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ABSTRACT

Cells use signaling pathways to receive and process information about their environment.
These systems are nonlinear, relying on feedback and feedforward regulation to respond
appropriately to changing environmental conditions. Mathematical models developed to
describe signaling pathways often fail to show predictive power, because the models are
not trained on data that probe the diverse time scales on which feedforward and feedback
regulation operate. We addressed this limitation using microfluidics to expose cells to a
broad range of dynamic environmental conditions. In particular, we focus on the well-
characterized mating response pathway of S. cerevisiae (yeast). This pathway is
activated by mating pheromone and initiates the transcriptional changes required for
mating. Although much is known about the molecular components of the mating response
pathway, less is known about how these components function as a dynamical system.
Our experimental data revealed that pheromone-induced transcription persists following
removal of pheromone and that long-term adaptation of the transcriptional response
occurs when pheromone exposure is sustained. We developed a model of the regulatory
network that captured both persistence and long-term adaptation of the mating response.
We fit this model to experimental data using an evolutionary algorithm and used the
parameterized model to predict scenarios for which it was not trained, including different
temporal stimulus profiles and genetic perturbations to pathway components. Our model
allowed us to establish the role of four regulatory motifs in coordinating pathway response

to persistent and dynamic stimulation.
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INTRODUCTION
Proper cellular function requires cells to respond appropriately to stimuli in their
environment. Environmental cues, such as hormones and growth factors, are typically
sensed by receptors on the cell surface and transmitted by intracellular signaling
pathways. A key function of these pathways is to initiate the appropriate transcriptional
program to respond to the environmental challenge. Mathematical modeling has helped
to elucidate many of the design principles that regulate the spatiotemporal activity of
signaling pathways and allow them to function reliably in changing environmental
conditions (7). The ultimate test for these models is to predict pathway dynamics under
conditions of time-dependent stimulation regimens and in the presence of genetic or
pharmacological perturbations that disrupt the system in well-defined ways. While many
models have reproduced qualitative features of signaling systems, their quantitative
predictive power is often lacking. One reason for the lack of predictive power is that many
previous studies have assessed cellular responses only to constant stimuli. However,
signaling networks are nonlinear systems which typically have both positive and negative
feedforward and feedback loops that operate on different time scales. Therefore, full
characterization of these systems requires using time-dependent stimulus profiles that
probe multiple time scales (2—-12).

We have performed such an analysis using the mating response of
Saccharomyces cerevisiae (yeast). This response is activated when a mating-type
specific pheromone binds to and activates a G-protein coupled receptor on a cell of

opposite mating type. The signal is then propagated by a mitogen activated protein kinase
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(MAPK) cascade (Fig. 1). A key function of the terminal kinases in this cascade, Fus3
and Kss1, is to initiate the transcriptional program required for successful mating by
promoting dissociation of the transcriptional repressors Digl and Dig2 from the
transcription factor, Ste12 (13—18). Additionally, Fus3 activates Far1, a protein required
for cell cycle arrest (19-21). Far1 is also known to affect the transcriptional response by
promoting degradation of Ste12 (22). This signaling pathway provides an ideal model
system for studying signal transduction and transcriptional regulation (23, 24) and has
long served as a prototype for MAPK pathways (25). It achieved this status because of
the unparalleled ease of genetic manipulation of individual components and unambiguous
determination of how these perturbations affect in vivo processes. In eukaryotic cells,
MAPKs mediate responses to growth factors, cytokines, hormones, cell adhesion, stress
and nutrients that determine a wide range of cellular decision processes (26). Thus, a
systems level analysis of the yeast mating response is likely to reveal properties common
to MAPK regulation of these wide-ranging responses in other cells.

We combined a microfluidics system that allows cells to be exposed to pheromone
concentrations with precisely defined temporal profiles and a short-lived fluorescent
reporter to monitor dynamic changes in mating specific gene expression. We discovered
that transcriptional regulation was sustained following removal of pheromone, a property
of the system that we refer to as “persistence”. To better define this surprising property of
the system, we exposed cells to pheromone concentrations that oscillate at six different
frequencies. The fluorescent data were used to develop and train a model for

transcriptional regulation during the mating response. Two strategies were used to


https://doi.org/10.1101/2020.06.23.167205
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.23.167205; this version posted June 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

validate the model and demonstrate its predictive power. First, we used the model to
predict the behavior of mutations that selectively disrupt various signaling motifs in the
pathway. Then we used the model to predict the transcriptional response of the system
at a lower pheromone concentration. The result of our investigations is a fully validated
model of transcriptional regulation that allows a quantitative characterization of the
signaling motifs that regulate gene expression. We anticipate that our approach provides
a template for a research strategy to characterize regulatory motifs inherent to many

signaling pathways.

RESULTS

Adaptation and persistence in the mating response pathway

To determine the dynamics of the yeast mating response, we developed experimental
tools that allow cells to be exposed to well-defined input signals of any specified temporal
profile and a readout that faithfully tracks the dynamic response of the pathway. For
controlling stimulus profiles, we employed a microfluidics system that is an adaptation of
the “dial-a-wave” system developed by J. Hasty and colleagues (27). For tracking time-
dependent changes in pheromone-induced transcription in living cells, we placed a short-
lived fluorescent reporter under the control of the pheromone responsive FUS1 promoter.
The fluorescent protein we used is fast maturing (~15 min) and through use of an N-
degron tag (YAk) was engineered to have a half-life similar to its mRNA (~ 7 min) (28).

The short-lived reporter is essential in studies of temporal response dynamics, since it
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reveals transient response characteristics that are otherwise masked by accumulation of
a long-lived reporter protein.

Initially, we exposed cells containing our short-lived fluorescence reporter to a
constant stimulus of 50 nM pheromone for 10 hrs and monitored reporter fluorescence by
imaging of cells in the microfluidic chamber (Fig. 2A). For all the experimental results
presented in this manuscript, we used cells lacking the protease Bar1 to remove the effect
of pheromone degradation (29, 30). We refer to this strain as wildtype hereafter. Under
these conditions, the transcriptional response of wildtype cells reaches a maximum
amplitude at 220 min, and then decreases for the remainder of the experiment (Fig. 2B).

In our next studies, we exposed cells with the short-lived reporter to pheromone
pulses of different duration and again monitored reporter fluorescence (Fig. 2C).
Interestingly, reporter gene expression was significantly sustained following removal of
pheromone for pulses of 90 min or less. We refer to this property as persistence and
quantify it as the time from removal of pheromone to the time that signal drops below
2.5% of the maximum of each response cuve. The extent of persistence is negatively
correlated with the duration of the stimulus pulse; as pulse length increases the
persistence of the transcriptional response decreases (Fig. 2D). Another important
observation is that the rate at which the fluorescent reporter decreases in time is
independent of pulse duration (Fig. 2E) and the half-life associated with this rate (98 + 9
min) is considerably longer than the half-lives (~7 min) of the reporter mRNA and protein
(Fig. 2E, green line) (28). Thus, new synthesis of transcripts and protein continues during

the attenuation phase.
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A simple explanation for the observed pathway persistence is that it represents a
delay between receptor signaling and translation and maturation of the induced GFP
reporter. To test this possibility, we developed a linear mathematical model of the
response pathway that takes into account this delay (Supplementary Materials). Our
analysis of the model revealed that a simple delay cannot account for the persistence in
the transcriptional response (Fig. S1). In total, our preliminary investigations reveal that
the pathway contains some form of “memory” that sustains new mRNA synthesis
following removal of pheromone.

We next sought to determine at what level in the pathway the mechanisms for long
term adaptation and persistent signaling occur. To determine if “long-term adaptation”
relies on upstream pathway regulators of short-term desensitization, such as Sst2 or
receptor endocytosis (31-34), we investigated the dynamics of MAPK activity. We
monitored MAP kinase dual phosphorylation, which is an indicator of activity, by Western
blotting protein extracts of aliquots prepared from cells in the presence of 50 nM
pheromone for a 10 hr time course. Fus3 activity remained constant after a transient
increase and that of Kss1 increased throughout most of the time course and only slightly
diminished toward the end of the experiment (Fig. 3A). These results demonstrate that
the mechanism of long-term adaptation of transcriptional response does not involve
upstream signaling events, but likely occurs at the level of transcriptional regulation.

We similarly monitored Fus3 and Kss1 kinase activity for a 90 min pulse of 50 nM
pheromone by Western blot analysis for dual phosphorylation of the MAPKSs. In this case

aliquots of the culture were removed at indicated intervals during pheromone exposure
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and after removal of pheromone. Unlike gene expression, activity of the two MAPKs
diminished rapidly once pheromone was removed (Fig. 3B), demonstrating that the
mechanism for persistence also lies downstream of the MAPK signaling molecules.
Model for transcriptional regulation

To determine which elements of the pathway are critical for regulating the
magnitude of the response, long-term adaptation and persistence, we developed a
mechanistic model. We chose to include four established signaling motifs. We included
an incoherent feedforward loop resulting from Far1-dependent Ste12 degradation as one
potential mechanism for long-term adaptation (22) (Fig. 4A, motif 1). Next, we included
positive feedback loops resulting from Ste12 auto-regulation and Ste12-dependent
transcription of the MAPKSs (Fig. 4A, motif 2), which we hypothesized could contribute to
both the amplitude and persistence of the signaling response. Previously, we found that
if Ste12 in the Dig/Ste12 complex degraded more slowly than free Ste12, rebinding of the
Digs to Ste12 could act as a mechanism for adaptation (Fig. 4A, motif 3) (35). We
hypothesized that this motif also could contribute to persistent signaling, if the rate
constant associated with rebinding was small. Finally, we included a negative feedback
loop resulting from Ste12 induced synthesis of Far1 (Fig. 4A, motif 4), which we
hypothesized might also contribute to long-term adaptation. These four motifs were
included in the full model to capture persistent activation following stimulus removal and
long-term adaptation of the transcriptional response (Fig. 4B). Importantly, the model also
included synthesis and degradation of our transcriptional reporter. The abundance of this

transcriptional reporter was the experimental output used to train the model. The model
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input was a piecewise-linear function that corresponded to the temporal pheromone
stimulation profile. Full details of the mathematical model including the set of differential
equations that describe the system are presented in Materials and Methods.

