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Abstract 10 

Deep mutational scanning enables data-driven models of protein structure and function. Here, we 11 

adapted Saturated Programmable Insertion Engineering as an economical and programmable 12 

deep mutational scanning technique. We validate this approach with an existing single mutant 13 

dataset in the PSD95 PDZ3 domain, and further characterize most pairwise double mutants to 14 

study how a mutation’s phenotype depends on mutations at other sites, a phenomenon called 15 

epistasis. We observe wide-spread proximal negative epistasis, which we attribute to mutations 16 

affecting thermodynamic stability, and strong long-range positive epistasis, which is enriched in 17 

an evolutionarily conserved and function-defining network of ‘sector’ and clade-specifying 18 

residues. Conditional neutrality of mutations in clade-specifying residues compensates for 19 

deleterious mutations in sector positions. This suggests an outside-in hierarchy of interactions 20 

through which positive epistasis between clade-specifying residues and the PDZ sector facilitated 21 

the evolutionary expansion and specialization of PDZ domains.  22 
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Introduction 23 

 24 

A protein's primary sequence encodes its structure, conformational dynamics, and function. 25 

Mutations to this sequence are informative perturbations because they provide access to 26 

emergent protein properties that arise from the collective physical interactions of all amino acids 27 

within a protein. These perturbations, particularly from higher-order mutations, are difficult to 28 

predict. Thus, experimentally measuring perturbations from mutations provide crucial insight into 29 

biochemical mechanisms of protein function such as enzyme catalysis and ligand binding. 30 

Mutations allow us to map how residues that contribute to these functions are distributed in a 31 

protein’s tertiary and quaternary structure, and to identify determinants of protein folding and 32 

stability. High-throughput mutagenesis techniques, phenotyping assays, and sequencing enable 33 

deep mutational scanning (DMS) 1 in which the impact of replacing every residue of a protein with 34 

all 19 alternative amino acids is measured. DMS thus facilitates data-driven models of protein 35 

structure and function, which provide insight into enzyme activity, protein binding fitness 36 

landscapes 2–9, improve rational protein engineering 10, and functional genomics-guided oncology 37 
11–13.  38 

 39 

Naturally occurring mutations result in variation, which is the raw material of evolutionary 40 

processes. In experimental evolution, mutations are useful to probe the molecular and 41 

mechanistic basis of adaptation. Interactions between multiple mutations shape and constrain 42 

evolutionary pathways of proteins; this dependence of a mutation’s phenotype on mutations at 43 

other sites is called epistasis 14–16. Epistasis plays a key role in protein evolvability and robustness 44 

by increasing the number of viable mutational trajectories that sidestep deleterious intermediates 45 
16. In pioneering work, DMS was applied to map global epistasis on the IgG-binding domain of 46 

protein G (GB1) 17. While negative epistasis was pervasive, many deleterious mutations improved 47 

fitness in at least one alternative background, supporting the notion that epistasis expands the 48 

permissive portions of sequence space. Positive epistasis was rare, often long-range, and 49 

confined to a conformationally dynamic network of residues. Similarly, a comparison of DMS 50 

profiles in the PSD95 PDZ3 domain with two different ligands revealed positive epistasis in a set 51 

of adaptive positions, which belonged to a network of coevolving amino acids, termed a sector, 52 

that defines the constraints of PDZ ligand binding 18, 19. Epistatic and conditionally neutral 53 

mutations in a subset of adaptive positions distant to the ligand-binding site could mediate ligand 54 

class-bridging through allosteric ‘remodeling’ of the PDZ sector 20, 21. By providing an experimental 55 

means to link physicochemical variation at the amino acid level to epistatic phenomena at the 56 
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protein level, deep mutational scanning led to new insight into the structural principles that 57 

underlie evolutionary adaptability. 58 

 59 

DMS also suggested that epistatic interactions are enriched in mutation pairs that are close in 60 

structural distance. Comparable to using the co-evolution of amino acids to infer three-61 

dimensional structure 22–24, epistatic interactions can be used as constraints for computational 62 

backbone structure determination 25. Similar to the idea of sectors that emerged from coevolution 63 

analysis, distinct clusters of structurally close residues with negative and positive epistasis were 64 

observed. While the former was related to protein stability, the latter was enriched for residues 65 

involved in ligand binding.  66 

 67 

DMS clearly holds great value to protein science. Its value stems from the comprehensiveness of 68 

experimental datasets; comprehensiveness enables the development of quantitative models of 69 

the protein structure, function, and evolution. For single point mutations, this comprehensiveness 70 

is relatively easy to achieve, and the most common methods use a combination of degenerate 71 

oligos and ligation 2–5, 7, 8, 17, 20, 26–28 or error-prone PCR 6, 9. An alternative to degenerate oligos is 72 

programmed oligo pools 29–31 that can be used to encode specific codons, avoid stop codons, or 73 

target specific substitutions when constructing DMS libraries 10, 13. Because of the programmed 74 

nature of mutations, it is possible to detect and discard sequencing errors. Despite these 75 

advantages, programmed oligo pools have yet to be used for deep mutational scanning of double 76 

mutants. We recently developed Saturated Programmable Insertion Engineering (SPINE), which 77 

combines oligo library synthesis and multi-step Golden Gate cloning for programmed 78 

mutagenesis 32. Here we adapt SPINE as a programmable DMS technique. We validate this 79 

approach with an existing deep single mutational dataset in the PSD95 PDZ3 domain 20, and in 80 

addition, comprehensively characterize most double mutants. We corroborate earlier findings of 81 

wide-spread proximal negative epistasis and rare long-range positive epistasis in other position 82 

pairs for the PSD95 PDZ3 domain. Negative epistasis is enriched in the beta-sheets of the PDZ 83 

domain core where mutations likely exhausted threshold robustness 14. Positive epistasis is 84 

strongly enriched in pairs between sector 19 or conserved positions and residues that define the 85 

evolutionary clade of PDZ domains 33. Flex-ddG / Rosetta-Backrub-based simulations 34 suggest 86 

that positive epistasis has a structural mechanism in which a neutral mutation can compensate 87 

for the deleterious effect on protein stability of a second mutation. We find that conditional 88 

neutrality of mutations in these clade-specifying residues is required to compensate deleterious 89 

mutations in sector positions. This suggests that the specific epistasis between clade-specifying 90 
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residues and the PDZ sector facilitated the evolutionary expansion and specialization of PDZ 91 

domains. 92 

 93 

SPINE mediated construction of comprehensive single and double mutant libraries 94 

