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ABSTRACT 

Cells use signaling pathways to receive and process information about their environment. 

These systems are nonlinear, relying on feedback and feedforward regulation to respond 

appropriately to changing environmental conditions. Mathematical models developed to 

describe signaling pathways often fail to show predictive power, because the models are 

not trained on data that probe the diverse time scales on which feedforward and feedback 

regulation operate. We addressed this limitation using microfluidics to expose cells to a 

broad range of dynamic environmental conditions.  In particular, we focus on the well-

characterized mating response pathway of S. cerevisiae (yeast). This pathway is 

activated by mating pheromone and initiates the transcriptional changes required for 

mating. Although much is known about the molecular components of the mating response 

pathway, less is known about how these components function as a dynamical system. 

Our experimental data revealed that pheromone-induced transcription persists following 

removal of pheromone and that long-term adaptation of the transcriptional response 

occurs when pheromone exposure is sustained. We developed a model of the regulatory 

network that captured both persistence and long-term adaptation of the mating response. 

We fit this model to experimental data using an evolutionary algorithm and used the 

parameterized model to predict scenarios for which it was not trained, including different 

temporal stimulus profiles and genetic perturbations to pathway components. Our model 

allowed us to establish the role of four regulatory motifs in coordinating pathway response 

to persistent and dynamic stimulation.  
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INTRODUCTION 

Proper cellular function requires cells to respond appropriately to stimuli in their 

environment. Environmental cues, such as hormones and growth factors, are typically 

sensed by receptors on the cell surface and transmitted by intracellular signaling 

pathways. A key function of these pathways is to initiate the appropriate transcriptional 

program to respond to the environmental challenge. Mathematical modeling has helped 

to elucidate many of the design principles that regulate the spatiotemporal activity of 

signaling pathways and allow them to function reliably in changing environmental 

conditions (1). The ultimate test for these models is to predict pathway dynamics under 

conditions of time-dependent stimulation regimens and in the presence of genetic or 

pharmacological perturbations that disrupt the system in well-defined ways. While many 

models have reproduced qualitative features of signaling systems, their quantitative 

predictive power is often lacking. One reason for the lack of predictive power is that many 

previous studies have assessed cellular responses only to constant stimuli. However, 

signaling networks are nonlinear systems which typically have both positive and negative 

feedforward and feedback loops that operate on different time scales. Therefore, full 

characterization of these systems requires using time-dependent stimulus profiles that 

probe multiple time scales (2–12). 

We have performed such an analysis using the mating response of 

Saccharomyces cerevisiae (yeast).  This response is activated when a mating-type 

specific pheromone binds to and activates a G-protein coupled receptor on a cell of 

opposite mating type. The signal is then propagated by a mitogen activated protein kinase 
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(MAPK) cascade (Fig. 1). A key function of the terminal kinases in this cascade, Fus3 

and Kss1, is to initiate the transcriptional program required for successful mating by 

promoting dissociation of the transcriptional repressors Dig1 and Dig2 from the 

transcription factor, Ste12 (13–18). Additionally, Fus3 activates Far1, a protein required 

for cell cycle arrest (19–21). Far1 is also known to affect the transcriptional response by 

promoting degradation of Ste12 (22). This signaling pathway provides an ideal model 

system for studying signal transduction and transcriptional regulation (23, 24) and has 

long served as a prototype for MAPK pathways (25). It achieved this status because of 

the unparalleled ease of genetic manipulation of individual components and unambiguous 

determination of how these perturbations affect in vivo processes. In eukaryotic cells, 

MAPKs mediate responses to growth factors, cytokines, hormones, cell adhesion, stress 

and nutrients that determine a wide range of cellular decision processes (26). Thus, a 

systems level analysis of the yeast mating response is likely to reveal properties common 

to MAPK regulation of these wide-ranging responses in other cells. 

We combined a microfluidics system that allows cells to be exposed to pheromone 

concentrations with precisely defined temporal profiles and a short-lived fluorescent 

reporter to monitor dynamic changes in mating specific gene expression.  We discovered 

that transcriptional regulation was sustained following removal of pheromone, a property 

of the system that we refer to as “persistence”. To better define this surprising property of 

the system, we exposed cells to pheromone concentrations that oscillate at six different 

frequencies. The fluorescent data were used to develop and train a model for 

transcriptional regulation during the mating response. Two strategies were used to 
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validate the model and demonstrate its predictive power. First, we used the model to 

predict the behavior of mutations that selectively disrupt various signaling motifs in the 

pathway. Then we used the model to predict the transcriptional response of the system 

at a lower pheromone concentration. The result of our investigations is a fully validated 

model of transcriptional regulation that allows a quantitative characterization of the 

signaling motifs that regulate gene expression. We anticipate that our approach provides 

a template for a research strategy to characterize regulatory motifs inherent to many 

signaling pathways. 

 

RESULTS 

Adaptation and persistence in the mating response pathway  

To determine the dynamics of the yeast mating response, we developed experimental 

tools that allow cells to be exposed to well-defined input signals of any specified temporal 

profile and a readout that faithfully tracks the dynamic response of the pathway. For 

controlling stimulus profiles, we employed a microfluidics system that is an adaptation of 

the “dial-a-wave” system developed by J. Hasty and colleagues (27). For tracking time-

dependent changes in pheromone-induced transcription in living cells, we placed a short-

lived fluorescent reporter under the control of the pheromone responsive FUS1 promoter.  

The fluorescent protein we used is fast maturing (~15 min) and through use of an N-

degron tag (YΔk) was engineered to have a half-life similar to its mRNA (~ 7 min) (28). 

The short-lived reporter is essential in studies of temporal response dynamics, since it 
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reveals transient response characteristics that are otherwise masked by accumulation of 

a long-lived reporter protein.  

Initially, we exposed cells containing our short-lived fluorescence reporter to a 

constant stimulus of 50 nM pheromone for 10 hrs and monitored reporter fluorescence by 

imaging of cells in the microfluidic chamber (Fig. 2A). For all the experimental results 

presented in this manuscript, we used cells lacking the protease Bar1 to remove the effect 

of pheromone degradation (29, 30). We refer to this strain as wildtype hereafter. Under 

these conditions, the transcriptional response of wildtype cells reaches a maximum 

amplitude at 220 min, and then decreases for the remainder of the experiment (Fig. 2B).  

In our next studies, we exposed cells with the short-lived reporter to pheromone 

pulses of different duration and again monitored reporter fluorescence (Fig. 2C). 

Interestingly, reporter gene expression was significantly sustained following removal of 

pheromone for pulses of 90 min or less. We refer to this property as persistence and 

quantify it as the time from removal of pheromone to the time that signal drops below 

2.5% of the maximum of each response cuve. The extent of persistence is negatively 

correlated with the duration of the stimulus pulse; as pulse length increases the 

persistence of the transcriptional response decreases (Fig. 2D). Another important 

observation is that the rate at which the fluorescent reporter decreases in time is 

independent of pulse duration (Fig. 2E) and the half-life associated with this rate (98 ± 9 

min) is considerably longer than the half-lives (~7 min) of the reporter mRNA and protein 

(Fig. 2E, green line) (28). Thus, new synthesis of transcripts and protein continues during 

the attenuation phase.  
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A simple explanation for the observed pathway persistence is that it represents a 

delay between receptor signaling and translation and maturation of the induced GFP 

reporter. To test this possibility, we developed a linear mathematical model of the 

response pathway that takes into account this delay (Supplementary Materials). Our 

analysis of the model revealed that a simple delay cannot account for the persistence in 

the transcriptional response (Fig. S1). In total, our preliminary investigations reveal that 

the pathway contains some form of “memory” that sustains new mRNA synthesis 

following removal of pheromone.  

We next sought to determine at what level in the pathway the mechanisms for long 

term adaptation and persistent signaling occur. To determine if “long-term adaptation” 

relies on upstream pathway regulators of short-term desensitization, such as Sst2 or 

receptor endocytosis (31–34), we investigated the dynamics of MAPK activity. We 

monitored MAP kinase dual phosphorylation, which is an indicator of activity, by Western 

blotting protein extracts of aliquots prepared from cells in the presence of 50 nM 

pheromone for a 10 hr time course. Fus3 activity remained constant after a transient 

increase and that of Kss1 increased throughout most of the time course and only slightly 

diminished toward the end of the experiment (Fig. 3A). These results demonstrate that 

the mechanism of long-term adaptation of transcriptional response does not involve 

upstream signaling events, but likely occurs at the level of transcriptional regulation.  

We similarly monitored Fus3 and Kss1 kinase activity for a 90 min pulse of 50 nM 

pheromone by Western blot analysis for dual phosphorylation of the MAPKs. In this case 

aliquots of the culture were removed at indicated intervals during pheromone exposure 
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and after removal of pheromone. Unlike gene expression, activity of the two MAPKs 

diminished rapidly once pheromone was removed (Fig. 3B), demonstrating that the 

mechanism for persistence also lies downstream of the MAPK signaling molecules.  

Model for transcriptional regulation 

To determine which elements of the pathway are critical for regulating the 

magnitude of the response, long-term adaptation and persistence, we developed a 

mechanistic model. We chose to include four established signaling motifs. We included 

an incoherent feedforward loop resulting from Far1-dependent Ste12 degradation as one 

potential mechanism for long-term adaptation (22) (Fig. 4A, motif 1). Next, we included 

positive feedback loops resulting from Ste12 auto-regulation and Ste12-dependent 

transcription of the MAPKs (Fig. 4A, motif 2), which we hypothesized could contribute to 

both the amplitude and persistence of the signaling response. Previously, we found that 

if Ste12 in the Dig/Ste12 complex degraded more slowly than free Ste12, rebinding of the 

Digs to Ste12 could act as a mechanism for adaptation (Fig. 4A, motif 3) (35). We 

hypothesized that this motif also could contribute to persistent signaling, if the rate 

constant associated with rebinding was small. Finally, we included a negative feedback 

loop resulting from Ste12 induced synthesis of Far1 (Fig. 4A, motif 4), which we 

hypothesized might also contribute to long-term adaptation. These four motifs were 

included in the full model to capture persistent activation following stimulus removal and 

long-term adaptation of the transcriptional response (Fig. 4B). Importantly, the model also 

included synthesis and degradation of our transcriptional reporter. The abundance of this 

transcriptional reporter was the experimental output used to train the model. The model 
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input was a piecewise-linear function that corresponded to the temporal pheromone 

stimulation profile. Full details of the mathematical model including the set of differential 

equations that describe the system are presented in Materials and Methods.  

