

Differential Gene Expression Analysis and Cytological Evidence Reveal a Sexual Stage of an Amoeba with Multiparental Cellular and Nuclear Fusion

Yonas I. Tekle^{*§}, Fang Wang[§], Alireza Heidari, Alanna Johnson Stewart

¹ Dept. of Biology, Spelman College, Atlanta, Georgia, USA

§Equal contributions

*Corresponding Author: Yonas I. Tekle, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314---Telephone number: 404-270-5779; e-mail: ytekle@spelman.edu

24 Abstract

25 Sex is a hallmark of eukaryotes but its evolution in microbial eukaryotes is poorly elucidated.
26 Recent genomic studies revealed microbial eukaryotes possess genetic toolkit necessary for
27 sexual reproduction. However, the mechanism of sexual development in a majority of microbial
28 eukaryotes including amoebozoans is poorly characterized. The major hurdle in studying sex in
29 microbial eukaryotes is lack of observational evidence, primarily due to its cryptic nature. In this
30 study, we used a tractable fusing amoeba, *Cochliopodium*, to investigate sexual development
31 using stage specific Differential Gene Expression (DGE) and cytological analyses. Both DGE
32 and cytological results showed that most of the meiosis and sex-related genes are upregulated in
33 *Cochliopodium* undergoing fusion in laboratory culture. Relative gene ontology (GO) category
34 representations in unfused (single) and fused cells revealed functional skew of the fused
35 transcriptome toward DNA metabolism, nucleus and ligases that are suggestive of a commitment
36 to sexual development. While single cells GO categories were dominated by metabolic pathways
37 and other processes indicative of vegetative phase. Our study provides strong evidence that the
38 fused cells represent a sexual stage in *Cochliopodium*. Our findings have further implications in
39 understanding the evolution and mechanism of inheritance involving multiparents in other
40 eukaryotes with similar reproductive strategy.

41

42 **Key words:** Sexual reproduction, Parasexual, Amoebozoa, Meiosis, Karyogamy, Life cycle

43

44

45

46

47 **Introduction**

48 Sexual reproduction is ubiquitous and considered to have originated in the last common
49 ancestors of all eukaryotes; however, its evolution still remains a mystery particularly among
50 microbial eukaryotes [1-6]. Sexual reproduction can be defined as a stage in the life cycle
51 involving meiosis – a biological process that reduces the genome complement by one-half
52 (haploid); this is followed by fusion of these haploid cells (gametes), in a process commonly
53 known as fertilization, to form a diploid zygote. This definition is primarily based on
54 observations in macroscopic eukaryotes (e.g. animals and plants) that are usually dimorphic with
55 two distinct sexes. Sexual reproduction in macroscopic eukaryotes is well defined with
56 recognizable cellular and molecular signatures [5, 7]. While some variations of sexual
57 reproduction are generally known [1, 8], the nature or existence of sex in most microbial
58 eukaryotes is poorly documented [1]. Microbial eukaryotes including amoebozoans display
59 diverse quality of life cycles that involve various types of asexual reproduction and sexual stages
60 that are usually cryptic [1, 9, 10].

61

62 Recent comparative genomic studies of microbial eukaryotes including amoebozoans
63 demonstrate these microbes not only possess sex genes in their genomes, but also these genes are
64 actively being expressed [11-15]. These discoveries debunked the long-held view that microbial
65 eukaryotes were strictly asexual, and solidified the ancestral nature of sex in eukaryotes.
66 However, sexual development and mechanisms of sex in most of these putative sexual lineages
67 is still not well understood [1, 16]. The main hurdle in understanding sexual development in
68 microbial eukaryotes has been a lack of observed sexual activity, probably as a result of their
69 complex and diverse life cycles [9, 17]. Sources of difficulty in observing sexual phases include

70 unculturability under normal laboratory conditions, poorly characterized life cycles, and in some
71 cases the occurrence of sex during a dormant cyst stage, when the cell becomes condensed and
72 opaque, precluding observation or manipulation [18-20]. We recently described a life cycle of a
73 lens-shaped amoeba (*Cochliopodium*) that undergoes extensive multiple cellular and nuclear
74 fusion during active growth, vegetative, stage [16, 21]. *Cochliopodium* possesses a full
75 complement gene toolkit for sex including those that are exclusive for meiosis [11, 13]. This
76 amoeba was suggested to be a likely useful model organism to circumvent some of the hurdles in
77 studying sexual development in microbial eukaryotes with a similar life cycle [16].

