

Development of a whole cell biosensor for detection of 2, 4-diacetylphloroglucinol-producing bacteria from grassland soil

Morten Lindqvist Hansen¹, Zhiming He¹, Mario Wibowo¹, Lars Jelsbak^{1*}

4

5

6

6 ¹ Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-
7 2800 Kgs. Lyngby, Denmark.

8

9 * Corresponding author:

10 Lars Jelsbak, Department of Biotechnology and Biomedicine, Technical University of
11 Denmark, DK-2800 Kgs. Lyngby, Denmark. Email: lj@bio.dtu.dk. Telephone: +45
12 45256129

13

14 Keywords: Secondary metabolites, *Pseudomonas*, DAPG, Synthetic biology, biocontrol

15 **ABSTRACT**

16 Fluorescent *Pseudomonas* spp. producing the antibiotic 2,4-diacetylphloroglucinol (DAPG)
17 are ecologically important in the rhizosphere as they can control phytopathogens and
18 contribute to disease suppressiveness. While studies of DAPG-producing *Pseudomonas* have
19 predominantly focused on rhizosphere niches, the ecological role of DAPG as well as the
20 distribution and dynamics of DAPG-producing bacteria remains less well understood for
21 other environments such as bulk soil and grassland, where the level of DAPG producers are
22 predicted to be low. Here, we construct a whole cell biosensor for detection of DAPG and
23 DAPG-producing bacteria from environmental samples.

24 We show that the sensor is highly specific towards DAPG, with a sensitivity in the low
25 nanomolar range (<20 nm). This sensitivity is comparable to the DAPG levels identified in
26 rhizosphere samples by chemical analysis. The biosensor enables guided isolation of DAPG-
27 producing *Pseudomonas*. Using the biosensor, we probed the same grassland soil sampling
28 site to isolate genetically related DAPG-producing *Pseudomonas kilonensis* strains over a
29 period of 12 months. Next, we used the biosensor to determine the frequency of DAPG-
30 producing Pseudomonads within three different grassland soil sites and show that DAPG
31 producers can constitute part of the *Pseudomonas* population in the range of 0.35-17% at
32 these sites. Finally, we show that the biosensor enables detection of DAPG produced by non-
33 *Pseudomonas* species.

34 Our studies show that a whole-cell biosensor for DAPG detection can facilitate isolation of
35 bacteria that produce this important secondary metabolite and provide insight into the
36 population dynamics of DAPG producers in natural grassland soil.

37

38 **IMPORTANCE**

39 The interest has grown for bacterial biocontrol agents as biosustainable alternatives to
40 pesticides to increase crop yields. Currently, we have a broad knowledge of antimicrobial
41 compounds, such as DAPG, produced by bacteria growing in the rhizosphere surrounding
42 plant roots. However, compared to the rhizosphere niches, the ecological role of DAPG as
43 well as the distribution and dynamics of DAPG-producing bacteria remains less well
44 understood for other environments such as bulk and grassland soil. Currently, we are
45 restricted to chemical methods with detection limits and time-consuming PCR-based and
46 probe-hybridization approaches to detect DAPG and its respective producer. In this study, we
47 have developed a whole-cell biosensor, which can circumvent the labor-intensive screening
48 process, as well as increase the sensitivity at which DAPG is detected. This enables
49 quantification of relative amounts of DAPG-producers, which in turn increases our
50 understanding of the dynamics and ecology of these producers in natural soil environments.

51 **INTRODUCTION**

52 Secondary metabolites are well-known for their potential as drugs in the medical industry.
53 They were initially defined as dispensable, non-vital compounds to their respective
54 producers. However, recent advances in genome mining and microbial ecology are beginning
55 to shed light on the prevalence, role and importance of these metabolites in natural
56 environments. In soil ecology, species of fluorescent *Pseudomonas* isolated from naturally
57 suppressive soils have received a great deal of attention due to their production of
58 antimicrobial secondary metabolites, such as 2,4-diacetylphloroglucinol (DAPG).
59 Suppression of wheat take-all disease caused by *Gaeumannomyces graminis* var. *tritici* was
60 shown to be induced by years of crop monoculture and was associated with the root
61 colonization of DAPG-producing fluorescent *Pseudomonas* (1). Moreover, production of
62 DAPG was shown to be involved in disease control against the causative agent of tobacco
63 black root rot, *Thielaviopsis basicola* (2). It has also been demonstrated that DAPG has
64 antibacterial properties against the pathogen *Erwinia carotovorum* subsp. *atroseptica* causing
65 soft rot of potatoes (3).

66 The biosynthetic gene cluster related to DAPG production in *Pseudomonas* comprises eight
67 genes, *phlACBDEFGH* (4, 5). Proteins encoded by the operon of *phlACBD* are responsible
68 for the synthesis of DAPG (4). The type III polyketide synthase, PhlD, initially condenses
69 three malonyl coenzyme A molecules into phloroglucinol (PG), which is further acetylated
70 by the enzyme complex of PhlACB into monoacetylphloroglucinol (MAPG) and DAPG (6).
71 PhlE was identified as a putative membrane transporter with similarities to a known efflux
72 pump in *Staphylococcus aureus* (4). The protein product of *phlG* has been described as a
73 hydrolase that catalyses the degradation of DAPG to MAPG, thus controlling the intracellular
74 levels of DAPG (5, 7). Both *phlF* and *phlH* encode *tetR*-like repressors that inhibit
75 transcription of *phlACBD* and *phlG*, respectively (5, 8). PhlF and PhlH bind to operator sites

76 located in promoters upstream of the genes they regulate, thereby sterically blocking
77 transcription. DAPG serves as the ligand for both repressors. Thus, in the presence of DAPG
78 repression is relieved, leading to expression of *phlACBD* and *phlG*, which in turn leads to
79 induced DAPG biosynthesis and post-translational regulation (5, 8).

80 The complex of species belonging to the group, *Pseudomonas fluorescens*, has been well
81 characterized over the past three decades, due to the potential of several species to act as
82 biocontrol agents in agriculture. A recent study surveyed the phylogenetic relationship
83 between 166 type strains of *Pseudomonas* (among which 66 belonged to the *P. fluorescens*
84 group) based on amino acid sequences of 100 gene orthologues, which further proposed the
85 existence of 10 subgroups within the *P. fluorescens* clade (9). However, despite the vast
86 diversity among *P. fluorescens*, only few species belonging to two subgroups, *P. protegens*
87 and *P. corrugata*, are known to produce DAPG (1, 8). With the advances in genome mining
88 and the increased availability of complete genomes, the biosynthetic gene cluster *phlACBDE*
89 was recently identified in *Pseudomonas* species outside of the *P. fluorescens* group, as well
90 as in two genera of β-proteobacteria (10). However, in these cases production of DAPG has
91 not yet been demonstrated.

92 Identification and enumeration of DAPG-producing microorganisms has, to our knowledge,
93 exclusively relied on DNA probe hybridization and PCR-based techniques. One of the most
94 commonly employed techniques uses colony hybridization combined with a confirmatory
95 PCR to verify the presence of *phlD* (11). A more recent method involves culture-independent
96 real-time PCR to quantify populations of DAPG-producing *Pseudomonas* in the plant
97 rhizosphere (12). A different approach is to quantify the amount of DAPG produced *in situ*
98 by chemical analysis. Bonsall et al. demonstrated that an optimized extraction protocol
99 enabled quantification of DAPG isolated directly from the plant rhizosphere (13). While
100 these techniques have clear advantages, there are several drawbacks that also exist. PCR-

101 based methods are limited by DNA binding of specific primers and measures have to be
102 taken to address the quantity of diverse genotypes of DAPG-producers. Chemical
103 identification, on the other hand, is restricted by detection limits, which is directly correlated
104 to the size of the bacterial population.