To construct mutant libraries, we adapted a method we recently developed for insertional 95 

mutagenesis that leverages programmable oligo library synthesis and multi-step golden gate 96 

cloning (Fig. 1A, , Suppl. Fig. 1.1) 32. Oligos were programmed to contain the desired mutational 97 

diversity in a custom algorithm (written for Python 3.7.3. and available at 98 

https://github.com/schmidt-lab/SPINE). To generate single mutant libraries, the wildtype PSD95 99 

PDZ3 backbone 20 was used as the template, while double mutant libraries used the single 100 

mutation library as the target gene backbone template (Fig. 1B). This means that double mutants 101 

are always separated by a fragment boundary, which in our case means that they are at least 2 102 

amino acids apart with an exponential increase in probability with greater distance from the 103 

fragment boundary (‘blackout regions’, Supp. Fig. 3.2B). All libraries at this step yielded greater 104 

than 100,000 colonies corresponding to greater than 30-fold coverage for single mutants and 105 

greater than 5,000,000 colonies corresponding to greater than 20-fold coverage for double 106 

mutants assuming 0.3% of the library has indels (the most common error with phosphoramidite 107 

chemistry 35, 36) and 15% of double mutations are in blackout regions. Due to inefficiencies of the 108 

DNA assembly, the wild-type original gene remained in the libraries at around 5% for the single 109 

mutation libraries (Supp. Fig. 2.1B) and 3.8% for the double mutation libraries (Supp. Fig. 3.1B). 110 

 111 

Single mutant library fitness 112 

We assayed the effect of single and double mutants using an established bacterial two-hybrid 113 

system 21, 37 that couples the binding of PSD95 PDZ3’s ligand (CRIPT) to the expression of 114 

Chloramphenicol resistance (Supp. Fig. 1.2). We used NextGen sequencing to quantify the 115 

frequency of each mutant before and after antibiotic selection, and calculated each mutant’s 116 

relative fitness compared to WT: 117 

! = log&' (
)*+
),+
∗ ),

./

)*./
0 118 

Count statistics showed that we have excellent depth for single mutant (greater than 100-fold at 119 

95% of positions; median ~6,500 counts, Supp. Fig. 2.1A-B). We determined fitness for all 1,235 120 

single mutants, with similar replicates (R2 0.93± 0.009) (Supp. Fig. 2.1C, Supp. Fig. 2.2). A 121 

median confidence interval relative to measured fitness for each single mutant (based on a 90% 122 

Poisson confidence interval) of 11.8% suggests good fitness measurement precision.  Most single 123 
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mutants are deleterious, while beneficial mutants are rare (Fig. 2A). Comparison of this deep 124 

single mutant dataset to earlier studies 20 showed good qualitative agreement (Fig. 2B), but we 125 

noticed that our dataset has less difference between the most beneficial and deleterious mutants. 126 

Furthermore, median fitness is not centered at 0 but shifted slightly to higher-than-wildtype fitness. 127 

A similar trend is in the reference dataset (Fig. 2B). This shift to higher fitness could be due to 128 

how the single mutant libraries are constructed. While each mutation in our approach was 129 

programmed to use a specific codon, McLaughlin et al. 20 used degenerate NNS primers, with N 130 

being any base and S being either G or C. This means that each amino acid substitution might 131 

be encoded by a different codon (e.g. Gly as either GGC or GGG) which are used at a different 132 

frequency in E.coli (15% and 37%, respectively). Codon content, in overexpressed proteins in 133 

bacteria, influences protein expression by affecting mRNA folding and translation, or overall 134 

cellular fitness 38. As expected from a programmable library generation method, empirical 135 

cumulative distribution functions for an NNS library and our library show that our approach used 136 

optimal codons more often (Supp. Fig. 2.3A).  Better codon usage could result in slightly better 137 

expression and thus higher fitness in particular for neutral mutations. Comparing fitness effects 138 

of equivalent mutations in the McLaughlin et al. and our datasets, we find that there was a 139 

monotonic, but non-linear relationship between fitness for each mutant, with only a few (<10%) 140 

outlying residues (Supp. Fig. 2.3B). Outlying data points usually had lower confidence values, 141 

suggesting they are due to from limited sampling. Despite minor quantitative differences, the 142 

agreement of single mutation fitness validates our library construction method. 143 

 144 

Double mutant library fitness 145 

Of the 750,880 possible double mutants, 648,138 (86%) are represented in the double mutant 146 

dataset, and 519,508 (69%) passed the read quality threshold with a median of 200 input reads 147 

for each position pair (Fig. 3A, Supp. Fig. 3.2A). Median fitness error relative to the measurement 148 

range is 0.15/2.2 log units = 6.9%, which is comparable to other double mutant datasets 25. 149 

Mapping read counts to linear distance in sequence reveals that most missing mutants are in 150 

close proximity (< 6 amino acids apart, Fig. 3B, Supp. Fig. 3.2.B). We expect this with our library 151 

generation technique in which two mutations never occur in the same fragment as only one 152 

mutation was encoded in each oligo (see methods). At 17-fold the median depth was lower than 153 

single mutants (Supp. Fig. 3.1A-B), however, replicates were in good agreement (Supp. Fig. 154 

3.1B). Many double mutants have a strong deleterious effect on fitness, similar to single mutants 155 

(Fig. 3C), but improved fitness (compared to wildtype) is evident as well. 156 

 157 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2020. ; https://doi.org/10.1101/2020.06.26.174375doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.26.174375
http://creativecommons.org/licenses/by-nc-nd/4.0/


Running median surface approach to calculating epistasis 158 

If the relationship between measured fitness and underlying biophysical effects of mutations is 159 

non-linear, due to protein folding thermodynamics or cooperativity, a linear model of the fitness 160 

landscape will yield many non-specific epistatic interactions 39. To detect epistatic interactions that 161 

are specific, i.e. depend on identity of the involved residues and mutations, the global nonlinearity 162 

between biophysical effects of mutations and fitness phenotype must be estimated. A null-model 163 

to infer this landscape is a running median surface approach originally developed for determining 164 

protein structures from deep mutagenesis data 25. This approach also helps accounting for non-165 

linearities that can result from varying uncertainty of fitness measurement (e.g. low read counts 166 

for low fitness variants), fitness measurements near the lower measurement limit of the fitness 167 

assay, and non-specific thermodynamic epistasis. We calculated epistasis using running quantile 168 

surfaces of average local fitness for double mutant data that was not impeded by measurement 169 

errors and passed read thresholds (15% and 44% of the double mutant space for positive and 170 

negative epistasis, respectively). A surface representing the average local fitness of double 171 

mutants is calculated using local polynomial regression (Fig. 4A). Then the 10th and 90th 172 

percentile fitness surface were calculated from a fitness distribution of a double mutant’s closest 173 

neighbors in single mutant space. Double mutants are categorized as positive epistatic if their 174 

surface-corrected fitness value was above the 10th percentile, and negative epistatic it was below 175 

the 90th percentile fitness surface (Fig. 4B). Overall, adding fitness of single mutants predicted 176 

double mutant fitness only moderately well (Spearman correlation coefficient 0.63, Supp. Fig. 177 

