

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Healthy aging interventions reduce non-coding repetitive element transcripts

Devin Wahl^{1,2}, Alyssa N. Cavalier^{1,2}, Meghan Smith^{1,2}, Douglas R. Seals³
and Thomas J. LaRocca^{1,2,4}

1. Center for Healthy Aging, Colorado State University; Fort Collins, CO 80523
2. Department of Health and Exercise Science, Colorado State University; Fort Collins, CO 80523
3. Department of Integrative Physiology, University of Colorado Boulder; Boulder, CO 80309
4. Author for correspondence: Tom.LaRocca@colostate.edu

51

52 ABSTRACT

53

54 Transcripts from non-coding repetitive elements (RE) in the genome may be involved in aging.
55 However, they are often ignored in transcriptome studies on healthspan and lifespan, and their role in
56 healthy aging interventions has not been characterized. Here, we analyze RE in RNA-seq datasets
57 from mice subjected to robust healthspan- and lifespan-increasing interventions including calorie
58 restriction, rapamycin, acarbose, 17- α -estradiol, and Protandim. We also examine RE transcripts in
59 long-lived transgenic mice, and in mice subjected to high-fat diet, and we use RNA-seq to investigate
60 the influence of aerobic exercise on RE transcripts with aging in humans. We find that: 1) healthy
61 aging interventions/behaviors globally reduce RE transcripts, whereas aging and age-accelerating
62 treatments increase RE expression; and 2) reduced RE expression with healthy aging interventions is
63 associated with biological/physiological processes mechanistically linked with aging. Thus, RE
64 transcript dysregulation and suppression are likely novel mechanisms underlying aging and healthy
65 aging interventions, respectively.

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96 **INTRODUCTION**
97

98 Older age is the greatest risk factor for the development of most chronic diseases (1). Accordingly,
99 recent large-scale ‘omics’ studies have aimed to characterize novel genes and biological pathways
100 that influence aging, and to identify related interventions (e.g., pharmaceutical compounds, exercise,
101 nutrition) that increase longevity and healthspan (2, 3). Indeed, advances in transcriptomics (e.g.,
102 RNA-seq) have led to important insight on many genes and pathways linked with ‘the hallmarks of
103 aging’ and broader health outcomes (4). However, most of these studies have focused on coding
104 sequences—a small fraction of the genome. Non-coding, repetitive elements (RE, >60% of the
105 genome) have been particularly neglected as ‘junk DNA’ (5), despite growing evidence that they have
106 many important biological functions (6).

107

108 RE include DNA transposons, retrotransposons, tandem repeats, satellites and terminal repeats (7).
109 A major fraction of RE, mainly DNA transposons and retrotransposons (e.g., LINEs, SINEs, LTRs),
110 are transposable elements (TE) with the ability to propagate, multiply and change genomic position
111 (6). Most RE/TE are in genomic regions that are chromatinized and suppressed (inactive), but recent
112 reports show that certain TE become active during aging, perhaps due to reduced chromatin
113 architecture/stability (e.g., histone dysregulation) (8). Activation of these specific TE may contribute
114 to aging by causing genomic and/or cellular damage/stress (e.g., inflammation) (9). However, we
115 recently reported that aging is associated with a progressive, *global* increase in transcripts from most
116 RE (not only TE) in model organisms and humans (10). This global dysregulation of RE may have an
117 important, more general role in aging, as RE transcripts have been linked with other key hallmarks of
118 aging including oxidative stress and cellular senescence (11). In fact, it has been suggested that RE
119 dysregulation itself may be an important hallmark of aging (12). If so, a logical prediction would be
120 that interventions that increase health/lifespan and reduce hallmarks of aging (e.g., calorie restriction
121 [CR], select pharmacological agents and exercise) should also suppress RE/TE. Limited evidence
122 suggests this may be true for CR and certain TE in *Drosophila* (13), but global RE/TE expression has
123 not been well studied in this context.