Below we describe the data sets used to train the model and present results for 

the model’s performance. We used an evolutionary algorithm (Fig. 4C) to fit the model’s 

28 parameters. For each parameter, we determined a biologically relevant range from 

which the parameter values were selected (Supplementary Material). Each generation 

of the evolutionary algorithm had 500 individual parameter sets that underwent selection, 

crossover, and mutation. Over the course of 100 generations the total absolute error 

(TAE) between the experimental data and the simulations converged (Fig. 4D and E).  

Assessment of model performance 

Signaling pathways represent nonlinear dynamical systems capable of responding on 

multiple different scales. Therefore, we reasoned to develop a predictive model for 

transcriptional regulation, it was critical to measure the system’s response to time 

dependent pheromone concentrations with multiple different frequencies. To this end, in 

addition to the single pulse data described above (replotted in Figs. 5A-F), we collected 

data for periodic stimulation consisting of pulses of pheromone in which the on and off 

intervals were the same length. The on-off durations used were 45, 60, 75, 90, and 120 

(Fig. 5, G-K). We also included data for constant pheromone stimulation (replotted in Fig. 

5L.) The model captured the varying durations of persistence after stimulus is removed 

(Fig. 2D, gray curve) and long-term adaptation to stimulus under conditions of both 

periodic and constant stimulus (Fig. 5). The model was also capable of capturing the 
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dynamics of the MAPK activation profiles in response to constant stimulation and to a 90 

min pulse of 50 nM pheromone (Fig. S2). 

Regulation of response to prolonged stimulus 

To understand how response to constant stimulus is regulated, we perturbed motifs that 

are likely to affect the magnitude of the response and long-term adaptation. First, we used 

the model to investigate the role of Ste12 auto-regulation in determining the magnitude 

of the transcriptional response by eliminating motif 2. We found that some parameter sets 

found by the evolutionary algorithm predict a dampened response in the absence of Ste12 

auto-regulation (green and brown curves) while other parameter sets predict a response 

similar to wildtype (purple curves) (Fig. 6A). To experimentally determine whether Ste12 

auto-regulation in this system has a significant role in amplifying the response, we 

replaced the Ste12 promoter with that of the promoter of the scaffold protein Ste5 (PSTE5-

STE12). We chose this promoter because it produces constitutive amounts of Ste12 

similar to the basal amount from the endogenous promoter (Fig. S3) and is not subject to 

auto-regulation by Ste12 (36). In cells containing the PSTE5-STE12 mutation, the overall 

transcriptional response was diminished, and long-term adaptation began ~50 min sooner 

than for wildtype cells (Fig. 6A, triangles). These findings indicate Ste12 auto-regulation 

is important for amplifying the response and affects the timing of adaptation. They also 

suggest that Ste12 autoregulation counterbalances the depletion of Ste12 promoted by 

Far1 (motif 1). 

Next, we investigated the role of Far1 in long term adaptation. In the model, Far1 

is involved in two signaling motifs. The first is the incoherent feedforward loop (motif 1) 
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formed by MAPK activation of Far1, followed by active Far1 promoting the degradation of 

Ste12. The second (motif 4) is the negative feedback loop formed by Ste12-dependent 

expression of Far1. First, we used the model to predict the system’s response when Far1 

is eliminated, which blocks both Far1-dependent mechanisms of adaptation (motifs 1 and 

4). We found that some parameter sets predict no long-term adaptation in the absence of 

Far1 (blue and brown curves); however, other parameter sets predict no difference from 

wildtype (purple curves) (Fig. 6B).  We reasoned that the interaction between the Digs 

and Ste12 was responsible for long-term adaptation for those parameter sets still 

exhibiting adaptation in the absence of Far1 (35). In the model, we allowed for the 

possibility that complex formation with the Digs protects Ste12 from degradation. There 

are two consequences of this protective complex (35). First, it ensures a large pool of 

inactive Ste12 is maintained prior to pheromone stimulation. Second it provides for an 

adaptive response. The basis for adaptation is that following exposure to pheromone, the 

free Ste12 concentration transiently increases as Ste12 is released from the Digs, but 

eventually returns to its pre-stimulus level (35). To test whether eliminating protective 

binding has any effect on adaptation in our model, we set the degradation rate of Ste12 

in the Dig/Ste12 complex equal to that of the degradation rate of free Ste12. With this 

change, long-term adaptation was lost when the model was run using parameter sets that 

predicted Far1 was not involved in adaptation (Fig. S4). To determine which of these 

mechanisms is responsible for regulating long-term adaptation, we examined the 

response of a far1∆ mutant strain. In this mutant the transcriptional output does not 
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diminish over time (Fig. 6B, triangles) demonstrating that Far1-dependent degradation 

of Ste12 is the primary mechanism of long-term adaptation. 

To further constrain model parameters, we retrained the model including 

experimental data for the PSTE5-STE12 and far1Δ mutants. The resulting parameter 

sets better captured the responses of the pathway mutants than those used for 

predictions (compare Figs. 6C and D to Figs. 6A and B), while maintaining similarly 

good fits to the wildtype transcriptional responses to different pheromone stimulation 

regimens (compare Fig. S5 to Fig. 5). The distribution of parameters associated with 

both motifs narrows when the additional data are included in the training sets (compare 

parameters kff, rate of Far1 dependent Ste12 degradation, and kfb2, rate of Ste12 

autoinduction, in Fig. S6A and B). This demonstrates that including strategic pathway 

perturbations in the training data can improve ability to identify biologically relevant 

parameters. 

Because elimination of Far1 disrupts both the incoherent feedforward and negative 

feedback motifs (motif 1 and 4, respectively), we used the model to test if negative 

feedback contributes to long-term adaptation. In the model, disruption of the incoherent 

feedforward loop is equivalent to eliminating Far1 since promoting degradation of Ste12 

is the only effect of Far1 on transcriptional response. However, we can use the model to 

identify the role of negative feedback. When transcriptional induction of Far1 by Ste12 

was eliminated (motif 4) some simulations predict a sustained response, but most 

simulations still show adaptation (Fig. 6E).  These results suggest that the incoherent 

feedforward loop (motif 1) is the predominant mechanism for long-term adaptation of the 
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transcriptional response. While the model did not require the induction of Far1 for long 

term transcriptional adaptation, it is likely this feedback is required for one of the other 

functions of Far1  in the mating response, such as gradient sensing or maintaining cell 

cycle arrest.  

Regulation of response to dynamic stimulus 

To examine motifs that could contribute to persistence and further test the model’s 

predictive power, we measured the system’s response to single 90-minute pulses of 50 

nM pheromone in the presence of pathway mutants that perturb Ste12 autoregulation, 

binding to DNA, or binding to the Dig1 and Dig 2 repressors. First, we eliminated Ste12 

autoregulation (motif 2) as before by using the PSTE5-STE12 mutation. While there was 

a dampened response consistent with the response to constant stimulus, neither the 

simulations nor the mutant response had any appreciable effect on persistence (Fig. 7A). 

Second, we examined a mutation to one of the three pheromone responsive elements 

(PREs) within the FUS1 promoter that drives transcription of the GFP reporter. Ste12 has 

been reported to bind at a synthetic promoter having the same PRE mutation with only 

30% of the affinity that it binds to a synthetic promoter with the wildtype sequence (37).  

This PRE mutation (PRE*-GFP) significantly reduced the maximal amplitude of the 

transcriptional response (Fig. 7B, triangles). Using the best 10% of parameter sets found 

from fitting to the wildtype, far1Δ, and PSTE5-STE12 data, we predicted the response of 

the PRE mutant by increasing the apparent dissociation constant by a factor of 3.33. The 

resulting parameter sets accurately predict the response of the PRE*-GFP mutant (Fig. 

7B).   
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Finally, we examined the effect deleting the Dig1 and Dig2 repressors, which 

causes Ste12 to be constitutively active. This deletion mutant showed high basal 

expression and a slight increase in expression following pheromone induction (Fig. 7C, 

triangles). We predicted the response of the dig1Δdig2Δ mutant by setting the total Dig 

concentration to zero. The model predicted a wide range of responses in the absence of 

the Dig1 and Dig2 transcriptional repressors. Interestingly, the results could be clustered 

into three groups (Fig. 7C, colored curves). The model predictions that showed high 

basal transcriptional response (Fig. 7C, green curves) result from parameter sets in 

which the degradation of Ste12 in complex with the Digs (kdegS12D) is similar to that of 

the degradation rate of free Ste12 (kdegS12) (Fig. 7E). In this case the total amount of 

Ste12 is the same in the dig1Δdig2Δ mutant and wildtype reference. Removing the Dig 

repressors generates more active Ste12 prior to pheromone stimulation, and, therefore, 

higher levels of the reporter in the mutant. For model predictions in which the pre-

stimulation level of the fluorescent reporter does not increase significantly compared to 

the wildtype reference (Fig. 7C, cyan curves), removing the Digs had two effects. For 

these parameter sets, the degradation rate of Ste12 in complex with the Digs is reduced 

(Fig. 7E). That is, the Dig repressors provide protective binding. Removing the Digs 

exposes Ste12 for degradation, but also activates Ste12. When these two opposing 

effects are balanced, the pre-stimulation level of active Ste12 in the dig1Δdig2Δ mutant 

is similar to that of wildtype, and, therefore, the expression level of the reporter does not 

significantly increase. The parameter sets that fit the experimental data best had 

intermediate degradation rates for Ste12 in complex with the Digs (Fig. 7E and Fig. 7C, 

brown curves). These results are consistent with our previous analysis of Ste12 
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dynamics that demonstrated that the Dig repressors provide some degree of protective 

binding (35).  

