

1 CRISPR-induced indels and base editing using the *Staphylococcus aureus* Cas9 in potato

2

3 Florian Veillet^{1,2,*}, Marie-Paule Kermarrec¹, Laura Chauvin¹, Jean-Eric Chauvin¹, Fabien
4 Nogu  ³

5

6¹ IGEPP, INRAE, Institut Agro, Univ Rennes, 29260, Ploudaniel, France

7² Germicopa Breeding, Kerguivarch, 29520 Chateauneuf Du Faou, France

8³ Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Universit   Paris-Saclay, 78000
9 Versailles, France

10

11* florian.veillet@inrae.fr

12 Present address: INRAE, BGPI, Biology and Genetics of Plant-Pathogen Interactions,
13 Campus International de Baillarguet, Montpellier, France

14

15 Florian Veillet ORCID number: 0000-0002-6892-6825

16 Fabien Nogu   ORCID number: 0000-0003-0619-4638

17

18 **Abstract**

19 Genome editing is now widely used in plant science for both fundamental research and
20 molecular crop breeding. The clustered regularly interspaced short palindromic repeats
21 (CRISPR) technology, through its precision, high efficiency and versatility, allows to edit
22 many sites in plant genomes. This system has been highly successful to produce of knock-out
23 mutants through the introduction of frameshift mutations due to error-prone repair pathways.
24 Nevertheless, recent new CRISPR-based technologies such as base editing and prime editing
25 can generate precise and on request nucleotide conversion, allowing to fine-tune protein

11

2

26function and generate gain-of-function mutants. However, genome editing through CRISPR
27systems still have some drawbacks and limitations, such as the PAM restriction and the need
28for more diversity in CRISPR tools to simultaneously mediate different catalytic activities. In
29this study, we successfully used the CRISPR-Cas9 system from *Staphylococcus aureus*
30(SaCas9) for the introduction of frameshift mutations in the tetraploid genome of the
31cultivated potato (*Solanum tuberosum*). We also developed a *S. aureus*-cytosine base editor
32that mediate nucleotide conversions, allowing to precisely modify specific residues or
33regulatory elements in potato. Our proof-of-concept results in potato expand the plant dicot
34CRISPR toolbox for biotechnology and precision breeding applications.

35

36Introduction

37The recent and considerable development of plant genome editing in the last few years has
38opened new avenues and exciting perspectives for both fundamental research and crop
39breeding. The class 2 type II CRISPR-Cas9 genome editing system from *Streptococcus*
40*pyogenes* has been broadly adopted by the plant science community, and consists of a two-
41components complex made of the DNA endonuclease SpCas9 and a customizable single
42guide RNA (sgRNA) [1]. This complex scans the genome in search of a 5'-NGG-3'
43protospacer adjacent motif (PAM), triggering local DNA melting and interrogation of
44adjacent DNA sequence for complementarity with the customizable spacer sequence at the
455'end of the sgRNA, eventually resulting in double strand DNA break (DSB) about 3-bp
46upstream the PAM by the concerted activity of HNH and RuvC nuclease domains [2]. Once a
47DSB is created, the error-prone non-homologous end-joining (NHEJ) DNA repair pathway is
48activated [3], eventually resulting in unfaithful DNA repair that generate random small

49 insertions or deletions (indels) mutations at the breaking site, typically leading to gene
50 knockout through frameshift mutations.

51 While most studies focused on the production of loss-of-function alleles so far, new CRISPR
52 tools have been recently developed, such as the CRISPR-mediated base editing system that
53 allows precise base conversion without neither a donor DNA or the induction of a DSB [4].

54 So far, two kinds of base editors (BEs) have been developed: cytosine base editors (CBEs) [5]
55 and adenine base editors (ABEs) [6] whose architecture is composed of the fusion of a Cas9
56 with an impaired DNA cleavage activity, mostly a nickase Cas9 (nCas9) for plant
57 applications, and a catalytic domain mediating cytosine or adenine deamination, respectively.

58 During the fixation of the nCas9 to its genomic target, a small window of the non-targeted
59 ssDNA can serve as a substrate for deaminase domains. While ABEs almost exclusively
60 mediate A-to-G conversion [6], CBEs can result in C-to-T, C-to-G and C-to-A according to
61 the architecture of the BE [7].

62 Although the CRISPR-SpCas9 system revolutionized plant functional genomics, several other
63 Cas9 enzymes from diverse bacteria have been used as an alternative for genome editing in
64 plants, including the *Staphylococcus aureus* Cas9 (SaCas9) [8,9]. Use of SaCas9 for plant
65 genome editing presents some assets. First, because the PAM recognized by the SaCas9 (5'-
66 NNGRRT-3') is different from the canonical 5'-NGG-3' PAM from SpCas9 (where N is for
67 any nucleotide while R can be A or G), its use expands the number of sites that can be
68 targeted in a given genome. In addition, the fact that the PAM of SaCas9 is more
69 sophisticated than the one from SpCas9 may allow to increase the specificity of the system by
70 limiting the off-target activity, especially for highly conserved genomic regions that are
71 frequent in polyploid species. Finally, because SaCas9 is smaller than SpCas9 (1053 vs 1368
72 amino acids), delivering into plant cells could be easier, especially for strategies involving

73virus vectors. To date, CRISPR-SaCas9 has been applied in different plant species for both
74gene knockout and/or base editing applications, including tobacco [10], *Arabidopsis* [11],
75citrus [12] and rice [10,13,14].

76The cultivated and tetraploid potato (*Solanum tuberosum*) received much attention for
77genome editing in the last few years by several groups. These achievements allowed to
78produce plants with new agronomic traits with gene knockout and/or base editing approaches,
79such as the production of tubers with low levels of amylose [15–17] or tubers with improved
80resistance to harvest and post-harvest procedures [18]. However, all the studies on potato used
81the classical or engineered variants [19] of SpCas9 so far, pointing out to the necessity to
82broaden the CRISPR toolbox for this species that constitutes one of the most important crops
83for food production worldwide. In this study, we report on the successful use of the SaCas9
84enzyme for both knockout and base editing applications in the tetraploid potato, confirming
85that the CRISPR-SaCas9 system constitutes a relevant alternative to the classical CRISPR-
86SpCas9 technology for functional studies and plant breeding.

