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Abstract

Most mammalian stem cells undergo cellular division during their differentiation to produce
daughter cells with a new cellular identity. However, the cascade of epigenetic events and
molecular mechanisms occurring between successive cell divisions upon differentiation have
not yet been described in detail due to technical limitations. Here, we address this question by
taking advantage of the Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI)
reporter to develop a culture system allowing the differentiation of human Embryonic Stem
Cells (hESCs) synchronised for their cell cycle. Using this approach, we have assessed the
epigenome and transcriptome dynamics during the first two divisions leading to definitive
endoderm. We first observed that transcription of key markers of differentiation occurs before
division suggesting that differentiation is initiated during the progression of cell cycle.
Furthermore, ATAC-seq shows a major decrease in chromatin accessibility after pluripotency
exit indicating that the first event of differentiation is the inhibition of alternative cell fate. In
addition, using digital genomic footprinting we identified novel cell cycle-specific transcription
factors with regulatory potential in endoderm specification. Of particular interest, Activator
protein 1 (AP-1) controlled p38/MAPK signalling seems to be necessary for blocking
endoderm shifting cell fate toward mesoderm lineage. Finally, histone modifications analyses
suggest a temporal order between different marks. We can also conclude that enhancers are
dynamically and rapidly established / decommissioned between different cell cycle upon
differentiation. Overall, these data not only reveal key the successive interplays between
epigenetic modifications during differentiation but also provide a valuable resource to

investigate novel mechanisms in germ layer specification.
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Introduction

Epigenome mapping during differentiation has been of great interest in recent years
(Roadmap Epigenomics Consortium, et al, 2015). Indeed, histone modifications, enhancers’
formation and chromatin organisation have been directly linked to the establishment of cellular
identity during differentiation of embryonic and somatic stem cells (Gonzalez et al, 2015; Wang
et al, 2015; Adam et al, 2015). However, these studies have often compared undifferentiated
cells with cells produced several days after induction of differentiation thereby excluding early
events inducing cell identity acquisition (Roadmap Epigenomics Consortium, et al, 2015;
Tsankov et al, 2015; Dixon et al, 2015; Ziller et al, 2015). Furthermore, differentiation is often,
if not systematically, associated with cell division in mammalian stem cells (Orford and
Scadden, 2008). Consequently, mechanisms directing the acquisition of a new cellular identity
are likely to be dynamically regulated during cell cycle progression. However, the study of
these cell cycle related mechanisms is technically challenging in vivo due to ethical
considerations especially in human, quantity of biological material and the complexity of
cellular environment. In addition, stem cells grown in vitro are often heterogeneous in nature
which renders difficult the analyses of cell cycle related mechanisms during differentiation.
Together, these limitations might have concealed dynamic epigenetic regulations taking place
during cell cycle progression upon differentiation. Here we use human Pluripotent Stem Cells
(hPSCs) to address in part these questions. hPSCs can be grow in vitro almost indefinitely
and maintain their capacity to differentiate into near homogenous population of primary germ
layer progenitors using defined culture conditions devoid of unknown factor interfering with
experimental outcome (Vallier et al 2009). Furthermore, previous studies already suggested
transcription factors, epigenetic modifiers and signalling pathways that control cell fate choices
in hPSCs (Yiangou et al, 2018). Accordingly, enhancer maps have been established very
precisely during differentiation of hPSCs (Roadmap Epigenomics Consortium, et al, 2015;
Wang et al, 2015) while the functions of transcription factors directing endoderm
differentiation such as EOMES, GATAG, SOX17 and FOXA2 have been extensively studied

(Teo et al 2011; Chia et al 2019; Fisher et al 2017; Séguin et al 2008; Genga et al 2019).
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Finally, we and others have recently shown that human embryonic stem cells (hRESCs) can be
synchronised in different phases of their cell cycle using the FUCCI reporter system and then
induced to differentiate into a near homogeneous population of endoderm cells (Singh et al
2013; Singh et al 2015; Pauklin and Vallier, 2013). Taking advantage of this approach, we
further developed a culture system to differentiate hESCs synchronised for their cell cycle.
This approach enabled us to analyse epigenetic modifications occurring during the two first
cell cycles leading to endoderm, uncovering the early changes in the epigenome that direct

the acquisition of a new cellular identity during differentiation.

Results

Culture system to differentiate cell cycle synchronised cells

We and others have shown that hESCs can only be induced to differentiate into endoderm
during the G1 phase of their cell cycle (Pauklin and Vallier, 2013; Singh et al, 2013). Thus, we
hypothesised that hESCs synchronised in G1 could differentiate homogenously while
progressing through their cell cycle simultaneously. To confirm this possibility, a near
homogenous population of hESCs was isolated in the early G1 phase (EG1-hPSCs) by cell
sorting using the Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) reporter
system (Fig. 1a and Fig. S1a) (Sakaue-Sawano et al., 2008; Pauklin and Vallier, 2013).
FUCCI is a two-color (red and green) indicator that permits to follow cell cycle progression in
live cells without the need chemical inhibitors (Pauklin and Vallier, 2013, Singh et al, 2016).
The sorted cells were then replated in culture conditions inductive for endoderm differentiation
previously validated with a diversity of hPSC lines (Touboul et al 2010; Cuomo et al, 2020).
The resulting cells differentiated into a homogenous population of mesendoderm cells
expressing the protein T after 36 hrs and definitive endoderm cells expressing the protein
SOX17 after 48hrs hrs (Fig. 1b). Further analyses revealed that EG1-hPSCs progressed
through differentiation while being synchronised for their cell cycle for 24 hours which
corresponds to the duration of the first cell cycle after induction of differentiation (Fig. S1)

(Calder et al, 2013). Indeed, EG1-hPSCs progressed through S phase after 12 hrs and
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undergo a first division after 24 hrs to re-enter S phase 36 hrs after the induction of
differentiation. The resulting mesendoderm cells undergo a second division around 48hrs to
become endoderm cells which remain blocked in G1 until the end of our experimental time
frame (72 hrs) (Fig. 1a and Fig. S1a). Considered together, these results confirm that our
culture system can be used to differentiate cell cycle synchronised hESCs into endoderm cells,
thereby providing a platform for investigating molecular regulations occurring during cell cycle

progression upon differentiation.

Gene expression marking differentiation starts before cell division

Taking advantage of our culture system, we decided to investigate the dynamic of epigenetic
changes occurring during progression of cells cycle upon differentiation. For that, we
performed genome-wide analyses including RNA-Seq, ATAC-Seq, histone marks ChIP-Seq
(H3K4me3, H3K27me3, H3K27ac, H3K4me1, H3K36me3) on EG1-hPSCs differentiating for
12hrs (Early/Late G1 of 1st cell cycle); 24 hr (S/G2/M of 1st cell cycle); 36 hrs (S/G2/M phase
of 2nd cell cycle), 48 hrs (end of second cell cycle) and 60/72 hrs (G1 of 3rd cell cycle) (Fig.
1a). Quality and reproducibility of datasets were confirmed, demonstrating the robustness and
reproducibility of our approach (Methods). We first decided to characterise gene expression
in hPSCs differentiating into endoderm. In agreement with previous reports, RNA-Seq
analyses revealed a precise timing and succession of gene expression (Fig. S1b and S1c)
upon endoderm differentiation (Chu et al 2016; Cuomo et al 2020; Pauklin et al, 2016). Of
particular interest, SOX2 represent the first pluripotency marker to decrease upon induction of
differentiation in agreement with its known function in repressing mesendoderm specification
(Wang et al, 2012). Decrease in SOX2 was rapidly followed by the induction of mesendoderm
markers at 12 hrs starting with T, and followed by MIXL17 and EOMES (Fig. 1¢). Interestingly,
mesendoderm markers (T, EOMES, MIXL1) start to increase before 24hrs and thus before
the first division. On the other hand, pluripotency markers (OCT4/POU5F1, NANOG) continue
to be expressed after the first cell division (24hrs) thereby confirming that pluripotency factors

have a role in inducing mesendoderm specification (Radzisheuskaya et al 2013). However,
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pluripotency markers strongly decreased during the second cell cycle (36 hrs) while endoderm
markers (GATA4/6 then SOX17 and FOXAZ2) were induced, suggesting that endoderm
specification could start before the second division. These observations confirm that the first
cellular division upon differentiation produces mesendoderm cells (OCT4+/T+/SOX2-), while
the second division gives rise to endoderm cells (SOX17+/GATA6+/ OCT4-). Interestingly,
gene expression mostly varies during G1 phase transition (0-12hrs or 24-36hrs and 48-60hrs)
with low transcript change (both in number of genes and the fold-change) during S phase (Fig.
1d). Thus, each specification phase (pluripotency to mesendoderm, and mesendoderm to

endoderm) starts before the cellular division which ultimately produces a new cell type.

Cell cycle synchronisation of differentiating cells reveals new markers for endoderm
differentiation

To further investigate our RNA-Seq data and identify new markers for endoderm
differentiation, we performed k-means clustering of 6317 differentially expressed genes (0Oh,
12h, 24h, 36h, 48h, 60h and 72h). This analysis revealed 13 gene clusters whom expression
dynamically changes with differentiation, with several gene clusters displaying dynamic and
transitory expression (Fig. S1d and S1e). NOTUM, WLS, BAMBI, CRABP1/2, DACT1, NKD
and ID1/2/3/4 were immediately and transitorily expressed upon induction of differentiation
(clusters 5, 7; Fig. S1e and Table S1). Except for /D1, the expression of these genes have
not been described previously in the context of endoderm differentiation (Chu et al, 2016).
Their rapid decrease after induction might have masked their expression in previous studies
while suggesting that they could be involved specifically in the earliest step of differentiation.
We also observed gene clusters with expression patterns similar to those of known master
regulators of endoderm specification such as SOX17, and thus hypothesised that such genes
could have an important role. LZTS1 appeared to be particularly interesting since it is
expressed in the mouse primitive streak, it is bound by EOMES (Teo et al 2011), and its
expression is strongly induced after 36hrs of differentiation, following closely GATA4/6 and

SOX17 induction (Cluster 3; Fig. S1e and Table S1). Rapid upregulation of LZTS1 after 36hrs
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of differentiation was confirmed by western blot (Fig. 1e) while gain of function experiments in
hPSCs showed that LZTS7 overexpression increased expression of SOX177 thereby
suggesting a function in endoderm specification (Fig. 1f). Taken together, these analyses
reveal distinctive transcriptional waves of transcription during early cell fate decisions which

include previously unknown potential regulators of endoderm differentiation.

