911 annotated genes, 457 

which was on par with MetaErg (32) (42,478 genes), but 1.4-1.8 times more than Prokka (30) and 458 

DFAST (31) (25,466 and 31,258 genes, respectively). Compared to other tools, DRAM better 459 

differentiates homologs with a hypothetical annotation from unannotated genes (see Methods, Figure 460 

2e-g, Supplementary Figure 3). This increased identification of hypothetical annotations allows 461 

users to find homologs conserved in other organisms, providing hypotheses for gene function that can 462 

be further validated by experimental characterization (70).  The reduction of unannotated genes is 463 

most notable for the Patescibacteria genome, a MAG from an uncultivated lineage in our in silico soil 464 
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community. For this genome, DRAM produced 825 annotated, 362 hypothetical, and 7 unannotated 465 

genes, compared to 802 annotated, 11 hypothetical, and 342 unannotated genes output from the next 466 

closest annotator (32). Beyond increased annotation and hypothetical yield, DRAM also produced 467 

more meaningful annotations that can be readily incorporated into models, with DRAM recovering 468 

more EC numbers for this Patescibacteria genome compared to other tools (Supplementary File 4). 469 

To further test the performance of DRAM, we annotated the E. coli K-12 MG1655 genome using 470 

filtered versions of the KEGG Genes database to quantify precision and recall. Performance metrics 471 

were highest when the genes from the E. coli K-12 MG1655 genome were present in the database, but 472 

even when the entire genus of Escherichia was removed, performance remained high, with precision 473 

falling by 0.1% and recall falling by 0.8%, suggesting DRAM with default settings is relatively 474 

conservative and sacrifices recall for high levels of precision (Supplementary Figure 3).  475 

We note, however, that this increased annotation quality and synthesis comes at expense of 476 

run time and potentially overall memory usage (depending on database selection), with genomes from 477 

the in silico soil community having an average complete annotation time (Raw, Distillate, Product) of 478 

15 minutes per genome (Supplementary Figure 3).  Unlike run time, memory usage is only minorly 479 

impacted by the number of genes analyzed (~1 MB per genome, (Supplementary Figure 3)), but is 480 

impacted by the database selection (especially UniRef90 (42)). For example, DRAM memory use 481 

doubled from running the same samples with (~200 GB) and without (~100 GB) UniRef90 (42). 482 

Thus, if memory usage or access to databases is limited, we provide the option to modify the DRAM 483 

databases (see Methods).  In summary, DRAM is scalable to thousands of genomes albeit run time is 484 

impacted by number of genes analyzed. To demonstrate the scalability of DRAM, we annotated one 485 

of the largest MAG datasets from a single ecosystem (21), highlighting the ability of DRAM to 486 

summarize the metabolic potential of thousands of genomes at once 487 

(https://zenodo.org/record/3777237). Beyond annotation recovery and resolution, DRAM has more 488 

downstream functionalities and synthesis than other tools (Supplementary Table 1). 489 

 490 

DRAM profiles diverse metabolisms in an in silico soil community 491 
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To evaluate the capacity of DRAM to rapidly profile different metabolic regimes across 492 

genomes, we created an in silico soil community made up of phylogenetically distinct and 493 

metabolically versatile organisms (Supplementary File 4). For 13 of the 14 genomes with a 494 

cultivated representative in our in silico soil community, the findings from DRAM were consistent 495 

with prior broad-scale physiological classifications for each isolate (Figure 3). For a single genome in 496 

our dataset, a known ammonia oxidizing isolate that has not been reported to perform methane 497 

oxidation (Nitrosoarcheaum koreense MY1), DRAM reports the presence of a functional gene for 498 

methanotrophy (pmoA). We include this example to highlight how the well-documented sequence 499 

similarity between amoA for ammonia oxidation and pmoA for methane oxidation causes difficulty in 500 

reconciling proper function through homology based queries used in all multi-genome annotators 501 

today including Prokka, DFAST, and MetaErg (30–32, 71, 72). Consequently, DRAM is only a first 502 

step in identifying key functional genes, as subsequent non-homology based methods (e.g. 503 

phylogenetic analyses, protein modeling (73), gene synteny, Bayesian inference framework (74, 75)) 504 

or physiological or biochemical characterization are often required to validate findings from any 505 

homology-based annotator.  506 

Within organisms reported to have the potential to respire (11/15 genomes), all were correctly 507 

identified in the DRAM Product by the presence of a complete NADH or NADPH dehydrogenase 508 

complex and a complete TCA pathway in the genome (Figure 3ab). The DRAM Product profiles the 509 

capacity to respire oxygen (e.g. Pseudomonas putida), nitrate (Dechloromonas aromatica), sulfate 510 