87

88Results and Discussion

89CRISPR-SaCas9-mediated gene editing of the potato genome

90To evaluate the efficiency of the CRISPR-SaCas9 system in potato, we first designed two sets
91of two sgRNAs each, whose expression was driven by the *Arabidopsis* U6-26 promoter [11].
92The first set targeted the *StGBSSI* and *StDMR6-1* genes with spacers of 20-bp sequence length
93(sgRNA1 and 2), while the second set targeted the same loci but with spacers of 24-bp
94sequence length (sgRNA3 and 4) (Fig 1). All the spacer sequences were chosen upstream of a

955'-NNGGAT-3' PAM with a high specificity score according to the CRISPOR software,
96selecting spacer sequences harboring at least 4 mismatches with other loci in the genome. For
97expression of the CRISPR-SaCas9 system in potato cells, we cloned each set of sgRNA
98cassettes into the binary vector previously used in *Arabidopsis* [11], resulting into the
99pDeSaCas9/sgRNA1-2 and the pDeSaCas9/sgRNA3-4 plasmids (Fig 1).

100

101**Fig 1: CRISPR-SaCas9 plasmids for genome editing in potato.** Schematic representation
102of the two CRISPR-SaCas9 binary plasmids used for editing the *StGBSSI* and *StDMR6-1*
103targeted sites. For each sgRNA (indicated with a number from 1 to 4), the genomic targeted
104site is represented with the spacer and the PAM sequences in purple and red, respectively. LB:
105left border of T-DNA; RB: right border of T-DNA; PcUbi4-2: *Petroselinum crispum*
106Ubiquitin4-2 promoter; Pea3A: *Pisum sativum* 3A terminator, AtU6-26: *Arabidopsis* U6-26
107promoter; p35S: CaMV 35S promoter; promoter; nptII: neomycin phosphotransferase; t35S:
108CaMV 35S terminator. The schemes are not at scale and are for illustrative purposes only.

109

110To deliver the CRISPR components into potato cells, we performed an *Agrobacterium*-
111mediated transformation of potato explants, and genomic DNA from regenerative plants
112selected on kanamycin-supplemented medium was analyzed by high resolution melting
113(HRM) analysis followed by Sanger sequencing. For the pDeSaCas9/sgRNA1-2 condition,
114among the 33 plants that rooted on kanamycin-containing medium, none of them was mutated
115at the *StGBSSI* locus (sgRNA1), while 11 plants (33% efficiency) were found to harbor
116mutations in the *StDMR6-1* target sequence (sgRNA2) (Fig 2A). For the
117pDeSaCas9/sgRNA3-4 condition, among the 27 plants that developed roots on kanamycin-

118containing medium, none of them displayed mutations at the *StGBSSI* locus (sgRNA3), while
1194 plants (15% efficiency) were found to be mutated at the *StDMR6-1* target site (sgRNA4)
120(Fig 2A). These results indicate that the SaCas9 can be used for gene editing in the potato
121genome, with spacer sequences of up to 24-bp. The observation that no editing activity was
122detected at the *StGBSSI* target locus for both spacer lengths (sgRNA1 and 3) may be due to
123the presence of an inefficient motif in the spacer sequence. However, none of the two motifs
124identified as inefficient in a previous study [20] was present in our spacer sequences,
125suggesting another origin for the lack of editing at this locus, such as the genomic context that
126may interfere with Cas9 binding and cleavage, and pointing out to the necessity to test
127independent spacer sequences for a target gene in order to maximize the likelihood of
128successful editing.

129

130**Fig 2: CRISPR-SaCas9-mediated genome editing in potato. A)** Table summarizing the
131editing efficiencies at the *StGBSSI* and *StDMR6-1* targeted loci using both HRM analysis and
132Sanger sequencing. **B)** Sanger chromatograms of some CRISPR-SaCas9-edited potato plants
133at the *StDMR6-1* gene with the pDeSaCas9/sgRNA1-2 for mutants n°3, 9 and 10 and with the
134pDeSaCas9/sgRNA3-4 for mutants n°12 and 13. The PAM, which is located on the reverse
135strand, is indicated in red and the spacer sequence in purple. **C)** Table summarizing the results
136of Sanger sequencing for 4 mutants after cloning of individual PCR products through TA
137cloning. Mutants n°9 and 10 and mutants n°12 and 13 were edited using the
138pDeSaCas9/sgRNA1-2 and pDeSaCas9/sgRNA3-4 constructs, respectively.

139

116
12

140Based on manual analysis of the chromatograms for sgRNA2 and 4 (*StDMR6-1* locus), we
141found that frameshift mutations mostly occurred about 4-bp upstream of the PAM sequence
142(Fig 2B), as previously reported for SaCas9 [11,12]. For each chromatogram, we found a
143clearly identifiable wild-type sequence trace (Fig 2B), indicating that CRISPR-induced indels
144did not occur for all the alleles. Sanger sequencing analysis of the *StDMR6-1* targeted
145sequence in the wild-type (Desiree cultivar) identified one SNP (T/A) (Fig 2B), that is present
146at the 5'end of target sequence of sgRNA2 and sgRNA4 (position -18 from the PAM), which
147is supposed to be present on two alleles according to a recently released SNP map from the
148Desiree genome [21]. The absence of mutants affected on the four-alleles may be due to the
149presence of this natural SNP, thereby affecting overall editing efficiency. To characterize in
150more details the SaCas9-mediated editing footprint at the *StDMR6-1* target site, we sequenced
151individual PCR amplicon after a TA-cloning reaction for 4 independent mutated plants. Most
152of the mutations were small indels about 3/4-bp upstream of the PAM (Fig 2C and S1 Fig 1),
153confirming the results from global PCR products sequencing. However, we also observed a
15482-bp deletion for one plant, showing that large sequence rearrangement can occur at the
155target site (Fig 2C and S1 Fig 1). Intriguingly, we did not find any allele sequence harboring
156the natural SNP, suggesting that a bias occurred during the TA cloning reaction.