4.1A) and many double mutants deviated from expected additivity, suggesting that epistasis is 178 

common in PSD95 PDZ3. Negative epistasis with an enrichment score > 2  or > 5 was observed 179 

in 72% or 16% of quantifiable position pairs, respectively (Supp. Fig. 4.1B). Conversely, positive 180 

epistasis enrichment greater > 2 or > 5 was found in 43% or 7% of quantifiable position pairs, 181 

respectively (Supp. Fig. 4.1C). Together this suggests that while epistasis is pervasive, weak 182 

negative epistasis is more common than strong positive epistasis. 183 

 184 

Spatial proximity of epistatic interactions 185 

DMS in proteins 2–4, 6–9, 13, 17, 26, 27 and nucleic acids 40–43 have suggested that epistasis is more 186 

likely to occur between proximal residues as opposed to distal residues. This is the basis of 187 

structure prediction from DMS data, which has been demonstrated for several model proteins 22, 188 
25. Comparing distance distributions in PSD95 PDZ3 shows that position pairs with epistatic 189 

interactions are more likely in proximal pairs (<12A minimal side-chain heavy atom distance, 190 

scHAmin, Fig. 4C). This trend was mostly driven by negative epistatic position pairs in that 50% 191 
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of negative epistatic and 25% of positive epistatic pairs are <12A apart. While a small cluster of 192 

proximal pairs (5-7A) with positive epistatic interaction can be seen in the data, most appear to 193 

be distal interactions (>12A). Note that missing data is unlikely to affect to this observation as only 194 

4% of residues pairs with a linear sequence distance of < 6 amino acids have a minimal side-195 

chain distance of > 12A.  The distinction between proximal negative epistasis and distal positive 196 

epistasis is apparent when we overlay the type and magnitude of epistasis onto the PSD95 PDZ3 197 

contact map (Fig. 4D) or structure (Fig. 4E-F). While the position pairs with enriched negative 198 

epistasis make structural contacts (filled yellow circles on grey background), this is not the case 199 

for positions with enriched positive epistasis (open red circles on white background), which often 200 

occurs over long distances. Protein folding is mediated by structural contacts, for example 201 

hydrophobic interactions in the core of the protein 44–46. This explains why fitness of double 202 

mutants is particularly impaired when both positions are mutated to disruptive (proline), bulky 203 

(tryptophan), or charged (glutamate, aspartate) amino acids (Supp. Fig. 4.2A). Grouping double 204 

mutant fitness by descriptors that capture amino acid property of wildtype and mutants illustrates 205 

this trend further. Fitness is strongly decreased in double mutants if both wildtype positions are 206 

aromatic or non-polar (Supp. Fig. 4.2C). The stratification of epistasis in double mutants by amino 207 

acid paints a different picture (Supp. Fig. 4.2B&D). As expected, mutations to bulky aromatics 208 

(Phe or Trp) or proline show strong negative epistasis in the background of proline and tryptophan 209 

mutations at a second site. In the background of second site proline or tryptophan mutations, 210 

negative epistasis is also observed for many charged  and polar mutations. The same charged or 211 

polar mutation in the background of small non-polar (valine, leucine, isoleucine) mutations, 212 

however, show positive epistasis (Supp. Fig. 4.2B). Sign dependence of epistasis on background 213 

mutation type is strongest when aromatic residues are mutated to charged residues (Supp. Fig. 214 

4.2D). Together this data suggests a multi-faceted mechanism for how epistasis arises in PSD95 215 

PDZ3.  216 

 217 

Strong negative epistasis arises from exhausted threshold robustness 218 

Theoretical and experimental work supports a mechanistic connection between negative epistasis 219 

and threshold robustness 14, 47–49. Single mutations may have little impact on fitness if their effect 220 

is buffered by excess stability. If the first mutation largely exhausts this stability threshold, 221 

subsequent mutations will have a non-additive (i.e., epistatic) impact on fitness even if individually 222 

they minimally impact fitness. 2D histograms of the individual fitness of single mutations binned 223 

by epistasis provides a way to visualize that exhausted threshold stability can explain strong 224 

negative epistasis in PSD95 PDZ3. For the least fit double mutant position pairs (2.3 percentile), 225 
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negative epistasis was common (mean epistasis score = -1.39± 0.008, Fig. 5A). Epistasis was 226 

most negative when single mutants were neutral, i.e. individually had minimal impact on fitness 227 

(Fig. 5B). This suggests that single mutants already exhausted excess stability or ligand binding 228 

activity such that a second neutral mutation led to a strong decline in fitness. Conversely, in double 229 

mutants that had near wildtype fitness or even better than wildtype fitness (97.7 percentile) 230 

positive epistasis was prevalent (mean epistasis score = 0.5±0.001, Fig. 5A). For this group, 231 

positive epistasis was strongest when a deleterious mutation occurred in the background of a 232 

neutral mutation (Fig. 5C). 233 

 234 

Residues for which double mutations improved protein stability are enriched for positive epistasis 235 

To investigate the mechanistic link between fitness and epistasis we used the “flex ddG” protocol  236 
34, implemented in Rosetta, to model the effect of independent and pairwise mutations in PSD95 237 

PDZ3 on protein stability. This protocol first generates conformational ensembles by a local 238 

sampling of backbone and side-chain flexibility using Rosetta’s backrub algorithm. After repacking 239 

and global minimization, changes in folding free energy are estimated between the simulated 240 

wildtype protein vs. a single or double mutant (DDG). Overall, there was a weak correlation 241 

between fitness and estimated DDG (R = -0.25, p < 2.2e-16) and no correlation between epistasis 242 

and estimated DDG (R = -0.073, p<2.2e-16). However, mutations in residues that are enriched for 243 

either negative or positive epistasis are more destabilizing (larger DDG) than mutations in residues 244 

pairs without epistasis (null set, Fig. 5D-E). We then calculated the difference in protein stability 245 

between a double mutant and each respective single mutant: 246 

∆∆∆2 = ∆∆234 −6∆∆274 247 

A negative DDDG indicates that the double mutant is more stable than the added independent 248 

effects of single mutants. Inspection of the empirical cumulative distribution function for DDDG 249 

revealed that mutations in residue pairs enriched for positive epistasis are more likely to result in 250 

greater protein stability than expected from the added effects from each single mutant (t.test p< 251 