Below we describe the data sets used to train the model and present results for
the model’s performance. We used an evolutionary algorithm (Fig. 4C) to fit the model’s
28 parameters. For each parameter, we determined a biologically relevant range from
which the parameter values were selected (Supplementary Material). Each generation
of the evolutionary algorithm had 500 individual parameter sets that underwent selection,
crossover, and mutation. Over the course of 100 generations the total absolute error
(TAE) between the experimental data and the simulations converged (Fig. 4D and E).
Assessment of model performance
Signaling pathways represent nonlinear dynamical systems capable of responding on
multiple different scales. Therefore, we reasoned to develop a predictive model for
transcriptional regulation, it was critical to measure the system’s response to time
dependent pheromone concentrations with multiple different frequencies. To this end, in
addition to the single pulse data described above (replotted in Figs. 5A-F), we collected
data for periodic stimulation consisting of pulses of pheromone in which the on and off
intervals were the same length. The on-off durations used were 45, 60, 75, 90, and 120
(Fig. 5, G-K). We also included data for constant pheromone stimulation (replotted in Fig.
5L.) The model captured the varying durations of persistence after stimulus is removed
(Fig. 2D, gray curve) and long-term adaptation to stimulus under conditions of both

periodic and constant stimulus (Fig. 5). The model was also capable of capturing the
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dynamics of the MAPK activation profiles in response to constant stimulation and to a 90
min pulse of 50 nM pheromone (Fig. S2).
Regulation of response to prolonged stimulus
To understand how response to constant stimulus is regulated, we perturbed motifs that
are likely to affect the magnitude of the response and long-term adaptation. First, we used
the model to investigate the role of Ste12 auto-regulation in determining the magnitude
of the transcriptional response by eliminating motif 2. We found that some parameter sets
found by the evolutionary algorithm predict a dampened response in the absence of Ste12
auto-regulation (green and brown curves) while other parameter sets predict a response
similar to wildtype (purple curves) (Fig. 6A). To experimentally determine whether Ste12
auto-regulation in this system has a significant role in amplifying the response, we
replaced the Ste12 promoter with that of the promoter of the scaffold protein Ste5 (PSTES5-
STE12). We chose this promoter because it produces constitutive amounts of Ste12
similar to the basal amount from the endogenous promoter (Fig. $3) and is not subject to
auto-regulation by Ste12 (36). In cells containing the PSTE5-STE 12 mutation, the overall
transcriptional response was diminished, and long-term adaptation began ~50 min sooner
than for wildtype cells (Fig. 6A, triangles). These findings indicate Ste12 auto-regulation
is important for amplifying the response and affects the timing of adaptation. They also
suggest that Ste12 autoregulation counterbalances the depletion of Ste12 promoted by
Far1 (motif 1).

Next, we investigated the role of Far1 in long term adaptation. In the model, Far1

is involved in two signaling motifs. The first is the incoherent feedforward loop (motif 1)
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formed by MAPK activation of Far1, followed by active Far1 promoting the degradation of
Ste12. The second (motif 4) is the negative feedback loop formed by Ste12-dependent
expression of Far1. First, we used the model to predict the system’s response when Far1
is eliminated, which blocks both Far1-dependent mechanisms of adaptation (motifs 1 and
4). We found that some parameter sets predict no long-term adaptation in the absence of
Far1 (blue and brown curves); however, other parameter sets predict no difference from
wildtype (purple curves) (Fig. 6B). We reasoned that the interaction between the Digs
and Ste12 was responsible for long-term adaptation for those parameter sets still
exhibiting adaptation in the absence of Far1 (35). In the model, we allowed for the
possibility that complex formation with the Digs protects Ste12 from degradation. There
are two consequences of this protective complex (35). First, it ensures a large pool of
inactive Ste12 is maintained prior to pheromone stimulation. Second it provides for an
adaptive response. The basis for adaptation is that following exposure to pheromone, the
free Ste12 concentration transiently increases as Ste12 is released from the Digs, but
eventually returns to its pre-stimulus level (35). To test whether eliminating protective
binding has any effect on adaptation in our model, we set the degradation rate of Ste12
in the Dig/Ste12 complex equal to that of the degradation rate of free Ste12. With this
change, long-term adaptation was lost when the model was run using parameter sets that
predicted Far1 was not involved in adaptation (Fig. S4). To determine which of these
mechanisms is responsible for regulating long-term adaptation, we examined the

response of a far1A mutant strain. In this mutant the transcriptional output does not
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diminish over time (Fig. 6B, triangles) demonstrating that Far1-dependent degradation

of Ste12 is the primary mechanism of long-term adaptation.

To further constrain model parameters, we retrained the model including
experimental data for the PSTE5-STE12 and far1A mutants. The resulting parameter
sets better captured the responses of the pathway mutants than those used for
predictions (compare Figs. 6C and D to Figs. 6A and B), while maintaining similarly
good fits to the wildtype transcriptional responses to different pheromone stimulation
regimens (compare Fig. S5 to Fig. 5). The distribution of parameters associated with
both motifs narrows when the additional data are included in the training sets (compare
parameters kff, rate of Far1 dependent Ste12 degradation, and kfb2, rate of Ste12
autoinduction, in Fig. S6A and B). This demonstrates that including strategic pathway
perturbations in the training data can improve ability to identify biologically relevant
parameters.

Because elimination of Far1 disrupts both the incoherent feedforward and negative
feedback motifs (motif 1 and 4, respectively), we used the model to test if negative
feedback contributes to long-term adaptation. In the model, disruption of the incoherent
feedforward loop is equivalent to eliminating Far1 since promoting degradation of Ste12
is the only effect of Far1 on transcriptional response. However, we can use the model to
identify the role of negative feedback. When transcriptional induction of Far1 by Ste12
was eliminated (motif 4) some simulations predict a sustained response, but most
simulations still show adaptation (Fig. 6E). These results suggest that the incoherent

feedforward loop (motif 1) is the predominant mechanism for long-term adaptation of the
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transcriptional response. While the model did not require the induction of Far1 for long
term transcriptional adaptation, it is likely this feedback is required for one of the other
functions of Far1 in the mating response, such as gradient sensing or maintaining cell
cycle arrest.

Regulation of response to dynamic stimulus

To examine motifs that could contribute to persistence and further test the model’s
predictive power, we measured the system’s response to single 90-minute pulses of 50
nM pheromone in the presence of pathway mutants that perturb Ste12 autoregulation,
binding to DNA, or binding to the Dig1 and Dig 2 repressors. First, we eliminated Ste12
autoregulation (motif 2) as before by using the PSTE5-STE 12 mutation. While there was
a dampened response consistent with the response to constant stimulus, neither the
simulations nor the mutant response had any appreciable effect on persistence (Fig. 7A).
Second, we examined a mutation to one of the three pheromone responsive elements
(PRESs) within the FUS1 promoter that drives transcription of the GFP reporter. Ste12 has
been reported to bind at a synthetic promoter having the same PRE mutation with only
30% of the affinity that it binds to a synthetic promoter with the wildtype sequence (37).
This PRE mutation (PRE*-GFP) significantly reduced the maximal amplitude of the
transcriptional response (Fig. 7B, triangles). Using the best 10% of parameter sets found
from fitting to the wildtype, far1A, and PSTE5-STE 12 data, we predicted the response of
the PRE mutant by increasing the apparent dissociation constant by a factor of 3.33. The
resulting parameter sets accurately predict the response of the PRE*-GFP mutant (Fig.

7B).
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Finally, we examined the effect deleting the Dig1 and Dig2 repressors, which
causes Ste12 to be constitutively active. This deletion mutant showed high basal
expression and a slight increase in expression following pheromone induction (Fig. 7C,
triangles). We predicted the response of the dig1Adig2A mutant by setting the total Dig
concentration to zero. The model predicted a wide range of responses in the absence of
the Dig1 and Dig2 transcriptional repressors. Interestingly, the results could be clustered
into three groups (Fig. 7C, colored curves). The model predictions that showed high
basal transcriptional response (Fig. 7C, green curves) result from parameter sets in
which the degradation of Ste12 in complex with the Digs (kdegS12D) is similar to that of
the degradation rate of free Ste12 (kdegS12) (Fig. 7E). In this case the total amount of
Ste12 is the same in the dig1Adig2A mutant and wildtype reference. Removing the Dig
repressors generates more active Ste12 prior to pheromone stimulation, and, therefore,
higher levels of the reporter in the mutant. For model predictions in which the pre-
stimulation level of the fluorescent reporter does not increase significantly compared to
the wildtype reference (Fig. 7C, cyan curves), removing the Digs had two effects. For
these parameter sets, the degradation rate of Ste12 in complex with the Digs is reduced
(Fig. 7E). That is, the Dig repressors provide protective binding. Removing the Digs
exposes Ste12 for degradation, but also activates Ste12. When these two opposing
effects are balanced, the pre-stimulation level of active Ste12 in the dig7Adig2A mutant
is similar to that of wildtype, and, therefore, the expression level of the reporter does not
significantly increase. The parameter sets that fit the experimental data best had
intermediate degradation rates for Ste12 in complex with the Digs (Fig. 7E and Fig. 7C,

brown curves). These results are consistent with our previous analysis of Ste12
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dynamics that demonstrated that the Dig repressors provide some degree of protective
binding (35).

