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Abstract

While the consequences of poor maternal diet on the offspring’s cardio-metabolic health have been studied in detail,
the role of the father’s diet on the health of his offspring is poorly understood. We used a known mouse model to
establish the impact of an isocaloric paternal low-protein high-carbohydrate diet on the offspring’s lipid metabolism.
Detailed lipid profiles were acquired from F1 neonate (3 weeks), F1 adult (16 weeks) and F2 neonate male and female
offspring, in serum, liver, brain, heart and abdominal adipose tissues by Mass Spectrometry and Nuclear Magnetic
Resonance. Using a purpose-built computational tool for analysing lipid metabolism as a network, we characterised the
number, type and abundance of lipid variables in and between tissues (Lipid Traffic Analysis), finding a variety of
alterations associated with paternal diet. These elucidate a mechanism for the defective physiological behaviour of
systems at risk of cardio-metabolic disease.

Introduction

Beyond the serious risk to their metabolic health, obesity in both men and women has long-term consequences for
their offspring through nutritional programming'“. There is increasing evidence showing that the nutritional
programming of offspring occurs through changes in lipid metabolism®® and leads to increased risk of cardio-
metabolic diseases (CMD)”". One contributor to obesity is excess carbohydrate intake. Specifically, high carbohydrate
diets have been associated with the emergence of CMD** and lower carbohydrate intake with improved recovery'” .
One possible explanation is that nutritional programming represents an adaptation to an unbalanced dietary intake in
which there is an excess of non-essential nutrients and a deficiency of essential nutrients. However, the effects of a
high carbohydrate diet on programming lipid metabolism are not understood. This led us to the hypothesis that a low-
protein-high-carbohydrate (LP-HC) diet would alter programming of lipid metabolism in offspring.

This hypothesis was tested by feeding an isocaloric, non-obesogenic LP-HC diet was fed to the (grand)sires of the
experimental groups (mouse model** ). This was designed to increase de novo lipogenesis; a high-fat diet would be
less useful as it would alter lipid intake as well as biosynthesis. Although the programming effects on lipogenesis were
expected to be focused on the offsprings’ liver, the products of lipid biosynthesis are typically distributed throughout
the organism quickly, especially triglycerides (TG)*. Testing this hypothesis therefore also required a tool for
analysing systemic lipid metabolism and distribution.

However, most computational tools developed to study metabolism are focused on one compartment, not to analyse
networks and none for lipid traffic* . Analysis of single tissues does not provide a complete picture of systemic
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programming effects. Furthermore, most of the current tools pivot on substrate-enzyme-product relationships to

allow for direct linkage to genes and proteins, rather than the local function of metabolites, making it impossible to
characterise a whole system. Equally, lipid metabolism is distinct from amino acid and nucleotide metabolism; lipids
are not polymers, vary greatly in structure and comprise components from unconnected sources. A network analysis
tool was therefore designed to characterise the number, type and abundance of lipids in and between tissues, referred
to as lipid traffic.

The novel lipid computational tool reported here, Lipid Traffic Analysis, was used to analyse lipidomics data from liver,
serum, brain, heart and adipose tissues (Fig. 1A). The connections between the tissues represented the major lipid
‘highways’ in the organism (Fig. 1B). Lipid Traffic Analysis identified altered lipid metabolism through a Switch
Analysis (which lipids were present and where) and an Abundance Analysis (quantitative differences between
phenotypes). Importantly, these analyses represent the state-of-the-art in characterisation of lipid metabolism across
organs.

We wanted to test the hypothesis that a higher carbohydrate intake in (grand)sires alters lipid metabolism in offspring
as this contributes to our understanding of dietary intake and metabolic programming® * and the effects of metabolic
disease across generations® in a model system. This gives us an insight into possible interventions to improve human
metabolic health in familial circumstances.

Results

A combination of Direct Infusion Mass Spectrometry (DI-MS??’) and phosphorus nuclear magnetic resonance (*'P
NMR* ), known as dual spectroscopy?, was used to identify and verify the abundance of lipid classes between the two
ionisation modes respectively (Fig. S1, NMR data for each compartment shown in Supplementary Information). This study
identified up to 586 lipid variables in positive ionisation mode and up to 564 lipid variables in negative ionisation mode
in liver, brain, heart and adipose homogenates and in serum.

Lipid Traffic Analysis: Design of a novel computational tool for the network analysis of lipid metabolism

The first stage in developing this computational tool was to categorise lipid variables according to where they were
found with respect to adjacent lipid compartments in the biological network (Fig. 1). Some lipid variables were found
in all compartments, others in two adjacent compartments and others in one compartment only (Fig. 2A). These we
refer to as A, B and U type lipids (or categories), respectively. Novel code written in R for identifying such lipids is
described in Methods and can be found in the Supplementary Information. The basis of these categories was that they
represented the intersections between lipid compartments, i.e. stations in the network. Distinct patterns of the
presence of lipid species that appear in adjacent compartments or ubiquitously can represent systemic responses.
Different axes between organs (e.g. Liver-Serum, Serum-Heart) can be considered and physiological metabolic
functions compared, that correspond to the fate or traffic of shared lipids. This relationship was measured in the
present study using unlabelled species as an average over longer periods, e.g. stage of development. These
categorisations of the lipids are then used to address lipid traffic analysis from two different perspectives (Fig. 2B),
namely a quantitative Abundance analysis and a binary Switch Analysis. Both of these represent novel analyses
presented in this work.

Switch Analysis

The Switch Analysis developed in the present study identified the lipids that are above and below the limit of detection
in a given compartment (U), between adjacent compartments (B type lipids, e.g. Liver-Serum axis) or ubiquitously (A
type lipids). This therefore represented lipids that were switched on or off with respect to a measurement threshold.
The Switch Analysis requires only straightforward lipidomics data rendered as relative abundance. The Switch
Analysis of TGs in the FIN group is shown in Fig. 3A. Pie charts show the number of TG variables in each phenotype.
Jaccard-Tanimoto coefficients (JTC, with accompanying p-values) were used to characterise the similarity between the
compared groups. The JTC coefficient indicated the proportion of variables that appeared in the two groups®*
whereas the p-value indicated what differentiated them; a p < 0'5 indicated there were variables unique to both groups,
whereas p > 05 meant that only one group could have any unique variables. Thus, a JTC of 0.67 with a p-value of 1
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indicated that two thirds of variables appear in both groups and that the other third of the variables only appeared in
one group.