78

79 The supergroup Amoebozoa includes lineages with diverse life cycles that may or may
80 not involve observable sexual stages. Few lineages of amoebozoans have been confirmed to
81 engage in sexual reproduction [22-28]. Recent genetic studies demonstrate that all amoebae
82 studied possess or express most of the genes that are recognized as exclusive for sex, albeit
83 scanty physical evidence [11]. The four most common life cycle strategies that are assumed to
84 involve sexual stages in microbial eukaryotes are found in the Amoebozoa. These include those
85 that form sexual cysts [18, 19, 28], amoeboid or ciliated reproductive cells [29], trophozoite
86 (vegetative) fusing cells [16], and those that alternate between sexual and asexual morphs [30].
87 In this study, we will elucidate the sexual development of one of the reproductive strategies with
88 a tractable amoeba, *Cochliopodium*, using cytology and stage-specific differential gene
89 expression (DGE) analysis.

90

91 *Cochliopodium* species grow as single cells with a single nucleus through most their life cycle.
92 However, in sufficiently dense cultures they fuse forming larger plasmodial stages, their nuclei

93 migrate within the plasmodium, come into contact and fuse, forming ployploid nuclei [16, 31,
94 32]. Subsequently, the merged nuclei undergo division, presumably resulting in a new mix of
95 chromosomes in the individual amoebae produced by division during plasmotomy (cell fission).
96 The molecular aspects of this behavior has not been studied. Similar cellular fusion behavior is
97 also known among other lineages belonging to the three major subclades of Amoebozoa [1, 16].
98 Cellular fusion and nuclear depolyplodization is also reported in other eukaryotic lineages
99 including some mammalian and cancer cells [33, 34]. This cellular behavior is likely ancestral in
100 eukaryotes. Elucidating the molecular aspects of this interesting process in *Cochliopodium* as
101 model eukaryotic microorganism will give insights how microbes with dramatically different life
102 cycles use unorthodox ways to adapt to, and evolve in, changing environments. In this study, we
103 present robust evidence from both cytology and DGE demonstrating the fused stage in
104 *Cochliopodium* is sexual. Fused amoebae are observed to express meiosis genes and other
105 cellular processes that are consistent with sexual development. Our findings will also have
106 implications in understanding the evolution and mechanism of inheritance involving multiple
107 parents in *Cochliopodium* and other eukaryotes that use a similar reproductive strategy.
108

109 **Methods**

110 **Sample collection, Single-cell transcriptome sequencing and assembly**

111 Cultures of *Cochliopodium minus* (syn. *C. pentatrichfurcatum* [35]) were grown in plastic
112 petri dishes with bottled natural spring water (Deer Park®; Nestlé Corp. Glendale, CA) and
113 autoclaved grains of rice as a food source. Cultures were maintained until they reached
114 maximum-growth density that we have consistently achieved in our laboratory cultures. Unfused
115 (single) cell samples were collected during the first week of culturing before cellular fusion was

116 at its peak (see [16]). Fused cell samples were collected during the steady state of cellular fusion
117 and fission (8-12 days). Fused and single-cell samples were primarily distinguished by their cell
118 size, since fusion status based on ploidy or number of nuclei is difficult to achieve when working
119 with live cells of *Cochliopodium*. Although this is not an ideal approach, based on our previous
120 experience this method gives a rough starting point to classify cells as fused/single [16].

121 Individual cells (single or fused) were picked using a platinum wire loop (tip) or mouth pipetting
122 techniques and transferred to a clean glass slide or sterile agar medium to wash off bacteria from
123 the amoeba. Cleaned individual amoeba cells (1-10) were transferred into 0.2-mL PCR tubes and
124 processed for sequencing using Seq® v4 Ultra® Low Input RNA Kit (Takara Bio USA,
125 Mountain View, CA) as described in Wood et al. [13]. We also isolated total RNA from 100
126 cells, from both single and fused conditions, using NucleoSpin® RNA kit (Macherey-Nagel,
127 Düren, Germany) according to the manufacturer's protocol. The total RNA was processed for
128 sequencing using the SMART-Seq® kit as above. For sequencing, libraries were prepared from 1
129 ng of cDNA using the Nextera® XT DNA Library Preparation Kit (Illumina Inc., San Diego, CA
130 USA) according to the manufacturer's instructions. Libraries were quantified on the Qubit®
131 Fluorometer using the DNA HS Assay. All libraries were sequenced at Yale Center for Genomic
132 Analysis on a HiSeq 2500 in paired-end, high-output mode with 75 bp reads.

