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ABSTRACT

Transcripts from non-coding repetitive elements (RE) in the genome may be involved in aging.
However, they are often ignored in transcriptome studies on healthspan and lifespan, and their role in
healthy aging interventions has not been characterized. Here, we analyze RE in RNA-seq datasets
from mice subjected to robust healthspan- and lifespan-increasing interventions including calorie
restriction, rapamycin, acarbose, 17-a-estradiol, and Protandim. We also examine RE transcripts in
long-lived transgenic mice, and in mice subjected to high-fat diet, and we use RNA-seq to investigate
the influence of aerobic exercise on RE transcripts with aging in humans. We find that: 1) healthy
aging interventions/behaviors globally reduce RE transcripts, whereas aging and age-accelerating
treatments increase RE expression; and 2) reduced RE expression with healthy aging interventions is
associated with biological/physiological processes mechanistically linked with aging. Thus, RE
transcript dysregulation and suppression are likely novel mechanisms underlying aging and healthy

aging interventions, respectively.
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INTRODUCTION

Older age is the greatest risk factor for the development of most chronic diseases (1). Accordingly,
recent large-scale ‘omics’ studies have aimed to characterize novel genes and biological pathways
that influence aging, and to identify related interventions (e.g., pharmaceutical compounds, exercise,
nutrition) that increase longevity and healthspan (2, 3). Indeed, advances in transcriptomics (e.g.,
RNA-seq) have led to important insight on many genes and pathways linked with ‘the hallmarks of
aging’ and broader health outcomes (4). However, most of these studies have focused on coding
sequences—a small fraction of the genome. Non-coding, repetitive elements (RE, >60% of the
genome) have been particularly neglected as ‘junk DNA'’ (5), despite growing evidence that they have

many important biological functions (6).

RE include DNA transposons, retrotransposons, tandem repeats, satellites and terminal repeats (7).
A major fraction of RE, mainly DNA transposons and retrotransposons (e.g., LINEs, SINEs, LTRS),
are transposable elements (TE) with the ability to propagate, multiply and change genomic position
(6). Most RE/TE are in genomic regions that are chromatinized and suppressed (inactive), but recent
reports show that certain TE become active during aging, perhaps due to reduced chromatin
architecture/stability (e.g., histone dysregulation) (8). Activation of these specific TE may contribute
to aging by causing genomic and/or cellular damage/stress (e.g., inflammation) (9). However, we
recently reported that aging is associated with a progressive, global increase in transcripts from most
RE (not only TE) in model organisms and humans (10). This global dysregulation of RE may have an
important, more general role in aging, as RE transcripts have been linked with other key hallmarks of
aging including oxidative stress and cellular senescence (11). In fact, it has been suggested that RE
dysregulation itself may be an important hallmark of aging (12). If so, a logical prediction would be
that interventions that increase health/lifespan and reduce hallmarks of aging (e.g., calorie restriction
[CR], select pharmacological agents and exercise) should also suppress RE/TE. Limited evidence
suggests this may be true for CR and certain TE in Drosophila (13), but global RE/TE expression has
not been well studied in this context.
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RESULTS AND DISCUSSION