Another observation consistent with previous experimental observations is that 

parameter sets best fitting the experimental results for the dig1Δdig2Δ mutant (Fig. 7C, 

brown curves) predict that the rate at which active Far1 is degraded (kdegPF1) is less 

than that for inactive Far1 (kdegF1) (Fig. 7E) (38). Additionally, other parameters that 

affect Far1-dependent degradation of Ste12 including the rate of Far1 dephosphorylation 

(kp3) and rate of Far1 dependent degradation of Ste12 (kff) show significantly different 

ranges for the three groups of parameter sets (Fig. 7E). The best fitting predictions show 

modest attenuation of the transcriptional response resulting from the feedforward Far1-

dependent Ste12 degradation, consistent with the experimental results (Fig. 7C, brown 

curves). The high responders (Fig 7C, green curves) have parameter values that 

increase the abundance of Far1 resulting in a stronger effect of the incoherent 

feedforward and consequently predictions of stronger transcriptional attenuation. 

Conversely, the low responders (Fig. 7C, cyan curves) have parameter values that 

rapidly degrade and deactivate active Far1 both of which reduce the effect of the 

incoherent feedforward and consequently predict little to no transcriptional attenuation.  

These results again illustrate the need to use targeted pathway perturbations to fully 

constrain model parameters.  

Because in the model, the only mechanism for transcriptional induction is 

dissociation of Ste12 from the Dig repressors, the model is not able to capture the slight 

pheromone-dependent induction seen in the dig1Δdig2Δ strain. This induction may result 

from pheromone-induced degradation of the transcription factor Tec1, a known binding 
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partner of Ste12 (39). The slight pheromone-dependent induction in the dig1Δdig2Δ strain 

exhibits prolonged maximal expression after a 90-minute pulse of stimulus (72 min 

persistence) compared to wildtype (43 min persistence). To further investigate how the 

transcriptional repressors contribute to persistence, we perturbed motif 3 by increasing 

the rebinding rate of Ste12 to the Digs in the model by 5-fold. In doing so, the average 

persistence of the simulations decreased from 25 min to 13 min (Fig. 7D). This result 

combined with the prolonged persistence when the transcriptional repressors are deleted 

suggests that slow rebinding of the transcriptional repressors are a primary factor in the 

persistent transcriptional response following stimulus removal.  

 

Prediction of different stimulation profiles  

To further test the model’s predictive power, we measured the response of cells exposed 

to periodic stimulation at the same frequencies as shown in Fig. 5, but at a lower 

pheromone concentration (Fig. 8, triangles). In response to 10 nM of constant 

pheromone, the fluorescent reporter achieves the same maximum amplitude as the 50 

nM case but takes 25 min longer to reach its half maximum amplitude (Fig. 8A). For short 

pulses of stimulus (Fig. 8B), the amplitude of the response to 10 nM is considerably lower 

than that to 50 nM for all pulses. However, for longer pulses (Fig. 8C) there is less of a 

difference in the amplitude between the two doses. To simulate the lower pheromone 

dose, the only modification we made to the model was to adjust the slope of the input 

signal to match the slower production rate of the fluorescent reporter measured at 10 nM 

constant pheromone. Using this adjustment to the input stimulus, all of the parameter sets 
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that fit the 50 nM data accurately predicted the response to sustained and pulsed 10 nM 

pheromone (Fig. 8, blue curves). This performance demonstrates that this model is 

capable of capturing behaviors at different doses of stimulus despite only being trained 

on a single dose.  

 

DISCUSSION  

A common way for cells to respond to changes in their environment is by regulating gene 

expression. Because environmental conditions are dynamic and can show significant 

variability, gene expression needs to be tightly regulated by the signaling pathways used 

by cells to monitor their surroundings. This regulation, which typically takes the form of 

feedback and feedforward loops, makes gene regulation an inherently non-linear process. 

Therefore, predicting the response of these systems is not possible without the aid of 

mathematical models. Developing predictive models is challenging for two reasons: 1) 

these models tend to contain many parameters that are not directly measurable and 

therefore must be estimated from experimental data and 2) these systems operate on 

multiple time scales and, therefore, experimental data sets used to train the models must 

capture the relevant time scales. To overcome both these obstacles, we developed a 

research strategy that involved exposing yeast cells to single and periodic pulses of 

mating pheromone. By varying both the duration and frequency of the pulses, we ensured 

that the regulatory network that controls gene expression during the mating response was 

probed on the relevant time scale and with sufficient temporal resolution to accurately 
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perform parameter estimation. This systematic analysis revealed novel features of the 

pathway and allow us to develop a mathematical model with predictive power.  

Our analysis led us to the discovery of memory in the yeast mating response. 

Specifically, we discovered that transcriptional regulation was sustained following 

removal of pheromone, a property of the system that we refer to as “persistence”. Our 

model revealed that this persistence was not due to positive autoregulation of Ste12 but 

rather involves slow rebinding of the transcriptional repressors to Ste12. Persistent 

signaling may represent an important design feature of the pheromone response 

pathway. Yeast mating takes place in noisy environments where pheromone levels are 

expected to fluctuate. Preparing for mating takes a significant fraction of the cell’s 

resources. Therefore, once the decision has been made to commit to the mating, it is 

important that the cell not “give up” if there is a transient loss of the pheromone signal. 

Persistent signaling provides a mechanism to guard against this situation. Conversely, it 

is also important that a cell not remain committed to mating indefinitely. This might explain 

why persistent gene expression does not rely on positive feedback, which is capable of 

generating an irreversible switch.  

In the presence of sustained pheromone signals, it is probably beneficial for yeast 

cells not to remain growth arrested when mating is unlikely to be successful. Such 

adaptative behavior in the mating response has been observed previously (22, 40). 

However, these studies were done in the presence of the protease Bar1, which degrades 

pheromone, thus making it difficult to identify the predominate mechanism that underlies 

transient signaling. Interestingly, our results revealed that in the absence of Bar1, 
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pheromone-induced gene expression is transient, whereas MAPK signaling is sustained. 

Our model predicted two mechanisms could underlie this long-term adaptation, an 

incoherent feedforward loop or protective binding. Further experiments revealed that the 

incoherent feedforward loop involving Far1-dependent degradation of Ste12 accounts for 

most of the long-term adaptation.  

 Our approach that combines mathematical modeling with experiments designed 

to probe cellular response pathways over multiple time scales provides a general 

framework for investigating gene regulatory motifs. First, we used experiments to narrow 

the portion of the pathway responsible for the dynamic properties of interest. In our case, 

these preliminary investigations revealed that both persistent signaling and long-term 

adaptation occurred at the level of gene regulation and did not involve upstream signaling 

components. Next, we developed a model incorporating known regulatory mechanisms 

and narrowed parameter ranges to physiologically relevant values. We then performed 

parameter estimation using an evolutionary algorithm applied to training data sets 

spanning multiple timescales. The use of time-dependent stimuli covering multiple time 

scales was essential for building a predictive model. When a subset of the data was used, 

model parameters were significantly less constrained, and the model’s predictive power 

was reduced. Additionally, training on data sets spanning multiple timescales revealed 

the differences in timing of the signaling motifs. For example, the rebinding of the 

transcriptional repressors and the incoherent feedforward operate on different timescales, 

leading to decreased persistence after longer pulses of stimulus.  
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We also note that successful model building is an iterative process. For example, 

when fit only using wildtype data the model found two mechanisms of long-term 

adaptation were consistent with the data. The model also predicted positive feedback 

contributed to amplifying the signal but showed significant variability in the predicted 

strength of this feedback.  Strategic experiments using targeted mutants were then able 

to identify the true mechanism of long-term transcriptional adaptation and quantify the 

role of positive feedback. Including these results in the training data sets, further 

constrained parameter values and allowed the model to accurately predict the system’s 

behavior for lower pheromone concentrations and additional genetic perturbations.  

Because gene editing and quantitative experimental approaches are becoming 

increasingly more feasible in other cell types, including mammalian cells, we believe our 

approach can be adapted to these systems. For example, such studies could reveal 

important information about the dynamics of MAPK signaling pathways dysregulated in 

diseases, including cancer, and ultimately suggest treatments for restoring proper 

function.  

 

MATERIALS AND METHODS 

Plasmids, PCR alleles, and recombinant DNA procedures 

Table 1 lists plasmids used in this study.  Those that have been described 

previously are listed with the corresponding reference. Standard recombinant DNA 

procedures were used for construction of those plasmids described below (41). Table 2 
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lists the sequence of oligonucleotides used for PCR fragment amplification, mutagenesis, 

and DNA sequence confirmation involved in plasmid and strain constructions.  

A fluorescent protein (GFP*) with a fast maturation time and an N-degron tag (Ubi-

YΔK) that confers a short half-life was designed and characterized previously (28). The 

plasmid pNC1146 carries a reporter gene in which the pheromone responsive FUS1 

promoter (PFUS1) drives expression of the UBIYΔKGFP* reporter gene in a cassette with 

the S. pombe (Sp) HIS5 gene as a selectable marker and flanking sequences that target 

integration to the URA3-TIM9 intergenic region. To construct this reporter cassette 

(URA3-PFUS1-UBIYΔKGFP*-SpHIS5-TIM9), we first introduced a PacI restriction 

endonuclease recognition site 6 bp upstream of the ubiquitin (UBI) coding sequence in 

the plasmid pNC1136 (28). This modification was accomplished using the Stratagene 

Quick Change site-directed mutagenesis protocol (Stratagene, La Jolla, CA) with 

pNC1136 as template DNA and oligonucleotides pNC1136QC(PacI)_F and 

pNC1136QC_R as primers. Next, a 1658 bp fragment encompassing the FUS1 promoter 

flanked by XhoI and PacI restriction endonuclease recognition sites was PCR amplified 

using BY4741 genomic DNA as template and oligonucleotides FUS1(XhoI)_F and 

FUS1(PacI)_R as primers. pNC1136 modified with the PacI site and the PCR amplified 

DNA fragment were digested with XhoI and PacI. The resulting 1646 bp XhoI-PacI FUS1 

promoter fragment (PFUS1) was ligated to the 6553 bp XhoI-PacI fragment from the 

plasmid to generate pNC1146. DNA sequence analysis of pNC1146 using primers M13R, 

1155, 1164, 1170, and 1231 confirmed the absence mutations in the FUS1 promoter 

region.  
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The plasmid pNC1152 (URA3-PFUS1(PRE*)-UBIYΔKGFP*-SpHIS5-TIM9) has the 

same reporter gene cassette as described for pNC1146 except for a single base pair 

substitution (C:G to g:c) in one of the PRE elements (underlined) that comprise the PFUS1 

upstream activating sequence (UAS): 

ATGAAACAAACATGAAACGTCTGTAATTTGAAACA to 

ATGAAAgAAACATGAAACGTCTGTAATTTGAAACA. This transversion substitution in 

the consensus PRE  was shown by Su et al. (19) to shift the equilibrium towards less 

favorable binding to Ste12. The substitution mutation in the reporter gene cassette was 

generated using the Stratagene Quick Change protocol (Stratagene, La Jolla, CA) for 

site-directed mutagenesis with pNC1146 DNA as template, oligonucleotides 1175 and 

1176 as primers and Phusion High Fidelity Polymerase (Thermo Scientific, Pittsburgh, 

PA).  DNA sequence analysis of the 5141 bp region encompassing the reporter gene 

cassette in the isolate designated pNC1152 using oligonucleotide primers M13R, M13F 

491, 953, 954, 1010, 1148, 1155, 1170, and 1231 confirmed the presence of the desired 

mutation in the PFUS1 UAS and the absence of any additional mutations.  

