

1 **Modelling movement and landscape connectivity of New Zealand native birds in**
2 **highly structured agroecosystem networks**

3

4 Jingjing Zhang¹, Jennifer L. Pannell¹, Bradley S. Case¹, Graham Hinchliffe¹, Margaret C.
5 Stanley², Hannah L. Buckley^{1*}

6 ¹School of Science, Auckland University of Technology, Private Bag 92006, Auckland 51142
7 New Zealand

8 ²Centre for Biodiversity and Biosecurity, School of Biological Sciences, University of
9 Auckland, Private Bag 92019, Auckland 1142, New Zealand

10 * Corresponding author: contact hannah.buckley@aut.ac.nz

11

12 **Abstract**

13 Understanding how spatial heterogeneity affects movement and dispersal is critical for
14 maintaining functional connectivity in agroecosystems. Least-cost path models are popular
15 conservation tools to quantify the cost of a species dispersing through the landscapes.

16 However, the variability of species in life history traits and landscape configurations can
17 affect their space-use patterns and should be considered in agroecosystem management
18 aiming to improve functional biodiversity. In this study, we modelled the connectivity

19 properties of native species on a real agroecosystem landscape dominated by sheep and beef
20 farming in north Canterbury, New Zealand, where the recovery of native bird population is
21 desired. We chose two species to act as case studies that were contrasting in their mobility:

22 New Zealand pigeon/kererū (*Hemiphaga novaeseelandiae*; highly mobile) and southern
23 brown kiwi/tokoeka (*Apteryx australis*; flightless). Networks of the least-cost paths of kererū
24 and tokoeka were constructed based on their habitat preferences and movement capacities,
25 and we compared and contrasted the connectivity properties and network topographies of

26 their networks. We then compared the network metrics of western side (higher density of
27 forest) with the eastern side (dominated by grazed grassland) of the study area where the
28 vegetation composition was vastly different for both species. The results shown three
29 variables were the most important contributors to the structure of the dispersal networks: the
30 nature of the matrix, spatial structure of vegetation patches, and the gap-crossing ability of
31 the study species. Tokoeka were able to utilise smaller habitat patches as stepping-stones for
32 dispersal, while kererū can select more preferred habitat patches due to their high movement
33 capacity. In contrast to the eastern side, we observed the western/forested side to have more,
34 and stronger, links among habitat patches for both species, due to the presence of several
35 large patches of native forest. Our work suggested that one size does not fit all, rather,
36 conservation strategies that account for species' life histories and movement traits are
37 required to identify and preserve a connected ecological network.

38

39 **Keywords:** agroecosystems, farmland, connectivity, vegetation types, least-cost path,
40 dispersal networks, birds, habitat preferences, network modelling

41

42

43 **Introduction**

44 Agricultural intensification leads to loss and degradation of natural habitat, and alterations in
45 resource availability for native animals (Estrada et al., 2012; Fahrig et al., 2011). Habitat
46 destruction typically leads to fragmentation, the division of habitat into smaller and more
47 isolated fragments separated by a matrix of human-transformed land cover. Such changes
48 undermine the ability of many organisms to move throughout landscapes (Fischer &
49 Lindenmayer, 2007). Reducing the movements of individuals restricts their ability to
50 disperse, recolonise and occupy new habitat patches, and thus fragmentation poses a
51 significant threat to the viability of populations (Damschen et al., 2006; Harris & Silva-
52 Lopez, 1992). Agroecosystems are often dominated by generalist species that can survive in
53 fragmented habitats and are tolerant of human and livestock disturbances (Felton et al., 2010;
54 Norton & Pannell, 2018). Agroecological approaches have been proposed as ways to promote
55 biodiversity and mitigate the detrimental effects of agriculture on native species (Altieri,
56 1999; Tscharntke et al., 2012) (Kremen et al., 2012); however, such practices often require
57 specific knowledge of the interactions between biotic and abiotic agroecosystem components
58 (Duru et al., 2015). Thus, it is important to understand and quantify how animals response to
59 the different habitat configurations that can result from agriculture, and, in particular, how
60 landscape structure affects movements and dispersal (Adriaensen et al., 2003; Swihart et al.,
61 2003).

62 Landscape connectivity, the degree to which structural landscape elements facilitate
63 or inhibit movement between locations (also referred as ‘functional landscape connectivity’),
64 is a widely used concept to improve conservation management and planning (Bélisle, 2005;
65 Fischer & Lindenmayer, 2007). Connectivity is broadly applied as a way to prioritise areas
66 for restoration and protection (e.g. Fuller et al. (2006)), assess the placement and
67 effectiveness of habitat corridors (e.g. Pardini et al. (2005)) and predict the spread of invasive

68 species (e.g. Stewart \square Koster et al. (2015)). Enhancing the ability of individuals to move
69 through a landscape has therefore become a priority in many conservation strategies because
70 it supports population growth and mitigates risk of local extinctions in isolated sub-
71 populations (Crooks & Sanjayan, 2006). More recently, it has become a focus in agroecology
72 (Dondina et al., 2018). In practice, identification of existing corridors and identification of
73 where restoration of permeable habitat is needed are the first steps in promoting conservation
74 of native species within a given agroecosystem (Clauzel et al., 2015). Approximately 40% of
75 New Zealand's land area is used for sheep and beef farming (Norton & Pannell, 2018), and
76 remnant forest patches are common within sheep and beef farms. Addressing knowledge gaps
77 on how native species with different behavioural characteristics interact with fragmented
78 landscape in agroecosystems, especially when sharing with human and other species, is a
79 vital starting point of improve connectivity for conservation in these systems (Norbury et al.,
80 2013).

81 Methods to identify landscape connectivity elements and assess their role in
82 population dynamics involve network modelling, and a variety of algorithms have been
83 developed for this purpose, such as least-cost paths modelling and circuit theory (Avon &
84 Bergès, 2016; Howey, 2011; LaPoint et al., 2013). Both methods have been broadly used in
85 conservation (Avon & Bergès, 2016; LaRue & Nielsen, 2008; Yumnam et al., 2014), and a
86 recent study evaluated the common landscape connectivity metrics using spatially-explicit
87 simulation found least-cost path modelling out-performs circuit theory in the strength of
88 correlation with true connectivity (Simpkins et al., 2018). Least-cost path model calculates
89 routes of maximum efficiency (i.e., 'lowest cost') between two points, assuming that an
90 individual has knowledge of the composition and configuration of the landscape (Adriaensen
91 et al., 2003; Sawyer et al., 2011). There are two main input components to a connectivity
92 model: the nodes, and a cost-surface or resistance surface (Newman, 2003). The nodes

93 represent locations that animal may travel from and to, and traditionally treated as spatial
94 points of the centroids of the habitat patches (Galpern et al., 2011). Cost-surfaces are raster
95 representations of landscapes that describe the degree of difficulty an individual experiences
96 in traversing a grid cell. The cost value assigned to each cell is based on both landscape
97 elements or features, and species-specific factors that influence movement (e.g. mortality
98 risk, energy expenditure, or behavioural aversion), with low cost values indicating higher
99 willingness to cross the landscape and vice versa. The cost of effect distance on a landscape
100 is represented by the resistance distance between the nodes in the network.

101 There are numerous metrics for condensing information from networks (Costa et al.,
102 2008). Agricultural areas differ from natural ecosystem in vegetation type and intensity of
103 production system, so they represent an extreme condition in ecological networks
104 (Gliessman, 2014). Metrics that are more relevant to agroecosystem include those describe
105 network topology, such as the cumulative frequency distribution of the links per node (or
106 degree distribution) and the level of connection among the nodes (or connectance), which
107 allow us to assess the functional overlap of species. The network-wise properties, including
108 the similarities in the values between connected nodes (or assortativity), and the overall
109 clustering coefficient between nodes can also be measured (Bohan et al., 2013).

