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Abstract

Live cell imaging allows direct observation and monitoring of phenotypes that are difficult to infer
from transcriptomics. However, existing methods for linking microscopy and single-cell RNA-seq
(scRNA-seq) have limited scalability. Here, we describe an upgraded version of Single Cell
Optical Phenotyping and Expression (SCOPE-seg2) for combining single-cell imaging and
expression profiling, with substantial improvements in throughput, molecular capture efficiency,
linking accuracy, and compatibility with standard microscopy instrumentation. We introduce
improved optically decodable mRNA capture beads and implement a more scalable and
simplified optical decoding process. We demonstrate the utility of SCOPE-seq2 for fluorescence,
morphological, and expression profiling of individual primary cells from a human glioblastoma
(GBM) surgical sample, revealing relationships between simple imaging features and cellular

identity, particularly among malignantly transformed tumor cells.
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Introduction

High-throughput single-cell RNA-sequencing (scRNA-seq) has revolutionized molecular profiling
of complex tissues and cell state transitions like differentiation (Bose et al., 2015; Klein et al.,
2015; Macosko et al., 2015). However, many cellular phenotypes are difficult to infer from the
transcriptome. Furthermore, scRNA-seq is fundamentally an end-point measurement, and does
not enable real-time monitoring of individual cells. However, cellular imaging by microscopy can
be applied to live cells for direct measurement and monitoring of numerous cellular phenotypes
such as protein abundance and localization, cellular morphology, electrical activity, active
transport, and enzymatic and metabolic activity, taking advantage of a vast number of fluorescent
probes that have been developed over decades. Therefore, the ability to link cellular phenotypes
measured by microscopy directly to the gene expression profiles of individual cells would allow a

more comprehensive description of cellular states (Lane et al., 2017; Yuan et al., 2018b).

Previous methods that link optical measurements with scRNA-seq have technical limitations.
Early scRNA-seq methods used fluorescence activate cell sorting (FACS) to deposit cells into
individual wells of a standard multi-well plate and prepare cDNA libraries from each captured cell
one at-a-time (Hochgerner et al., 2017; Lane et al., 2017; Shalek et al., 2013). While these
methods can link cytometric and even imaging data to scRNA-seq, they lack scalability. Recent
advances have combined microfluidics and barcoded mRNA capture beads to facilitate pooled
library preparation from thousands of individual cells, which reduces costs and increases
scalability, but these methods lack the ability to link cellular images to sequencing data (Bose et
al., 2015; Klein et al., 2015; Macosko et al., 2015). Single Cell Optical Phenotyping and
Expression (SCOPE-seq) is a scalable method for linking scRNA-seq with live cell imaging in
which individual cells are captured in microwells, imaged, and then co-encapsulated with
barcoded mRNA capture beads for pooled scRNA-seq (Yuan et al., 2018b). In addition to the
cell-identifying barcode that is incorporated into the cDNA of each cell, the SCOPE-seq beads

included a second barcode sequence that could be optically decoded by cyclic hybridization of
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fluorescently-labeled oligonucleotide probes. While successful, this approach had limited
throughput, mRNA capture efficiency, and required a complex procedure for linking the two

barcodes.

Here, we present SCOPE-seq2, which significantly improves the throughput, mRNA capture
efficiency, and accuracy of the previously published SCOPE-seq technology(Yuan et al., 2018b)
and uses a simpler and more scalable approach for optical decoding. We thoroughly
characterize the performance of SCOPE-seq2, which enables applications in primary cells
dissociated from tissues. Finally, we demonstrate SCOPE-seq2 profiing of a human
glioblastoma (GBM) surgical specimen and identify relationships between basic imaging features

and the lineage identities of transformed tumor cells.

Results

SCOPE-seq2 Methodology

After dissociating cell cultures or tissues into single cell suspensions and staining the cells with
selected fluorescent dyes, we processed cells using the SCOPE-seq2 workflow (Figure 1A).
SCOPE-seq2 consists of five steps: (1) capture individual cells in microfabricated microwells by
limiting dilution; (2) measure the desired phenotypes of each cell by imaging; (3) capture mRNA
and synthesize barcoded cDNA from each cell on an improved optically decodable bead; (4)
optically decode cell barcode sequences for linking imaging and sequencing by sequential probe
hybridization; (5) amplify and sequence barcoded cDNA to obtain an expression profile for each

cell (Figure 1A).

In conventional scRNA-seq, the barcoded mRNA capture beads are randomly co-encapsulated
with individual cells in the microwells, so we do not know which barcode is incorporated into the
cDNA library of each imaged cell. However, in SCOPE-seq we can identify the barcode

sequence on the bead in each microwell by hybridizing fluorescently-labeled oligonucleotide
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probes and imaging the beads with a fluorescence microscope (optical decoding). In our original
report, the cell-identifying barcode that was incorporated into the cDNA library of each cell and
the optically decodable barcode sequence were distinct, and we had to prepare a separate
sequencing library to link the two sequences. In addition, only a small subset of oligonucleotides
on each bead actually contained the optically decodable barcode sequence, limiting the
fluorescence signal and therefore imaging speed and throughput. For SCOPE-seq2, we devised
an improved optically decodable bead where the sequencing and optically decodable barcode
sequences that identify a given cell are the same (Figure 1B). The cell barcode contains two
8-nucleotide sequences, each of which is a member of a pool of 96 sequences (Table EV 1). An
8-nucleotide random sequence is dispersed into three parts and serves as both a unique
molecular identifier (UMI) and a spacer between other functional sequences on the bead. The
oligonucleotides on all beads share two common sequences - a universal PCR adapter on the
5-end and oligo(dT) on the 3-end for mRNA capture and cDNA amplification. The
oligonucleotides are synthesized by split-pool, solid-phase synthesis (Figure 1C). Beads are
pooled together to add common sequences and random UMIs, and are split into 96 reactions to
add one of the 96 cell barcode sequences. After two rounds of split-pooling, a total of 962 =
9,216 cell barcodes are generated. To generate cDNA from cells, we co-encapsulate the cells
with these beads, lyse the cells, capture cell mMRNAs on beads by hybridization, and reverse

transcribe the captured mRNAs.