0.0001, Fig. 5F). No stabilizing effect is observed between residues pairs that are enriched in 252 

negative epistasis.  253 

What is the relationship between epistatic stabilization (DDDG, lower is more stable) and non-254 

additive fitness (Dfitness, higher is better)? Reiterating the weak or absent correlation between 255 

fitness or epistasis with calculated protein stability, we find a similar range and distribution of z-256 

scored Rosetta scores for single mutants in negative epistasis, no epistasis, and positive epistasis 257 

subsets (Supp. Fig. 5.1). However, when we use a vector representation to overlay DDDG and 258 
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Dfitness (Fig. 5G, arrows) onto single mutant Rosetta scores (Fig. 5F, bin centers represented 259 

as grey dots), we observe distinct differences between negative and positive epistasis. In position 260 

pairs that are enriched for negative epistasis, the arrows generally point straight down. This 261 

means that there generally is little additional stabilization in the double mutant (DDDG ~0) and that 262 

double mutants are less fit than predicted from summed single mutant fitness. In position pairs 263 

that are enriched for positive epistasis, however, arrows generally point to the left and up. This 264 

means double mutants are generally more stable than predicted from the protein stability of single 265 

mutants, and that the fitness of double mutants is greater than predicted from the fitness of single 266 

mutants. This effect was strongest in position pairs that had the highest enrichment of positive 267 

epistasis (Fig. 5G, right panel, arrow color). In aggregate this suggests a mechanism for the 268 

positive epistasis observed in these residue pairs: mutations that in the wildtype PSD95 PDZ3 269 

background would be destabilizing are less stabilizing in the background of a second mutation, 270 

which itself is neutral (Fig.  5C) and does not alter stability (ΔΔG ~0, Fig. 5G). 271 

 272 

Epistasis and PDZ protein sectors 273 

The premise for 3D structure prediction from deep mutational scanning is that specific epistasis 274 

is enriched between proximal residues and is less common between distal residues 22, 25. While 275 

residues pairs with enriched negative epistasis follow this trend in our dataset, positive epistasis 276 

more frequently occurs over longer distances (Fig. 4C-F). We therefore sought other features of 277 

PSD95 PDZ3 that could explain the observed patterns of positive epistasis (Supp. Fig. 6.1A). As 278 

the first feature, we calculated positional conservation using the Kullback-Leibler divergence of 279 

positional amino acid frequency in a PDZ family alignment 33 versus the amino acid frequency in 280 

vertebrate protein deposited in Uniprot. The second feature is based on previous DMS in PSD95 281 

PDZ3 that defined positions that show epistasis with respect to binding wildtype CRIPT ligand vs. 282 

a class-switching T-2F ligand 20. The third feature is based on a reanalysis of that dataset, to define 283 

a set of adaptive positions that are either class switching (gain of binding to T-2F with loss of 284 

binding to CRIPT) or class-bridging mutations (gain of binding to T-2F and maintain binding to 285 

CRIPT) 21. The fourth feature describes a residue’s spatial proximity to the ligand 21. The fifth 286 

feature is based on studies in PSD95 PDZ3 that proposed sparse networks of co-evolving 287 

residues, ‘sectors’ 18, 19, as the mechanistic basis for a protein’s function. Sector positions are 288 

sensitive to mutations whereas non-sector positions are more tolerant, which suggested that the 289 

sector architecture provides mutational robustness and adaptability 21. The sixth feature is 290 

evolutionary sequence conservation (coupling) among sets of residues, which can point to an 291 

interdependence of phenotypes that arise from genetic variation 23. We tested which feature can 292 
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explain positive epistasis using Fisher’s Exact Test, with the null hypothesis of independence. 293 

Positive epistasis (>3sd, Supp. Fig. 6.1C) was enriched in conserved residues (p-value 0.002), 294 

in positions that enable ligand class-switching and class-bridging (p-value 0.03), strongly in 295 

positions that contribute to ligand specificity (p-value 2.5x10-6), and in sector positions (p-value 296 

8.5x10-5). Positive epistasis was not enriched in residues that contact the ligand (p-value 0.24) 297 

nor in evolutionarily coupled positions (p-value 0.76). For negative epistasis (>2sd) the null 298 

hypothesis was not rejected for any category (p-value > 0.05, Supp. Fig. 6.1B), suggesting that 299 

perhaps it is determined by perhaps other properties, such as protein stability and folding. This is 300 

in line with our observation that negative epistasis occurred predominantly along core beta-sheets 301 

(Fig. 4E). In aggregate, these results reaffirm the connection between epistasis and evolutionary 302 

processes such as adaptation 14, 16. They provide further support for the theory that protein sectors 303 

originate from non-local (i.e. long-range, allosteric) interactions between residues that provide 304 

conditionally neutral capacity –here measured as positive epistasis– to adapt to fluctuating 305 

selection pressures and fitness conditions 20, 21. 306 

 307 

Positive epistasis in clade-specific positions 308 

The special relevance of epistasis in PDZ family diversification becomes even more evident from 309 

a network analysis of positive epistatic interactions in PSD95 PDZ3. It reiterates that almost all 310 

strong interactions (enrichment score > 3sd) are mediated by sector and/or conserved residues 311 

(Fig. 6A-B, yellow and blue circles). The two exceptions are positions F340 and L342 (red circles), 312 

which do not belong to the PDZ sector and are not evolutionary coupled with other PDZ residues, 313 

but clearly form the central hubs of a network from which interactions with evolutionarily-coupled 314 

residues radiate. Another smaller hub is centered around H372, which is important for ligand 315 

class-switching 20, 21. This organization around F340 and L342 is noteworthy as they belong to a 316 

group of residues that identify the clade of PDZ domains. PDZ domain usage expanded greatly 317 

along the stem leading from choanoflagellates (the closest living relatives of animals), and later 318 

metazoans. A comparison of global entropy vs. within-clade entropy of all positions revealed that 319 

six residues (F340, I328, D332, G333, S339, L342 in PSD95 PDZ3) alone can classify >95% of 320 

PDZ domains to the correct evolutionary lineage 33. Two of these classifying residues (D332 and 321 