Early changes in gene expression are not associated with modification of chromatin
accessibility

Based on the dynamic expression pattern observed in our transcriptomic analyses, we
investigated whether the observed gene expression changes were associated with chromatin
modifications. For that, we performed ATAC-Seq (Buenrostro et al., 2013) analyses at different
time points during cell cycle progression upon differentiation (Fig. 1a). Computational
analyses revealed chromatin accessibility changes in 31,018 genomic regions, out of 253,349
analysed, between consecutive intervals of the time-series (|FC|22; adj-P<10™*). These
changes mainly occur in regions containing protein coding-genes and long intergenic
noncoding RNAs (Fig. S2a). Generally, chromatin accessibility changes in intergenic, intronic
or regions located upstream of genes occur independently of the cell cycle phase or stage of
differentiation (Fig. S2b). Indistinctly of genomic annotation, chromatin mostly compacts
during the first and last G1 phase, while changes between 24-48h were dominated by an
increase in accessibility (Fig. 2a) suggesting that different epigenetic regulations could occur
between the two cell cycles leading to endoderm. Despite the increase of chromatin
accessibility at intermediate stages, average chromatin accessibility was drastically reduced
over the three days (Fig. 2b) confirming that hESCs display an open chromatin landscape
which could provide the necessary opportunity for differentiation induction (Dalton, 2015). Of
note, genes close (up to 10kb) to accessibility-decreased regions in the first G1 phase were
enriched in GO terms of ‘nervous system development’ (P = 2.5e'®) and ‘Axon guidance’ (P
= 0.00036) suggesting that restriction of cell fate decision toward the neuroectoderm pathway

through chromatin reorganisation could be the first event of endoderm differentiation.
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Next, we correlated changes in gene expression with variant chromatin accessibility. We found
that while increase in MIXL1, T and EOMES expression took place in invariant chromatin
regions during the first 12h, SOX2 chromatin accessibility decreased in concert with its
expression (Fig. 2c). Similarly, change in transcription at 12-24h for MIXL1, GATA6, GSC,
CER1, T, LZTS1, and SOX17 did not display modification of chromatin accessibility (see:
http://ngs.sanger.ac.uk/production/endoderm). Correlation between fold change in ATAC-
Seq and RNA-Seq was only significant, and negative, in time intervals 12-24h, 36-48h which
are associated to S/G2 (P<0.005, Pearson's product-moment correlation; Fig. 2d) which
presents little transcriptional change (Fig. 1d). Similar analyses on protein coding genes
confirm the lack of correlation between change in chromatin and transcription (Fig. S2c)
thereby suggesting a weak coupling between transcriptional induction and chromatin
reorganisation during early differentiation. Taken together, these results suggest that
chromatin organisation changes rapidly during differentiation to block alternative cell fate
during cell cycle progression but not to enable the expression of genes marking

mesendoderm.

Footprinting analyses show dynamic regulation of transcription factor binding during
cell cycle progression upon differentiation

To further the understanding of the dynamic regulation in this system, we identified
overrepresented transcription factor (TF) DNA binding motifs in dynamic chromatin
accessibility regions observed during differentiation. Motif enrichment analyses revealed that
regions with increased accessibility contains motifs for effector of signalling such as
ACTIVIN/NODAL (SMAD2), BMP (SMAD1) and WNT (TCF4/12) which are known to drive
endoderm differentiation (Fig. S3a). On the other hand, CTCF binding motif was highly
enriched in regions with decreasing chromatin accessibility during G1 phase (0-12h, 48-72h,
Fig. S3a). Similarly, Activator protein 1 (AP-1) motifs (JUND, JUN, FOS, JUNB) were the most
significantly enriched in regions displaying a decreased ATAC-Seq peaks associated with

chromatin compaction (24-36h and 36-48h, Fig. S3a). Nonetheless, some TFs seem to have
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opposite function at different phases of cell cycle progression during differentiation. As an
example, CTCF binding motifs were also strongly associated with regions displaying an
increased accessibility in S phase progression (36-48h, Fig. S3a). Taken together, these motif
enrichment analyses suggest that different TFs could have specific functions during specific
phase of the cell cycle during the progression of differentiation.

To further identify active DNA regulatory elements, we performed digital genomic
footprinting as a proxy for transcription factor binding. This approach locates depleted narrow
regions within open chromatin created by TFs binding to DNA and preventing TnS cleavage.
Genomic footprinting was first introduced in DNase-seq, and it has been performed with
success in ATAC-seq (Corces et al, 2018). Using this approach, we identified more than 2
million reproducible, non-redundant, bias-corrected, putative TF binding sites, detected by two
independent software tools, and associated to genes that at the same stage were expressed
at least 1 FPKM (Methods; Fig. S3b). 75% of our Oh/EG1 footprints co-localize with H7-hESC
ENCODE footprints (Neph et al., 2012) confirming the accuracy of our analyses (Methods).
Interestingly, these analyses reveal that unique regions of TF footprints were annotated more
to promoter than intronic regions in hESC (0h) and DE (72h), but vice versa in intermediate
time-points (Fig S3c). This suggests that “stable” cell identities have a transcriptional network
relying mostly on promoters, whereas in cell transitions rely more on enhancer rewiring.

We next decided to identify transcription factors for which the binding results in major changes
in chromatin organisation in subsequent phase of the cell cycle. For that, we implemented a
predictive model to systematically study TF action in chromatin accessibility dynamics. A
functional linear model with a scalar response was used to predict the log,|FC| of ATAC-seq
chromatin accessibility in the peaks between two consecutive stages with |FC|>1.5 for TF
footprints that overlap those regions (Methods). The linear model was only considered when
at least 15 footprints overlapped the regions of interest. The analysis was performed using as
a reference footprints detected either at initial or final time points. We assessed the quality of
the fit for each TF by computing the multiple square correlation (RSQ) and F-ratio (Wald test).

P-values for the F-statistic were calculated to evaluate whether the fit to the data is better than
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what we would expect by chance. We observed low RSQ suggesting that DNA-binding of each
TF in isolation does not predict well ATAC-seq change confirming that combinatorial binding
of several factors is necessary in the context of chromatin (Reiter et al, 2017). Nonetheless,
we obtained statistically significant results for footprints of diverse TFs including for example
at 36h FOXA2, SMARCC1, CTCF, TP53 which were the best predictors for the decrease in
chromatin accessibility occurring at 48h (for detailed analyses see supplementary results).
Footprints for proteins of the AP-1 complex found at 48h were top predictors of chromatin
compaction between 24-48h (Fig. 3b), in agreement with our DNA motif enrichment analyses
(Fig. S3a). To investigate these observations further and reveal TF dynamics in a statistically
robust manner, differential ATAC-seq footprinting was performed with Wellington_bootstrap
(Fig. 3a), which is able to account for different sequencing depths of the datasets (Piper et al.,
2015). Most significant overrepresented TFs were NRF1 (12h), TP53 and TFAP2A/C (24h),
and JUND (36h), a member of the AP-1 transcription factor complex (Fig. 3c). Reanalysis of
the data with a recent algorithm for bivariate genomic footprinting showed similar results and
uncovered the GATA motif in increased chromatin accessibility at 48h (Fig. 3d). These results
confirm that different combinations of transcription factors could organise chromatin at specific
phases of the cell cycle upon differentiation. They also reveal significant effects of specific TF
binding in chromatin modulation and suggest that AP-1 factors could have a key function in

modulating chromatin accessibility after the first cell division.

MEK/ERK/p38/AP-1 signalling pathways control different steps of endoderm
differentiation

To validate the functional relevance of computational ATAC-seq analyses, we investigated the
importance of AP-1 signalling pathways in DE differentiation. For that, hPSCs were
differentiated in the presence of inhibitors for three different pathways which are known to
control the AP-1 complex: MEK1/2 (U0126-EtOH), p38-MAPK (SB203580) and JNK (JNK-IN-
8) (Fig. 4a). These analyses revealed that p38-MAPK inhibition blocked the expression of DE

markers (GATA4, SOX17, CDX2 and FOXA2, Fig. 4b-d and fig. S3d,e) without affecting the

10
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increase of primitive streak markers (T, EOMES, Fig. 4b and Fig. S3d) or the decrease of
pluripotency markers (OCT4/POU5F1, NANOG, SOX2, Fig. 4b and Fig. S3d) while promoting
mesoderm markers expression (MIXL1, NKX2.5, Fig. 4b and Fig. S3d). On the other hand,
JNK inhibition marginally increased expression of endoderm markers and inhibition of
ERK5/MAPK blocked DE differentiation while limiting pluripotency markers decrease (Fig. 4b-
d and fig. S3d, e). Thus, these data suggest that the p38-MAPK-AP1 pathway is necessary
for endoderm specification and for full dismantling of the pluripotency network. Combined
together, these experiments and the computational analyses shed light on the different effects
exhorted by the signalling controlling the AP-1 complex. MAPK-ERK seems necessary to exit
pluripotency during endoderm specification (Singh et al., 2012; Na et al., 2010) while MAPK-
p38 promotes endoderm induction by inhibiting mesoderm. This diversity of functions could
be achieved by dynamic interactions between the members of the AP-1 at different stages of

cell cycle progression upon differentiation.

Cell cycle progression upon differentiation is associated with dynamic histone
modifications

To further investigate the dynamic change in epigenetic state occurring during differentiation,
we performed ChlP-seq analyses for five histone modifications (H3K4me3 for active promoter
region, H3K4me1 and H3K27Ac for enhancer, H3K27me3 for repressed region, and
H3K36me3 for gene bodies of actively transcribed genes). We identified differential ChIP-seq
regions between consecutive stages, and observed that transition from pluripotency to DE
involved several waves of histone modifications (Fig. 5a). H3K4me3 and H3K27ac marks
were the most dynamic during differentiation. H3K4me3 decreases during the start of
differentiation (0-12h) in agreement with our ATAC-seq analyses suggesting that the first step
of differentiation consist in inhibiting alternative fate choice. In addition, early developmental
loci rapidly acquire H3K4me3 and H3K27ac marks during S phase (12-24h) confirming that
epigenetic modifications characterising differentiation could start before the first division.