 

Yeast strains and genetic procedures 

Table 3 lists yeast strains used in these studies. Media preparation and standard 

yeast genetic methods for transformation, gene replacement, crosses and tetrad 

dissection were as described in Amberg, Burke, and Strathern (42).  

  

Strains constructed using the one step gene replacement method (43). 
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URA3 strain BY4741-64 was derived from ura3Δ0 strain BY4741 by transformation 

with a 1580 bp fragment that was PCR amplified using primer pair 1202/1203 with 

genomic DNA from the URA3 strain D502-3C as template and selection on -Ura medium.   

ura3Δ58 strain BY4741-65 was derived from BY4741-64 by replacing the URA3 allele 

with the HindIII fragment from pURA3Δ58 (provided to us by M. Resnick, NIEHS) and 

selecting for the resulting Ura- phenotype using 5-FOA medium.  This ura3Δ58 null allele 

has a 58 bp deletion of an ApaI-StuI fragment in the URA3 coding sequence.  PCR 

analysis confirmed the 58 bp deletion by using BY4741-65 genomic DNA as template 

with primer pair 946/618, which fail to yield a product, and primer pair 946/947, which 

yield a smaller product than the for the wildtype reference strain. 

bar1Δ::hisG strainBY4741-66 was derived from BY4741-65, by using the EcoRI -SalI 

fragment from pJGsst1 to replace the BAR1 locus with the bar1Δ::hisG-URA3-hisG allele. 

Replacement of BAR1 with hisG-URA3-hisG was selected for after transformation by 

growth on -Ura medium and confirmed based on super sensitivity of the resulting strains 

to pheromone in halo assays and by PCR analysis using genomic DNA as template with 

primer pairs 967/968 and 966/972. The bar1Δ::hisG allele was generated from the 

resulting strains by selection on 5-fluororotic acid (5-FOA, 0.1% w/v) medium (44). This 

medium provides a positive selection for isolates in which the URA3 marker is excised by 

recombination within the direct hisG repeats (45). 

PFUS1-UBIYΔKGFPSpHIS5 and PFUS1(PRE*)-UBIYΔKGFPSpHIS5 reporter gene 

strains BY4741-68 and BY4741-169 were derived from BY4741-66 by transformation with 

SacI-SalI digested pNC1146 or pNC1152, respectively and selection on –His medium.  
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The integration of the reporter gene cassette in each strain was confirmed by PCR 

analysis using BY4741-68, and BY4741-169 genomic DNA as template with primer pair 

867/1214.  

far1Δ0::KanMX4 PFUS1-UBIYΔKGFPSpHIS5 strain BY4741-130 was derived from 

BY4741-68 by transformation with a 3.3 kb fragment that was PCR amplified using 

BY4741-70 DNA as template with primer pair 1208/1209 and selection on G418 medium 

(200 µg/ml).  Replacement of the FAR1 locus with the far1Δ0::KanMX4 allele was 

confirmed by PCR analysis using BY4741-130 genomic DNA as template with primer pair 

1210/881.  

dig2Δ0::kanMX4 PFUS1-UBIYΔKGFPSpHIS5 strain BY4741-110 was derived from 

BY4741-68 by transformation with a 1972 bp fragment that was PCR amplified using 

BY4741-29 genomic DNA as template with primer pair 1156/1157 and selection on G418 

medium (200 µg/ml).  Replacement of the DIG2 locus with the dig2Δ0::kanMX4 allele was 

confirmed by PCR analysis using BY4741-110 genomic DNA as template with primer pair 

868/881. 

Strains constructed using the “Delitto Perfetto” approach (46). 

PSTE5-STE12 PFUS1-UBIYΔKGFPSpHIS5 strain BY4741-103 was derived from 

BY4741-68 by replacing the entire SAM35-STE12 intergenic region (-1 to -485 from the 

STE12 ATG codon) with 815 bp from the ARX1-STE5 intergenic region (-1 to -815 bp 

from the STE5 ATG codon).  This promoter replacement was chosen because STE5 is 

expressed constitutively at levels comparable to STE12 basal expression (see below). 

The first step for construction of this strain was to replace a 94 bp region that 
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encompasses the STE12 UAS with the PCR generated ste12ΔUAS::CORE-UK allele. 

pCORE-UK (37) was the template for the first round of PCR synthesis with primer pair 

1019/1091. The resulting PCR product served as template for the second round with 

primer pair 1020/1093. Replacement of the STE12 UAS region with the CORE-UK 

cassette was selected for on -Ura medium and confirmed by PCR analysis using genomic 

DNA as template with primer pair 1194/881. In the second step, the ste12ΔUAS::CORE-

UK allele was replaced with a PSTE5 fragment generated by three rounds of PCR. Genomic 

DNA was the template for the first round of PCR synthesis with primer pair 1121/1124. 

The PCR product from the previous round served as template for second and third round 

synthesis with primer pairs 1125/1127 and 1126/1128, respectively. The amplified 815 bp 

from the STE5 intergenic sequence is flanked by primer derived sequences (61 bp on the 

5’ end and 69 bp on the 3’ end) that target the PCR fragment to the STE12 locus. The 

CORE-UK replacement was counter selected for on 5-FOA medium and verified by the 

concomitant reversion to G418 sensitivity.  PCR analysis using BY4741-103 genomic 

DNA as template with primer pair 1194/1116 confirmed the integration at the STE12 

locus. DNA sequence analysis of the resulting PCR product with the amplifying primers 

confirmed the sequence fidelity of PSTE5 driving STE12 expression. 

 

Strains constructed using the PCR based gene deletion or modification method (47). 

STE12-3xmyc::KanMX6 and PSTE5-STE12-3xmyc::KanMX6 strains BY4741-105 and 

BY4741-132 were derived from BY4741-68 and BY4741-103, respectively by adding a 

C-terminal triple myc-tag to the STE12 coding sequence. A cassette with the 3xmyc tag 
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and the KanMX6 selectable marker was amplified using two rounds of PCR. In the first 

round of PCR pYM4 (48) was template DNA with primer pair 1119/1110. The second 

round PCR used the product of the first round as template with primer pair 1120/1111. 

Insertion of the tag was confirmed by PCR analysis using BY4741-105 and BY4741-132 

genomic DNA as template with primer pair 903/881. DNA sequence analysis of the 

resulting PCR product with primers 903 and 1015 confirmed the sequence fidelity of the 

tag. 

dig1Δ0::hyg strains BY4741-147 and BY4741-148 were derived from BY4741-110 and 

BY4741-137, respectively by transformation with a 1890 bp PCR amplified dig1Δ0::hyg 

allele and selection on hygromycin B (200 μg/ml) (Sigma Aldrich, ) medium. The allele 

was amplified in three rounds of PCR. In the first round of PCR, pCORE-UH was template 

DNA with primer pair 1177/1179. The second round and third round of PCR used the 

product of the previous round as template with primer pair 1178/1180 and 1181/1182, 

respectively. Replacement of the DIG1 locus with the dig1Δ0::hyg allele was confirmed 

by PCR analysis using BY4741-147 and BY4741-148 genomic DNA as template with 

primer pair 822/1148. 

 

Cell Extract Preparation and immunoblotting 

The following procedure was performed to determine the phosphorylation state 

and relative amount of Fus3 and Kss1 in response to a pheromone stimulus. Cells either 

untreated or treated with 50 nM α-factor for different durations (as described in the figure 

legend) were harvested in TCA (5 % final concentration), washed with 10 mM NaN3 and 
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pellets frozen at -80 °C. To prepare cell extracts, glass-bead lysis in TCA was performed 

as described before (49). DC protein assay (Bio-Rad, Hercules, CA) was used to 

determine protein concentration. 25 µg total protein was loaded per sample. Proteins 

were resolved on 10 % SDS-PAGE, transferred to nitrocellulose and detected by 

immunoblotting with Phospho-p44/42 MAPK antibodies at 1:500 (9101L, Cell Signaling 

Technology, Danvers, MA), Fus3 antibodies  at 1:500 (sc-6773, Santa Cruz 

Biotechnology, Dallas, TX), and anti-G6PDH at 1:50,000 (A9521, Sigma-Aldrich, St. 

Louis, MO). Immunoreactive moieties were detected by chemifluorescent detection 

(Pierce ECL Plus, Thermo Fisher Scientific, Rockford, IL) of horseradish peroxidase-

conjugated (HRP) antibodies (anti-rabbit, 170-5046, Bio-Rad, Hercules, CA; anti-goat, sc-

2768, Santa Cruz Biotechnology, Dallas, TX; or anti mouse, A90-103P, Bethyl 

Laboratories, Montgomery, TX) at 1:10,000. Blots were scanned using Typhoon Trio+ 

(GE Healthcare, Little Chalfont, UK) and band intensity was quantified using Fiji (National 

Institute of Health). 

 The following procedure was performed to compare basal expression levels of 

Ste12 under either the native pheromone inducible promoter or a noninducible 

promoter, PSTE12 and PSTE5, respectively. Cultures of BY4741-68 (STE12, untagged), 

BY4741-104 (STE12-3xmyc), and BY4741-133 (PSTE5-STE12-3xmyc) were grown to a 

cell density of 1x107 cells/mL in YPD, and 10 mL of each were harvested by 

centrifugation. The Ota protein extract protocol (Mattison et al., 1999) was followed to 

yield cell lysates that were then mixed in a 1:1 ratio with SDS running buffer and boiled. 