G333) are located in a loop with frequent deletions and insertions in PDZ domains. Two other 322 

classifying residues are in direct contact with the ligand (I328 and S339 in PSD95 PDZ3) and 323 

have negative epistasis in our dataset. F340 and L342, which are strongly enriched for positive 324 

epistasis, do not form direct contact with the ligand (Fig. 6C). Median fitness across all single 325 

mutants in F340 and L342 is near wildtype, a near-neutral phenotype, while single mutations in 326 
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connected sector and/or conserved residues decreased median fitness (Fig. 6A). In the 327 

background of neutral mutations in F340 or L342, however, median fitness upon mutating these 328 

connected residues was rescued or slightly improved over wildtype (Fig. 6B). This data argues 329 

that at least two of the six PDZ clade-specifying residues are intimately connected to a function-330 

defining coevolving set of amino acids. The fact that F340 and L342, unlike their coevolving 331 

interaction partners, have remained unchanged over the course of 600 million years of animal 332 

evolution suggests a key role for long-range epistatic interactions between clade-defining and 333 

function-defining residues in not only in PDZ expansion and specialization, but also maintenance 334 

of ligand specificity. 335 

 336 

Discussion 337 

Deep mutational scanning is an important tool to study epistasis in proteins. Comprehensively 338 

measuring the effects of mutations is key to map protein fitness, at least in the local sequence 339 

neighborhood, with high resolution. The underlying mutant libraries are commonly generated 340 

through a combination of degenerate oligos (encoding mutational diversity as NNS or NNK 341 

codons) and ligation, or an error-prone PCR process. Recently, programmed oligo pools have 342 

found wider adoption as an economical alternative to produce oligos carrying specific 343 

substitutions, which makes it easier to detect sequencing errors. Oligo pools, to our knowledge, 344 

have not been used to generate large scale double mutant libraries, which prompted us to adapt 345 

Saturated Programmable Insertion Engineering (SPINE) for this application. Compared to error-346 

prone PCR, which is easier to implement, SPINE has the advantage of stringent control the 347 

sequence, location, and number of mutations. Compared to degenerate oligo library design, e.g. 348 

used by Olson et al. 17, SPINE’s main advantage lies in its unambiguous assignment of 349 

sequencing read to mutations. Because mutational diversity is encoded as specific codons 350 

(instead of degenerate codons), we do not need internal barcodes to remove sequencing or oligo 351 

synthesis errors. Furthermore, SPINE uses 4-bp overhangs for Golden Gate assembly that 352 

uniquely define each fragment boundary as opposed to the degenerate K/M scheme. This means 353 

that the entire library can be assembled in a single reaction because each mutagenized fragment 354 

only ligates to the specific backbone amplicon that is missing this fragment, which simplifies library 355 

construction workflows. The downside of this approach is that two mutants must be at least 2 356 

amino acids apart and have there is a lower probability of observing double mutants separated 357 

by less than 6 amino acid. (Supp. Fig. 3.2B). Double mutant libraries constructed with SPINE 358 

therefore contain ‘black-out’ regions with low coverage. Given the relative equivalence to 359 

degenerate oligo-based library construction, what benefit does SPINE offer? One potential benefit 360 
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relates to the question of how epistasis affects long-term evolution of proteins, which requires 361 

investigation of higher-order interactions and epistasis. Experimental access to these 362 

experiments is readily achieved with SPINE. Any number of fragments, representing specific 363 

regions of a protein and each containing every single site mutation, can be assembled, in a single 364 

reaction, according to the logic encoded in the 4-bp overhangs. Because SPINE requires no error 365 

correction to distinguish mutations from sequencing or oligo synthesis errors, it makes more 366 

efficient use of sequencing platform throughput. 367 

 368 

In agreement with other studies, we found that weak epistasis was prevalent while strong 369 

epistasis was rare. Negative epistasis was enriched in position pairs that make structural contacts, 370 

suggesting that one underlying mechanism is direct interaction. A similar enrichment of epistasis 371 

which is specific (i.e., described not only by effect size but also mutation identity) in proximal 372 

residues was observed in the analysis of the GB1 double mutant dataset and this formed the 373 

premise for the 3D structure prediction from deep mutagenesis data 22, 25. Specific epistasis is 374 

thought to leave a strong signal in the co-evolution of directly interacting residues 16. Statistical 375 

models that use a maximum-entropy approach to identify co-evolution in natural sequences 376 

perform better when interactions between all residue pairs in a protein are explicitly modeled to 377 

account for epistasis, and these models particularly improve predictions involving sets of proximal 378 

residues 23. Despite enrichment, our data, in particular for positive epistasis (Fig. 4C, D, E), and 379 

other studies show that epistasis is not exclusive to structural contacts 17, 22, 25. This suggests 380 

epistasis can occurs through a mechanism other than direct contact.  381 

 382 

For PSD95 PDZ3, cooperative changes in sparse networks of residues (protein sectors 18, 19) may 383 

explain such indirect effects of long-range epistatic interactions. By assessing the impact of a 384 

global single mutations on PDZ binding the native CRIPT ligand or the non-native T-2F ligand, 385 

statistically significant epistasis was observed in a set of residues that largely overlapped with the 386 

PDZ protein sector 20. For four residues (G322, G329, G330, and H372) positive epistasis was so 387 

strong that certain mutants at these positions were class-bridging or class-switching with respect 388 

to T-2F binding. Only H372 is in direct contact with the ligand suggesting that mutational effects in 389 

the protein sector mediated epistatic effects on ligand binding. The structural basis for this was 390 

described in a later study 21. Conditionally neutral (adaptive) mutations in sector positions, for 391 

example in G330, stabilized additional conformational states to enable ligand class-bridging, 392 

which was subsequently exploited by mutations in H372 for class-switching. Neutral G300 393 

mutations are therefore crucial for the adaption of PDZ to bind new ligands. Consistent with these 394 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2020. ; https://doi.org/10.1101/2020.06.26.174375doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.26.174375
http://creativecommons.org/licenses/by-nc-nd/4.0/


studies, we recorded the strongest positive epistasis signal between H372 and G329 or G330 395 

(Fig. 4B, upper left triangle) and we could establish a relationship between positive epistasis, 396 

adaptive mutations, and sector positions (Supp. Fig. 6.1B). In fact, co-evolving residues clearly 397 

organize into a network that is strongly enriched for positive epistasis (Fig. 6). 398 

 399 

Two residues (F340 and L342) are part of this positive-epistasis network and have strong epistatic 400 

interactions with sector and/or conserved positions but are themselves not co-evolving with other 401 