We began by investigating TGs, as several of these are well established markers of de novo lipogenesis (DNL) and thus
easily affected by changes in lipogenesis. Major TGs on the Liver-Serum axis were also found on the Serum-Brain and
Serum-Heart axes in FIN NP-NC (control) mice. This led us to ask whether any of those variables were routed
differently according to phenotype. Specifically, it was observed that 17 more TG variables appeared on the Serum-
Brain axis in F1IN of the LP-HC group than the NP-NC group (Fig. 3A). We therefore tested the hypothesis that variables
found in the NP-NC (control) group Serum-Heart axis were also found in the Serum-Brain axis of the LP-HC group,
without also appearing in the Serum-Brain axis of the NP-NC group. Six such variables were found to be on the Serum-
Brain axis of the experimental group (LP-HC), implying that they were re-routed in this phenotype (Fig. 3B).

In the F1 Adults, for which we could include adipose tissue in the network, we found that all of the TG variables that
appeared on the Liv-Ser axis in F1A NP-NC also appeared on one or more of the Serum-Cerebellum, Serum-Right Brain,
Serum-Heart or Serum-Adipose axes for the NP-NC group (Extended Data Table 1).

The larger number of variables found on the Serum-Adipose axis in F1A adult NP-NC mice, and the larger number of TG
variables found on the Serum-Cerebellum and Serum-Right Brain axes suggested to us that TGs were re-routed from
the adipose to the CNS in F1 adults due to the low protein, high carbohydrate paternal diet(Fig. 4A). This was true for at
least two variables, DG(33:1) and TG(52:5) (Extended Data Table 2, columns 3-5). However, this left several variables
unaccounted for. Furthermore, there appeared to be a difference in the number of variables in the NP-NC and LP-HC
groups on the Liv-Ser axis (Fig. 4A). We therefore tested the hypothesis that a portion of the variables in the network
were associated with this difference. The seven variables that distinguished NP-NC from LP-HC on the Liver-Serum
axis of F1A (shown in pale green cells in Extended data table 2) were all either found in the Serum-Cerebellum/Right
Brain or Serum-Heart axes of the LP-HC phenotype, but not the NP-NC phenotype.

Trafficking of TGs was also investigated in F2N individuals (Fig. 4B). This analysis showed that there were a
considerable number of variables unique to the Cerebellum in the NP-NC group and not present in the LP-HC group.
The network analysis used in this study showed that these variables were not found elsewhere in the system. This is
remarkable because this tissue does not typically use FA for energy, raising the questions of why they are in the
cerebellum and why they are not in the LP-HC phenotype. 14 of the 20 TGs comprise FAs with an odd number of
carbons in the chain (Extended Data Table 3). This result forms part of a wider characterisation of the relationship
between fats and the CNS, with re-routing of TGs to the CNS from the heart in the LP-HC phenotype (Figs 3 and 4). A
close or complicated relationship of the CNS with energy supply by TGs is counter-intuitive because the principle
carbon source of the CNS is glucose and not fat, and even under starvation conditions, only a small proportion of the
ATP used in the CNS is made from energy released from primary metabolism of fats.

As the traffic of TGs differed between phenotypes, the hypothesis that phosphatidylcholine (PC) traffic was associated
with a LP-HC diet in (grand)sires across FIN, F1A and F2N groups was also tested. The results of network analysis in
F1N indicated the possibility of a re-routing of PC variables according to phenotype (Extended Data Fig. 1A). Specifically,
more PC variables were found on the Serum-Brain axis in the LP-HC group, where the opposite was the case for the
Serum-Heart axis. There were about four variables that distinguished the NP-NC Serum-Heart axis and the LP-HC axis,
all of which also distinguished the Serum-Brain axis in the LP-HC group from the NP-NC (Fig. 3B).

In the F1A network, 8 PCs were found on the Serum-Heart axis in the NP-NC group that were not found on the same
axis of the LP-HC group (Fig. 5A), of which two were re-routed to the CNS in the LP-HC (e.g. PC(43:2), Fig. 5B). We found
that PC(33:4) and PE(41:4) were only found in the LP-HC phenotype, whereas PC(42:4) was found throughout the NP-NC
phenotype but only in the LP-HC liver. This suggested there were several modulations to PC and PE metabolism
associated with this phenotype, and is consistent with long-standing evidence that PC is used as a means for
storing/transporting polyunsaturated FAs such as arachidonic acid*.
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PC traffic in the F2N network (Extended data Fig. 1B) was characterised by more PC variables being produced in the

control (NP-NC) group (Extended Data Table 4). Seven additional variables were found on the Liver-Serum axis of the
F2N NP-NC group. Several of these, PC(39:3, 40:4, 40:6, 41:4), were also found on the Serum-Cerebellum and Serum-
Right Brain axes (Extended Data Table 4), suggesting that the grandsires’ dietary balance influenced the biosynthesis and
distribution of phosphatidylcholine in F2 offspring.

Abundance analysis

Perhaps the most striking result from the Switch analysis (vide supra) is the association of the grandsire’s diet to the re-
routing of lipid variables from the Serum-heart axis to the serum-CNS axes. This was observed particularly clearly
with phosphatidylcholines (Figs 3 and 5) for FIN and F1A, with a distinct difference in the number of PC variables
trafficked to both the heart and CNS in F2N mice (Extended Data Fig. 1). This led us to the hypothesis that there would be
a change in the abundance of the ubiquitous PCs associated with the phenotype, i.e. the PCs found in all tissues would
have a difference in abundance between phenotypes. We designed a novel Abundance analysis to test this.

Two numerical dimensions were used in the Abundance Analysis. One of these describes the margin of the difference
in abundance between the two phenotypes (Eq. 1) and the other the magnitude of the difference (error normalised fold
change, Eq. 2). In these equations X is the mean of values for that variable in the control group (NP-NC), Xz is the
mean of values for the experimental group (LP-HC), ‘a’ is the standard deviation of the values of the NP-NC group and
‘b’ is the standard deviation of the values of the LP-HC group.