10 µL of each sample was run on an 8 % SDS-PAGE gel and transferred to nitrocellulose. 
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The membrane was blocked for 1 hr at room temperature with 5 % milk in TBST. The 

membrane was then incubated with 1:1,000 of the primary goat anti-cMyc antibody 

(Bethyl Laboratories) in 5 % milk in TBST overnight at 4 °C. After washing in TBST, the 

membrane was incubated in 1:10,000 HRP-conjugated rabbit anti-goat secondary (Santa 

Cruz) in 10 mL of TBST with 200 µL 5 % milk in TBST for 1 hr. The membrane was 

visualized using Western Lightning ECL Pro (PerkinElmer, Waltham, MA) and the 

ChemiDoc MP imaging system (Bio-Rad). The membrane was washed in TBST and 

incubated in 10 mL of stripping buffer at 65 °C for 45 min. The same protocol was then 

followed with 1:50,000 rabbit anti-G6PDH (A9521, Sigma-Aldrich) for the primary and 

1:10,000 goat anti-rabbit HRP-labeled antibody (170-5046, Bio-Rad) for the secondary. 

 

Microfluidics 

To generate time-dependent pheromone concentrations we used a microfluidics device 

and robotic automation which is part of the Dial-a-Wave system developed by the 

Laboratory of Dr. Jeff Hasty at USCD (50).  The device consists of a narrow chamber 

where cells are loaded and imaged, and two input ports; one containing pheromone and 

the other only containing media. When one of the input channels is positioned higher than 

the other, the fluid from that channel is at a higher pressure and flows into the chamber 

housing the cells. By alternating the height of the input channels, we can turn pheromone 

on and off in the chamber. The input channel also contained a 1:1,000 dilution of stock 

Alexa Fluor 647 (Invitrogen) dye, which has a similar diffusion coefficient as pheromone. 

The fluorescent signal is quantified in the chamber as the height of the input channels is 
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alternated. Typically, it takes 2-5 min for the dye to equilibrate inside the chamber after 

switching the channels. This is much faster than the timescale of transcriptional response 

in the mating pathway. During the experiments, switching is automated using a step 

motor. Detailed microfluidics can be found in a methods review (51).   

 

Microscopy 

All experiments were performed in a microfluidic device using cell culturing methods as 

described in the supplement to Hao et al. (2008 Mol. Cell 30:649-656). Alexa 647 dye 

was added to pheromone containing media to enable imaging of the chamber and 

verification that dye (and by inference pheromone) turned on and off within less than 20 

seconds.  For experiments done at 50 nM constant pheromone and a single 200-minute 

pulse of 50 nM pheromone time-lapse microscopy was performed using a Nikon Ti-E 

inverted fluorescence microscope with Perfect Focus, coupled with Hamamatsu Orca-

flash 4.0 digital camera and a Lumen Dynamics C-Cite LED light source system. Images 

were taken using a Nikon Plan Apo VC X60 oil immersion objective (NA 1.40 WD 0.17 

MM). Images were taken every 5 minutes for pulses of stimulus and every 10 minutes for 

constant stimulus in the brightfield and green channels. Images were acquired in the far-

red channel every other time point. The lowest LED intensity setting (5%) was used to 

prevent photobleaching and phototoxicity. Cells were imaged for 20 min prior to exposure 

to pheromone and for 10 hours thereafter 

 For all other experiments time-lapse microscopy was performed using a Nikon Ti-

E 2000 inverted fluorescence microscope with Prior stage, coupled with Hamamatsu 
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OrcaII Monochrome camera and a Prior Lumen200 light source system. Images were 

taken using a Nikon Plan Apo VC X60 oil immersion objective (NA 1.40 WD 0.17 MM).  

 

Image analysis 

 To improve the quality of segmentation images were edited in ImageJ by first 

subtracting the background, using the unsharp mask filer with a radius of 2.0 and a mask 

weight of 0.5, using the Gaussian blur filter with a radius of 3.0, and finally subtracting the 

background again. These images were then used to perform image segmentation using 

SchnitzCells (52). The resulting segmentation was checked and corrected manually. The 

individual cells were tracked based on the position of each cell’s centroid and used to 

generate single cell traces of GFP fluorescence. All data is reported as the average of 90 

or more single cell traces. For single pulses, analysis of wildtype and mutant strains was 

performed including and excluding daughter cells born after stimulus was removed. The 

comparison showed that excluding daughter cells did not change the average 

transcriptional response. We also compared transcriptional induction of cells in the G1, S 

and G2/M phases of the cell cycle when cells were exposed to 50 nM pheromone. This 

comparison revealed that cells in all phases of the cell cycle respond to pheromone by 

inducing transcription but those in S-phase respond more slowly than those in G1 and 

G2/M (Fig. S7). 

 

Model Development 
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Our experimental investigations revealed that the mechanisms responsible for 

persistent gene expression following removal of pheromone must occur downstream of 

MAP kinase activity. Therefore, we do not explicitly consider upstream signaling events 

and start our model at the level of the MAP kinase. The following equations govern the 

concentrations of inactive, [𝑀𝐴𝑃𝐾], and active, [𝑝𝑝𝑀𝐴𝑃𝐾], Fus3 and Kss1: 

 

𝑑[𝑀𝐴𝑃𝐾]
𝑑𝑡 = 𝑘!"#$% +

𝑘&'([𝑆𝑡𝑒12])*

𝐾+,-. + [𝑆𝑡𝑒12])*
− 𝑘/(𝑠(𝑡)[𝑀𝐴𝑃𝐾] 

																						+𝑘/0[𝑝𝑝𝑀𝐴𝑃𝐾] − 𝑘123$%[𝐹𝑢𝑠3] 

(1.1) 

𝑑[𝑝𝑝𝑀𝐴𝑃𝐾]
𝑑𝑡 = 𝑘/(𝑠(𝑡)[𝑀𝐴𝑃𝐾] − 𝑘/0[𝑝𝑝𝑀𝐴𝑃𝐾] (1.2) 

 

where 𝑘!"#$% is the constitutive synthesis rate of Fus3, 𝑘123$% is the MAPK degradation 

rate, 𝑘/(𝑠(𝑡) is the pheromone dependent activation rate of MAPK, and the term 

𝑘&'([𝑆𝑡𝑒12])* (𝐾+,-. + [𝑆𝑡𝑒12])*)⁄  models synthesis of Fus3 due to Ste12 dependent 

gene transcription.  

Our model focuses on mechanisms that regulate Ste12-dependent gene 

expression. The regulatory mechanism we consider are self-induction of Ste12 (positive 

feedback), pheromone-dependent degradation of Ste12 (negative feed forward), and 

Ste12 inactivation by Dig1/2. For simplicity, we assume that the concentration of Dig1/2 

remains constant, and when in a Ste12-Digs heterodimer Ste12 is protected from 

degradation. The equations that govern the concentration of free Ste12, [𝑆𝑡𝑒12], and 

Ste12-Digs heterodimer, :𝑆𝑡𝑒12453!; are given by: 
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𝑑[𝑆𝑡𝑒12]
𝑑𝑡 = 𝑘!"#6(0 +

𝑘&'0[𝑆𝑡𝑒12])*

𝐾672(0 + [𝑆𝑡𝑒12])*
 

																								−𝑘1236(0[𝑆𝑡𝑒12] <1 +
𝑘&&([𝑝𝐹𝑎𝑟1]
𝑘8( + [𝑝𝐹𝑎𝑟1]

? 

																								−𝑘9([𝑆𝑡𝑒12]@𝐷𝑖𝑔𝑠: − :𝑆𝑡𝑒12453!;D 

																								+(𝑘90[𝑝𝑝𝑀𝐴𝑃𝐾] + 𝑘9%):𝑆𝑡𝑒12453!; 

(1.3) 

𝑑:𝑆𝑡𝑒12453!;
𝑑𝑡 = 𝑘9([𝑆𝑡𝑒12]@𝐷𝑖𝑔𝑠: − :𝑆𝑡𝑒12453!;D 

																															−@𝑘90[𝑝𝑝𝑀𝐴𝑃𝐾] + 𝑘9%+𝑘1236(0453!D:𝑆𝑡𝑒12453!; 

(1.4) 

 

where 𝑘!"#6(0 is the constitutive synthesis rate, 𝑘1236(0 is the basal degradation rate of 

free Ste12, 𝑘1236(0453! is the basal degradation rate of Ste12 in the Ste12-Digs complex, 

the term 𝑘&&([𝑝𝐹𝑎𝑟1] 𝑘8( + [𝑝𝐹𝑎𝑟1]⁄  models the pheromone-dependent increase in the 

degradation rate, which depends on active Far1, and the term 

𝑘&'0[𝑆𝑡𝑒12])* 𝐾672(0 + [𝑆𝑡𝑒12])*⁄  model’s synthesis of Ste12 due to Ste12 dependent 

gene transcription. The terms in the third and fourth lines of Eq. (3) and in Eq. (4) 

represent the formation and dissociation of Ste12-Digs heterodimer. In this term, 𝐷𝑖𝑔𝑠: 

represents the total Dig1/2 concentration, which is assumed to remain constant, 𝑘9( is the 

association rate constant, krsd2 is the dissociation rate constant in the absence of 

pheromone and 𝑘90[𝑝𝑝𝑀𝐴𝑃𝐾] is MAPK dependent increase in dissociation rate.  
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 Since degradation of Ste12 is dependent on active Far1, our model includes Far1 

dynamics. The equations that govern the concentrations of active Far1, [𝑝𝐹𝑎𝑟1], and 

inactive Far1, [𝐹𝑎𝑟1] are given by: 

 

𝑑[𝐹𝑎𝑟1]
𝑑𝑡 = 𝑘!"#$( +

𝑘9;[𝑆𝑡𝑒12])*

𝐾$9<( + [𝑆𝑡𝑒12])*
+ 𝑘/%[𝑝𝐹𝑎𝑟1] 

																						−𝑘/=[𝑝𝑝𝑀𝐴𝑃𝐾][𝐹𝑎𝑟1] − 𝑘123$([𝐹𝑎𝑟1] 

(1.5) 

𝑑[𝑝𝐹𝑎𝑟1]
𝑑𝑡 = 𝑘/=[𝑝𝑝𝑀𝐴𝑃𝐾][𝐹𝑎𝑟1] − 𝑘/%[𝑝𝐹𝑎𝑟1] − 𝑘123-$([𝑝𝐹𝑎𝑟1] (1.6) 

 

where 𝑘!"#$( is the constitutive synthesis rate of Far1, 𝑘/% is the dephosphorylation rate 

of active Far1,  𝑘/=[𝑝𝑝𝐹𝑢𝑠3] is the pheromone dependent rate of Far1 activation, 𝑘123$( 

is the degradation rate of inactive Far1, 𝑘123-$( is the degradation rate of active Far1, and 

the term 𝑘9;[𝑆𝑡𝑒12])* 𝐾$9<( + [𝑆𝑡𝑒12])*⁄  models synthesis of Far1 due to Ste12 

dependent gene transcription. 