110 This study aimed to quantify the effects of different life history traits such as
111 movement and habitat preference on the dispersal network of native birds in agroecosystems.
112 To demonstrate the effect of movement ability on functional connectivity, we applied the
113 least-cost path analysis on two native birds as examples, which are markedly different in their
114 movement and foraging traits. The species were selected so that they represented birds at
115 either end of the mobility spectrum, with kererū (*Hemiphaga novaeseelandiae*) as a generalist
116 frugivore with high mobility, and southern brown kiwi (*Apteryx australis*) as a flightless
117 insectivore. we applied a least-cost path approach to compare functional corridors of the two

118 species explicitly on a real agroecosystem landscape, where the detailed vegetation
119 information is available (Norton & Pannell, 2018). To access the influence of landscape
120 structures and vegetation types on the connectivity properties, we also compared the
121 modelling results of the study species between the eastern (dominated by forest) and western
122 (dominated by pasture) sides of the study area.

123

124 **Methods**

125 ***Study area***

126 The c. 18 km² study area landscape in North Canterbury, New Zealand, comprised a pastoral
127 farming landscape dominated by sheep and beef farmland intermixed with other land uses
128 including exotic forestry plantations, patches of remnant and regenerating native tree and
129 shrub vegetation, exotic shrub patches, and small areas of dairy farming and horticulture. The
130 shrubby vegetation was mostly continuous kānuka (*Kunzea* spp.), matagouri (*Discaria*
131 *toumatou*), and gorse (*Ulex europaeus*). This vegetation mixture, typical of New Zealand
132 South Island sheep and beef farming landscapes (Norton & Pannell, 2018), is highly
133 fragmented and contains little remnant or old growth forest; however, larger forest patches
134 were present predominantly in the south-western corner of the study area, including a pine
135 (*Pinus radiata*) plantation (1,630 ha), some continuous mixed native forest patches (250 ha),
136 and an old growth native forest patch (110 ha). Such remnant forest patches have potential to
137 provide resources and habitat for a range of native bird species, particularly where invasive
138 mammalian pest control is occurring.

139

140 ***Reclassified landscape***

141 To create vegetation coverage maps that are relevant to the habitat quality of the study
142 species, we combined landscape information from a thematic classification of 30-cm

143 resolution RGB aerial imagery and three spatial land cover/land use databases: the New
144 Zealand Land Cover Database (LCBD, version 4.1), the Land Use Carbon Assessment
145 Survey dataset (LUCAS) and the Agribase farm property and land use dataset. The original
146 categories from each data source were reclassified, as indicated table A1 in Appendix 1, and
147 were re-defined by the vegetation types from automatic classification of aerial photographs
148 (Figure 1). The RGB aerial imagery was classified into dominant woody vegetation types and
149 canopy density classes using a semi-automated, object-based classification procedure within
150 the e-Cognition® image segmentation and classification software. The supervised image
151 classification algorithm was trained by one of the authors using vegetation types identified at
152 a set of 500 random points across the image and confirmed by an expert ecologist with
153 extensive knowledge of the vegetation types in the region. The woody vegetation objects
154 (polygons) were classified as: mixed native broadleaf, kānuka, matagouri shrubland, native
155 old growth remnant vegetation, exotic deciduous, exotic conifer, and gorse shrubland.
156 Functionality within the eCognition software also enabled us to categorise vegetation
157 segments of each type into three density classes: continuous forest (>70% forest cover),
158 diffuse forest cover (15-70% cover), and sparse forest (<15% cover). Overall, a classification
159 accuracy of 70% was achieved across all vegetation types, quantified by comparing mapped
160 vegetation types against the true vegetation types at 100 additional locations. This
161 comprehensive set of spatial land cover/land use data from different sources, in combination
162 with spatial information regarding the locations of roads, enabled the development of a final
163 landscape layer depicting features affecting resource provision and movement potential for
164 avian species in this study landscape.

165

166 ***Focal species and habitat***

167 Kererū are primarily frugivorous and have a broad diet that includes both native and
168 introduced plant species (Clout & Hay, 1989; Higgins & Davies, 1996). They are capable of
169 making long distance flights of up to 18 kilometres to take advantage of seasonal food
170 sources, but mainly occupy an areas with limited movements over several weeks
171 (Baranyovits, 2017; Clout et al., 1991; Wotton & Kelly, 2012). As a contrast, we chose
172 flightless southern brown kiwi/ tokoeka to represent the second type of native bird. The
173 tokoeka are distributed mainly within indigenous forests of Haast, Fiordland and Stewart
174 Island (Robertson 2007). There is limited information about this critically endangered sub-
175 species of brown kiwi, except for a few genetic and breeding ecology studies (Colbourne,
176 2002; Herbert & Daugherty, 2002). We used the home range and dispersal distance
177 information of similar species the northern brown kiwi (*A. mantelli*), which was considered
178 conspecific with the tokoeka until 2000 (Burbidge et al., 2003). The home range of northern
179 brown kiwi has been estimated at 2.03 ha with a mean maximum dispersal distance of 337
180 meters between forest remnants (Potter, 1990).

181 Habitat patch suitability maps of the two example species were constructed based on
182 the habitat preferences and foraging ecologies of the two species, following the
183 recommendations of the Corridor Design Project (<http://corridordesign.org>) (Beier et al.,
184 2008). Suitability is a unitless variable specific to the species scaling from 0 - 100 with the
185 following breaks: 0 no use at all; 1 - 30 avoided; 30 - 60 occasional use for non-breeding; 60
186 - 80 consistent use for breeding; 80 - 100 best habitat for survival and breeding, see table A2
187 in Appendix 1 for detail. Based on literature and expert advice, a score was assigned to each
188 cover type of the reclassified landscape (Table A2 in Appendix 1) to generate habitat maps
189 for the scenarios representing the ecology of the two birds with high (kererū) and low (brown
190 kiwi) movement capacities in this landscape (Cunningham & Castro, 2011; Elliott et al.,

191 2010; Potter, 1990; Powlesland et al., 2011; H. A. Robertson et al., 2013). Roads were
192 considered as unsuitable and given a zero value, and the quality score of any habitat within
193 150 m of road was reduced by 10%. Furthermore, habitat patches that were smaller than
194 minimum home range size (20 ha for kererū and 2.03 ha for brown kiwi) or too isolated
195 (more than 4620 m from nearest patch, maximum pasture crossing distance for kererū (Pierce
196 & Graham, 1995), and more than 337 m from nearest patch for tokoeka (Potter, 1990)) to be
197 used by the species were reduced in suitability by 50%. Finally, all areas with a habitat
198 quality score higher than 60 were defined as habitat. Because the scores of habitat types were
199 given based on species-specific preference of land-use, the habitat maps of the two species
200 also reflected such species-specific variations (Figure 2).

