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Abstract

Deep mutational scanning enables data-driven models of protein structure and function. Here, we
adapted Saturated Programmable Insertion Engineering as an economical and programmable
deep mutational scanning technique. We validate this approach with an existing single mutant
dataset in the PSD95 PDZ3 domain, and further characterize most pairwise double mutants to
study how a mutation’s phenotype depends on mutations at other sites, a phenomenon called
epistasis. We observe wide-spread proximal negative epistasis, which we attribute to mutations
affecting thermodynamic stability, and strong long-range positive epistasis, which is enriched in
an evolutionarily conserved and function-defining network of ‘sector’ and clade-specifying
residues. Conditional neutrality of mutations in clade-specifying residues compensates for
deleterious mutations in sector positions. This suggests an outside-in hierarchy of interactions
through which positive epistasis between clade-specifying residues and the PDZ sector facilitated

the evolutionary expansion and specialization of PDZ domains.
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Introduction

A protein's primary sequence encodes its structure, conformational dynamics, and function.
Mutations to this sequence are informative perturbations because they provide access to
emergent protein properties that arise from the collective physical interactions of all amino acids
within a protein. These perturbations, particularly from higher-order mutations, are difficult to
predict. Thus, experimentally measuring perturbations from mutations provide crucial insight into
biochemical mechanisms of protein function such as enzyme catalysis and ligand binding.
Mutations allow us to map how residues that contribute to these functions are distributed in a
protein’s tertiary and quaternary structure, and to identify determinants of protein folding and
stability. High-throughput mutagenesis techniques, phenotyping assays, and sequencing enable
deep mutational scanning (DMS) ' in which the impact of replacing every residue of a protein with
all 19 alternative amino acids is measured. DMS thus facilitates data-driven models of protein
structure and function, which provide insight into enzyme activity, protein binding fitness

landscapes 2°, improve rational protein engineering '°, and functional genomics-guided oncology
11-13

Naturally occurring mutations result in variation, which is the raw material of evolutionary
processes. In experimental evolution, mutations are useful to probe the molecular and
mechanistic basis of adaptation. Interactions between multiple mutations shape and constrain
evolutionary pathways of proteins; this dependence of a mutation’s phenotype on mutations at

1416 Epistasis plays a key role in protein evolvability and robustness

other sites is called epistasis
by increasing the number of viable mutational trajectories that sidestep deleterious intermediates
'®In pioneering work, DMS was applied to map global epistasis on the IgG-binding domain of
protein G (GB1) . While negative epistasis was pervasive, many deleterious mutations improved
fitness in at least one alternative background, supporting the notion that epistasis expands the
permissive portions of sequence space. Positive epistasis was rare, often long-range, and
confined to a conformationally dynamic network of residues. Similarly, a comparison of DMS
profiles in the PSD95 PDZ3 domain with two different ligands revealed positive epistasis in a set
of adaptive positions, which belonged to a network of coevolving amino acids, termed a sector,
that defines the constraints of PDZ ligand binding '® '°. Epistatic and conditionally neutral
mutations in a subset of adaptive positions distant to the ligand-binding site could mediate ligand
class-bridging through allosteric ‘remodeling’ of the PDZ sector ?>%'. By providing an experimental

means to link physicochemical variation at the amino acid level to epistatic phenomena at the
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protein level, deep mutational scanning led to new insight into the structural principles that

underlie evolutionary adaptability.

DMS also suggested that epistatic interactions are enriched in mutation pairs that are close in
structural distance. Comparable to using the co-evolution of amino acids to infer three-

dimensional structure %724

, epistatic interactions can be used as constraints for computational
backbone structure determination %. Similar to the idea of sectors that emerged from coevolution
analysis, distinct clusters of structurally close residues with negative and positive epistasis were
observed. While the former was related to protein stability, the latter was enriched for residues

involved in ligand binding.

DMS clearly holds great value to protein science. Its value stems from the comprehensiveness of
experimental datasets; comprehensiveness enables the development of quantitative models of
the protein structure, function, and evolution. For single point mutations, this comprehensiveness
is relatively easy to achieve, and the most common methods use a combination of degenerate

2-5.7,8,17,20.26-28 51 grror-prone PCR © °. An alternative to degenerate oligos is

oligos and ligation
programmed oligo pools 2°2' that can be used to encode specific codons, avoid stop codons, or
target specific substitutions when constructing DMS libraries '* '®. Because of the programmed
nature of mutations, it is possible to detect and discard sequencing errors. Despite these
advantages, programmed oligo pools have yet to be used for deep mutational scanning of double
mutants. We recently developed Saturated Programmable Insertion Engineering (SPINE), which
combines oligo library synthesis and multi-step Golden Gate cloning for programmed
mutagenesis *?. Here we adapt SPINE as a programmable DMS technique. We validate this
approach with an existing deep single mutational dataset in the PSD95 PDZ3 domain %°, and in
addition, comprehensively characterize most double mutants. We corroborate earlier findings of
wide-spread proximal negative epistasis and rare long-range positive epistasis in other position
pairs for the PSD95 PDZ3 domain. Negative epistasis is enriched in the beta-sheets of the PDZ
domain core where mutations likely exhausted threshold robustness '*. Positive epistasis is
strongly enriched in pairs between sector ' or conserved positions and residues that define the
evolutionary clade of PDZ domains **. Flex-ddG / Rosetta-Backrub-based simulations ** suggest
that positive epistasis has a structural mechanism in which a neutral mutation can compensate
for the deleterious effect on protein stability of a second mutation. We find that conditional
neutrality of mutations in these clade-specifying residues is required to compensate deleterious

mutations in sector positions. This suggests that the specific epistasis between clade-specifying
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91 residues and the PDZ sector facilitated the evolutionary expansion and specialization of PDZ

92 domains.

93

94  SPINE mediated construction of comprehensive single and double mutant libraries

95 To construct mutant libraries, we adapted a method we recently developed for insertional

96 mutagenesis that leverages programmable oligo library synthesis and multi-step golden gate

97  cloning (Fig. 1A, , Suppl. Fig. 1.1) *. Oligos were programmed to contain the desired mutational

98 diversity in a custom algorithm (written for Python 3.7.3. and available at

99  https://github.com/schmidt-lab/SPINE). To generate single mutant libraries, the wildtype PSD95
100 PDZ3 backbone % was used as the template, while double mutant libraries used the single
101 mutation library as the target gene backbone template (Fig. 1B). This means that double mutants
102 are always separated by a fragment boundary, which in our case means that they are at least 2
103 amino acids apart with an exponential increase in probability with greater distance from the
104  fragment boundary (‘blackout regions’, Supp. Fig. 3.2B). All libraries at this step yielded greater
105 than 100,000 colonies corresponding to greater than 30-fold coverage for single mutants and
106  greater than 5,000,000 colonies corresponding to greater than 20-fold coverage for double
107  mutants assuming 0.3% of the library has indels (the most common error with phosphoramidite
108  chemistry **¢) and 15% of double mutations are in blackout regions. Due to inefficiencies of the
109 DNA assembly, the wild-type original gene remained in the libraries at around 5% for the single
110  mutation libraries (Supp. Fig. 2.1B) and 3.8% for the double mutation libraries (Supp. Fig. 3.1B).
111
112 Single mutant library fithess
113  We assayed the effect of single and double mutants using an established bacterial two-hybrid
114 system 2" % that couples the binding of PSD95 PDZ3’s ligand (CRIPT) to the expression of
115  Chloramphenicol resistance (Supp. Fig. 1.2). We used NextGen sequencing to quantify the
116  frequency of each mutant before and after antibiotic selection, and calculated each mutant’s
117  relative fitness compared to WT:
118 W =log <f_;* th)