Margin change = Xp— X, Eq.1

os0f3)

( (a2 +b2)>
2

The margin difference is interpreted with a p-value calculated using a Student’s t-test (see Methods), whereas the fold
change has a built-in confidence interval through a calculation of the propagated error. The margin changes and
accompanying confidence intervals were used to identify the variables that describe the difference in lipid metabolism
between phenotypes. The magnitude change was used to quantify this.

Error normalised fold change = Eq. 2

The Abundance Analysis found that PE(40:2) and (40:3) were more abundant in the livers of the LP-HC group of FIN
mice (p = 00005 and 0:001, respectively). This was reflected in the abundance pattern in F2Ns, but not F1As (Error
normalise fold change, ENFC, plotted in Fig. 6A). PE(34:1) was less abundant in the livers of LP-HC F2Ns (p = 0:0021) and
PE(36:3) less abundant in the serum of LP-HC F2Ns (p = 0:0006), however they were in general more abundant in the CNS
of LP-HC F2Ns (ENFC plotted in Fig. 6B). Two commonplace PC isoforms (38:1 and 38:4) were both less abundant in the
CNS of LP-HC F2Ns (p = 00009 (Cerebellum) and 00015 (right brain) respectively), with mixed effects noted for PC(30:0
and 32:2) in the same tissues (p = 0001 and 0:002 respectively, ENFC plotted in Fig. 6B). Importantly, 38:1 and 38:4 are
commonplace and typical isoforms of PC found in the CNS, as are the PEs. When taken with the Switch Analysis results
(Figs 3 and 5), this suggests that commonplace isoforms of PC are rerouted away from the CNS and replaced by more
recondite ones, e.g. PC(39:2, 43:2), and PE (e.g. 36:3), in the offspring of fathers fed a high carbohydrate diet. The higher
abundance of PE(34:1) in the circulation of F2N (ENFC = 272, Fig. 6) and PEs(40:2, 40:3) in the liver of F2N (ENFC = 3-1,
15-8) without a consummate increase in the CNS suggests that despite the difference between phenotypes, PEs(34:1,
40:2, 40:3) are handled differently to PE(36:3) in LP-HC offspring.

It is also clear from the Switch analysis that triglycerides are trafficked differently in these two systems (Figs 3 and 4),
including evidence for TG variables being rerouted (Fig. 3). This led us to test the hypothesis that a higher
carbohydrate diet consumed by fathers altered de novo lipogenesis (DNL) in offspring. We elected to use a targeted
approach for testing this, using known markers of de novo lipogenesis (DNL)* and reference variables not associated
with DNL. The abundance of all DNL TGs was typically much higher in CNS tissue in the LP-HC group (Extended data Fig.
2A-C). This was especially clear in F1A individuals (Extended data Fig. 2B), where all of the DNL variables were much
more abundant in the Right Brain of LP-HC mice. The abundance of a dietary TG and a species made endogenously
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(TG(54:4) and cholesterol, respectively) were also higher in F1A the CNS. However, reference species not associated

with DNL such as phospholipids were not more abundant in the LP-HC phenotype (Extended data Fig. 2B), suggesting
that the change in lipid traffic is not restricted to DNL species only. These data are consistent with the switch analysis
(Figs 3 and 4).

Discussion

This study was motivated by the hypothesis that the ratio of protein and carbohydrate in the paternal grandsire diet
influences the lipid metabolism of their offspring. Detailed molecular lipid surveys of several tissues associated with
these two phenotypes (NP-NC, control; LP-HC, experimental) were analysed using a novel bioinformatics tool for lipid
metabolism. This showed that the number, type and abundance of lipid variables in and between tissues (known
collectively as lipid traffic) differed between phenotypes and generations. The intervention was focussed on dietary
intake expected to alter de novo lipogenesis and thus metabolic activity in the liver. A focused characterisation of the
lipid metabolism across two succeeding generations from sires fed in this way revealed that both triglyceride (TG) and
phosphatidylcholine (PC) metabolism were altered throughout the network by this dietary intake, and over two
generations. However, the changes to lipid traffic and biosynthesis do not appear to be restricted to species associated
with DNL.

In particular, the evidence for both TG and phospholipid variables being re-routed to the CNS from the heart and
adipose is striking. This shows that both the structural molecules and molecules for the supply of energy (TGs) are
associated with LP-HC programming. These results are important because they suggest a molecular mechanism that
contributes to the emergence of cardio-metabolic disease. The change in supply of phospholipids is consistent with
changes in the physical behaviour of the cardiovascular system that are associated with cardio-metabolic disease. A
change in the supply of TGs may also be consistent with pronounced molecular changes in the shift from fatty acid
oxidation to glucose metabolism associated with cardiac hypertrophy. Also relevant mechanistically is a larger role for
the developing CNS in TG metabolism than is generally understood. Evidence for changes to metabolic control as a
result of TGs crossing the blood-brain barrier is already known, through central leptin and insulin receptor
resistance®. Combined with evidence from the present study, a high carbohydrate diet in fathers may programme
their infants for insulin and leptin resistance. Furthermore, there is evidence to link changes to lipid processing in the
brain with metabolic disease (review*). Thus, the present study shows that the nutritional programming associated
with a non-obese phenotype tends towards metabolic disease. This suggests that unbalanced as well as excess
nutrition can result in altered metabolism over two generations. This is revealing because it offers a possible
mechanism for metabolic disorders in individuals with a healthy adipose volume.

The evidence of shifts in lipid metabolism in the Abundance Analysis (Fig. 6) from the present study suggest that the
chow diet fed to F1 offspring softens some of the effects of the low protein diet for the F2 generation. Specifically, the
pronounced increase in the abundance of PE(40:2, 40:3) in the livers of FIN LP-HC mice is lower in the F2N LP-HCs.
Similar patterns are observed for the ENFC of SM(36:1) and TG(48:0) between FIN and F2Ns (Extended Data Fig. 2). It is
not clear from the present study precisely what causes this, however with appropriate experimental design, markers of
programming and re-programming could be identified. Anabolic hormones such as insulin regulate the release and
reuptake of lipids from one organ to another, making Traffic Analysis a powerful tool in characterising the change in
lipid metabolism and accumulation®**2, Currently, these analyses are often limited to comparisons of blood plasma or
serum samples. The new method described here is therefore capable of uncovering new biological meaning in lipid
metabolism in timely topics, and relate lipids in different compartments in a way not possible for simple comparisons.