To link cellular imaging with scRNA-seq from the same cell, we identify the cell barcode
sequence on each bead in the microwell array by sequential fluorescent probe hybridization. Our
strategy is related to methods of decoding DNA microarrays and highly multiplexed fluorescence
in situ hybridization (FISH) (Chen et al., 2015; Gunderson et al., 2004; Lubeck et al., 2014; Shah
et al., 2016). We use a temporal barcoding strategy in which each 8-nt cell barcode sequence
corresponds to a unique, pre-defined 8-bit binary code (Table EV2, Table EV3). Each bit of the

binary code can be read out by one cycle of probe hybridization, where the presence or absence
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of a hybridized probe indicates one or zero, respectively. The two parts of the cell barcode can be
decoded simultaneously using two sets of differently colored fluorescent probes. To realize this
decoding scheme, we generate a pool of fluorescent probes for each cycle of hybridization. All
oligos whose sequences are complimentary to the cell barcode sequence marked ‘1’ in the
corresponding binary code are pooled and conjugated with fluorophores, Cy5 or Cy3. Distinct
fluorophore-conjugated probes against the two 8-nucleotide sequences comprising the cell
barcode are then pooled together to form the final probe pool (Figure 1D). Thus, we are able to
decode all possible cell barcode sequences by eight cycles of two-color probe hybridization. This
approach is more scalable than the original SCOPE-seq strategy and gives a brighter signal on
the bead surface because every primer contains an optically decodable barcode. Thus,

SCOPE-seq2 beads are compatible with higher speed imaging, leading to higher throughput.

Finally, we further increased the cell indexing capacity to 962 x 10 = 92,160 by dividing the
microwells into ten regions as previously described (Yuan et al., 2018b). We extract the beads
from each region of the device separately for library construction and indexing, and then

sequence the cDNA libraries from each region in a single pool.

Cell barcode optical decoding analysis for SCOPE-seq2

To decode the cell barcode sequences from imaging, a ‘cycle-by-cycle’ method was used in
SCOPE-seq (Gunderson et al., 2004; Yuan et al., 2018b), which calls the binary code for each
bead based on the bimodal distribution of intensity values across all beads in each hybridization
cycle. This method works well when the bead fluorescence intensity values of the ‘one’ state
population are well separated from that of the ‘zero’ state population. However, because the
beads exhibit auto-fluorescence at shorter wavelengths, the two populations are not as well

separated in the Cy3 emission channel as in the Cy5 emission channel (Figure EV1).

To accurately decode the cell barcode sequences from imaging, we utilized a modified
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‘bead-by-bead’ fluorescence intensity analysis strategy, which has been used to decode
randomly ordered DNA microarrays (Gunderson et al., 2004). We determine the cell barcode
sequences of each bead by sorting the eight intensity values in each emission channel in
ascending order, calculating the relative intensity change between each pair of adjacent values,
establishing a threshold based on the largest relative intensity change to assign a binary code,
and mapping the binary code to the actual cell barcode sequence (Figure 2A). For those
unmappable binary codes, we repeatedly re-assign the binary code based on the next largest
relative intensity change until the code can be successfully mapped to a cell barcode sequence.
Since this method decodes each bead independently, we expected that it would give better

results when the ‘one’ and ‘zero’ intensity states were poorly separated.

In SCOPE-seq2, we only used 96 out of 28 = 256 possible binary codes, and more importantly,
the number of sequenced cell barcodes (< 10,000 cells per experiment) is much fewer than the
total 92,160 possible cell barcodes. Therefore, an error in optical decoding would mainly result in
assigning the bead an unmappable binary code, or a cell barcode that does not appear in the
sequencing data. Both kinds of misassignments further lead to the failure of linking imaging and
sequencing data sets rather than incorrect linking. Thus, a more accurate optical decoding
method would give a higher fraction of linked imaging and sequencing data. To compare the
‘bead-by-bead’ method with the ‘cycle-by-cycle’ method, we tested these two methods on two
datasets. In dataset PJ070 and PJ069, we linked 46% and 57% scRNA-seq profiles with cell
images using the ‘bead-by-bead’ method compared to only 24% and 37% using the
‘cycle-by-cycle’ method. In both datasets, we observed at least a 20% increase in the fraction of
linked cells with the ‘bead-by-bead’ method (Figure 2B), which suggests that the ‘bead-by-bead’

method is more suitable for cell barcode optical decoding in SCOPE-seq2.

Validation of SCOPE-seq2

To demonstrate the performance of SCOPE-seq2, in terms of throughput, molecular capture


https://doi.org/10.1101/2020.06.28.176404
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.28.176404; this version posted June 29, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

efficiency, and accuracy of linking imaging and sequencing data, we performed an experiment
with mixed human (U87) and mouse (3T3) cells labeled with two differently colored live staining
dyes. We loaded the mixed cells into the microwells at a relatively high density and obtained
9,061 transcriptional profiles from a single experiment. At saturating sequencing depth, we
detected on average 10,245 mRNA transcripts from 3,548 genes per cell (Figure 3A, 3B), which
is a nearly three-fold improvement over the original report of SCOPE-seq (Yuan et al., 2018b). To
evaluate the linking accuracy of SCOPE-seq2, we identified the species of each cell from the
color of the fluorescent label and from the species-specific alignment rate in RNA-seq (a cell
with >90% of reads aligning to the transcriptome of a given species was considered
species-specific), and examined the consistency of the two cell species calls. In the 4,145
scRNA-seq profiles that we successfully linked with imaging data, we obtained a class-balanced
linking accuracy of 99.2% (0.8% error rate), with 98.8% of human cells and 99.6% of mouse cells
agreeing with the species calls from two-color imaging (Figure 3C). This represents a nearly
five-fold improvement in accuracy over the original report of SCOPE-seq (3.9% error rate). We
are also able to confidently remove multiplets in SCOPE-seq2 by manually identifying
mixed-species and single-species multiplets from the two-color cell images (Figure EV2). By
comparing image-based and sequencing-based mixed-species multiplets, we obtained a
multiplet detection sensitivity of 68.8% and a specificity of 97.0%. A large portion of
transcriptional profiles with low purity have been removed (Figure 3D). Since we confirmed that
SCOPE-seq2 has high linking accuracy, we suspected that the mixed-species multiplets
detected by sequencing but not imaging were because of the imperfections in scRNA-seq data,

which served as our ground truth.