Another observation consistent with previous experimental observations is that
parameter sets best fitting the experimental results for the dig1Adig2A mutant (Fig. 7C,
brown curves) predict that the rate at which active Far1 is degraded (kdegPF1) is less
than that for inactive Far1 (kdegF1) (Fig. 7E) (38). Additionally, other parameters that
affect Far1-dependent degradation of Ste12 including the rate of Far1 dephosphorylation
(kp3) and rate of Far1 dependent degradation of Ste12 (kff) show significantly different
ranges for the three groups of parameter sets (Fig. 7E). The best fitting predictions show
modest attenuation of the transcriptional response resulting from the feedforward Far1-
dependent Ste12 degradation, consistent with the experimental results (Fig. 7C, brown
curves). The high responders (Fig 7C, green curves) have parameter values that
increase the abundance of Far1 resulting in a stronger effect of the incoherent
feedforward and consequently predictions of stronger transcriptional attenuation.
Conversely, the low responders (Fig. 7C, cyan curves) have parameter values that
rapidly degrade and deactivate active Far1 both of which reduce the effect of the
incoherent feedforward and consequently predict little to no transcriptional attenuation.
These results again illustrate the need to use targeted pathway perturbations to fully
constrain model parameters.

Because in the model, the only mechanism for transcriptional induction is
dissociation of Ste12 from the Dig repressors, the model is not able to capture the slight
pheromone-dependent induction seen in the dig1Adig2A strain. This induction may result

from pheromone-induced degradation of the transcription factor Tec1, a known binding
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partner of Ste12 (39). The slight pheromone-dependent induction in the dig1Adig2A strain
exhibits prolonged maximal expression after a 90-minute pulse of stimulus (72 min
persistence) compared to wildtype (43 min persistence). To further investigate how the
transcriptional repressors contribute to persistence, we perturbed motif 3 by increasing
the rebinding rate of Ste12 to the Digs in the model by 5-fold. In doing so, the average
persistence of the simulations decreased from 25 min to 13 min (Fig. 7D). This result
combined with the prolonged persistence when the transcriptional repressors are deleted
suggests that slow rebinding of the transcriptional repressors are a primary factor in the

persistent transcriptional response following stimulus removal.

Prediction of different stimulation profiles

To further test the model’s predictive power, we measured the response of cells exposed
to periodic stimulation at the same frequencies as shown in Fig. 5, but at a lower
pheromone concentration (Fig. 8, triangles). In response to 10 nM of constant
pheromone, the fluorescent reporter achieves the same maximum amplitude as the 50
nM case but takes 25 min longer to reach its half maximum amplitude (Fig. 8A). For short
pulses of stimulus (Fig. 8B), the amplitude of the response to 10 nM is considerably lower
than that to 50 nM for all pulses. However, for longer pulses (Fig. 8C) there is less of a
difference in the amplitude between the two doses. To simulate the lower pheromone
dose, the only modification we made to the model was to adjust the slope of the input
signal to match the slower production rate of the fluorescent reporter measured at 10 nM

constant pheromone. Using this adjustment to the input stimulus, all of the parameter sets
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that fit the 50 nM data accurately predicted the response to sustained and pulsed 10 nM
pheromone (Fig. 8, blue curves). This performance demonstrates that this model is
capable of capturing behaviors at different doses of stimulus despite only being trained

on a single dose.

DISCUSSION

A common way for cells to respond to changes in their environment is by regulating gene
expression. Because environmental conditions are dynamic and can show significant
variability, gene expression needs to be tightly regulated by the signaling pathways used
by cells to monitor their surroundings. This regulation, which typically takes the form of
feedback and feedforward loops, makes gene regulation an inherently non-linear process.
Therefore, predicting the response of these systems is not possible without the aid of
mathematical models. Developing predictive models is challenging for two reasons: 1)
these models tend to contain many parameters that are not directly measurable and
therefore must be estimated from experimental data and 2) these systems operate on
multiple time scales and, therefore, experimental data sets used to train the models must
capture the relevant time scales. To overcome both these obstacles, we developed a
research strategy that involved exposing yeast cells to single and periodic pulses of
mating pheromone. By varying both the duration and frequency of the pulses, we ensured
that the regulatory network that controls gene expression during the mating response was

probed on the relevant time scale and with sufficient temporal resolution to accurately
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perform parameter estimation. This systematic analysis revealed novel features of the
pathway and allow us to develop a mathematical model with predictive power.

Our analysis led us to the discovery of memory in the yeast mating response.
Specifically, we discovered that transcriptional regulation was sustained following
removal of pheromone, a property of the system that we refer to as “persistence”. Our
model revealed that this persistence was not due to positive autoregulation of Ste12 but
rather involves slow rebinding of the transcriptional repressors to Ste12. Persistent
signaling may represent an important design feature of the pheromone response
pathway. Yeast mating takes place in noisy environments where pheromone levels are
expected to fluctuate. Preparing for mating takes a significant fraction of the cell’s
resources. Therefore, once the decision has been made to commit to the mating, it is
important that the cell not “give up” if there is a transient loss of the pheromone signal.
Persistent signaling provides a mechanism to guard against this situation. Conversely, it
is also important that a cell not remain committed to mating indefinitely. This might explain
why persistent gene expression does not rely on positive feedback, which is capable of
generating an irreversible switch.

In the presence of sustained pheromone signals, it is probably beneficial for yeast
cells not to remain growth arrested when mating is unlikely to be successful. Such
adaptative behavior in the mating response has been observed previously (22, 40).
However, these studies were done in the presence of the protease Bar1, which degrades
pheromone, thus making it difficult to identify the predominate mechanism that underlies

transient signaling. Interestingly, our results revealed that in the absence of Bari,
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pheromone-induced gene expression is transient, whereas MAPK signaling is sustained.
Our model predicted two mechanisms could underlie this long-term adaptation, an
incoherent feedforward loop or protective binding. Further experiments revealed that the
incoherent feedforward loop involving Far1-dependent degradation of Ste12 accounts for
most of the long-term adaptation.

Our approach that combines mathematical modeling with experiments designed
to probe cellular response pathways over multiple time scales provides a general
framework for investigating gene regulatory motifs. First, we used experiments to narrow
the portion of the pathway responsible for the dynamic properties of interest. In our case,
these preliminary investigations revealed that both persistent signaling and long-term
adaptation occurred at the level of gene regulation and did not involve upstream signaling
components. Next, we developed a model incorporating known regulatory mechanisms
and narrowed parameter ranges to physiologically relevant values. We then performed
parameter estimation using an evolutionary algorithm applied to training data sets
spanning multiple timescales. The use of time-dependent stimuli covering multiple time
scales was essential for building a predictive model. When a subset of the data was used,
model parameters were significantly less constrained, and the model’s predictive power
was reduced. Additionally, training on data sets spanning multiple timescales revealed
the differences in timing of the signaling motifs. For example, the rebinding of the
transcriptional repressors and the incoherent feedforward operate on different timescales,

leading to decreased persistence after longer pulses of stimulus.
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We also note that successful model building is an iterative process. For example,
when fit only using wildtype data the model found two mechanisms of long-term
adaptation were consistent with the data. The model also predicted positive feedback
contributed to amplifying the signal but showed significant variability in the predicted
strength of this feedback. Strategic experiments using targeted mutants were then able
to identify the true mechanism of long-term transcriptional adaptation and quantify the
role of positive feedback. Including these results in the training data sets, further
constrained parameter values and allowed the model to accurately predict the system’s
behavior for lower pheromone concentrations and additional genetic perturbations.

Because gene editing and quantitative experimental approaches are becoming
increasingly more feasible in other cell types, including mammalian cells, we believe our
approach can be adapted to these systems. For example, such studies could reveal
important information about the dynamics of MAPK signaling pathways dysregulated in
diseases, including cancer, and ultimately suggest treatments for restoring proper

function.

MATERIALS AND METHODS
Plasmids, PCR alleles, and recombinant DNA procedures

Table 1 lists plasmids used in this study. Those that have been described
previously are listed with the corresponding reference. Standard recombinant DNA

procedures were used for construction of those plasmids described below (47). Table 2
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lists the sequence of oligonucleotides used for PCR fragment amplification, mutagenesis,
and DNA sequence confirmation involved in plasmid and strain constructions.