 The final component included in our model is GFP, which is expressed from a 

FUS1 promoter. GFP is included so we can directly compare our experimental data with 

the model. The equation that governs GFP, [𝐺𝐹𝑃], synthesis and degradation are given 

by:   

 

𝑑[𝐺𝐹𝑃]
𝑑𝑡 = 𝑘!"#>$- +

𝑘9=[𝑆𝑡𝑒12])*

𝐾>$- + [𝑆𝑡𝑒12])*
− 𝑘123>$-[𝐺𝐹𝑃] (1.7) 
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where 𝑘!"#>$- is the constitutive synthesis rate of GFP, 𝑘123>$- is the degradation rate of 

GFP, which is known as we used a short lived GFP with a well-established half-life, and 

the term 𝑘9=[𝑆𝑡𝑒12])* 𝐾>$- + [𝑆𝑡𝑒12])*⁄  models synthesis of GFP due to Ste12 

dependent gene transcription.   

 

Modeling pheromone signal 

In our model the pheromone signal comes in at the level of the MAPK, Fus3, which 

is activated in a pheromone dependent manner. We model upstream activation of the 

pathway as a piecewise linear function. We specify a slope 𝑚?# that describes the rate at 

which signal activity increase following pheromone exposure and assume the signaling 

turns of instantaneously following removal of pheromone. The maximum input signal 

activity is kp1. For pulse trains of period p (on+off phase), the maximum input signal (𝑠89@) 

achieved during the simulation (𝑠89@)  is: 

 

𝑠!"# = 𝑘$%	min (
𝑚&'𝑝
2 , 1.. (2.1) 

 

Then we use the following piecewise linear equation to describe the temporal signal 

profile for periodic stimulus: 

 

𝑠(𝑡) = Gmin(𝑚?#(𝑡 − 𝐼𝑝), 1) 𝑡 ≥ 𝐼𝑝, 𝑡 <
𝑝
2
+ 𝐼𝑝

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.2) 
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where  𝑡 is the time and 𝐼 is the pulse number defined by floor(𝑡/𝑝).  

 

For single pulses of stimulus, the signal is described by the following equation:  

𝑠(𝑡) = X
min(𝑚?#(𝑡 − 𝐼𝑝), 1) 	𝑡 <

𝑝
2

0 𝑡 ≥
𝑝
2

 (2.3) 

 

Parameter estimation  

To perform parameter estimation, we used an evolutionary algorithm. Evolutionary 

algorithms have the goal of optimizing a solution to a problem and are inspired by 

elements of biological evolution including recombination, mutation, and selection. In our 

application we aim to optimize the fit of our model to experimental data by finding 

parameter sets that minimize the error between the experimental and simulated data. We 

implemented the algorithm using DEAP (Distributed Evolutionary Algorithms in Python) 

which is a user friendly framework for building and executing evolutionary algorithms (53).  

The evolutionary algorithm is broken down into three main functions: simulation, 

scoring, and evolution. The algorithm is initiated by selecting parameter sets from 

specified uniform random distributions. In the simulation function, these parameters are 

used to simulate the model. In the scoring function, the difference between the simulation 

and the experimental data is the quantified using the mean absolute error. In the evolution 

function, the best parameters are chosen through a tournament. Then those parameters 

go through mating and mutation. Mating was simulated using a two-point crossover 

function and mutation was simulated using a polynomial bounded mutation function. The 
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resulting parameter sets are then returned to the simulation function and the process 

starts over again. The algorithm continues to optimize parameter sets for a specified 

number of generations.  

We performed all model fitting with 100 generations of 500 individuals because 

these numbers were typically sufficient for convergence of the score function. The mating 

and mutation functions were chosen because they worked best with synthetic data sets, 

specifically to optimize models with hill functions. Similarly, the hyperparameters 

(mutation rate, crossover rate, and tournament size) were selected based on their 

efficiency in fitting the synthetic data set best.  

 

Scaling experimental data 

 It was necessary to scale the experimental data sets to account for differences in 

experimental conditions, such as light source and intensity. We first normalized the 

wildtype time series for constant 50 nM ⍺-factor to have a maximum of 1. Then all data 

sets generated using 50 nM ⍺-factor were scaled to align with the wildtype response 

during the initial on phase of pheromone exposure. For example, the choice of scaling 

factor for a 45 min pulse experiment was based aligning the first 45 minutes of this times 

series with the response for the constant pheromone case.  

 For the pathway mutants, a series of constant stimulation experiments was done 

in quick succession using the same microscope settings. In this experiment data were 

collected for wildtype, far1Δ, dig1Δdig2Δ, PRE*-GFP, and PSTE5-STE12 strains. The 

wildtype data was multiplied by a scaling factor to align with the data used to train the 
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model. The mutant responses were then multiplied by this scaling factor to correctly adjust 

their starting and maximal values. The response of the each of the mutants to a 90-miunte 

pulse of stimulus was then multiplied by a strain specific scaling factor to match the 

corresponding scaled constant response.    

   

Prediction response to low pheromone dose 

To predict the low dose data set, we scaled the signal input signal on rate (𝑚?#) 

by 0.3 based on an estimation of the difference in the slopes for the temporal response 

to 50 nM and 10 nM constant pheromone. Using the parameter sets corresponding to the 

best fits to the 50 nM data but changing 𝑚?#, we successfully simulated the 10 nM data 

(Fig. 8, blue curves). 

 

Predicting response of pathway perturbations 

The model was used to predict the response of four mutations to the pathway, 

far1Δ, dig1Δdig2Δ, PRE*-GFP, and pSTE5-STE12. The far1Δ was described in the 

model by setting all parameters related to Far1 expression, degradation, or activation 

(𝑘!"#$(, 𝑘9;, 𝑘/%, 𝑘/=𝑘123$(, 𝑘123-$() equal to zero. The dig1Δdig2Δ was described in the 

model by setting the total amount of Dig1 and Dig2 (𝐷𝑖𝑔𝑠:) equal to zero. The PRE*-GFP 

was described in the model by setting the apparent dissociation constant for Ste12 

binding to the pheromone responsive element (PRE) of the GFP promoter (𝐾>$-) equal 

to 3.33 times the value given from the best fits corresponding to the reported the relative 

competition strength of 0.3 (19). Finally, the pSTE5-STE12 was described in the model 
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by setting the parameter responsible for Ste12 inducing its own transcription (𝑘&'0) equal 

to zero. 
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Figure 1. Schematic of the yeast mating response. The yeast mating response is 

activated when mating pheromone binds to the G-protein coupled receptor (GPCR) 

activating a heterotrimeric G-protein. The G-protein βγ dimer then activates a mitogen 

activated protein kinase (MAPK) cascade, resulting in activation of two MAPKs, Fus3 and 

Kss1. Both kinases activate the transcription factor Ste12 by suppressing the activity of 

the transcriptional repressors Dig1 and Dig2. Fus3 also activates Far1, which is 

responsible for cell cycle arrest and promotes degradation of Ste12 (solid gray arrow). 

Ste12 promotes the transcription of itself, Far1, and Fus3 (dashed gray arrows).   
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Figure 2. Persistence in transcriptional response. (A) Images of cells with an 

integrated fluorescent reporter that expresses short-lived GFP from the mating specific 

FUS1 promoter exposed to constant stimulus in a microfluidic chamber. (B and C) 

Quantification of the transcriptional response using fluorescence of the GFP reporter in 

wildtype (BY4741-68) cells exposed to (B) constant stimulus and (C) stimulus pulses of 

six different durations (45, 60, 75, 90, 160, and 200 min). (D) The mating transcriptional 

response persists after a pulse of stimulus is removed, and as the pulse length increases 

the persistence decreases. This persistence is quantified as the time after stimulus 

removal until the response to drop 2.5% below the maximum transcription response and 

D                                                        E 
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each point represents a biological replicate. The solid gray curve represents the mean 

response from the model and the gray shaded region represents a 99.9% confidence 

interval band, (E) Adaptation after stimulus removal for each of the six pulse durations is 

compared by plotting the natural logarithm of the normalized transcriptional response.  

The normalized response is the average fluorescence at time t after the maximal 

response divided by the average fluorescence at the onset of adaptation. Assuming 

exponential decay, the half-life associated with the rate of decreased transcriptional 

response after stimulus removal is 98 ± 9 min, compared to the 7-minute half-life of the 

short-lived GFP reporter plotted as a solid green line. Fluorescence data are presented 

as the average of the indicated number (n) of single cell traces from at least two 

independent experiments normalized to the maximum response of constant stimulus.  
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Figure 3. No long-term adaptation or persistence is present in MAPK activation. 

Quantification of MAPK activation by immunoblotting with phospho-p44/42 MAPK 

antibodies to detect active MAPK (pKss1 and pFus3), Fus3 antibodies to detect total 

Fus3, and anti-G6PDH as a loading control for (A) constant stimulus and (B) a 90-minute 

pulse of stimulus. Quantification of Western blots are presented as either (A) the mean 

and individual data points from two experiments normalized to the average response after 

60 minutes of stimulus exposure or (B) the mean ± standard deviation from three 

independent experiments. To compare between conditions, quantification of 

immunoblotting is normalized so pKss1 and pFus3 are equal to 1 after 60 minutes of 

stimulus.  