RAVAL

119  Count statistics showed that we have excellent depth for single mutant (greater than 100-fold at
120  95% of positions; median ~6,500 counts, Supp. Fig. 2.1A-B). We determined fitness for all 1,235
121  single mutants, with similar replicates (R? 0.93+ 0.009) (Supp. Fig. 2.1C, Supp. Fig. 2.2). A

122  median confidence interval relative to measured fitness for each single mutant (based on a 90%

123  Poisson confidence interval) of 11.8% suggests good fitness measurement precision. Most single
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124  mutants are deleterious, while beneficial mutants are rare (Fig. 2A). Comparison of this deep
125  single mutant dataset to earlier studies ?° showed good qualitative agreement (Fig. 2B), but we
126  noticed that our dataset has less difference between the most beneficial and deleterious mutants.
127  Furthermore, median fitness is not centered at 0 but shifted slightly to higher-than-wildtype fitness.
128 A similar trend is in the reference dataset (Fig. 2B). This shift to higher fitness could be due to
129 how the single mutant libraries are constructed. While each mutation in our approach was

130  programmed to use a specific codon, McLaughlin et al. %°

used degenerate NNS primers, with N
131  being any base and S being either G or C. This means that each amino acid substitution might
132  be encoded by a different codon (e.g. Gly as either GGC or GGG) which are used at a different
133  frequency in E.coli (15% and 37%, respectively). Codon content, in overexpressed proteins in
134  bacteria, influences protein expression by affecting mRNA folding and translation, or overall
135 cellular fitness %. As expected from a programmable library generation method, empirical
136  cumulative distribution functions for an NNS library and our library show that our approach used
137  optimal codons more often (Supp. Fig. 2.3A). Better codon usage could result in slightly better
138  expression and thus higher fitness in particular for neutral mutations. Comparing fitness effects
139  of equivalent mutations in the McLaughlin et al. and our datasets, we find that there was a
140  monotonic, but non-linear relationship between fitness for each mutant, with only a few (<10%)
141 outlying residues (Supp. Fig. 2.3B). Outlying data points usually had lower confidence values,
142  suggesting they are due to from limited sampling. Despite minor quantitative differences, the
143  agreement of single mutation fitness validates our library construction method.

144

145  Double mutant library fitness

146  Of the 750,880 possible double mutants, 648,138 (86%) are represented in the double mutant
147  dataset, and 519,508 (69%) passed the read quality threshold with a median of 200 input reads
148  for each position pair (Fig. 3A, Supp. Fig. 3.2A). Median fitness error relative to the measurement
149  range is 0.15/2.2 log units = 6.9%, which is comparable to other double mutant datasets .
150 Mapping read counts to linear distance in sequence reveals that most missing mutants are in
151  close proximity (< 6 amino acids apart, Fig. 3B, Supp. Fig. 3.2.B). We expect this with our library
152  generation technique in which two mutations never occur in the same fragment as only one
153  mutation was encoded in each oligo (see methods). At 17-fold the median depth was lower than
154  single mutants (Supp. Fig. 3.1A-B), however, replicates were in good agreement (Supp. Fig.
155  3.1B). Many double mutants have a strong deleterious effect on fitness, similar to single mutants
156  (Fig. 3C), but improved fitness (compared to wildtype) is evident as well.

157
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158  Running median surface approach to calculating epistasis

159  If the relationship between measured fitness and underlying biophysical effects of mutations is
160 non-linear, due to protein folding thermodynamics or cooperativity, a linear model of the fitness
161 landscape will yield many non-specific epistatic interactions *°. To detect epistatic interactions that
162  are specific, i.e. depend on identity of the involved residues and mutations, the global nonlinearity
163  between biophysical effects of mutations and fitness phenotype must be estimated. A null-model
164  to infer this landscape is a running median surface approach originally developed for determining
165  protein structures from deep mutagenesis data ?°. This approach also helps accounting for non-
166 linearities that can result from varying uncertainty of fitness measurement (e.g. low read counts
167  for low fitness variants), fitness measurements near the lower measurement limit of the fitness
168  assay, and non-specific thermodynamic epistasis. We calculated epistasis using running quantile
169  surfaces of average local fithess for double mutant data that was not impeded by measurement
170  errors and passed read thresholds (15% and 44% of the double mutant space for positive and
171 negative epistasis, respectively). A surface representing the average local fitness of double
172  mutants is calculated using local polynomial regression (Fig. 4A). Then the 10" and 90"
173  percentile fithess surface were calculated from a fitness distribution of a double mutant’s closest
174  neighbors in single mutant space. Double mutants are categorized as positive epistatic if their
175  surface-corrected fitness value was above the 10" percentile, and negative epistatic it was below
176  the 90™ percentile fitness surface (Fig. 4B). Overall, adding fitness of single mutants predicted
177  double mutant fitness only moderately well (Spearman correlation coefficient 0.63, Supp. Fig.
178 4.1A) and many double mutants deviated from expected additivity, suggesting that epistasis is
179  common in PSD95 PDZ3. Negative epistasis with an enrichment score > 2 or > 5 was observed
180 in 72% or 16% of quantifiable position pairs, respectively (Supp. Fig. 4.1B). Conversely, positive
181 epistasis enrichment greater > 2 or > 5 was found in 43% or 7% of quantifiable position pairs,
182  respectively (Supp. Fig. 4.1C). Together this suggests that while epistasis is pervasive, weak
183  negative epistasis is more common than strong positive epistasis.

184

185  Spatial proximity of epistatic interactions

186  DMS in proteins 27 89 13.17.26.27 gnd nucleic acids “*** have suggested that epistasis is more
187 likely to occur between proximal residues as opposed to distal residues. This is the basis of
188  structure prediction from DMS data, which has been demonstrated for several model proteins >
189 25, Comparing distance distributions in PSD95 PDZ3 shows that position pairs with epistatic
190 interactions are more likely in proximal pairs (<12A minimal side-chain heavy atom distance,

191  scHAmin, Fig. 4C). This trend was mostly driven by negative epistatic position pairs in that 50%
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192  of negative epistatic and 25% of positive epistatic pairs are <12A apart. While a small cluster of
193  proximal pairs (5-7A) with positive epistatic interaction can be seen in the data, most appear to
194  Dbe distal interactions (>12A). Note that missing data is unlikely to affect to this observation as only
195 4% of residues pairs with a linear sequence distance of < 6 amino acids have a minimal side-
196 chain distance of > 12A. The distinction between proximal negative epistasis and distal positive
197  epistasis is apparent when we overlay the type and magnitude of epistasis onto the PSD95 PDZ3
198 contact map (Fig. 4D) or structure (Fig. 4E-F). While the position pairs with enriched negative
199  epistasis make structural contacts (filled yellow circles on grey background), this is not the case
200 for positions with enriched positive epistasis (open red circles on white background), which often
201  occurs over long distances. Protein folding is mediated by structural contacts, for example
202  hydrophobic interactions in the core of the protein **. This explains why fitness of double
203  mutants is particularly impaired when both positions are mutated to disruptive (proline), bulky
204  (tryptophan), or charged (glutamate, aspartate) amino acids (Supp. Fig. 4.2A). Grouping double
205 mutant fitness by descriptors that capture amino acid property of wildtype and mutants illustrates
206 this trend further. Fitness is strongly decreased in double mutants if both wildtype positions are
207  aromatic or non-polar (Supp. Fig. 4.2C). The stratification of epistasis in double mutants by amino
208 acid paints a different picture (Supp. Fig. 4.2B&D). As expected, mutations to bulky aromatics
209 (PheorTrp)or proline show strong negative epistasis in the background of proline and tryptophan
210 mutations at a second site. In the background of second site proline or tryptophan mutations,
211 negative epistasis is also observed for many charged and polar mutations. The same charged or
212 polar mutation in the background of small non-polar (valine, leucine, isoleucine) mutations,
213  however, show positive epistasis (Supp. Fig. 4.2B). Sign dependence of epistasis on background
214  mutation type is strongest when aromatic residues are mutated to charged residues (Supp. Fig.
215  4.2D). Together this data suggests a multi-faceted mechanism for how epistasis arises in PSD95
216  PDZ3.