In conclusion, this study has shown that the hypothesis that lipid metabolism is altered in offspring as a result of
unbalanced dietary intake by grandsires is correct. The biosynthesis of both TGs and PCs is altered in the liver, with a
particular increase in TG traffic reaching the CNS. Furthermore, it is associated with all TGs and not exclusively those
associated with DNL. This work shows that a non-obesogenic high carbohydrate, low-protein diet consumed by fathers
influences lipid metabolism in offspring over at least two generations. Specifically, the distribution of both
triglycerides and phosphatidylcholines is altered in F1 and F2 generations. The network approach to the analysis of
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lipid metabolism reported here was essential for identifying changes in lipid metabolism that occur across pathways

(TG/PL) and with components from different sources (endogenous/dietary), however further work is required to
understand how the changes identified can be reversed.

Methods

Materials, animals, consumables and chemicals. Purified lipids were purchased from Avanti Polar lipids Inc.
(Alabaster, Alabama, US). Solvents and fine chemicals were purchased from SigmaAldrich (Gillingham, Dorset, UK) and
not purified further. Mice were purchased from Harlan Laboratories Ltd (Alconbury, Cambridgeshire, UK). Hormones
were purchased from Intervet (Milton Keynes, UK).

Animal model. All procedures were conducted in accordance with the UK Home Office Animal (Scientific Procedures)
Act 1986 and local ethics committees at Aston University. Animals were maintained at Aston University’s biomedical
research facility as described previously® and is shown in Fig. 1A in the context of the present study. Briefly, entire and
vasectomised 8 week old C57BL6 males were fed either control normal protein, normal carbohydrate diet (NP-NC; 18%
casein, 21% sucrose, 42% corn starch, 10% corn oil; n = 16 entire and 8 vasectomised males) or isocaloric low protein,
high carbohydrate diet (LP-HC; 9% casein, 24% sucrose, 49% corn starch, 10% corn oil; n = 16 entire and 8 vasectomised
males) for a period of 8-12 weeks. Diets were manufactured commercially (Special Dietary Services Ltd; UK) and their
composition described previously®.

F1 offspring generation. Virgin 8-week-old female C57BL/6 mice (n = 8 litters per treatment) were super-ovulated by
intraperitoneal injections of pregnant mare serum gonadotrophin (1 IU) and human chorionic gonadotrophin (1 1U)
46-48 hours later. Intact NP-NC and LP-HC fed males were culled by cervical dislocation after a minimum of 8 weeks on
respective diets. Sperm were isolated from caudal epididymi of NP-NC and LP-HC sires as described®* and allowed to
capacitate in vitro (37 °C, 135 mM NaCl, 5 mM KCl, 1 mM MgS0., 2 mM CaCl,, 30 mM HEPES; supplemented immediately
before use with 10mM lactic acid, 1 mM sodium pyruvate, 20 mg/mL™ BSA, 25 mM NaHCO;). Females were artificially
inseminated 12 h post human chorionic gonadotrophin injection with ~10” sperm and subsequently housed overnight
with a vasectomized C57BL/6 male fed either NP-NC or LP-HC diet. Females were weighed regularly (every 4-5 days)
for the detection of weight gain associated with a developing pregnancy. Four groups of offspring were generated,
termed NN (NP-NC sperm and NP-NC seminal plasma), LL (LP-HC sperm and LP-HC seminal plasma), NL (NP-NC sperm
and LP-HC seminal plasma) and LN (LP-HC sperm and NP-NC seminal plasma). The number of females inseminated,
pregnancy rates, gestation lengths and litter parameters have been reported®. In the current study, we focused on
tissues collected from F1 and F2 NN (NL-NC) and LL (LP-HC) groups as these provide a model for normal- and high
carbohydrate intake in humans, and in order to reduce complicating factors.

F2 offspring generation: 16-week-old F1 males (n = 6 males per treatment group; each from a different litter) were
mated naturally to virgin, 8-week-old female C57BL/6 mice acquired separately for mating with F1 males. Females were
allowed to develop to term and all dams and F2 offspring received standard chow and water ad libitum.

Tissue collection: F1 offspring were culled by cervical dislocation at either 3 (juvenile) or 16 (adult) weeks of age,
whereas all F2 offspring were culled by cervical dislocation at 3 weeks of age. Blood samples were taken via heart
puncture, centrifuged at 8k x g (4°C, 10 min) and the serum aliquoted and stored at -80°C. Liver, brain, heart and
adipose were dissected, weighed, snap frozen and stored at -80°C.

Stock solutions.

1. GCTU. Guanidine (6 M guanidinium chloride) and thiourea (1-5 M) were dissolved in deionised H;O together and
stored at room temperature out of direct sunlight.

2. DMT. Dichloromethane (3 parts), methanol (1 part) and triethylammonium chloride (0.0005 parts, i.e. 500 mg/L)
were mixed and stored at room temperature out of direct sunlight.

3. MS-mix. Propan-2-ol (2 parts) was mixed with methanol (1 part) and used to produce a solution of CH;COO.NH,
(75 mM).
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Tissue sample preparation and extraction of the lipid fraction. Whole tissue/organ samples were prepared and

extracted as described recently® *, Solutions of homogenized organ preparations were injected into a well (96 well
plate, Esslab Plate+™, 2:4 mL/well, glass-coated) followed by methanol spiked with internal standards (150 uL, internal
standards shown in Supplementary Table 1), water (500 uL) and DMT (500 uL) using a 96 channel pipette. The mixture
was agitated (96 channel pipette) before being centrifuged (3:2k x g, 2 min). A portion of the organic solution (20 uL)
was transferred to a high throughput plate (384 well, glass-coated, Esslab Plate+™) before being dried (N, ). When

4 x 96 well plates had been placed in the 384 well and the instrument was available, the dried films were re-dissolved
(tert-butylmethyl ether, 20 uL/well, and MS-mix, 80 uL/well) and the plate was heat-sealed and queued immediately,
with the first injection within 10 min.