105 In recent years, the synthetic biology toolbox has expanded rapidly and the use of genetically
106 engineered molecular circuits to sense molecules and conditions of interest has gained
107 increased attention. These developments have given rise to whole-cell biosensors that utilize
108 natural regulatory systems engineered to detect metabolites and small molecules (14, 15).
109 Whole-cell biosensors rely on molecule recognition to either activate transcription or lift
110 repression of a reporter gene and are thus often highly sensitive with detection limits in the
111 nano- to micromolar range (16–18). Furthermore, whole-cell biosensors are tunable by
112 addition or alteration of genetic parts, which allows for higher sensitivity and increased
113 specificity (15, 19). Lastly, biosensors may also be implemented as biological detectors for
114 uncovering metabolic activities *in situ* (20, 21).

115 Studies of DAPG-producing *Pseudomonas* species have predominantly focused on
116 rhizosphere niches, whereas the ecological role of DAPG as well as the distribution and
117 dynamics of DAPG-producing bacteria is not well understood for other environments such as
118 bulk soil and grassland. Here, we construct a whole cell biosensor as an alternative and
119 efficient approach for detection of DAPG and directed isolation of DAPG-producing bacteria
120 from environmental samples.

121 **MATERIALS AND METHODS**

122 **Strains, media and growth conditions**

123 Plasmid cloning and genetic circuit characterization were performed in *Escherichia coli* K12
124 $\Delta lacIZYA$ or *E. coli* CC118- λ pir. Cells were cultured in Luria-Bertani (LB) broth (Lennox,
125 Merck, St. Louis, MO, USA) with appropriate antibiotics. The antibiotic concentration used
126 was 25 μ g ml⁻¹ for kanamycin, 10 μ g ml⁻¹ for chloramphenicol and 8 μ g ml⁻¹ for tetracycline.
127 The engineered whole-cell biosensor was cultured by inoculating a single colony in 5 ml LB
128 broth supplemented with kanamycin and incubating overnight at 37° C with shaking (200
129 rpm). For characterization of the biosensor response to DAPG-producers, control strains were
130 routinely cultured by inoculating a single colony in 5 ml LB broth and incubating overnight
131 at 30° C with shaking (200 rpm). Control strains include: *Pseudomonas putida* KT2440,
132 *Pseudomonas protegens* DTU9.1 (previously isolated by our group), *Pseudomonas protegens*
133 DTU9.1 Δ p $hlACBD$ (see below) and *Chromobacterium vaccinii* MWU328.

134

135 **Plasmid circuit construction**

136 Plasmid construction and DNA manipulation was performed following standard molecular
137 biology techniques. The strain *E. coli* K12 $\Delta lacIZYA$ was transformed with all plasmid
138 constructs by chemical transformation. The plasmid pAJM847 (Accession: MH101727.1),
139 comprising the P_{lacIQ} promoter, *phlF*, the induction operon terminator (IOT) and the P_{*phlF*}
140 promoter, was a kind gift from Christopher Voigt (22). The genetic circuit from pAJM847
141 was re-organized into pSEVA225T (Accession: KC847299.1) (23) to obtain the DAPG
142 biosensor. To this end, the fragment containing the P_{lacIQ} promoter, *phlF* and the induction
143 operon terminator was PCR amplified with AvrII and EcoRI overhangs. Purified PCR
144 product was digested with appropriate restriction enzymes and inserted in pSEVA225T to

145 yield pSEVA225::P_{lacIQ}-*phlF*. Subsequently, the fragment containing the P_{phlF} promoter was
146 PCR amplified with EcoRI and HindIII overhangs. Purified PCR product was restriction-
147 digested and inserted in pSEVA225::P_{lacIQ}-*phlF* to yield the lacZ version of the DAPG
148 biosensor (pSEVA225::DAPG_{lacZ}). The lux operon (*luxCDABE*) was PCR amplified from
149 pUC18-mini-TN7T-Gm-*lux* with HindIII and SpeI overhangs. Purified PCR product was
150 restriction-digested and inserted in pSEVA225::DAPG_{lacZ} to yield the lux version
151 (pSEVA226::DAPG_{lux}).

152

153 **Deletion of *phlACBD* by allelic replacement**

154 To abolish DAPG production in *P. protegens* DTU9.1, the biosynthesis genes, *phlACBD*,
155 were deleted by allelic replacement according to Hmelo et al. (24). In short, DNA fragments
156 directly upstream of *phlA* and directly downstream of *phlD* were PCR amplified. The
157 fragments were joined by splicing-by-overlap extension PCR with XbaI and SacI overhangs.
158 The purified PCR product was restriction-digested and inserted in pNJ1 (25). The resulting
159 plasmid was mobilized into *P. protegens* DTU9.1 via triparental mating with *E. coli* HB101
160 harbouring the helper plasmid pRK600. Merodiploid transconjugants were initially selected
161 on *Pseudomonas* Isolation Agar (PIA, Merck, St. Louis, MO, USA) supplemented with 50 µg
162 ml⁻¹ tetracycline. A second selection was performed on NSLB agar (10 g l⁻¹ tryptone, 5 g l⁻¹
163 yeast extract, 15 g l⁻¹ Bacto agar) with 15% sucrose. Candidates for successful deletion were
164 confirmed by PCR and verified by Sanger sequencing at Eurofins Genomics.

165

166 **Luminescence dose/response microplate assay**

167 Overnight cultures of the whole-cell biosensor harbouring pSEVA226-DAPG_{lux} were
168 prepared in six biological replicates as described above. 96-well black, clear bottom

169 microplates (In Vitro, Denmark) were prepared with LB broth supplemented with kanamycin
170 and varying concentrations of PG, MAPG or DAPG (0, 0.005, 0.01, 0.02, 0.039, 0.078,
171 0.156, 0.3125, 0.625, 1.25, 2.5, 5, 7.5, 10 and 15 μ M). The overnight cultures were diluted to
172 inoculate the microplates to an initial $OD_{600} = 0.01$. The plates were sealed with a
173 semipermeable membrane (Breathe-Easy, Merck, St. Louis, MO, USA) and incubated in a
174 Cytation5 microplate reader for 8 hours at 37° C with shaking (600 rpm) with continuous
175 measurements of luminescence and absorbance at OD_{600} . This data and any other microplate
176 assay data was collected with the Gen5 2.07 software and exported to Excel 2016 and
177 GraphPad for data analysis.

178

179 **β -galactosidase dose/response microplate assay**

180 Overnight cultures of the whole-cell biosensor harbouring pSEVA225-DAPG_{lacZ} were
181 prepared in triplicate as described above. Transparent 96-well microplates (TPP, Merck, St.
182 Louis, MO, USA) were prepared with LB broth supplemented with kanamycin and varying
183 concentrations of PG, MAPG or DAPG (0, 0.625, 1.25, 2.5, 5, 7.5, 10 and 15 μ M). The
184 overnight cultures were diluted to inoculate the microplates to an initial $OD_{600} = 0.01$.
185 Cultures were grown for 3 hours at 37° C with shaking (600 rpm), followed by measuring the
186 end-point absorbance at OD_{600} . Subsequently, 20 μ l from each well was transferred to new
187 transparent 96-well microplates and mixed with 80 μ l permeabilization buffer (0.1 M
188 Na₂HPO₄, 0.02 M KCl, 0.002 M MgSO₄, 0.8 mg ml⁻¹ hexadecyltrimethylammonium
189 bromide, 0.4 mg ml⁻¹ sodium deoxycholate, 5.4 μ l ml⁻¹ β -mercaptoethanol) (26). The plates
190 were incubated at 30° C with shaking (600 rpm) for 30 minutes to facilitate cell lysis. Next,
191 28 μ l lysed cell culture from each well was transferred to 96-well black microplates and
192 mixed with 172 μ l substrate solution (0.06 M Na₂HPO₄, 0.04 M NaH₂PO₄, 1 mg ml⁻¹ o-nitro-

193 phenyl- β -D-galactopyranoside, 2.7 μ l ml $^{-1}$ β -mercaptoethanol) (26). The plates were sealed
194 with a semipermeable membrane (Breathe-Easy, Merck, St. Louis, MO, USA) and incubated
195 in a Cytation5 microplate reader for 16 hours at 37° C with shaking (600 rpm) with
196 continuous measurements of absorbance at OD₄₂₀. Data was collected and analysed, as
197 mentioned above.