133

134 FastQC (<http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>) was used to inspect
135 reads of each sample for quality and length. Illumina adaptor sequences and low quality reads
136 with score below 28 were removed using BBDuk (Joint Genome Institute, U.S. Department of
137 Energy, Walnut Creek, CA USA). The trimming of low quality reads from both ends ("rl" trim
138 mode) is based on the Phred algorithm implemented in BBDuk. Using the same program, we

139 also removed reads shorter than 35 bp after trimming. The remaining reads were assembled *de*
140 *novo* using rnaSPAdes-version 0.1.1 [36] with default parameters for gene inventory and DGE
141 purposes.

142

143 **Differential gene expression (DGE) analysis**

144 To quantify the abundances of transcripts in our samples, a rapid and accurate program
145 Kallisto [37] was used, which takes advantage of pseudoalignment procedure robust to error
146 detection. Since there is currently no reference genome data available for *Cochliopodium*, a
147 comprehensive de-novo transcriptome was assembled from multiple samples of *Cochliopodium*
148 *minus* [35, 38-40]. This master transcriptome was used for mapping the sequencing reads to
149 generate the counts for each sample. The quantification data was then imported using tximport
150 package in R for downstream DGE analysis. Two DGE tools, DESeq2 [41] and EdgeR [42] that
151 were shown to perform well for smaller number of biological replicates, were initially applied
152 [43]. Based on the results of this initial analysis we designed two additional experimental
153 conditions by selecting samples that showed good clustering and removing bad quality samples
154 (see results). DESeq2 and EdgeR analyses of these experimental conditions showed consistence
155 results with EdgeR showing 91% significantly differentially expressed transcripts overlap with
156 DESeq2 analysis (data not shown). Since DESeq2 has a better moderation in log fold change
157 (FC) for low count transcripts [43], all remaining analyses were performed in DESeq2 packages
158 in R. Fragments per kilobase of transcripts per million base pairs sequenced (FPKM) was used to
159 estimate the level of gene expression. The Benjamini-Hochberg algorithm was used to adjust the
160 resulting p-values for multiple testing with false discovery rate (FDR<0.05) [44]. Genes with an
161 adjusted p-value (padj) of < 0.05 was determined as statistically significant. Up- and down-

162 regulations of the significantly differentially expressed genes (DEGs) were determined using a
163 threshold of 1.5 for log2 FC. Gene clustering of all the DEGs was plotted using function
164 pheatmap in R.

165

166 **Gene Inventory and Functional annotation with Blast2GO**

167 To check the expression of potential sexual related genes in different cell conditions,
168 BLAST program was used to search our transcripts with a set of sexual related ortholog groups
169 (OG) obtained from OrthoMCL database (<http://www.orthomcl.org/orthomcl/>) with E-value cut-
170 off of 10^{-15} . The best hits were chosen and checked manually for paralogs using phylogenetic
171 tree. We also used HMMER [45] based homology search as a further confirmation of the genes
172 discovered in our BLAST results. A total of 94 genes were investigated, which included 15
173 meiosis specific genes, 29 fusion and karyogamy related genes and 50 general sex-related genes
174 based on the previous studies of amoebae [11-13]. The expression of the genes detected in our
175 transcriptome were then further investigated in terms of their fold change and adjusted p-value
176 among different cell conditions using functions in DESeq2 R packages.

177

178 To understand the biological activities among different cell conditions, functional
179 annotation of DEGs identified between fused and single samples were performed using
180 Blast2GO [46]. Blast2GO is a bioinformatics tool for high-quality protein functional prediction
181 and provides Gene Ontology (GO) annotation visualization and statistical networks for genetics
182 research. The DEGs that were upregulated in fused and single samples were analyzed using
183 Blast2GO for functional annotation. We first used CloudBlast and InterProScan to search
184 homologs to the DEGs against non-redundant databases from NCBI. GO terms were then

185 retrieved by mapping the hits to the functional information stored in the GO databases. Finally,
186 the obtained GO terms were assigned to the query genes for annotation. InterProScan GOs
187 obtained through motifs/domains were also merged with the results of Blast to the annotations.
188 Enzyme Codes (EC) were also provided when EC number or equivalent GOs are available.
189 Statistical information of the function analysis was checked using the ‘charts’ and ‘graphs’
190 functions in Blast2GO. Enrichment analysis was performed to check GO terms that were
191 abundant with DEGs upregulated in single or fused cells as test set and all of the DEGs as
192 reference set.