Accordingly, regions surrounding key genes such as T, GSC, SOX17, EOMES, MIXL1,
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GATA6, GATA4, LHX1, FOXA2 acquire H3K27ac rapidly upon differentiation (0-12hrs, Fig.

5b; see http://ngs.sanger.ac.uk/production/endoderm). Major acquisition/increase of

enhancer marks (H3K27ac and H3K4me1) also occurs before the second division (24-36h) or
before the third cell division (48-72h) (Fig 5a). Accordingly, clustering of Jaccard indexes using
all the reproducible peaks in ChlP-seq and ATAC-seq (those with >100 regions) to quantify
the overlap of chromatin marks during differentiation confirmed that enhancer marks
(H3K27ac, H3K4me1) and open chromatin are very dynamic (Fig. 5¢). In addition, despite the
lack of quantitative peak changes, we could observe that H3K27me3 chromatin regions at Oh
and 72h were most dissimilar, and that H3K36me3 peak sets clustered into two groups: before
and after the first cell division (Fig. 5c). Change in H3K27ac/H3K4me3 and
H3K27ac/H3K4me1 seem to associated more than any other marks, while change in
chromatin accessibility was also linked with the deposition of these marks. As expected
H3K27me3 and H3K36me3 or H3K27me3 and H3K27ac were mutually exclusive.

We then decided to correlate the change in gene expression with histone mark acquisition
focusing on H3K4me1 and H3K27ac since 784 out of 954 H3K4me1 increased regions were
coincident with H3K27ac increase in 24-36h. We observed that, when both marks increased
simultaneously, genes in close proximity increased its expression proportionally to the size of
the overlap between the two chromatin marks (Fig. 5d). Interestingly, this correlation starts
immediately upon differentiation suggesting that tissue super-enhancer (SE, marked by
H3K27ac and H3K4me1 spanning an intersection of >3 kb) (Parker et al 2013; Hnisz et al
2013) seems to be initiated before division during the first S phase to fully established only
after the first division thereby following the induction of expression for key developmental
regulators (Fig. 1¢). Taken together, these data suggest the existence of hierarchy between
histone marks during differentiation. H3K27ac appears on key genes marking nascent
mesendoderm before or during the induction of their expression immediately after the G1
phase. On the other hand, H3K27me3 and H3K36me3 are less dynamically regulated and

seem to change after gene expression and/or chromatin organisation.
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Transient super-enhancers after each cell division define cell identity

Next, we decided to use our ChIP-Seq data to further characterise the enhancer regulatory
landscape defining cellular identity acquisition. For that, we identified at each time point poised
enhancers (PEs, H3K27ac-, H3K4me1+), active enhancers (AEs, H3K27ac+, H3K4me1+ <
3kb), and Super Enhancers (SEs, H3K27ac+, H3K4me1+ > 3 kb). As H3K4me3 has been
detected in promoters (Atlasi and Stunnerberg, 2017), we subdivided AEs and SEs as
proximal or distal according to presence of H3K4me3 (Fig. 6a). Distal AEs and Distal SEs
were the most dynamic regulatory regions with their number increasing immediately after
differentiation to peak at 36hr (Fig. 6b) and then decreasing until 72hrs. Proximal AEs and
poised enhancers were relatively stable during cell cycle progression. These results confirm
that SE establishment starts immediately upon differentiation to be consolidated after the first
division to establish a new cellular identity. We then perform clustering of Jaccard indexes to
identify similarities between regulatory regions during progression of cell cycle. Using this
approach, we observed that poised enhancers partially converted to distal AEs after one
division, especially at 36h. More interestingly, distal SEs at Oh and 72h were less similar to
those at 12/24h and 36/48h, respectively suggesting that acquisition and partial loss of SEs is
occurring actively at each cell division resulting in a new cellular identity (Fig 6c). Nonetheless,
while SEs were different before and after first cell division, SEs at 48hrs were a subset of those
established at 36h (Fig. 6d). For example, key mesendoderm/endoderm loci such as CER1,
EOMES, LZTS1, MIXL1 contain several SEs established and maintained after first cell division
(FC>4; P=0) (http://ngs.sanger.ac.uk/production/endoderm). Other SEs at 36h include
EOMES, LHX1, GSC, ZIC3, OTX2, DKK1, WLS, MYC, HAND1, WNT3, as well as some
members of the MAPK family, among others. Thus, SEs seem to be established following two
different regulatory mechanisms between the first and second division (Fig. 6e). A large
number of new SEs seem to be established after the first division at the mesendoderm stage,
while SEs characterising endoderm cells are simply maintained during the second division
and mesoderm specific enhancers are progressively lost. Thus, cellular identity acquisition is

achieved by the creation or selection of super enhancers starting before division thereby
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suggesting the existence of different epigenetic regulations between successive cell cycles

upon differentiation.

Discussion

Our data provide a comprehensive epigenetic resource outlining the progressive acquisition
of endoderm identity upon consecutive cell divisions. Our analyses also show that early
differentiation follows gradual and stepwise transitions following cell cycle. Indeed,
differentiation is initiated in the G1 phase and expression of differentiation of mesendoderm
markers is initiated before the end of S phase. This timing implies that the first step of
mesendoderm specification could be achieved through the re-organisation of the pluripotency
network induced by changing culture conditions. Nonetheless, we did observe the transitory
induction of early genes upon induction of differentiation. Most of these genes are known to
control signalling pathways such as WNT for NOTUM or BMP for BAMBI (De Robertis and
Kuroda, 2004; Zhang et al, 2015; Malaguti et al, 2019). In addition, some of these genes
(ID1/3/4) are controlled by BMP signalling which is added in our culture condition. Thus, these
genes might only mark a response to the change in culture conditions rather than actively
direct differentiation. Alternatively, they could also repress neuroectoderm differentiation.
Accordingly, we found that initiation of differentiation is associated with a decrease in
chromatin accessibility around neuronal related genes, suggesting that one of the first event
of differentiation is to block alternative cell fate specifications. Moreover, the rapid decrease in
SOX2 expression is likely to play a key function in this process. Indeed, SOX2 is a key
regulator of neuroectoderm specification while also being a key inhibitor of mesendoderm. On
the other hand, we could not detect major changes in chromatin organisation associated with
induction of mesendoderm markers suggesting that the corresponding genomic regions are
already accessible in pluripotent stem cells. This invariant chromatin accessibility could imply
that the reorganisation of the pluripotency network merely needs to activate the transcription
of mesendoderm genes without major changes in chromatin accessibility. This mechanism will

enable fast and rapid induction of differentiation following change of culture conditions. Such
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process is likely to be essential in a constantly changing environment such as the gastrulating
embryo.

Interestingly, tissue specific super-enhancers start to be established before division to
be fully established after division. Thus, transcription factors for which expression is induced
in S phase become fully active in the following G1 phase. Alternatively, some of these factors
could also act as mitotic bookmarking factors to program the identity of the newly create
daughter cells before cellular division (Festuccia et al, 2017). Similar mechanisms seem to
exist between the first division producing mesendoderm cells and the second division
producing endoderm cells. However, the second division is mainly associated with a reduction
in the number of super-enhancers. Thus, differentiation could start with the establishment of
diversity of tissue-specific super enhancers which are then successively selected to enable
production of more committed cell (either endoderm or mesoderm). Further functional studies
will help to identify the mechanism by which mesendoderm and endoderm transcriptional
networks could achieve divergent activities.

The JNK-JUN pathway inhibits exit from the pluripotent state via JUN binding on
pluripotency enhancers with OCT4, NANOG, SMAD2 and SMAD3 (Li et al, 2019b). By digital
genomic footprinting time-, cell phase-specific cis-regulatory elements related to the MAPK
signalling pathway were identified to participate in the closure of the pluripotency network. Our
results suggest that the AP-1 complex is likely to play a key part in the establishment and
resolution of the mesendodermal network toward endoderm. We found AP-1 complex-
associated TFs as best predictors of chromatin accessibility change in 24-48h and proved that
p38/MAPK is indispensable for endoderm specification by using small molecule inhibitors.
Thus, control of AP-1 activity by p38/MAPK which is likely activated by addition of FGF and
PI3Kinase inhibition in our culture system is essential for the first initial differentiation.
Transient AP-1-bound enhancers have been found during Oct4/Sox2/Klf4/cMyc (OSKM)-
mediated cell reprogramming, linked to the extinction of the somatic transcriptional network
(Madrigal and Alasoo, 2018). Thus, AP-1 could have a broad function beyond early human

development to eliminate chromatin roadblocks and facilitate cell-state transitions.
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Importantly, other transcription factors expressed in hPSCs such as NRF1, TFAP2C,
TP53 (Wang et al, 2017) and CTCF seem to have a key function in the early induction of
mesendoderm specification. CTCF is not only pivotal for the orchestration of topologically
associated domains and loops, but also it displays cell-cycle dependent DNA-binding (Oomen
et al, 2019). NRF1 is a methylation-sensitive TF that could behave as a pioneer factor during
early differentiation (Mayran and Drouin, 2018), while TFAP2C could act as a settler TF
(Slattery et al, 2014) binding all accessible sites before the first cell division. Moreover,
TFAP2C has been recently involved chromatin accessibility dynamics in early ectoderm
differentiation from hPSCs (Li et al., 2019). Thus, the mechanisms uncovered by our study
could also apply to alternative germ layers. Nonetheless, further investigation will be
necessary to understand the functions and the interplays of these different factors in
mesendoderm specification and during each cell cycle leading to endoderm cells.
Finally, our results also underline the importance to include cell cycle progression in epigenetic
and transcritpomic analyses. Indeed, our ChlP-seq profiling showed that during transition of
cell-identity H3K27ac presents its highest increase at 36h resulting in the apparition of novel
super-enhancers after the first cell division. However, most of them are lost at Day 3 and thus
could not be detected in previous studies using unsynchronized cells (Tsankov et al., 2015).
Furthermore, adding a cell cycle dimension in our analyses allowed to order molecular event
which successively lead to change in cellular identity. Of note, some of the mechanisms
uncovered are likely to be conserved in vivo. As an example, the formation of super-enhancers
and fate restriction by chromatin closure are in agreement with recent studies in mouse post-
implantation embryos (Argelaguet al., 2019). Thus, these regulatory mechanisms shaping the
epigenome are likely to be relevant not only for developmental processes but also for other

stem cells involved in normal homeostasis and diseases.
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Epigenetic regulations follows cell cycle progression during differentiation of human

pluripotent stem cells.