198

199 **Detecting DAPG from bacterial cultures grown on agar surfaces**

200 Overnight cultures of the whole-cell biosensor harbouring pSEVA225-DAPG_{lacZ} and the
201 control strains *P. putida* KT2440, *P. protegens* DTU9.1, *P. protegens* DTU9.1 Δ phlACBD
202 and *C. vaccinii* MWU328 were prepared as described above. The biosensor was normalized
203 to OD₆₀₀ = 1.0 and spread on King's agar B supplemented with malt extract (KBmalt) (20 g l $^{-1}$
204 1 Proteose peptone No. 3, 1.5 g l $^{-1}$ K₂HPO₄, 1.5 g l $^{-1}$ MgSO₄, 7.5 g l $^{-1}$ malt extract, 10 ml l $^{-1}$
205 glycerol and 20 g l $^{-1}$ Bacto agar) supplemented with 25 μ g ml $^{-1}$ 5-bromo-4-chloro-3-indolyl-
206 β -D-galactopyranoside (X-gal, Thermo Fisher Scientific). Overnight cultures of the control
207 strains were normalized to OD₆₀₀ = 1.0 and inoculated as 20 μ l spots on the agar plates
208 containing the biosensor. Agar plates were incubated at 30° C for 24-96 hours. Plates were
209 inspected for blue halos surrounding the bacterial spots every 24 hours.

210

211 **Detection of DAPG by LCMS**

212 Overnight cultures of the control strains *P. putida* KT2440, *P. protegens* DTU9.1, *P.*
213 *protegens* DTU9.1 Δ phlACBD and *C. vaccinii* MWU328 were prepared as described above.
214 The cultures were normalized to OD₆₀₀ = 1.0, inoculated as 20 μ l spots on KBmalt and malt
215 agar plates and incubated at 30° C for 24 hours. An agar plug (6 mm diameter) of the
216 bacterial culture was transferred to a vial and extracted with 1 ml of isopropanol:ethyl acetate

217 (1:3, v/v), containing 1% formic acid, under ultrasonication for 60 min. The extracts were
218 then transferred to new vials, evaporated under N₂, and re-dissolved in 200 µl of methanol for
219 further sonication over 15 min. After centrifugation at 13400 rpm for 3 min, the supernatants
220 were transferred to HPLC vials and subjected to ultrahigh-performance liquid
221 chromatography-high resolution electrospray ionization mass spectrometry (UHPLC-
222 HRESIMS) analysis. UHPLC-HRESIMS was performed on an Agilent Infinity 1290 UHPLC
223 system equipped with a diode array (DAD) detector. UV-visible spectra were recorded from
224 190 to 640 nm. Liquid chromatography of 1 µl extract was carried out using an Agilent
225 Poroshell 120 phenyl-hexyl column (2.1 × 150 mm, 1.9 µm) at 60° C using acetonitrile and
226 H₂O, both containing 0.02 M formic acid, as mobile phases. Initially, a linear gradient of 10%
227 acetonitrile/H₂O to 100% acetonitrile over 10 minutes was employed, followed by isocratic
228 wash of 100% acetonitrile for 2 minutes. The gradient was returned to 10% acetonitrile/H₂O
229 in 0.1 minute and finally isocratic condition of 10% acetonitrile/H₂O for 1.9 minutes, all at a
230 flow rate of 0.35 ml min⁻¹. Mass-spectrometry detection was performed in positive ionization
231 on an Agilent 6545 QTOF MS equipped with an Agilent Dual Jet Stream electrospray ion
232 source with a drying gas temperature of 250° C, drying gas flow of 8 l min⁻¹, sheath gas
233 temperature of 300° C and sheath gas flow of 12 L min⁻¹. Capillary voltage was set to 4000 V
234 and nozzle voltage to 500 V. Mass-spec data analysis and processing were performed using
235 Agilent MassHunter Qualitative Analysis B.07.00.

236

237 **Isolation of fluorescent *Pseudomonas* from grassland soil**

238 Three sites of undisturbed grassland were chosen (P5, 55° 78'88"N, 12° 55'83"E; P8,
239 55° 79'52"N, 12° 58'06"E; P9, 55° 79'12"N, 12° 57'51"E). Soil was collected
240 approximately 10 centimetres below the grass surface. Five grams of soil were suspended in
241 30 ml of sterile water and shaken vigorously for 1 min on a Vortex mixer. The samples were

242 subsequently serially diluted and plated onto $\frac{1}{4}$ KB (7.5 g l^{-1} King's agar B, 10 ml l^{-1}
243 glycerol, 7.5 g l^{-1} Bacto agar) supplemented with $100 \mu\text{g ml}^{-1}$ cycloheximide, $13 \mu\text{g ml}^{-1}$
244 chloramphenicol and $40 \mu\text{g ml}^{-1}$ ampicillin. Agar plates were incubated at 30°C for 48
245 hours. Fluorescent colonies were identified under UV light and re-streaked on LB agar plates.
246 Species identification of the soil isolates was performed by PCR, amplifying part of the *rpoD*
247 gene with primers (PsEG30F: 5'-ATYGAAATCGCCAARCG, PsEG790R: 5'-
248 CGGTTGATKTCCTTGA) (27). PCR products were purified, sequenced and aligned to a
249 database of 166 known type strains of *Pseudomonas* (9).