A fluorescent protein (GFP*) with a fast maturation time and an N-degron tag (Ubi-
YAK) that confers a short half-life was designed and characterized previously (28). The
plasmid pNC1146 carries a reporter gene in which the pheromone responsive FUST
promoter (PFUST) drives expression of the UBIYAKGFP* reporter gene in a cassette with
the S. pombe (Sp) HIS5 gene as a selectable marker and flanking sequences that target
integration to the URAS3-TIM9 intergenic region. To construct this reporter cassette
(URA3-PFUS1-UBIYAKGFP*-SpHIS5-TIM9), we first introduced a Pacl restriction
endonuclease recognition site 6 bp upstream of the ubiquitin (UBI) coding sequence in
the plasmid pNC1136 (28). This modification was accomplished using the Stratagene
Quick Change site-directed mutagenesis protocol (Stratagene, La Jolla, CA) with
pNC1136 as template DNA and oligonucleotides pNC1136QC(Pacl)_F and
pNC1136QC_R as primers. Next, a 1658 bp fragment encompassing the FUS1 promoter
flanked by Xhol and Pacl restriction endonuclease recognition sites was PCR amplified
using BY4741 genomic DNA as template and oligonucleotides FUS1(Xhol)_F and
FUS1(Pacl)_R as primers. pNC1136 modified with the Pacl site and the PCR amplified
DNA fragment were digested with Xhol and Pacl. The resulting 1646 bp Xhol-Pacl FUS1
promoter fragment (PFUST) was ligated to the 6553 bp Xhol-Pacl fragment from the
plasmid to generate pNC1146. DNA sequence analysis of pNC1146 using primers M13R,
1155, 1164, 1170, and 1231 confirmed the absence mutations in the FUST promoter

region.
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The plasmid pNC1152 (URA3-"FUS1(PRE™)-UBIYAKGFP*-°HIS5-TIM9) has the
same reporter gene cassette as described for pNC1146 except for a single base pair
substitution (C:G to g:c) in one of the PRE elements (underlined) that comprise the PFUS1
upstream activating sequence (UAS):

ATGAAACAAACATGAAACGTCTGTAATTTGAAACA to

ATGAAAgQAAACATGAAACGTCTGTAATTTGAAACA. This transversion substitution in

the consensus PRE was shown by Su et al. (19) to shift the equilibrium towards less
favorable binding to Ste12. The substitution mutation in the reporter gene cassette was
generated using the Stratagene Quick Change protocol (Stratagene, La Jolla, CA) for
site-directed mutagenesis with pNC1146 DNA as template, oligonucleotides 1175 and
1176 as primers and Phusion High Fidelity Polymerase (Thermo Scientific, Pittsburgh,
PA). DNA sequence analysis of the 5141 bp region encompassing the reporter gene
cassette in the isolate designated pNC1152 using oligonucleotide primers M13R, M13F
491, 953, 954, 1010, 1148, 1155, 1170, and 1231 confirmed the presence of the desired

mutation in the Prusi UAS and the absence of any additional mutations.

Yeast strains and genetic procedures

Table 3 lists yeast strains used in these studies. Media preparation and standard

yeast genetic methods for transformation, gene replacement, crosses and tetrad

dissection were as described in Amberg, Burke, and Strathern (42).

Strains constructed using the one step gene replacement method (43).
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URAS3 strain BY4741-64 was derived from ura3Ao strain BY4741 by transformation

with a 1580 bp fragment that was PCR amplified using primer pair 1202/1203 with
genomic DNA from the URAS3 strain D502-3C as template and selection on -Ura medium.

ura3A58 strain BY4741-65 was derived from BY4741-64 by replacing the URA3 allele

with the Hindlll fragment from pURA3A58 (provided to us by M. Resnick, NIEHS) and
selecting for the resulting Ura- phenotype using 5-FOA medium. This ura3A58 null allele
has a 58 bp deletion of an Apal-Stul fragment in the URA3 coding sequence. PCR
analysis confirmed the 58 bp deletion by using BY4741-65 genomic DNA as template
with primer pair 946/618, which fail to yield a product, and primer pair 946/947, which
yield a smaller product than the for the wildtype reference strain.

bar1A::hisG strainBY4741-66 was derived from BY4741-65, by using the EcoRI -Sall

fragment from pJGsst1 to replace the BAR1 locus with the bar1A::hisG-URAS3-hisG allele.
Replacement of BAR1 with hisG-URAS3-hisG was selected for after transformation by
growth on -Ura medium and confirmed based on super sensitivity of the resulting strains
to pheromone in halo assays and by PCR analysis using genomic DNA as template with
primer pairs 967/968 and 966/972. The bari1A::hisG allele was generated from the
resulting strains by selection on 5-fluororotic acid (5-FOA, 0.1% w/v) medium (44). This
medium provides a positive selection for isolates in which the URA3 marker is excised by
recombination within the direct hisG repeats (45).

PFUS1-UBIYAKGFPS,HIS5 and PFUS1(PRE*)-UBIYAKGFPSPHIS5 reporter gene

strains BY4741-68 and BY4741-169 were derived from BY4741-66 by transformation with

Sacl-Sall digested pNC1146 or pNC1152, respectively and selection on —His medium.
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The integration of the reporter gene cassette in each strain was confirmed by PCR
analysis using BY4741-68, and BY4741-169 genomic DNA as template with primer pair
867/1214.

fariAo::KanMX4 PFUS1-UBIYAKGFPSPHIS5 strain BY4741-130 was derived from

BY4741-68 by transformation with a 3.3 kb fragment that was PCR amplified using
BY4741-70 DNA as template with primer pair 1208/1209 and selection on G418 medium
(200 pg/ml). Replacement of the FART locus with the far1Ao::KanMX4 allele was
confirmed by PCR analysis using BY4741-130 genomic DNA as template with primer pair
1210/881.

dig2Ao::kanMX4 PFUS1-UBIYAKGFPSPHIS5 strain BY4741-110 was derived from
BY4741-68 by transformation with a 1972 bp fragment that was PCR amplified using
BY4741-29 genomic DNA as template with primer pair 1156/1157 and selection on G418
medium (200 pyg/ml). Replacement of the DIG2 locus with the dig2Ao::kanMX4 allele was
confirmed by PCR analysis using BY4741-110 genomic DNA as template with primer pair
868/881.
Strains constructed using the “Delitto Perfetto” approach (46).

PSTE5-STE12 Prusi-UBIYAKGFPSPHIS5 strain BY4741-103 was derived from

BY4741-68 by replacing the entire SAM35-STE 12 intergenic region (-1 to -485 from the
STE12 ATG codon) with 815 bp from the ARX71-STES5 intergenic region (-1 to -815 bp
from the STE5 ATG codon). This promoter replacement was chosen because STE5 is
expressed constitutively at levels comparable to STE12 basal expression (see below).

The first step for construction of this strain was to replace a 94 bp region that
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encompasses the STE12 UAS with the PCR generated ste12AUYAS::CORE-UK allele.
pCORE-UK (37) was the template for the first round of PCR synthesis with primer pair
1019/1091. The resulting PCR product served as template for the second round with
primer pair 1020/1093. Replacement of the STE12 UAS region with the CORE-UK
cassette was selected for on -Ura medium and confirmed by PCR analysis using genomic
DNA as template with primer pair 1194/881. In the second step, the ste12AUAS::CORE-
UK allele was replaced with a Pstes fragment generated by three rounds of PCR. Genomic
DNA was the template for the first round of PCR synthesis with primer pair 1121/1124.
The PCR product from the previous round served as template for second and third round
synthesis with primer pairs 1125/1127 and 1126/1128, respectively. The amplified 815 bp
from the STE5 intergenic sequence is flanked by primer derived sequences (61 bp on the
5’ end and 69 bp on the 3’ end) that target the PCR fragment to the STE12 locus. The
CORE-UK replacement was counter selected for on 5-FOA medium and verified by the
concomitant reversion to G418 sensitivity. PCR analysis using BY4741-103 genomic
DNA as template with primer pair 1194/1116 confirmed the integration at the STE12
locus. DNA sequence analysis of the resulting PCR product with the amplifying primers

confirmed the sequence fidelity of Psres driving STE12 expression.

Strains constructed using the PCR based gene deletion or modification method (47).

STE12-3xmyc::KanMX6 and Pstes-STE 12-3xmyc::KanMX6 strains BY4741-105 and

BY4741-132 were derived from BY4741-68 and BY4741-103, respectively by adding a

C-terminal triple myc-tag to the STE12 coding sequence. A cassette with the 3xmyc tag
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and the KanMX6 selectable marker was amplified using two rounds of PCR. In the first
round of PCR pYM4 (48) was template DNA with primer pair 1119/1110. The second
round PCR used the product of the first round as template with primer pair 1120/1111.
Insertion of the tag was confirmed by PCR analysis using BY4741-105 and BY4741-132
genomic DNA as template with primer pair 903/881. DNA sequence analysis of the
resulting PCR product with primers 903 and 1015 confirmed the sequence fidelity of the
tag.

digi1Ao::hyg strains BY4741-147 and BY4741-148 were derived from BY4741-110 and

BY4741-137, respectively by transformation with a 1890 bp PCR amplified dig1Ao::hyg
allele and selection on hygromycin B (200 ug/ml) (Sigma Aldrich, ) medium. The allele
was amplified in three rounds of PCR. In the first round of PCR, pCORE-UH was template
DNA with primer pair 1177/1179. The second round and third round of PCR used the
product of the previous round as template with primer pair 1178/1180 and 1181/1182,
respectively. Replacement of the DIG1 locus with the dig1Ao::hyg allele was confirmed
by PCR analysis using BY4741-147 and BY4741-148 genomic DNA as template with

primer pair 822/1148.

Cell Extract Preparation and immunoblotting

The following procedure was performed to determine the phosphorylation state
and relative amount of Fus3 and Kss1 in response to a pheromone stimulus. Cells either
untreated or treated with 50 nM a-factor for different durations (as described in the figure

legend) were harvested in TCA (5 % final concentration), washed with 10 mM NaNs and
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pellets frozen at -80 °C. To prepare cell extracts, glass-bead lysis in TCA was performed
as described before (49). DC protein assay (Bio-Rad, Hercules, CA) was used to
determine protein concentration. 25 g total protein was loaded per sample. Proteins
were resolved on 10 % SDS-PAGE, transferred to nitrocellulose and detected by
immunoblotting with Phospho-p44/42 MAPK antibodies at 1:500 (9101L, Cell Signaling
Technology, Danvers, MA), Fus3 antibodies at 1:500 (sc-6773, Santa Cruz
Biotechnology, Dallas, TX), and anti-G6PDH at 1:50,000 (A9521, Sigma-Aldrich, St.
Louis, MO). Immunoreactive moieties were detected by chemifluorescent detection
(Pierce ECL Plus, Thermo Fisher Scientific, Rockford, IL) of horseradish peroxidase-
conjugated (HRP) antibodies (anti-rabbit, 170-5046, Bio-Rad, Hercules, CA; anti-goat, sc-
2768, Santa Cruz Biotechnology, Dallas, TX; or anti mouse, A90-103P, Bethyl
Laboratories, Montgomery, TX) at 1:10,000. Blots were scanned using Typhoon Trio+
(GE Healthcare, Little Chalfont, UK) and band intensity was quantified using Fiji (National
Institute of Health).