BA

pKss1
pFus3

Fus3

G6PDH

Time (hr)    0      1      2     3     4     5     6     7     8     9    10

pKss1
pFus3

Fus3

G6PDH

Time (min)  0     2    15    30    60   90  97  102 105 120 150 180

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.23.167205doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.23.167205
http://creativecommons.org/licenses/by/4.0/


 50 

 

Figure 4. Model of the gene regulatory network. (A) Four important signaling motifs, 

an incoherent feedforward loop in which phosphorylated Far1 promotes the degradation 

of Ste12 (Motif 1), positive feedback loops where Ste12 promotes the transcription of itself 

and the MAPK (Motif 2), slow rebinding of the transcriptional repressors (Dig1 and Dig2) 

to Ste12 (Motif 3), and a negative feedback where Ste12 promotes the transcription of 

Far1 (Motif 4). (B) The complete model incorporating all four motifs, which includes 

MAPK, Far1, and Ste12 each in their active and inactive states as well as the 
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transcriptional reporter GFP. The colored icons adjacent to arrows in the schematic 

indicate the pathway components that increase each rate. (C) Schematic of evolutionary 

algorithm (EA) used to fit the model to experimental data. This EA was run 2000 times 

selecting the best of 500 individuals for 100 generations. (D) The total absolute error 

(TAE) between the simulation and experimental data for the top 10% of 2000 independent 

EA runs. Each line represents the lowest error of the 500 individual parameter sets. (E) 

A comparison of the predicted transcriptional response (TR) of the top 10% of fits at 

generations 0, 50, and 100 (gray lines) to experimental data (black circles) for constant 

stimulus.    
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Figure 5. Model captures response to dynamic stimulation. Model simulations 

generated using the top 10% of parameters found by the evolutionary algorithm (gray 

lines) compared to the experimental data (circles) for wildtype strain (BY4741-68) 

transcriptional response to (A-F) six different pulse durations (45, 60, 75, 90, 160, and 
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200 min), (G-K) five different oscillatory stimulation profiles (45, 60, 75, 90, and 120 min 

on-off), and (L) constant stimulus of 50 nM pheromone. Gray shading indicates when 

mating pheromone is present in the time course. Experimental data is presented as the 

average transcriptional response of the indicated number (n) of cells at the time stimulus 

is first removed.   
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Figure 6. Model predictions of response to sustained stimulus for mutants that 

perturb signaling motifs. (A and B) Simulations (lines) using the best 10% of parameters 

found by the evolutionary algorithm for two signaling network perturbations. (A) 

Simulations in the absence of Ste12 autoregulation (STE12 endogenous promoter 

replaced with that from STE5) predict a variety of responses ranging from no change 

(purple lines) from the wildtype (circles) to a dampened response (green and brown lines). 

Experimental data of the transcriptional response of the PSTE5-STE12 mutant (BY4741-

103) shows a dampened response (triangles). (B) Simulations in the absence of the 
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incoherent feedforward and negative feedback loops (Far1 removed) predict a variety of 

responses ranging from no change (purple lines) from the wildtype (circles) to a persistent 

transcriptional response (brown and blue lines). Experimental data of the transcriptional 

response of the far1Δ mutant (BY4741-130) shows a persistent response (triangles). 

Parameters from simulations that best capture the experimental results for the PSTE5-

STE12 mutant (green lines in A) and far1Δ mutant (blue lines in B) were selected and 

used to predict the response of both signaling perturbations (brown lines in A and B). (C 

and D) Model simulations (gray lines) generated using the top 10% of parameters found 

by the evolutionary algorithm fit to wildtype (BY4741-68) (constant, single pulse, and 

periodic stimulus), far1Δ (constant stimulus), and PSTE5-STE12 (constant stimulus) 

training data compared to the experimental data for wildtype (circles) or (C) PSTE5-STE12 

mutant and (D) far1Δ mutant responses (triangles). (E) Using the parameter sets shown 

in C and D, simulations (blue lines) for elimination of only the negative feedback loop. For 

most parameter sets, elimination of negative feedback exhibits long term adaptation 

similar to wildtype (circles).  
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Figure 7. Prediction response of pathway perturbations to transient stimulus. The 

top 10% of parameter sets found by the evolutionary algorithm fit to wildtype (BY4741-

68), far1Δ (BY4741-130), and PSTE5-STE12 (BY4741-103) training data were used to 

predict the response of pathway perturbations to a 90-minute pulse of stimulus. (A) 

Predicted response of a the PSTE5-STE12 mutation that eliminates autoregulation of 

Ste12 (blue lines) compared to experimentally determined response for the mutant strain 

(triangles). (B) Predicted response of a PRE*-GFP promoter mutation that causes Ste12 

to bind less tightly to the GFP promoter (blue lines) compared to experimentally 
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determined response for the mutant strain (BY4747-169) (triangles). (C) Predicted 

response of a dig1Δdig2Δ double mutation that eliminates the transcriptional repressors 

divided into three clusters, high basal response (green lines), low basal response (cyan 

lines), and response that best fits the experimental data (brown lines) compared to 

experimentally determined response for the mutant strain (BY4741-147) (triangles). (D) 

Predicted response of faster rebinding of the transcriptional repressors (Dig1 and Dig2) 

(blue lines) compared to wildtype response (circles). Wildtype response (circles) is 

included on all panels A-D as a reference. (E) Analysis of parameter distributions within 

each of the clusters shown in panel C for the rates of inactive Far1 degradation (kdegF1), 

active Far1 degradation (kdegPF1), active Ste12 (kdegS12), Ste12 in complex with the 

transcriptional repressors (kdegS12D), Far1 dependent degradation of Ste12 (kff), and 

dephosphorylation of active Far1 (kp3). Significance values (*p < 0.5, **p < 0.1, and ***p 

<0.01) were calculated using a t-test with a Bonferroni correction for multiple hypothesis 

testing. Similar analysis for all parameters is available in the supplement (Fig. S7).  
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Figure 8. Prediction of response to a different dose of stimulus. The top 10% of 

parameter sets found by the evolutionary algorithm fit to all training data from wildtype 

(BY4741-68), far1Δ (BY4741-130), and PSTE5-STE12 (BY4741-103) strain responses to 

50 nM pheromone (gray lines) were used to predict the response of the wildtype strain 
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(BY4741-68) to 10 nM pheromone  (blue lines) for (A)  constant and (B and C) two periodic 

stimulation profiles (60 and 120 min on-off). Experimental data for 50 nM stimulus is 

represented by circles and experimental data for 10 nM stimulus is represented by 

triangles.  
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Table 1.  Plasmids. 

Plasmid Allele Reference 
pCORE-UK KlURA3::KanMX4 (46) 
pCORE-UH KlURA3::Hyg (46) 
pEE98 fus3Δ6::LEU2 (54) 
pJGsst1 bar1Δ::hisG-URA3-hisG (55) 
pNC1136 URA3-UASFUS1-UBI-YΔK-GFP*-SpHIS5-TIM9 (28) 
pNC1146 URA3-PFUS1-UBI-YΔK-GFP*-SpHIS5-TIM9 This work 
pNC1152 URA3-PFUS1*-UBI-YΔK-GFP*-SpHIS5-TIM9 This work 
pYM4 3xmyc::KanMX6 (48) 
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Table 2.  Oligonucleotides.  

Oligo 1Sequence (5' to 3') Purpose 
pNC1136Q
C_F 

CCCACTTTACTTTAAtTAATAGATTATGCAG Introduce a PacI site into 
pNC1136 

pNC1136Q
C_R 

CTGCATAATCTATTAATTAAAGTAAAGTGGG Introduce a PacI site into 
pNC1136 

FUS1(XhoI
)_F 

ATGCCTCGAGAATCTCAGAGGCTGAGTCTCA Amplify 1658 bp upstream of 
FUS1 ATG 

FUS1(PacI
)_R 

ATGCCTTAATTAATTTGATTTTCAGAAACTTGATGGC Amplify 1658 bp upstream of 
FUS1 ATG 

M13F TGTAAAACGACGGCCAGT Sequence pNC1136 and 
pNC1152 

M13R CAGGAAACAGCTATGAC Sequence pNC1136 and 
pNC1152 

618 CTTCAAACCGCTAACAATACC Confirm ura3Δ58 replacement of 
URA3 

822 TTGGGCATTTAAGTCATCGT Confirm dig1Δ0::hyg integration 
867 CCTTCACCCTCTCCACTGACA Confirm PFUS1-UBIY�KGFP-

SpHIS5 integration 
868 ATACGCTGGGTTAGTCCAGTT Confirm dig2Δ0::kanMX4 

integration 
881 AATCAGCATCCATGTTGGAA Confirm far1Δ0::kanMX4 

inetgration 
903 GAATCTCGGCCAAATGAAAA Confirm STE12-3xmyc-kanMX4 

integration 
946 CGCATATGTGGTGTTGAAGAA Confirm ura3Δ58 replacement of 

URA3 
947 TGGCCGCATCTTCTCAAATA Confirm ura3Δ58 replacement of 

URA3 
953 GTTGGCCATGGAACAGGTAG Sequence pNC1136 and 

pNC1152 
954 GTCAGTGGAGAGGGTGAAGG Sequence pNC1136 and 

pNC1152 
966 CTGCCTCTCCAGTTGTCATG Confirm bar1Δ::hisG-URA3-hisG 

integration 
967 CAGCAAAATAGCATTCCTTGG Confirm bar1Δ::hisG-URA3-hisG 

integration 
968 CAGCTCTTGCTTGCTCTGTG Confirm bar1Δ::hisG-URA3-hisG 

integration 
972 GTGCGTGATGATGACATTCC Confirm bar1Δ::hisG-URA3-hisG 

integration 
990 AATAGCTTGGCAGCAACAGG   Confirm URA3 replacement of 

ura3Δ0 
1010 TCACCTTCACCCTCTCCACT Sequence pNC1136 and 

pNC1152 
1015 TGTCCTTGTTGTTTTCTTCTG Sequence STE12-3xmyc-kanMX4  
1019 CGTCTCAATAGAAAAAGTGAAACAGATAAACCGCGCGT

TGGCCGATTCAT 
Amplify 3326 bp 
ste12ΔUAS::CORE-UK 

1020 ACTATTGGTTATTTGGACTTTCATCCTTGGTTCGTACG
CTGCAGGTCGAC 

Amplify 3387 bp 
ste12ΔUAS::CORE-UK 
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1047 ACTCAGCCCGAGAAAAAAGCA Confirm fus3Δ6::LEU2 integration 
1048 ATTTCTTGACCAACGTGGTCAC Confirm fus3Δ6::LEU2 integration 
1091 TACGAGTACTTCGATTTATGGTGTCGAGACCTTCGTAC