250

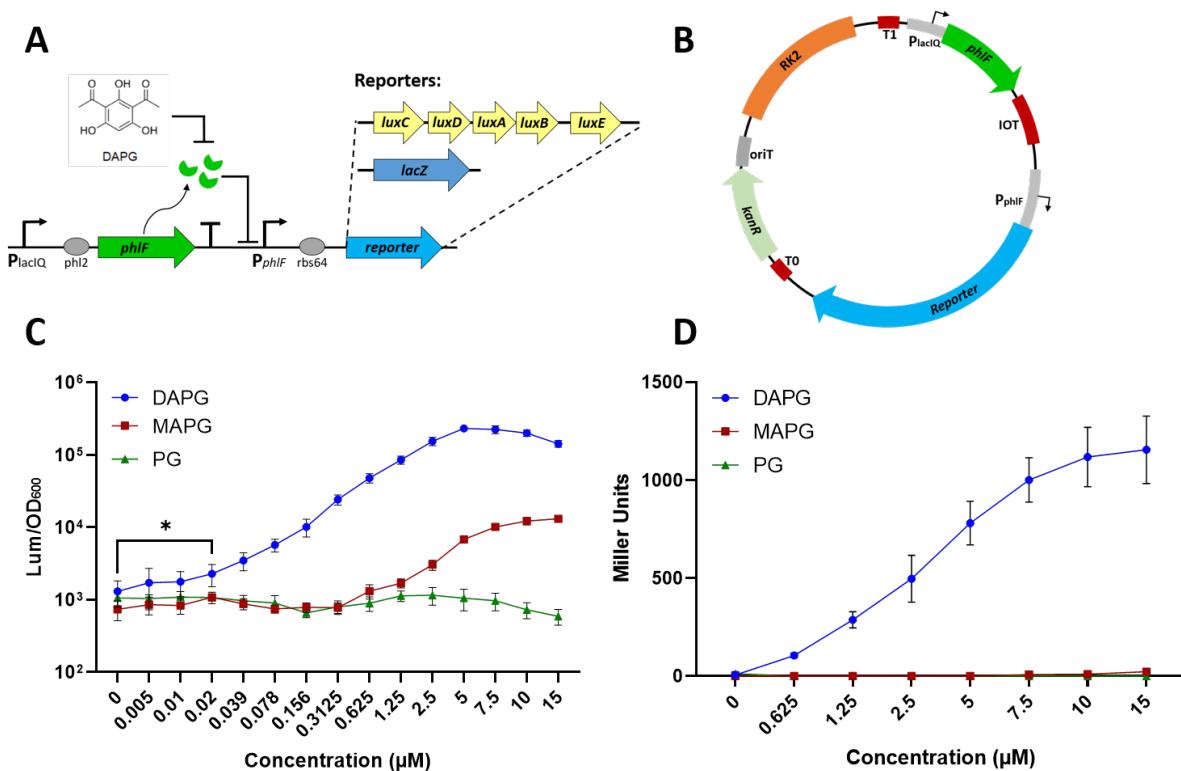
251 **Biosensor-guided identification of DAPG-producers from grassland soil**

252 Thirty fluorescent *Pseudomonas* were randomly selected from sample site P5 both in 2018
253 and 2019 as described above. Isolates were cultured overnight in LB broth at 30°C with
254 shaking (200 rpm). An overnight culture of the biosensor harbouring pSEVA225-DAPG_{lacZ}
255 was normalized to $\text{OD}_{600} = 1.0$ and spread on KBmalt plates supplemented with $25 \mu\text{g ml}^{-1}$
256 X-gal. Overnight cultures of the *Pseudomonas* isolates were inoculated on the agar plates as
257 $20 \mu\text{l}$ spots. Plates were incubated at 30°C for 24-48 hours. Plates were inspected for blue
258 halos surrounding the bacterial spots every 24 hours. The DAPG-producing isolates were
259 identified by PCR-based species identification, as described above. The phylogenetic
260 relationship between the DAPG-producing isolates was determined by analysing a
261 phylogenetic tree with representatives of each *P. fluorescens* subgroup (9). In short, the PCR
262 amplified part of the *rpoD* genes were Sanger sequenced and aligned using the MUSCLE
263 algorithm, followed by construction of a bootstrap consensus tree (500 replicates) by the
264 neighbour-joining method in MEGA X (28).

265

266

267 **High-throughput screening for DAPG-producers in grassland soil**


268 In 2019, 288 fluorescent *Pseudomonas* were randomly selected from three sample sites (P5',
269 55° 78'78"N, 12° 56'07"E; P8 and P9 – see coordinates above). Fluorescent colonies were
270 streaked on LB agar OmniTray™ (Nunc™, Nalge Nunc International, Rochester, NY, USA)
271 and incubated for 24 hours at 30° C. Isolates were cultured in transparent 96-well microplates
272 in terrific broth (TB; 12 g l⁻¹ tryptone, 24 g l⁻¹ yeast extract, 0.17 M KH₂PO₄, 0.72 M K₂HPO₄
273 and 5 ml l⁻¹ glycerol). An overnight culture of the biosensor harbouring pSEVA225-
274 DAPG_{lacZ} was normalized to OD₆₀₀ = 0.5 and spread on KBmalt OmniTrays supplemented
275 with 50 µg ml⁻¹ X-gal. The *Pseudomonas* isolates were inoculated on the OmniTrays with
276 sterile replicators. The OmniTrays were incubated at 30° C for 48 hours and inspected for
277 blue halos surrounding the *Pseudomonas* colonies. Candidate isolates exhibiting a blue halo
278 were screened with PCR for the presence of *phlD* with primers (B2BF: 5'-
279 ACCCACCGCAGCATCGTTATGAGC, BPR4: 5'-
280 CCGCCGGTATGGAAGATGAAAAAGTC) (29). Moreover, *rpoD* was amplified from
281 candidate colonies for species identification with primers PsEG30F and PsEG790R.

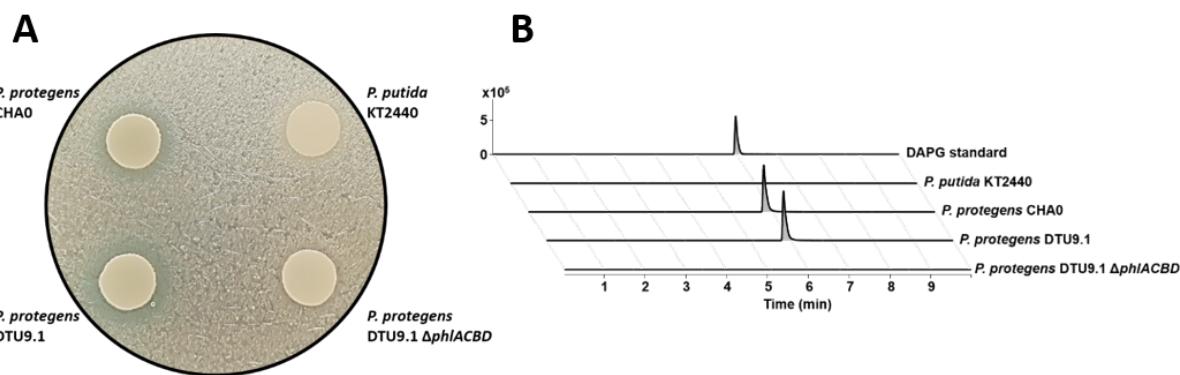
282 **RESULTS**

283 **Construction of whole-cell DAPG biosensors with high sensitivity and specificity**

284 Two whole-cell biosensors were constructed to enable specific detection of DAPG and
285 identification of DAPG-producing bacteria. Both sensors contain an identical module for
286 DAPG sensing in combination with either the *lux* operon or the *lacZ* gene as reporters (Figure
287 1A). The biosensor plasmids were constructed as repressor-mediated modules in an *E. coli*
288 K12 $\Delta lacIZYA$ host. In the absence of DAPG, the TetR-like repressor protein, PhlF, binds as
289 a dimer to the *phlO* operator site (8) in the promoter upstream of the reporter gene. As
290 bioavailable DAPG diffuses into the cytoplasm and binds to PhlF, the repression on the target
291 P_{phlF} promoter is relieved. Two reporter modules were chosen. The *lux* operon was used as
292 the output reporter to obtain a highly sensitive response measured in bioluminescence units.
293 To enable agar plate screenings for investigating the distribution and dynamics of DAPG-
294 producing bacteria in natural microbial communities, the *lacZ* gene was used as the second
295 output reporter. To ensure stable inhibition of the P_{phlF} promoter under non-induced
296 conditions, the *phlF* gene is constitutively expressed from the P_{lacIQ} promoter. Both genetic
297 circuits were introduced into a pSEVA plasmid background (Figure 1B) to allow for rapid
298 and simple cloning, as well as efficient mobilization into distinct hosts by triparental mating.
299 To address the sensitivity and specificity of the whole-cell biosensors, microtiter bioassays
300 were conducted. For characterization of the *lux* version (Figure 1C), the *E. coli* host with
301 pSEVA226-DAPG_{lux} was grown in LB broth containing varying concentrations of PG,
302 MAPG or DAPG with continuous measurements of luminescence and cell density. PG and
303 MAPG are both precursors of DAPG and thus similar compounds, allowing determination of
304 biosensor specificity towards DAPG. Each data point represents the average luminescence
305 per OD₆₀₀ after 175 minutes of growth, which corresponds to late exponential phase
306 (Supplementary-S1). The whole-cell biosensor exhibited excellent sensitivity towards DAPG