157Taken together and compared to our previous work on genome editing in potato [17], our
158results show that SaCas9 constitutes an alternative to the classical SpCas9. As previous data
159showed that SaCas9 and SpCas9 could edit different plant genomes with a comparable
160efficiency [10–12], the efficiency of SaCas9 in potato needs to be further investigated by
161targeting several other loci before any conclusion on the relative efficiency of SaCas9
162compared to SpCas9 in potato.

163

137

14

164CRISPR-SanCas9-mediated cytosine base editing of the potato genome

165Because introducing precise nucleotide substitutions is of upmost importance for both
166functional genomics (e.g. protein domain characterization) and plant breeding (e.g. gain of
167function variants), and because knockout mutants can have growth penalties compared to
168functional allelic variants, we next sought to develop a CRISPR-SanCas9 cytosine base editor
169to mediate cytosine substitution. We first introduced a punctual mutation in the SaCas9
170sequence to produce a SanCas9 (D10A) that we fused to a dicot codon-optimized fragment
171harboring both a cytosine deaminase (PmCDA1) and an uracil glycosylase inhibitor (UGI)
172domain. This fusion protein was then cloned into a modified version of the pDe backbone
173[19,22,23], resulting in the pDeSanCas9_PmCDA1_UGI binary plasmid for expression in
174dicot species (Fig 3A). The four sgRNAs used for CRISPR-mediated indels were individually
175cloned into this CBE through Gateway cloning (Fig 3B), each spacer harboring two to five
176cytosines in the putative editing window established for this CBE, based on previous studies
177using the PmCDA1 enzyme in plants with SpnCas9 or SanCas9 [13,17,19,24,25] (Fig 3B).

178

179**Fig 3: CRISPR-SaCBE plasmids for base editing in potato. A)** Partial schematic
180representation of the CRISPR-SaCBE binary plasmid produced for expression in dicot
181species. This empty destination plasmid allows for the introduction of guide cassette through
182Gateway LR reaction. **B)** Partial schematic representation of the four CRISPR-SaCBE binary
183plasmids used for base editing at the *StGBSSI* and *StDMR6-1* targeted sites. For each sgRNA
184(indicated with a number from 1 to 4), the genomic targeted site is represented with the spacer
185and the PAM sequences in purple and red, respectively. The cytosines that are located in the
186putative edition window of the CBE are represented in bold. AttR1 and AttR2 corresponds to
187the Gateway cloning recombination sequences for the cloning of the guide cassette; LB: left

158

16

188border of T-DNA; RB: right border of T-DNA; PcUbi4-2: *Petroselinum crispum* Ubiquitin4-2
189promoter; PmCDA1: *Petromyzon marinus* cytidine deaminase; UGI: uracil glycosylase
190inhibitor; Pea3A: *Pisum sativum* 3A terminator, AtU6-26: *Arabidopsis* U6-26 promoter;
191pNos: nopaline synthase promoter; nptII: neomycin phosphotransferase; tNos: nopaline
192synthase terminator. The schemes are not at scale and are for illustrative purposes only.

193

194The delivery of the CBEs into potato cells was performed through *Agrobacterium*-mediated
195transformation and potato explants were then grown on kanamycin-containing medium for
196several weeks. For both constructs targeting the *StGBSSI* gene (sgRNA1 and sgRNA3), none
197of the regenerated plants displayed mutations according to HRM analysis, which indicates,
198together with the inability to induce indels at this locus with the SaCas9 nuclease, that the
199spacer sequences and/or the targeted locus display characteristics preventing an efficient
200fixation of the CRISPR complex. For the pDeSanCas9_PmCDA1_UGI/sgRNA2 construct
201harboring a 20-bp spacer sequence, we did not find any base edited plant, suggesting that
202cytosine deamination occur with lower efficiency than dsDNA cleavage at this locus.
203However, we identified three mutated plants for the pDeSanCas9_PmCDA1_UGI/sgRNA4
204construct that harbors a 24-bp spacer sequence. One of these mutants (#16) experienced indel
205mutations at one or more targeted alleles, while two mutants (#17 and #18) correspond to
206cleanly base edited plants (Fig 4). Although this 24-bp spacer sequence was less efficient than
207the corresponding 20-bp spacer sequence for inducing indels mutations (Fig 2A), its higher
208efficiency for cytosine base editing may be due to the presence of additional cytosines in the
209editing window at the 5'end of the spacer (Fig 3B). Supporting this hypothesis, we found that
210base conversion only occurred at C₂₃ and C₂₂ (counting from the PAM) in the two cleanly
211base edited plants (Fig 4B). Interestingly, despite the presence of one UGI domain, our CBE

179
18

212construct was able to mediate both transition (C-to-T) and transversion (C-to-G) mutations
213(Fig 4), allowing to diversify the edits, albeit at the cost of indel formation that occurred at the
2145'end of the target sequence for one plant. This observation suggests that cytosine
215deamination-associated DNA repair mechanisms are involved in the production of this by-
216product.

217

218**Fig 4: CRISPR-SaCBE-mediated base editing in potato. A)** Table summarizing the base
219editing efficiencies at the *StGBSS1* and *StDMR6-1* targeted loci using both HRM analysis and
220Sanger sequencing. Cleanly base edited plants refers to plants that harboured cytosine
221conversion without the introduction on indels in the target sequence. **B)** Sanger
222chromatograms of the three CRISPR-SaCBE-edited potato plants at the *StDMR6-1* gene with
223the pDeSanCas9_PmCDA1_UGI/sgRNA4. Because the PAM (in red) is located on the
224reverse strand, and in order to avoid confusion, we sequenced using a reverse primer to
225clearly identify the C conversion. The spacer sequence is represented in purple.