The following procedure was performed to compare basal expression levels of
Ste12 under either the native pheromone inducible promoter or a noninducible
promoter, PSTE12 and PSTES5, respectively. Cultures of BY4741-68 (STE12, untagged),

BY4741-104 (STE12-3xmyc), and BY4741-133 (PSTE5-STE12-3xmyc) were grown to a
cell density of 1x107 cells/mL in YPD, and 10 mL of each were harvested by

centrifugation. The Ota protein extract protocol (Mattison et al., 1999) was followed to
yield cell lysates that were then mixed in a 1:1 ratio with SDS running buffer and boiled.

10 uL of each sample was run on an 8 % SDS-PAGE gel and transferred to nitrocellulose.
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The membrane was blocked for 1 hr at room temperature with 5 % milk in TBST. The
membrane was then incubated with 1:1,000 of the primary goat anti-cMyc antibody
(Bethyl Laboratories) in 5 % milk in TBST overnight at 4 °C. After washing in TBST, the
membrane was incubated in 1:10,000 HRP-conjugated rabbit anti-goat secondary (Santa
Cruz) in 10 mL of TBST with 200 yL 5 % milk in TBST for 1 hr. The membrane was
visualized using Western Lightning ECL Pro (PerkinElmer, Waltham, MA) and the
ChemiDoc MP imaging system (Bio-Rad). The membrane was washed in TBST and
incubated in 10 mL of stripping buffer at 65 °C for 45 min. The same protocol was then
followed with 1:50,000 rabbit anti-G6PDH (A9521, Sigma-Aldrich) for the primary and

1:10,000 goat anti-rabbit HRP-labeled antibody (170-5046, Bio-Rad) for the secondary.

Microfluidics

To generate time-dependent pheromone concentrations we used a microfluidics device
and robotic automation which is part of the Dial-a-Wave system developed by the
Laboratory of Dr. Jeff Hasty at USCD (50). The device consists of a narrow chamber
where cells are loaded and imaged, and two input ports; one containing pheromone and
the other only containing media. When one of the input channels is positioned higher than
the other, the fluid from that channel is at a higher pressure and flows into the chamber
housing the cells. By alternating the height of the input channels, we can turn pheromone
on and off in the chamber. The input channel also contained a 1:1,000 dilution of stock
Alexa Fluor 647 (Invitrogen) dye, which has a similar diffusion coefficient as pheromone.

The fluorescent signal is quantified in the chamber as the height of the input channels is
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alternated. Typically, it takes 2-5 min for the dye to equilibrate inside the chamber after
switching the channels. This is much faster than the timescale of transcriptional response
in the mating pathway. During the experiments, switching is automated using a step

motor. Detailed microfluidics can be found in a methods review (51).

Microscopy
All experiments were performed in a microfluidic device using cell culturing methods as
described in the supplement to Hao et al. (2008 Mol. Cell 30:649-656). Alexa 647 dye
was added to pheromone containing media to enable imaging of the chamber and
verification that dye (and by inference pheromone) turned on and off within less than 20
seconds. For experiments done at 50 nM constant pheromone and a single 200-minute
pulse of 50 nM pheromone time-lapse microscopy was performed using a Nikon Ti-E
inverted fluorescence microscope with Perfect Focus, coupled with Hamamatsu Orca-
flash 4.0 digital camera and a Lumen Dynamics C-Cite LED light source system. Images
were taken using a Nikon Plan Apo VC X60 oil immersion objective (NA 1.40 WD 0.17
MM). Images were taken every 5 minutes for pulses of stimulus and every 10 minutes for
constant stimulus in the brightfield and green channels. Images were acquired in the far-
red channel every other time point. The lowest LED intensity setting (5%) was used to
prevent photobleaching and phototoxicity. Cells were imaged for 20 min prior to exposure
to pheromone and for 10 hours thereafter

For all other experiments time-lapse microscopy was performed using a Nikon Ti-

E 2000 inverted fluorescence microscope with Prior stage, coupled with Hamamatsu
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Orcall Monochrome camera and a Prior Lumen200 light source system. Images were

taken using a Nikon Plan Apo VC X60 oil immersion objective (NA 1.40 WD 0.17 MM).

Image analysis

To improve the quality of segmentation images were edited in Imaged by first
subtracting the background, using the unsharp mask filer with a radius of 2.0 and a mask
weight of 0.5, using the Gaussian blur filter with a radius of 3.0, and finally subtracting the
background again. These images were then used to perform image segmentation using
SchnitzCells (52). The resulting segmentation was checked and corrected manually. The
individual cells were tracked based on the position of each cell’s centroid and used to
generate single cell traces of GFP fluorescence. All data is reported as the average of 90
or more single cell traces. For single pulses, analysis of wildtype and mutant strains was
performed including and excluding daughter cells born after stimulus was removed. The
comparison showed that excluding daughter cells did not change the average
transcriptional response. We also compared transcriptional induction of cells in the G1, S
and G2/M phases of the cell cycle when cells were exposed to 50 nM pheromone. This
comparison revealed that cells in all phases of the cell cycle respond to pheromone by
inducing transcription but those in S-phase respond more slowly than those in G1 and

G2/M (Fig. S7).

Model Development

30


https://doi.org/10.1101/2020.06.23.167205
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.23.167205; this version posted June 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Our experimental investigations revealed that the mechanisms responsible for
persistent gene expression following removal of pheromone must occur downstream of
MAP kinase activity. Therefore, we do not explicitly consider upstream signaling events
and start our model at the level of the MAP kinase. The following equations govern the

concentrations of inactive, [MAPK], and active, [ppMAPK], Fus3 and Kss1:

d[MAPK] kep [Ste12]MC
dt - ksynF3 KMAPK + [St@lZ]hc - kpls(t)[MAPK] (1 1)
+ky,2 [pPMAPK] — kg gr3[Fus3]
d[ppMAPK]
— = lypus(®) [MAPK] — k,,[ppMAPK] (1.2)

where ks, r3 is the constitutive synthesis rate of Fus3, kg.4r; is the MAPK degradation
rate, k,;s(t) is the pheromone dependent activation rate of MAPK, and the term
kep1[Ste12]™ /(Kyapk + [Ste12]") models synthesis of Fus3 due to Ste12 dependent
gene transcription.

Our model focuses on mechanisms that regulate Ste12-dependent gene
expression. The regulatory mechanism we consider are self-induction of Ste12 (positive
feedback), pheromone-dependent degradation of Ste12 (negative feed forward), and
Ste12 inactivation by Dig1/2. For simplicity, we assume that the concentration of Dig1/2
remains constant, and when in a Ste12-Digs heterodimer Ste12 is protected from
degradation. The equations that govern the concentration of free Ste12, [Ste12], and

Ste12-Digs heterodimer, [Ste12y,,] are given by:
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d[Ste12] N kep2[Ste12]"C
dt VT Ko, + [Stel2]he

k Farl
_kdeg512[5t€12] <1 + ffl[P ] >

k.1 + [pFarl] (1.3)
—kq1[Ste12](Digsy — [Ste12p44])

+ (ka2 [pPMAPK] + ko3)[Ste12p;46]

d|Stel2p;
% = ka1[Ste12](Digsy — [Ste12py]) (1.4)

_(kaz [ppMAPK] + ka3+kdeg512Digs)[St612Digs]

where kgyns1, iS the constitutive synthesis rate, k4.451, is the basal degradation rate of
free Ste12, k4.4s12pigs 1S the basal degradation rate of Ste12 in the Ste12-Digs complex,
the term k¢, [pFarl]/ky, + [pFarl] models the pheromone-dependent increase in the
degradation rate, which depends on active Farl, and the term
kpp2[Ste12]™ /Kspor, + [Ste12]™ model’s synthesis of Ste12 due to Ste12 dependent
gene transcription. The terms in the third and fourth lines of Eq. (3) and in Eq. (4)
represent the formation and dissociation of Ste12-Digs heterodimer. In this term, Digs;
represents the total Dig1/2 concentration, which is assumed to remain constant, k,, is the
association rate constant, krsa2 is the dissociation rate constant in the absence of

pheromone and k,,[ppMAPK] is MAPK dependent increase in dissociation rate.
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Since degradation of Ste12 is dependent on active Far1, our model includes Far1
dynamics. The equations that govern the concentrations of active Far1, [pFar1], and

inactive Far1, [Far1] are given by:

d[Far1l] _ ks [Ste12]h¢ + kolpFar]
dt o T [Stelzpe ¢ p3tPTAT
(1.5)
—k,4[ppMAPK][Farl] — kgegp1[Farl]
d[pFari]
— = ky4[ppMAPK|[Farl] — kys[pFarl] — kgegpr [pFari] (1.6)

where kg5 is the constitutive synthesis rate of Far1, k,; is the dephosphorylation rate
of active Far1, k,,[ppFus3] is the pheromone dependent rate of Far1 activation, kg.4r;
is the degradation rate of inactive Far1, k,.4pr; is the degradation rate of active Far1, and
the term k,s[Ste12]"¢ /K41 + [Ste12]"¢ models synthesis of Farl due to Stel2
dependent gene transcription.