Madrigal et al.,

Figure Legends

Figure 1: Cell cycle synchronization during differentiation of hESCs reveals that each cell
division result into a new cellular identity. (a) Schematic representation of experimental setup to
differentiate synchronised EG1-FUCCI hPSCs into endoderm and samples collected for sequencing
analyses. Genome-wide data collected at each time point is indicated. (b) Immunofluorescence
analyses showing expression of primitive streak (T, 36 hrs), early-endoderm (EOMES, 48 hrs) and
definitive endoderm (SOX17, 72hrs) markers in FUCCI-hESCs differentiating into endoderm after
synchronisation. (c) Gene expression profile analyses showing selected genes that are differentially
expressed during cell cycle progression upon differentiation. (d) Number of differentially expressed
genes (FC>1.5; FDR<0.01) (right) and distribution of logz fold-changes (left) during cell cycle
progression upon differentiation. (e) Western blot analyses showing the expression of mesendoderm
markers (T), endoderm markers (SOX17, EOMES) and LZTS1 during differentiation of hPSCs into
endoderm. (f) Immunostaining showing the expression of pluripotency markers (NANOG, OCT4,
SOX2), endoderm markers (SOX17) and LZTS1 in hPSCs (control) and hPSCs overexpressing LZTS1

(LZTS1 OE).
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Figure 2: Chromatin accessibility during differentiation of hPSCs synchronised for their cell
cycle. (a) Number of regions showing significant chromatin accessibility increase (“opening”; FC>2 and
adj-P<10%) or decrease (“closing”; FC<2 and adj-P<10*) during progression of cell cycle during
differentiation of cell synchronised EG1-FUCCI hPSCs (0-12hrs: G1 to S during 15t cell cycle; 12-24hrs:
S to G2/M during 1%t cell cycle; 24-36 hrs: 1%t cell division to S during 2" cell cycle; 36-48hrs: S to G2/M
during 2" cell cycle; 48-72 hrs: 2™ cell division to G1 of 3™ cell cycle). (b) Normalised mean read-
enrichment in ATAC-seq consensus peaks during endoderm differentiation of EG1 FUCCI-hPSCs. (c)
ATAC-Seq and RNA-Seq genome browser track visualisation showing change in EOMES and SOX2
(GENCODE v29) expression and associated chromatin status during the first 36h of differentiation.
Data tracks shown correspond to the first replicates. Open chromatin represents a merged consensus
during differentiation. (d) Pearson's product-moment correlation between logz Fold-change in RNA
(reported by DESeq2) and fold-change of the maximum normalized ATAC-Seq signal in the two
replicates in a region 10kb upstream of the promoter of protein-coding genes. 95 percent confidence

interval is shown.

Figure 3: Digital genomic footprinting reveals the dynamic activity of key transcription factors
during progression of cell cycle upon differentiation. (a) Heatmap of normalized Tn5 insertions for
differential footprints (Wellington bootstrap score S>20). Red rectangles drawn indicate the results for
each pairwise comparison. (b) Top 20 best predictors of a functional linear model using TF footprints
at 48h to model chromatin accessibility change between 24-48h. P-value associated with the F-ratio, to
evaluate whether the fit to the data is better than what we would expect by chance, is shown for selected
TFs. (c) Overrepresentation analysis for TFs associated to differential footprints shown in (b). Each
differential footprint was first matched to the consensus list of footprints detected by FootprintMixture
and Wellington (see Methods). P-values (Chi-squared test; Benjamini-Hochberg multiple hypothesis
testing correction) indicate if proportions of footprints at each time point for a TF are significantly
different when comparing differential footprints and the total number of footprints at this time point. Only
TFs with adjusted P<0.01 have been labelled. (d) Bag plot depicting changes in flanking chromatin
accessibility (AFA) and footprint depth (AFPD) in ATAC-seq of endoderm differentiation between 24hrs

and 48hrs in human motifs. Statistically significant change in FA/FPD was evaluated by chi-square
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distribution. Motifs of genes that were not differentially expressed during endoderm differentiation (RNA-

seq) were removed. Outlier ARID5A (AFA=0.15, AFPD=0.27) was also removed from the plot.

Figure 4: Inhibition of AP-1 complex blocks endoderm differentiation of human pluripotent stem
cells. (a) Schematic representation of the experimental plan to characterise the functional relevance of
MEK1/2, JNK and p38 pathways in endoderm differentiation. hPSCs were grown for 3 days in culture
conditions inducing endoderm differentiation in the presence of small-molecule inhibitors. (b) Q-PCR,
(c) FACs and (d) immunostaining were performed after 3 days for pluripotency markers
(POU5SF1/0CT4, NANOG, SOX2), mesendoderm/mesoderm markers (BRACHYURY/T, NKX2.5,
CDX2, MIXL1) and endoderm markers (SOX17, EOMES, GATA4, FOXA2). For QPCR, the average of
2 separate experiments including 6 different biological replicates is provided with STD. For FACs, one-
way ANOVA was performed followed by Dunnett's multiple comparisons test where each of the 3

treatment conditions were compared against the control. For immunostaining, ccale Bar 200um.

Figure 5: Chromatin modifications occurs dynamically during cell cycle progression upon
differentiation. (a) Number of genomic regions containing dynamic chromatin marks in consecutive
time points based on histone ChlP-seq. (b) H3K27ac ChiP-seq for EOMES locus (GENCODE v29; first
replicate shown). (c) Hierarchical clustering of Jaccard Index values obtained for overlaps between
ChlIP-seq and ATAC-seq regions. (d) Gene expression versus length of the direct overlap between

H3K4me1 and H3K27ac both increasing 24-36h (protein coding genes 10kb around).

Figure 6: Epigenetic dynamics during cell cycle progression upon differentiation reveals super-
enhancers assembly and loss to establish a new cellular identity. (a) Distribution of H3K27ac,
H3K4me1, and ATAC-seq signal in the enhancer regions shown in (b). (b) Enhancer classification
during endoderm differentiation: ActEnh_dist (H3K27ac+, H3K4me1+, H3K4me3-, < 3 kb);
ActEnh_prox (H3K27ac+, H3K4me1+, H3K4me3+, < 3 kb); Poised_Enh (H3K27ac-, H3K4me1+);
SupEnh_dist (H3K27ac+, H3K4me1+, H3K4me3-, > 3 kb); SupEnh_prox (H3K27ac+, H3K4me1+,
H3K4me3+, > 3 kb). (c) Hierarchical clustering of Jaccard Index values obtained for overlaps between

different enhancer regions. (d) Endoderm specific super-enhancers are a subset of those established
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at 36h. (e) Schematic model of super-enhancer establishment during endoderm differentiation at each

consecutive cell division.
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Figure 3: Madrigal et al., 2020
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Figure 5: Madrigal et al., 2020
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Supplementary Information

Cell culture of hESCs

hESCs (H9 from WiCell) were grown in defined culture conditions as described previously (Brons et al.,
2007). H9 cells were passaged weekly using collagenase IV and maintained in chemically defined
medium (CDM) supplemented with Activin A (10 ng/ml) and FGF2 (12 ng/ml). Pluripotent cells were
maintained in Chemically Defined Media with BSA (CDM-BSA) supplemented with 10ng/ml
recombinant human Activin A and 12ng/ml recombinant human FGF2 (both from Dr. Marko Hyvonen,
Dept. of Biochemistry, University of Cambridge). Cells were passaged every 4-6 days with collagenase
IV as clumps of 50-100 cells and dispensed at a density of 100-150 clumps/cm?. The culture media was
replaced 48 hours after the split and then every 24 hours. Alternative culture conditions were used to
maintain hPSCs used to study the role of ERK5-MAPK, p38-MAPK and JNK-MAPK. In sum, H9 and
hIPSC lines FSPS13B and cA1ATD were routinely maintained on Vitronectin (StemCell Technologies)-
coated plates in Essential 8 (E8) medium (Life technologies). Cells were passaged every 5-7 days using
0.5 uM EDTA and plated onto fresh vitronectin-coated plates in E8 medium. Medium was refreshed
every day. This change corresponds to modification of protocols in our lab and has no influence on

experimental outcomes.

FUCCI-hESCs lines
The generation of FUCCI-hESC lines has been described in (Pauklin and Vallier 2013) and are based

on the FUCCI system described in (Sakaue-Sawano et al., 2009).

In vitro differentiation of hESCs
FUCCI-hESCs were differentiated into endoderm described previously (Vallier et al, 2009).

Differentiation into endoderm was performed for up to 72 hours with a combination of cytokines as



described in (Pauklin and Vallier, 2013; Pauklin et al. 2016). For cells sorted by FACS, the cells were
collected and immediately placed into the endoderm differentiation media. Endoderm specification was
performed in CDM with polyvinyl Alcohol (CDM-PVA) prepared without insulin and supplemented with
50ng/ml FGF2, 1uM Ly-294002 (Promega), 100ng/ml Activin A, and 10ng/ml BMP4 (R&D) for 3 days.
Alternatively, and for cells grown in E8 medium, H9, FSPS13B or cA1ATD cells were plated as single
cells onto gelatin/MEF-coated plates in E8 medium supplemented with 10uM Y-27632. The medium
was refreshed the next day. Chemically Defined Media with Polyvinyl Alcohol (CDM-PVA) containing
100 ng/ml recombinant Activin A (CSCR, University of Cambridge), 80 ng/ml FGF2 (R&D Systems), 10
ng/ml BMP4 (CSCR, University of Cambridge), 10 uM LY29004 (Promega), and 3 uM CHIR99021
(Selleck Chemicals) was applied to the cells for 24 hours. The media was then replaced with fresh
CDM-PVA supplemented with 100 ng/ml recombinant Activin A (CSCR, University of Cambridge), 80
ng/ml FGF2 (R&D Systems), 10 ng/ml BMP4 (CSCR, University of Cambridge) and 10 uM LY29004
(Promega). The next day, the media was removed and RPMI media supplemented with 1X B27
(Lifetech), 100 ng/ml Activin A, 80 ng/ml FGF2 and 1X non- essential amino acids (Lifetech) was added
to the cells. To investigate the roles of ERK5-MAPK, p38-MAPK and JNK-MAPK, the endoderm
differentiation media was supplemented with 10 uM U0126-EtOH, 10 uM SB203580 or 1 vM JNK-IN-8

respectively.