226

227To summarize, the CRISPR-SanCas9 CBE was able to achieve cytosine base conversion at
228distal location from the 5'-NNGGAT-3' PAM in the cultivated potato, which is to our
229knowledge the first report of such application in a dicot species. The CRISPR-SanCas9 CBE
230developed for this study represent a complementary tool to the previously described SpnCas9
231based CBE and, thanks to its capacity to hybridize with 18-24-bp guide sequences [26], may
232be useful to efficiently target specific nucleotide at the distal part of longer spacer sequence,
233as demonstrated here.

234

235 **Concluding remarks**

236 The CRISPR-SaCas9 tools used and developed in this study broaden the scope of genome
237 editing applications for potato, but also for dicot species in general. While the use of SaCas9
238 that recognizes a sophisticated 5'-NNGRRT-3' PAM may be useful to limit off-target activity
239 at conserved sequences, this enzyme suffers from a narrowed targeting scope for base editing
240 experiments due to the low occurrence of the PAM and the necessity to place the targeted
241 base(s) in small edition window. Therefore, to unleash the base editing potential of SanCas9,
242 the SanCas9-KKH engineered variant that recognizes the relaxed 5'-NNNRRT-3' PAM has
243 been successfully used in rice for both adenine and cytosine conversion [13,14,27], and could
244 be of particular interest in dicot species. Finally, validation in potato of the use of SpCas9 and
245 SaCas9, that associate with distinct sgRNA scaffolds, makes possible their simultaneous use
246 to perform different catalytic functions (e.g. gene knock out, base editing, prime editing,
247 transcription regulation, epigenome modulation) in a single transformation step and extent the
248 possibilities of genome engineering in this essential crop.

249

250 **Material and Methods**

251 **Plant material**

252 The potato cultivar Desiree (ZPC, the Netherlands) was propagated in sterile conditions in 1X
253 MS medium including vitamins at pH 5.8 (Duchefa, the Netherlands), 0.4 mg/L thiamine
254 hydrochloride (Sigma-Aldrich, USA), 2.5% sucrose and 0.8% agar powder (VWR, USA).
255 Plants were cultured *in vitro* in a growth chamber at 19°C with a 16:8 h L/D photoperiod.

256Cloning procedures

257The entry plasmid pEn_Sa_Chimera for spacer cloning and the binary vector pDeSaCas9
258were kindly provided by Holger Puchta [11]. For spacer cloning, the pEn_Sa_Chimera entry
259plasmid was digested by *Bbs*I and annealed oligonucleotides bearing complementary
260overhangs were ligated through T4 DNA ligase (ThermoFisher Scientific, USA) (S2 Table 1).
261For multiplex editing using the pDeSaCas9/sgRNA1-2 and pDeSaCas9/sgRNA3-4, sgRNA1
262and sgRNA3 were introduced into the pDeSaCas9 backbone through *Mlu*I restriction and T4
263DNA ligation (ThermoFisher Scientific, USA), while sgRNA2 and sgRNA4 were then
264introduced through a LR Gateway reaction (ThermoFisher Scientific, USA). The resulting
265plasmids were checked by restriction digestion and Sanger sequencing (Fig 1 and S2 Table 1).

266The pDeSanCas9_PmCDA1_UGI binary plasmid was produced as follow. The SanCas9
267sequence was produced through PCR amplification with the Superfi DNA polymerase
268(ThermoFisher Scientific, USA) using a forward primer bearing polymorphism for D10A
269amino acid shift (S2 Table 1), devoid of a STOP codon. The PCR fragment was cloned into
270an intermediate pTwist plasmid through *Mlu*I/*Eco*RI restriction followed by T4 DNA ligation
271(ThermoFisher Scientific, USA). A sequence encoding the PmCDA1 and UGI catalytic
272domains was previously dicot-codon optimized and synthesized (TwistBioscience, USA) [19],
273and cloned into the intermediate pTwist plasmid through *Eco*RI restriction and T4 DNA
274ligation (ThermoFisher Scientific, USA), downstream of the SanCas9 coding sequence. The
275construct was checked by sanger sequencing (S2 Table 1). The SanCas9_PmCDA1_UGI
276sequence (S1 Fig 2) was then cloned into a modified pDeCas9 backbone [23] through *Asc*I
277restriction and T4 DNA ligation (ThermoFisher Scientific, USA). The final
278pDeSanCas9_PmCDA1_UGI was checked by restriction ligation and Sanger sequencing (Fig
2793A and S2 Table 1). Previously built sgRNA cassettes were then individually cloned into the

280Sa_CBE plasmid through a LR Gateway reaction (ThermoFisher Scientific, USA). The
281resulting plasmids were checked by restriction digestion and Sanger sequencing (Fig 3B and
282S2 Table 1).

283

284 ***Agrobacterium*-mediated transformation and plant regeneration**

285Binary plasmids described above were transferred into *Agrobacterium* C58pMP90 strain by
286heat shock. *Agrobacterium*-mediated stable plant transformation and plant regeneration were
287performed on explants of the Desiree cultivar, as previously described [17]. Plant tissues were
288cultured on 50 mg/L kanamycin, and regenerated plants were then transferred to a culture
289medium containing 50 mg/L kanamycin or tested for the presence of the T-DNA by PCR (S2
290Table 1).