PDZ residues nor mediating adaptation to new ligands. A phylogenetic analysis of the major 402 

clades of bilaterian PDZ domains revealed that these residues are not conserved across the PDZ 403 

family. They are, however, highly conserved within each PDZ clade 33. In 600 million years of 404 

animal evolution, over which the PDZ family saw drastic evolutionary expansion and gained more 405 

than 300 PDZ domains, these positions have remained constant. This aligns well with the 406 

evidence that positions with strong epistasis have a low likelihood of reversion due to 407 

acclimatization 50. In light of apparently strong purifying selection, the epistatic interaction of F340 408 

and L342 with sector positions in PDZ suggests a mechanism for how clade-specifying residues 409 

may have aided the evolutionary adaptation to different PDZ ligands. Restricted and rugged 410 

fitness landscapes due to negative epistasis constrict evolutionary pathways, while positive 411 

epistasis can provide paths that would otherwise be blocked by deleterious mutations and thus 412 

accept a wider range of mutations 16, 39. Conditionally neutral mutations in positions 340 and 342, 413 

through non-local allosteric mechanisms, stabilize the otherwise deleterious effects of adaptive 414 

mutations in sector positions, which by its cooperative nature, affects ligand binding. In some 415 

cases, this results in gain of function for new ligands, and if new ligand specificity provides a 416 

selective advantage these mutations become fixed. Positions 340 and 342 are then part of the 417 

genetic background that determines ligand specificity. Because subsequent mutations in these 418 

positions would negate their stabilizing effect and compromise ligand specificity, positions 340 419 

and 342 now have come under purifying selection and thus emerge as clade-specifying residues. 420 

Future studies that assess specificity of PSD95 PDZ3 single and double mutants towards 421 

members of a randomized peptide ligand library are needed to test whether this adaptive path 422 

involving mutations in position 340 and 342 and sector positions is plausible. 423 

 424 

Based on mutagenesis in PDZ and other proteins 49, 51–53, an ‘outside-in’ principle for protein 425 

adaption was proposed, in which adaption begins with mutations distant from active sites. Distant 426 

mutations are often neutral because their spatial separation from active sites makes it less likely 427 

that they break existing function. At the same time, distant mutations could provide access to new 428 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2020. ; https://doi.org/10.1101/2020.06.26.174375doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.26.174375
http://creativecommons.org/licenses/by-nc-nd/4.0/


conformational states that are exploited by mutations closer to the active site. In the limit that PDZ 429 

is a small protein, the greater spatial separation of F340 and L342 from the ligand binding site, 430 

compared to sector positions (Fig. 6C), may be significant in light of this theory. The data 431 

presented here and previous work 20, 21 are consistent with the idea that residues in spatial 432 

proximity to the ligand (Fig. 2, asterisks) are the primary determinants of ligand binding. 433 

Adaptation to new ligands involves mutations in sector positions that are typically several shells 434 

away from the binding pocket. The effect of sector mutations is modulated by even more distant 435 

residues through positive epistasis. According to this model, an outside-in hierarchy of layers 436 

(clade-specifier > sector > active site) act in concert to define binding phenotype. Further 437 

experiments are needed to rigorously test this idea and generalize it to other proteins, but 438 

extensive biochemical data and sector descriptions are available for kinases 54, dihydrofolate 439 

reductase 53 and cryptochrome 55 whose functions are compatible with a DMS-style fitness assay. 440 

SPINE could help construct the required large-scale double and higher-order mutant libraries. 441 

 442 

Materials and Methods 443 

Oligo design 444 

Oligo sequences are generated using a custom algorithm (written for Python 3.7.3. and available 445 

at https://github. com/schmidt-lab/SPINE).  446 

 447 

Target gene fragmentation 448 

The PSD95 PDZ3 gene was a gift from Rama Ranganathan. The PDZ sequence was replaced 449 

with a few alternative codons to remove recognition sequences for the restriction enzymes used 450 

in cloning. This new sequence was synthesized by Genscript before sequencing the donated 451 

plasmids. The PDZ sequence was divided into 10 evenly distributed fragments to the nearest 452 

codon (Fig. 1A, Suppl. Fig. 1.1A). Each fragment break site is adjusted to create unique cut site 453 

overhangs for Golden Gate cloning. If adjusting one fragment position causes any fragment to 454 

exceed the maximal length, the other fragments are adjusted to equalize fragment distribution 455 

below this length threshold (Suppl. Fig. 1.1B). 456 

 457 

Target gene primer design for inverse PCR 458 

Forward and reverse plasmid primers are designed to amplify the backbone for each target gene 459 

fragment (Supp. Fig. 1.1B). Additional non-annealing sequences are added to the primer’s 5’ end 460 

encoding for inward-facing BsmBI recognition sites with the cut site including the first and last 461 

codon of the fragment (three bases) plus one base extension for the four base cut site. These 462 
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primers are optimized for melting temperature and specificity by adjusting the length of the 3’ end. 463 

Melting temperatures are set between 55˚C and 61˚C based on calculations from both Sugimoto 464 

et al. 56 and SantaLucia and Hicks 57. A primer is flagged as nonspecific if annealing temperatures 465 

are greater than 35˚C at any other position in the plasmid. Non-specific primers are made specific 466 

by extending the primer or, if max melting temperatures are exceeded, the fragmented site is 467 

adjusted.  468 

 469 

Design oligos that encode each mutation 470 

For each gene fragment, a loop is run to generate oligos for 19 mutations for each position within 471 

that fragment, starting after the first codon and ending before the last codon to account for the 472 

restriction enzyme cut sites. Therefore, to account for the cut sites, sequential fragments overlap 473 

by two codons. Mutations were generated by selecting each of the 19 amino acid codons weighted 474 

by their codon usage frequency in E. coli (obtained from Genscript) (Suppl. Fig. 1.1C). Codon 475 

usage frequencies below 0.1 were removed before selection with bias. The selected mutant 476 

codon replaced the existing wild type codon when assembling the oligo. Oligos consist of a bio-477 

orthogonal barcode for specific subpool amplification, BsmBI recognition sites, and the fragment 478 

sequence with a mutation (Figure 1B). Barcodes are courtesy of the Elledge lab 58. In detail, each 479 

oligo starts with a forward subpool specific barcode, appended with a forward-facing BsmBI 480 

recognition sequence plus one base to bring the cut site into frame. The fragment with a mutation 481 

is appended followed by one base to bring the cut site into frame, a reverse facing BsmBI 482 

sequence, and a reverse subpool specific barcode.  Due to the inefficiencies of the DNA 483 

assembly, the wild-type original gene remains in the libraries at around 5% for the single mutation 484 

libraries and 1.5% for the double mutation libraries, which serves as an internal control. 485 

 486 

Design of subpool amplifying oligos 487 

Forward and reverse subpool specific oligo primers are generated by testing annealing of a 488 

candidate primer sequence to the respective barcode, BsmBI recognition, and cut sequence. 489 