201

202 ***Resistant surface***

203 The vegetation type maps were converted into raster surfaces with a cell-size of 100 m.
204 Species-specific maps of dispersal resistance were established in the non-habitat area. Each
205 raster cell in the resistance map was provided with a value that marked how difficult it was to
206 move across the cell (Poor et al., 2012; Sawyer et al., 2011; Zeller et al., 2012). Resistance
207 values were assigned following a scale that doubles between classes (from 1 - 32 in
208 geometric intervals), based on species knowledge about willingness to cross a vegetation
209 type, physiological cost of movement across a vegetation type, and survival rate in a
210 vegetation type (see table A3 in Appendix 1 for detail). For example, kererū may be equally
211 willing to cross pasture with shrubs as empty fields, but more resources and perching places
212 in shrubs and possibly lower likelihood of predation by raptors reduce cost and increase
213 survival (Campbell, 2006). Similarly, roads and settlements are considered a cause of death
214 for native birds, and were given the highest resistance values (Prendergast et al., 2006; 2013).

215

216 ***Network model and analysing connectivity***

217 We performed least-cost path connectivity analysis based on the species-specific habitat
218 patches and resistant surfaces using the Linkage Mapper software (McRae & Kavanagh,
219 2011) for each of the two species. The aim of the network analysis is to calculate the least
220 cost paths across resistance surface between all habitat nodes (the habitat polygons in our
221 case) within maximum gap crossing distance of species, then use the least cost paths as
222 network edges for descriptive statistics. Habitat networks were assembled by connecting
223 habitat patches (i.e. nodes) from edge to edge via least-cost paths (i.e. links) through
224 resistance surfaces (Adriaensen et al., 2003). We employed the Linkage Mapper programme
225 to calculate the effective distances between the habitat nodes: First, Linkage Mapper found
226 adjacent core areas and created a network of core areas using adjacency and distance data.
227 Second, it calculated cost-weighted distance and least-cost paths; finally, it measured least-
228 cost corridors and used them to create a single map. Several measurements were then carried
229 out to describe network topologies (see Newman (2003). We first assessed the total corridor
230 numbers between the two species, and for each species, the corridor numbers and link density
231 per node. Second, to quantify the robustness of the network to node detentions, we also
232 calculated and compared the degree distribution and connectance, which can help to identify
233 highly connected or potential ‘keystone’ habitat patches or groups (Ledger et al., 2013).
234 Third, correlation between the directed degree and undirected degree of habitat patches with
235 non-zero degrees were measured, which gives an indication of whether some patches acted as
236 steppingstones for movement. Finally, the cluster coefficients were evaluated, which measure
237 the local group cohesiveness, and give an indication of how frequent the chance of animal to
238 move between habitat patches. Because the western and eastern sides of the study area
239 demonstrated distinct feather in the distribution and composition of vegetation patches, we
240 also compared the connectivity features between the two sides for both species.

241 Models with maps were developed in ArcMap v. 10.6 (Environmental Systems Research
242 Institute, 2017) and networks were created using the Linkage Mapper toolbox (McRae &
243 Kavanagh, 2011). Network properties analysis was carried out in R (R Core R Core Team,
244 2019) using 'network' (Butts, 2008), 'igraph' (Csardi & Nepusz, 2006) and 'NetIndices'
245 (Soetaert et al., 2015) packages.

246

247 **Results**

248 ***Landscape structure and habitat networks***

249 The habitat networks of the two example bird species exhibited distinct features. For kererū,
250 there were 25 core habitats identified, with a total area of 2876.92 ha. There were a higher
251 number of habitat patches identified as available for tokoeka, and the 420 habitat patches
252 made up a total area of 4374.69 ha. The habitat patches of kererū comprised 16.64 % of the
253 total area of the study site and has a mean area of 110.65 ± 38.81 ha (mean ± 1 SE), while the
254 tokoeka habitat, although constituted 25.3 % of the total area, were smaller on average (10.32
255 ± 2.65 ha).

256 The habitat patches distribution features also differed between the western and eastern
257 sides. For both species, there were more areas that can be used as their habitat on the western
258 side due to a large and continuous patch of native forest (26.51 % of the total area with a
259 mean area of 125.26 ± 45.30 ha per patch for kererū, and 35.08 % of the total area with a
260 mean area of 14.19 ± 4.36 ha per patch for the tokoeka). On the eastern side the landscape
261 was dominated by grazed grassland, and the suitable habitat patches were sparser and with a
262 smaller mean area for both kererū (30.27 ± 4.91 ha) and tokoeka (4.36 ± 0.44 ha).

263

264 ***Least-cost paths***

265 Linkage Mapper created corridors for both animals, and the networks of the two bird species
266 show divergent connectivity properties. For kererū, there were 31 links/least-cost paths
267 identified and the mean distance for them was 1227.13 ± 220.47 m. Comparatively, there
268 were more least-cost paths identified for tokoeka, 599 least-cost paths, with a shorter mean
269 length of 390.62 ± 11.90 m.

270 For each species, the connectivity patterns also varied between the western and
271 eastern sides. The number and mean length of the least-cost paths for kererū differed
272 drastically between two sides. There were 26 links/least-cost paths identified and the mean
273 distance for them was 515.72 ± 153.26 m on the western side, and only 4 long least-cost
274 paths were identified on the eastern side with mean length of 6688.75 ± 2322.65 m. In
275 contrast, as tokoeka were able to use smaller vegetation patches than kererū, many more
276 least-cost paths were identified by the model on both sides of the study area; there were 343
277 links on the western side and 144 links on the eastern side, and their mean distances were
278 much closer at 286.27 ± 21.96 m and 320.82 ± 23.16 m, respectively.

279

280 ***Network topology comparison between kererū and tokoeka***

281 For both bird species, the degree distributions roughly followed a power rule whereby most
282 nodes had less than six links, with a mean of 5.05 ± 0.31 for kererū and 3.13 ± 0.13 for
283 tokoeka. The link density of the kererū network (2.72) was lower compared to tokoeka (3.23).
284 For the tokoeka network, there were two important habitat nodes that generated 25 and 35
285 links on the western side. This indicated such a network was robust to losing random nodes
286 but very vulnerable to the loss of just one or a few key nodes. The kererū network was
287 simpler, with fewer nodes and links generated from them (less than seven links). However,
288 the habitat patches within the kererū network were more closely related and connected to

289 each other, indicated by a higher connectance value of 0.11, while within the tokoeka
290 network, habitat patches interacted between each other at a relative lower level of overall
291 connectance (0.008). The clustering coefficient quantifies how well connected are the
292 neighbours of the vertex in the network (Soffer & Vazquez, 2005). For kererū, the network
293 cluster coefficient value was 0.263, indicating an individual could take relative shorter path to
294 get from one node to the next, compared to that of tokoeka (0.223). This was further
295 confirmed as the degree of separation or the average number of nodes between two nodes
296 was 4.15 for the kererū network, and 11.18 for the tokoeka network.

297

298 ***Network properties between the western and eastern sides of the Canterbury site***

299 The network topology also varies between the two sides for the study sites for both species.
300 The vegetation type composition of the western side of the Canterbury site is more
301 complexed and contains large forest patches, compared to the eastern side which is
302 dominated by pasture landscape. For both species, the network of the western side had more
303 links compared to the eastern side (Fig. 3). The link densities of kererū were 2.64 on the
304 western side and 2.00 on the eastern side. The link density of tokoeka was higher on both the
305 western and eastern sides compared to those of the kererū, being 2.98 and 2.21, respectively.
306 The kererū network had fewer nodes and links generated from them, and the interaction
307 among the others were strong, which was shown by connectance values of 0.13 and 0.67 for
308 the western and eastern sides. For the correlation between habitat patches, the kererū east and
309 west networks, and the west brown kiwi network were dis-associative (i.e. the connection
310 between any two of the habitat patches was weak), demonstrated by negative correlation
311 values (-0.27 and -0.87 for kererū, and -0.13 for the tokoeka west). However, the correlation
312 value of the network for tokoeka on the eastern side was 0.09, which suggested this network
313 was associative, that is, some habitat patches can act as steppingstones linking multiple other

314 patches to facilitate dispersal of this species. Western networks for both species had lower
315 clustering coefficient values (0.22 for kererū and 0.19 for tokoeka) compared to those of the
316 eastern sides (0.60 for kererū and 0.31 for brown kiwi), indicating there were higher
317 proportion of disconnected nodes to their neighbours in both networks.