124

125

126

127

128

129

130 **RESULTS AND DISCUSSION**

131
132 To determine if global RE transcript suppression might be a mechanism underlying healthy aging
133 interventions, we first analyzed RE in an RNA-seq dataset on livers from young and old mice and old
134 mice subjected to life-long (24 months) CR (14). We found a small, but significant age-related
135 increase in most major RE transcript types in this dataset, consistent with our previous work (15) and
136 others' (16). However, this effect was significantly attenuated with CR (**Fig. 1A**). Based on this novel
137 evidence of RE suppression by CR (arguably the strongest health/lifespan-enhancing intervention),
138 we looked to confirm our results in an additional, large dataset including RNA-seq on livers from mice
139 subjected to different durations of CR and pharmacological interventions known to increase
140 health/lifespan (rapamycin, acarbose, 17- α -estradiol [17aE], and Protandim), as well as data on
141 transgenic, long-lived mice (2) (**Fig. 1 and Supplementary Data**). We found that long-term (8
142 months) CR caused a significant, global reduction in RE transcripts (**Fig. 1B**). Furthermore, we found
143 that both long-term (8 months) rapamycin and acarbose treatments were associated with a
144 comparable, broad reduction in RE transcripts (**Fig. 1B**), consistent with the notion that these
145 compounds are 'calorie restriction mimetics' and may act via similar pathways (17). This effect was
146 particularly clear when we examined RE/TE reductions by major sub-type (**Fig. 1C**). Short-term (2
147 months) interventions with other healthy aging compounds influenced RE transcript levels to various
148 degrees, although reductions were more pronounced with CR and Protandim, which is thought to
149 activate endogenous antioxidant defenses (**Fig. 1D**). Interestingly, the authors of the original study
150 (2) observed similar variability in gene expression patterns, suggesting time/treatment-specific
151 transcriptome effects. We also found a significant influence of growth hormone receptor knockout
152 (GHRKO, a transgenic longevity model) on the main RE transcript types (**Fig. 1E**). Moreover, in a
153 separate dataset (18), we found that high-fat diet (HFD, a common 'pro-aging' intervention)
154 significantly *increased* all major RE/TE (**Fig. 1F**). Collectively, these results support the idea that
155 global RE transcript levels are linked with healthspan/lifespan, as they are reduced by most "gold
156 standard" anti-aging interventions and increased by adverse, pro-aging treatments.

157
158 Next, we examined similarities in the effects of healthy aging interventions on RE by sub-type/family
159 (**Fig. 2 and Supplementary Data**). Again, we observed variable patterns of RE family expression
160 with short-term treatments (**Fig. 2A**). With long-term treatment, CR and rapamycin influenced RE/TE
161 families most similarly, and most transcripts were decreased with all treatments (**Fig. 2B**), and in
162 GHRKO mice (**Fig. 2C**). We next determined which specific RE transcripts were commonly
163 decreased/increased among all treatments. Despite the variable RE/family expression patterns noted
164 above, short-term treatments modulated many of the same transcripts (**Fig. 2D and Supplementary**

165 **Data**). Long-term treatments also decreased/increased a large number of common transcripts (518
166 and 92, respectively) (**Fig. 2E and Supplementary Data**). Consistent with the idea that global RE
167 modulation is linked with healthy aging interventions, we did not notice any particular enrichment for
168 specific RE/TE types in these common transcripts. However, we did note that endogenous retrovirus
169 (ERV) RE transcripts were the most decreased with all long-term treatments and in GHRKO mice.
170 Interestingly, ERVs have been implicated in aging and several diseases of aging including
171 neurodegenerative disorders (19, 20), suggesting that these RE could be an important therapeutic
172 target.

173
174 Identifying potentially targetable biological mechanisms linking reduced RE expression with healthy
175 aging interventions will require future experiments. However, to provide initial insight, we examined
176 correlations among gene and RE expression patterns in mice subjected to long-term CR, rapamycin
177 and acarbose (treatments that reduced RE transcripts the most). To do this, we conducted a
178 weighted gene correlation network analysis (WGCNA) on both gene and RE transcript counts (**Fig. 3**
179 **and Supplementary Data**). Although gene/RE signatures across interventions were not strikingly
180 similar, we identified one WGCNA module (green) that decreased significantly with all interventions
181 (**Fig. 3A**). This module contained numerous DNA transposons and several LINE, ERV and LTR
182 transcripts. A gene ontology (GO) analysis of the module also showed significant enrichment for
183 many biological processes, including several linked with aging and disease (**Fig. 3B**). In fact, the
184 most specific GO terms included protein deacetylation, DNA repair and immune activation/response
185 pathways. The other gene/RE modules that decreased with CR and/or rapamycin were also enriched
186 for specific GO terms including DNA repair, DNA/RNA processing, histone modifications and stress
187 responses (**Fig. 3B**). These exploratory analyses do not definitively link reduced RE expression with
188 such processes, but they are consistent with current thinking that age-related RE transcript
189 accumulation could cause DNA damage (21) and immune activation/inflammation (22), and that RE
190 dysregulation may be due to age-associated changes in chromatin/histones (23).

191
192 There is little or no RNA-seq data on true long-term CR or healthy aging compounds in older humans,
193 as these are challenging clinical interventions to conduct (24). However, one well-studied
194 intervention/behavior associated with increased healthspan and biological effects similar to CR is
195 aerobic exercise (25, 26). Others have studied the transcriptomic effects of exercise interventions on
196 select tissues (27), but proportionally, no studies have been nearly as long as an 8-month mouse
197 intervention (~25% of the animal's life). Therefore, as initial proof of concept, we conducted a cross-
198 sectional study to determine if long-term exposure to this healthy aging behavior has the potential to