SCOPE-seq?2 allows paired analysis of image-based and transcriptional phenotypes in individual
cells isolated from human tissues
To demonstrate that we can collect paired optical and transcriptional phenotypes from human

tissue samples using SCOPE-seq2, we performed an experiment on cells dissociated from a
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human GBM surgical sample and labeled with calcein AM, a fluorgenic dye that reports esterase
activity. We obtained 1,954 scRNA-seq profiles and linked 1,110 of them to live cell images. We
manually removed cell multiplets based on imaging. Calcein AM is commonly used as a live stain,
and so we also removed outlier cells with low fluorescence intensity (see Methods). Malignantly
transformed GBM cells often resemble non-neoplastic neural cell types in the adult brain, and so
simple marker-based analysis is insufficient to confirm malignant status. To address this, we
identified a large population of cells with amplification of chromosome 7 and loss of chromosome
10, two commonly co-occurring aneuploidies that are pervasive in GBM (Phillips et al., 2006;
Yuan et al., 2018a), based on the gene expression (Figure EV3). We then computed a
low-dimensional representation of the data using single-cell hierarchical Poisson factorization
(scHPF) to identify key gene signatures that define the population (Levitin et al.,, 2019) and
visualized their distributions across cells using Uniform Manifold Approximation and Projection
(UMAP). We recovered all of the major cell types that have been previously reported from
scRNA-seq of GBM (Neftel et al., 2019; Yuan et al., 2018a) including myeloid cells, endothelial
cells, pericytes, malignant-transformed astrocyte-like cells, mesenchymal-like cells,
oligodendrocyte-progenitor-like/neuroblast-progenitor-like cells (OPC/NPC) and cycling cells
(Figure 4A, 4B). We also measured 16 imaging features from cell images and grouped those
features into three categories, cell size, shape and calcein AM intensity using unsupervised
hierarchical clustering (Figure 4C) to create three imaging-based meta-features. By linking the
meta-features to scRNA-seq cell types, we found that myeloid cells (clusters 2 and 3) are
relatively round and small with high esterase activity; endothelial cells are large and less round
as expected, and have intermediate esterase activity; and pericytes have intermediate shape,

size and intensity (Figure 4D).

SCOPE-seq?2 identifies relationships between imaging features and lineage identities of
malignantly transformed GBM cells

Malignant cells in GBM can resemble multiple neural/glial lineages or exhibit a mesenchymal
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phenotype (Neftel et al., 2019; Patel et al., 2014; Verhaak et al., 2010; Yuan et al., 2018a).
Because malignant GBM cells are known to be highly plastic, we decided to use a diffusion map
to visualize their lineage relationships (Haghverdi et al., 2015). We selected malignant cells
based on aneuploidy as described above (Figure 5A), reduced the dimensionality of malignant
cell gene expression by scHPF, and visualized the factorized data with a diffusion map, which
revealed two major branches (Figure 5B). One branch consists of astrocyte-like cells and
terminates with mesenchymal-like cells, while the other branch consists of OPC/NPC cells and
cycling cells. This is consistent with our previous studies showing that astrocyte-like and
mesenchymal glioma cells are significantly more quiescent than OPC-like glioma cells (Yuan et

al., 2018a).

To explore that how imaging features of malignant cells are related to their transcriptional
phenotypes, we asked whether unsupervised clustering of cellular imaging features would
correspond to the two major branches observed in the diffusion map from scRNA-seq (Figure
5B). We clustered malignant cells by the three imaging meta-features described above using
hierarchical clustering, and identified two major cellular imaging clusters (Figure 5C). By plotting
two imaging clusters on the diffusion map embedding of the malignant cells, we found that cells
with round shape, low intensity and small size (imaging cluster 0) are enriched in the
OPC/NPC-cycling branch, and cells with rough shape, high intensity and large size (imaging
cluster 1) are enriched in the astrocyte-mesenchymal branch (Figure 5D, 5E). This finding was
further supported by differential expression analysis comparing expression profiles of cells in the
two imaging clusters. As expected, markers of OPC/NPCs (MAP2, OLIG1, DLL3) and cycling
cells (CDK®6) are significantly enriched (FDR<0.05, Mann—Whitney U-test) in imaging cluster 0,
while markers of astrocyte-like cells (APOE, GFAP, GJA1, AQP4, ALDOC) and mesenchymal
cells (CHI3L1, CD44, CHI3L2, CCL2) are significantly enriched (FDR<0.05, Mann-Whitney U-
test) in imaging cluster 1 (Figure 5F, Table EV4). Therefore, there is a clear correspondence

between the major gene expression and basic imaging features for the malignantly transformed
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cells in this tumor.

Discussion

SCOPE-seq enables a direct link between live cell imaging, cytometry, and scRNA-seq with the
scalability and low cost of conventional microfluidic and pooled barcoding approaches. With the
upgraded SCOPE-seq2, we achieve enhancements in almost every aspect of performance. In
the first experiment described here, we profiled >9,000 cells in a single device, linking >4,100 of
them to imaging data. This represents a ~4-fold improvement in throughput. We also achieved a
~3-fold improvement in molecular capture efficiency for scRNA-seq and a ~5-fold decrease in the
error rate for linking imaging and sequence data. Importantly, our improved optical barcode
design greatly simplified the automation and microscopy required for SCOPE-seg2. In the
original SCOPE-seq, a small fraction of the oligonucleotides on each bead contained optical
barcodes, which limited the fluorescence intensity of the beads and required the use of
laser-based optics, a relatively sensitive camera, and a small field-of-view. Because of the
relatively low signal and autofluorescence of the beads, we were restricted to red fluorophores
and could only image in a single channel, which limited our multiplexing capacity and decoding
speed. In SCOPE-seq2, every oligonucleotide on the bead contains an optical barcode
(~100-fold more oligonucleotides) and so a fast, automated microscope with a large field-of-view
camera and simple, LED illumination are sufficient and allow two-color optical decoding. These

advances make the technology more accessible and contribute to the improved performance.