291

292 **Target site genotyping**

293Genomic DNA from control and regenerated plants was extracted using the NucleoSpin Plant
294II kit (Macherey–Nagel, Germany) according to the manufacturer's instructions. HRM
295analysis was performed using the High Resolution Melting Master (Roche Applied Science,
296Germany) on the LightCycler® 480 II system (Roche Applied Science, Germany) (S2 Table
2971), as previously described [17]. Plants harboring a HRM mutated profile were then Sanger
298sequenced (Genoscreen, France) (S2 Table 1). Some plants harboring mutations at the
299*StDMR6-1* locus with the pDeSaCas9 constructs were further analyzed by cloning the PCR
300products (Superfi DNA polymerase, ThermoFisher Scientific, USA) into the pCR4-TOPO TA

2513
26

301vector (ThermoFisher Scientific, USA), followed by Sanger sequencing (Genoscreen,
302France).

303

304**Funding**

305This research was funded by the Investissement d’Avenir program of the French National
306Agency of Research for the project GENIUS (ANR-11-BTBR-0001_GENIUS) and by the
307Institut Carnot Plant2Pro program for the project POTATOCRISP. The IJPB benefits from
308the support of Saclay Plant Sciences-SPS (ANR-17-EUR-0007).

309

310**Acknowledgments**

311We thank Holger Puchta and his team (Botanical Institute II, Karlsruhe Institute of
312Technology, Karlsruhe, Germany) for providing the pDeSaCas9 backbone. We thank Peter
313Rogowsky for his efficient management of the GENIUS project. We acknowledge the
314BrACySol BRC (INRAE, Ploudaniel, France) for providing the potato plants used in this
315study.

316

317**Conflicts of Interest**

318The authors declare no conflict of interest.

319

320**References**

3211. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A
322Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity.
323Science. 2012;337: 816–821. doi:10.1126/science.1225829

3242. Jiang F, Doudna JA. CRISPR–Cas9 Structures and Mechanisms. Annu Rev Biophys.
3252017;46: 505–529. doi:10.1146/annurev-biophys-062215-010822

3263. Puchta H. The repair of double-strand breaks in plants: mechanisms and consequences
327for genome evolution. Journal of Experimental Botany. 2004 [cited 7 Jun 2020].
328doi:10.1093/jxb/eri025

3294. Mishra R, Joshi RK, Zhao K. Base editing in crops: current advances, limitations and
330future implications. Plant Biotechnol J. 2020;18: 20–31. doi:10.1111/pbi.13225

3315. Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, et al. Targeted
332nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science.
3332016;353: aaf8729–aaf8729. doi:10.1126/science.aaf8729

3346. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al.
335Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature.
3362017;551: 464–471. doi:10.1038/nature24644

3377. Komor AC, Zhao KT, Packer MS, Gaudelli NM, Waterbury AL, Koblan LW, et al.
338Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-
339T:A base editors with higher efficiency and product purity. Sci Adv. 2017;3: eaao4774.
340doi:10.1126/sciadv.eaao4774

3418. Zhang Y, Malzahn AA, Sretenovic S, Qi Y. The emerging and uncultivated potential
342of CRISPR technology in plant science. Nat Plants. 2019;5: 778–794. doi:10.1038/s41477-
343019-0461-5

3449. Murovec J, Pirc Ž, Yang B. New variants of CRISPR RNA-guided genome editing
345enzymes. Plant Biotechnol J. 2017;15: 917–926. doi:10.1111/pbi.12736

34610. Kaya H, Mikami M, Endo A, Endo M, Toki S. Highly specific targeted mutagenesis in
347plants using *Staphylococcus aureus* Cas9. *Sci Rep.* 2016;6: 26871. doi:10.1038/srep26871

34811. Steinert J, Schiml S, Fauser F, Puchta H. Highly efficient heritable plant genome
349engineering using Cas9 orthologues from *Streptococcus thermophilus* and *Staphylococcus*
350*aureus*. *Plant J.* 2015;84: 1295–1305. doi:10.1111/tpj.13078

35112. Jia H, Xu J, Orbović V, Zhang Y, Wang N. Editing Citrus Genome via
352SaCas9/sgRNA System. *Front Plant Sci.* 2017;8: 2135. doi:10.3389/fpls.2017.02135

35313. Qin R, Li J, Li H, Zhang Y, Liu X, Miao Y, et al. Developing a highly efficient and
354wildly adaptive CRISPR-SaCas9 toolset for plant genome editing. *Plant Biotechnol J.*
3552019;17: 706–708. doi:10.1111/pbi.13047

35614. Hua K, Tao X, Zhu J-K. Expanding the base editing scope in rice by using Cas9
357variants. *Plant Biotechnol J.* 2019;17: 499–504. doi:10.1111/pbi.12993

35815. Andersson M, Turesson H, Nicolia A, Fält A-S, Samuelsson M, Hofvander P.
359Efficient targeted multiallelic mutagenesis in tetraploid potato (*Solanum tuberosum*) by
360transient CRISPR-Cas9 expression in protoplasts. *Plant Cell Rep.* 2017;36: 117–128.
361doi:10.1007/s00299-016-2062-3

36216. Andersson M, Turesson H, Olsson N, Fält A-S, Ohlsson P, Gonzalez MN, et al.
363Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. *Physiol Plantarum.*
3642018;164: 378–384. doi:10.1111/ppl.12731

36517. Veillet F, Chauvin L, Kermarrec M-P, Sevestre F, Merrer M, Terret Z, et al. The
366*Solanum tuberosum* GBSSI gene: a target for assessing gene and base editing in tetraploid
367potato. *Plant Cell Rep.* 2019;38: 1065–1080. doi:10.1007/s00299-019-02426-w

36818. González MN, Massa GA, Andersson M, Turesson H, Olsson N, Fält A-S, et al.
369Reduced Enzymatic Browning in Potato Tubers by Specific Editing of a Polyphenol Oxidase
370Gene via Ribonucleoprotein Complexes Delivery of the CRISPR/Cas9 System. *Front Plant*

371Sci. 2020;10: 1649. doi:10.3389/fpls.2019.01649

37219. Veillet F, Perrot L, Guyon-Debast A, Kermarrec M-P, Chauvin L, Chauvin J-E, et al.

373Expanding the CRISPR Toolbox in *P. patens* Using SpCas9-NG Variant and Application for

374Gene and Base Editing in Solanaceae Crops. IJMS. 2020;21: 1024.