199 reduce RE transcripts (**Fig. 4 and Supplementary Data**). We performed RNA-seq and gene/RE
200 expression analyses on peripheral blood mononuclear cells (PBMC) from: 1) young and older
201 sedentary adults; and 2) older habitually (≥ 5 years) exercising adults (**Supplementary Table**).
202 Consistent with other reports (28), we found that older age was associated with altered PBMC gene
203 expression, but these changes were largely attenuated in exercising older adults (**Fig. 4A**).
204 Moreover, in support of the idea that healthy aging interventions/behaviors may reduce RE
205 expression in humans, we observed a clear increase in global RE transcript levels in older sedentary
206 adult PBMC, but this effect was strongly attenuated with exercise (**Fig. 4B**). We also found that
207 maximal aerobic exercise capacity (VO_2 max) was inversely related to a composite count of RE that
208 are significantly increased with aging (**Fig. 4C**), suggesting that greater aerobic fitness (and perhaps
209 exposure to aerobic exercise) is directly linked with reduced RE expression. Interestingly, VO_2 max is
210 considered a key physiological predictor of longevity in humans (29), further demonstrating that RE
211 may have an important role in human healthspan/lifespan.

212
213 Collectively, our results support the growing idea that global RE dysregulation may be an important
214 mechanism of aging (and not simply an adverse effect of the process). Reversing age-related RE
215 transcript accumulation may be necessary for healthy aging, as our present findings show that
216 health/lifespan-enhancing interventions consistently reduce RE expression. Indeed, we and others
217 have reported age-associated increases in most types of RE transcripts (15, 16, 30), and this
218 suggests a fundamental cellular mismanagement of RE with aging, which could have numerous
219 deleterious effects. For example, our current study suggests that histone modifications, DNA damage
220 and immune/inflammatory responses may be linked with RE dysregulation. Future investigations are
221 needed to determine how and if these processes are specifically connected, as this could lead to
222 novel strategies for additional, potentially complementary healthy aging interventions.

223
224
225
226
227
228
229
230
231
232

233 **MATERIALS AND METHODS**

234
235 **RNA-seq datasets and availability**

236
237 The data that support these findings can be found on the Gene Expression Omnibus under accession
238 numbers (GEO): GSE92486 (long term CR), GSE131901 (8-month and 2-month CR and
239 pharmacological treatments), GSE87565 (HFD), and GSE153100 (human exercise).

240
241 **Bioinformatics analyses**

242 RE transcripts were quantified using TEtranscripts (31) and the RepEnrich2 algorithm (32, 33) as
243 previously described (15), in order to confirm similar findings with RE different analysis platforms.
244 Briefly, reads were trimmed, quality filtered with *fastp* (34), and then aligned to the genome (mm10
245 *Mus musculus* or Hg38 *Homo sapiens*) using Bowtie (RepEnrich) or the STAR aligner (TEtranscripts)
246 (35). RE transcripts were then quantified using either TEtranscripts or RepEnrich, which are pipelines
247 to quantify RE transcripts by individual total counts, class, and family. Gene expression counts were
248 extracted from bam alignment files produced during TEtranscripts analyses, and differential
249 expression analyses of both RE and genes were performed using Deseq2 software (36). WGCNA
250 was performed according to standard procedures outlined by the analysis pipeline's authors (37)
251 using normalized gene and RE counts for all samples, and a minimum module size of 300 to capture
252 broader groups of RE that correlated with sample traits (specific interventions). GO analyses of
253 genes in the WGCNA modules were performed using the GOrilla algorithm (38), and specific GO
254 modules were identified as terminal nodes in the directed acyclic graph produced by this program.

255
256 **Human subjects and RNA-seq samples**

257 RNA-seq was performed on PBMC from twelve healthy young (18-22 years) and older (62-74 years)
258 adults. Subjects were non-obese, non-smokers and healthy as assessed by medical history, physical
259 examination, blood chemistries and exercise ECG, and small groups were selected to match
260 characteristics as closely as possible. Young (n=5, 2 male) and older (n=5, 2 m) sedentary subjects
261 performed no regular exercise (< 2 days/week, < 30 min/day), whereas older exercising subjects
262 (n=4, 1 m) performed regular vigorous aerobic exercise (\geq 5 days/week, > 45 min/day) for the
263 previous \geq 5 years. The study conformed to the Declaration of Helsinki; all procedures were
264 approved by the Institutional Review Board of the University of Colorado Boulder, and written
265 informed consent was obtained from all subjects. Maximal oxygen consumption (VO₂max) was
266 assessed during treadmill exercise as previously described (39) and basic clinical measurements
267 (e.g., blood pressure) were performed using standard techniques. PBMC were isolated from whole

268 blood by traditional Ficoll gradient centrifugation, and RNA-seq and gene expression analyses were
269 performed using standard methods as previously described (15, 40). Briefly, snap-frozen PBMC
270 pellets were lysed in Trizol (Thermo), and RNA was recovered using a spin column kit (Direct-Zol,
271 Zymo Research) that included a DNase I treatment to remove genomic DNA. Total RNA libraries
272 were generated using Illumina Ribo-Zero kits to deplete ribosomal RNA, and libraries were
273 sequenced on an Illumina NovaSeq 6000 platform to produce >40 M 150-bp single-end fastq reads
274 per sample. Gene and RE expression analyses were performed as described above.