To determine if global RE transcript suppression might be a mechanism underlying healthy aging
interventions, we first analyzed RE in an RNA-seq dataset on livers from young and old mice and old
mice subjected to life-long (24 months) CR (14). We found a small, but significant age-related
increase in most major RE transcript types in this dataset, consistent with our previous work (15) and
others’ (16). However, this effect was significantly attenuated with CR (Fig. 1A). Based on this novel
evidence of RE suppression by CR (arguably the strongest health/lifespan-enhancing intervention),
we looked to confirm our results in an additional, large dataset including RNA-seq on livers from mice
subjected to different durations of CR and pharmacological interventions known to increase
health/lifespan (rapamycin, acarbose, 17-a-estradiol [17aE], and Protandim), as well as data on
transgenic, long-lived mice (2) (Fig. 1 and Supplementary Data). We found that long-term (8
months) CR caused a significant, global reduction in RE transcripts (Fig. 1B). Furthermore, we found
that both long-term (8 months) rapamycin and acarbose treatments were associated with a
comparable, broad reduction in RE transcripts (Fig. 1B), consistent with the notion that these
compounds are ‘calorie restriction mimetics’ and may act via similar pathways (17). This effect was
particularly clear when we examined RE/TE reductions by major sub-type (Fig. 1C). Short-term (2
months) interventions with other healthy aging compounds influenced RE transcript levels to various
degrees, although reductions were more pronounced with CR and Protandim, which is thought to
activate endogenous antioxidant defenses (Fig. 1D). Interestingly, the authors of the original study
(2) observed similar variability in gene expression patterns, suggesting time/treatment-specific
transcriptome effects. We also found a significant influence of growth hormone receptor knockout
(GHRKO, a transgenic longevity model) on the main RE transcript types (Fig. 1E). Moreover, in a
separate dataset (18), we found that high-fat diet (HFD, a common ‘pro-aging’ intervention)
significantly increased all major RE/TE (Fig. 1F). Collectively, these results support the idea that
global RE transcript levels are linked with healthspan/lifespan, as they are reduced by most “gold

standard” anti-aging interventions and increased by adverse, pro-aging treatments.

Next, we examined similarities in the effects of healthy aging interventions on RE by sub-type/family
(Fig. 2 and Supplementary Data). Again, we observed variable patterns of RE family expression
with short-term treatments (Fig. 2A). With long-term treatment, CR and rapamycin influenced RE/TE
families most similarly, and most transcripts were decreased with all treatments (Fig. 2B), and in
GHRKO mice (Fig. 2C). We next determined which specific RE transcripts were commonly
decreased/increased among all treatments. Despite the variable RE/family expression patterns noted

above, short-term treatments modulated many of the same transcripts (Fig. 2D and Supplementary
4
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Data). Long-term treatments also decreased/increased a large number of common transcripts (518
and 92, respectively) (Fig. 2E and Supplementary Data). Consistent with the idea that global RE
modulation is linked with healthy aging interventions, we did not notice any particular enrichment for
specific RE/TE types in these common transcripts. However, we did note that endogenous retrovirus
(ERV) RE transcripts were the most decreased with all long-term treatments and in GHRKO mice.
Interestingly, ERVs have been implicated in aging and several diseases of aging including
neurodegenerative disorders (19, 20), suggesting that these RE could be an important therapeutic

target.

Identifying potentially targetable biological mechanisms linking reduced RE expression with healthy
aging interventions will require future experiments. However, to provide initial insight, we examined
correlations among gene and RE expression patterns in mice subjected to long-term CR, rapamycin
and acarbose (treatments that reduced RE transcripts the most). To do this, we conducted a
weighted gene correlation network analysis (WGCNA) on both gene and RE transcript counts (Fig. 3
and Supplementary Data). Although gene/RE signatures across interventions were not strikingly
similar, we identified one WGCNA module (green) that decreased significantly with all interventions
(Fig. 3A). This module contained numerous DNA transposons and several LINE, ERV and LTR
transcripts. A gene ontology (GO) analysis of the module also showed significant enrichment for
many biological processes, including several linked with aging and disease (Fig. 3B). In fact, the
most specific GO terms included protein deacetylation, DNA repair and immune activation/response
pathways. The other gene/RE modules that decreased with CR and/or rapamycin were also enriched
for specific GO terms including DNA repair, DNA/RNA processing, histone modifications and stress
responses (Fig. 3B). These exploratory analyses do not definitively link reduced RE expression with
such processes, but they are consistent with current thinking that age-related RE transcript
accumulation could cause DNA damage (21) and immune activation/inflammation (22), and that RE
dysregulation may be due to age-associated changes in chromatin/histones (23).