375doi:10.3390/ijms21031024

37620. Graf R, Li X, Chu VT, Rajewsky K. sgRNA Sequence Motifs Blocking Efficient

377CRISPR/Cas9-Mediated Gene Editing. Cell Reports. 2019;26: 1098-1103.e3.

378doi:10.1016/j.celrep.2019.01.024

37921. Sevestre F, Facon M, Wattebled F, Szydlowski N. Facilitating gene editing in potato: a

380Single-Nucleotide Polymorphism (SNP) map of the *Solanum tuberosum* L. cv. Desiree

381genome. Sci Rep. 2020;10: 2045. doi:10.1038/s41598-020-58985-6

38222. Fauser F, Schiml S, Puchta H. Both CRISPR/Cas-based nucleases and nickases can be

383used efficiently for genome engineering in *Arabidopsis thaliana*. Plant J. 2014;79: 348–359.

384doi:10.1111/tpj.12554

38523. Danilo B, Perrot L, Mara K, Botton E, Nogué F, Mazier M. Efficient and transgene-

386free gene targeting using Agrobacterium-mediated delivery of the CRISPR/Cas9 system in

387tomato. Plant Cell Rep. 2019;38: 459–462. doi:10.1007/s00299-019-02373-6

38824. Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H, et al. Targeted

389base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat

390Biotechnol. 2017;35: 441–443. doi:10.1038/nbt.3833

39125. Veillet F, Perrot L, Chauvin L, Kermarrec M-P, Guyon-Debast A, Chauvin J-E, et al.

392Transgene-Free Genome Editing in Tomato and Potato Plants Using Agrobacterium-Mediated

393Delivery of a CRISPR/Cas9 Cytidine Base Editor. IJMS. 2019;20: 402.

394doi:10.3390/ijms20020402

39526. Friedland AE, Baral R, Singhal P, Loveluck K, Shen S, Sanchez M, et al.

396Characterization of *Staphylococcus aureus* Cas9: a smaller Cas9 for all-in-one adeno-
397associated virus delivery and paired nickase applications. *Genome Biol.* 2015;16: 257.
398doi:10.1186/s13059-015-0817-8

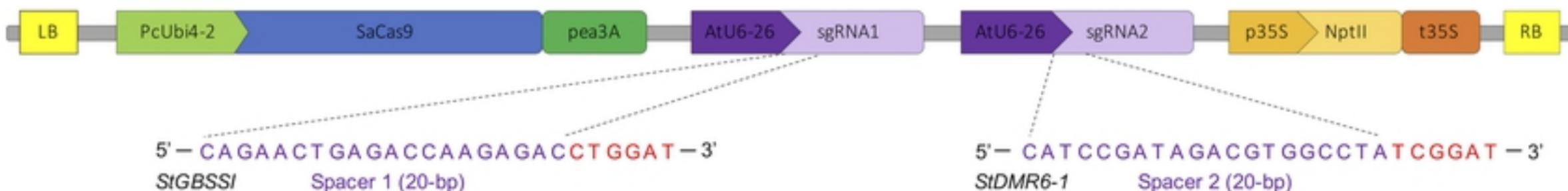
39927. Zhang C, Wang F, Zhao S, Kang G, Song J, Li L, et al. Highly efficient CRISPR-
400SaKKH tools for plant multiplex cytosine base editing. *The Crop Journal.* 2020;8: 418–423.
401doi:10.1016/j.cj.2020.03.002

402

403**Supporting information**

404**S1 Fig1: Alignment of Sanger chromatograms obtained after TA cloning of individual**
405**PCR fragments of the StDMR6-1 targeted locus.** The reference sequence is displayed at the
406top of each panel, with the position of the PAM (in red, on the reverse strand) and the spacer
407sequences (in blue). The number on the right of each chromatogram corresponds to the
408number of identical chromatograms observed. The Geneious software was used for the
409alignments.

410


411**S1 Fig 2: Coding sequence of the Sa-CBE developed in this study.** The SanCas9 sequence
412is in blue, the two NLS sequences in purple, the PmCDA1 sequence in green and the UGI
413sequence in red. All the coding sequence is optimized for expression in dicot species.