These primers are optimized for annealing temperature as described above, however, because 490 

the 3’ end is limited to the cut site, melting temperatures are optimized by adjusting the 5’ end or 491 

swapping the barcode sequence (Suppl. Fig. 1.1D).  492 

 493 

In silico quality control 494 

A final in silico quality control is run to check for the creation of new BsaI or BsmBI recognition 495 

sites and check for nonspecific subpool primers across all oligos (Suppl. Fig. 1.1E). If a BsaI or 496 
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BsmBI recognition site is created, a codon within that recognition site will be changed to an 497 

alternative codon maintaining the amino acid sequence. Non-specific subpool primers are 498 

identified by an annealing temperature greater than 35˚C for any position in any oligo other than 499 

the designed position. If a primer is non-specific, that subpool amplification barcode is replaced 500 

with another barcode and quality control is repeated. All oligos and primers are exported as 501 

FASTA files for ordering.  502 

 503 

Oligo library subpool amplification  504 

A 7.5K oligo library synthesis (OLS) pool containing 1577 oligos for the PSD95 PDZ3 gene. OLS 505 

subpools corresponding to a given gene fragment were PCR amplified using Primestar GXL DNA 506 

polymerase (Takara Bio) according to the manufacturer’s instructions in 50 µl reactions using 1 507 

µl of the OLS pool as the template and 25 cycles of PCR. The entire PCR reaction is run on 1% 508 

agarose gel and the DNA at 230bp was purified (Zymo Research). See Supplemental Figure S2.  509 

 510 

Assembly of single mutation OLS fragments and target gene backbone  511 

To insert the OLS subpools into target gene backbones, complementary BsmBI sites to those on 512 

the OLS fragments of a respective subpool were added by PCR using Primerstar GXL DNA 513 

polymerase (Takara) and 100 pg of wildtype channel as template DNA (Supplemental Figure 514 

S3A). PCR products were purified using a 1% agarose gel to remove any undesired PCR by-515 

products.  516 

Target gene backbone PCR product with added BsmBI sites and the corresponding OLS 517 

subpools were assembled using BsmBI-mediated Golden Gate cloning 59 (Supplemental Figure 518 

S3B). Each 20 µl Golden Gate reaction was composed of 100 ng of backbone DNA, 20 ng of OLS 519 

subpool DNA, 0.2 µl BsmBI (New England Biolabs), 0.4 µl T4 DNA ligase (New England Biolabs), 520 

2 µl T4 DNA ligase buffer and 2 µl 10 mg/ml BSA (New England Biolabs). These reactions were 521 

placed in a thermocycler with following program: (i) 5 min at 42˚C, (ii) 10 min at 16˚C, (iii) repeat 522 

(i) and (ii) 40 times, (iv) 42˚C for 20 min, (v) 80˚C for 10 min. Reactions were cleaned up using 523 

Zymo Research Clean and Concentrate kits, eluted in 10 µl of elution buffer, transformed into E. 524 

cloni®10G chemically competent cells (Lucigen) according to manufacturer’s instructions. Cells 525 

were grown overnight at 30˚C to avoid overgrowth in 50 ml LB with 40 µg/ml kanamycin with 526 

shaking, and library DNA was isolated by miniprep (Zymo Research). A small subset of the 527 

transformed cells was plated at varying cell density to assess transformation efficiency. All 528 

libraries at this step yielded greater than 100,000 colonies corresponding to greater than 30× 529 

coverage for perfect mutations assuming 0.3% of the library has indels. All libraries 530 
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(corresponding to different subpools) of a given target gene were pooled together at an equimolar 531 

ratio, resulting in a mixture of mutations for every amino acid position (Supplemental Figure S3C). 532 

This completes a single mutation library. 533 

 534 

Double mutations library generation 535 

The double mutation library was generated by using the single mutation library as the target gene 536 

backbone for the insertion of another oligo subpool. Each oligo subpool was repeated using the 537 

methods described above (SPINE method) and mixed with equimolar ratio. This results in double 538 

mutations only across gene fragments and not within fragments. For the high number of variants 539 

expected, the Golden Gate reaction was transformed in E. cloni®10G ELITE electrocompetent 540 

cells (Lucigen). All libraries at this step yielded greater than 5,000,000 colonies corresponding to 541 

greater than 20× coverage. 542 

 543 

Bacterial Two-hybrid assay 544 

The bacterial two-hybrid assay is based on PDZ3 binding to the CRIPT ligand. PDZ3 variants with 545 

a high affinity for the CRIPT ligand will recruit RNA polymerase α-subunit initiating expression of 546 

chloramphenicol acetyltransferase. This is a positive selection for highly functional PDZ3 variants. 547 

This system replicates the work of Salinas et al. 37 and all plasmid and cell reagents were received 548 

as a gift from Rama Ranganathan. The selection was performed with triplicate experiments. 549 

Plasmid from cells before selection and after selection was purified and the region covering the 550 

PDZ3 sequence was PCR amplified for 12 cycles with Illumina sequencing adapters. Amplicon 551 

DNA was purified with 1% agarose gel. 552 

 553 

NextGen Sequencing 554 

Libraries were sequenced using Illumina MiSEQ in 150 bp paired-end configuration. Allele 555 

frequency for single mutation and double mutation was determined by joining paired sequences 556 

with bbmerge, trimming and filtering sequences with bbduk, and a custom python script to identify 557 

alleles only matching the OLS programmed mutation. Specifically, sequence alignment was 558 

performed by first joining paired sequences with bbmerge, trimming ends and filtering with bbduk 559 

and a custom python script to identify alleles only matching the programmed mutation in the OLS 560 

pools. The 150 bp paired-end sequences when joined together provide full coverage of the PDZ 561 

gene. This was done using bbmerge with the ‘xloose’ setting for strictness and a ‘minoverlap’ of 562 

4 bp. This allows for greater number of reads to be merged for allele analysis. The 5’ extension 563 

setting at 2 bp allows for reads to be extended by 2 nucleotides for low overlap, but only allowing 564 
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for 2 iterations (‘ecct extend2=2’). Merged reads were trimmed with bbduk with the literal string of 565 

the Illumina adpaters. The minimum adapter length was set to 7 bp to allow for incomplete Illumina 566 

adpaters (‘mink=7’) and quality trimming using Q10 and minimum length equal to PDS95PDZ3 567 

gene length (249bp). Each processed read was then checked if it was the original sequence 568 

(recorded as WT), if not each read was analyzed for mutations at each position to search for 569 

mutations from the input library which were programmed on the OLS chip. If more mutations were 570 

found than expected (single or double) or if the read contained a mutation that did not match the 571 

programmed mutation it was removed and recorded as a bad read or a false positive, respectively. 572 

With read-pass filters that only recognize programmed mutations, we reduced the false-positive 573 

reads introduced by library generation and sequencing steps (Illumina reported at 1%). We 574 

detected and discarded on average 5% of reads due to false-positive mutations. Sequencing 575 

statistics are shown in Supp. Fig. 2.1. (single mutants) and Supp. Fig. 3.1. (double mutants).  576 