There is little or no RNA-seq data on true long-term CR or healthy aging compounds in older humans,
as these are challenging clinical interventions to conduct (24). However, one well-studied
intervention/behavior associated with increased healthspan and biological effects similar to CR is
aerobic exercise (25, 26). Others have studied the transcriptomic effects of exercise interventions on
select tissues (27), but proportionally, no studies have been nearly as long as an 8-month mouse
intervention (~25% of the animal’s life). Therefore, as initial proof of concept, we conducted a cross-

sectional study to determine if long-term exposure to this healthy aging behavior has the potential to
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reduce RE transcripts (Fig. 4 and Supplementary Data). We performed RNA-seq and gene/RE
expression analyses on peripheral blood mononuclear cells (PBMC) from: 1) young and older
sedentary adults; and 2) older habitually (25 years) exercising adults (Supplementary Table).
Consistent with other reports (28), we found that older age was associated with altered PBMC gene
expression, but these changes were largely attenuated in exercising older adults (Fig. 4A).
Moreover, in support of the idea that healthy aging interventions/behaviors may reduce RE
expression in humans, we observed a clear increase in global RE transcript levels in older sedentary
adult PBMC, but this effect was strongly attenuated with exercise (Fig. 4B). We also found that
maximal aerobic exercise capacity (VO, max) was inversely related to a composite count of RE that
are significantly increased with aging (Fig. 4C), suggesting that greater aerobic fitness (and perhaps
exposure to aerobic exercise) is directly linked with reduced RE expression. Interestingly, VO, max is
considered a key physiological predictor of longevity in humans (29), further demonstrating that RE
may have an important role in human healthspan/lifespan.

Collectively, our results support the growing idea that global RE dysregulation may be an important
mechanism of aging (and not simply an adverse effect of the process). Reversing age-related RE
transcript accumulation may be necessary for healthy aging, as our present findings show that
health/lifespan-enhancing interventions consistently reduce RE expression. Indeed, we and others
have reported age-associated increases in most types of RE transcripts (15, 16, 30), and this
suggests a fundamental cellular mismanagement of RE with aging, which could have numerous
deleterious effects. For example, our current study suggests that histone modifications, DNA damage
and immune/inflammatory responses may be linked with RE dysregulation. Future investigations are
needed to determine how and if these processes are specifically connected, as this could lead to

novel strategies for additional, potentially complementary healthy aging interventions.
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MATERIALS AND METHODS

RNA-seq datasets and availability

The data that support these findings can be found on the Gene Expression Omnibus under accession
numbers (GEO): GSE92486 (long term CR), GSE131901 (8-month and 2-month CR and
pharmacological treatments), GSE87565 (HFD), and GSE153100 (human exercise).

Bioinformatics analyses

RE transcripts were quantified using TEtranscripts (31) and the RepEnrich2 algorithm (32, 33) as
previously described (15), in order to confirm similar findings with RE different analysis platforms.
Briefly, reads were trimmed, quality filtered with fastp (34), and then aligned to the genome (mm10
Mus musculus or Hg38 Homo sapiens) using Bowtie (RepEnrich) or the STAR aligner (TEtranscripts)
(35). RE transcripts were then quantified using either TEtranscripts or RepEnrich, which are pipelines
to quantify RE transcripts by individual total counts, class, and family. Gene expression counts were
extracted from bam alignment files produced during TEtranscripts analyses, and differential
expression analyses of both RE and genes were performed using Deseq?2 software (36). WGCNA
was performed according to standard procedures outlined by the analysis pipeline’s authors (37)
using normalized gene and RE counts for all samples, and a minimum module size of 300 to capture
broader groups of RE that correlated with sample traits (specific interventions). GO analyses of
genes in the WGCNA modules were performed using the GOrilla algorithm (38), and specific GO

modules were identified as terminal nodes in the directed acyclic graph produced by this program.