217

218  Strong negative epistasis arises from exhausted threshold robustness

219  Theoretical and experimental work supports a mechanistic connection between negative epistasis
220 and threshold robustness " #~°. Single mutations may have little impact on fitness if their effect
221 is buffered by excess stability. If the first mutation largely exhausts this stability threshold,
222  subsequent mutations will have a non-additive (i.e., epistatic) impact on fithess even if individually
223  they minimally impact fitness. 2D histograms of the individual fitness of single mutations binned
224 by epistasis provides a way to visualize that exhausted threshold stability can explain strong

225 negative epistasis in PSD95 PDZ3. For the least fit double mutant position pairs (2.3 percentile),
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226  negative epistasis was common (mean epistasis score = -1.39+ 0.008, Fig. 5A). Epistasis was
227  most negative when single mutants were neutral, i.e. individually had minimal impact on fitness
228 (Fig. 5B). This suggests that single mutants already exhausted excess stability or ligand binding
229  activity such that a second neutral mutation led to a strong decline in fithess. Conversely, in double
230 mutants that had near wildtype fitness or even better than wildtype fithess (97.7 percentile)
231 positive epistasis was prevalent (mean epistasis score = 0.5+0.001, Fig. 5A). For this group,
232  positive epistasis was strongest when a deleterious mutation occurred in the background of a
233  neutral mutation (Fig. 5C).

234

235  Residues for which double mutations improved protein stability are enriched for positive epistasis
236  To investigate the mechanistic link between fitness and epistasis we used the “flex ddG” protocol
237 3 implemented in Rosetta, to model the effect of independent and pairwise mutations in PSD95
238 PDZ3 on protein stability. This protocol first generates conformational ensembles by a local
239  sampling of backbone and side-chain flexibility using Rosetta’s backrub algorithm. After repacking
240 and global minimization, changes in folding free energy are estimated between the simulated
241  wildtype protein vs. a single or double mutant (AAG). Overall, there was a weak correlation
242  between fitness and estimated AAG (R = -0.25, p < 2.2e-16) and no correlation between epistasis
243  and estimated AAG (R =-0.073, p<2.2e-16). However, mutations in residues that are enriched for
244  either negative or positive epistasis are more destabilizing (larger AAG) than mutations in residues
245  pairs without epistasis (null set, Fig. 5D-E). We then calculated the difference in protein stability

246  between a double mutant and each respective single mutant:

248 A negative AAAG indicates that the double mutant is more stable than the added independent
249  effects of single mutants. Inspection of the empirical cumulative distribution function for AAAG
250 revealed that mutations in residue pairs enriched for positive epistasis are more likely to result in
251  greater protein stability than expected from the added effects from each single mutant (t.test p<
252  0.0001, Fig. 5F). No stabilizing effect is observed between residues pairs that are enriched in
253 negative epistasis.

254  What is the relationship between epistatic stabilization (AAAG, lower is more stable) and non-
255  additive fitness (Afithess, higher is better)? Reiterating the weak or absent correlation between
256 fitness or epistasis with calculated protein stability, we find a similar range and distribution of z-
257  scored Rosetta scores for single mutants in negative epistasis, no epistasis, and positive epistasis

258  subsets (Supp. Fig. 5.1). However, when we use a vector representation to overlay AAAG and
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259  Afitness (Fig. 5G, arrows) onto single mutant Rosetta scores (Fig. 5F, bin centers represented
260 as grey dots), we observe distinct differences between negative and positive epistasis. In position
261 pairs that are enriched for negative epistasis, the arrows generally point straight down. This
262 means that there generally is little additional stabilization in the double mutant (AAAG ~0) and that
263  double mutants are less fit than predicted from summed single mutant fitness. In position pairs
264  that are enriched for positive epistasis, however, arrows generally point to the left and up. This
265 means double mutants are generally more stable than predicted from the protein stability of single
266  mutants, and that the fitness of double mutants is greater than predicted from the fitness of single
267 mutants. This effect was strongest in position pairs that had the highest enrichment of positive
268 epistasis (Fig. 5G, right panel, arrow color). In aggregate this suggests a mechanism for the
269  positive epistasis observed in these residue pairs: mutations that in the wildtype PSD95 PDZ3
270  background would be destabilizing are less stabilizing in the background of a second mutation,
271 which itself is neutral (Fig. 5C) and does not alter stability (AAG ~0, Fig. 5G).

272

273  Epistasis and PDZ protein sectors

274  The premise for 3D structure prediction from deep mutational scanning is that specific epistasis
275 is enriched between proximal residues and is less common between distal residues %> %. While
276 residues pairs with enriched negative epistasis follow this trend in our dataset, positive epistasis
277  more frequently occurs over longer distances (Fig. 4C-F). We therefore sought other features of
278 PSD95 PDZ3 that could explain the observed patterns of positive epistasis (Supp. Fig. 6.1A). As
279 the first feature, we calculated positional conservation using the Kullback-Leibler divergence of
280 positional amino acid frequency in a PDZ family alignment * versus the amino acid frequency in
281  vertebrate protein deposited in Uniprot. The second feature is based on previous DMS in PSD95
282 PDZ3 that defined positions that show epistasis with respect to binding wildtype CRIPT ligand vs.
283  aclass-switching T-oF ligand ?°. The third feature is based on a reanalysis of that dataset, to define
284  a set of adaptive positions that are either class switching (gain of binding to T.oF with loss of
285  binding to CRIPT) or class-bridging mutations (gain of binding to T2F and maintain binding to
286 CRIPT) #'. The fourth feature describes a residue’s spatial proximity to the ligand 2'. The fifth
287 feature is based on studies in PSD95 PDZ3 that proposed sparse networks of co-evolving

288  residues, ‘sectors’ & 1®

, as the mechanistic basis for a protein’s function. Sector positions are
289  sensitive to mutations whereas non-sector positions are more tolerant, which suggested that the
290 sector architecture provides mutational robustness and adaptability ?'. The sixth feature is
291  evolutionary sequence conservation (coupling) among sets of residues, which can point to an

292 interdependence of phenotypes that arise from genetic variation . We tested which feature can
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293  explain positive epistasis using Fisher's Exact Test, with the null hypothesis of independence.
294  Positive epistasis (>3sd, Supp. Fig. 6.1C) was enriched in conserved residues (p-value 0.002),
295 in positions that enable ligand class-switching and class-bridging (p-value 0.03), strongly in
296 positions that contribute to ligand specificity (p-value 2.5x10®), and in sector positions (p-value
297  8.5x10°). Positive epistasis was not enriched in residues that contact the ligand (p-value 0.24)
298 nor in evolutionarily coupled positions (p-value 0.76). For negative epistasis (>2sd) the null
299 hypothesis was not rejected for any category (p-value > 0.05, Supp. Fig. 6.1B), suggesting that
300 perhaps itis determined by perhaps other properties, such as protein stability and folding. This is
301 in line with our observation that negative epistasis occurred predominantly along core beta-sheets
302 (Fig. 4E). In aggregate, these results reaffirm the connection between epistasis and evolutionary
303  processes such as adaptation ' ¢, They provide further support for the theory that protein sectors
304  originate from non-local (i.e. long-range, allosteric) interactions between residues that provide
305 conditionally neutral capacity —here measured as positive epistasis— to adapt to fluctuating
306 selection pressures and fitness conditions 2% 2'.