307 with a response to 20 nM being statistically significantly higher than the negative control
308 without added DAPG (Student's t-test, $p = 0.01$). The biosensor did not respond to the
309 concentrations of PG tested, but a minor response to MAPG at $>1.25 \mu\text{M}$ was observed. For
310 characterization of the *lacZ* version (Figure 1D), the *E. coli* host with pSEVA225::DAPG_{*lacZ*}
311 was grown in LB broth containing varying concentrations of either PG, MAPG or DAPG to
312 allow for enzymatic expression. Subsequently, the biosensor response was determined in a β -
313 galactosidase microtiter assay. Enzymatic activity of transcribed *lacZ* was estimated by
314 continuously measuring the increase in o-nitrophenol concentration over time
315 (Supplementary-S2). The output is displayed in Miller Units ($\text{MU} = (5000 \cdot \text{OD}_{420}/\text{min}) / \text{OD}_{600}$). Exposing the biosensor to 0.625 μM of DAPG yielded a statistically significantly
316 higher response compared to the negative control without added DAPG (Student's t-test, $p =$
317 0.0032).
318

319
320
321


Figure 1. Design of highly specific and sensitive whole-cell biosensors for DAPG detection. A)
Schematic illustration of the genetic circuit representing the DAPG biosensors with varying reporter

322 modules. **B)** Map of the biosensor present on a pSEVA plasmid background with an RK2 replicon
323 (orange), origin of transfer (dark grey) and a kanamycin resistance gene (light green). Terminators
324 (T0, T1 and IOT – dark red) **C)** The response of the whole-cell biosensor harbouring pSEVA226-
325 DAPG_{lux} to DAPG and similar molecules (PG and MAPG) measured in luminescence per OD₆₀₀. **D)**
326 The response of the whole-cell biosensor harbouring pSEVA225-DAPG_{lacZ} to DAPG and similar
327 molecules (PG and MAPG) measured in Miller Units.

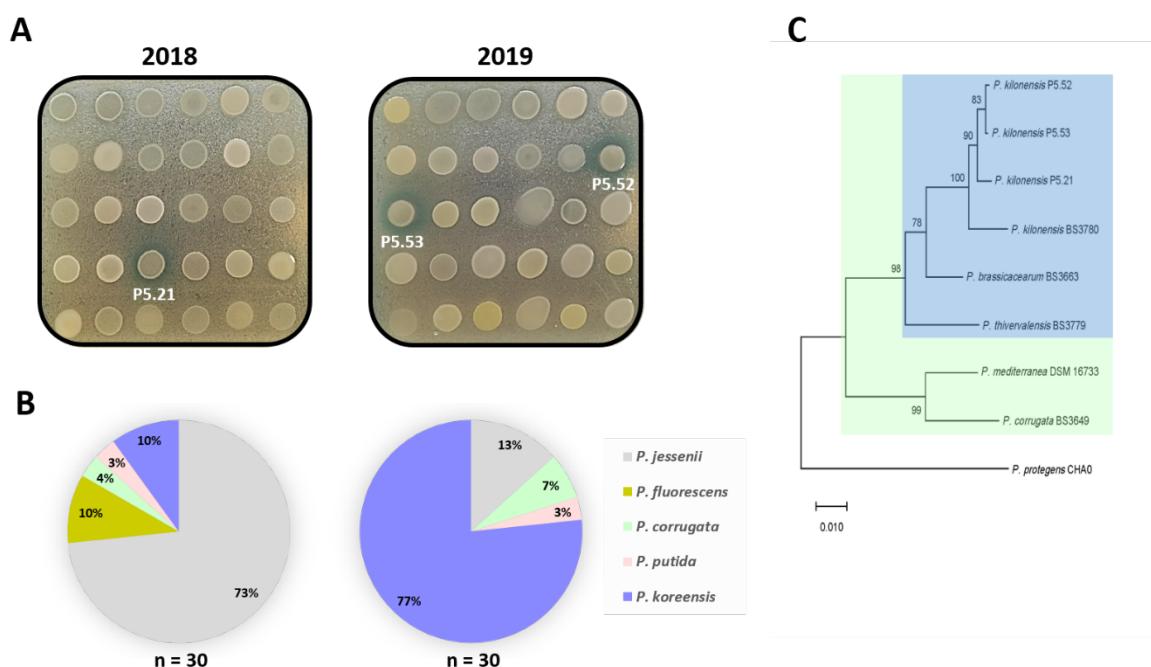
328

329 **Detection of DAPG production from bacterial colonies during growth on agar surfaces**

330 After addressing the sensitivity and specificity of the biosensor, we proceeded to utilize it in
331 the identification of DAPG-producing bacteria. We investigated the response of the whole-
332 cell biosensor when co-inoculated with known DAPG-producing bacteria commonly found in
333 soil (Figure 2). The biosensor harbouring pSEVA225::DAPG_{lacZ} was grown as a lawn on
334 KBmalt agar (30) supplemented with X-gal. Inoculation of DAPG-producing cultures of *P.*
335 *protegens* CHA0 and *P. protegens* DTU9.1 on these agar plates resulted in induction of the
336 biosensor and production of clear blue halos surrounding the colonies after 24 hours (Figure
337 2A). We also constructed a *ΔphlACBD* mutant strain of *P. protegens* DTU9.1 by allelic
338 replacement, in which the DAPG biosynthesis genes were deleted (Materials and Methods).
339 As expected, the mutant strain did not elicit a response from the biosensor (Figure 2A) and
340 did not produce DAPG detectable by LCMS analysis (Figure 2B). We note that DAPG
341 production in *Pseudomonas* species has been shown to be high in growth conditions
342 containing maltose, such as the conditions used here (8, 31). In concordance with these
343 findings, we did not observe clear blue halos when LB agar was used (data not shown). We
344 also tested *P. putida* KT2440, which does not contain the DAPG biosynthetic gene cluster.
345 Similar to the *P. protegens* DTU9.1 *ΔphlACBD* mutant, *P. putida* did not elicit a response in
346 the biosensor after 24 hours of growth. However, after prolonged incubation (>72 hours) of
347 *P. putida* KT2440, a slight blue colouring was detected surrounding the bacterial colony
348 (Supplementary-S3).

349

350 **Figure 2. Detection of DAPG produced by bacterial colonies grown on agar surfaces. A)** Four
351 fluorescent *Pseudomonas* were grown on a lawn of the biosensor with pSEVA225::DAPG_{lacZ} on
352 KBmalt media supplemented with X-gal. Wildtype *P. protegens* CHA0 and DTU9.1 known to
353 produce DAPG elicited a biosensor response after 24 hours, whereas the negative controls *P. putida*
354 KT2440 and a Δ phlACBD mutant of *P. protegens* DTU9.1 did not. **B)** Extracted ion chromatograms
355 (EIC) for DAPG (m/z 211.0601 \pm 5 ppm) of the four *Pseudomonas* extracts confirm the production
356 of DAPG after 24 hours by *P. protegens* CHA0 and DTU9.1.