Human subjects and RNA-seq samples

RNA-seq was performed on PBMC from twelve healthy young (18-22 years) and older (62-74 years)
adults. Subjects were non-obese, non-smokers and healthy as assessed by medical history, physical
examination, blood chemistries and exercise ECG, and small groups were selected to match
characteristics as closely as possible. Young (n=5, 2 male) and older (n=5, 2 m) sedentary subjects
performed no regular exercise (< 2 days/week, < 30 min/day), whereas older exercising subjects
(n=4, 1 m) performed regular vigorous aerobic exercise (= 5 days/week, > 45 min/day) for the
previous = 5 years. The study conformed to the Declaration of Helsinki; all procedures were
approved by the Institutional Review Board of the University of Colorado Boulder, and written
informed consent was obtained from all subjects. Maximal oxygen consumption (VO,max) was
assessed during treadmill exercise as previously described (39) and basic clinical measurements

(e.g., blood pressure) were performed using standard techniques. PBMC were isolated from whole
7
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blood by traditional Ficoll gradient centrifugation, and RNA-seq and gene expression analyses were
performed using standard methods as previously described (15, 40). Briefly, snap-frozen PBMC
pellets were lysed in Trizol (Thermo), and RNA was recovered using a spin column kit (Direct-Zol,
Zymo Research) that included a DNase | treatment to remove genomic DNA. Total RNA libraries
were generated using lllumina Ribo-Zero kits to deplete ribosomal RNA, and libraries were
sequenced on an Illumina NovaSeq 6000 platform to produce >40 M 150-bp single-end fastqg reads

per sample. Gene and RE expression analyses were performed as described above.

Statistical Analyses

Differential expression of RE transcripts was quantified using the Deseq2 software as previously
described using size factors to account for library size differences among samples (40). Chi-square
analyses and heatmaps of increased/decreased RE and WGCNA modules were constructed using
GraphPad Prism software, and Venn diagrams were generated using jvenn (41).
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Figure 1. Healthy aging interventions reduce RE transcripts. (A) Age-related increases in the major types

of RE transcripts in old (O) or old calorie-restricted (OCR) vs. young (Y) mice. N=3/group, *p<0.0001, two-

tailed t-test. All individual RE shown. (B) MA plots showing significant decreases in global RE transcripts with

long-term (8-month) healthy aging interventions. Significantly reduced or increased RE (FDR<0.1, identified

using Deseq?2) shown in red, and average transcript reduction indicated by red line. Likelihood of

increased/decreased distribution calculated by chi-square analysis. (C-F) Percentage of RE transcripts by type

increased or decreased with long- or short-term (2-month) interventions (*p<0.05, chi-square analysis). All

relevant data/samples from datasets GSE92486, GSE131901 and GSE87565 were used for analyses (N=3-6

mice/group), and raw data are provided in the supplementary data file.
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Figure 3. Gene expression patterns associated with RE transcript reductions. (A) WGCNA
analysis heatmap of gene/RE modules influenced by long-term interventions (*modules that changed
significantly with interventions, P<0.001 in WGCNA). (B) Most specific biological processes (gene
ontology terms) in each significant WGCNA module. Exact p-values are noted in the supplementary
data file, and all available samples/data from dataset GSE131901 were used for analyses (N=6

mice/group).
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413  Figure 4. Long-term exercise is associated with reduced RE transcript expression in humans.
414  (A) MA plots showing gene expression differences in peripheral blood mononuclear cells of older (O)
415 vs. young (YY) sedentary, and older exercising (O-EX) vs. Y adults. N=4-5 matched samples per

416  group. Note the ~2500 transcripts significantly increased/decreased with aging but largely reversed
417  with exercise (red data points, FDR<0.1, identified using Deseq2). (B) MA plots showing RE

418 transcript levels in the same samples/subjects. Note general upward shift and numerous significantly
419 increased RE transcripts with aging (red, FDR<O0.1, identified using Deseqg?2) that are largely reversed
420  with exercise. (C) Correlation between maximal aerobic exercise capacity (VO, max) and composite
421  count of RE transcripts significantly increased with aging (O vs. Y) in all subjects. Human subjects
422  characteristics in supplementary data file.
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