275

276 **Statistical Analyses**

277 Differential expression of RE transcripts was quantified using the Deseq2 software as previously
278 described using size factors to account for library size differences among samples (40). Chi-square
279 analyses and heatmaps of increased/decreased RE and WGCNA modules were constructed using
280 GraphPad Prism software, and Venn diagrams were generated using jvenn (41).

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303 **Acknowledgments**

304 This work is funded by the National Institute on Aging, National Institutes of Health (AG060302).

305

306

307 **Author contributions**

308

309 D.W. designed the study, wrote the paper, generated and analyzed data, and provided conceptual
310 insight; A.N.C. analyzed data, provided conceptual insight, and edited the paper; M.S., edited paper
311 and provided conceptual insight; D.R.S. provided human PBMC samples, edited the paper, and
312 provided conceptual insight; T.J.L. designed the study, wrote the paper, analyzed data and provided
313 conceptual insight.

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

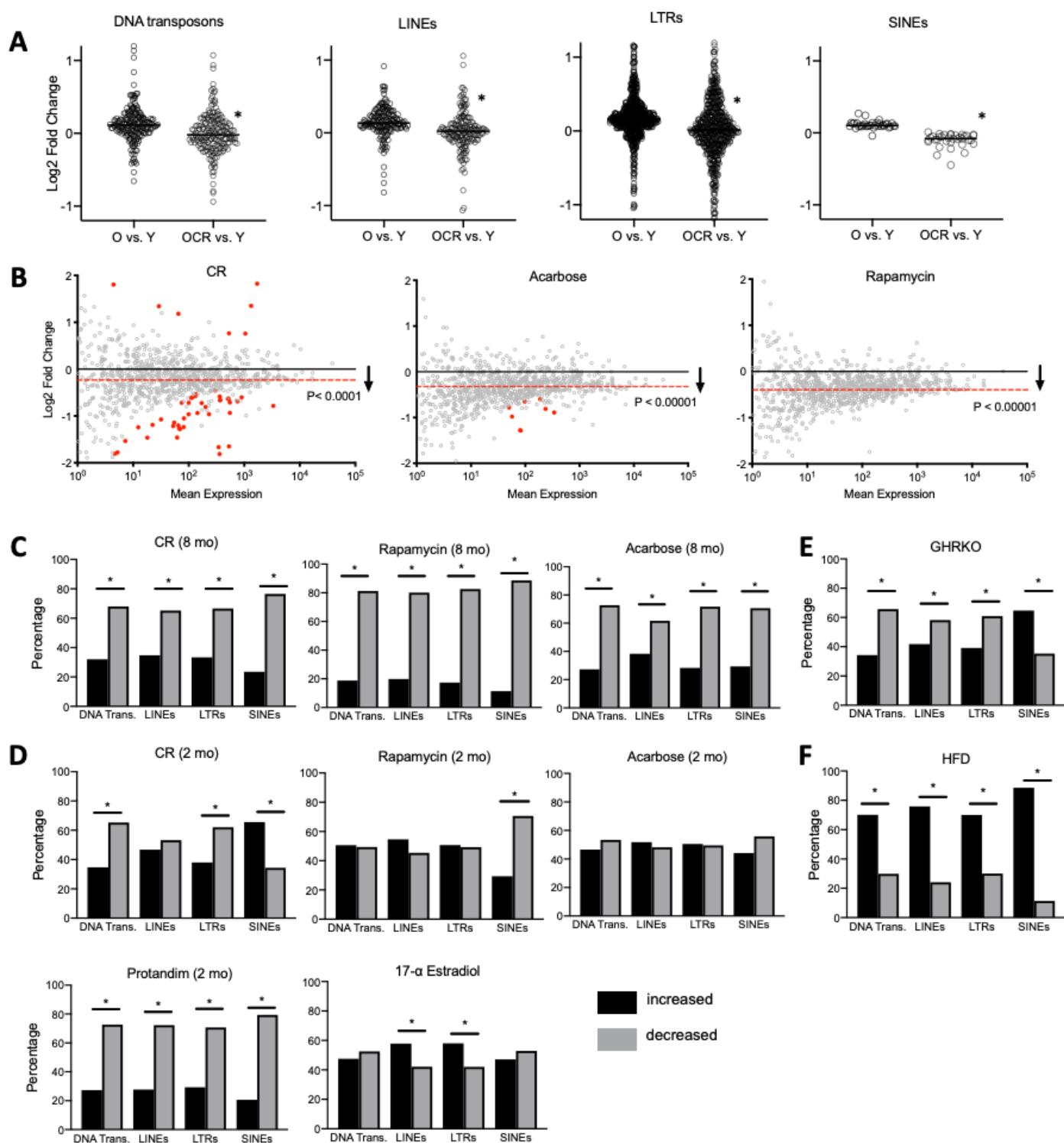
342

343

344

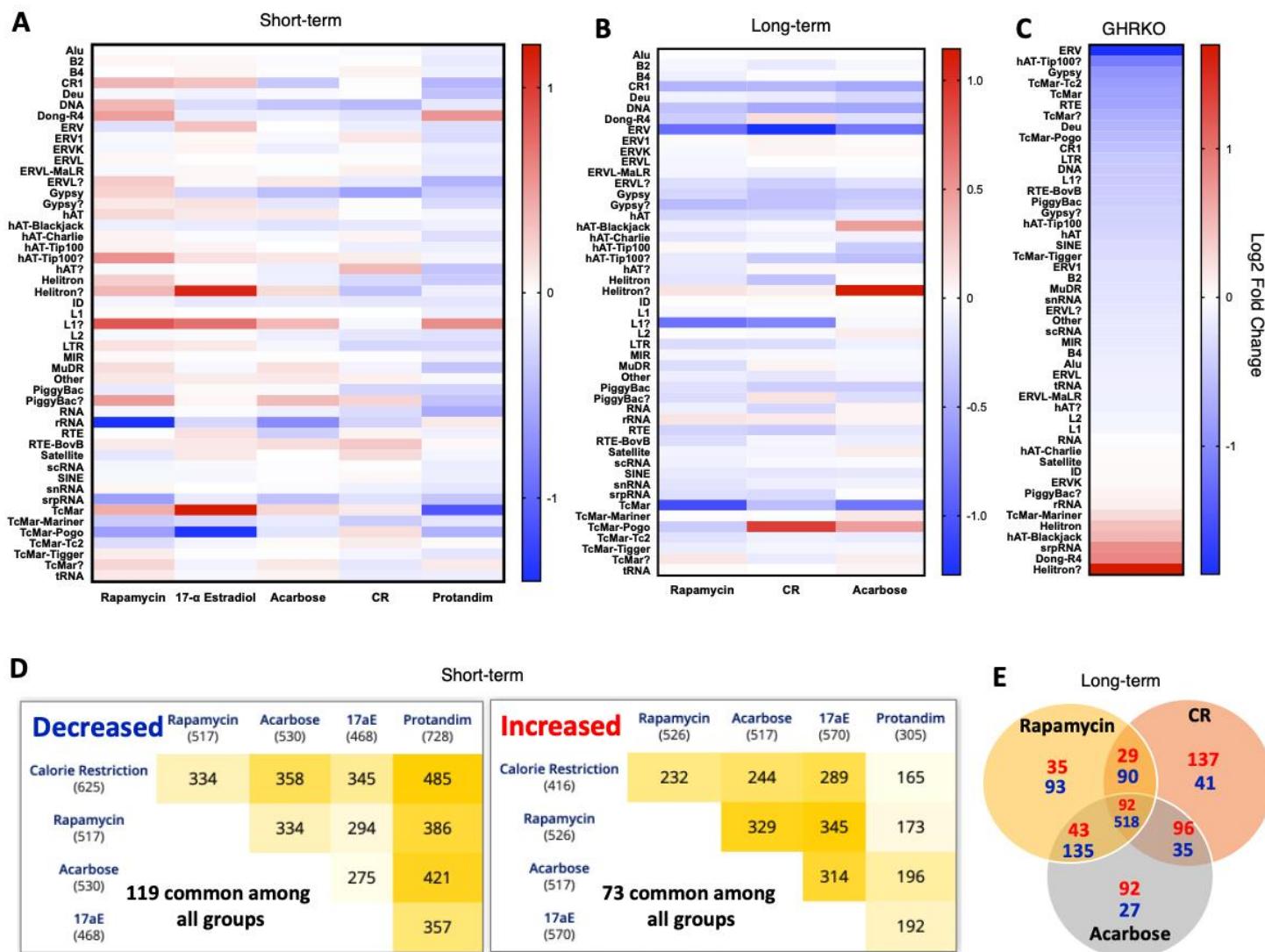
345

346


347

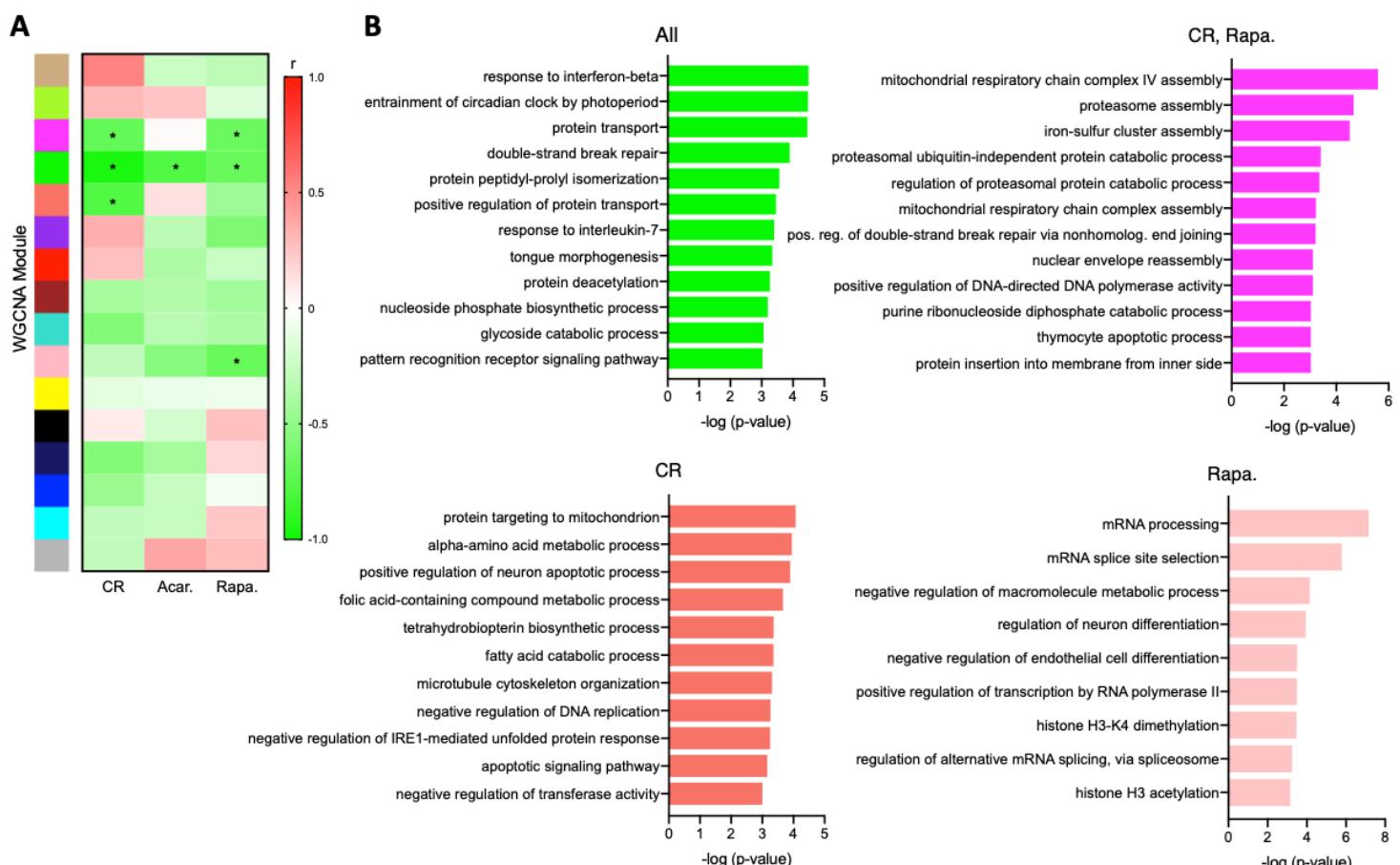
348

349


350

FIGURES AND LEGENDS

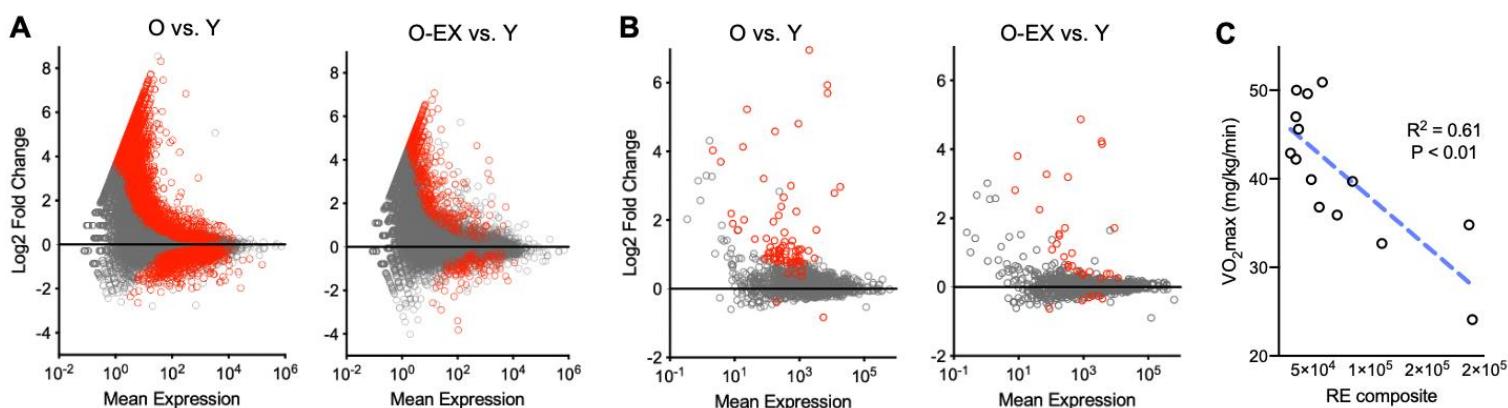
351
352 **Figure 1. Healthy aging interventions reduce RE transcripts.** (A) Age-related increases in the major types
353 of RE transcripts in old (O) or old calorie-restricted (OCR) vs. young (Y) mice. N=3/group, *p<0.0001, two-
354 tailed t-test. All individual RE shown. (B) MA plots showing significant decreases in global RE transcripts with
355 long-term (8-month) healthy aging interventions. Significantly reduced or increased RE (FDR<0.1, identified
356 using Deseq2) shown in red, and average transcript reduction indicated by red line. Likelihood of
357 increased/decreased distribution calculated by chi-square analysis. (C-F) Percentage of RE transcripts by type
358 increased or decreased with long- or short-term (2-month) interventions (*p<0.05, chi-square analysis). All
359 relevant data/samples from datasets GSE92486, GSE131901 and GSE87565 were used for analyses (N=3-6
360 mice/group), and raw data are provided in the supplementary data file.