Samples with a high concentration of triglycerides (TGs; e.g. adipose tissue) were also treated to concentrate the
phospholipid fraction so it too could be profiled?* *. A second portion of the organic phase from the extraction
(100 uL) of was transferred to a shallow plate (96 well, glass-coated) before being dried (N; (), washed (hexane,

3 x 100 uL/well) and re-dissolved (DMT, 30 uL). The samples were transferred immediately to the high throughput
analytical plate as above and dried (N ).

Direct Infusion Mass Spectrometry (DI-MS). All samples were infused into an Exactive Orbitrap (Thermo, Hemel
Hampstead, UK), using a TriVersa NanoMate (Advion, Ithaca US), for direct infusion mass spectrometry (DI-MS?).
Samples (15 pL ea.) were sprayed at 12 kV in the positive ion mode. The Exactive started acquiring data 20 s after
sample aspiration began. The Exactive acquired data with a scan rate of 1 Hz (resulting in a mass resolution of 100,000
full width at half-maximum [fwhm)] at 400 m/z). The Automatic Gain Control was set to 3,000,000 and the maximum ion
injection time to 50 ms. After 72 s of acquisition in positive mode the NanoMate and the Exactive switched over to
negative ionization mode, decreasing the voltage to -1'5 kV and the maximum ion injection time to 50 ms. The spray
was maintained for another 66 s, after which the NanoMate and Exactive switched over to negative mode with
collision-induced dissociation (CID, 70 eV) for a further 66 s. After this time, the spray was stopped and the tip
discarded, before the analysis of the next sample began. The sample plate was kept at 15 °C throughout the acquisition.
Samples were run in row order. The instrument was operated in full scan mode from m/z 150-1200 Da.

DI-MS Data processing. The lipid signals obtained were relative abundance (‘semi-quantitative’), with the signal
intensity of each lipid expressed relative to the total lipid signal intensity, for each individual, per mille (%o). Raw
high-resolution mass-spectrometry data were processed using XCMS (www.bioconductor.org) and Peakpicker v 2.0 (an
in-house R script”). Lists of known species (by m/z) were used for both positive ion and negative ionisation mode (~8k
species). Signals that deviated by more than 9 ppm were ignored, as were those with a signal/noise ratio of <3 and
those pertaining to fewer than 50% of samples. The correlation of signal intensity to concentration of plasma in QCs
(0.25, 0.5, 1.0x) was used to identify which lipid signals were linearly proportional to abundance in the sample type and
volume used (threshold for acceptance was a correlation of >0.75). Signals were then signal corrected (divided by the
sum of signals for that sample not including internal standards), in order to be able to compare samples unconfounded
by total lipid mass. All statistical calculations were done on these finalised values. Final signals files are in
Supplementary data, in the form of 32x csv files. ‘(PW)’ refers to adipose that was washed with petrol; the data from
petrol-washed samples were used for negative ionisation mode (in which phospholipids are measured) where
untreated samples were used for positive ionisation mode (in which triglycerides and their fragmentation products
were measured).

Lipid extraction and sample preparations for *P NMR. The extraction of larger sample volumes for NMR was based
on a method described previously® . Tissue homogenates were combined to give 5-10 mg of phospholipid per NMR
sample. The samples of serum and prepared brain tissues from all groups were pooled and GCTU (250 uL) added to
serum mixtures. Pooled solutions (5-8 mL) were diluted (DMT, 15 mL, Falcon tube) and made uniphasic (methanol,

15 mL). The mixture was agitated and diluted and made biphasic (dichloromethane, 10 mL) before centrifugation

(3-2k x g, 2 min). The aqueous portion and any mesophasic solid was removed and discarded, and the organic solution
dried under a flow of nitrogen. Samples were stored at -80 °C. Samples were dissolved in a modified* * form of the
‘CUBO’ solvent system** (the amount of dueteriated dimethylformamide d;-DMF was minimised). Stock solutions of
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the solvent consisted of dimethylformamide (3-5 mL), d,-DMF (1'5 mL), triethylamine (1-5 mL) and guanidinium chloride

(500 mg). Wilmad® 507PP tubes were used. Sample concentration was 5-10 mg lipids per sample (600 uL).

NMR spectrometer and probe. Lipid samples were run on a Bruker Avance Neo 800 MHz spectrometer, equipped
with a QCI cryoprobe probe. 1D Phosphorous experiments were acquired using inverse gated proton decoupling.
Spectra were averaged over 1312 transients with 3882 complex points with a spectral width of 14-98 ppm. An overall
recovery delay of 84 s was used. Data were processed using an exponential line broadening window function of 15 Hz
prior to zero filling to 32768 points and Fourier transform. Data were processed and deconvoluted using TopSpin 4.07.
Subsequent integrations above a noise threshold of 0:01% of the total *'P were used to establish the relative molar
quantity of a given phosphorus environment. A survey of *'P traces is in Supplementary Data.

Interpretation of profiling data and preparation of final lipidomics sheets. Dual spectroscopy® was used to
interpret lipidomics data. Specifically: *'P NMR data of hearts and livers from all generations and both phenotypes
were collected and assigned (according to refs**! %) and compared and found to be much more similar to one
another than other sample types (tissues/compartments). Only a small number of representative, pooled samples from
the CNS and serum were therefore run. One liver sample (F2N, NP-NC) was run twice, 48h apart, to assess degradation
within the sample. It was found that a small change in the abundance of lyso-PC was just measurable in this time,
suggesting that sample preparation and running (<72h) was sound. One large scale petrol-wash? was done on an
adipose sample (F1A, LP-HC). One large scale petrol-wash? was done on an adipose sample (F1A, LP-HC). These spectra
were used to check for sample degradation in handling (e.g. appearance of PA) and inform assignments of signals
measured using DI-MS. For example, serum has around 100x PC than PE, with very little or no PS, indicating that the
balance of probabilities for assignments falls on the PC rather than the isobaric PE (positive ionisation mode) or PS
(negative ionisation mode) isoform. These spectra were also used to interpret the difference in ionisation efficiency
between species. These data show that the ionisation efficiency of lyso-PC and lyso-PE are both very high in negative
ionisation mode, where that of sphingomyelin is under-represented in both ionisation modes.