318

319 **Discussion**

320 Using a least-cost paths approach, we investigated the connectivity networks of two New
321 Zealand native bird species, with different habitat preferences and movement capacities,
322 within a typical agroecosystem landscape. Number and mean length of corridors reflected
323 how the two species responded to the landscape structure differently in dispersal, and the
324 different opportunities a landscape might provide for birds depending on their mobility. Our
325 results suggested forest landscape patches were important in the network of both species, and
326 were the keys to enhance the connectivity. In highly fragmented landscape, kererū can travel
327 to habitat patches with features that they prefer. Meanwhile, in the same landscape, tokoeka
328 least-cost paths had a mean distance close to its maximum dispersal range. For both species,
329 the vegetation types and structure of the western side was more suitable due to the presence
330 of large forest patches, and such key habitat patches offered many links to neighbouring
331 patches for the bird to disperse. With the tokoeka, however, the network of eastern side was
332 more vigorous compared to the western side, as the habitat patches were better correlated
333 with each other and acted as steppingstones for the bird to commute between each other.

334 Together, these findings show that native bird species with different habitat preference and
335 movement capacities can have divergent space-use patterns within the same landscape, and
336 that network modelling to identify the least-cost corridors and key features shaping the
337 network is an effective first step towards locating key areas of functional overlaps of species,
338 and conserving a connected ecological network in agricultural landscape.

339 The land-use patterns of two species generated from our model shown how species'
340 dispersal patterns may respond differently to the same physical landscape conditions. Such
341 differences were influenced by three key factors: nature of matrix, spatial structure of
342 vegetation patches, and the gap-crossing ability of the animal. Agroecosystems provide
343 limited resource for the native animal species because of intensive land modification, which
344 leads to the loss of habitat diversity and indigenous food sources (Altieri, 1999; Case et al.,
345 2019). Compared to many introduced species, native birds in New Zealand rely more on
346 indigenise forests for food and shelter (Montague-Drake et al., 2009). The matrix of
347 vegetation in agroecosystems can provide novel resources for native vertebrates (e.g., exotic
348 fruit trees as food sources), but these may not be adequate for providing the full range of
349 resources required (Estrada et al., 2012; Stanley & Bassett, 2015). Our results shown large
350 native forest patches acted as centroids of the dispersal networks in the spatial matrix of the
351 landscape, suggesting that the existence of native forest was crucial to the survival and
352 persistence of the study population in this agroecosystem. The difference in the nature of
353 matrix between the western and eastern sides of the study site provided a convenient natural
354 experiment that demonstrated the predominate predominant effect of the different
355 combination of vegetations. Compared to the eastern side of the study site, the western side
356 holds more and stronger links between the habitat patches for both species, due to the
357 presence of large patches of native forest. This was especially important for the kererū as this
358 species requires larger home range size across high-quality habitat (for fruit and nectar
359 sources), compared to tokoeka that can occupy smaller habitat patches. Loss of large forest
360 habitat significantly changes the possible network by reducing the possible paths of dispersal.
361 This shows the vital importance of remnant and regenerating native forests in agroecosystems
362 for enhancing biodiversity and reducing pressures from land-use and climatic changes on
363 native species.

364 The spatial distribution of suitable habitat patches also played a significant role in
365 shaping the network structure. For both species, suitable habitat patches were of higher
366 density at the south-western corner of the study site, while at the entire eastern side they were
367 sparse and disconnected. In this geographical context, colonization of new habitat patches can
368 occur only if migration of individuals occurred in an easterly direction. For both species,
369 there were asymmetrical connectivity between patches observed in the networks due to
370 spatial distributions of the habitat patches. The dispersal of individuals between these pairs of
371 nodes not necessary be balanced. The connectance results indicated that the least-cost paths
372 or the corridors were clustered at certain area within the network, with the exemption of the
373 eastern side of the study site in tokoeka's network, where the chance of movement between
374 patches can be more even out.

375 An individual's gap-crossing ability was another key factor that interacted with
376 landscape structure. Bird behaviour can be markedly differ under different landscape
377 conditions (e.g. between fragmented agroecosystem and nature habitat) (Gallagher et al.,
378 2017). In our model, kererū shown the ability to tolerate and used a wide range of forest and
379 shrub landscapes, and can fly great distances largely undisturbed even with changes in matrix
380 types. Because of their great gap-crossing ability and large home-range area, there might be
381 little need to focus on improving connectivity at the scale of individual farms. Instead,
382 planting the fruit trees on which they primarily feed would encourage individuals of this
383 species to exploit and stay in an area. In contrast, tokoeka have very low gap-crossing ability,
384 and enhancing connectivity through landscape corridors would be a priority, such as
385 increasing the link density and network correlation coefficient. Compared to lowering
386 dispersal costs of the landscape, more efficient methods to strength the tokoeka network
387 might include creating islands of habitat to act as steppingstones, for example, increase the

388 numbers of suitable habitat (i.e. small but larger than the home range of tokoeka) that are
389 adjacent to each other that within the maximum dispersal distance of the animal.

390 Conserving landscape connectivity for multiple species is a preferred strategy for
391 promoting biodiversity, and should be assessed by accounting for the needs of inhabited
392 species that have divergent life histories and movement ecologies (Nicholson et al., 2006).

393 Our study is the first to evaluate the similarities and differences of the connectivity properties
394 of New Zealand native birds in agroecosystems. Specifically, the habitat patches were treated
395 as nodes, rather than spatial points that were used in many other similar works studying
396 invasive species dispersal. Our method improved the accuracy in corridor identification and
397 is a more appropriate methods for measuring their utility (Galpern et al., 2011). This
398 improvement in modelling technique allow the true costs of travelling between edges of
399 habitat patches to be estimated Our results demonstrated the potential importance of large
400 forest patches in retaining and promoting biodiversity, as these patches can be used as habitat
401 for multiple species, as well as providing links to the other neighbouring patches in the
402 dispersal networks.

403 Although the modelling results provides valuable insights, it is important to highlight
404 that the landscape genetics approach we used to calibrate our habitat and cost-surface
405 landscape representations is not the only or necessarily the best approach. Like many other
406 cost-based corridor models, the habitat selection and resistance surface information is
407 extracted from the literature (e.g. Huck et al. (2011); LaRue and Nielsen (2008)). Also, our
408 model, as the other connectivity models, unrealistically assume an animal has complete
409 knowledge of the landscape (Adriaensen et al., 2003). The validity of the model can be
410 tested, which will allow the model to be improved, if the least-cost path predictions there
411 were real movement trajectories of the study species to be compared to (as in Driezen et al.,
412 2007; Poor et al., 2012; Walpole et al., 2012). In our case, there is limited data available on

413 dispersal distances for these two species, particularly lacking in agroecological systems.
414 Habitat suitability can be a poor proxy for landscape connectivity as animals are able to move
415 through less suitable areas especially during long-distance dispersal events (Keeley et al.,
416 2017). The networks of the two example species were deliberately chosen to represent native
417 birds with different movement abilities, and modelled based on current empirical knowledge.
418 Simulation models such as agent-based model can be employed to better understand how
419 such life history traits affect connectivity, using individuals with various combination of
420 movement capacities and habitat preferences.