361
362

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

Figure 2. Healthy aging interventions reduce most RE families and many similar, individual RE transcripts. (A-C) Heatmaps showing RE transcript families increased (red) and decreased (blue) by short-term interventions, long-term interventions, and in GHRKO mice. **(D)** Pairwise intersections showing the number of common decreased or increased RE transcripts with short-term interventions. **(E)** Venn diagrams showing the number of common decreased (blue) or increased (red) RE transcripts with long-term interventions. All relevant data/samples from dataset GSE131901 were used for analyses (N=3-6 mice/group), and raw data are provided in the supplementary data file.

383
384



385
386

Figure 3. Gene expression patterns associated with RE transcript reductions. (A) WGCNA analysis heatmap of gene/RE modules influenced by long-term interventions (*modules that changed significantly with interventions, $P<0.001$ in WGCNA). **(B)** Most specific biological processes (gene ontology terms) in each significant WGCNA module. Exact p-values are noted in the supplementary data file, and all available samples/data from dataset GSE131901 were used for analyses (N=6 mice/group).

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

409
410

Figure 4. Long-term exercise is associated with reduced RE transcript expression in humans.

(A) MA plots showing gene expression differences in peripheral blood mononuclear cells of older (O) vs. young (Y) sedentary, and older exercising (O-EX) vs. Y adults. N=4-5 matched samples per group. Note the ~2500 transcripts significantly increased/decreased with aging but largely reversed with exercise (red data points, FDR<0.1, identified using Deseq2). (B) MA plots showing RE transcript levels in the same samples/subjects. Note general upward shift and numerous significantly increased RE transcripts with aging (red, FDR<0.1, identified using Deseq2) that are largely reversed with exercise. (C) Correlation between maximal aerobic exercise capacity (VO₂ max) and composite count of RE transcripts significantly increased with aging (O vs. Y) in all subjects. Human subjects characteristics in supplementary data file.

411
412

413
414
415
416
417
418
419
420
421
422

423
424

425
426

427

428
429

430
431

432
433

434
435

436
437

438
439

440

441

References

442

443

1. Niccoli T, Partridge L. Ageing as a risk factor for disease. *Curr Biol*. 2012;22(17):R741-52.
2. Tyshkovskiy A, Bozaykut P, Borodinova AA, Gerashchenko MV, Ables GP, Garratt M, et al. Identification and Application of Gene Expression Signatures Associated with Lifespan Extension. *Cell Metab*. 2019;30(3):573-93.e8.
3. Wahl D, Anderson RM, Le Couteur DG. Anti-aging therapies, cognitive impairment and dementia. *J Gerontol A Biol Sci Med Sci*. 2019.
4. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. *Cell*. 2013;153(6):1194-217.
5. Bodega B, Orlando V. Repetitive elements dynamics in cell identity programming, maintenance and disease. *Curr Opin Cell Biol*. 2014;31:67-73.
6. Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, et al. Ten things you should know about transposable elements. *Genome Biol*. 2018;19(1):199.
7. Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. *Nat Rev Genet*. 2009;10(10):691-703.
8. Goodier JL. Restricting retrotransposons: a review. *Mob DNA*. 2016;7:16.
9. Saleh A, Macia A, Muotri AR. Transposable Elements, Inflammation, and Neurological Disease. *Front Neurol*. 2019;10:894.
10. LaRocca TJ, Cavalier AN, Wahl D. Repetitive elements as a transcriptomic marker of aging: Evidence in multiple datasets and models. *Aging Cell*. 2020.
11. Maxwell PH. What might retrotransposons teach us about aging? *Curr Genet*. 2016;62(2):277-82.
12. Cardelli M. The epigenetic alterations of endogenous retroelements in aging. *Mech Ageing Dev*. 2018;174:30-46.
13. Wood JG, Jones BC, Jiang N, Chang C, Hosier S, Wickremesinghe P, et al. Chromatin-modifying genetic interventions suppress age-associated transposable element activation and extend life span in *Drosophila*. *Proc Natl Acad Sci U S A*. 2016;113(40):11277-82.
14. Hahn O, Gronke S, Stubbs TM, Ficz G, Hendrich O, Krueger F, et al. Dietary restriction protects from age-associated DNA methylation and induces epigenetic reprogramming of lipid metabolism. *Genome Biol*. 2017;18(1):56.
15. LaRocca TJ, Cavalier AN, Wahl D. Repetitive elements as a transcriptomic marker of aging: evidence in multiple datasets and models. *Aging Cell*. In Press.
16. De Cecco M, Criscione SW, Peterson AL, Neretti N, Sedivy JM, Kreiling JA. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. *Aging (Albany NY)*. 2013;5(12):867-83.
17. Kim DH, Bang E, Jung HJ, Noh SG, Yu BP, Choi YJ, et al. Anti-aging Effects of Calorie Restriction (CR) and CR Mimetics based on the Senoinflammation Concept. *Nutrients*. 2020;12(2).
18. Siersbaek M, Varticovski L, Yang S, Baek S, Nielsen R, Mandrup S, et al. High fat diet-induced changes of mouse hepatic transcription and enhancer activity can be reversed by subsequent weight loss. *Sci Rep*. 2017;7:40220.
19. Balestrieri E, Matteucci C, Cipriani C, Grelli S, Ricceri L, Calamandrei G, et al. Endogenous Retroviruses Activity as a Molecular Signature of Neurodevelopmental Disorders. *Int J Mol Sci*. 2019;20(23).
20. Meyer TJ, Rosenkrantz JL, Carbone L, Chavez SL. Endogenous Retroviruses: With Us and against Us. *Front Chem*. 2017;5:23.
21. Hedges DJ, Deininger PL. Inviting instability: Transposable elements, double-strand breaks, and the maintenance of genome integrity. *Mutat Res*. 2007;616(1-2):46-59.