(Desulfovibrio desulfuricans), and others (Figure 3c). Additionally, photorespiration and 511 

methanogenesis are summarized in the Distillate and Product, exemplified by the photosynthetic 512 

Synechocystis sp. PCC 6803 and methanogenic Methanosarcina acetivorans (Figure 3c). Using two 513 

model genomes that encode the capacity for obligate fermentation (3, 76), one cultivated (Candidatus 514 

Prometheoarchaeum syntrophicum strain MK-D1) and one MAG from an uncultivated 515 

Patescibacteria (24) (also Parcubacteria genome GW2011_GWF2 (3)), we show that DRAM 516 

reasonably profiles carbon use and fermentation products. The value of using enzyme complex 517 

completion to reduce misannotations is demonstrated (Supplementary Figure 2), as the partial 518 

completion (3 genes) of the multi-subunit NADH dehydrogenase is not due to a complete complex I, 519 
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but rather the presence of a trimeric hydrogenase common in obligate fermenters (3, 77). These 520 

hydrogenases are further annotated in detail by their type and function in the Distillate. In summary, 521 

the Product accurately assigns broad biogeochemical roles to this mock soil community, 522 

demonstrating the breadth of metabolisms that can be visualized and rapidly analyzed across multiple 523 

genomes from isolate and metagenome sources.  524 

 525 

DRAM uncovers personalized, substrate specific carbohydrate utilization profiles in the human gut 526 

While mock communities like our prior soil community are commonly used for software 527 

performance criteria, they typically represent simpler communities than what is found in real-world 528 

samples. To demonstrate the feasibility of DRAM to apply to contemporary, complex, authentic 529 

samples, we analyzed the metabolic features of 44 HMP unbinned fecal metagenome samples. These 530 

samples had an average of 6.1 Gbp (with a maximum of 17 Gbp) per sample, consistent with or 531 

exceeding the average sequencing depth per sample reported in recent human gut studies in the last 532 

two years (56, 78, 79) (Supplementary File 4). These HMP metagenomes were selected from a 533 

landmark study that used COG defined categories to describe the microbially encoded traits in a 534 

cohort of healthy humans (56). Using broad process level categories (e.g. central carbohydrate 535 

metabolism), it was concluded in this publication (56) that microbial functional gene profiles were 536 

consistent across humans. DRAM is also able to evaluate gene content at broad categories, showing 537 

that CAZymes and peptidases are most prevalent in these datasets (Figure 4a).  From this data, we 538 

hypothesized that increasing the resolution to the substrate level would reveal more personalized 539 

phenotypic patterns that were previously undefined in this cohort. To test this hypothesis for 540 

carbohydrate use, we used DRAM to classify bacterial and archaeal glycoside hydrolases, 541 

polysaccharide lyases, and enzymes with auxiliary activities related to carbohydrate-active enzymes 542 

(CAZymes (48)). DRAM then parsed this information, producing a microbial substrate utilization 543 

profile for the gut microbial community in each human. We note, that this assignment is not 544 

unambiguous as some CAZymes are promiscuous for multiple substrates (79), a functionality DRAM 545 

accounts for in the Distillate and Product (Supplementary Figure 2, Supplementary File 4). 546 

Consistent with our hypothesis, carbohydrate substrate use profiles predicted by DRAM were more 547 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.29.177501doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.177501
http://creativecommons.org/licenses/by-nc-nd/4.0/


variable than bulk level DRAM Distillate annotations across humans (Supplementary Figure 4). 548 