Statistical methods. Univariate and bivariate statistical calculations were made using Microsoft Excel 2016, as were
calculations of Eq. 1 and 2. Graphs were prepared in OriginLab 2018 or Excel 2016 from mean (including Eq. 1) and
standard deviation or error-normalised fold change (Eq. 2) as appropriate. Eq. 1 and 2 were generated de novo in the
present study. Jaccard-Tanimoto Coefficients (JTCs) were used as a non-parametric measure of the distinctions
between lipid variables associated with phenotype(s)***. The associated p-values were calculated following Rahman et
al.”. The p-value associated with each J represents the probability that the difference between the lists of variables for
the two phenotypes occurred by random chance and should not be confused with p-values from Student’s t-test. The p-
values that are associated with the Student’s t-tests (Abundance Analyses) were interpreted using a corrected p-value
of 0:0021 based on 586 dependent variables*. Only lipid variables with a p-value below this and that were relevant to
the hypothesis were used.

Lipid Traffic Analysis. The tissues used were mapped to the known biological/metabolic network (Fig. 1). Lipid
variables in each compartment (lipid station) were categorised according to whether they are unique to it (U type
lipids), shared with one adjacent to it (B type lipids, uni- and bidirectional) or found in all compartments (A type
lipids), as shown in Fig. 2. Dimensions for the Abundance Analysis were calculated using Equations 1 and 2 (vide supra).
Variables were regarded as present if they had a signal strength >0 in 250% of samples of either phenotype group.

Novel code for the Binary Traffic analysis (for the Switch analysis) and Multinary Traffic Analysis (Abundance analysis)
was written in R(v3.6.x)*° and processed in RStudio(v1.2.5x). The full code can be found in the Supplementary Information.
Briefly, MS signals data in Excel-readable *.csv format was uploaded with removal of the metadata (organ, extraction,
plate location, enumeration of mass/charge ratios [m/z]), giving n (rows of observations) vs p (columns of lipids) of
signal data. Layered functions were used to identify which variables were present in all (A), adjacent (B) or single (U)
compartments. For each observation, the detection of the signal data commenced initially with FALSE representing no
lipid signal (NA) and TRUE representing abundance of a lipid (above a signal threshold). For a particular compartment
(tissue/pool/station), all observations were sampled into a single binary vector of presence and absences. The
detection was performed using non-redundant lipid names. The function Reduce(intersect, list (...)) represented the
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common lipids for a given axis. Matched lipids were obtained across each pool to identify the common intersection,