SCOPE-seq2 compares favorably to alternative approaches for linking imaging or cytometric
data to scRNA-seq. Some of the earliest techniques combined index sorting by FACS with
scRNA-seq to link cytometric data with expression profiles on a cell-by-cell basis (Shalek et al.,
2013). However, this is relatively expensive, does not allow imaging, and is limited by the
scalability of library construction in 96- or 384-well plates. The Fluidigm C1, an early commercial

platform for scRNA-seq, which could initially profile tens of cells and later scaled to hundreds of
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cells, directly linked live cell imaging and scRNA-seq (Lane et al., 2017). However, it was also
limited by relatively high operating costs and other performance issues such as multiplet capture
(Macosko et al., 2015). The icell8 from Takara/Wafergen can link low resolution imaging for
cytometry to scRNA-seq, but throughput is limited to ~1,000-1,800 cells per sample according to
product literature. An upgraded version (Hochgerner et al., 2017) combines the Wafergen
technology with FACS and achieves higher throughput (~7,500 cells per sample), but the
imaging resolution appears limited to cytometric applications, likely because the chamber
volumes are >1,000-fold larger than in SCOPE-seq2 (hundreds of nanoliters vs. ~100 picoliters).
In addition, achieving a high loading density requires FACS, which can be problematic for some
cell types. Relatedly, costs per cell were cited as ~$1 including 100,000 reads, whereas
SCOPE-seq2 is <$0.40 at 100,000 reads due to substantially reduced library preparation costs.
Finally, Zhang et al recently reported microfluidic technology for linking cytometric analysis with
scRNA-seq using a combination of droplet microfluidics and microfabricated chambers (Zhang et
al., 2020). The authors claim that their approach is more scalable than SCOPE-seq, but only
demonstrated a throughput of ~1,200 cells which is fewer than both the initial report of
SCOPE-seq and the upgraded version described here. Furthermore, it is unclear whether this

approach is able to link live cell imaging with scRNA-seq as opposed to just flow cytometric data.

The improvements to SCOPE-seq2 have enabled applications in primary cells isolated from
complex tissues, which are typically more challenging to profile by scRNA-seq than cell lines
grown in culture. In parallel with this study, we used SCOPE-seq2 to reveal cell size dynamics
during adult neurogenesis in the mouse brain and identify the precise stage in neuronal
differentiation where morphological changes associated with cell cycle entry occur(Mizrak et al.,
2020). In the same experiment, we also used SCOPE-seq2 to identify the cellular targets of
NOTUM, an extracellular WNT antagonist that plays a crucial regulatory role in adult
neurogenesis. Here, we profiled a human GBM surgical specimen using SCOPE-seq2. The

scRNA-seq data from this experiment recapitulated all of the major cellular populations and
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states that have been associated with GBM in previous reports. In a focused analysis of the
malignantly transformed tumor cells, we discovered a strong correlation between certain
morphological features of individual cells and their cellular identities. Consistent with earlier
studies, the transformed cells appear to differentiate along two major branches — one that
includes OPC-like, NPC-like and proliferative glioma cells, and a second that includes
astrocyte-like and mesenchymal-like glioma cells that are more quiescent. Interestingly, these
two major branches are also distinguishable by the imaging features of the dissociated cells. The
astrocyte-/mesenchymal-like cells are larger, less round, and exhibit higher esterase activity.
Differential expression analysis based on imaging classification alone separated canonical
markers of these two populations, demonstrating that significant information about cellular
identity is encoded in simple imaging observables. To summarize, SCOPE-seq2 is a versatile
and high-performance technology for directly linking live cell imaging and scRNA-seq that scales
to thousands of cells per sample and enables applications in both cell lines and primary cells

dissociated from complex tissues.

Methods and protocols

Bead construction

8-nt cell barcode sequences (Table EV1) were designed using an R package ‘DNAbarcodes’ with
following criteria: sequences were at least 3 Levenshtein distance from each other; sequences
that contain homopolymers longer than 2 nucleotides, with GC content <40% or >60%, or
perfectly self-complementary sequences were removed. Full-length mRNA capture oligo
sequences (Figure 1B) are then generated with these candidate 8-nt cell barcode sequencesin a
combinatorial fashion. Self-complimentary score of each candidate 8-nt cell barcode sequence,
defined as the length of the longest continuous stretch of self-complimentary sequence among
all full-length mRNA capture oligo sequences that contain this 8-nt cell barcode sequence, is

computed. Every A-T paring and C-G paring is scored with a length of 2/3 and 1, respectively, to
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account for the stronger binding affinity of C-G paring compared to A-T paring. The 8-nt cell

barcode sequences with the bottom 50% self-complimentary scores are selected.

Bead synthesis was performed by Chemgenes Corp (Wilmington, MA). Toyopearl HW-65S resin
(~30 micron mean particle diameter) (Tosoh Biosciences, cat# 19815, Tosoh Bioscience) with a
flexible-chain linker was used as a solid support for reverse-direction phosphoramidite synthesis.
Beads were synthesized with sequence ‘TTTTTTTAAGCAGTGGTATCAACGCAGAGTACNN'’ at
50 micromole scale, split into 96 parts to add one of the S cell barcode sequences, pooled
together to add ‘NN’, split into 96 parts to add one of the Q cell barcode sequences, and pooled

together to add 'NNNN’ and 30 T’s.