421

422 **Conclusion**

423 Our network approach identified and compared dispersal patterns of two bird species with
424 differences in movement capability within a patchy agricultural landscape. Network topology
425 measurements suggested that the spatial structure of the study area would be more hospitable
426 to bird species that can tolerate lower quality habitat patches that are smaller in area. To
427 maintain populations of birds with good gap-crossing ability, it is crucial to retain suitable
428 high-quality habitat. This analysis illustrates that network analysis is a powerful tool for
429 identification connectivity and can be used as a starting point for building a complex
430 conservation management plan that accounts for differences in species' life history traits.

431

432 **Acknowledgements**

433 We thank David Norton for providing useful input regarding native bird species resource use
434 and vegetation type distribution within the study landscape. This work was funded by the
435 New Zealand Ministry of Business and Innovation/New Zealand Biological Heritage
436 National Science Challenge grant number C09X1501.

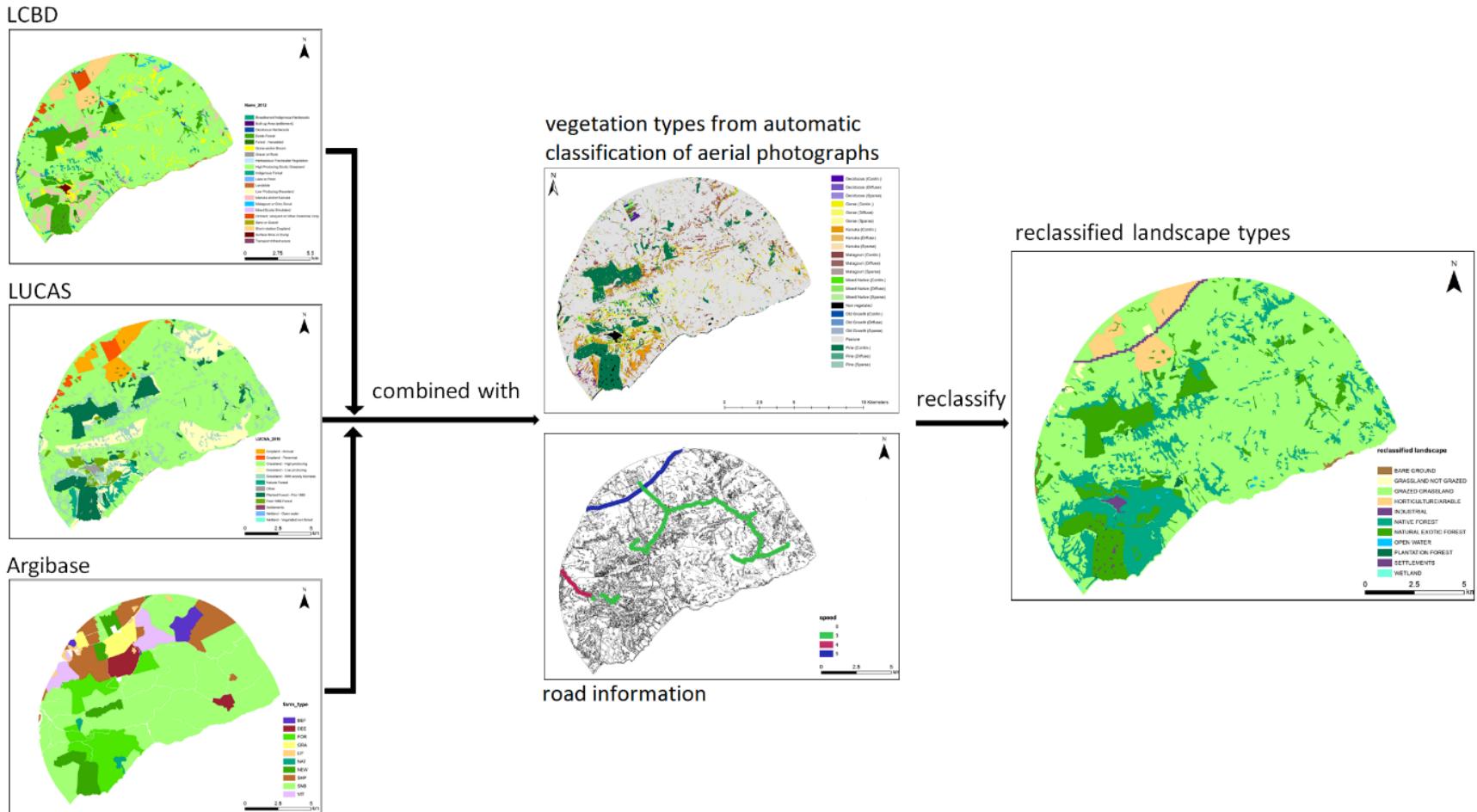
437

438 **References**

- 439 Adriaensen, F., Chardon, J., De Blust, G., Swinnen, E., Villalba, S., Gulink, H., &
440 Matthysen, E. (2003). The application of 'least-cost' modelling as a functional
441 landscape model. *Landscape and urban planning*, 64(4), 233-247.
- 442 Altieri, M. A. (1999). The ecological role of biodiversity in agroecosystems. *Agriculture,
443 Ecosystems & Environment*, 74, 19-31.
- 444 Avon, C., & Bergès, L. (2016). Prioritization of habitat patches for landscape connectivity
445 conservation differs between least-cost and resistance distances. *Landscape ecology*,
446 31(7), 1551-1565.
- 447 Baranyovits, A. (2017). *Urban ecology of an endemic pigeon, the kererū*. University of
448 Auckland.
- 449 Beier, P., Majka, D. R., & Spencer, W. D. (2008). Forks in the road: choices in procedures
450 for designing wildland linkages. *Conservation Biology*, 22(4), 836-851.
- 451 Bélisle, M. (2005). Measuring landscape connectivity: the challenge of behavioral landscape
452 ecology. *Ecology*, 86(8), 1988-1995.
- 453 Bohan, D. A., Raybould, A., Mulder, C., Woodward, G., Tamaddoni-Nezhad, A., Bluthgen,
454 N., . . . Astegiano, J. (2013). Networking agroecology: integrating the diversity of
455 agroecosystem interactions. In *Advances in Ecological Research* (Vol. 49, pp. 1-67):
456 Elsevier.
- 457 Burbidge, M. L., Colbourne, R. M., Robertson, H. A., & Baker, A. J. (2003). Molecular and
458 other biological evidence supports the recognition of at least three species of brown
459 kiwi. *Conservation Genetics*, 4(2), 167-177.
- 460 Butts, C. T. (2008). network: a package for managing relational data in R. *Journal of
461 Statistical Software*, 24(2), 1-36.