SetA(All). Positive and negative ionisation mode mass spectrometry data were run in series. The lists of lipids for the
NP-NC and LP-HC groups were processed for the common intersection giving SetA (A, ubiquitous lipid variables), SetB
(B, lipid variables found in two adjacent compartments) and SetU (U, unique, for lipid variables found in one
compartment but not its neighbours).
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Fig. 1. The mouse model and tissues used for lipid traffic analysis associated with de novo lipogenesis. Panel A, Schematic representation of the mouse model
showing the generation of programmed offspring across two generations. Panel B, the network that describes the lipid traffic associated with de novo lipogenesis
from the liver to termini (CNS, heart and adipose) via the serum. The termini represent traffic flow for structural purposes (CNS), fatty acid oxidation (heart) and
storage (adipose). This metabolic relationship between tissues was used as the structure of the network for all analyses in the present study. NP-NC refers to a
diet of normal protein-normal carbohydrate where LP-HC refers to a low protein-high carbohydrate diet. The NP-NC and LP-HC are the same as NN and LL
groups used in earlier studies*®. Adipose was only available for F1A groups, whole brain samples used for FIN groups, with separate right brain and cerebellum
for F1A and F2N.
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Fig. 2. Structure of Traffic Analysis for quantifying changes in lipid metabolism. Panel A, categorisation of lipids according to where they are found; B, flow chart
of Traffic Analysis showing the gross structure of the analysis. A, B and U are categories representing variables that appear in all compartments, in pairs of
adjacent compartments and in only one compartment, respectively. Subscripts to these categories are pairs of one-letter codes indicating the direction of the
traffic (reading left to right). Red connections show B-type lipid connections. Black connections show A-type lipid connections. The two strands of the flow chart
represent separate analyses that use the same R code (see SI). Equations for the Quantitative Analysis are shown in Eq.1 and Eq. 2.
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Fig. 3. Switch analyses of triglyceride variables in the neonatal F1 offspring (FIN) of fathers fed a normal (NP-NC) or a low-protein, high carbohydrate (LP-HC)
diet, measured by mass spectrometry in positive ionisation mode. Panel A, Traffic analysis of triglyceride variables; B, Switch analysis of triglyceride (measured in
positive ionisation mode) and phosphatidylcholine (measured in negative ionisation mode) variables in F1 neonatal mice re-routed from the Serum-Heart in the
control group to the Serum-Brain in the experimental group. TG and PC variables on the Serum-Heart axis in the control (NP-NC) group of F1Ns that are found on
the Serum-Brain axis of the experimental (LP-HC) group of FINs but not their Serum-Heart axis. The pie charts in the insert show the number of ubiquitous lipid
variables for that network, for each phenotype. Larger pie charts with J values represent lipids found in two adjacent compartments. Smaller pie charts with J
values represent lipids found in isolated in compartments. J represents the Jaccard-Tanimoto coefficient for the comparison, with accompanying p-value, as a
measure of the similarity between the variables identified in the two phenotypes for each comparison. The p-value shown represents the probability that the
difference between the lists of variables for the two phenotypes occurred by random chance. Cer, ceramide; Chol, cholesterol; DG, diglyceride (water-loss adduct
from fragmentation in source); LPC, lyso-phosphatidylcholine; LPE, lyso-phosphatidylethanolamine; LPG lyso-phosphatidylglycerol; PA, phosphatidic acid; PC,
phosphatidylcholine; PC-0, phosphatidylcholine plasmalogen; PE, phosphatidylethanolamine; PE-0, phosphatidylethanolamine plasmalogen; PG,
phosphatidylglycerol; PI, phosphatidylinositol; PS, phosphatidylserine; SM, sphingomyelin; TG, triglyceride.
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Fig. 4. Switch analyses of triglyceride variables in the adult F1 (F1A) and neonatal F2 (F2N) offspring of fathers fed a normal (NP-NC) or a low-protein, high
carbohydrate (LP-HC) diet, measured by mass spectrometry in positive ionisation mode. Panel A, F1 Adults (F1A); B, F2 Neonates (F2N). The pie charts in the
insert show the number of ubiquitous lipid variables for that network, for each phenotype. Larger pie charts with ] values represent triglyceride variables found
in two adjacent compartments. Smaller pie charts with J values represent triglyceride variables found in isolated in compartments. ] represents the Jaccard-
Tanimoto coefficient for the comparison, with accompanying p-value, as a measure of the similarity between the variables identified in the two phenotypes for
each comparison. The p-value shown represents the probability that the difference between the lists of variables for the two phenotypes occurred by random
chance. Cer, ceramide; Chol, cholesterol; DG, diglyceride (water-loss adduct from fragmentation in source); LPC, lyso-phosphatidylcholine; LPE, lyso-
phosphatidylethanolamine; LPG lyso-phosphatidylglycerol; PA, phosphatidic acid; PC, phosphatidylcholine; PC-0, phosphatidylcholine plasmalogen; PE,
phosphatidylethanolamine; PE-0, phosphatidylethanolamine plasmalogen; PG, phosphatidylglycerol; PI, phosphatidylinositol; PS, phosphatidylserine; SM,
sphingomyelin; TG, triglyceride.
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Fig. 5. Switch analyses of phospholipid variables in the adult F1 (F1A) offspring of sires fed a normal (NP-NC) or a low-protein, high carbohydrate (LP-HC) diet,
measured by mass spectrometry in negative ionisation mode. Panel A, all phosphatidylcholines; B, network diagram showing the distribution of PE(41:4) (dotted
line), PC(42:4) (dashed line), PC(43:2) (solid line). The pie charts in the insert show the number of ubiquitous lipid variables for that network, for each phenotype.
Larger pie charts with ] values represent PC variables found in two adjacent compartments. Smaller pie charts with ] values represent PC variables found in
isolated in compartments. ] represents the Jaccard-Tanimoto coefficient for the comparison, with accompanying p-value, as a measure of the similarity between
the variables identified in the two phenotypes for each comparison. The p-value shown represents the probability that the difference between the lists of
variables for the two phenotypes occurred by random chance. LPC, lyso-phosphatidylcholine; LPE lyso-phosphatidylethanolamine; PA, phosphatidic acid; PC,
phosphatidylcholine; PC-0, phosphatidylcholine plasmalogen; PE, phosphatidylethanolamine; PE-0, phosphatidylethanolamine plasmalogen; PG,
phosphatidylglycerol; PI, phosphatidylinositol; PS, phosphatidylserine; SM, sphingomyelin; TG, triglyceride.
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Fig. 6. Radar plots of the error normalised fold change in abundance of phosphatidylcholine and phosphatidylethanolamine lipid variables associated with a high
carbohydrate dietary intake of (grand)sires. Panel A, PE(40:2, 40:3) were identified as more abundant in FIN livers using statistical approaches, this was followed
through all generational groups;. Panel B, PC and PE variables whose abundance in the CNS changes in a manner associated with the dietary phenotype. The
white areas represent the 0 point and one division above and below this. The red areas represent values more negative, and the green areas values more positive
than this. ADI, adipose; BRA, brain; CEB, cerebellum; HEA, heart; LIV, liver; RiB, right brain; SER, serum. PC, phosphatidylcholine; PE, phosphatidylethanolamine.
*Sample treated with petroleum ether to concentrate phospholipid fraction (See Methods).
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Extended data
F1A Liv-Ser F1A Ser-Ceb F1A Ser-RiB F1A Ser-Hea F1A Ser-Adi
NP-NC NP-NC NP-NC NP-NC NP-NC
TG(33:00)° TG(33:00)° TG(33:00)°
TG(35:01)° TG(35:01)°
TG(48:01)°
TG(50:02)° TG(50:02)°
TG(50:03)° TG(50:03)°
TG(52:01)° TG(52:01)°
TG(52:02)° TG(52:02)° TG(52:02)°
TG(52:03)° TG(52:03)° TG(52:03)°
TG(52:05)° TG(52:05)° TG(52:05)°
TG(54:02)°
TG(54:03)° TG(54:03)°
TG(54:04)° TG(54:04)°
TG(54:05)° TG(54:05)°
TG(54:06)° TG(54:06)°
TG(54:07)°
TG(56:05)° TG(56:05)°
TG(56:06)°
TG(56:07)°
TG(56:08)°
DG(20:00)°
DG(26:00)°
DG(31:02)
DG(32:03)°
DG(33:01)° DG(33:01)
DG(34:02)° DG(34:02)° DG(34:02)°
DG(34:03)° DG(34:03)°
DG(36:01)
DG(36:05)°
DG(37:04)°
DG(40:04)° DG(40:04)° DG(40:04)°
DG(40:07)° DG(40:07)° DG(40:07)°
DG(42:04)° DG(42:04)°
DG(44:07)° DG(44:07)° DG(44:07)° DG(44:07)°
MG(20:03) @ MG(20:03) @ MG(20:03) °

Extended Data Table 1. Triglyceride variables on the Liver-Serum (Liv-Ser) axis in the control (NP-NC) group that also appear on the Serum-Cerebellum (Ser-
Ceb), Serum-Right Brain (Ser-RiB), Serum-Heart (Ser-Hea) or Serum-Adipose (Ser-Adi) axes of the control group. °Ammoniated adduct, *Protonated, water-loss
ion; *Sodiated adduct. DG, diglyceride (water-loss adduct from fragmentation in source); TG, triglyceride.
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Liv-Ser Ser-Adi Ser-CEB Ser-RiB Ser-Hea
LP-HC NP-NC LP-HC LP-HC LP-HC
DG(33:01)° DG(33:01)° DG(33:01)°
DG(35:01)° DG(35:01)* DG(35:01)* DG(35:01)*
TG(50:02)° T7G(50:02)° TG(50:02)°
TG(50:03)° TG(50:03)°
TG(52:01)° TG(52:01)°
TG(52:02)° TG(52:02)°
TG(52:05)° TG(52:05)°
TG(52:03)° TG(52:03)° TG(52:03)°
TG(54:03)° TG(54:03)°
TG(54:04)° TG(54:04)°
TG(58:08)° TG(58:08)°
TG(58:09)° | | TG(58:09)°

Extended Data Table 2. Triglyceride variables on the Liver-Serum (Liv-Ser) axis in the control (NP-NC) group of F1As that also appear on the Serum-Cerebellum
(Ser-Ceb), Serum-Right Brain (Ser-RiB), Serum-Heart (Ser-Hea) or Serum-Adipose (Ser-Adi) axes of the control group. *Protonated, water-loss ion; *Sodiated
adduct; "Ammoniated adduct. DG, diglyceride (water-loss adduct from fragmentation in source); TG, triglyceride.