This more resolved annotation showed a 3-fold difference in CAZyme gene relative abundance across 549 

the cohort (Figure 4bc). In summary, using more resolved annotations will likely reveal that the gut 550 

gene content is not as stable as historically perceived (56). Specifically, CAZymes with the capacity 551 

to degrade hemicellulose components had the greatest mean abundance (3x107 GPM), pectin was the 552 

most variable (7-fold change), and mucin had the most variable detection (only in 50% of cohort) 553 

(Figure 4d). Interestingly, the dominance of hemicellulose and the variability of pectin is reflective of 554 

the western diet, which is high in the consumption of cereal grains and not uniform in the 555 

consumption of fruit and vegetables (80–82). Our findings illustrate how DRAM substrate inventories 556 

could uncover linkages between gut microbiota gene content and host lifestyle or host genetics. 557 

Similarly, shifts in carbohydrate use patterns have been shown to be predictive of human health and 558 

disease (83, 84), thus this added level of annotation refinement provided by DRAM in an easy-to-559 

understand format makes it possible to resolve biochemical transformations occluded by bulk level 560 

annotations. 561 

 562 

MAG profiles for utilization of specific organic carbon and nitrogen substrates generated by DRAM 563 

 To show that DRAM can not only profile the function of an entire microbial community, but 564 

can also parse metabolisms to specific genomes within this community, we assembled the largest (29 565 

Gbp) publicly available Human Microbiome Project (HMP) fecal metagenome. We recovered 135 566 

MAGs, of which 75 were medium quality and 1 was high-quality as assessed by DRAM. The 567 

taxonomic assignment of these MAGs according to DRAM taxonomy summary from GTDB (24) was 568 

predominantly Firmicutes and Bacteroidota, with rare members affiliated with the Proteobacteria and 569 

Desulfobacterota (Supplementary Figure 7). The taxonomic identity of the MAGs we recovered 570 

using this binning approach (previously the sample was unbinned),  are similar to the membership 571 

reported in the healthy, western human gut (85), indicating this sample can serve as a reasonable 572 

representative to demonstrate DRAMs annotation capabilities of gut MAGs.  573 

 In the mammalian gut, beyond the digestion of carbohydrates with CAZymes, 574 

microorganisms also play critical roles in processing dietary protein into amino acids via peptidases 575 
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(86) and producing short chain fatty acids for host energy as a fermentation byproduct (87). From 576 

these 76 HMP genomes, DRAM identified 7,197 and 5,471 CAZymes and peptidases, respectively 577 

(Figure 5, Supplementary Figure 5, 8, Supplementary Files 1-2). The capacity to degrade chitin 578 

was the most widely encoded (81%) across the genomes, a capacity reported to increase during gut 579 

inflammation (88). We also show that the capacity to cleave glutamate from proteinaceous 580 

compounds is the most commonly detected in our genomes, likely reflecting high concentrations of 581 

this amino acid in the gut (89). The substrate resolution provided by DRAM will enable more detailed 582 

analysis of microbial community inputs and outputs relevant to understanding the gut microbiomes 583 

impact on human health and disease (9, 84, 90, 91).  584 

Given the importance of SCFA metabolism in the gut ecosystem, we show DRAMs capability 585 

to profile these metabolisms. It is no surprise that this capability is widely encoded by 586 

phylogenetically distinct genomes. Among the 76 HMP MAGs, the potential for acetate production 587 

was the most widely encoded, while propionate production potential was the least prevalent. The gene 588 

relative abundance reflects reported metabolite concentrations in the mouse and human gut (87, 92). 589 

Collectively, these results show how outputs of DRAM can be used to establish hypotheses for 590 

carbohydrate utilization trophic networks, where metabolic interactions can be considered 591 

simultaneously, rather than oversimplified into pairwise interactions (93). Moreover, by making it 592 

easier to assay substrate and energy regimes, it is our hope that DRAM can assist in development of 593 

designer cultivation strategies and the generation of synthetic communities for desired degradation 594 

outcomes.  595 

 596 

DRAM-v, a companion tool to systematically automate identification of viral auxiliary metabolic 597 

genes  598 

Viruses are most often thought of as agents of lysis – impacting microbial community 599 

dynamics and resource landscapes. However, viruses can also impact microbial functioning and 600 

biogeochemical cycling via encoding and expressing Auxiliary Metabolic Genes (AMGs) (94) that 601 

directly alter host metabolisms during infection. To date, AMG annotation from viral isolates (62, 95) 602 

and metagenomic files (14, 15) has not scaled with the rate of viral genome discovery. Further, there 603 
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are now numerous examples of metabolic genes in “viromes” that are more likely to be microbial 604 