Cell sorting by FACS

FACS on FUCCI-hESCs was performed as described before (Pauklin and Vallier, 2013; Sakaue-
Sawano et al., 2009). In sum, hESCs were washed with PBS and detached from the plate by incubating
them for 10 min at 37 °C in Cell Dissociation Buffer (Gibco). Cells were then washed with cold filter
sterilised 1% BSA in PBS, before incubating cells in PBS 1% BSA with Tra-1-60 primary antibody
(1:100) and Alexa Fluor 647 donkey a-mouse secondary antibody (1:1000) on ice for 20 min in the dark
with occasional gentle mixing. The cells were then washed once with at least 50x pellet volume PBS
1% BSA, resuspended gently in 3ml sterile hESC maintenance media, and subjected to cell sorting by
gating Tra-1-60+ cells according to the mAG/mKO2 FUCCI signals. The cell sorting was performed with
a BeckmanCoulter MoFlo MLS high-speed cell sorter (Addenbrookes Hospital Flow Cytometry Core
Facility) by using parameters described previously (Pauklin and Vallier, 2013), and the cells were sorted

directly into collection tubes with 2 ml hESC maintenance media. After sorting, the cells were pelleted



and placed in endoderm differentiation media. The media was changed every 24 hours and samples
were collected at different timepoints for subsequent processing for RNA-Sequencing, histone ChlIP-

Sequencing and ATAC-Sequencing.

Immunostaining

The immunostaining method has been described previously (Pauklin et al., 2013; Pauklin et al., 2016;
Bertero et al., 2015). Cells were fixed for 20 minutes at 4°C in PBS 4% PFA (electron microscopy
grade), rinsed three times with PBS, and blocked and permeabilized at the same time for 30 minutes
at room temperature using PBS with 10% Donkey Serum (Biorad) and 0.1% Triton X-100 (Sigma).
Incubation with primary antibodies (Table S2) diluted in PBS 1% Donkey Serum 0.1% Triton X-100 was
performed overnight at 4°C. Samples were washed three times with PBS, and then incubated with
AlexaFluor secondary antibodies (Table S2) for 1 hour at room temperature protected from light. Cells
were finally washed three times with PBS, and Hoechst (Sigma) was added to the first wash to stain

nuclei. Images were acquired using a LSM 700 confocal microscope (Leica).

Flow-cytometry

Single cell suspensions were prepared by incubation in Cell Dissociation Buffer (Gibco) for 10 minutes
at 37° followed by gentle pipetting. Cells were fixed in 4% PFA for 20 min at 4°C. This was followed by
permeabilization and blocking with 10% serum + 0.1% Triton X-100 in PBS for 30 min at RT and
incubation with primary antibody in 1% serum + 0.1% Triton X-100 for 2h at 4°C. After washing the
samples three times with PBS, they were incubated with a secondary antibody for 2h at 4°C, washed
three times with PBS and analysed by flow cytometry. Flow-cytometry was performed using a Cyan
ADP flow-cytometer and at least 20,000 events were recorded. Data was analysed by FloJo software.
Cell cycle distribution was analysed by Click-It EdU incorporation Kit (Invitrogen) according to

manufacturer’s guidelines.

RNA-seq experiments
Samples for RNA-sequencing were collected at different time points (0, 12, 24, 36, 48, 60, 72h) from
FUCCI-hESCs differentiated to endoderm. The libraries for RNA-sequencing were generated by the

Wellcome Sanger Institute lllumina Bespoke Sequencing Facility and sequencing was performed



onsite. The libraries were generated at a library fragment size between 100 bp to 1 kb with Stranded
RNAseq Standard with Oligo dT pulldown. The samples were multiplexed and analysed by lllumina
Hiseq V4 with a paired end read length PE75. All samples were amplified with a standard 10 PCR cycle
before sequencing. Samples were distributed equally across sequencing lanes and a total of
2,037,382,345 mapped reads with MAPQ = 10 were obtained after sequencing using lllumina HiSeq
2000 (97,018,207 reads/sample on average). Processed RNA-seq data is freely available at

http://ngs.sanger.ac.uk/production/endoderm.

ChIP-seq experiments

ChlP-seq was performed using FUCCI-Human Embryonic Stem Cells (FUCCI-hESCs, H9 from WiCell)
in a modified endoderm differentiation protocol (see details below). Cells were grown in defined culture
conditions as described previously (Brons et al 2017). Pluripotent cells were maintained in Chemically
Defined Media with BSA (CDM-BSA) supplemented with 10 ng/mL recombinant Activin A and 12 ng/mL
recombinant FGF2 (both from Dr. Marko Hyvonen, Dept. of Biochemistry, University of Cambridge) on
0.1% Gelatin and MEF media coated plates. Cells were passaged every 4—-6 days with collagenase IV
as clumps of 50-100 cells. The culture media was replaced 48 h after the split and then every 24 h.
The generation of FUCCI-hESC lines is based on the FUCCI system (Pauklin, S. & Vallier, 2014;
Sakaue-Sawano, A. et al. 2008). hESCs were differentiated into endoderm as previously described
(Vallier et al, 2009). Following FACS sorting, Early G1 (EG1) cells were collected and immediately
placed into the endoderm differentiation media and time-points were collected at Oh, 12h, 24h, 36h, 48h
and 72h. Endoderm specification was performed in CDM with Polyvynilic acid (CDM-PVA)
supplemented with 20 ng/mL FGF2, 10 uM Ly-294002 (Promega), 100 ng/mL Activin A, and 10 ng/mL
BMP4 (R&D). We performed ChlP-sequencing for various histone marks (H3K4me3, H3K27me3,
H3K4me1, H3K27ac, H3K36me3) (see Supplementary Table 1 for antibodies), on two biological
replicates per condition (Pauklin et al, 2016), except at 36h time-point, where only one replicate was
obtained, and we could not generate H3K27me3 (H3K27me3 for 36h sample failed, but we do expect
little changes based in comparison 24-48h) At the end of the ChlIP protocol, fragments between 100 bp
and 400 bp were used to prepare barcoded sequencing libraries. 10 ng of input material for each
condition were also used for library preparation and later used as a control during peak calls. The

libraries were generated by performing 8 PCR cycles for all samples. Equimolar amounts of each library



were pooled, and this multiplexed library was diluted to 8pM before sequencing using an lllumina HiSeq
2000 with 75bp paired-end reads. Processed ChIP-Seq data is freely available at

http://ngs.sanger.ac.uk/production/endoderm.

ATAC-Seq experiments

hESCs were sorted to early G1 phase and plated at 200,000 cells per well in 12-well plates with 0.5ml
endoderm differentiation media. After differentiating the cells for a range of time points, the cells were
washed once with PBS, collected in Cell Dissociation Buffer (Gibco 13150-016) and centrifuged at 300g
for 3 min. The cell pellets were then resuspended in 2 ml of 4°C PBS and counted by haemocytometer
for using 100,000 cells in the subsequent step. Cells were centrifuged at 300g for 3 min, the supernatant
aspirated, the cell pellet resuspended in 150 ul of Isotonic Lysis Buffer (10 mM Tris-HCI pH 7.5, 3 mM
CaCl, 2 mM MgCl2, 0.32 M Sucrose and Protease Inhibitors, Roche), and incubated for 12 min on ice.
Triton X-100 from a 10% stock was then added at a final concentration of 0.5%, the samples were
vortexed briefly and incubated on ice for 6 min. The samples were centrifuged for 5 min at 400g at 4°C,
and the cytoplasmic fraction removed from the nuclear pellet. The samples were resuspended gently
in 1 ml of Isotonic Lysis Buffer and transferred to a fresh 1.5 ml eppendorf tube. The nuclei were
centrifuged at 1500g for 3 min at 4°C and the supernatant aspirated thoroughly from the nuclear pellet.
This step was immediately followed by tagmentation (Nextera DNA Sample Preparation Kit for 24
Samples, FC-121-1030) by resuspending each sample in 50 yl Nextera mastermix (25 ul TD buffer, 20
ul of water and 5 pl of TDE1 per reaction). The nuclear pellet was resuspended thoroughly by pipetting
and incubated at 37 °C for 30 mins. The reaction was stopped with 250 L of buffer PB from the Qiagen
PCR purification kit, followed by Qiagen PCR clean up protocol using MinElute columns and eluting
each sample in 11.5 yl buffer EB. For the control sample, the nuclear pellet was subjected to genomic
DNA isolation with GenElute Mammalian Genomic DNA Miniprep Kit (Sigma, G1N70) according to
manufacturer’'s protocol, and the purified genomic DNA was thereafter immediately used for
tagmentation as for other ATAC-seq samples. Next a PCR reaction (for all samples including control
sample) was performed with the following constituents: 10 pl template from tagmentation, 2.5 pl 17
primer (Nextera® Index Kit with 24 Indices for 96 Samples, FC-121-1011), 2.5 yl 15 primer, 2.5 ul
Nextera cocktail and 7.5yl Nextera PCR mastermix. The PCR settings were as follows: initial

denaturation at 98 °C for 30 seconds, then 12 cycles of 98 °C for 10 seconds, primer annealing at 63



°C for 30 seconds and elongation at 72 °C for 3 minutes, which was followed by a final elongation at 72
°C for 3 minutes and holding at 10 °C. After completing the PCR, the sample volumes were increased
to 50 pl by adding Qiagen EB buffer from the PCR purification kit. The PCR primers were removed with
1 x 0.9:1 SPRI beads (Beckman Coulter, Cat no. A63880) according to manufacturer’s protocol and
samples eluted in 20 pl. DNA size-selection was performed as follows: the samples were runon a 1 %
agarose gel in TAE Buffer at 90 V for 25 minutes. The DNA was cut within the range of 150 bp to 1 kb
and purified by Qiagen Gel Extraction Kit with MinElute columns, by eluting in 20 yL Qiagen buffer EB.
1 pl of the samples were run on Agilent HS Bioanalyzer HS for confirming the size selection of the
ATAC libraries. ATAC-sequencing was performed by lllumina HiSeq 2000 sequencing with 75 bp PE
for obtaining 460,130,600 million reads per library on average (5,981,697,796 in total for 0, 12, 24, 36,
48, 72h samples in duplicates plus a control sample). Processed ATAC-seq data is freely available at

http://ngs.sanger.ac.uk/production/endoderm.