193

194 **RNA in situ hybridization (RNA-ISH) of selected sex genes**

195 We used a highly streamlined RNA in situ hybridization, RNAscope (Advanced Cell
196 Diagnostics), method to detect six representative sexual related genes in fixed amoeba cells in all
197 stages. These target genes include meiosis specific (Spo11, Mer3, Dmc1, Pch2), karyogamy
198 (Kem1) and plasmogamy (Bni1). RNAscope involves a series of steps including pretreatments,
199 hybridization, signal amplifications, and detection of target genes. The RNAscope[®] Multiplex
200 Fluorescent Reagent Kit v2 (Cat. No. 323100; Advanced Cell Diagnostics) was performed using
201 target probes specifically designed for *Cochliopodium* except one gene (Spo11), which was
202 designed using a target sequence from *Acanthamoeba castellanii*. The probes were designed
203 according to the manufacturer's instructions and include: 20ZZ probes (Cpe-BNI1-cust targeting
204 221-1315, Cpe-DMC1-cust targeting 2-987 and Cpe-KEM1-cust targeting 2-1386), 17ZZ probe
205 Cpe-MER3-cust targeting 1801-2725, 18ZZ probe Cpe-PCH2-cust targeting 2-965 and 13ZZ
206 probe Cpe-SPO11-cust 2-676 targeting 2-676 (*A. castellanii*). Actin (15ZZ probe Cpe-Actin-cust
207 targeting 104-1076) was used as positive control. Adherent cells representing all stages of

208 amoeba were transferred into a two-well glass chamber slide (Thermo ScientificTM, Nunc Lab-
209 Tek, Rochester, NY) and fixed using either -80°C cooled methanol or 4% formaldehyde (Ladd
210 Research, Williston, VT) for 3–10 min. Fixed cells were dehydrated in a series of ethanol
211 concentrations and then reverse rehydrated before treatment with Hydrogen Peroxide and
212 Protease for permeabilization as stated in the manufacturer's manual. Hybridization of the probes
213 to the RNA targets was performed by incubation in the HybEZ Oven for 2 hours at 40 °C. After
214 two washes, the slides were processed for standard signal amplification steps for single or
215 multiple channels. Chromogenic detection of probes was performed using OpalTM 520
216 (FP1487001KT) and OpalTM 570 (FP1488001KT) dyes (Akoya Biosciences) and Hoechst
217 33358 (1:1500) for DNA. The preparations were examined with a Zeiss LSM 700 Inverted
218 Confocal Microscope (Carl Zeiss MicroImaging, Gottingen, Germany).

219

220 **Results**

221 **Single Cell Samples and Transcriptome Data**

222 A total of 20 samples designated as fused (9 replicates) and unfused (11 replicates) were
223 collected (S1 Table). The yield and quality of sequence data differed among our single cells
224 transcriptomes (S1 Table). Generally fused or large cells yielded more sequence data than
225 smaller cells. Since transcriptome sequencing from an individual (one) cell did not generate
226 enough data, likely due to small starting RNA material, we increased the number of cells to 5-10
227 and collected transcriptome data from these cells using the same approach. We also collected
228 transcriptome data obtained using a regular RNA extraction from 100 cells for both unfused
229 (single) and fused cells (S1 Table). The designations of single and fused state of amoeba cells
230 were primarily made on the basis of amoebae size. However, this was used as a guide rather than

231 a predictor of an amoeba stage. *Cochliopodium* cells show a range of sizes during their life cycle
232 (see [16]). The nucleus is not always easy to visualize due to opaqueness of the cytoplasm and
233 cell inclusions that obscure nuclear observation in live cells. These problems make it difficult in
234 identifying single or fused cells based on size and number of nuclei. Given these challenges we
235 made an effort to select cells based on our observation in previous publications [21, 31, 32] as a
236 general guide to discriminate between single (~20-30 μm) and fused ($> 50 \mu\text{m}$) amoeba cells.

237

238 **Differential Gene Expression (DGE) analysis**

239 PCA (principal component analysis) plot functions in DESeq2 were used to visualize the
240 overall effect of experimental and batch effects and check for possible sample outliers. Two
241 samples that failed the quality check were removed and a plot of the remaining 18 samples
242 showed good clustering for the most part. However, some samples either formed a separate
243 cluster of their own or were mixed with another group (S1 Fig). Taking into account the
244 difficulties in distinguishing cell conditions during our sampling, we applied a strict clustering
245 pattern to select four of the single samples (YT14-YT17) and four of the fused samples (YT26-
246 YT29) that showed good clustering for two experimental conditions (see S1 Table). This two-
247 sample condition analysis, each comprised of 4 replicates, showed good clustering with PC1
248 representing 76% of variance (Fig 1). Further inspection of the clustering of the 18 samples
249 showed a possibility of an intermediate group consisting of 3 samples (see below).