Labeling and Generation of Optical Decoding Probe Pools

192 oligonucleotides that are complementary to the 8-nt cell barcodes (Table EV2) with 3’-amino
modifications were synthesized and purified (Sigma-Aldrich), then resuspended in water at 200
MM. To generate probe mixtures corresponding to each bit in the binary code, oligonucleotides
labeled with ‘1’ were taken (Figure 1D, Table EV3), pooled and resuspended in 0.1 M sodium
tetraborate (pH 8.5) coupling buffer at a final concentration of 22 uM with 0.6 ug/pL reactive
fluorophore. Sulfo-CY5 NHS ester (Lumiprobe, cat# 21320) was coupled with S oligo pools, and
Sulfo-CY3 NHS ester (Lumiprobe, cat# 23320) was coupled with Q oligo pools overnight at room
temperature. Excess fluorophores were removed and oligos were recovered by ethanol
precipitation (80% Ethanol, 0.06 M NaCl, 6 pyg/mL glycogen). The concentration of probes was
quantified using a NanoDrop (Thermo Scientific). Probe pools were diluted such that each probe
had a final concentration of ~20 nM, and the two, distinctly labeled probe pools were mixed

together for each binary code bit prior to use.

SCOPE-seq2

® Preparation
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B A microwell array device was filled with wash buffer (20 mM Tris-HCI pH7.9, 50 mM
NaCl, 0.1% Tween-20) and stored in a humid chamber one day before use.

B Cell culture or tissue samples were dissociated into single cell suspension (see section,
GBM tissue processing), and stained with desired fluorescent dyes.

® Cell loading

B The pre-filled microwell array device was flushed with Tris-buffered saline (TBS).

B The single cell suspension was pipetted into the microwell array device.

B After 3-minute, un-trapped cells were then flushed out with TBS.

® Cellular imaging

B The cell-loaded microwell device was scanned using an automated fluorescence
microscope (Nikon, Eclipse Ti2) under the bright-field and fluorescence channels.
Bright-field images were taken using an RGB light source (Lumencor, Lida) and
wide-field 10x 0.3 NA objective (Nikon, cat# MRH00101). Fluorescence images were
taken using LED light source (Lumencor, spectra x), Quad band filter set (Chroma, cat#
89402), wide-field 10x 0.3 NA objective (Nikon, caté MRH00101) with 470 nm (GFP
channel) and 555 nm (TRITC channel) excitation for Calcein AM and Calcein
red-orange, respectively.

® scRNA-seq (steps performed on microwell device)

B Beads (Chemgenes) were pipetted into the microwell device, and untrapped beads
were flushed out with 1x TBS. The microwell device containing the cells and the beads
was connected to the computer-controlled reagent and temperature delivery system as
previously described (Yuan and Sims, 2016).

B Lysis buffer (1% 2-Mercaptoethanol (Fisher Scientific, cat# BP176-100), 99% Buffer
TCL (Qiagen, cat# 1031576) and perfluorinated oil (Sigma-Aldrich, cat# F3556-25ML)
was flowed into the device followed by an incubation at 50°C for 20 minutes to promote
cell lysis, and then at 25°C for 90 minutes for mRNA capture. Wash buffer supplemented

with RNase inhibitor (0.02 U/uL SUPERaselN (Thermo Fisher Scientific, cat#é AM2696)
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in wash buffer) was flushed through the device to unseal the microwells and remove any
uncaptured mRNA molecules.

B Reverse transcription mixture (1X Maxima RT buffer, 1 mM dNTPs, 1 U/uL
SUPERaselIN, 2.5 pyM template switch oligo, 10 U/uL Maxima H Minus reverse
transcriptase (Thermo Fisher Scientific, cat# EP0752), 0.1% Tween-20) was flowed into
the device followed by an incubation at 25°C for 30 minutes and then at 42°C for 90
minutes. Wash buffer supplemented with RNase inhibitor was flushed through the
device. The device was disconnected from the automated reagent delivery system.

B Exonuclease | reaction mixture (1X Exo-l buffer, 1 U/uL Exo-l (New England Biolabs,
cat# M0293L)) was pipetted into the device followed by an incubation at 37°C for 45
minutes. TE/TW buffer (10 mM Tris pH 8.0, 1 mM EDTA, 0.01% Tween-20) was flushed
through the device.

® Bead optical demultiplexing

B The microwell device containing the beads with cDNAs was connected to a
computer-controlled reagent delivery and scanning system (see section, automated
reagent delivery system).

B Melting buffer (150 mM NaOH) was infused into the device and incubated for 10 minutes.
The device was then washed with imaging buffer (2xSSC, 0.1% Tween-20). An
automated imaging program scanned the device in the bright-field, Cy3 and Cy5
emission channels. Fluorescence images were acquired using an LED light source
(Lumencor, spectra x), Quad band filter set (Chroma, cat# 89402), wide-field 10x
objective (Nikon, cat# MRH00101) and 555 nm and 649 nm excitation for Cy3 and Cy5,
respectively. Hybridization solution (imaging buffer supplemented with probe pool A,
described below) was infused into the device and incubated for 10 minutes. The device
was then washed with imaging buffer. An automated imaging program scanned the
device in the bright-field, Cy3 and Cy5 emission channels.

B Repeat the previous step 7 times, with probe pool B to H.
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B Melting buffer was infused into the device and incubated for 10 minutes. The device was
then washed with imaging buffer, and then disconnected from the automated reagent
delivery system.

® scRNA-seq (steps performed off microwell device)

B Perfluorinated oil was pipetted into the device to seal the microwells. The device was
then cut into 10 regions. Beads from each region were extracted separated by soaking
each small piece of bead-containing PDMS in 100% ethanol, vortexing, water bath
sonication, and centrifugation in a 1.7 mL microcentrifuge tube. PDMS was then
removed by tweezer.