307

308  Positive epistasis in clade-specific positions

309 The special relevance of epistasis in PDZ family diversification becomes even more evident from
310 a network analysis of positive epistatic interactions in PSD95 PDZ3. It reiterates that almost all
311 strong interactions (enrichment score > 3sd) are mediated by sector and/or conserved residues
312  (Fig. 6A-B, yellow and blue circles). The two exceptions are positions F340 and L342 (red circles),
313  which do not belong to the PDZ sector and are not evolutionary coupled with other PDZ residues,
314 but clearly form the central hubs of a network from which interactions with evolutionarily-coupled
315  residues radiate. Another smaller hub is centered around H372, which is important for ligand
316  class-switching 2% 2'. This organization around F340 and L342 is noteworthy as they belong to a
317  group of residues that identify the clade of PDZ domains. PDZ domain usage expanded greatly
318 along the stem leading from choanoflagellates (the closest living relatives of animals), and later
319  metazoans. A comparison of global entropy vs. within-clade entropy of all positions revealed that
320  six residues (F340, 1328, D332, G333, S339, L342 in PSD95 PDZ3) alone can classify >95% of
321  PDZ domains to the correct evolutionary lineage *. Two of these classifying residues (D332 and
322  G333) are located in a loop with frequent deletions and insertions in PDZ domains. Two other
323  classifying residues are in direct contact with the ligand (1328 and S339 in PSD95 PDZ3) and
324  have negative epistasis in our dataset. F340 and L342, which are strongly enriched for positive
325 epistasis, do not form direct contact with the ligand (Fig. 6C). Median fitness across all single

326 mutants in F340 and L342 is near wildtype, a near-neutral phenotype, while single mutations in
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327 connected sector and/or conserved residues decreased median fitness (Fig. 6A). In the
328  background of neutral mutations in F340 or L342, however, median fitness upon mutating these
329  connected residues was rescued or slightly improved over wildtype (Fig. 6B). This data argues
330 that at least two of the six PDZ clade-specifying residues are intimately connected to a function-
331  defining coevolving set of amino acids. The fact that F340 and L342, unlike their coevolving
332 interaction partners, have remained unchanged over the course of 600 million years of animal
333  evolution suggests a key role for long-range epistatic interactions between clade-defining and
334  function-defining residues in not only in PDZ expansion and specialization, but also maintenance
335 of ligand specificity.

336

337 Discussion

338 Deep mutational scanning is an important tool to study epistasis in proteins. Comprehensively
339 measuring the effects of mutations is key to map protein fitness, at least in the local sequence
340 neighborhood, with high resolution. The underlying mutant libraries are commonly generated
341  through a combination of degenerate oligos (encoding mutational diversity as NNS or NNK
342  codons) and ligation, or an error-prone PCR process. Recently, programmed oligo pools have
343 found wider adoption as an economical alternative to produce oligos carrying specific
344  substitutions, which makes it easier to detect sequencing errors. Oligo pools, to our knowledge,
345 have not been used to generate large scale double mutant libraries, which prompted us to adapt
346  Saturated Programmable Insertion Engineering (SPINE) for this application. Compared to error-
347 prone PCR, which is easier to implement, SPINE has the advantage of stringent control the
348  sequence, location, and number of mutations. Compared to degenerate oligo library design, e.g.
349 used by Olson et al. ', SPINE’s main advantage lies in its unambiguous assignment of
350 sequencing read to mutations. Because mutational diversity is encoded as specific codons
351 (instead of degenerate codons), we do not need internal barcodes to remove sequencing or oligo
352  synthesis errors. Furthermore, SPINE uses 4-bp overhangs for Golden Gate assembly that
353  uniquely define each fragment boundary as opposed to the degenerate K/M scheme. This means
354  that the entire library can be assembled in a single reaction because each mutagenized fragment
355  only ligates to the specific backbone amplicon that is missing this fragment, which simplifies library
356  construction workflows. The downside of this approach is that two mutants must be at least 2
357 amino acids apart and have there is a lower probability of observing double mutants separated
358 by less than 6 amino acid. (Supp. Fig. 3.2B). Double mutant libraries constructed with SPINE
359 therefore contain ‘black-out’ regions with low coverage. Given the relative equivalence to

360 degenerate oligo-based library construction, what benefit does SPINE offer? One potential benefit
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361 relates to the question of how epistasis affects long-term evolution of proteins, which requires
362 investigation of higher-order interactions and epistasis. Experimental access to these
363  experiments is readily achieved with SPINE. Any number of fragments, representing specific
364  regions of a protein and each containing every single site mutation, can be assembled, in a single
365  reaction, according to the logic encoded in the 4-bp overhangs. Because SPINE requires no error
366  correction to distinguish mutations from sequencing or oligo synthesis errors, it makes more
367 efficient use of sequencing platform throughput.

368

369 In agreement with other studies, we found that weak epistasis was prevalent while strong
370 epistasis was rare. Negative epistasis was enriched in position pairs that make structural contacts,
371 suggesting that one underlying mechanism is direct interaction. A similar enrichment of epistasis
372  which is specific (i.e., described not only by effect size but also mutation identity) in proximal
373  residues was observed in the analysis of the GB1 double mutant dataset and this formed the
374  premise for the 3D structure prediction from deep mutagenesis data 2 %, Specific epistasis is
375 thought to leave a strong signal in the co-evolution of directly interacting residues '®. Statistical
376 models that use a maximum-entropy approach to identify co-evolution in natural sequences
377  perform better when interactions between all residue pairs in a protein are explicitly modeled to
378  account for epistasis, and these models particularly improve predictions involving sets of proximal
379 residues %. Despite enrichment, our data, in particular for positive epistasis (Fig. 4C, D, E), and
380 other studies show that epistasis is not exclusive to structural contacts ' ?*2°_ This suggests
381  epistasis can occurs through a mechanism other than direct contact.

382

383  For PSD95 PDZ3, cooperative changes in sparse networks of residues (protein sectors '® ') may
384  explain such indirect effects of long-range epistatic interactions. By assessing the impact of a
385 global single mutations on PDZ binding the native CRIPT ligand or the non-native T.oF ligand,
386  statistically significant epistasis was observed in a set of residues that largely overlapped with the
387  PDZ protein sector ?°. For four residues (G322, G329, G330, and H372) positive epistasis was so
388  strong that certain mutants at these positions were class-bridging or class-switching with respect
389  to TF binding. Only H372 is in direct contact with the ligand suggesting that mutational effects in
390 the protein sector mediated epistatic effects on ligand binding. The structural basis for this was
391  described in a later study #'. Conditionally neutral (adaptive) mutations in sector positions, for
392 example in G330, stabilized additional conformational states to enable ligand class-bridging,
393 which was subsequently exploited by mutations in H372 for class-switching. Neutral G300

394  mutations are therefore crucial for the adaption of PDZ to bind new ligands. Consistent with these
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395 studies, we recorded the strongest positive epistasis signal between H372 and G329 or G330
396 (Fig. 4B, upper left triangle) and we could establish a relationship between positive epistasis,
397  adaptive mutations, and sector positions (Supp. Fig. 6.1B). In fact, co-evolving residues clearly
398 organize into a network that is strongly enriched for positive epistasis (Fig. 6).