The final component included in our model is GFP, which is expressed from a
FUS1 promoter. GFP is included so we can directly compare our experimental data with
the model. The equation that governs GFP, [GFP], synthesis and degradation are given

by:

d[GFP] ko, [Ste12]re
dr synerp ¥ Kopp + [Ste12]% kaegcrp

[GFP] (1.7)
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where kg, ncrp i the constitutive synthesis rate of GFP, k,.4¢rp is the degradation rate of
GFP, which is known as we used a short lived GFP with a well-established half-life, and
the term k,,[Ste12]"/K;pp + [Ste12]™ models synthesis of GFP due to Stel2

dependent gene transcription.

Modeling pheromone signal

In our model the pheromone signal comes in at the level of the MAPK, Fus3, which
is activated in a pheromone dependent manner. We model upstream activation of the
pathway as a piecewise linear function. We specify a slope m,,,, that describes the rate at
which signal activity increase following pheromone exposure and assume the signaling
turns of instantaneously following removal of pheromone. The maximum input signal
activity is kp1. For pulse trains of period p (on+off phase), the maximum input signal (s,,4x)

achieved during the simulation (s,,4,) Iis:
_ . (MonP
Smax = Kp1 min (T' 1). (2.1)

Then we use the following piecewise linear equation to describe the temporal signal

profile for periodic stimulus:

. p
s() = {mln(mon(t —Ip),1) t=Ipt< > +Ip 2.2)

0 otherwise
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where t is the time and I is the pulse number defined by floor(t/p).

For single pulses of stimulus, the signal is described by the following equation:

min(m,,(t —Ip),1) t<

s(t) =
0 t

A\
NIT oIS

Parameter estimation

To perform parameter estimation, we used an evolutionary algorithm. Evolutionary
algorithms have the goal of optimizing a solution to a problem and are inspired by
elements of biological evolution including recombination, mutation, and selection. In our
application we aim to optimize the fit of our model to experimental data by finding
parameter sets that minimize the error between the experimental and simulated data. We
implemented the algorithm using DEAP (Distributed Evolutionary Algorithms in Python)
which is a user friendly framework for building and executing evolutionary algorithms (53).

The evolutionary algorithm is broken down into three main functions: simulation,
scoring, and evolution. The algorithm is initiated by selecting parameter sets from
specified uniform random distributions. In the simulation function, these parameters are
used to simulate the model. In the scoring function, the difference between the simulation
and the experimental data is the quantified using the mean absolute error. In the evolution
function, the best parameters are chosen through a tournament. Then those parameters
go through mating and mutation. Mating was simulated using a two-point crossover

function and mutation was simulated using a polynomial bounded mutation function. The

35


https://doi.org/10.1101/2020.06.23.167205
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.23.167205; this version posted June 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

resulting parameter sets are then returned to the simulation function and the process
starts over again. The algorithm continues to optimize parameter sets for a specified
number of generations.

We performed all model fitting with 100 generations of 500 individuals because
these numbers were typically sufficient for convergence of the score function. The mating
and mutation functions were chosen because they worked best with synthetic data sets,
specifically to optimize models with hill functions. Similarly, the hyperparameters
(mutation rate, crossover rate, and tournament size) were selected based on their

efficiency in fitting the synthetic data set best.

Scaling experimental data

It was necessary to scale the experimental data sets to account for differences in
experimental conditions, such as light source and intensity. We first normalized the
wildtype time series for constant 50 nM a-factor to have a maximum of 1. Then all data
sets generated using 50 nM o-factor were scaled to align with the wildtype response
during the initial on phase of pheromone exposure. For example, the choice of scaling
factor for a 45 min pulse experiment was based aligning the first 45 minutes of this times
series with the response for the constant pheromone case.

For the pathway mutants, a series of constant stimulation experiments was done
in quick succession using the same microscope settings. In this experiment data were
collected for wildtype, far1A, dig1Adig2A, PRE*-GFP, and PSTE5-STE12 strains. The

wildtype data was multiplied by a scaling factor to align with the data used to train the

36


https://doi.org/10.1101/2020.06.23.167205
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.23.167205; this version posted June 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

model. The mutant responses were then multiplied by this scaling factor to correctly adjust
their starting and maximal values. The response of the each of the mutants to a 90-miunte
pulse of stimulus was then multiplied by a strain specific scaling factor to match the

corresponding scaled constant response.

Prediction response to low pheromone dose

To predict the low dose data set, we scaled the signal input signal on rate (m,,,)
by 0.3 based on an estimation of the difference in the slopes for the temporal response
to 50 nM and 10 nM constant pheromone. Using the parameter sets corresponding to the
best fits to the 50 nM data but changing m,,,,, we successfully simulated the 10 nM data

(Fig. 8, blue curves).

Predicting response of pathway perturbations

The model was used to predict the response of four mutations to the pathway,
far1A, dig1Adig24A, PRE*-GFP, and pSTE5-STE12. The far1A was described in the
model by setting all parameters related to Far1 expression, degradation, or activation
(ksynr1 kas, kps, kpakaegri, kaegpr1) €qual to zero. The dig1Adig2A was described in the
model by setting the total amount of Dig1 and Dig2 (Digs;) equal to zero. The PRE*-GFP
was described in the model by setting the apparent dissociation constant for Ste12
binding to the pheromone responsive element (PRE) of the GFP promoter (K;rp) equal
to 3.33 times the value given from the best fits corresponding to the reported the relative

competition strength of 0.3 (79). Finally, the pSTE5-STE12 was described in the model
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by setting the parameter responsible for Ste12 inducing its own transcription (k) equal

to zero.
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Figure 1. Schematic of the yeast mating response. The yeast mating response is
activated when mating pheromone binds to the G-protein coupled receptor (GPCR)
activating a heterotrimeric G-protein. The G-protein By dimer then activates a mitogen
activated protein kinase (MAPK) cascade, resulting in activation of two MAPKSs, Fus3 and
Kss1. Both kinases activate the transcription factor Ste12 by suppressing the activity of
the transcriptional repressors Dig1 and Dig2. Fus3 also activates Far1, which is
responsible for cell cycle arrest and promotes degradation of Ste12 (solid gray arrow).

Ste12 promotes the transcription of itself, Far1, and Fus3 (dashed gray arrows).
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Figure 2. Persistence in transcriptional response. (A) Images of cells with an
integrated fluorescent reporter that expresses short-lived GFP from the mating specific
FUS1 promoter exposed to constant stimulus in a microfluidic chamber. (B and C)
Quantification of the transcriptional response using fluorescence of the GFP reporter in
wildtype (BY4741-68) cells exposed to (B) constant stimulus and (C) stimulus pulses of
six different durations (45, 60, 75, 90, 160, and 200 min). (D) The mating transcriptional
response persists after a pulse of stimulus is removed, and as the pulse length increases
the persistence decreases. This persistence is quantified as the time after stimulus

removal until the response to drop 2.5% below the maximum transcription response and
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each point represents a biological replicate. The solid gray curve represents the mean
response from the model and the gray shaded region represents a 99.9% confidence
interval band, (E) Adaptation after stimulus removal for each of the six pulse durations is
compared by plotting the natural logarithm of the normalized transcriptional response.
The normalized response is the average fluorescence at time t after the maximal
response divided by the average fluorescence at the onset of adaptation. Assuming
exponential decay, the half-life associated with the rate of decreased transcriptional
response after stimulus removal is 98 + 9 min, compared to the 7-minute half-life of the
short-lived GFP reporter plotted as a solid green line. Fluorescence data are presented
as the average of the indicated number (n) of single cell traces from at least two

independent experiments normalized to the maximum response of constant stimulus.
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Figure 3. No long-term adaptation or persistence is present in MAPK activation.
Quantification of MAPK activation by immunoblotting with phospho-p44/42 MAPK
antibodies to detect active MAPK (pKss1 and pFus3), Fus3 antibodies to detect total
Fus3, and anti-G6PDH as a loading control for (A) constant stimulus and (B) a 90-minute
pulse of stimulus. Quantification of Western blots are presented as either (A) the mean
and individual data points from two experiments normalized to the average response after
60 minutes of stimulus exposure or (B) the mean + standard deviation from three
independent experiments. To compare between conditions, quantification of
immunoblotting is normalized so pKss1 and pFus3 are equal to 1 after 60 minutes of

stimulus.

49


https://doi.org/10.1101/2020.06.23.167205
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.23.167205; this version posted June 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

T O e (rer
N\ l I |
-_| (stet2)  (ster2) -0

Motif 1 - Incoherent ~ Motif 2 - Positive Motif 3 - Rebinding  Motif 4 - Negative

Feed Forward Loop  Feedback Loops of Repressors Feedback Loop
B C
00000000 cososcce [eeececee)
O secossce Selection  eoccoc00
—
o~ @D cocoo0o
0000000
a
l [ lCrossover
e} oo
000000
.
OO0C0e000 Mutation 00000000
©0C00000 QOEO0000

52-:

O .
' E

—

—

e

—
E

o -
n
o
Py
o

60 80 100
E Generation
O | gen0 gen 50 gen 100
o
GFP | =5 0 - < \
0 -f T T T T T T T T T T T
0 360 0 360 0 360
Time (min)

Figure 4. Model of the gene regulatory network. (A) Four important signaling motifs,
an incoherent feedforward loop in which phosphorylated Far1 promotes the degradation
of Ste12 (Motif 1), positive feedback loops where Ste12 promotes the transcription of itself
and the MAPK (Motif 2), slow rebinding of the transcriptional repressors (Dig1 and Dig2)
to Ste12 (Motif 3), and a negative feedback where Ste12 promotes the transcription of
Far1 (Motif 4). (B) The complete model incorporating all four motifs, which includes

MAPK, Far1, and Ste12 each in their active and inactive states as well as the
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transcriptional reporter GFP. The colored icons adjacent to arrows in the schematic
indicate the pathway components that increase each rate. (C) Schematic of evolutionary
algorithm (EA) used to fit the model to experimental data. This EA was run 2000 times
selecting the best of 500 individuals for 100 generations. (D) The total absolute error
(TAE) between the simulation and experimental data for the top 10% of 2000 independent
EA runs. Each line represents the lowest error of the 500 individual parameter sets. (E)
A comparison of the predicted transcriptional response (TR) of the top 10% of fits at
generations 0, 50, and 100 (gray lines) to experimental data (black circles) for constant

stimulus.