GCTGCAGGTCGAC 
Amplify 3326 bp 
ste12ΔUAS::CORE-UK  

1093 CGTAGTGGTACTATGTGCGAGAAAACTAGCGTACGAGT
ACTTCGATTTAT 

Amplify 3387 bp 
ste12ΔUAS::CORE-UK  

1110 CATAAATTCAAAAATTATATTATATCATGGATGGCGGC
GTTAGTATC 

Amplify 1863 bp STE12-3xmyc-
kanMX4 tag  

1111 ATTCTGGCCCGCATTTTTAATTCTTGTATCATAAATTC
AAAAATTAT 

Amplify 1926 bp STE12-3xmyc-
kanMX4 tag  

1116 CGCCGATTAACCTTAGCG Confirm PSTE5-STE12 
integration 

1119 GGTCCGATAAAAACCTTCCAGATGCAACCggatcctct
agaggtgaaca  

Amplify 1863 bp STE12-3xmyc-
kanMX4 tag  

1120 GGAGCTCATTCACTTGAGGTAGATACCAATCGAAGGTC
CGATAAAAACC  

Amplify 1926 bp STE12-3xmyc-
kanMX4 tag  

1121 GAAAAAGTGAGCTCATCTCATCTCTTCTGCTGA Amplify 829 bp PSTE5-STE12  
1124 GGACTTTCATTTAAAAGTTGTTTCCGCTG Amplify 829 bp PSTE5-STE12  
1125 CCTCTGTTCTACTATTGGTTATTTGGACTTTCATTTAA

AAGTTG 
Amplify 887 bp PSTE5-STE12  

1126 CATTATTAGCTTGAACTTTTAAGATTTCCTCTGTTCTA
CTATTGG 

Amplify 887 bp PSTE5-STE12  

1127 GAAGTTTTCGTGTGTATAAATATATGAACTCTAGAGTG
AGCTCATCTCATC 

Amplify 948 bp PSTE5-STE12  

1128 CACTTTCAAGCTGTAGTATGTAAACGATATAGATGAAG
TTTTCGTGTGTA 

Amplify 948 bp PSTE5-STE12  

1148 AGGAGCCGTAATTTTTGCTT Sequence pNC1136 and 
pNC1152 

1155 GGATCCGTGATAACCACCTCTTAGCCTTAGCACAAGAT
GTAAGG 

Sequence pNC1136 and 
pNC1152 

1156 ATATGTCACAGCTTCATCACCCG Amplify 1972 bp dig2Δ0::kanMX4 
allele 

1157 ACCAACTGATCCTATCTAACTCTCCC Amplify 1972 bp dig2Δ0::kanMX4 
allele 

1164 CAAGGCCAAAACTATCAGCATCAACAACAGGGTCAGCA
GCAGCAACAAGG 

Sequence pNC1136 and 
pNC1152 

1170 GGAAGCCAAAGCTGATAATAAACTGGAGTGGCC Sequence pNC1136 and 
pNC1152 

1175 GGTGCGATGATGAAAgAAACATGAAACGTCTG Mutagenesis of FUS1 PRE  
1176 CAGACGTTTCATGTTTcTTTCATCATCGCACC Mutagenesis of FUS1 PRE  
1177 GTTTCTCAAAGAAGAAAATAGAAAGTGAGACCGCGCGT

TGGCCGATTCAT 
Amplify 1774 bp dig1Δ0::hyg allele 

1178 GAATCAAATCAGTAACAAATTTTGGTATTGTTTCTCAA
AGAAGAAAATAG 

Amplify 1832 bp dig1Δ0::hyg allele 

1179 GTATGTAAGTTTATAAGTGCCTGTGTGGCTAcgttttc
gacactggatggc 

Amplify 1774 bp dig1Δ0::hyg allele 

1180 CGTGTGTGAGTAGGTGAGTGTATGCGAGTGTATGTAAG
TTTATAAGTGCC 

Amplify 1832 bp dig1Δ0::hyg allele 

1181 GCTTATACAGAAGAAACGCACTTAAAAAGAATCAAATC
AGTAACAAATTTTGG 

Amplify 1890 bp dig1Δ0::hyg allele 

1182 GGTGTGCGAGTGAGAGTGTGTGTGTGAGTGCGTGTGTG
AGTAGGTGAGTG 

Amplify 1890 bp dig1Δ0::hyg allele 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.23.167205doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.23.167205
http://creativecommons.org/licenses/by/4.0/


 63 

1194 AGGAGTTTAGTGAACTTGCAAC Confirm  ste12ΔUAS::CORE-UK 
integration 

1194 AGGAGTTTAGTGAACTTGCAAC Confirm PSTE5-STE12 integration 
1202 GAAGGGCAACGGTTCATCATCTCAT Amplify 1580 bp of the URA3 

locus 
1203 GTTCTTTGGAGTTCAATGCGTCCATC Amplify 1580 bp of the URA3 

locus 
1210 GACATTGCACTTGCATCACTGTAGG Confirm far1Δ0::kanMX4 

inetgration 
1212 CTAGGGAAGACAAGCAACGA Confirm URA3 replacement of 

ura3Δ0 
1214 GATGTTAGCAGAATTGTCATGCAAGG Confirm PFUS1-UBIYΔKGFP-

SpHIS5 integration 
1231 CTCATTGGCCTCCATGGCTC Sequence pNC1136 and 

pNC1152 
 

1Base substitutions introduced by oligonucleotides are lower case, bold, and underlined. 

Restriction recognition sites introduced by oligonucleotides are upper case and 

underlined.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.23.167205doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.23.167205
http://creativecommons.org/licenses/by/4.0/


 64 

Table 3. Strains used in this study. 

Strain Genotype Reference or Source 
Purpose (Model Perturbation) 

BY4741 MATa his3∆1 leu2∆0 met15∆0 ura3∆0 Parent strain (56) 

BY4741-
29 

MATa his3∆1 leu2∆0 met15∆0 ura3∆0 
dig2∆0::kanMX4 
 

Yeast knockout collection (Invitrogen, 
Carlsbad, CA) 
Source of dig2∆::kanMX6 allele 

BY4741-
64 

MATa his3∆1 leu2∆0 met15∆0 URA3 This work 
Restores URA3 targeting region in the 
BY4741 background 

BY4741-
65 

MATa his3∆1 leu2∆0 met15∆0 ura3∆58 This work 
58 bp ApaI-StuI deletion in the URA3 
coding sequence  

BY4741-
66 

 MATa his3∆1 leu2∆0 met15∆0 ura3∆58 
bar1∆::hisG 

This work 
Eliminates Bar1 protease 

BY4741-
68 

MATa his3∆1 leu2∆0 met15∆0 ura3∆58 bar1∆::hisG  
PFUS1-UBIY∆KGFP-SpHIS5 

This work 
Wild-type reference PFUS1-
UBIY∆KGFP reporter strain; Precursor 
to BY4741-93, 
-103, -105, -110, -130, -132, and 147 

BY4741-
70 

MATa his3∆1 leu2∆0 met15∆0 ura3∆0 
far1∆0::kanMX4 

Yeast knock out collection (Invitrogen, 
Carlsbad, CA) 
Source of far1∆0::kanMX4 allele 

BY4741-
100 

MATa his3∆1 leu2∆0 met15∆0 ura3∆58 bar1∆::hisG 
PSTE12::CORE-UK::STE12 PFUS1-UBIY∆KGFP-
SpHIS5  

This work 
Precursor to BY4741-103 

BY4741-
103 

MATa his3∆1 leu2∆0 met15∆0 ura3∆58 bar1∆::hisG 
PSTE5-STE12 
PFUS1-UBIY∆KGFP-SpHIS5 

This work 
Eliminates positive feedback 
(Fig. 4, motif 2) 

BY4741-
105 

MATa his3∆1 leu2∆0 met15∆0 ura3∆58 bar1∆::hisG 
STE12-3xmyc::KanMX4 PFUS1-UBIY∆KGFP-
SpHIS5 

This work 
Western blot analysis to establish 
basal STE12-3xmyc expression 

BY4741-
110 

MATa his3∆1 leu2∆0 met15∆0 ura3∆58 bar1∆::hisG  
dig2∆::kanMX4 PFUS1-UBIY∆KGFP::SpHIS5 

This work 
Precursor to BY4741-147 

BY4741-
112 

MATa his3∆1 leu2∆0 met15∆0 ura3∆0 bar1∆::hisG-
URA3-hisG 

This work 
Precursor to BY4741-114 

BY4741-
114 

MATa his3∆1 leu2∆0 met15∆0 ura3∆0 bar1∆::hisG This work 
Precursor to BY4741-120 
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BY4741-
120 

MATa his3∆1 leu2∆0 met15∆0 URA3 bar1∆::hisG This work 
Precursor to BY4741-122 

BY4741-
122 

MATa his3∆1 leu2∆0 met15∆0 ura3∆58 bar1∆::hisG This work 
Precursor to BY4741-137, -148 and -
152 

BY4741-
130 

MATa his3∆1 leu2∆0 met15∆0 ura3∆58 bar1∆::hisG 
PFUS1-UBIY∆KGFP-SpHIS5 far1∆::kanMX4 

This work 
Eliminates Fus3 and Far1 dependent 
negative feed forward (Fig. 4, motif 1) 

BY4741-
132 

MATa his3∆1 leu2∆0 met15∆0 ura3∆58 bar1∆::hisG 
PFUS1-UBIY∆KGFP-SpHIS5 PSTE5-STE12-
3xmyc::KanMX4 

This work 
Western blot analysis to establish 
basal PSTE5-Ste12-3xmyc expression 

BY4741-
137 

MATa his3∆1 leu2∆0 met15∆0 ura3∆58 bar1∆::hisG  
PFUS1-UBIY∆KGFP-SpHIS5 

This work 
Wild-type reference reporter strain 

BY4741-
147 

MATa his3∆1 leu2∆0 met15∆0 ura3∆58 bar1∆::hisG 
dig1∆::hyg dig2∆::kanMX4 PFUS1-
UBIY∆KGFP::SpHIS5  

This work 
Eliminate repressor inactivation of 
Ste12 (Fig. 4, Motif 3) 

D502-3C MAT∆ ade6  F. Sherman (University of Rochester, 
Rochester, NY) 
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