399

400 Tworesidues (F340 and L342) are part of this positive-epistasis network and have strong epistatic
401  interactions with sector and/or conserved positions but are themselves not co-evolving with other
402 PDZ residues nor mediating adaptation to new ligands. A phylogenetic analysis of the major
403 clades of bilaterian PDZ domains revealed that these residues are not conserved across the PDZ
404  family. They are, however, highly conserved within each PDZ clade *. In 600 million years of
405  animal evolution, over which the PDZ family saw drastic evolutionary expansion and gained more
406 than 300 PDZ domains, these positions have remained constant. This aligns well with the
407 evidence that positions with strong epistasis have a low likelihood of reversion due to
408  acclimatization *°. In light of apparently strong purifying selection, the epistatic interaction of F340
409 and L342 with sector positions in PDZ suggests a mechanism for how clade-specifying residues
410 may have aided the evolutionary adaptation to different PDZ ligands. Restricted and rugged
411  fitness landscapes due to negative epistasis constrict evolutionary pathways, while positive
412  epistasis can provide paths that would otherwise be blocked by deleterious mutations and thus
413  accept a wider range of mutations '® 3. Conditionally neutral mutations in positions 340 and 342,
414  through non-local allosteric mechanisms, stabilize the otherwise deleterious effects of adaptive
415  mutations in sector positions, which by its cooperative nature, affects ligand binding. In some
416  cases, this results in gain of function for new ligands, and if new ligand specificity provides a
417  selective advantage these mutations become fixed. Positions 340 and 342 are then part of the
418  genetic background that determines ligand specificity. Because subsequent mutations in these
419  positions would negate their stabilizing effect and compromise ligand specificity, positions 340
420 and 342 now have come under purifying selection and thus emerge as clade-specifying residues.
421 Future studies that assess specificity of PSD95 PDZ3 single and double mutants towards
422  members of a randomized peptide ligand library are needed to test whether this adaptive path
423  involving mutations in position 340 and 342 and sector positions is plausible.

424

425 Based on mutagenesis in PDZ and other proteins 4 51-%3

, an ‘outside-in’ principle for protein
426  adaption was proposed, in which adaption begins with mutations distant from active sites. Distant
427  mutations are often neutral because their spatial separation from active sites makes it less likely

428 that they break existing function. At the same time, distant mutations could provide access to new
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429  conformational states that are exploited by mutations closer to the active site. In the limit that PDZ
430 is a small protein, the greater spatial separation of F340 and L342 from the ligand binding site,
431  compared to sector positions (Fig. 6C), may be significant in light of this theory. The data
432  presented here and previous work 2* 2! are consistent with the idea that residues in spatial
433  proximity to the ligand (Fig. 2, asterisks) are the primary determinants of ligand binding.
434  Adaptation to new ligands involves mutations in sector positions that are typically several shells
435 away from the binding pocket. The effect of sector mutations is modulated by even more distant
436  residues through positive epistasis. According to this model, an outside-in hierarchy of layers
437 (clade-specifier > sector > active site) act in concert to define binding phenotype. Further
438 experiments are needed to rigorously test this idea and generalize it to other proteins, but
439  extensive biochemical data and sector descriptions are available for kinases >, dihydrofolate
440 reductase > and cryptochrome *° whose functions are compatible with a DMS-style fitness assay.
441  SPINE could help construct the required large-scale double and higher-order mutant libraries.
442

443  Materials and Methods

444  Oligo design

445  Oligo sequences are generated using a custom algorithm (written for Python 3.7.3. and available
446  at https://github. com/schmidt-lab/SPINE).

447

448 Target gene fragmentation

449 The PSD95 PDZ3 gene was a gift from Rama Ranganathan. The PDZ sequence was replaced
450 with a few alternative codons to remove recognition sequences for the restriction enzymes used
451 in cloning. This new sequence was synthesized by Genscript before sequencing the donated
452  plasmids. The PDZ sequence was divided into 10 evenly distributed fragments to the nearest
453  codon (Fig. 1A, Suppl. Fig. 1.1A). Each fragment break site is adjusted to create unique cut site
454  overhangs for Golden Gate cloning. If adjusting one fragment position causes any fragment to
455  exceed the maximal length, the other fragments are adjusted to equalize fragment distribution
456  below this length threshold (Suppl. Fig. 1.1B).

457

458  Target gene primer design for inverse PCR

459  Forward and reverse plasmid primers are designed to amplify the backbone for each target gene
460 fragment (Supp. Fig. 1.1B). Additional non-annealing sequences are added to the primer's 5’ end
461  encoding for inward-facing BsmBI recognition sites with the cut site including the first and last

462  codon of the fragment (three bases) plus one base extension for the four base cut site. These
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463  primers are optimized for melting temperature and specificity by adjusting the length of the 3’ end.
464  Melting temperatures are set between 55°C and 61°C based on calculations from both Sugimoto
465 et al. *® and SantalLucia and Hicks *’. A primer is flagged as nonspecific if annealing temperatures
466  are greater than 35°C at any other position in the plasmid. Non-specific primers are made specific
467 by extending the primer or, if max melting temperatures are exceeded, the fragmented site is
468  adjusted.

469

470  Design oligos that encode each mutation

471 For each gene fragment, a loop is run to generate oligos for 19 mutations for each position within
472  that fragment, starting after the first codon and ending before the last codon to account for the
473  restriction enzyme cut sites. Therefore, to account for the cut sites, sequential fragments overlap
474 by two codons. Mutations were generated by selecting each of the 19 amino acid codons weighted
475 by their codon usage frequency in E. coli (obtained from Genscript) (Suppl. Fig. 1.1C). Codon
476 usage frequencies below 0.1 were removed before selection with bias. The selected mutant
477  codon replaced the existing wild type codon when assembling the oligo. Oligos consist of a bio-
478  orthogonal barcode for specific subpool amplification, BsmBI recognition sites, and the fragment
479  sequence with a mutation (Figure 1B). Barcodes are courtesy of the Elledge lab *. In detail, each
480 oligo starts with a forward subpool specific barcode, appended with a forward-facing BsmBI
481 recognition sequence plus one base to bring the cut site into frame. The fragment with a mutation
482 is appended followed by one base to bring the cut site into frame, a reverse facing BsmBI
483 sequence, and a reverse subpool specific barcode. Due to the inefficiencies of the DNA
484  assembly, the wild-type original gene remains in the libraries at around 5% for the single mutation
485 libraries and 1.5% for the double mutation libraries, which serves as an internal control.

486

487  Design of subpool amplifying oligos

488 Forward and reverse subpool specific oligo primers are generated by testing annealing of a
489 candidate primer sequence to the respective barcode, BsmBI recognition, and cut sequence.
490 These primers are optimized for annealing temperature as described above, however, because
491 the 3’ end is limited to the cut site, melting temperatures are optimized by adjusting the 5’ end or
492  swapping the barcode sequence (Suppl. Fig. 1.1D).

493

494  In silico quality control

495 A final in silico quality control is run to check for the creation of new Bsal or BsmBI recognition

496  sites and check for nonspecific subpool primers across all oligos (Suppl. Fig. 1.1E). If a Bsal or
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497  BsmBI recognition site is created, a codon within that recognition site will be changed to an
498  alternative codon maintaining the amino acid sequence. Non-specific subpool primers are
499 identified by an annealing temperature greater than 35°C for any position in any oligo other than
500 the designed position. If a primer is non-specific, that subpool amplification barcode is replaced
501  with another barcode and quality control is repeated. All oligos and primers are exported as
502 FASTA files for ordering.

503

504  Oligo library subpool amplification

505 A 7.5Koligo library synthesis (OLS) pool containing 1577 oligos for the PSD95 PDZ3 gene. OLS
506  subpools corresponding to a given gene fragment were PCR amplified using Primestar GXL DNA
507 polymerase (Takara Bio) according to the manufacturer’s instructions in 50 pl reactions using 1
508 ul of the OLS pool as the template and 25 cycles of PCR. The entire PCR reaction is run on 1%
509 agarose gel and the DNA at 230bp was purified (Zymo Research). See Supplemental Figure S2.
510

511  Assembly of single mutation OLS fragments and target gene backbone

512  To insert the OLS subpools into target gene backbones, complementary BsmBI sites to those on
513 the OLS fragments of a respective subpool were added by PCR using Primerstar GXL DNA
514  polymerase (Takara) and 100 pg of wildtype channel as template DNA (Supplemental Figure
515  S3A). PCR products were purified using a 1% agarose gel to remove any undesired PCR by-
516  products.