51


https://doi.org/10.1101/2020.06.23.167205
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.23.167205; this version posted June 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Transcriptional response

45 min pulse

available under aCC-BY 4.0 International license.

60 min pulse

75 min pulse

1.2
1.0
0.8
0.6 1
0.4 +

n=79

n=118

90 min pulse

E

160 min pulse

200 min pulse

n=182

n=92

n =236

90 min on-off

K 120 min on-off L

n=126 n =68

120

240 360

480 600 O 120 240 360 480 600 O 120 240 360 480 600

Time (min)

Figure 5. Model captures response to dynamic stimulation. Model simulations

generated using the top 10% of parameters found by the evolutionary algorithm (gray

lines) compared to the experimental data (circles) for wildtype strain (BY4741-68)

transcriptional response to (A-F) six different pulse durations (45, 60, 75, 90, 160, and
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200 min), (G-K) five different oscillatory stimulation profiles (45, 60, 75, 90, and 120 min
on-off), and (L) constant stimulus of 50 nM pheromone. Gray shading indicates when
mating pheromone is present in the time course. Experimental data is presented as the
average transcriptional response of the indicated number (n) of cells at the time stimulus

is first removed.
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Figure 6. Model predictions of response to sustained stimulus for mutants that
perturb signaling motifs. (A and B) Simulations (lines) using the best 10% of parameters
found by the evolutionary algorithm for two signaling network perturbations. (A)
Simulations in the absence of Ste12 autoregulation (STE712 endogenous promoter
replaced with that from STE5) predict a variety of responses ranging from no change
(purple lines) from the wildtype (circles) to a dampened response (green and brown lines).
Experimental data of the transcriptional response of the PSTE5-STE 12 mutant (BY4741-

103) shows a dampened response (triangles). (B) Simulations in the absence of the
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incoherent feedforward and negative feedback loops (Far1 removed) predict a variety of
responses ranging from no change (purple lines) from the wildtype (circles) to a persistent
transcriptional response (brown and blue lines). Experimental data of the transcriptional
response of the far1A mutant (BY4741-130) shows a persistent response (triangles).
Parameters from simulations that best capture the experimental results for the PSTES5-
STE12 mutant (green lines in A) and far1A mutant (blue lines in B) were selected and
used to predict the response of both signaling perturbations (brown lines in A and B). (C
and D) Model simulations (gray lines) generated using the top 10% of parameters found
by the evolutionary algorithm fit to wildtype (BY4741-68) (constant, single pulse, and
periodic stimulus), far1A (constant stimulus), and PSTE5-STE12 (constant stimulus)
training data compared to the experimental data for wildtype (circles) or (C) PSTE5-STE12
mutant and (D) far1A mutant responses (triangles). (E) Using the parameter sets shown
in C and D, simulations (blue lines) for elimination of only the negative feedback loop. For
most parameter sets, elimination of negative feedback exhibits long term adaptation

similar to wildtype (circles).
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Figure 7. Prediction response of pathway perturbations to transient stimulus. The
top 10% of parameter sets found by the evolutionary algorithm fit to wildtype (BY4741-
68), far1A (BY4741-130), and PSTE5-STE12 (BY4741-103) training data were used to
predict the response of pathway perturbations to a 90-minute pulse of stimulus. (A)
Predicted response of a the PSTE5-STE12 mutation that eliminates autoregulation of
Ste12 (blue lines) compared to experimentally determined response for the mutant strain
(triangles). (B) Predicted response of a PRE*-GFP promoter mutation that causes Ste12

to bind less tightly to the GFP promoter (blue lines) compared to experimentally
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determined response for the mutant strain (BY4747-169) (triangles). (C) Predicted
response of a dig1Adig2A double mutation that eliminates the transcriptional repressors
divided into three clusters, high basal response (green lines), low basal response (cyan
lines), and response that best fits the experimental data (brown lines) compared to
experimentally determined response for the mutant strain (BY4741-147) (triangles). (D)
Predicted response of faster rebinding of the transcriptional repressors (Dig1 and Dig2)
(blue lines) compared to wildtype response (circles). Wildtype response (circles) is
included on all panels A-D as a reference. (E) Analysis of parameter distributions within
each of the clusters shown in panel C for the rates of inactive Far1 degradation (kdegF1),
active Far1 degradation (kdegPF1), active Ste12 (kdegS12), Ste12 in complex with the
transcriptional repressors (kdegS12D), Far1 dependent degradation of Ste12 (kff), and
dephosphorylation of active Far1 (kp3). Significance values (*p < 0.5, **p < 0.1, and ***p
<0.01) were calculated using a t-test with a Bonferroni correction for multiple hypothesis

testing. Similar analysis for all parameters is available in the supplement (Fig. S7).
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Figure 8. Prediction of response to a different dose of stimulus. The top 10% of
parameter sets found by the evolutionary algorithm fit to all training data from wildtype
(BY4741-68), far1A (BY4741-130), and PSTE5-STE12 (BY4741-103) strain responses to

50 nM pheromone (gray lines) were used to predict the response of the wildtype strain
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(BY4741-68) to 10 nM pheromone (blue lines) for (A) constant and (B and C) two periodic
stimulation profiles (60 and 120 min on-off). Experimental data for 50 nM stimulus is

represented by circles and experimental data for 10 nM stimulus is represented by

triangles.
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Table 1. Plasmids.

Plasmid Allele Reference
pCORE-UK KIURA3::KanMX4 (46)
pCORE-UH KIURAS3::Hyg (46)
pEE98 fus3A6::.LEU2 (54)
pJGsst1 bar1A::hisG-URA3-hisG (55)
pNC1136 URA3-UASFUS1-UBI-YAK-GFP*-SPHIS5-TIM9 (28)
pNC1146 URA3-PFUS1-UBI-YAK-GFP*-5PHIS5-TIM9 This work
pNC1152 URA3-PFUS1*-UBI-YAK-GFP*-SPHIS5-TIM9 This work
pYM4 3xmyc::KanMX6 (48)
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Table 2. Oligonucleotides.