- 462 Campbell, K. L. (2006). *A study of home ranges, movements, diet and habitat use of kereru*
463 (*Hemiphaga novaeseelandiae*) in the southeastern sector of Banks Peninsula, New
464 Zealand. Lincoln University.
- 465 Case, B. S., Pannell, J. L., Stanley, M. C., Norton, D. A., Brugman, A., Funaki, M., . . .
466 Buckley, H. L. (2019). Non-production vegetation has a positive effect on ecological
467 processes in agroecosystems. *bioRxiv*, 624635.
- 468 Clauzel, C., Bannwarth, C., & Foltete, J.-C. (2015). Integrating regional-scale connectivity in
469 habitat restoration: An application for amphibian conservation in eastern France.
470 *Journal for Nature Conservation*, 23, 98-107.
- 471 Clout, M. N., & Hay, J. (1989). The importance of birds as browsers, pollinators and seed
472 dispersers in New Zealand forests. *New Zealand journal of ecology*, 12, 27-33.
- 473 Clout, M. N., Karl, B., & Gaze, P. (1991). Seasonal movements of New Zealand pigeons
474 from a lowland forest reserve. *Notornis*, 38(1), 37-47.
- 475 Colbourne, R. (2002). Incubation behaviour and egg physiology of kiwi (*Apteryx* spp.) in
476 natural habitats. *New Zealand journal of ecology*, 129-138.
- 477 Costa, L. d. F., Rodrigues, F. A., & Cristino, A. S. (2008). Complex networks: the key to
478 systems biology. *Genetics and Molecular Biology*, 31(3), 591-601.
- 479 Crooks, K. R., & Sanjayan, M. (2006). *Connectivity conservation: maintaining connections*
480 *for nature* (Vol. 14). Cambridge, UK: Cambridge University Press.
- 481 Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research.
482 *InterJournal, Complex Systems*, 1695.
- 483 Cunningham, S. J., & Castro, I. (2011). The secret life of wild brown kiwi: studying
484 behaviour of a cryptic species by direct observation. *New Zealand journal of ecology*,
485 35(3), 209.

- 486 Damschen, E. I., Haddad, N. M., Orrock, J. L., Tewksbury, J. J., & Levey, D. J. (2006).
487 Corridors increase plant species richness at large scales. *Science*, 313(5791), 1284-
488 1286.
- 489 Dondina, O., Saura, S., Bani, L., & Mateo-Sánchez, M. C. (2018). Enhancing connectivity in
490 agroecosystems: focus on the best existing corridors or on new pathways? *Landscape
491 ecology*, 33(10), 1741-1756.
- 492 Driezen, K., Adriaensen, F., Rondinini, C., Doncaster, C. P., & Matthysen, E. (2007).
493 Evaluating least-cost model predictions with empirical dispersal data: a case-study
494 using radiotracking data of hedgehogs (*Erinaceus europaeus*). *ecological modelling*,
495 209(2-4), 314-322.
- 496 Duru, M., Therond, O., & Fares, M. h. (2015). Designing agroecological transitions; A
497 review. *Agronomy for Sustainable Development*, 35(4), 1237-1257.
- 498 Elliott, G. P., Wilson, P. R., Taylor, R. H., & Beggs, J. R. (2010). Declines in common,
499 widespread native birds in a mature temperate forest. *Biological conservation*, 143(9),
500 2119-2126.
- 501 Estrada, A., Raboy, B. E., & Oliveira, L. C. (2012). Agroecosystems and primate
502 conservation in the tropics: a review. *American journal of primatology*, 74(8), 696-
503 711.
- 504 Fahrig, L., Baudry, J., Brotons, L., Burel, F. G., Crist, T. O., Fuller, R. J., . . . Martin, J. L.
505 (2011). Functional landscape heterogeneity and animal biodiversity in agricultural
506 landscapes. *Ecology letters*, 14(2), 101-112.
- 507 Felton, A., Lindbladh, M., Brunet, J., & Fritz, Ö. (2010). Replacing coniferous monocultures
508 with mixed-species production stands: an assessment of the potential benefits for
509 forest biodiversity in northern Europe. *Forest ecology and management*, 260(6), 939-
510 947.


- 511 Fischer, J., & Lindenmayer, D. B. (2007). Landscape modification and habitat fragmentation:
512 a synthesis. *Global ecology and biogeography*, 16(3), 265-280.
- 513 Fuller, T., Munguía, M., Mayfield, M., Sánchez-Cordero, V., & Sarkar, S. (2006).
514 Incorporating connectivity into conservation planning: a multi-criteria case study
515 from central Mexico. *Biological conservation*, 133(2), 131-142.
- 516 Gallagher, A. J., Creel, S., Wilson, R. P., & Cooke, S. J. (2017). Energy landscapes and the
517 landscape of fear. *Trends in ecology & evolution*, 32(2), 88-96.
- 518 Galpern, P., Manseau, M., & Fall, A. (2011). Patch-based graphs of landscape connectivity: a
519 guide to construction, analysis and application for conservation. *Biological
520 conservation*, 144(1), 44-55.
- 521 Gliessman, S. R. (2014). *Agroecology: the ecology of sustainable food systems*: CRC press.
- 522 Harris, L. D., & Silva-Lopez, G. (1992). Forest fragmentation and the conservation of
523 biological diversity. In *Conservation Biology* (pp. 197-237): Springer.
- 524 Herbert, J., & Daugherty, C. H. (2002). Genetic variation , systematics and management of
525 kiwi (*Apteryx spp.*)
- 526 Higgins, P. J., & Davies, S. J. (1996). *Handbook of Australian, New Zealand & Antarctic
527 birds. Vol. 3, Snipe to pigeons*: Oxford University Press.
- 528 Howey, M. C. (2011). Multiple pathways across past landscapes: circuit theory as a
529 complementary geospatial method to least cost path for modeling past movement.
530 *Journal of Archaeological Science*, 38(10), 2523-2535.
- 531 Huck, M., Jędrzejewski, W., Borowik, T., Jędrzejewska, B., Nowak, S., & Mysłajek, R. W.
532 (2011). Analyses of least cost paths for determining effects of habitat types on
533 landscape permeability: wolves in Poland. *Acta Theriologica*, 56(1), 91-101.