517  Target gene backbone PCR product with added BsmBI sites and the corresponding OLS
518  subpools were assembled using BsmBl-mediated Golden Gate cloning *° (Supplemental Figure
519  S3B). Each 20 ul Golden Gate reaction was composed of 100 ng of backbone DNA, 20 ng of OLS
520  subpool DNA, 0.2 ul BsmBI (New England Biolabs), 0.4 ul T4 DNA ligase (New England Biolabs),
521 2 ul T4 DNA ligase buffer and 2 ul 10 mg/ml BSA (New England Biolabs). These reactions were
522  placed in a thermocycler with following program: (i) 5 min at 42°C, (ii) 10 min at 16°C, (iii) repeat
523 (i) and (ii) 40 times, (iv) 42°C for 20 min, (v) 80°C for 10 min. Reactions were cleaned up using
524  Zymo Research Clean and Concentrate kits, eluted in 10 ul of elution buffer, transformed into E.
525  cloni®10G chemically competent cells (Lucigen) according to manufacturer’s instructions. Cells
526  were grown overnight at 30°C to avoid overgrowth in 50 ml LB with 40 pg/ml kanamycin with
527  shaking, and library DNA was isolated by miniprep (Zymo Research). A small subset of the
528 transformed cells was plated at varying cell density to assess transformation efficiency. All
529 libraries at this step yielded greater than 100,000 colonies corresponding to greater than 30x

530 coverage for perfect mutations assuming 0.3% of the library has indels. All libraries
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531 (corresponding to different subpools) of a given target gene were pooled together at an equimolar
532 ratio, resulting in a mixture of mutations for every amino acid position (Supplemental Figure S3C).
533  This completes a single mutation library.

534

535 Double mutations library generation

536  The double mutation library was generated by using the single mutation library as the target gene
537  backbone for the insertion of another oligo subpool. Each oligo subpool was repeated using the
538 methods described above (SPINE method) and mixed with equimolar ratio. This results in double
539  mutations only across gene fragments and not within fragments. For the high number of variants
540 expected, the Golden Gate reaction was transformed in E. cloni®10G ELITE electrocompetent
541  cells (Lucigen). All libraries at this step yielded greater than 5,000,000 colonies corresponding to
542  greater than 20x coverage.

543

544  Bacterial Two-hybrid assay

545  The bacterial two-hybrid assay is based on PDZ3 binding to the CRIPT ligand. PDZ3 variants with
546  a high affinity for the CRIPT ligand will recruit RNA polymerase a-subunit initiating expression of
547  chloramphenicol acetyltransferase. This is a positive selection for highly functional PDZ3 variants.
548  This system replicates the work of Salinas et al. *” and all plasmid and cell reagents were received
549 as a gift from Rama Ranganathan. The selection was performed with triplicate experiments.
550 Plasmid from cells before selection and after selection was purified and the region covering the
551 PDZ3 sequence was PCR amplified for 12 cycles with Illumina sequencing adapters. Amplicon
552  DNA was purified with 1% agarose gel.

553

554  NextGen Sequencing

555  Libraries were sequenced using lllumina MISEQ in 150 bp paired-end configuration. Allele
556  frequency for single mutation and double mutation was determined by joining paired sequences
557  with bbmerge, trimming and filtering sequences with bbduk, and a custom python script to identify
558 alleles only matching the OLS programmed mutation. Specifically, sequence alignment was
559  performed by first joining paired sequences with bbmerge, trimming ends and filtering with bbduk
560 and a custom python script to identify alleles only matching the programmed mutation in the OLS
561 pools. The 150 bp paired-end sequences when joined together provide full coverage of the PDZ
562 gene. This was done using bbmerge with the ‘xloose’ setting for strictness and a ‘minoverlap’ of
563 4 bp. This allows for greater number of reads to be merged for allele analysis. The 5’ extension

564  setting at 2 bp allows for reads to be extended by 2 nucleotides for low overlap, but only allowing
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565 for 2 iterations (‘ecct extend2=2’). Merged reads were trimmed with bbduk with the literal string of
566 the lllumina adpaters. The minimum adapter length was set to 7 bp to allow forincomplete Illumina
567  adpaters (‘mink=7’) and quality trimming using Q10 and minimum length equal to PDS95PDZ3
568 gene length (249bp). Each processed read was then checked if it was the original sequence
569 (recorded as WT), if not each read was analyzed for mutations at each position to search for
570  mutations from the input library which were programmed on the OLS chip. If more mutations were
571  found than expected (single or double) or if the read contained a mutation that did not match the
572  programmed mutation it was removed and recorded as a bad read or a false positive, respectively.
573  With read-pass filters that only recognize programmed mutations, we reduced the false-positive
574  reads introduced by library generation and sequencing steps (lllumina reported at 1%). We
575 detected and discarded on average 5% of reads due to false-positive mutations. Sequencing
576  statistics are shown in Supp. Fig. 2.1. (single mutants) and Supp. Fig. 3.1. (double mutants).
577

578 Data analysis

579  Read count data for all replicates (three biological replicates, 3 technical replicates) was summed
580 (see supplemental information for all datasets).

581

582  Fitness & Epistasis: Data analysis of read count data adapted workflow and scripts reported by
583  Schmiedel at al. *° with minor adaptations. Specifically, a 90% confidence interval (Whigh and Wiow)
584  was determined for single and double mutant fithess from read count data by using a Poisson

585 distribution. Fitness confidence was calculated as

Si,high wt fulow  cwt

586 conf = Whyigh — Wiow = 10810 (Tm * W) —logyo <m * Wt)
fu I fu s

587

588 flexddG Rosetta Backrub: Using PDB 1BE9 as the input structure, calculation of mutation effects

589  on protein stability was implemented in RosettaScript as described by [ref] using Python scripts

590 deposited at https://github.com/Kortemme-Lab/flex_ddG_tutorial. For each single and double

591 mutant an ensemble of 35 mutant models were generated. Monte Carlo backrub was run for

592 35,000 steps. Rosetta energy scores are calculated using the Rosetta Talaris energy function refit

593  with a generalized additive model *.

594
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Figure 1. SPINE for comprehensive single and double mutant libraries. A, Single mutant libraries are constructed by
dividing PSD95 PDZ3 into fragments and encoding the mutational diversity of each fragment within an oligonucleotide pool. Subpools
(Part A), corresponding to each fragment can be amplified with subpool primers and combined with tﬂe corresponding unaltered
backbone (Part B) by Golden Gate Cloning using BsmBI. Overhangs generated by this Type IIS restriction enzyme are unique for each
fragment boundary. This process is repeated for each fragment to generate mutation sublibraries. Sublibraries are then combined into
a complete Single Mutant Library. B, Double Mutatant libraries are generated by the same process with Single Mutant Libraries as
input.
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Figure 2. Single mutant fitness. A, Distribution of single mutant fitness (wildtype fitness = 0). While many single mutations in
PSD95 PDZ3 are deleterious (fitness < 0) and few are beneficial (fitness > 0), most single mutants are neutral (fitness = 0; same as
wildtype). Positional effect of each mutation is shown on the right. Asterisk (*) denotes residues in contact with the ligand. B,
Distribution of single mutant fitness determined by McLaughlin et al. is in very good qualitative agreement, but has greater dynamic
range.
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Figure 3. Double Mutant Fitness. A, Distribution of double mutant fitness by sequencing read counts. 69% percent of the 750,880 possible
double mutants passed read quality threshold (200 reads, red line). Measurement range of the fitness assay is 2.2 log units (dashed horizontal
lines, see Methods). B, Pairwise position map of double mutant shows that most missing mutants are close in linear sequence distance (<6
amino acids). €, Map of mean double mutant fitness averaged across all mutations for a position pair. Inset, double fitness distribution shows
strong deleterious effects in many double mutants, but also improved fitness (compared to wildtype) for some.
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A surface representing the average local double mutant fitness is calculated using local polynomial regression. Double mutants are categorized as
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surface-corrected fitness value was above the 10th percentile (red dots), and negative epistatic it was below the 90th percentile (yellow dots). Blue dots represent non-