B Beads extracted from each region were processed in separate reactions for the
downstream library construction. Beads were washed sequentially with TE/SDS buffer
(10 mM Tris-HCI, 1 mM EDTA, 0.5% SDS), TE/TW buffer, and nuclease-free water.
cDNA amplification was performed in 50 yL PCR solution (1X Hifi Hot Start Ready mix
(Kapa Biosystems, cat# KK2601), 1 yM SMRTpcr primer (Table EV5)), with 14
amplification cycles (95°C 3 min, 4 cycles of (98°C 20s, 65°C 45 s, 72°C 3 min), 10
cycles of (98°C 20s, 67°C 20s, 72°C 3min), 72°C 5 min) on a thermocycler. PCR
product from each piece was pooled and purified using SPRI paramagnetic bead
(Beckman, cat# A63881) with a bead-to-sample volume ratio of 0.6:1.

m Purified cDNAs were then tagmented and amplified using the Nextera kit for in vitro
transposition (lllumina, FC-131-1024). 0.8 ng cDNA was used as input per reaction. A
unique i7 index primer was used to barcode the libraries obtained from each piece of the
device. The i5 index primer was replaced by a universal P5 primer (Table EV5) for the
selective amplification of 5’ end of cDNA (corresponding to the 3’ end of mRNA). Two
rounds of SPRI paramagnetic bead-based purification with a bead-to-sample volume
ratio of 0.6:1 and 1:1 were performed sequentially on the Nextera PCR product to obtain
sequencing-ready libraries.

B The resulting single-cell RNA-Seq libraries were pooled and 20% PhiX library (lllumina,
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FC-131-1024) was spiked-in before sequencing on an lllumina NextSeq 500 with a
26-cycle read 1, 58 cycle read 2, and 8 cycle index read. A custom sequencing primer

(Table EV5) was used for read 1.

Automated reagent delivery system

An automated reagent delivery and scanning system is designed for automated optical decoding.
In this system, fixed positive pressure (~1 psi) stabilized by a pressure regular (SMC Pneumatics,
cat# AW20-N02-Z-A) is used to drive fluid flow. The microwell device is constantly pressurized
during incubation steps, which prevents evaporation and bubble formation. Two 10-channel
rotary selector valves (IDEX Health & Science, cat# MLP778-605) are connected in parallel to
toggle between 14 reagent channels. A three-way solenoid valve (Cole-Parmer, cat#
EW-01540-11), located at the downstream of the microwell device, is used as an on/off switch for
reagent flow. The multi-channel selector valves are controlled by a USB digital I/O device
(National Instruments, cat# SCB-68A). The three-way solenoid valve is controlled by the same
USB digital 1/0O device, but through a homemade transistor-switch circuit. The system is

controlled by imaging software (Nikon, NIS-Elements).

Bead optical decoding analysis

Eight cycles of probe hybridizations (A to H) were used for cell barcode optical decoding. For
each cycle, the device was imaged in the bright-field, Cy3 and Cy5 emission channels. Beads
were first identified in the bright-field image by the ImagedJ Particle Analyzer plugin, and the
positions of the beads in the bright-field image were recorded. Then the average fluorescence
intensities of each bead in the Cy3 and Cy5 images were measured. Beads identified in cycles B
to H were mapped to the nearest bead in cycle A. Thus, we obtained a probe hybridization matrix
with n beads x 16 intensity values (8 for Cy3 and 8 for Cy5). To call cell barcodes from the
imaging data, we tested two methods:

® Cycle-by-cycle
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The cycle-by-cycle method was modified from the stage-by-stage decoding method (Gunderson
et al., 2004)
B For each cycle and each fluorescent channel;
B Get N log transformed average intensity values;
B Compute an intensity histogram using 50 bins;
B Determine the median intensity value M, and identify the highest bin with intensity
values smaller than M as B; and the highest bin with intensity values greater than M
as B,;
B [dentify the lowest bin B; with intensity values between B, and B,;
B Get the medium intensity value I of bin Bs, then assign 0 to intensity values smaller
than I and assign 1 to intensity values greater than 1.
B Refer to the binary code table. If the code assigned is in the table, then return the
corresponding cell barcode sequence.
® Bead-by-bead
The bead-by-bead method was modified from the core-by-core decoding method (Gunderson et
al., 2004)
B For each bead and each fluorescence channel;
B Get eight average fluorescence intensity values x4, x,, ..., xg;
B Let y;,y, ..,y5 be the sorted values;
B let f, = Wne1 —Y)/n, n=1,2,...,7 be the relative intensity fold change between
neighbor sorted values;

B Determine the largest fold change N = argmax(f,), then assign 0 to values to
n

V1, Va2, -, Yy and assign 1 to values yyi1,Yn+2, - Vsi

B Refer to the binary code table. If the code assigned in step 4 is in the table, then return
the corresponding cell barcode sequence;
B Otherwise, remove fy from list {f,,} and repeat step 4, 5, until a corresponding cell

barcode sequence is returned or the list {f,,} is empty.
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Live cell imaging analysis

Images were analyzed using the ImagedJ software as previously described (Yuan et al., 2018b).
® |dentify microwells with cells

Microwell outlines were identified as objects from the bright-field image using a local threshold,
and then average fluorescence intensities of microwells in the live staining images were
measured. Average intensity values followed a bimodal distribution, with the higher intensity
population corresponding to microwells that contain cells.

® Cell optical phenotype extraction

Only microwells with cells were selected and each cell was analyzed individually within the
smallest bounding square of the corresponding microwell. The cell was identified in the live
staining fluorescence image using the auto threshold and particle analyzer. Microwells with
multiple cells identified by the software were excluded. Sixteen imaging features were measured
for each cell in the fluorescence image: area, mean intensity, standard deviation of intensity,
minimum intensity, maximum intensity, median intensity, perimeter, width, height, major axis,

minor axis, circularity, Feret’s diameter, minimum Feret’'s diameter, roundness, and solidity.

SCOPE-seq2 scRNA-seq analysis

To analyze the scRNA-seq data from SCOPE-seq2, we first extracted the cell-identifying barcode
and UMI from Read 1 based on the designed oligonucleotide sequence, NN(8-nt Cell Barcode
S)NN(8-nt Cell Barcode Q)NNNN. The 192 8-nt cell barcode sequences have a Hamming
distance of at least three for all sequence pairs. Therefore, we corrected one substitution error in
the cell barcode sequences. We only keep reads with a complete cell barcode. Next, we align the
reads from Read 2 to a merged human/mouse genome (GRCh38 for human and GRCm38 for
mouse) with merged GENCODE transcriptome annotations (GENCODE v.24 for both species)
using STAR v.2.7.0 aligner (Dobin et al., 2013) after removing 3’ poly(A) tails (indicated by tracts

of >7 A’s) and fragments with fewer than 24 nucleotides after poly(A) tail removal. Only reads that
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were uniquely mapped to exons on the annotated strand were included for the downstream
analysis. Reads with the same cell barcode, UMI (after one substitution error correction) and
gene mapping were considered to originate from the same cDNA molecule and collapsed. Finally,

we used this information to generate a molecular count matrix.