DNA contamination (39), which is even a greater concern in metagenomic files where the resultant 605 

viruses can include prophages whose ends are challenging to delineate (61, 96). To automate the 606 

identification of putative AMGs, we sought to complement DRAM with a companion tool, DRAM-v, 607 

that (i) leverages DRAM’s functional annotation capabilities to describe metabolic genes, and (ii) 608 

applies a systematic scoring metric to assess the confidence for whether those metabolic genes were 609 

within bona fide viral contigs and not microbial (Figure 1b, Supplementary Figure 6). To 610 

demonstrate how these scoring metrics and ranks come together in our AMG annotation, see the 611 

example output files (Supplementary Files 6-9).  612 

For each gene on a viral contig that DRAM-v has annotated as metabolic, we developed an 613 

auxiliary score, from 1 to 5 (1 being most confident), to denote the likelihood that the gene belongs to 614 

a viral genome rather than a degraded prophage region or a poorly defined viral genome boundary 615 

(Figure 6a). Because viral resources remain underdeveloped and several ambiguities can remain for 616 

some ‘hits’ even after these auxiliary scores are applied, DRAM-v uses flags to help the user quickly 617 

see where possible AMGs have been experimentally verified or previously reported. DRAM-v also 618 

flags users to the probability of a gene being involved in viral benefit rather than enhancing host 619 

metabolic function (e.g. certain peptidases and CAZymes are used for viral host cell entry (Figure 620 

6b). DRAM-v, like DRAM, also groups viral genes into functional categories, provides quality 621 

reporting standards for viral contigs (27), and visualizes the predicted high- and medium-ranked 622 

AMGs (auxiliary scores 1-3) in the Product. DRAM-v and the AMG scoring system established here 623 

make it possible to rapidly identify viruses capable of augmenting host metabolism.   624 

To benchmark the precision of DRAM-v, we reannotated viral contigs from a soil 625 

metagenomic file that our team had manually curated for glycoside hydrolase AMGs in a previous 626 

study (14). In that study, we reported 14 possible glycoside hydrolase AMGs from over 66,000 627 

predicted viral proteins on viral contigs >10 kbp (14). Reannotating this file using DRAM-v, we 628 

recovered 100% of these AMGs according to DRAM’s defined metrics. Moreover, we recovered an 629 

additional 453 genes that were ranked with high (auxiliary scores 1, 2) or medium (auxiliary score 3) 630 

AMG confidence (Supplementary File 6-7). Because DRAM expands the metabolic repertoire and 631 
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the speed at which metabolisms could be inventoried across hundreds of viral contigs, we were able to 632 

increase the AMG recovery by 32-fold. Our DRAM-v findings show that soil viral genomes encode 633 

AMGs that could play roles in host energy generation (2%), carbohydrate utilization (27%), and 634 

organic nitrogen transformation (13%) (Figure 6c). Moreover, 42% of the putative AMGs had been 635 

previously reported in other files.  636 

 637 

DRAM-v uncovers conserved and unique AMGs across ecosystems 638 

We harnessed the automation and functional categorization power of DRAM-v to understand 639 

how viral AMG diversity varies across ecosystems. To that end, we recovered 2,932 viral contigs, 640 

containing 1,595 putative AMGs from the 44 HMP metagenome samples discussed above (Figure 4, 641 

Supplementary Files 8-10) and compared these AMGs to the 467 putative AMGs that we recovered 642 

from the soil metagenomes discussed above (Figure 6c). The majority of the HMP AMGs had 643 

putative roles in energy generation (7%), carbon utilization (10%), and organic nitrogen 644 

transformations (30%). The human gut is nitrogen limited (97), which may explain why putative 645 