epistatic double mutant pairs. B, Map of position pairs that are enriched in positive epistasis (upper left triangle), or negative epistasis (lower right triangle). C, Empirical
cumulative distributions show that position pairs in PSD95 PDZ3 with negative epistatic interaction are more likely to be in Froximity, while positive epistasis can occur over
long distance. 50% of negative epistatic (yellow line) and 25% of positive epistatic pairs (red line) are <12A apart, respectively. D, Position map that shows structural contacts
(<T2A minimal side chain distance) as grey background. Epistasis enrichment is sﬁown as dots, yellow for negative epistasis and red for positive epistasis. Dots for epistatic
interactions between residues that form structural contacts are filled, those that are not in structural contact are empty. Magnitude of enrichment is indicated by dot size.

Structure of PSD95 PDZ3 (PDB 1BE9) showing interacting residues pairs with negative epistasis (E) or positive epistasis (F). Connections between residues are colored by
minimal sidechain distance. CRIPT ligand is shown in red.
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(blue), or positive epistasis (red). Black dot indicates mean, vertical black line indicates standard error. Difference between means was compared by two-sided Wilcoxon test;
**** indicates p-values < 0.00001. E, Empirical cumulative distribution of Rosetta energy scores from (D). F, Empirical cumulative distribution function of AAAG, the
calculated difference in protein stability between a double mutant and summed stability of respective single mutants. Lines are color-coded as in (E). G, Binned quiver plots
of Rosetta energy scores for single mutations distribute similarly in each category (grey dots). Dots size indicates the number double mutant represented in each bin. Arrow
direction and length indicates sign and magnitude of AAAG (additional stabilization in the double mutant compared to summed single mutants) and Afitness (additional
fitness in the double mutant compared to summed single mutants). Arrow color indicates mean epistasis.
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Figure 6. Positive epistasis in clade-specific positions. A, Network diagram of amino acid positions with an positive epistasis enrichment score
> 3. Nodes are colored by category: clade-speci?ing residue (red), sector residue (yellow), or conserved residue (teal). Edge thickness between nodes
indicates magnitude of epistasis. Edge are divided into two sections; color of the section adjacent to a node indicates median fitness of the node's
single mutants. With the exception of two clade-specifying residues, almost all epistatic interactions are mediated by sector and/or conserved
residues. Single mutations in clade-specifying positions are neutral, while mutations in sector and conserved positions are deleterious. B, Same
network diagram as in (A), but now edge color indicates fitness of the double mutant. In the background neutral mutations in positions 340 and 342,
median fitness of otherwise deleterious second site mutations was improved, while double mutant in residue pairs that did not involve clade-
specifying residues were still deleterious. €, Structural mapping of clade-specifying (red) and sector and/or conserved positions (yellow) with strong
epistasis. Color of each connections indicates side chain distance. F320 and L342 are not in direct contact with the CRIPT ligand (blue).
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encode mutations

A PDZ-Fragmentation (7o fagnented

in shuttle vector target gene

oligo pool (required oligo length: 230bp)
adjust joints to generate unique overhangs

PDZ gene in shuttle vector
< Fragment ~24 bp >

B PpzBackbone - Primer Design

IF (non-ideal melting temperature) OR (non-specific annealing) THEN (adjusted primer length)

IF (non-specific overhang) THEN (adjust break position)

C Mutations

Escherichia Coli Codon Usage Frequency Table

TTT: 0.58 TCT: 0.17 CTT: 0.12 CCT: 0.18 ATT: 0.49 ACT: 0.19 GTT: 0.28 GCT: 0.18
TTC: 0.42 TCC: 0.15 CTC: 0.1 CCC: 0.13 ATC: 0.39 ACC: 0.4 GTC: 0.2 GCC: 0.26
TTA: 0.14 TCA: 0.14 CTA: 0.04 CCA: 0.2 ATA: 0.11 ACA: 0.17 GTA: 0.17 GCA: 0.23
TTG: 0.13 TCG: 0.14 CTG: 0.47 CCG: 0.49 ATG: 1 ACG: 0.25 GTG: 0.35 GCG: 0.33
TAT: 0.59 TGT: 0.46 CAT: 0.57 CGT: 0.36 AAT: 0.49 AGT: 0.16 GAT: 0.63 GGT: 0.35
TAC: 0.41 TGC: 0.54 CAC: 0.43 CGC: 0.36 AAC: 0.51 AGC: 0.25 GAC: 0.37 GGC: 0.37
TAA: 0.61 TGA: 0.3 CAA: 0.34 CGA: 0.07 AAA: 0.74 AGA: 0.07 GAA: 0.68 GGA: 0.13
TAG: 0.09 TGG: 1 CAG: 0.66 CGG: 0.11 AAG: 0.26 AGG: 0.04 GAG: 0.32 GGG: 0.15

WT codon position 1: select amino acid biased replacement

ACC

’ Repeat 19x
Replace each amino acid with all 19 other amino acids ...

Position 1 ACC(Thr)>GGT(Gly) mmm Bs B
Fwd barcode 'Ej o 'L%f‘;oligo 1

BsmBlI
Position 1 ACC(Thr)>GCA(Ala)

o= A8

.... for each codon position in the fragment

L3
Position 170 TAC(Tyr)>CCG(Pro) :

ATG .
Fwd barcode jzm % Rev barcode o||goN
D i i
Sub-pool primer design .
non-specific primer (specific to a different subpool)
— ——

Rev barcode

sub-pool primer

BsmBI

Rev barcode
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—

Supplemental Figure 1.1 In silico design of oligos andTprimers. A, The PSD95 PDZ3 gene (within its shuttle vector) is fragmented into 10 fragments. Fragment break sites are
adjusted for unique restriction enzyme cut overhangs. B, Aset of gene primers are designed for each fragment for inverse PCR. These primers will ampli?y everything except the fragment
and add an inward-facing BsmBl recognition site. C, An oligo pool is designed for each fragment and within the pool an oligo is designed for each amino acid within that fragment and
for each of the 19 mutations. Each oligo consists of the fragment sequence it is replacing, sub-pool specific ampﬁﬁcation barcodes, inward-facing BsmBl site that will match the cut site
of the gene primers, and the mutation. D, To retrieve a specific su(L-pool of oligos, primers are designed based on bio-orthogonal barcodes. This amplification is made specific by
swapping barcodes until unique amplification is found. E, When combining the subpools from many genes, there is a chance of non-specific amplification. Quality control is performed
on every oligo primer and oligo subpool for non-specific amplification. If found, the barcode is swapped for unique amplification.
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Supplemental Figure 1.2. Bacterial two-hybrid fitness assay. Mutant libraries are transformed into pZE1RM*pZA31*MC4100Z1 E. coli that have chromosomal copies of the lac
repressor laclQ and the tet repressor TetR. Each PDZ variant s fused to the Acl DNA binding domain and expressed under control of a lac promoter, while the CRIPT ligand is fused to the
RNA polymerase a-subunit. When CRIPT ligand interacts with PDZ, chloramﬁhemcol acetyltransferase is expressed, allowing the cell to survice challenge with the antibiotic
chl(()jramph%mcol By sequencing plasmid DNA isolated from transformed E.coli before and after chloramphenicol selection, the relative fitness of each variant can be calculated from
read count data.