357

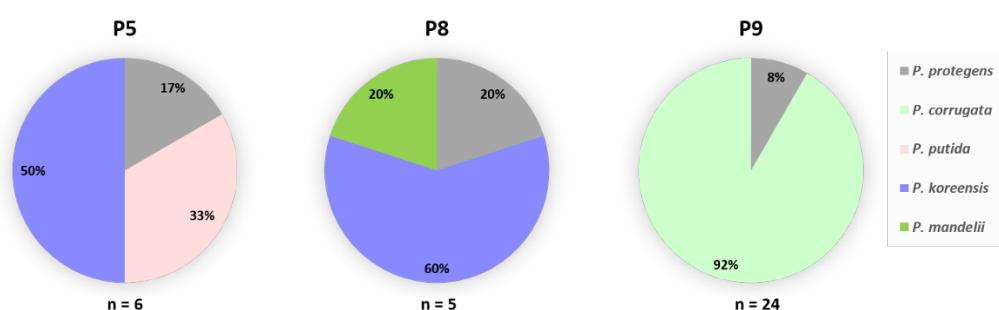
358 Finally, we also explored if our setup can be used to identify DAPG production in species
359 other than *Pseudomonas*. Recently, the genome of *C. vaccinii* MWU328 was shown to
360 contain genes with high similarity to the essential genes required for DAPG biosynthesis
361 (*phlACBDE*) (10). We found that *C. vaccinii* MWU328 produced molecules that induced a
362 response in the biosensor, resulting in a blue halo around the colony. A small amount of
363 DAPG was subsequently confirmed by LCMS (Supplementary-S4).

364

365 **Biosensor-guided identification of DAPG-producing *Pseudomonas***

366 Next, we used our biosensor to guide the identification of DAPG-producing Pseudomonads
367 from environmental samples. To this end, we collected soil samples from the same grassland
368 soil site (labelled “P5”) in both August 2018 and August 2019 and randomly isolated 30
369 fluorescent *Pseudomonas* strains at both time points. This site is located in Dyrehaven, which
370 is a Danish natural reserve, thus representing a relatively unaffected, natural soil niche. Using
371 the approach described above, all 60 isolates were screened on KBmalt agar plates
372 supplemented with X-gal and a lawn of the biosensor harbouring pSEVA225::DAPG_{lacZ}. A
373 blue halo indicative of DAPG production was observed for one isolate from 2018 (isolate
374 P5.21) and two isolates from 2019 (isolates P5.52 and P5.53) (Figure 3A). Subsequent LCMS
375 analysis confirmed DAPG production in all three isolates (Supplementary-S5). For
376 taxonomic identification of the 60 isolates, part of the housekeeping gene, *rpoD*, was
377 sequenced for each isolate. The *rpoD* sequences were aligned to a database of 165
378 *Pseudomonas* type strains (9). Species identification of each isolate was determined based on
379 the highest match to the type strains using nucleotide BLAST on NCBI. The diversity of
380 cultivable fluorescent *Pseudomonas* remained similar, as species of *P. jessenii*, *P. koreensis*
381 and *P. corrugata* subgroups (as well as species of *P. putida*) were identified in the two
382 samplings (Figure 3B). However, isolates belonging to *P. fluorescens* subgroup were only
383 found in 2018.

404 the three *P. kilonensis* isolates cluster together with the members of the *P. corrugata*
405 subgroup known to produce DAPG (marked with a blue box). Taken together, these results
406 show that genetically highly related DAPG-producing *Pseudomonas* can be isolated from the
407 same grassland soil site over a 12 month period.


408

409 **Measuring the frequency of DAPG-producing Pseudomonads in grassland soils**

410 To further explore the populations and frequencies of DAPG-producing Pseudomonads in
411 grassland soils, we sampled soil from three additional grassland sites (an area close to P5
412 labelled P5', P8 and P9) (Materials and methods). In total, we isolated 288 *Pseudomonas*
413 strains as libraries in 96-well microplates from each of the three sites (n = 864). The three
414 libraries were then screened for potential DAPG-producers by replica-plating them onto a
415 KBmalt agar supplemented with X-gal and a lawn of the whole-cell biosensor harbouring
416 pSEVA225::DAPG_{lacZ}. Simultaneously, the libraries were screened on separate plates for
417 production of natural β-galactosidases, and isolates displaying a response were discarded
418 from further analyses. Note that in this experimental setup (using replica-plating), the
419 development of blue halos around DAPG-producing colonies took longer time than when
420 larger aliquots of cultures were spotted on the agar plates. After 48 hours of incubation the
421 biosensor elicited a response to six isolates from P5', five isolates from P8 and 49 isolates
422 from P9 (Table 1). Subsequently, we analysed the colonies displaying a blue halo for the
423 presence of *phlD*, as well as their taxonomy by sequencing part of *rpoD* and aligning it to the
424 database of *Pseudomonas* type strains (9). For P5' and P8, one isolate from each site was
425 confirmed to encode the polyketide synthase responsible for DAPG biosynthesis (Table 1)
426 and both isolates were identified as *P. protegens* (Figure 4). For P9, we randomly chose 24 of
427 the 49 isolates with a surrounding blue halo and all were confirmed to have *phlD*, where 22

428 of those isolates belonged to *P. kilonensis*, while the remaining two were identified as *P.*
429 *protegens* (Figure 4).

430

431

432 **Figure 4. Taxonomic identification of isolates with a surrounding blue halo in the high-**
433 **throughput screening assay.** For each isolate, part of the *rpoD* gene was sequenced and aligned to a
434 database of 165 type strains of *Pseudomonas*. In both P5' and P8, one isolate was identified as *P.*
435 *protegens*, whereas the remaining isolates belonged to either the *P. putida* group or *P. koreensis* and
436 *P. mandelii* subgroups of *P. fluorescens*, according to Hesse et al. (9). In P9, the *rpoD* gene of 24/49
437 isolates was sequenced and the pie chart displays the distribution of the 24 isolates, with 22 identified
438 as *P. kilonensis* and 2 as *P. protegens*.

439

440 **TABLE 1.** Frequencies of DAPG producers in natural soil microbiomes

	Total CFU/g	Blue halo		phlD PCR verified	
		soil [†]	Count	Percentage	Count
P5'	$1.7 \cdot 10^4$	6	2.08%	1/6	60
P8	$5.7 \cdot 10^3$	5	1.74%	1/5	20
P9	$6.9 \cdot 10^3$	49	17.01%	24/24*	$1.2 \cdot 10^3$

441 [†]: Total CFU of bacteria cultivable on $\frac{1}{4}$ KB⁺⁺⁺ media, which is predominantly
442 *Pseudomonas*.

443 *: In the case of P9, more isolates displayed a blue halo surrounding their colony than
444 verified by *phlD* PCR.

445

446 **DISCUSSION**

447 In this study we constructed a highly sensitive whole-cell biosensor for detection and guided
448 isolation of DAPG-producing microorganisms. Utilization of genetic circuits to detect and
449 report on the presence of small molecules is associated with advantages and disadvantages.
450 Two apparent caveats associated with biosensor-guided identification are that it is only viable
451 for cultivable organisms and it requires conditions that allow co-cultivation of the isolate of
452 interest with the biosensor. One advantages of the biosensor is that it is not restricted to a
453 narrow range of genotypes of DAPG-producers, which is a limiting factor of PCR-based
454 approaches. Secondly, with a detection limit of <20 nM *in vitro* (Figure 1C) the biosensor
455 could serve as a promising alternative to chemical identification of DAPG *in situ*, where the
456 detection limit is in the low micromolar range (13).