414

415**S2 Table 1: List of primers used in this study.**

416

pDeSaCas9/sgRNA1-2

pDeSaCas9/sgRNA3-4

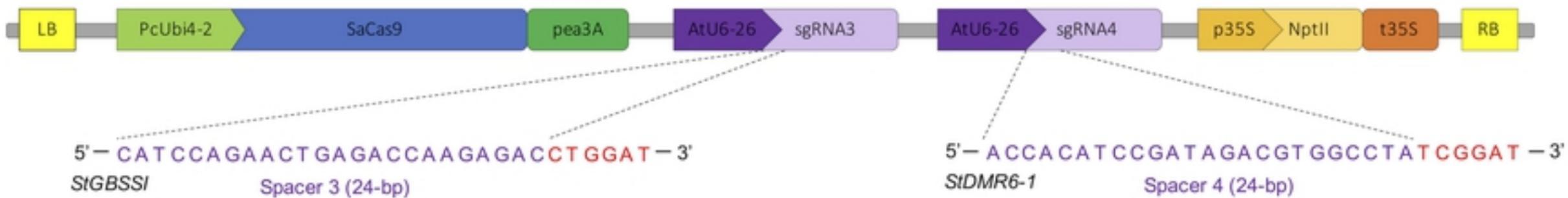
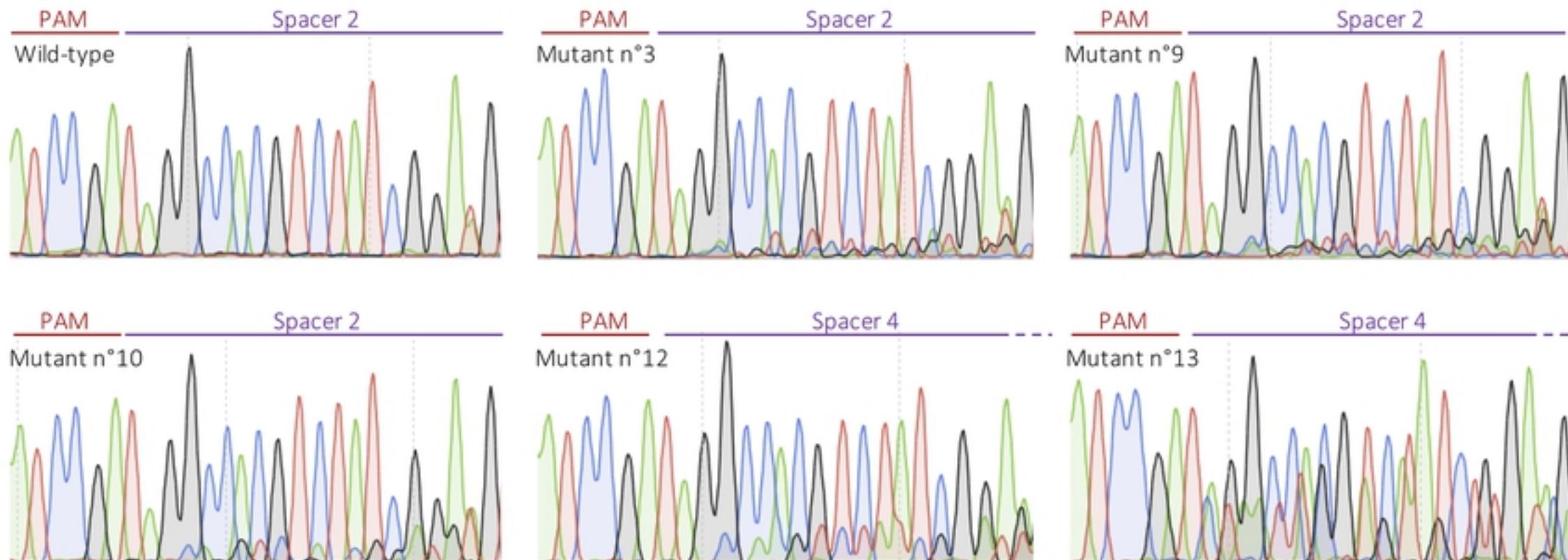



Figure 1

A

Construct	pDeSaCas9/sgRNA1-2		pDeSaCas9/sgRNA3-4	
Target gene	<i>StGBSSI</i>	<i>StDMR6-1</i>	<i>StGBSSI</i>	<i>StDMR6-1</i>
Nb of kanamycin-resistant plants	33		27	
Nb of mutated plants	0 (0%)	11 (33%)	0 (0%)	4 (15%)

B

StDMR6-1

C

<i>StDMR6-1</i>	Construct	Reads (TA cloning)		Mutations
		<i>Wild-type</i>	<i>Mutated</i>	
Mutant n°9	pDeSaCas9/sgRNA1-2	5	5	-3bp (2), -5bp (1), -5bp + 1SNP (1), -10bp (1)
Mutant n°10	pDeSaCas9/sgRNA1-2	8	2	-2bp (2)
Mutant n°12	pDeSaCas9/sgRNA3-4	2	8	-1bp (7), -2bp (1)
Mutant n°13	pDeSaCas9/sgRNA3-4	4	6	-82bp (6)