AMGs for organic nitrogen transformations were the most well represented (Figure 6c). Specifically, 646 

the majority of the organic nitrogen AMGs we identified in the gut were likely involved in 647 

augmenting microbial host amino acid synthesis and degradation capacities. AMGs for tyrosine (EC 648 

1.3.1.12, prephenate dehydrogenase) and lysine (EC 4.1.1.20, diaminopimelate decarboxylase) 649 

synthesis were of particular interest as they were uniquely encoded in specific phage genomes and had 650 

high quality auxiliary scores (Supplementary File 8). These AMGs could be valuable for their 651 

microbial hosts, given that increased gene copy number in these pathways was shown to enhance 652 

microbial growth (98). Moreover, synthesis of these branched and aromatic amino acids is costly for 653 

the microbial host and these compounds are absorbed by gut epithelial cells (99), thus there are clear 654 

advantages for hosts that can rapidly synthesize these scarce resources.    655 

 To directly compare soil and gut viral AMGs, AMG counts were normalized to the number 656 

of viral contigs in each file. Overall, stool viruses encoded more putative AMGs compared to soil 657 

viruses. These soil AMGs were mostly associated with carbon utilization, while gut AMGs were more 658 

linked to organic nitrogen transformations (Figure 6c). To identify shared and unique AMGs across 659 
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these two files, we built an amino acid sequence similarity network of all the recovered AMGs 660 

(Figure 6d). Notably, the majority of putative soil AMGs, particularly CAZymes, do not share 661 

sequence similarity with gut-derived AMGs (Figure 6e). AMGs shared between soil and human stool 662 

are related to organic nitrogen or energy metabolisms.  663 

AMGs within energy categories were of particular interest, as these genes may increase the 664 

copy number resulting in greater activity, or expand the metabolic repertoire of the host (38). For 665 

example, sulfate adenylyl transferase identified in soils is a key gene for sulfur assimilation and 666 

dissimilation, while pyruvate phosphate dikinase, a gene to promote the metabolism of this key 667 

central carbon metabolite, was shared by both soil and human gut ecosystems (Figure 6d). The 668 

conservation and uniqueness of these AMGs across ecosystems hints at more universal and 669 

environmentally tuned roles that virus may play in modulating their host and surrounding 670 

environment (Supplementary Figure 9-10, Supplementary File 4). We note that while DRAM is an 671 

important first step in the rapid and uniform detection of viral AMGs, contextualizing the 672 

physiological and biochemical role of AMGs requires additional analyses (14). 673 

 674 

DISCUSSION  675 

DRAM provides a scalable and automated method for annotating features of assembled 676 

microbial and viral genomic content from cultivated or environmental sequencing efforts. This 677 

unparalleled annotation tool makes inferring metabolism from genomic content accessible. Here we 678 

show that DRAM is a critical, first step in annotating functional traits encoded by the microbiome 679 

(100). To facilitate further recommended curation, DRAM provides outputs in formats interoperable 680 

with downstream phylogenetic approaches (101), membrane localization analyses (102), visualization 681 

by genome browsers (103), and protein-structural modelling (73). DRAM annotations, like all 682 

homology-based genome annotation tools commonly used today, are reliant on the content in 683 

underlying databases. We show here that the variety of databases used in DRAM contributes to 684 

enhanced annotation recovery. Moreover, looking to the future, we built the DRAM platform to be 685 

robust, and with the capability to ingest non-homology based annotations as well.  686 
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Beyond the content in databases, it is our hope that DRAM can ease the dissemination of 687 

emerging metabolisms and biochemistry, offering a community resource to rapidly assimilate these 688 

new or refined annotations (Methods), which currently have very limited, and not rapid, incorporation 689 

into wide-spread annotation databases (104, 105). We are committed to keeping DRAM open to 690 

support community principles, with addition of new metabolisms fueled by community expertise. We 691 

call on any interested experts to join this endeavor and enable its continual development (link). 692 

Collectively, DRAM and DRAM-v deliver an infrastructure that enables rapid descriptions of 693 

microbial and viral contributions to ecosystem scale processes.  694 

 695 

AVAILABILITY 696 

All DRAM source code is available at https://github.com/shafferm/DRAM under the GPL3 license. 697 