484

485

486

487 22. Saldi TK, Gonzales PK, LaRocca TJ, Link CD. Neurodegeneration, Heterochromatin, and Double-Stranded
488 RNA. *J Exp Neurosci.* 2019;13:1179069519830697.

489 23. Booth LN, Brunet A. The Aging Epigenome. *Mol Cell.* 2016;62(5):728-44.

490 24. Di Francesco A, Di Germanio C, Bernier M, de Cabo R. A time to fast. *Science.* 2018;362(6416):770-5.

491 25. Wahl D, Solon-Biet SM, Cogger VC, Fontana L, Simpson SJ, Le Couteur DG, et al. Aging, lifestyle and
492 dementia. *Neurobiol Dis.* 2019;130:104481.

493 26. Huffman DM, Schafer MJ, LeBrasseur NK. Energetic interventions for healthspan and resiliency with
494 aging. *Exp Gerontol.* 2016;86:73-83.

495 27. Widmann M, Niess AM, Munz B. Physical Exercise and Epigenetic Modifications in Skeletal Muscle.
496 *Sports Med.* 2019;49(4):509-23.

497 28. Gano LB, Donato AJ, Pierce GL, Pasha HM, Magerko KA, Roeca C, et al. Increased proinflammatory and
498 oxidant gene expression in circulating mononuclear cells in older adults: amelioration by habitual
499 exercise. *Physiol Genomics.* 2011;43(14):895-902.

500 29. Strasser B, Burtscher M. Survival of the fittest: VO₂max, a key predictor of longevity? *Front Biosci*
501 (Landmark Ed). 2018;23:1505-16.

502 30. Sedivy JM, Kreiling JA, Neretti N, De Cecco M, Criscione SW, Hofmann JW, et al. Death by transposition
503 - the enemy within? *Bioessays.* 2013;35(12):1035-43.

504 31. Jin Y, Tam OH, Paniagua E, Hammell M. TEtranscripts: a package for including transposable elements in
505 differential expression analysis of RNA-seq datasets. *Bioinformatics.* 2015;31(22):3593-9.

506 32. Criscione SW, Zhang Y, Thompson W, Sedivy JM, Neretti N. Transcriptional landscape of repetitive
507 elements in normal and cancer human cells. *BMC Genomics.* 2014;15(1):583.

508 33. Zhang Y-J, Guo L, Gonzales PK, Gendron TF, Wu Y, Jansen-West K, et al. Heterochromatin anomalies
509 and double-stranded RNA accumulation underlie C9orf72 poly(PR) toxicity. *Science (New York, NY).*
510 2019;363(6428).

511 34. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. *Bioinformatics.*
512 2018;34(17):i884-i90.

513 35. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq
514 aligner. *Bioinformatics.* 2013;29(1):15-21.

515 36. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data
516 with DESeq2. *Genome Biol.* 2014;15(12):550.

517 37. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. *BMC
518 Bioinformatics.* 2008;9:559.

519 38. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of
520 enriched GO terms in ranked gene lists. *BMC Bioinformatics.* 2009;10:48.

521 39. LaRocca TJ, Seals DR, Pierce GL. Leukocyte telomere length is preserved with aging in endurance
522 exercise-trained adults and related to maximal aerobic capacity. *Mech Ageing Dev.* 2010;131(2):165-7.

523 40. LaRocca TJ, Mariani A, Watkins LR, Link CD. TDP-43 knockdown causes innate immune activation via
524 protein kinase R in astrocytes. *Neurobiol Dis.* 2019;132:104514.

525 41. Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. jvenn: an interactive Venn diagram viewer. *BMC
526 Bioinformatics.* 2014;15(1):293.

527