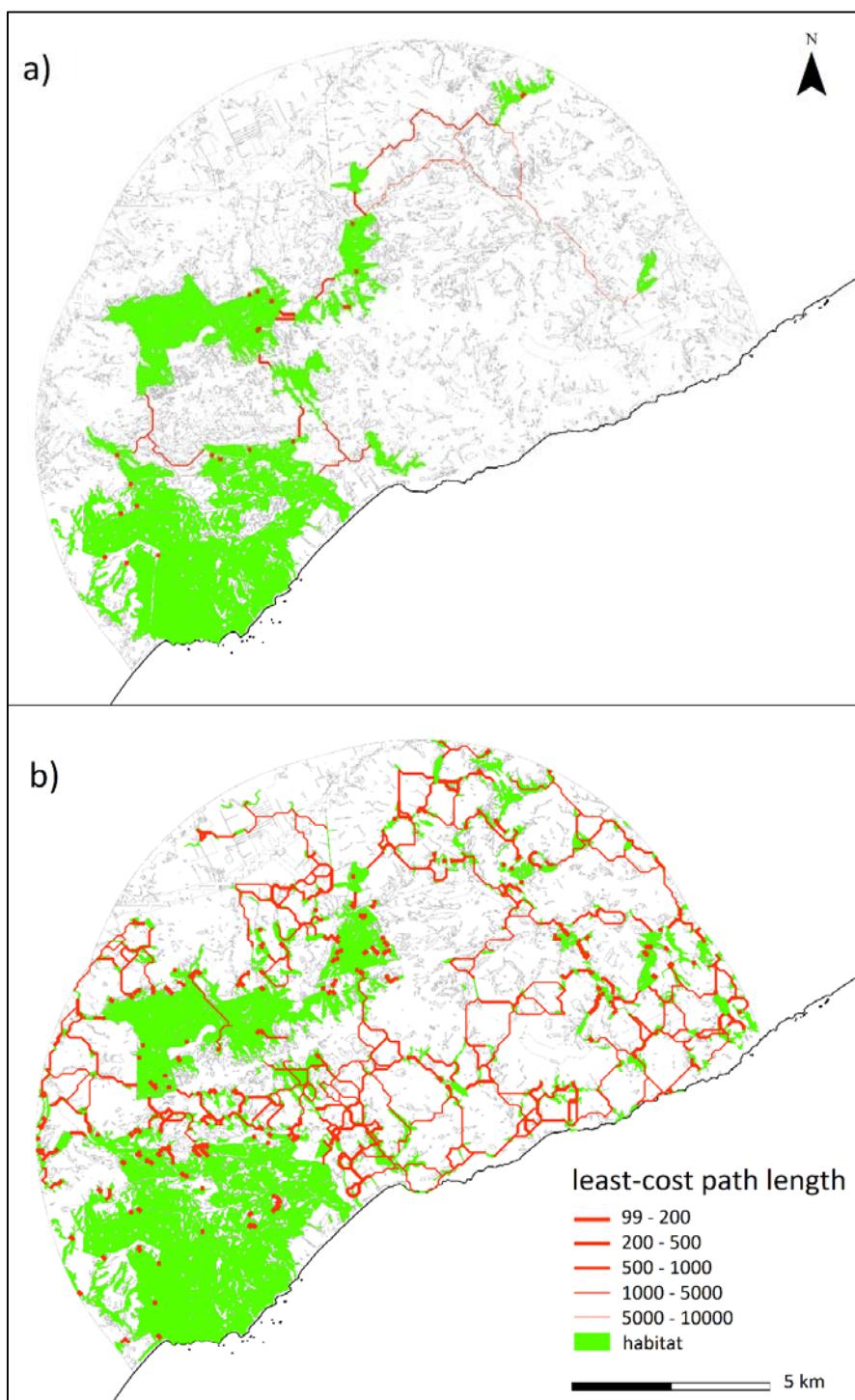
- 534 Keeley, A. T., Beier, P., Keeley, B. W., & Fagan, M. E. (2017). Habitat suitability is a poor
535 proxy for landscape connectivity during dispersal and mating movements. *Landscape*
536 *and urban planning*, 161, 90-102.
- 537 Kremen, C., Iles, A., & Bacon, C. (2012). Diversified farming systems: an agroecological,
538 systems-based alternative to modern industrial agriculture. *Ecology and Society*,
539 17(4).
- 540 LaPoint, S., Gallery, P., Wikelski, M., & Kays, R. (2013). Animal behavior, cost-based
541 corridor models, and real corridors. *Landscape ecology*, 28(8), 1615-1630.
- 542 LaRue, M. A., & Nielsen, C. K. (2008). Modelling potential dispersal corridors for cougars in
543 midwestern North America using least-cost path methods. *ecological modelling*,
544 212(3-4), 372-381.
- 545 Ledger, M. E., Brown, L. E., Edwards, F. K., Hudson, L. N., Milner, A. M., & Woodward, G.
546 (2013). Extreme climatic events alter aquatic food webs: a synthesis of evidence from
547 a mesocosm drought experiment. In *Advances in Ecological Research* (Vol. 48, pp.
548 343-395): Elsevier.
- 549 McRae, B., & Kavanagh, D. (2011). Linkage Mapper Connectivity Analysis Software. The
550 Nature Conservancy, Seattle WA.
- 551 Montague-Drake, R., Lindenmayer, D., & Cunningham, R. (2009). Factors affecting site
552 occupancy by woodland bird species of conservation concern. *Biological*
553 *conservation*, 142(12), 2896-2903.
- 554 Newman, M. E. (2003). The structure and function of complex networks. *SIAM review*,
555 45(2), 167-256.
- 556 Nicholson, E., Westphal, M. I., Frank, K., Rochester, W. A., Pressey, R. L., Lindenmayer, D.
557 B., & Possingham, H. P. (2006). A new method for conservation planning for the
558 persistence of multiple species. *Ecology letters*, 9(9), 1049-1060.

- 559 Norbury, G., Byrom, A., Pech, R., Smith, J., Clarke, D., Anderson, D., & Forrester, G.
560 (2013). Invasive mammals and habitat modification interact to generate unforeseen
561 outcomes for indigenous fauna. *Ecological Applications*, 23(7), 1707-1721.
562 Norton, D., & Pannell, J. (2018). Desk-top assessment of native vegetation on New Zealand
563 sheep and beef farms. *Beef+ Lamb New Zealand. New Zealand*, 1-32.
564 Pardini, R., de Souza, S. M., Braga-Neto, R., & Metzger, J. P. (2005). The role of forest
565 structure, fragment size and corridors in maintaining small mammal abundance and
566 diversity in an Atlantic forest landscape. *Biological conservation*, 124(2), 253-266.
567 Pierce, R. J., & Graham, P. (1995). *Ecology and breeding biology of kukupa (Hemiphaga
568 novaeseelandiae) in Northland*: Department of Conservation Wellington.
569 Poor, E. E., Loucks, C., Jakes, A., & Urban, D. L. (2012). Comparing habitat suitability and
570 connectivity modeling methods for conserving pronghorn migrations. *PLoS one*, 7(11),
571 e49390.
572 Potter, M. (1990). Movement of North Island brown kiwi (*Apteryx australis mantelli*)
573 between forest remnants. *New Zealand journal of ecology*, 14, 17-24.
574 Powlesland, R. G., Moran, L. R., & Wotton, D. M. (2011). Satellite tracking of kereru
575 (*Hemiphaga novaeseelandiae*) in Southland, New Zealand: impacts, movements and
576 home range. *New Zealand journal of ecology*, 229-235.
577 Prendergast, T. A. S., Ogilvie, S. C., Wilson, K.-J., & Byrom, A. (2006). The impact of
578 predation on the threatened endemic kereru (*Hemiphaga novaeseelandiae*) by
579 mammalian predators on banks peninsula, New Zealand Symposium conducted at the
580 meeting of the Proceedings of the Vertebrate Pest Conference
581 R Core Team. (2019). R: A language and environment for statistical computing. R
582 Foundation for Statistical Computing. Vienna, Austria. Retrieved from <http://www.R-project.org>

- 584 Robertson, C. J. R. (2007). *Atlas of bird distribution in New Zealand 1999-2004*:
585 Ornithological Society of New Zealand.
- 586 Robertson, H. A., Dowding, J. E., Elliott, G., Hitchmough, R., Miskelly, C., O'Donnell, C. F.,
587 . . . Taylor, G. A. (2013). *Conservation status of New Zealand birds, 2012*: Publishing
588 Team, Department of Conservation.
- 589 Sawyer, S. C., Epps, C. W., & Brashares, J. S. (2011). Placing linkages among fragmented
590 habitats: do least-cost models reflect how animals use landscapes? *Journal of*
591 *Applied Ecology*, 48(3), 668-678.
- 592 Simpkins, C. E., Dennis, T. E., Etherington, T. R., & Perry, G. L. W. (2018). Assessing the
593 performance of common landscape connectivity metrics using a virtual ecologist
594 approach. *ecological modelling*, 367, 13-23.
- 595 <https://doi.org/https://doi.org/10.1016/j.ecolmodel.2017.11.001>
- 596 Soetaert, K., Kipyegon Kones, J., & van Oevelen, D. (2015). Package 'NetIndices':
597 Estimating network indices, including trophic structure of foodwebs in R.
- 598 Soffer, S. N., & Vazquez, A. (2005). Network clustering coefficient without degree-
599 correlation biases. *Physical Review E*, 71(5), 057101.
- 600 Stanley, M. C., & Bassett, I. E. (2015). Environmental weeds in New Zealand: impacts and
601 management. In S. A, M. N, & H. GI (Eds.), *Austral Ark: The State of Wildlife in*
602 *Australia and New Zealand* (pp. 134 - 161). Cambridge: Cambridge University Press.
- 603 Stewart-Koster, B., Olden, J. D., & Johnson, P. T. (2015). Integrating landscape
604 connectivity and habitat suitability to guide offensive and defensive invasive species
605 management. *Journal of Applied Ecology*, 52(2), 366-378.
- 606 Swihart, R. K., Gehring, T. M., Kolozsvary, M. B., & Nupp, T. E. (2003). Responses of
607 'resistant' vertebrates to habitat loss and fragmentation: the importance of niche
608 breadth and range boundaries. *Diversity and Distributions*, 9(1), 1-18.