The DRAM user help is available at https://github.com/shafferm/DRAM/wiki. DRAM can also be 698 

installed via pip. 699 

 700 

ACCESSION NUMBERS 701 

The E. coli genome was retrieved from KEGG. The set of 15 soil genomes were retrieved from NCBI. 702 

The Emerson et al. viral contigs were retrieved from GenBank, accession number QGNH00000000. 703 

The 44 gut metagenome samples in Figure 4 were retrieved from HMP database. The single binned 704 

HMP gut metagenome sample used in Figure 5 was retrieved from NCBI using accession number 705 

SRS019068, and the respective bins generated here deposited at NCBI. All accession numbers for 706 

MAGS and reads are detailed in Supplementary File 4.  707 
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TABLE AND FIGURES LEGENDS 1018 

 1019 

Figure 1: Conceptual overview and workflow of the assembly-based software, DRAM (Distilled 1020 

and Refined Annotation of Metabolism). DRAM (green, a) profiles microbial metabolism from 1021 

genomic sequences, while DRAM-v profiles the Auxiliary Metabolic Genes (AMGs) (orange, b) in 1022 

vMAGs. DRAM’s input data files are denoted by circles in grey, while analysis and output files are 1023 

denoted by rectangles in green for MAGs or orange for AMGs. DRAM’s outputs (from the Raw, 1024 

Distillate, and Product) provide three levels of annotation density and metabolic parsing. More details 1025 

on the output files and specific operation can be found in the Supplementary Text or at 1026 

https://github.com/shafferm/DRAM/wiki.  User defined taxonomy (e.g. GTDB-Tk (24)) and 1027 

completion estimates (e.g. CheckM (51))  for MAGs and isolate genomes can be input into DRAM.  1028 

  1029 
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 1030 

Figure 2: DRAM provides multiple levels of metabolic and structural information. a Genome 1031 

cartoon of Dechloromonas aromatica RCB demonstrates the usability of DRAM to understand the 1032 

potential metabolism of a genome. Putative enzymes are colored by location of information in 1033 

DRAM’s outputs: Raw (black), Distillate (grey), and Product (white). Gene numbers, identifiers, or 1034 

abbreviations are colored according to metabolic categories outlined in (b) and detailed in 1035 

Supplementary File 4. Genes with an asterisk had an unidentified localization by PSORTb (102). b 1036 

Flow chart shows the metabolisms from DRAM’s Distillate. Distillate provides five major categories 1037 

of metabolism: energy, transporters, miscellaneous (MISC), carbon utilization, and organic nitrogen. 1038 

Each major category contains subcategories, with outlines denoting location of information within 1039 
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Distillate and Product. c Heatmap shows presence (colored) and absence (white) of databases used in 1040 

comparable annotators to DRAM. Annotators are colored consistently in a-e, with Prokka (30) in 1041 

black, DFAST (31) in light grey, MetaErg (32) in dark grey, and DRAM in red. Barcharts in d-g show 1042 

database size (d), as well as number of annotated (e), hypotheticals (f), and unannotated (g) genes 1043 

assigned by each annotator when analyzing in silico soil community. See methods for definitions of 1044 

annotated, hypothetical, and unannotated genes, relative to each annotator.  1045 
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 1047 

Figure 3: DRAM Product summarizes and visualizes ecosystem-relevant metabolisms across 1048 

input genomes. Heatmaps in (a-c) were automatically generated by DRAM from the Product shown 1049 

in Supplementary File 3. Sections of the heatmap are ordered to highlight information available in 1050 

Product, including pathway completion (a), subunit completion (b), and presence/absence (c) data. 1051 

Boxes colored by presence/absence in (c) represent 1-2 genes necessary to carry out a particular 1052 

process. Hovering over the heatmap cells in the Product’s HTML outputs interactively reports the 1053 
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calculated percent completion among other information. Dechloromonas aromatica RCB is 1054 

represented by a genome cartoon in Figure 2a and is highlighted in blue on the heatmaps.  1055 
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 1057 