https://doi.org/10.1101/2020.06.26.174375
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.26.174375; this version posted June 27, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

. - median mutant
A 1.00- B replicate | condition | mutant read count | WT read count (%) read depth
1 unselected 5,199,985 413,815(7.4) 3,699
2 075 2 unselected 4,938,218 380,345(7.2) 3,542
S8 3 lunselected 4,793,799 404,077 (7.8) 3,444
'g 4 |unselected] 10,394,042 604,175 (5.5) 7,414
:—0.507 5 unselected 9,992,168 581,007 (5.5) 7,128
: 6 unselected 9,719,479 575,175(5.6) 6,934
% 0.25- 1 selection 9,719,479 556,556 (7.0) 5169
[ ' 2 selection 7,074,451 473,080 (6.3) 4,928
(=
3 selection 7,611,886 554,912 (6.8) 5,293
0.00- . . . . . 4 |selection| 14,764,889 768,517 (4.9) 10,345
0 1 2 3 4 5 selection 14,345,432 721,522 (4.8) 9,968
log,, read depth 6 | selection| 14,694,841 747,473 (4.8) 10,290
replicate 1 replicate2  replicate 3 replicate4 ~ replicate5  replicate 6
15 =
3
0= =
0.948 0.931 0.975 0.937 0.924 g
5= D
o
1.0 4
/7
05 . . g
oo f 0.911 0.953 0.969 0.945 S
051 s B . @
10 )/ N
3
=
0.911 0.829 =
D
w
3
=
0.933 0.94 S
@
~
3
=
0.944 5
D
(Sa]
3
=
=
D
o~

-10-0500 05 10 -1.0-05 00 05 10 -10-05 00 0510 -10-0500 05 10 -10-05 00 05 1.0 -10-0500 05 1.0

Supplemental Figure 2.1. Single mutant dataset statistics. A, Mean read depth (red line, n=6) and confidence interval (shaded grey area). B, Count statistics. C,
Fitness distribution for each replicate are shown on the diagonal. Replicate vs. replicates scatterplots are shown in the lower left triangle and Pearson correlation
coefficients are shown in the upper right triangle.
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Supplemental Figure 2.2. Single mutant library read count distribution by position and mutation for each replicate. Replicate
where highly repeatable suggesting that underrepresented position and mutations are caused by sampling at the library construction stage.
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Supplemental Figure 2.3. SPINE-generated libraries used optimal codons more often. A, Empirical cumulative distribution of
codon frequency in a NNS degenerate codon library (black line) and the SPINE-generated library (red line) for PSD95 PDZ3. Vertical
dashed line represent median usage frequency of optimal codons. With SPINE, more adapted codons are used more often. B,
Comparing the fitness effect of single mutants in this study and McLaughlin et al. shows a monotonic, but non-linear relationship. Data
points are colored by confidence in fitness determination, which is based on 90% Poisson confidence interval (see Methods). Data is fit
to an exponential model (black line). The few (<10%) outlying residues (see inset empirical cumulative distribution function of fitting

residuals) often had low fitness confidence.
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Supplemental Figure 3.1. Double mutant dataset statistics. A, Mean read depth (red line, n=6) and confidence interval (shaded grey area). B, Count statistics.
C, Fitness distribution for each replicate are shown on the diagonal. Replicate vs. replicates scatterplots are shown in the lower left triangle and Pearson correlation
coefficients are shown in the upper right triangle.
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Supplemental Figure 3.2. Double mutant library missing data. A, Positional map showing how many of the 19x19=361 possible
mutations are represented in the count data after passing read quality threshold filters. Most position pairs witﬁ low coverage are <6 amino
acids in linear sequence distance apart. B, This is due the nature of SPINE-mediate library assembly from oligo fragments. Nucleotides that are
one position away are not possibre due to the BsmBI cutsite, while pairs between connected fragments have an exponential increase in
probabiliﬁybthe further they are from the break site. This low probability for closely connected pairs is due to primer annealing and potential for
mismatch bases.
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Supplemental Figure 4.1. Prevalence of epistasis. A, The fitness of single mutants predicts double mutant fitness only moderately well
(Spearman correlation coefficient 0.63) suggesting widespread deviation from expected additivity without epistasis. B, Negative epistasis with
an enrichment score > 2 was observed in 72% of quantifiable position pairs (tﬁin yellow line); stronger enrichment scores > 5 in 16% of
quantifiable position pairs (thick yellow line). C, positive epistasis enrichment greater > 2 or > 5 was found in 43% (thin red line) or 7% (thick
red line) of quantifiable position pairs, respectively.
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Supplemental Figure 4.2. Physicochemical properties of mutation pairs and their role in fitness and epistasis. A, Ordered
heatmap of double mutant fitness grouped by mutant amino acid in either position. Fitness of double mutants is particularly impaired when
both positions are mutated to disruptive (profline), bulky (tryptophan), or charged (glutamate, aspartate) amino acids. B, Ordered heatmap of
epistasis in a double mutant grouped by mutant amino acid in either position. As expected, mutations to bulky aromatics or proline show strong
negative epistasis in the background o ﬁroline and tryptophan mutations at a second site (exhausted excess stability). This is also true for polar
and many charged residues. However, the sameFoIar and charged residues in the background of small non-polar (valine, leucine, isoleucine)
mutations show positive epistasis. C, Heatmap of double mutant fitness grouped by change in physicochemical properties. Fitness is strong|
impaired when both wildtype position are aromatic or non-polar residues. D, Aromatic residues, in particular, show strong stratification wit
respect to physicochemicayproperties of the second site mutation hinting at the specific nature of the underlying mechanisms.
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Supplemental Figure 5.1. Distribution of z-scored Rosetta scores for single mutants in negative epistasis, no epistasis, and
positive epistasis subsets. 2D histograms and marginal density plots of single mutant Rosetta scores (AAG) for each double mutant.
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Supplemental Figure 6.1. Contingency tables. A, Residue groupings. Independence of negative epistasis (B) and positive epistasis (C)
in PSD95 PDZ3 with respect to different residue groupings was tested using Fisher's Exact Test.

e Theresidue group that s class bridging / class switching (adaptive) was taken from Raman et al.

The residue group that is sector positions, in proximity to ligand, or epistatic with respect to binding the wildtype CRIPT ligand vs. a class-
switching T,F mutant was taken from McLaughlin et al.

e Evolutionary coupling had been computed for DLG1 PDZ1 (residues 214-317, 40% identity, 68% similarity to PSD95 PDZ3) by Hopf et al.
and deposited at https://marks.hms.harvard.edu/evmutation/index.html. Residues with evolutionary coupling score > 0.5 are shown.
Residue numbering was establish from a structural alignment of hDLG-PDZ1 (PDB 3RL7) to PSD95 PDZ3 (PDB 1BE9).

¢ Conservation was calculated as using the Kullback-Leibler (KL) divergence of positional amino acid frequency in a PDZ family alignment
reportedhby Sakaraya et al. versus the amino acid frequency in vertegrate proteins deposited in Uniprot. Residues with KL divergence >
1.5 are shown.

Negative epistasis was not correlated with any residue grouping; the null hypothesis of independence was not rejected (p > 0.5). Positive
epistasis was enriched in class switching/bridging positions, ligand epistasis positions, sector positions, and conserved positions, but not
position that are in proximity to the CRIPT ligand or those that are evolutionarily coupled.
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