F2N CEB
NP-NC

TG(37:00)°
TG(43:02)°
TG(43:03)*
TG(44:03)*
TG(45:03)°
TG(46:01)5

TG(47:04)5
TG(49:01)8

TG(49:03)°
TG(49:06)°
TG(54:11)°

DG(37:03)*
DG(38:04)*
DG(40:01)°
DG(40:02)°
DG(41:00)°
DG(42:01)°
DG(42:07)°
DG(42:07)*
DG(43:05)*

Extended Data Table 3. Triglyceride variables unique to the cerebella of normal protein-normal carbohydrate (NP-NC) F2N individuals. *Sodiated adduct;
*Ammoniated adduct; °Protonated, water-loss ion. CEB, cerebellum; DG, diglyceride (water-loss adduct from fragmentation in source); TG, triglyceride.
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F2N Liv-Ser F2N Ser-Ceb F2N Ser-Hea
NP-NC NP-NC NP-NC
PC(30:3)*
PC(36:3)*
PC(38:5)*
PC(39:2)*
P o=
PC(39:4)°
PC(39:7)*
PC(39:8)°
PC(40:6)°
PC(40:7)*
PC(42:4)¢
PC(44:2)*
PC(46:2)*

Extended Data Table 4. Phosphatidylcholine variables on the Liver-Serum (Liv-Ser) axis in the control (NP-NC) group of F2Ns that are also found on the Serum-
Cerebellum (Ser-Ceb) and/or Serum-Heart (Ser-Hea) axis of the same (NP-NC) group. *Chloride adduct; *acetate adduct. PC, phosphatidylcholine.
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Extended Data Fig. 1. Switch analyses of phosphatidylcholines in control (NP-NC) mice and a phenotype whose (grand)sires were fed a low-protein, high
carbohydrate (LP-HC) diet, measured by mass spectrometry in negative ionisation mode. Panel A, F1 Neonates (FIN); B, F2 Neonates (F2N). The pie charts in the
insert show the number of ubiquitous lipid variables for that network, for each phenotype. Larger pie charts with ] values represent PC variables found in two
adjacent compartments. Smaller pie charts with J values represent PC variables found in isolated in compartments. J represents the Jaccard-Tanimoto coefficient
for the comparison, with accompanying p-value, as a measure of the similarity between the variables identified in the two phenotypes for each comparison. The
p-value shown represents the probability that the difference between the lists of variables for the two phenotypes occurred by random chance. LPC, lyso-
phosphatidylcholine; LPE lyso-phosphatidylethanolamine; PA, phosphatidic acid; PC, phosphatidylcholine; PC-0, phosphatidylcholine plasmalogen; PE,
phosphatidylethanolamine; PE-0, phosphatidylethanolamine plasmalogen; PG, phosphatidylglycerol; PI, phosphatidylinositol; PS, phosphatidylserine; SM,
sphingomyelin; TG, triglyceride.
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Extended Data Fig. 2. Radar plots of the fold change in abundance of lipid variables (error-normalised) unrelated (rows 1 and 2) and related (row 3) to de novo
lipogenesis in mice. Panel A, F1 Neonate compartments; B, F1 adult compartments; C, F2 neonate compartments. The value given is the log of the mean of
experimental abundance values divided by the mean of control values, divided by the propagated error for that variable (Eq. 1). Values of 0 show no change
between phenotypes, negative values show lower in the experimental group (LP-HC offspring), positive values show increased abundance in the LP-HC offspring.
The white areas represent the 0 point and one division above and below this. The red areas represent values more negative, and the green areas values more
positive than this. ADI¥, adipose (petrol wash); BRA, brain; CEB, cerebellum; HEA, heart; LIV, liver; RiB, right brain; SER, serum. PC, phosphatidylcholine; PE,
phosphatidylethanolamine; PG, phosphatidylglycerol; PI, phosphatidylinositol; SM, sphingomyelin; TG, triglyceride.
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Supplementary Tables

Lipid Class Isoform Mass (M) Stock concentration (M)
Cholesteryl ester CE(18:0-ds ) 658.6603 3.80
Ceramide C16-d3; Ceramide 566.6928 4.40
Fatty acid C15:0-d29 FA 271.4076 9.23
Fatty acid C17:0-d33 FA 303.4635 8.25
Fatty acid C20:0-d3s FA 351.5484 7.13
lyso-Phosphatidylcholine lyso-PC(C14:0)-da 421.5481 5.93
Phosphatidic acid PA(C16:0-d5:/C18:1) Na* salt 704.6784 3.55
Phosphatidylcholine PC(C16:0-d31/C18:1) 789.7637 3.18
Phosphatidylethanolamine | PE(C16:0-d3:/C18:1) 747.7171 3.35
Phosphatidylglycerol PG(C16:0-d31/C18:1) Na* salt 778.7157 3.20
Phosphatidylinositol PI(C16:0-d31/C18:1) NH4* salt | 881.7441 1.13
Phosphatidylserine PS(C16:0-ds;) Na* salt 733.7794 3.40
Sphingomyelin SM(C16:0-d31) 733.7603 2.04
Triglyceride TG(45:0-d>9) 852.2314 293
Triglyceride TG(48:0-d3) 900.3167 2.78
Triglyceride TG(54:0-d35) 996.4851 2.50

Supplementary Table 1. List of internal standards used for lipid profiling in the present study.
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