 577 

Data analysis 578 

Read count data for all replicates (three biological replicates, 3 technical replicates) was summed 579 

(see supplemental information for all datasets).  580 

 581 

Fitness & Epistasis: Data analysis of read count data adapted workflow and scripts reported by 582 

Schmiedel at al. 25 with minor adaptations. Specifically, a 90% confidence interval (Whigh and Wlow) 583 

was determined for single and double mutant fitness from read count data by using a Poisson 584 

distribution. Fitness confidence was calculated as  585 
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0 586 

 587 

flexddG Rosetta Backrub: Using PDB 1BE9 as the input structure, calculation of mutation effects 588 

on protein stability was implemented in RosettaScript as described by [ref] using Python scripts 589 

deposited at https://github.com/Kortemme-Lab/flex_ddG_tutorial. For each single and double 590 

mutant an ensemble of 35 mutant models were generated. Monte Carlo backrub was run for 591 

35,000 steps. Rosetta energy scores are calculated using the Rosetta Talaris energy function refit 592 

with a generalized additive model 34. 593 
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Figure 2. Single mutant �tne��. A� Distribution of single mutant fitness (wildtype fitness = 0). While many single mutations in
PSD95 PDZ3 are deleterious (fitness < 0) and few are beneficial (fitness > 0), most single mutants are neutral (fitness = 0; same as
wildtype). Positional effect of each mutation is shown on the right. Asterisk (*) denotes residues in contact with the ligand. B�
Distribution of single mutant fitness determined by McLaughlin et al. is in very good qualitative agreement, but has greater dynamic
range.
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Figure 5 Stro�g �eg�ti�e e�i�t��i� �ri�e� �ro� e���u�te� t�re��o�� ro�u�t�e��� A� !mpirical cumulative distribution "unction o" epistasis scores in t#e least fit
($ello% line) and fittest (red line) double mutants. &ertical das#ed line indicate median epistasis "or eac# double mutant set. B�C� 'inned scatterplot o" single mutant
fitnesses "or t#e least fit (B) and t#e fittest (C) double mutants. (ill color indicates mean epistasis o" double mutants in eac# bin. )#e number o" double mutants represented
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Supplemental Figure 1.1 In silico design of oligos and primers. A6 (he P/D78 PDZ3 gene (within its shuttle vector) is fragmented into %0 fragments9 Fragment brea5 sites are
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and add an inward!facing #sm#$ recognition site9C6 &n oligo pool is designed for each fragment and within the pool an oligo is designed for each amino acid within that fragment and
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Escherichia Coli Codon Usage Frequenc! "a#le

Fwd barcode Rev barcodeCGTCTCCCATG
GCAGAGGGTAC

TGTCGGAGACG
ACAGCCTCTGC

WT codon position 1:
ACC

mutated codon position 1:
$$"

biased replacementselect amino acid

Replace each amino acid with all %7 other amino acids 999

9999 for each codon position in the fragment

Repeat %7;

desired mutation: gl+cine
codon options with frequenc+ above 09%

$$" : 0938
$$C : 093,
$$A : 09%3
$$$ : 09%8

**(

*'&

**'

Fwd barcode Rev barcode

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2020. ; https://doi.org/10.1101/2020.06.26.174375doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.26.174375
http://creativecommons.org/licenses/by-nc-nd/4.0/


α

λcI

PSD95 PDZ3 variant li�rar�

Supplemental Figure 1.2. �a�terial t������ri� �tne�� a��a�.Mutant libraries are transformed into pZE1RM+pZA31+MC4100Z1 E. coli that have chromosomal copies of the lac
repressor lacIQ and the tet repressor !etR. Each "#Z variant is fused to theλcl #$A bindin% domain and e&pressed under control of a lac promoter' (hile the CRI"! li%and is fused to the
R$A pol)merase α*subunit. +hen CRI"! li%and interacts (ith "#Z' chloramphenicol acet)ltransferase is e&pressed' allo(in% the cell to survice challen%e (ith the antibiotic
chloramphenicol. ,) se-uencin% plasmid #$A isolated from transformed E.coli before and after chloramphenicol selection' the relative .tness of each variant can be calculated from
read count data.
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Supplemental Figure 2.3. S�����generate� li�rarie� u�e� �ptimal ����n� m�re ��ten. �� Empirical cumulative distribution of
codon frequency in a NNS degenerate codon library (black line) and the SPINE-generated library (red line) for PSD9! PD"#$ %ertical
dashed line represent median usage frequency of optimal codons$ &ith SPINE' more adapted codons are used more often$ ��
(omparing the )tness effect of singlemutants in this study and*c+aughlin et al$ sho,s amonotonic' but non-linear relationship$ Data
points are colored by con)dence in )tness determination' ,hich is based on 9-. Poisson con)dence interval (see *ethods)$ Data is )t
to an e/ponential model (black line)$ 0he fe, (12-.) outlying residues (see inset empirical cumulative distribution function of )tting
residuals) often had lo, )tness con)dence$
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A

C

��pp�e�e�ta� �ig��e ���� Co�ti�ge��� ta��es� A� Residue groupings. Independence of negative epistasis (B) and positive epistasis (C)
in PSD95 PDZ3 with respect to different residue groupings was tested using Fisher's Exact Test.

• The residue group that is class bridging / class switching (adaptive) was taken from Raman et al.
• The residue group that is sector positions, in proximity to ligand, or epistatic with respect to binding the wildtype CRIPT ligand vs. a class-

switching T-2F mutant was taken fromMcLaughlin et al.
• Evolutionary coupling had been computed for DLG1 PDZ1 (residues 214-317, 40% identity, 68% similarity to PSD95 PDZ3) by Hopf et al.

and deposited at https://marks.hms.harvard.edu/evmutation/index.html. Residues with evolutionary coupling score > 0.5 are shown.
Residue numbering was establish from a structural alignment of hDLG-PDZ1 (PDB 3RL7) to PSD95 PDZ3 (PDB 1BE9).

• Conservation was calculated as using the Kullback-Leibler (KL) divergence of positional amino acid frequency in a PDZ family alignment
reported by Sakaraya et al. versus the amino acid frequency in vertebrate proteins deposited in Uniprot. Residues with KL divergence >
1.5 are shown.

Negative epistasis was not correlated with any residue grouping; the null hypothesis of independence was not reAected (p > 0.5). Positive
epistasis was enriched in class switching/bridging positions, ligand epistasis positions, sector positions, and conserved positions, but not
position that are in proximity to the CRIPT ligand or those that are evolutionarily coupled.
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