Figure 2

A

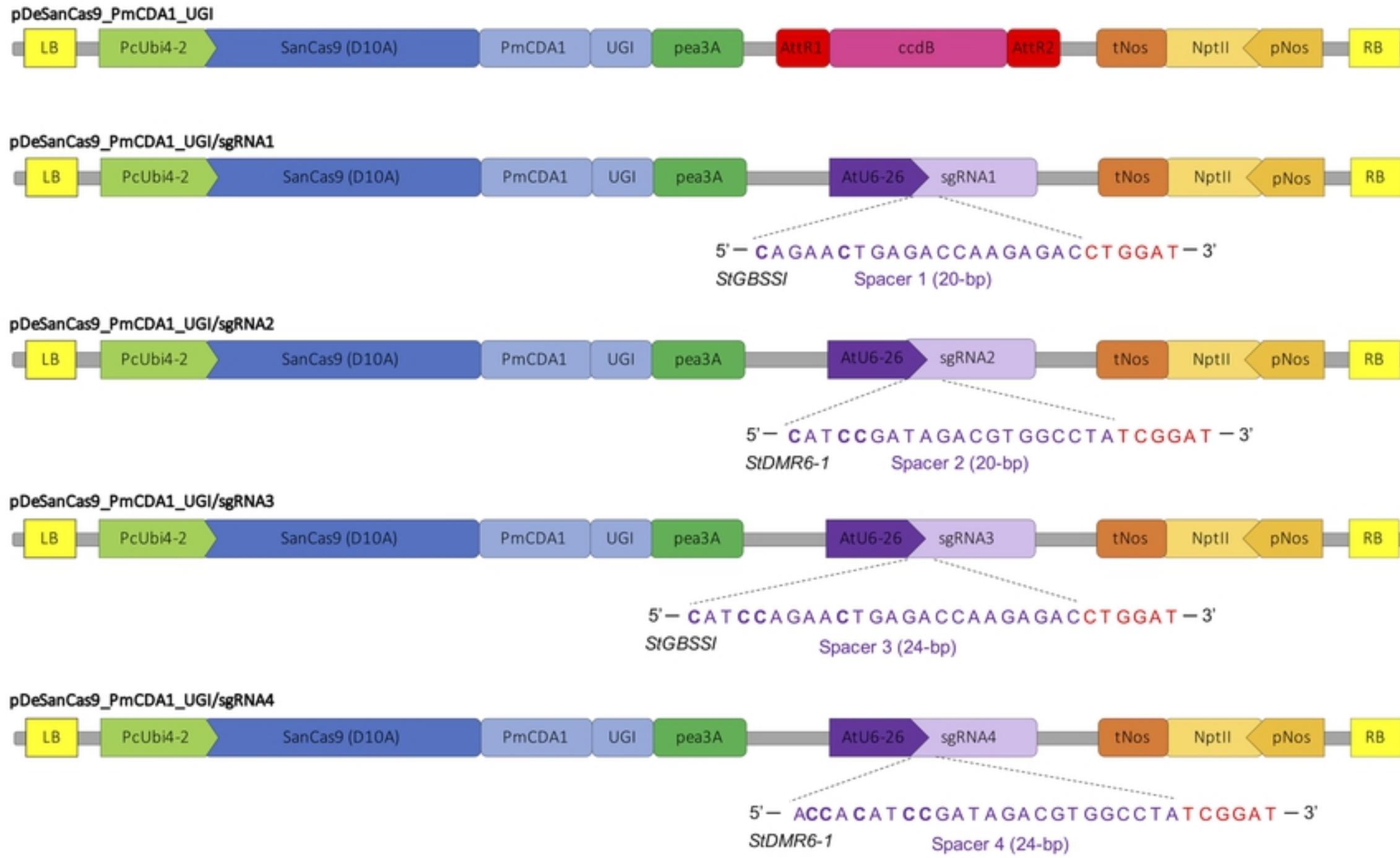


Figure 3

A

pDeSanCas9_PmCDA1_UGI	sgRNA1	sgRNA2	sgRNA3	sgRNA4
Target gene	<i>StGBSSI</i>	<i>StDMR6-1</i>	<i>StGBSSI</i>	<i>StDMR6-1</i>
Nb of kanamycin-resistant plants	46	18	28	24
Nb of mutated plants	0 (0%)	0 (0%)	0 (0%)	3 (12%)
Nb of cleanly base edited plants	0 (0%)	0 (0%)	0 (0%)	2 (8%)
Base editing outcomes	NA	NA	NA	C-to-T, C-to-G

B *StDMR6-1*

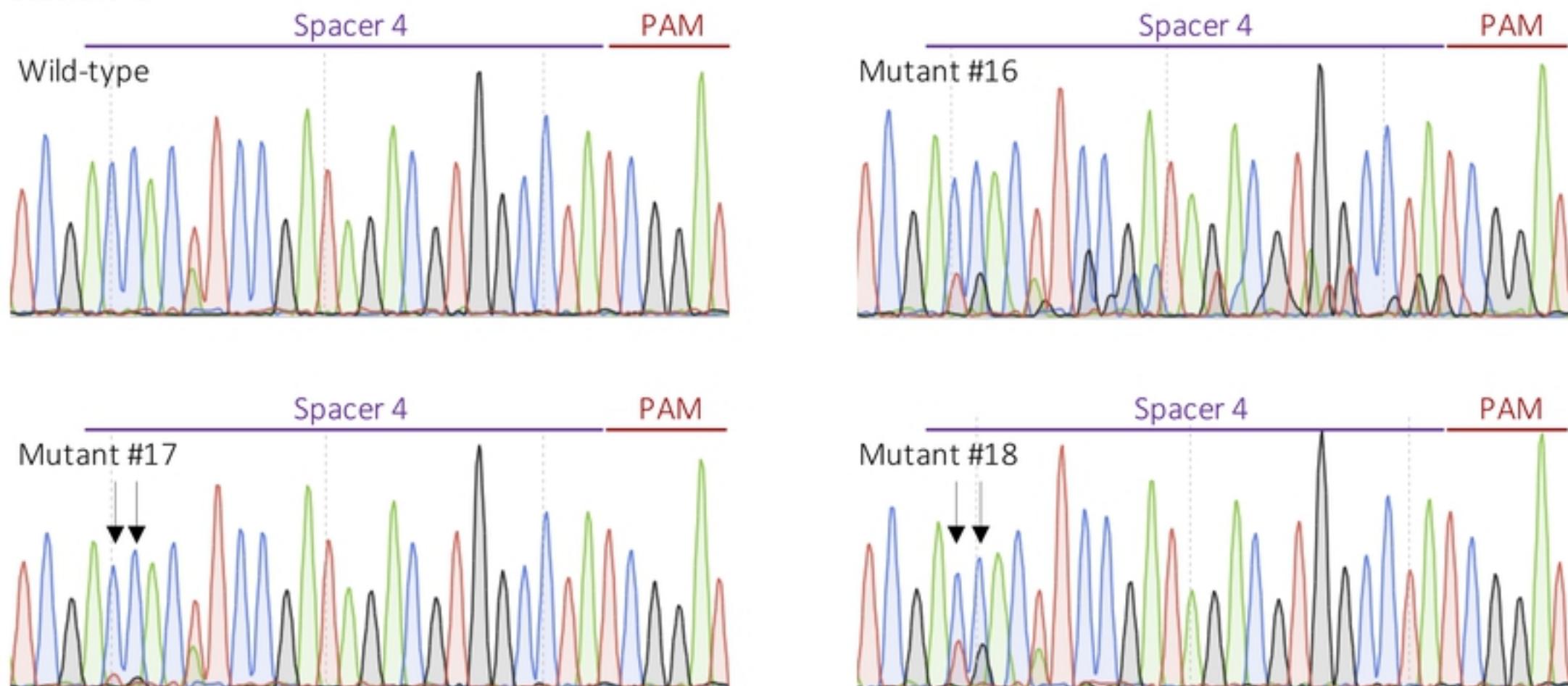


Figure 4