SCOPE-seq?2 linking cell imaging and sequencing data

To link cell barcodes identified from imaging to cell imaging phenotypes, bright-field images of
the device obtained during optical decoding were mapped to images of the live cell imaging
based on the upper-left and the bottom right microwells. Cells were then registered to the
nearest mapped bead within a microwell radius. To link cell imaging phenotypes to expression
profiles, we only considered cell barcodes with registered cells, then we found the exact and

unique mapping of the cell barcodes from imaging and sequencing.

Cell culture

Human U87 and mouse 3T3 cells are cultured in Dulbecco’s modified eagle medium (DMEM,
Life Technologies, cat# 11965118) supplemented with 10% fetal bovine serum (FBS, Life
Technologies, cat# 16000044) at 37°C and 5% carbon dioxide.

GBM tissue processing

A single-cell suspension was obtained from excess material collected during surgical resection of
a WHO Grade IV GBM. The patient was anonymous and the specimen was de-identified. The
tissue was mechanically dissociated following a 30-minute incubation with papain at 37°C in
Hank’s balanced salt solution. Cells were re-suspended in TBS after centrifugation at 100xg
followed by selective lysis of red blood cells with ammonium chloride for 15 minutes at room
temperature. Finally, cells were washed with TBS and quantified using a Countess

(ThermoFisher).
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Human and mouse cells mixed experiment

® Human U87 cells were stained with Calcein AM (ThermoFisher Scientific, cat# C3100MP)
and mouse 3T3 cells were stained with Calcein red-orange (ThermoFisher Scientific, cat#
C34851) in culture medium at 37°C for 10 minutes. The stained cells are then dissociated
into single cell suspension by 0.25% Trypsin-EDTA (Life Technologies, cat# 25200-072) and
re-suspended in TBS buffer. The U87 and 3T3 cells were mixed at 1:1 ratio with a final total
cell concentration 1000 cells/pl.

® The mixed cell suspension was processed and sequenced with SCOPE-seq2 workflow
described above (PJ070).

® |Images and sequencing data were processed with the SCOPE-seq2 pipeline described

above.

Sub-sampling analysis

To analyze the saturation behavior and sensitivity of scRNA-seq data from SCOPE-seq2 (Figure
3A), we randomly sub-sampled the aligned reads and re-processed them with the scRNA-seq
analysis pipeline described above. We then calculated two statistics, molecules per cell and

genes per cell, based on the cells that were discovered from the total reads.

Accuracy of linking imaging and scRNA-seq data

The linking accuracy was defined as the concordance between the scRNA-seq and
imaging-based species calling for cell barcodes associated with a single species. In scRNA-seq
data, cells with >90% of reads aligning uniquely to a given species were considered to
correspond to a single species. In the imaging data, we determined the imaging-based species
call based on cell live staining colors. Cells with Calcein AM intensity > 724 were called as
imaging-based human cells; Cells with Calcein red-orange intensity > 2,048 were called as
imaging-based mouse cells. Intensity thresholds were determined as the intensity of the shortest

bin between the two mean values of the bimodal Gaussian distribution of intensity values.
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Imaging based multiplets identification

Two-color live staining fluorescence images were merged with Calcein AM signal in green and
Calcein red-orange signal in magenta. Each well was manually examined within the smallest
bounding square. Wells with mixed-species cells were determined as having at least one green
object and one magenta object; wells with a single cell were determined as having only one

green object or one magenta object.

Glioblastoma experiment

® GBM specimen was collected and dissociated into single cells as described above. Cells
were stained with Calcein AM (ThermoFisher Scientific, cat# C3100MP)

® The GBM cell suspension was processed and sequenced with SCOPE-seq2 workflow
described above (PJ069).

® Imaging and sequencing data were processed with the SCOPE-seq2 pipeline described
above.

® We removed multiplets based on manually examination of each well within the smallest
bounding square of the Calcein AM fluorescence image.

® \We identified the dead cells based on the Calcein AM fluorescence intensity. We fitted a
Gaussian distribution to the fluorescent intensity histogram, set a threshold of lower 5

percentile, and removed cells with intensity lower than the threshold.

Single cell hierarchical Poisson factorization (scHPF) analysis
To reduce the dimensionality of scRNA-seq results, we factorized gene count matrix using the

scHPF (Levitin et al., 2019) with default parameters and K = 13 (www.github.com/simslab/schpf).

One of the factors contained several heat shock with high gene scores (among the top 50 genes),
likely indicating dissociation artifacts in certain cells. This factor was removed in all downstream

analysis.
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Malignant cell identification

The cell aneuploidy analysis was performed based on the scHPF model as described previously
(Zhao et al., 2020). To compute the scHPF-imputed expression matrix, we multiplied the gene
and cell weight matrix (expectation matrix of variable 8 and B) in the scHPF model and then
log-transformed the result matrix as log,(expected counts/10000+ 1). The average gene
expression on each somatic chromosome was calculated using the scHPF-imputed count matrix
as previously described (Yuan et al., 2018a). We defined a malignancy score as the difference
between the average expression of Chr. 7 genes to that of Chr. 10 genes, <
log,(Chr.7 Expression) > — < log,(Chr.10 Expression) >, plotted in Figure 5A. We fitted a
double Gaussian distribution to the malignancy score and the score of the shortest bin between
two mean intensities was used as the threshold that separates the malignant and non-malignant
cell populations (Figure EV3A). The difference of chromosome average expression between
malignant and non-malignant cells, computed as the expression subtracted by the average

expression of non-malignant cells, was shown in Figure EV3B.

scRNA-seq clustering and visualization

To visualize the scHPF model (Figure 4A), we generated a UMAP embedding using the Pearson
correlation distance matrix computed from the cell score matrix. To cluster the scRNA-seq
profiles, we used the Phenograph implementation of Louvain community detection (Levine et al.,

2015), with the Pearson correlation matrix and k=50 to construct a k-nearest neighbors graph.