Quantitative real-time PCR
Media was removed and cells were washed once with DPBS (Life technologies) before 300 ul of RNA

lysis buffer was added. RNA was extracted using the GenElute Mammalian Total RNA Miniprep Kit

(Sigma-Aldrich) per manufacturer's instructions. 500 ng RNA was reverse-transcrived using random

primers (Promega), dNTPs (Promega), RNAseOUT (Invitrogen), DTT (Invitrogen) and SuperScript II
(Invitrogen). QPCR reactions were made up using 2x KAPA SYBR Fast gPCR Master Mix kit (Kapa
Biosystens), 4.2 ul of 30x diluted cDNA, and 200 nM of forward and reverse primers. Samples were
run in the QuantStudio 12K Flex real-time PCR system machine and a 384-well plate and analysed
using the delta-delta cycle threshold (Ct) method normalized to housekeeping gene, ACTB. Primer

sequences can be found in Supplementary Table S3.

RNA-Seq data analysis

Reads were mapped to the human genome (GRCh38.15) using TopHat v2.0.13 (Kim et al., 2013) with
the following options: “--library-type fr-firststrand”, “--mate-inner-dist 100 --no-coverage-search --
microexon-search” and “—transcriptome-index” with a TopHat transcript index built from
ensembl_76_transcriptome-GRCh38_15.gtf. Reads with Mapping Quality Values <10 were filtered out

with samtools. featureCounts was used on paired-end reads to count fragments in annotated gene



features, with parameters ‘-p -C -T 8 -t exon -g gene_id’ (Liao et al., 2014). DESeq2 R/Bioconductor
package was used in differential gene expression analysis between samples, requiring at least a 1.5-
fold expression change and a Benjamini-Hochberg adjusted P-value smaller than 0.01 (Love et al.,
2014) for a gene to be deemed as differentially expressed. The function ‘rpkm’ in the R/Bioconductor
package edgeR (Robinson et al., 2010) was used with default parameters to normalize count gene
expression. Raw bedGraphs were normalized per million mapped reads in the library per library size in
all samples (Conesa et al., 2016). Spearman’s correlation p values were calculated in R for FPKM
expression values of genes expressed at more than 5 FPKM in at least one of the samples under
comparison. Hierarchical clustering of p values clustered all the triplicates in each condition together.
(Extended Data Fig. 2b). PCA implemented in DESeq2 was performed (Extended Data Fig. 2c). Other
bioinformatics analyses were carried out following standard procedures (Conesa et al 2016).

Heatmap of gene expression in Fig.1. Average of FPKM values was computed for all the replicates

of each condition. The function ‘Heatmap’ in the package ‘ComplexHeatmap’ was used to perform row
clustering in selected group of genes using Euclidean distance and ‘complete’ clustering method. For
the heatmap in Supp. Figure 1d scaled log2(FPKM+1) was used for all differentially expressed, for
‘protein_coding’ biotypes.

K-means clustering. Model-based optimal number of clusters K that minimized Bayesian Information

Criterion (BIC) was considered for 6,317 differentially expressed protein-coding genes. The number of
clusters K = 13 was selected as the one that minimized the BIC using the function ‘mclust’ in the R
package ‘Mclust’. To smooth the data for representing the curves in Supp. Fig. 1e, we used functional
data analysis R package “fda” v2.4.4. First, we represented data values using 5 B-spline basis functions
located a 0, 12, 24, 36, 48, 60, 72h without roughness penalties in the second derivative (A = 0). We
used the functions create.bspline.basis() and smooth.fd() over the interval 0—72 h. Then we evaluated

the mean and the s.d. of the functional data objects using the R functions ‘mean.fd’ and ‘sd.fd’.

ChIP-seq data analysis

Preprocessing and peak calling. Reads were mapped to GRCh38 reference assembly using BWA

(Li and Durbin, 2009). Only reads with mapping quality score 210 and aligned to autosomal and sex
chromosomes were kept for further processing. Peak calling analysis (Bailey et al, 2013) was performed

using PeakRanger (Feng et al, 2011), and only the peaks that were reproducible at an FDR of <0.05 in



two biological replicates were selected for further processing. Peak calling was done using appropriate
controls with the tool peakranger 1.18 in modes ranger (H3K4me3, H3K27ac; ‘-I 316 -b 200 -q 0.05),
ccat (H3K27me3; *-I 316 --win_size 1000 --win_step 100 --min_count 70 --min_score 7 -q 0.05’) and
bcp (H3K4me1, H3K36me3; ‘-1 316°). Adjacent peak regions closer than 40 bp were merged using the
BEDTools suite (Quinlan and Hall, 2010), and those overlapping ENCODE blacklisted regions were
filtered out (ENCODE Excludable Mappability Regions; ENCODE Project Consortium et al, 2012).
bedGraph format files were produced for each sample using BEDTools 2.17.0 (Quinlan and Hall 2010).
The reads mapped at both DNA strands from 5' to 3' direction were extended to a length of 316 bp,
and the readcount at each genomic position was normalized to the library size and per million
reads (multiplying every value by '1,000,000 / number_of mapped_reads'). bedGraph files were
converted to bigWig using UCSC tool bedGraphToBigWig, and are available for visualisation on the
Biodalliance genome viewer (Down et al. 2011) at: http://ngs.sanger.ac.uk/production/endoderm

Differential peak calling in histone modification ChIP-seq. G-tests implemented in diffReps (Shen

et al. 2013) were used to detect differential histone modification regions. hg38 as reference genome,
and an average fragment size as calculated previously (rest of parameters default). Because we have
only 1 replicate at 36h, we decided to use G-tests instead of Negative Binomial tests for all the
comparisons, as recommended in Shen et al. 2013. All input samples were merged and used as
background control. Differential histone modifications regions not overlapping (at least 1bp) significant
chromatin marks previously detected during peak calling at least in one of conditions under comparison
were removed. Regions were ranked by their adjusted P-value and reported as differentially enriched
only if the absolute FC=2, and Benjamini-Hochberg corrected P-value < 0.01. Genes in a 10 kb window

of the regions were reported.

Dataset --mode | --window --step | --nsd | --frag | --gap | --pval
H3K4me3 peak 600 60 20 316 30 0.000001
H3K27ac peak 600 60 20 316 100 0.000001
H3K27me3 block 2000 200 10 316 50 0.000001
H3K4me1 block 6000 300 5 316 200 0.000001
H3K36me3 block 10000 200 2 316 200 0.000001

ATAC-seq data analysis



Preprocessing and peak calling. A total of 5,981,697,796 PE reads (75 bp) were sequenced using

lllumina HiSeq 2000, which includes one deeply sequenced control sample of 369,590,751 reads. BWA
v0.7.12 (Li and Durbin, 2010) with parameters ‘mem -t 16 -p -T 0’ was used for read alignment against
hg38 (GRCh38.15) reference assembly of the human genome. Aligned reads were retained if MAPQ =
5. Only autosomal and sex chromosomes were retained. Mitochondrial contamination (% reads) was
found proportional to the differentiation stage (high (~80%) in hESCs and low in Definitive Endoderm
(~25%) ). Peak calling against the control sample was performed using JAMM 1.0.7.1 (Joint Analysis
of NGS replicates via Mixture Model clustering), which proved to improve accurate determination of
peak boundaries (Ibrahim et al., 2014), with parameters -m normal -r region -f 1,1,1 —b 140’. Duplicates
were removed at this stage as in Buenrostro et al. (2013) to improve peak calling, same as
recommended in ChlP-seq data analysis (Bailey et al., 2013). To select the number n of reproducible
peaks at IDR < 0.05, Irreproducible Discovery Rate (IDR) analysis (Li et al., 2011) was performed on
JAMM’s filtered’ peaks of individual replicates using JAMM'’s peak scores Sp, which are defined as:
Sp = Hps X (—logyo P)

where uns is the mean peak background normalized signal, and P is the Benjamini-Hochberg corrected
P-value of Mann-Whitney-U non-parametric tests. A number of peaks equal to the minimum number of
peaks in one of the replicates were submitted for IDR analysis. Top n peaks in JAMM’s replicate
integration (pooled replicates) method were then selected as the highly confident set. Normalised signal
tracks were built after extending each read to estimated average fragment size of 140bp. We generated
a consensus-merged list of 253,618 peak regions, filtered out those overlapping the human ENCODE
blacklisted genomic regions (https://sites.google.com/site/anshulkundaje/projects/blacklists), and
considered a final set of 253,349 open chromatin regions for further analyses.

Differential open chromatin region analysis. To statistically identify regions of differential open

chromatin in ATAC assays, a modified version of function narrowpeaksDiff.R in the Bioconductor
package NarrowPeaks (Mateos et al., 2015) was used. We performed Hotelling's T2 tests on the
functional principal component scores to identify significant differences across conditions. Genomic
regions were declared significant if Bonferroni adjusted P-value < 10 and absolute Fold-Change (FC)
= 2.0 in a set of aggregated regions of those under comparison. 31 bins were used for signal extraction
in the R package ‘genomation’ and 10 equidistant B-splines bases were used for functional principal

component analysis (FPCA, first FPC considered). Regions were then ranked then by the scores:



S; = —log(adj.P) X FC X VBaseline
(data available here: http://ngs.sanger.ac.uk/production/endoderm/), where baseline is defined as
¥2*(Avg. normalized signal in time-point 1+Avg. normalized signals in time-point 2). diffNGS source

code is available at http://github.com/pmb59/diffNGS. Genes were associated to peaks if the former

were located in a region 10kb upstream or downstream from differential open chromatin regions. Open

chromatin regions with no change at any stage were classified as ‘invariant’.

Motif analysis of DNA sequences in differential ATAC-seq regions. Motif enrichment analysis was

performed with HOMER2 (v4.8.3), using the function ‘scrambleFasta.pl’ to create a set of background
frequencies (with the same number of sequences, as recommended). We scored known motifs for
enrichment in the FASTA files using the function ‘known’, and motifs from the CIS-BP database (3,059
PWNMs; http://cisbp.ccbr.utoronto.ca; Weirauch et al., 2014) - those were used also for footprinting
analysis (see below). Occurrences were ranked and a scatter plot was generated using their Log(P-
value) and Log2(Enrichment Ratio) for TF motifs associated to genes expressed at least 1.0 FPKM
(mean across triplicates) in the earliest time point of the 2 consecutives being analysed. TF_Name was
associated to PWMs using the CISBP information file TF_Information.txt (of directly determined motifs
and best inferred motifs).