Figure 4: Substrate-resolved survey of 1058 

carbon metabolism in the human gut. Bar 1059 

charts represent normalized gene abundance 1060 

or proportion of reads that mapped to each 1061 

gene or gene category reported as relative 1062 

abundance (%) or Gene Per Million (GPM). 1063 

Reads came from previously (56) published 1064 

healthy human stool metagenomes that were 1065 

assembled and then annotated in DRAM (a-1066 

c). (a) Using a subset of 44 randomly 1067 

selected metagenomes from (56), we profiled 1068 

and annotated gene abundance patterns 1069 

colored by DRAM’s Distillate categories and 1070 

subcategories. (b) Using the same 1071 

metagenomes and sample order as in (b), 1072 

summary of CAZymes to broader substrate 1073 

categories reveals differential abundance 1074 

patterns across the cohort. (c) Data from (b) is graphed by carbohydrate substrates. Boxplots represent 1075 

the median and one quartile deviation of CAZyme abundance, with each point representing a single 1076 

person in the 44-member cohort. Putative substrates are ordered by class, then by mean abundance.  1077 
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 1079 

Figure 5: DRAM provides a metabolic inventory of microbial traits important in the human 1080 

gut. Seventy-six medium and high-quality MAGs were reconstructed from a single HMP fecal 1081 

metagenome. Taxonomy was assigned using GTDB-Tk (24), with colored boxes noting class and 1082 

name noting genus. The presence (green) or absence (blue) of genes capable of catalyzing 1083 

carbohydrate degradation or contributing to short chain fatty acid metabolism are reported in the 1084 
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heatmap. We note that the directionality of some of these SCFA conversions is difficult to infer from 1085 

gene sequence alone. Genomes are clustered by gene presence and hemicellulose substrates are shown 1086 

in red text.  1087 

  1088 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.29.177501doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.177501
http://creativecommons.org/licenses/by-nc-nd/4.0/


 1089 

Figure 6: DRAM-v profiles putative AMGs in viral sequences. Description of DRAM-v’s rules for 1090 

auxiliary (a) and flag (b) assignments. Auxiliary metabolic scores shown in (a) are determined by the 1091 

location of a putative AMG on the contig relative to other viral hallmark or viral-like genes 1092 

(determined by VirSorter (61)), with all scores being reported in the Distillate. Scores highlighted in 1093 

red are considered high (1-2) or medium (3) confidence and thus the putative AMGs are also 1094 

represented in the Product. Flags shown in (b) highlight important details about each putative AMG 1095 

of which the user should be aware, all being reported in the Raw. Putative AMGs with a confidence 1096 

score 1-3 and a metabolic flag (flag “M”; highlighted in red) are included in the Distillate and 1097 

Product, unless flags in blue are reported. Flags in black do not decide the inclusion of a putative 1098 

AMG. (c) Bar graph displaying putative AMGs recovered by DRAM-v from metagenomic files (soil 1099 

metagenomes (14), left; 44 fecal metagenomes from the HMP (56), right) and categorized by the 1100 
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Distillate metabolic category: Carbon Utilization, Energy, Organic Nitrogen, Transporters and MISC. 1101 

Putative AMGs labeled as “multiple” refer to genes that occur in multiple DRAM Distillate categories 1102 

(e.g. transporters for organic nitrogen) and AMGs that are labeled as previously reported are in the 1103 

viral AMG database compiled here. (d) Sequence similarity network (66) of all AMGs with an 1104 

auxiliary score of 1-3 recovered from soil and human stool metagenomes. Nodes are connected by an 1105 

edge (line) if the pairwise amino acid sequence identity is >80% (see Methods). Only clusters of >5 1106 

members are shown. Nodes are colored by the Distillate category defined in (c), while node shape 1107 

denotes soil or human stool. Back highlighting denotes if the cluster contains both soil and human 1108 

stool nodes (shared), soil nodes only, or human stool nodes only. Specific AMGs highlighted in the 1109 

text are shown. (e) Stacked bar chart shows the number of singletons (AMGs that do not align by at 1110 

least 80% to another recovered AMG) in each sample type, with bars colored by DRAM-v’s Distillate 1111 

category.  1112 
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