- 609 Tscharntke, T., Clough, Y., Wanger, T. C., Jackson, L., Motzke, I., Perfecto, I., . . .
- 610 Whitbread, A. (2012). Global food security, biodiversity conservation and the future
611 of agricultural intensification. *Biological conservation*, 151(1), 53-59.
- 612 Walpole, A. A., Bowman, J., Murray, D. L., & Wilson, P. J. (2012). Functional connectivity
613 of lynx at their southern range periphery in Ontario, Canada. *Landscape ecology*,
614 27(5), 761-773.
- 615 Wotton, D. M., & Kelly, D. (2012). Do larger frugivores move seeds further? Body size, seed
616 dispersal distance, and a case study of a large, sedentary pigeon. *Journal of*
617 *Biogeography*, 39(11), 1973-1983.
- 618 Yumnam, B., Jhala, Y. V., Qureshi, Q., Maldonado, J. E., Gopal, R., Saini, S., . . . Fleischer,
619 R. C. (2014). Prioritizing tiger conservation through landscape genetics and habitat
620 linkages. *PLoS one*, 9(11), e111207. <https://doi.org/10.1371/journal.pone.0111207>
- 621 Zeller, K. A., McGarigal, K., & Whiteley, A. R. (2012). Estimating landscape resistance to
622 movement: a review. *Landscape ecology*, 27(6), 777-797.
- 623

625

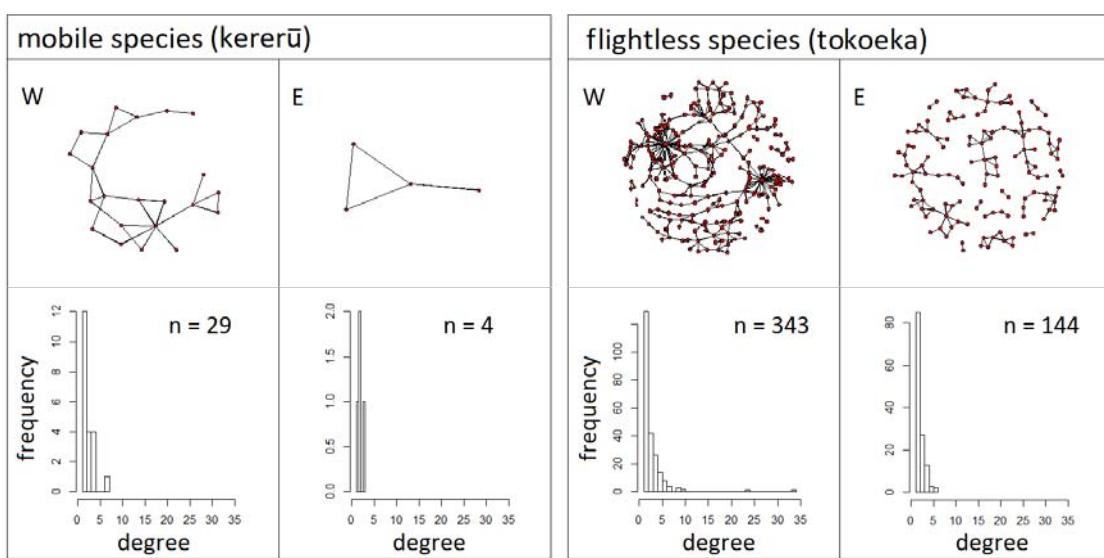

626 Figure 1. Workflow for generating the reclassified landscape from various spatial datasets.

627

628

629

630



631

632 Figure 2. Least-cost paths of a) the mobile species (kererū) and b) the flightless species
633 (tokoeka) as the model outputs. The grey lines indicate the outline of the study area and
634 polygons of landscape patches within the area. The black line represents the coastline.

635

636

637

638 Figure 3. Networks of kererū and tokoeka shown in circular plots on the top panel, the figures
639 labelled with 'W' represent the network structures of the western side and 'E' for the eastern
640 side of the study site for each species. The red dots indicate nodes of habitat patches, and the
641 black lines are links between nodes. Histograms of the degree distribution of each network
642 are displayed in the bottom panel, where n is the total number of links.

643

644 Appendix 1:

645 Table A1: Landscape reclassification from LCBD, LUCAS, Agribase, and RGB aerial photo
646 classification.

Category	LCBD category	LUCAS category	Agribase category	Aerial photo
Grassland with Trees	Exotic Forest			
Grassland with Shrubs	Gorse and/or Broom, Matagouri or Grey Scrub	Grassland - High producing		Matagouri, Shrubland
Grassland not Grazed	Mixed Exotic Shrubland, Orchard, Vineyard or Other Perennial Crop		NAT, NOF	Gorse
Grazed Grassland	Low Producing Grassland, High Producing Exotic Grassland	Grassland - Low producing, Grassland - High producing	SHP, BEF, SNB, DEE, GRA, LIF, NEW, none	
Plantation Forest	Exotic Forest, Forest - Harvested	Planted Forest - Pre-1990, Post 1989 Forest		Pine
Native Forest	Broadleaved Indigenous Hardwoods, Manuka and/or Kanuka, Indigenous Forest	Grassland - With woody biomass, Natural Forest	FOR	Old_Growth, Mixed Native Deciduous, Kanuka
Open Water	Lake or Pond	Wetland - Open water		
Horticulture/Arable	Short-rotation Cropland	Cropland - Annual	HOR	
Settlements	Built-up Area (settlement)	Settlements		
Bare Ground	Gravel or Rock, Landslide			
Natural Exotic Forest	Deciduous Hardwoods, Exotic Forest			
Industrial	Surface Mine or Dump, Transport Infrastructure			Road
Wetland	Herbaceous Freshwater Vegetation	Wetland - Vegetated non forest		

647

648 Table A2: Suitability score given to each type of reclassified landscape categories, based on
649 knowledge of the two example species.

Category	Bird with high movement capacity (kererū)	Bird with low movement capacity (brown kiwi)
Grassland with Trees	60	60
Grassland with Shrubs	50	50
Grassland not Grazed	50	50
Grazed Grassland	20	20
Plantation Forest	70	70
Native Forest	100	100
Open Water	0	0
Horticulture/Arable	30	30
Settlements	30	30
Bare Ground	0	0
Natural Exotic Forest	80	80
Industrial	20	0
Wetland	30	30

650

651

652 Table A3: Resistant value given to each grid cell of raster surfaces depending on the reclassified
653 landscape vegetation categories, based on knowledge of the two example species.

Category	Bird with high movement capacity (kererū)	Bird with low movement capacity (brown kiwi)
Grassland with Trees	2	2
Grassland with Shrubs	8	2
Grassland not Grazed	8	8
Grazed Grassland	16	16
Plantation Forest	1	1
Native Forest	1	1
Open Water	2	32
Horticulture/Arable	2	16
Settlements	32	32
Bare Ground	2	16
Natural Exotic Forest	1	1
Industrial	32	32
Wetland	2	30

654

655