Pearson correlation between RNA-seq and ATAC-seq. Pearson's product-moment correlation was

calculated in R using the function cor.test (alternative hypothesis: true correlation is not equal to 0).
Logz Fold-changes obtained in DESeq2 for protein-coding genes were used. To obtain the Fold change
in ATAC-seq, maxima of normalized ATAC-seq signal in a region 10kb upstream the promoter of
protein-coding genes was obtained with ScoreMatrixBin (genomation package) in each ATAC-seq
replicate of consecutive time points, and log2 of the fold change was computed.

GO enrichment analysis in variant open chromatin regions. Ensembl gene IDs of protein_coding

genes were converted to Entrez gene IDs using biomaRt (ensemble.76). Gene Ontology (GO)
enrichment analysis was performed using GOstats (Falcon and Gentleman, 2007), Hypergeometric
Tests for GO term association (function ‘hyperGTest’) were run with BP ontology and P-value cutoff =
0.001. This function computes Hypergeometric P-values for over- (or under-) representation of each

GO term in the specified ontology among the GO annotations for the genes of interest.



Identification of footprints of DNA-binding transcription factors. We used FootPrintMixture

(Yardicimci et al., 2014) to detect footprints of TFs in ATAC-seq, adapting this tool to explicitly control
for assay-specific sequence bias, which is fundamental for DNase-seq and ATAC-seq data analysis
(Sung et al., 2014; Madrigal, 2015). PWMs of “Directly determined or best inferred motif’ for Homo
sapiens were downloaded from CIS-BP database (Weirauch et al., 2014).

Controlling the sequence-bias with a deproteinized ATAC control. We retrieved Tn5 transposition sites

from the deproteinized ATAC control sample (328,759,008 mapped reads) after translating 5’-ends of
the reads +4 bp for insertion on forward strand, and -5 bp in the reverse strand (Buenrostro et al. 2013).
Then we obtained 6-mers frequencies +3 bp around the transposition site for chr1 using Jellyfish
(Margais and Kingsford, 2011) with parameters “count -m 6 -s 4000M -t 4”. Background 6-mer counts
in the human genome were estimated using the ‘fasta-get-markov’ program in the MEME Suite with a
Markov Model of order m = 5 (we consider all genome to be mappable). Then, the values in SeqgBias.txt
in FootprintMixture would be K-mer frequencies in the deproteinized sample divided by background
frequencies. Here deviations from 1.0 would indicate bias. It is likely that no substantial differences
between Tn5 insertion preferences between purified genomic DNA and human chromatin, suggesting
that the local insertion preference into chromatin is identical to that found in naked genomic DNA
(Buenrostro et al. 2013; Madrigal 2015).

CisBP database of human 3,059 valid PWMs was used (Weirauch et al. 2014). Matches of the PWMs
were obtained using FIMO (Grant et al, 2011) with a cut-off of P<10#, then ranked, and motifs with at
least 10k matches (up to a maximum to 500k matches) were submitted for 2-component mixture model
in FootPrintMixture to infer TF binding +25 bp around each motif. Extended motif occurrences that lie
out of genomic regions in hg38 were not submitted to analysis. To get high quality reproducible
footprints, motif matches with Footprint Likelihood Ratio (FLR) =10.0 in each biological replicate were
classified as “Bound”. TF footprints that were present in both replicates, and with at least 50 FPs for the
PWM, were considered as predicted TF BSs. FLR mean of the replicates was calculated. For this
calculation, only unique genomic regions were taken into account (for those palindromic sequences
with a footprint reported in each strand, we obtained the mean FLR). Normalized average of Tn5
insertion densities for ‘Bound’ sites were plotted +100 bp around motif using R and NucleoATAC (Schep
et al 2015) function ‘pyatac ins’ for whole genome, after normalizing for number of reads in the library.

For visualization purposes reads in both replicates were merged.



Next, we computed the protection scores for footprint predictions of a PWM as proposed in Gusmao et
al. 2016. This score is important because measures the quality for a given TF (PWM) and set of
predictions (the higher, the most reliable the footprints are). Low protection scores will indicate TFs with

short residency times in the DNA (like SOX2).
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Flanking regions were considered +25 bp upstream/downstream of the motif for this calculation [see
red arrows in footprint plots in the Figures above].

Footprints with short DNA residency time are poorly detected and likely to be false positives. TFs with
intermediate and long residency times have positive PS (Gusmao et al.,, 2016). Footprints with a
negative protection score and associated to genes with < 1.0 FPKM (no expression) were removed.
PWNMs associated to >1 TF were not considered.

We repeated the analyses in the control sample (considering the same sample as duplicate), without
applying gene expression cut-off (0.0 FPKM). This demonstrates that ATAC-seq, as DNase-seq
footprints, cleavage signatures are dictated by sequenced biases (Sung et al, 2014), and that filtering
by Protection score (PS, red arrows in the figure below) is very recommended step in footprint

determination.
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Normalized Tn5 insertion frequencies for CiSBP PWMs M6398 (NRF1) and M4593 (CTCF) for
ATAC-seq and control samples illustrate the importance of correcting Tn5 sequence bias.
Motif-agnostic footprint detecting with Wellington. We run also Wellington/pyDNase 0.2.4 for digital
genomic footprinting, a non-motif centric footprint algorithm detector (Piper et al. 2013) to search TF
footprints between 4-30 bp (-A -fdr 0.1 --FDR_limit -4 --pv_cutoffs -4 -fp 4,30,1 -fdriter 500 --
one_dimension’). As search space we used the set of consensus open chromatin regions extended 50

bp upstream and downstream. BAM files of alignment for replicates were merged to achieve a better

coverage. A relaxed set of footprints was obtained at each time point (P < 1e-4).

Final set of TF footprints. Nonredundant footprints with some overlap with Wellington footprints were

kept as the final set of curated footprints. In summary, the final set of curated nonredundant footprints

were considered as as those:

With FLR =10.0 (Footprint-Mixture), reproducible in both replicates.

With Protection Score PS = 0.

With CiSBP PWM associated to only 1 TF.

Expression of gene/TF = 1.0 FPKM (from RNA-seq at the same stage).



Only footprints with highest FLR were kept for Overlapping footprints (distinct PWMs) for the same TF

(in case of equal FLR, take the 1%!) to get nonredundant set.

Finally, only nonredundant footprints detected also by Wellington with a relaxed cut-off were kept.
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Number of curated nonredundant final footprints detected during endoderm differentiation.
Number of footprints is, partly, a consequence of sequencing depth

Overlap between H9-hESCs-EG1 and H7-hESCs ENCODE footprints. H7-hESCs ENCODE

footprints (GRCh37/hg19) were downloaded from

ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/supplementary/integration data jan2011/byDataTy

pe/footprints/jan2011/. ENCODE footprints were converted to hg38 assembly using UCSC tool

liftOver and the overlap was computed with BEDtools.

Differential genomic footprinting with Wellington bootstrap. pyDNase-0.2.4 was used to obtain

differential footprints between consecutive time stages (http://pythonhosted.org/pyDNase). As a search
space, a BED file with genomic locations was provided and consisted of the consensus open chromatin
sites extended 50 bp each side. BAM files of alignment for replicates were merged and evaluated with
Wellington_bootstrap with parameters “-A -fp 4,30,1 -fdr 0.05 -fdrlimit -10 -fdriter 100”. Importantly,
Wellington_bootstrap allows to control for different sequencing depth in the two samples (Piper et al.,
2015). A score S=5 was used for differential footprints to be considered as such. The overenrichment

of the number of predictions for a TF was statistically assessed considering the proportion over the



total footprints against its relative proportion in the differential list by applying Chi-squared tests.
Benjamini—-Hochberg (BH) multiple hypothesis testing correction was applied.

Global TF footprint pattern change between conditions. Bivariate genomic footprinting was

performed with BaGFoot v.0.9.7 (Baek et al, 2017) over motifs of human transcription factors from the
CiSBP database (http://cisbp.ccbr.utoronto.ca).

Peak annotation in ATAC-seq peaks and TF footprints. NIH PAVIS v.04-08-2016 was used for peak-

to-gene annotation (GRCh38r76/hg38) of differential ATAC-seq peaks

(https://manticore.niehs.nih.gov/pavis2/). Upstream Length: 10kb, Downstream Length: 5kb (rest of

parameters under default configuration). TF footprints unique regions were obtained using the function

‘merge’ in BEDTools before submitting to PAVIS.

Functional linear regression with a scalar response

Functional Data Analysis (FDA) has been applied in genomics to allow data analysis on continuous
data (Cremona et al., 2019). Using a functional linear model (Ramsay and Silverman, 2005) instead of
multivariate linear model allows including in the model the spatial dependency between TF binding and
chromatin change. The model used to predict chromatin accessibility change exerted by footprints of a

transcription factor was:

q

yi =+ ) xy(OF (Ot + &

j=1
where yiis the chromatin change of region i between time-point t and time-point t+1, xi(t) is a functional
covariate (q=1 ) defined by the fooptrinting signal, «, is the intercept term, j; are the regression
coefficient functions, and ¢; is the independent and identically distributed (i.i.d.) error term. Only
differential accessibility regions with a Fold-change FC> 1.5 were considered. FC =|10| were removed
and not considered to avoid outliers and 1000 bp were used around the centre of each ATAC-seq peak.
Logz (abs(FC)) was considered as the scalar variable y; to be regressed. A maximum of 50,000 genomic
regions, ranked by their abs FC, were considered in the model. Putative TF binding sites were
represented in the functional covariate as 1.0 (absence as 0.0) using five order-4 B-splines. The linear
model was only considered when at least 15 footprints overlapped regions of interest, and only TF with

footprints in >50 of the selected regions were implemented in the model. Squared multiple correlation



(R?) and F-ratio were used to assess the improvement of fit. P-values were computed for the F-statistic

using the ‘pf’ function in R. The R package fda’ was used in these analyses.

Jaccard Index overlap analysis and clustering.