457 We show that the biosensor is specific towards detection of DAPG. The biosensor did not
458 respond to PG and elicited a minor response towards MAPG. This minor response was absent
459 from its *lacZ* counterpart, which further demonstrates the sensitivity of the *lux* variant. We
460 realize that we have only used two molecules (PG and MAPG) to represent natural DAPG
461 analogues in our specificity assessment. It remains a possibility that other molecules can elicit
462 a biosensor response. In a study by Yan et al. on the PhlH transcriptional regulator, it was
463 demonstrated that multiple molecules with structural similarities to DAPG could bind to PhlH
464 and induce a response, albeit significantly lower than the response induced by DAPG (5).
465 Likewise, it was found that MAPG induced a minor response in the same study (5).

466 In order to demonstrate the biosensor response to bioavailable DAPG on agar surfaces, we
467 inoculated DAPG producers and non-producers on top of the whole-cell biosensor on agar
468 plates. As expected, a blue halo was observed around the DAPG producers. Additionally, a
469 blue colouring was absent around the non-producers after 24 hours. These findings also
470 correlated with the LCMS analysis. However, a slight blue halo was observed surrounding *P.*

471 *putida* after prolonged incubation (>72 hours), suggesting that one or more compounds are
472 being secreted by this strain during late stationary phase, which interacts with PhIF, thus
473 relieving repression of the reporter gene.

474 Subsequently, the biosensor was utilized for guided identification of DAPG-producing
475 fluorescent *Pseudomonas*. We screened 30 randomly isolated *Pseudomonas* from the P5 site
476 in both 2018 and 2019. DAPG producers were detected in both samplings based on a clear
477 blue halo surrounding their colonies and were identified as *P. kilonensis* species, which are
478 known to produce DAPG (10). Part of the *rpoD* gene was sequenced for all isolates and
479 aligned to a database of *Pseudomonas* type strains (9), which revealed a remarkably similar
480 diversity over a 12 month period (i.e. the same *Pseudomonas* subgroups were sampled at both
481 time points). However, despite the low sampling depth, the species abundance appears to
482 shift from *P. jessenii* to *P. koreensis*. From an ecological point of view, it is of interest to note
483 that the DAPG producers seem to persist over time in relatively similar quantities.

484 Lastly, we sought to optimize the screening assay to a high-throughput 96-well microplate
485 format. We isolated 288 *Pseudomonas* species from each of three soil sites (P5', P8 and P9).
486 The sites are located in a Danish natural reserve (Dyrehaven), thus we argued that they
487 represent pristine grassland soil niches. It is worth noting that bulk soil is an extremely harsh
488 environment with low nutrient availability, which might explain the low amount of CFU g⁻¹
489 of *Pseudomonas* compared to rhizosphere environments (11–13). We identified 6 and 5
490 isolates with blue halos around their colonies in P5' and P8, respectively. Yet, only one
491 isolate from each site was confirmed to encode the polyketide synthase responsible for
492 DAPG production. Picard et al. isolated 156 *Pseudomonas* from bulk soil, but no DAPG
493 producers were identified, although DAPG producers were isolated at a later stage from roots
494 of maize plants grown in the same soil (32). It was speculated that DAPG-producing
495 *Pseudomonas* are present in bulk soil in quantities <2.6 · 10² CFU g⁻¹, which is comparable to

496 the findings obtained in our study of grassland soil at P5' ($6 \times 10^1 \text{ g}^{-1}$) and P8 ($2 \times 10^1 \text{ g}^{-1}$)
497 (Table 1). In P9, on the other hand, 17% of the isolates displayed a blue halo around their
498 colonies and the presence of *phlD* was confirmed for 24/24 tested isolates. However, during
499 the course of our study it became apparent that a deer-feeding site was located near the
500 sampling site, with wheat being the main feed. This could potentially explain the high
501 frequency of DAPG producers in P9, as DAPG-producing *Pseudomonas*, which are known to
502 be associated with the roots of wheat (1), might have translocated into the soil surrounding
503 the feeding site due to animal activities.

504 The false positive isolates from the high-throughput screening (i.e. isolates that resulted in a
505 biosensor response without the presence of DAPG biosynthesis genes) could potentially
506 produce compounds similar to those made by *P. putida* (as described above), which interfere
507 with PhlF. The *phlF* gene encoded by the biosensor was cloned from *P. protegens* CHA0
508 (22), where it naturally functions as a transcriptional repressor of *phlACBD* (8). The false
509 positives identified in our screen may secrete yet unknown secondary metabolites that
510 interact with the PhlF repressor, thus inducing biosynthesis of DAPG. This finding highlights
511 the possibility for microbe-microbe interactions *in situ* leading to induced DAPG production
512 by adjacent non-producers. Interestingly, we found two isolates belonging to the *P. putida*
513 group in the high-throughput screening, which may indicate that certain species of this group
514 produce molecules that can induce expression of DAPG. Surprisingly, we also identified
515 isolates of *P. koreensis* and *P. mandelii* that elicit a response from the biosensor, which
516 further enhances the potential of yet unexplored microbe-microbe interactions that could be
517 addressed in future studies.

518 In conclusion, this study demonstrates the use of an engineered whole-cell biosensor for
519 guided identification of DAPG-producing microorganisms. This approach surpasses the
520 limits of previous PCR-based and chemical identification methods, although future

521 optimization to further increase sensitivity and reduce unexpected response to false positives
522 might be required.

523

524

525 **Acknowledgements**

526 We would like to thank Prof. Victor de Lorenzo for providing the pSEVA plasmid used as
527 vector background for the biosensor. Secondly, we thank Prof. Christopher Voigt for
528 providing the plasmid pAJM847. Moreover, we want to thank Pavelas Sazinas for advice on
529 phylogenetic analysis, as well as Susanne Koefoed for technical assistance. We thank the
530 members of the Centre for Microbial Secondary Metabolites (CeMiSt) for discussions.

531

532

533 **Funding**

534 This study was funded by the Danish National Research Foundation (DNRF137) for the
535 Centre for Microbial Secondary Metabolites.

536

537

538 **REFERENCES**

539 1. Raaijmakers JM, Weller DM. 1998. Natural Plant Protection by 2,4-
540 Diacetylphloroglucinol-Producing *Pseudomonas* spp. in Take-All Decline Soils. Mol
541 Plant-Microbe Interact 11:144–152.

542 2. Ramette A, Moënne-Loccoz Y, Défago G. 2003. Prevalence of fluorescent
543 pseudomonads producing antifungal phloroglucinols and/or hydrogen cyanide in soils
544 naturally suppressive or conducive to tobacco black root rot. FEMS Microbiol Ecol
545 44:35–43.

546 3. Cronin D, Moënne-Loccoz Y, Fenton A, Dunne C, Dowling DN, O’Gara F. 2006.
547 Ecological interaction of a biocontrol *Pseudomonas fluorescens* strain producing 2,4-
548 diacetylphloroglucinol with the soft rot potato pathogen *Erwinia carotovora* subsp.
549 *atroseptica*. FEMS Microbiol Ecol 23:95–106.

550 4. Bangera MG, Thomashow LS. 1999. Identification and Characterization of a Gene
551 Cluster for Synthesis of the Polyketide Antibiotic 2,4-Diacetylphloroglucinol from
552 *Pseudomonas fluorescens* Q2-87. J Bacteriol 181:3155–3163.

553 5. Yan X, Yang R, Zhao R-X, Han J-T, Jia W-J, Li D-Y, Wang Y, Zhang N, Wu Y,
554 Zhang L-Q, He Y-X. 2017. Transcriptional Regulator PhlH Modulates 2,4-
555 Diacetylphloroglucinol Biosynthesis in Response to the Biosynthetic Intermediate and
556 End Product. Appl Environ Microbiol 83.