Oligo 1Sequence (5' to 3') Purpose

pNC1136Q | CCCACTTTACTTTAALTAATAGATTATGCAG Introduce a Pacl site into

C_F pNC1136

pNC1136Q | CTGCATAATCTATTAATTAAAGTAAAGTGGG Introduce a Pacl site into

C_R pNC1136

FUS1(Xhol | ATGCCTCGAGAATCTCAGAGGCTGAGTCTCA Amplify 1658 bp upstream of

)_F FUS1 ATG

FUS1(Pacl | ATGCCTTAATTAATTTGATTTTCAGAAACTTGATGGC Amplify 1658 bp upstream of

)_R FUS1 ATG

M13F TGTAAAACGACGGCCAGT Sequence pNC1136 and
pNC1152

M13R CAGGAAACAGCTATGAC Sequence pNC1136 and
pNC1152

618 CTTCAAACCGCTAACAATACC Confirm ura3A58 replacement of
URAS3

822 TTGGGCATTTAAGTCATCGT Confirm dig1Ao::hyg integration

867 CCTTCACCCTCTCCACTGACA Confirm PFus1-UBIYOKGFP-
SpHISS5 integration

868 ATACGCTGGGTTAGTCCAGTT Confirm dig2Ao::kanMX4
integration

881 AATCAGCATCCATGTTGGAA Confirm far1A0::kanMX4
inetgration

903 GAATCTCGGCCAAATGAAAA Confirm STE12-3xmyc-kanMX4
integration

946 CGCATATGTGGTGTTGAAGAA Confirm ura3A58 replacement of
URAS3

947 TGGCCGCATCTTCTCAAATA Confirm ura3A58 replacement of
URAS3

953 GTTGGCCATGGAACAGGTAG Sequence pNC1136 and
pNC1152

954 GTCAGTGGAGAGGGTGAAGG Sequence pNC1136 and
pNC1152

966 CTGCCTCTCCAGTTGTCATG Confirm bar1A::hisG-URA3-hisG
integration

967 CAGCAAAATAGCATTCCTTGG Confirm bar1A::hisG-URA3-hisG
integration

968 CAGCTCTTGCTTGCTCTGTG Confirm bar1A::hisG-URA3-hisG
integration

972 GTGCGTGATGATGACATTCC Confirm bar1A::hisG-URA3-hisG
integration

990 AATAGCTTGGCAGCAACAGG Confirm URAS3 replacement of
ura3o

1010 TCACCTTCACCCTCTCCACT Sequence pNC1136 and
pNC1152

1015 TGTCCTTGTTGTTTTCTTCTG Sequence STE12-3xmyc-kanMX4

1019 CGTCTCAATAGAAAAAGTGAAACAGATAAACCGCGCGT | Amplify 3326 bp

TGGCCGATTCAT ste12AVAS::CORE-UK
1020 ACTATTGGTTATTTGGACTTTCATCCTTGGTTCGTACG | Amplify 3387 bp
CTGCAGGTCGAC ste12AVAS::CORE-UK
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1047 ACTCAGCCCGAGAAAAAAGCA Confirm fus3A6::LEUZ2 integration
1048 ATTTCTTGACCAACGTGGTCAC Confirm fus3A6::LEUZ2 integration
1091 TACGAGTACTTCGATTTATGGTGTCGAGACCTTCGTAC | Amplify 3326 bp
GCTGCAGGTCGAC ste12AVAS::CORE-UK
1093 CGTAGTGGTACTATGTGCGAGAAAACTAGCGTACGAGT | Amplify 3387 bp
ACTTCGATTTAT ste12AVAS::CORE-UK
1110 CATAAATTCAAAAATTATATTATATCATGGATGGCGGC | Amplify 1863 bp STE12-3xmyc-
GTTAGTATC kanMX4 tag
1111 ATTCTGGCCCGCATTTTTAATTCTTGTATCATAAATTC | Amplify 1926 bp STE12-3xmyc-
AAAAATTAT kanMX4 tag
1116 CGCCGATTAACCTTAGCG Confirm PSTE5-STE12
integration
1119 GGTCCGATAAAAACCTTCCAGATGCAACCggatcctcet | Amplify 1863 bp STE12-3xmyc-
agaggtgaaca kanMX4 tag
1120 GGAGCTCATTCACTTGAGGTAGATACCAATCGAAGGTC | Amplify 1926 bp STE12-3xmyc-
CGATAAAAACC kanMX4 tag
1121 GAAAAAGTGAGCTCATCTCATCTCTTCTGCTGA Amplify 829 bp PsTE5-STE12
1124 GGACTTTCATTTAAAAGTTGTTTCCGCTG Amplify 829 bp PSTE5-STE12
1125 CCTCTGTTCTACTATTGGTTATTTGGACTTTCATTTAA | Amplify 887 bp PSTE5-STE12
AAGTTG
1126 CATTATTAGCTTGAACTTTTAAGATTTCCTCTGTTCTA | Amplify 887 bp PSTE5-STE12
CTATTGG
1127 GAAGTTTTCGTGTGTATAAATATATGAACTCTAGAGTG | Amplify 948 bp PSTE5-STE12
AGCTCATCTCATC
1128 CACTTTCAAGCTGTAGTATGTAAACGATATAGATGAAG | Amplify 948 bp PSTE5-STE12
TTTTCGTGTGTA
1148 AGGAGCCGTAATTTTTGCTT Sequence pNC1136 and
pNC1152
1155 GGATCCGTGATAACCACCTCTTAGCCTTAGCACAAGAT | Sequence pNC1136 and
GTAAGG pNC1152
1156 ATATGTCACAGCTTCATCACCCG Amplify 1972 bp dig2A,::kanMX4
allele
1157 ACCAACTGATCCTATCTAACTCTCCC Amplify 1972 bp dig2A,::kanMX4
allele
1164 CAAGGCCAAAACTATCAGCATCAACAACAGGGTCAGCA | Sequence pNC1136 and
GCAGCAACAAGG pNC1152
1170 GGAAGCCAAAGCTGATAATAAACTGGAGTGGCC Sequence pNC1136 and
pNC1152
1175 GGTGCGATGATGAAAgGAAACATGAAACGTCTG Mutagenesis of FUST PRE
1176 CAGACGTTTCATGTTTETTTCATCATCGCACC Mutagenesis of FUST PRE
1177 GTTTCTCAAAGAAGAAAATAGAARAGTGAGACCGCGCGT | Amplify 1774 bp dig1Ao::hyg allele
TGGCCGATTCAT
1178 GAATCAAATCAGTAACARATTTTGGTATTGTTTCTCAA | Amplify 1832 bp dig1Ao::hyg allele
AGAAGAAAATAG
1179 GTATGTAAGTTTATAAGTGCCTGTGTGGCTAcgtttte | Amplify 1774 bp dig1Ao::hyg allele
gacactggatggc
1180 CGTGTGTGAGTAGGTGAGTGTATGCGAGTGTATGTAAG | Amplify 1832 bp dig1Ao::hyg allele
TTTATAAGTGCC
1181 GCTTATACAGAAGAAACGCACTTAAAAAGAATCAAATC | Amplify 1890 bp dig1Ao::hyg allele
AGTAACAAATTTTGG
1182 GGTGTGCGAGTGAGAGTGTGTGTGTGAGTGCGTGTGTG | Amplify 1890 bp dig1Ao::hyg allele
AGTAGGTGAGTG
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1194 AGGAGTTTAGTGAACTTGCAAC Confirm ste12AUAS::CORE-UK
integration

1194 AGGAGTTTAGTGAACTTGCAAC Confirm PsTe5-STE12 integration

1202 GAAGGGCAACGGTTCATCATCTCAT Amplify 1580 bp of the URA3
locus

1203 GTTCTTTGGAGTTCAATGCGTCCATC Amplify 1580 bp of the URA3
locus

1210 GACATTGCACTTGCATCACTGTAGG Confirm far1A0::kanMX4
inetgration

1212 CTAGGGAAGACAAGCAACGA Confirm URAS3 replacement of
ura3o

1214 GATGTTAGCAGAATTGTCATGCAAGG Confirm PFus1-UBIYAKGFP-
SpHISS5 integration

1231 CTCATTGGCCTCCATGGCTC Sequence pNC1136 and
pNC1152

Base substitutions introduced by oligonucleotides are lower case, bold, and underlined.

Restriction recognition sites introduced by oligonucleotides are upper case and

underlined.
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Table 3. Strains used in this study.

Strain Genotype Reference or Source
Purpose (Model Perturbation)
BY4741 |MATa his3A1 leu2A0 met15A0 ura340 Parent strain (56)
BY4741- [MATa his3A1 leu2A0 met15A0 ura3A0 Yeast knockout collection (Invitrogen,
29 dig24,::kanMX4 Carlsbad, CA)
Source of dig2A::kanMX6 allele
BY4741- |MATa his3A1 leu2A0 met1540 URA3 This work
64 Restores URAS3 targeting region in the
BY4741 background
BY4741- |MATa his3A1 leu2A0 met15A0 ura3458 This work
65 58 bp Apal-Stul deletion in the URA3
coding sequence
BY4741- | MATa his3A1 leu2A0 met15A0 ura3458 This work
66 bar1A::hisG Eliminates Bar1 protease
BY4741- |MATa his3A1 leu2A0 met15A0 ura3A58 bar1A::hisG[This work
68 PFUS1-UBIYAKGFP-SPHIS5 \Wild-type reference PFUS1-
UBIYAKGFP reporter strain; Precursor
to BY4741-93,
-103, -105, -110, -130, -132, and 147
BY4741- [MATa his3A1 leu2A0 met15A0 ura3A0 Yeast knock out collection (Invitrogen,
70 far1o::kanMX4 Carlsbad, CA)
Source of far1y::kanMX4 allele
BY4741- |MATa his3A1 leu2A0 met15A0 ura3A58 bar1A::hisG[This work
100 PSTE12::CORE-UK::STE12 PFUS1-UBIYAKGFP- |Precursor to BY4741-103
SpHIS5
BY4741- |MATa his3A1 leu2A0 met15A0 ura3A58 bar1A::hisG[This work
103 PSTE5-STE12 Eliminates positive feedback
PFUS1-UBIYAKGFP-SrHIS5 (Fig. 4, motif 2)
BY4741- |MATa his3A1 leu2A0 met15A0 ura3A58 bar1A::hisG[This work
105 STE12-3xmyc::KanMX4 PFUS1-UBIYAKGFP- \Western blot analysis to establish
SPHIS5 basal STE12-3xmyc expression
BY4741- |MATa his3A1 leu2A0 met15A0 ura3A58 bar1A::hisG[This work
110 dig2A::kanMX4 PFUS1-UBIYAKGFP::5pHIS5 Precursor to BY4741-147
BY4741- |MATa his3A1 leu2A0 met15A0 ura3A0 bar1A::hisG- [This work
112 URA3-hisG Precursor to BY4741-114
BY4741- |MATa his3A1 leu2A0 met15A0 ura3A0 bar1A::hisG [This work
114 Precursor to BY4741-120
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BY4741- [MATa his3A1 leu2A0 met15A0 URA3 bar1A::hisG [This work

120 Precursor to BY4741-122

BY4741- [MATa his3A1 leu2A0 met15A0 ura3A58 bar1A::hisG[This work

122 Precursor to BY4741-137, -148 and -
152

BY4741- |MATa his3A1 leu2A0 met15A0 ura3458 bar1A::hisG|This work
130 PFUS1-UBIYAKGFP-SPHISS far1A::kanMX4 Eliminates Fus3 and Far1 dependent
negative feed forward (Fig. 4, motif 1)

BY4741- [MATa his3A1 leu2A0 met15A0 ura3A58 bar1A::hisG[This work

132 PFUS1-UBIYAKGFP-SPHIS5 PSTE5-STE12- \Western blot analysis to establish
3xmyc::KanMX4 basal PSTE5-Ste12-3xmyc expression

BY4741- |MATa his3A1 leu2A0 met15A0 ura3A458 bar1A::hisG|This work

137 PFUS1-UBIYAKGFP-5rHIS5 \Wild-type reference reporter strain

BY4741- |MATa his3A1 leu2A0 met15A0 ura3A458 bar1A::hisG|This work

147 dig1A::hyg dig2A::kanMX4 PFUS1- Eliminate repressor inactivation of
UBIYAKGFP::5pHIS5 Ste12 (Fig. 4, Motif 3)

D502-3C [MATA ade6 F. Sherman (University of Rochester,

Rochester, NY)
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