Cell optical phenotypes clustering

To reduce the dimensionality of the cellular imaging features, 16 cell imaging features were
z-normalized and hierarchically clustered using the ‘linkage’ method in the python module ‘scipy’
with correlation distance. The dendrogram in Figure 4C was cut as k=3 to form three clusters of

imaging features, corresponding to cell size, shape and esterase activity. The values of
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meta-features were calculated as an average of the imaging features within each cluster.

To cluster the malignant cells based on their optical phenotypes, we hierarchically clustered
imaging meta-features using the ‘linkage’ method in the python module ‘scipy’ with correlation

distance. The dendrogram in Figure 5C was cut as k=2 to form two clusters of malignant cells.

Diffusion map embedding of malignantly transformed GBM cells

We factorized the molecular count matrix for malignantly transformed GBM cells (identified by
aneuploidy analysis as described above) using scHPF with default parameters and K=15. Prior
to further analysis, we removed one of the 15 factors, which exhibited high scores for heat shock
response genes, because it likely represents a dissociation artifact in a subset of cells. We then
computed diffusion components with the DMAPS Python library

(https://github.com/hsidky/dmaps). A Pearson correlation distance matrix computed from the

scHPF cell score matrix was used as input with a kernel bandwidth of 0.5. The first two diffusion

components are plotted in Figure 5B,D,E.

SCcRNA-seq differential expression

We used the Mann-Whitney U-test for differential expression analysis. For pairwise comparison
of two groups of cells, the group with more cells was randomly sub-sampled to the same cell
number as the group with fewer cells. Next, the detected molecules from the group with a higher
average number of molecules detected per cell were randomly sub-sampled so that the two
groups had the same average number of molecules detected per cell. The resulting sub-sampled
matrices were then normalized using the random pooling method from Lun et al as implemented
in the scran R package (L. Lun et al., 2016). Finally, the resulting normalized matrices were
subjected to gene-by-gene differential expression testing using the Mann-Whitney U-test using
the ‘mannwhitneyu’ function in the Python package SciPy. The resulting p-values were corrected

using the Benjamini-Hochberg method as implemented in the ‘multipletests’ function in the
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Python package statsmodels.
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Figure 1 — Overview of SCOPE-seq2. A) A schematic representation of the experimental
workflow for SCOPE-seq2. B) Oligonucleotide design for SCOPE-seq2 optically decodable
MRNA capture beads. C) Split-pool synthesis scheme for generating combinatorial SCOPE-seq2
barcodes with the structure shown in B). D) Schematic for generating pools of fluorescent probes
for SCOPE-seq2 optical decoding.
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Figure 2 — Optical decoding of cell barcodes. A) Bright field image of SCOPE-seq2 beads in
PDMS microwells (left) and two-color fluorescence images of a SCOPE-seq2 bead after each
cycle of optical decoding (right). Scale bars: 50 um (multi-well image, left) and 10 um (single-well
images, right). Bar plots show the 8-cycle fluorescent intensity values before (left) and after sort
(right) of a SCOPE-seq2 bead in the CY3 emission channel. An arrow shows the two adjacent
values with the largest relative intensity change. B) Comparison of the ‘bead-by-bead’ and
‘cycle-by-cycle’ decoding methods. A bar plot shows the fraction of scRNA-seq expression
profiles that are successfully linked to cell images in two different experiments (PJ069 and
PJ070).
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Figure 3 — Validation and performance of SCOPE-seq2 in a mixed-species experiment.
Saturation analysis of the number of A) unique transcript molecules and B) genes detected per
cell (violin plots indicate distributions across cells). Scatter plots showing the number of uniquely
aligned human and mouse reads corresponding to each cell barcode linked to images, before C)
and after D) removal of multiplets. Each point (cell) is colored by the fluorescence intensity ratio
of the human and mouse live staining channels, indicating excellent agreement between
scRNA-seq and imaging.
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Figure 4 — Application of SCOPE-seq2 to a human GBM surgical sample. A) UMAP
embedding of the cell scores from scHPF factorization of the scRNA-seq data colored based on
unsupervised clustering from Phenograph. B) Same as A) but colored by scHPF cell scores for
each scHPF factor. A short list of top-scoring genes for each factor is also included. C)
Identification of imaging meta-features. A heatmap shows the z-scored values of 16 cell imaging
features (columns) across cells (rows), and a dendrogram indicates three feature clusters, cell
size, shape and Calcein staining intensity, from an unsupervised hierarchical clustering. D)
Heterogeneity of cell imaging meta-features. Boxplots show the distribution of imaging
meta-features in each Phenograph cluster from scRNA-seq.
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Figure 5 — Relationships between cell imaging features and transcriptional phenotypes in
GBM. A) UMAP embedding from Figure 4A colored by the malignancy score (the scHPF-imputed
difference between Chr.7 and Chr.10 average expression), which indicates malignantly
transformed GBM cells based on aneuoploidy. B) Two-dimensional diffusion map of malignantly
transformed GBM cells, colored by the scHPF cell scores for factors enriched in GBM lineage
markers. C) Clustering of imaging meta-features for the malignantly transformed GBM cells. A
heatmap shows the values for three imaging meta-features, and a dendrogram shows the
unsupervised hierarchical clustering of cells. Two major imaging clusters of cells are colored. D)
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Diffusion map in B) colored by the imaging clusters identified in C). E) Diffusion map in B) colored
by the values of the three imaging meta-features shown in C). F) Volcano plot for differential
expression analysis comparing the two major imaging clusters. Genes with an adjusted p-value
(FDR) < 0.05 are indicated in red and many correspond to key markers of the two major GBM
branches that were identified.
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