557 6. Yang F, Cao Y. 2012. Biosynthesis of phloroglucinol compounds in
558 microorganisms—review. Appl Microbiol Biotechnol 93:487–495.

559 7. Bottiglieri M, Keel C. 2006. Characterization of PhlG, a hydrolase that specifically
560 degrades the antifungal compound 2,4-diacetylphloroglucinol in the biocontrol agent

561 Pseudomonas fluorescens CHA0. *Appl Environ Microbiol* 72:418–27.

562 8. Abbas A, Morrissey JP, Marquez PC, Sheehan MM, Delany IR, O’Gara F. 2002.
563 Characterization of interactions between the transcriptional repressor PhlF and its
564 binding site at the phlA promoter in *Pseudomonas fluorescens* F113. *J Bacteriol*
565 184:3008–16.

566 9. Hesse C, Schulz F, Bull CT, Shaffer BT, Yan Q, Shapiro N, Hassan KA, Varghese N,
567 Elbourne LDH, Paulsen IT, Kyrpides N, Woyke T, Loper JE. 2018. Genome- based
568 evolutionary history of *Pseudomonas* spp. *Environ Microbiol* 20:2142–2159.

569 10. Almario J, Bruto M, Vacheron J, Prigent-Combaret C, Moënne-Loccoz Y, Muller D.
570 2017. Distribution of 2,4-Diacetylphloroglucinol Biosynthetic Genes among the
571 *Pseudomonas* spp. Reveals Unexpected Polyphyletism. *Front Microbiol* 8:1218.

572 11. Raaijmakers JM, Weller DM, Thomashow LS. 1997. Frequency of Antibiotic-
573 Producing *Pseudomonas* spp. in Natural Environments. *Appl Environ Microbiol*
574 63:881–7.

575 12. Mavrodi O V, Mavrodi D V, Thomashow LS, Weller DM. 2007. Quantification of 2,4-
576 diacetylphloroglucinol-producing *Pseudomonas fluorescens* strains in the plant
577 rhizosphere by real-time PCR. *Appl Environ Microbiol* 73:5531–8.

578 13. Bonsall RF, Weller DM, Thomashow LS. 1997. Quantification of 2,4-
579 Diacetylphloroglucinol Produced by Fluorescent *Pseudomonas* spp. In Vitro and in the
580 Rhizosphere of Wheat. *Appl Environ Microbiol* 63:951–5.

581 14. Renella G, Giagnoni L. 2016. Light dazzles from the black box: whole-cell biosensors
582 are ready to inform on fundamental soil biological processes. *Chem Biol Technol*
583 Agric 3:8.

584 15. Wan X, Ho TYH, Wang B. 2019. Engineering Prokaryote Synthetic Biology
585 Biosensors, p. 1–37. *In* Handbook of Cell Biosensors. Springer International
586 Publishing, Cham.

587 16. Kim HJ, Lim JW, Jeong H, Lee S-J, Lee D-W, Kim T, Lee SJ. 2016. Development of
588 a highly specific and sensitive cadmium and lead microbial biosensor using synthetic
589 CadC-T7 genetic circuitry. *Biosens Bioelectron* 79:701–708.

590 17. Wang B, Barahona M, Buck M. 2015. Amplification of small molecule-inducible gene
591 expression via tuning of intracellular receptor densities. *Nucleic Acids Res* 43:1955–
592 1964.

593 18. Hooshangi S, Thiberge S, Weiss R. 2005. Ultrasensitivity and noise propagation in a
594 synthetic transcriptional cascade. *Proc Natl Acad Sci U S A* 102:3581–6.

595 19. Wang B, Barahona M, Buck M. 2014. Engineering modular and tunable genetic
596 amplifiers for scaling transcriptional signals in cascaded gene networks. *Nucleic Acids
597 Res* 42:9484–9492.

598 20. Burmølle M, Hansen LH, Sørensen SJ. 2005. Use of a Whole-Cell Biosensor and Flow
599 Cytometry to Detect AHL Production by an Indigenous Soil Community During
600 Decomposition of Litter. *Microb Ecol* 50:221–229.

601 21. Mimee M, Nadeau P, Hayward A, Carim S, Flanagan S, Jerger L, Collins J,
602 McDonnell S, Swartwout R, Citorik RJ, Bulović V, Langer R, Traverso G,
603 Chandrakasan AP, Lu TK. 2018. An ingestible bacterial-electronic system to monitor
604 gastrointestinal health. *Science* 360:915–918.

605 22. Meyer AJ, Segall-Shapiro TH, Glassey E, Zhang J, Voigt CA. 2019. *Escherichia coli*
606 “Marionette” strains with 12 highly optimized small-molecule sensors. *Nat Chem Biol*

607 15:196–204.

608 23. Silva-Rocha R, Martínez-García E, Calles B, Chavarría M, Arce-Rodríguez A, de las
609 Heras A, Páez-Espino AD, Durante-Rodríguez G, Kim J, Nikel PI, Platero R, de
610 Lorenzo V. 2013. The Standard European Vector Architecture (SEVA): a coherent
611 platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic
612 Acids Res 41:D666–D675.

613 24. Hmelo LR, Borlee BR, Almblad H, Love ME, Randall TE, Tseng BS, Lin C, Irie Y,
614 Storek KM, Yang JJ, Siehnel RJ, Howell PL, Singh PK, Tolker-Nielsen T, Parsek MR,
615 Schweizer HP, Harrison JJ. 2015. Precision-engineering the *Pseudomonas aeruginosa*
616 genome with two-step allelic exchange. Nat Protoc 10:1820–1841.

617 25. Yang L, Hengzhuang W, Wu H, Damkjaer S, Jochumsen N, Song Z, Givskov M,
618 Høiby N, Molin S. 2012. Polysaccharides serve as scaffold of biofilms formed by
619 mucoid *Pseudomonas aeruginosa*. FEMS Immunol Med Microbiol 65:366–376.

620 26. Zhang X, Bremer H. 1995. Control of the *Escherichia coli* rrnB P1 promoter strength
621 by ppGpp. J Biol Chem 270:11181–9.

622 27. Mulet M, Bennasar A, Lalucat J, García-Valdés E. 2009. An rpoD-based PCR
623 procedure for the identification of *Pseudomonas* species and for their detection in
624 environmental samples. Mol Cell Probes 23:140–147.

625 28. Kumar S, Nei M, Dudley J, Tamura K. 2008. MEGA: A biologist-centric software for
626 evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306.

627 29. McSpadden Gardener BB, Mavrodi D V., Thomashow LS, Weller DM. 2001. A Rapid
628 Polymerase Chain Reaction-Based Assay Characterizing Rhizosphere Populations of
629 2,4-Diacetylphloroglucinol-Producing Bacteria. Phytopathology 91:44–54.

630 30. Baehler E, Bottiglieri M, Péchy-Tarr M, Maurhofer M, Keel C. 2005. Use of green
631 fluorescent protein-based reporters to monitor balanced production of antifungal
632 compounds in the biocontrol agent *Pseudomonas fluorescens* CHA0. *J Appl Microbiol*
633 99:24–38.

634 31. Maurhofer M, Keel C, Haas D, Défago G. 1994. Pyoluteorin production by
635 *Pseudomonas fluorescens* strain CHA0 is involved in the suppression of Pythium
636 damping-off of cress but not of cucumber. *Eur J Plant Pathol* 100:221–232.

637 32. Picard C, Di Cello F, Ventura M, Fani R, Guckert A. 2000. Frequency and biodiversity
638 of 2,4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere
639 at different stages of plant growth. *Appl Environ Microbiol* 66:948–55.

640