We used the R package GenometriCorr 1.1.17 (http://genometricorr.sourceforge.net/) (Favorov et al.,

2012) to calculate the Jaccard Index (J/), a measure of correlation between two genomic intervals, for
CHIP-seq and ATAC-seq peaks and differential sites (up and down, only those >100 in number).

Clustering was performed with ‘Heatmap’ function of the Bioconductor package ComplexHeatmap.



Supplemental Table S2. Antibodies.

Antibody raised against Catalog number Company
Histone H3 ab1791 Abcam
Histone H3 (tri methyl K4) ab8580 Abcam
C15200181
Histone H3 (tri methyl K27) (MAb-181-050) Diagenode
Histone H3 (mono methyl K4) ab8895 Abcam
Histone H3 (acetyl K27) ab4729 Abcam
Histone H3 (tri methyl K36) ab9050 Abcam
Actin, clone C4 MAB1501 Chemicon
Brachyury (T) af2085 R&D Systems
EOMES ab23345 Abcam
Nanog af1997 R&D Systems
Nestin (Rat-401) sc-33677 Santa Cruz
Oct-3/4 (C-10) sc-5279 Santa Cruz
Pax6 PRB-278P-100 Covance
Sox1 AF3369 R&D Systems
Sox17 AF1924 R&D Systems
Sox2 AF2018 R&D Systems
CXCR4 MAB173 R&D Systems
Tra-1-60 sc-21705 Santa Cruz
Alexa Fluor 647 goat a-mouse IgM A21238 Invitrogen
Alexa Fluor 647 donkey a-mouse IgG A31571 Invitrogen
Alexa Fluor 647 donkey a-goat A21447 Invitrogen




Supplemental Table S3. QPCR Primers.

Gene Forward sequence (5’ 2 3’) Reverse sequence (5’ 2> 3’)
ACTB CTGGAACGGTGAAGGTGACA AAGGGACTTCCTGTAACAATGCA
BRACHYURY (T) TGCTTCCCTGAGACCCAGTT GATCACTTCTTTCCTTTGCATCAAG
CDX2 GGCAGCCAAGTGAAAACCAG TTCCTCTCCTTTGCTCTGCG
EOMES ATCATTACGAAACAGGGCAGGC | CGGGGTTGGTATTTGTGTAAGG
FOXA2 GGGAGCGGTGAAGATGGA TCATGTTGCTCACGGAGGAGTA
GATA4 TCCCTCTTCCCTCCTCAAAT TCAGCGTGTAAAGGCATCTG
HAND1 GTGCGTCCTTTAATCCTCTTC GTGAGAGCAAGCGGAAAAG
MIXL1 GGTACCCCGACATCCACTTG TAATCTCCGGCCTAGCCAAA
NANOG CATGAGTGTGGATCCAGCTTG | CCTGAATAAGCAGATCCATGG
NKX2.5 GAGCCGAAAAGAAAGCCTGAA | CACCGACACGTCTCACTCAG
POUSF1 AGTGAGAGGCAACCTGGAGA ACACTCGGACCACATCCTTC
SOX17 CGCACGGAATTTGAACAGTA GGATCAGGGACCTGTCACAC
SOoxX2 TGGACAGTTACGCGCACAT CGAGTAGGACATGCTGTAGGT
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Epigenetic regulations follows cell cycle progression during differentiation of human

pluripotent stem cells.

Madrigal et al.,

Supplementary Figure Legends

Supplementary Table 1: Genes expressed in the different clusters identified by k-means clustering of
differentially expressed genes during differentiation of EG1 FUCCI-hPSCs (0h, 12h, 24h, 36h, 48h, 60h

and 72h) as denoted in Fig. S1d and S1e.

Supplementary Figure 1: Cell cycle synchronization during differentiation of hESCs reveals
novel transiently expressed early mesendoderm genes. (a) FACs analyses showing cell cycle
progression of EG1-FUCCI hPSCs differentiating into endoderm. (b) Hierarchical clustering analysis pf
Spearman correlation for gene expression in RNA-Seq samples. (c) Principal component analysis
(PCA) of G1 synchronised FUCCI-hPSCs differentiating into endoderm after 12hrs (Late G1 of 1st cell
cycle); 24 hr (S/G2/M of 1st cell cycle); 36 hrs (S/G2/M phase of 2nd cell cycle), 48 hrs (end of second
cell cycle) and 60/72 hrs (G1 of 3rd cell cycle). (d) k-means clustering of differentially expressed genes
(Oh, 12h, 24h, 36h, 48h, 60h and 72h) and annotated clusters (k=13). Model based optimal number of
clusters with 6,317 protein coding genes was computed. The number of clusters k was selected as the
one that minimized the Bayesian Information Criterion. (e) Average pattern of expression of the 13

clusters identified by k-means clustering.

Supplementary Figure 2: Characterization of genomic regions displaying changes in chromatin
accessibility during differentiation. (a) Annotation of chromatin accessibility peaks to gene category
during differentiation of cell synchronised EG1-Fucci hPSCs. (b) Annotation of chromatin accessibility
peaks to intra- or inter-genic regions. (c) Distribution of logz fold-changes in RNA expression in regions
with decreased, increased, or invariant chromatin accessibility defined by ATAC-Seq. P-values reported
by non-parametric Wilcoxon Rank Sum test. Analysis performed on protein-coding genes located 10

kb around ATAC-Seq peaks.



Supplementary Figure 3: Transcription factors binding motifs in region displaying dynamic
chromatin changes during endoderm differentiation. (a) Motif enrichment analyses in ATAC-seq
peaks changing between different phases of the cell cycle. The analyses shown include only motifs for
DNA-binding proteins with expression above 1 FPKM. (b) Computational pipeline for digital genomic
footprinting in ATAC-Seq data to identify transcription factors controlling differentiation during cell cycle
progression. Example for ZKSCAN1 motif matches for CisBP Position Weight Matrix M4646 at Oh. (c)
Annotation of transcription factor footprints into intra- or inter-genic regions. A deproteinized (naked
DNA) ATAC-seq sample was used a control. (d) Q-PCR analyses showing the effect of different
inhibitors of AP1-related signalling pathways on the expression of pluripotency (NANOG,
POU5F1/0CT4 and SOX2), mesoderm (BRACHYURY/T, CDX2, NKX2.5, HAND1, MIXL1) and
endoderm markers (FOXA2, SOX17, GATA4, EOMES). cA1ATD hPSC line was grown for 3 days in
culture conditions inducing endoderm differentiation in the presence of DMSO (control), JNK-in-8, SB
203580, U0126. cA1ATD hPSCs grown in culture condition maintaining pluripotency were used as
negative control. The average of 2 independant experiments including 6 different biological replicates
is provided with STD. (e) FACs analyses showing the expression of the endoderm marker SOX17 in

cA1ATD hPSCs differentiated into endoderm in the presence of the denoted inhibitors.
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Clusters (k) Description Examples (total 6317 protein-coding genes)
1 Definitive endoderm (DE)-only IDH1, KLFS, PEG10, GREM2, DBX2, BMP5, GREBI1, HES4, BAG3, FZD5
(low expression)
2 Mesendoderm (MS) and NODAL, LEFTY2, HEY2, ZIC2, HAND2, SIX3, TLX3, MESP1, MESP2, GDNF, WT1,
endoderm progenitors TGFA, NODAL, ROBO1,TWIST2, RALB
3 MS and endoderm JUN, BACH2, SOX17, GATA4, GATA6, EOMES, FOXA2, CER1, CXCR4, LZTSI,
TEAD3, FOXCI1, DKK4, GSC, TBX3, MYC, FOXP4, RXRG, CDH2, MAFF, TEADI,
LHX1, TCF20, BMP2, KLF8, DKK4, MAPK8, KLF7, MAPK12
4 Pluripotency and MS FOXHI, GLI2, AURKA, FOXM1, BCL6, SASHI, DII1, SALL1, CENPF, H2AFZ, PLK1
5 PS and DE FOS, FGF12, WLS, NOTUM, RASL10A, RHOB, RASGEF1B, RGL1, KLHL4, NDRG2,
FURIN, SKIDA1
6 DE (low increase) GADD45B, RORA, MIXL1, MAF, JUND, TGFB1, DKK1, WNT3, MSX2, SMAD6,
DUSP6, NKD1, MAPK15, SAMDI11, EVX1, SOX18, DACHI, BMPR2, GDF10
7 Primitive streak (PS)-only WNTS8A, ID2, ID3, ID1, ID4, TFAP2A, MAFA, SMAD3, WNTS5B, NES, CDX2, GREM1,
GATA2, GATA3, GATAS, LGR6, WNTSB, FZD1, FZD3, FZD10, PLXNDI, CITEDI,
HEY1, PIWIL4
8 Smooth pluripotency loss RARG, CEBPZ, CD24, IRX1, IRX2, PRDM14, TERF1, ZSCAN10, TRIM24, DNMT3B,
GAL, JADEIL, CDH9, POU6F1, SHISA3, SOX21, SOX15, STC2, LCK, USP44, FGF2,
SIX4, PBX1, FOXB2
9 Pluripotency and PS (only first POUS5F1, SOX2, NANOG, TFAP2C, SALL3, HES3, SALL2, VGF, CDHI, DLKI1,
cell cycle) FOXI3, DCLK1, GBX2, DPPA2, PRKCA, RGMA, CCNDI, DPPA4, JADE2, LPHN1
10 Acute loss of pluripotency HIST1HIC, SALL4, KLF4, DPPA3, MYB, SIRT1, FOX04, IDO1, FEZF1, ATF3, WNT4,
BNC2, TRPC4
11 Pluripotency and endoderm ZIC3, OTX2, LIN28B, ATF4, MAFG, TCF7L1, DMBX1, FEZ1, LRIGI, KALI1, KLF15,
KLF16, LMNB2, DNMT3L, JMID6, JAG1, FOXO1, VEGFB
12 Pluripotency and PS + increase LIN28A, HES6, MAPKBP1, JARID2, CITED2, NOTCH3, OLFM2, PGM1, EPCAM,
in DE HIF3A, PODXL, TCF7L2, CTNND1
13 PS-only (smooth decrease) SP5, T, SMAD7, JUNB, MSX1, CRABP1, BAMBI, LEFTY1, YAP1, CXXCS5, FGF3,

FGF4, SMAD9, DACTI, TCF7, SEZ6L
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