250

251 MA-plot showed that the majority of the transcripts between two-conditions have similar
252 expression values (Fig 2). In total, 881 differentially expressed genes (DEGs) were identified
253 between single and fused conditions in our DESeq2 analysis. Among them, 521 DEGs were

254 tested as upregulated in single condition samples and 360 DEGs tested as upregulated in fused
255 condition samples. The clustered heatmap of all DEGs that were identified between the single
256 and fused conditions was generated using the transformed normalized counts from DESeq2 R
257 package and showed a correlative pattern of upregulation (downregulation) between the two
258 conditions across all samples analyzed (Fig 3).

259

260 **Figure 1.** PCA plot of a two -condition experiment (single vs. fused cell) each represented with 4
261 replicates. X- and Y-axes represent the first and second principal components that explain most
262 of the differences in the data. The percentage of total variance for each principal component is
263 printed in the axis labels.

264 **Figure 2.** MA plot of the two experimental conditions (single vs. fused) in terms of log2 Fold
265 change and normalized counts. The log2 FC in the y-axis were shrunken to remove the noise
266 from low count genes. The average of the counts normalized by size factor generated in DESeq2
267 is shown on the x-axis. Points with adjusted p value less than 0.05 are shown as red colors,
268 which is our criterion for DEGs identification. Points that fell out of the window are plotted as
269 open triangles.

270 **Figure 3.** Clustered heatmap of all (881) DEGs identified between single and fused samples. The
271 color scale from red (highly expressed) to blue (low expression) represents the transformed,
272 normalized counts from variance stabilizing transformation.

273

274

275 A closer examination of the expression data structure from our initial analyses revealed a
276 potentially third data cluster (YT24, YT25, and YT30) between single and fused sample

277 conditions (S1 Table, S2 Fig). This cluster likely represents an intermediate condition. This
278 observation is consistent with our previous report on the life cycle of *Cochliopodium* that
279 undergoes a steady state of fusion and fission when growing in high density [16]. Our samples
280 were collected during the active fusion/fission stage and hence some samples might represent
281 intermediate stages despite their cell sizes. To examine the potential role of the intermediate
282 stage in the life cycle of *Cochliopodium*, DGE analysis was performed for a three-conditions
283 experiment (single, intermediate and fused) each represented with three replicates (S2 Fig). In
284 this analysis, a total of 738 DEGs were identified among the three conditions as shown in the
285 Venn diagram of S3 Figure. Among all the DEGs, three separable groups with 113, 54, and 275
286 DEGs, respectively, were unique for each of the 2 comparisons (see S3 Fig). In specific, there
287 were 287 transcripts upregulated and 229 transcripts down regulated between single and fused
288 stage, while 152 transcripts and 141 transcripts were up- and down-regulated in the single versus
289 intermediate stage (S3 Fig). Comparison between intermediate and fused stage revealed a lower
290 number of DEGs than the above two comparisons, with 131 and 95 transcripts up- and down-
291 regulated, respectively, which indicates the intermediate stage shared more similarity with the
292 fused stage, which is also illustrated in the clustered heatmap of the 738 DEGs (S4 Fig). It can
293 also be said that the intermediate samples exhibited an amalgamation of expression patterns
294 between the single and fused conditions serving as a transitional stage. A set of DEGs are
295 experiencing a gradual increase or decrease in their expression level between single and fused
296 states (S4 Fig).

297

298 **Expression of meiosis and sexual related genes**

299 We examined the expression of the genes previously determined to be involved in sexual
300 development of *Cochliopodium* and other microbial eukaryotes among different sampling
301 conditions [11, 13-15]. The gene inventory conducted in all of our samples showed that 68% (64)
302 of the 94 genes inventoried were present (S2 Table). Gene clustering of the 64 detected DEGs
303 was performed using a transformed, normalized counts from variance stabilizing transformation
304 generated in DESeq2 package (Fig 4). The genes were categorized based on the role they play in
305 sexual development. These include meiosis, plasmogamy, karyogamy and other sexual and
306 developmental related processes (Fig 4, S2 Table). Results of the DGE analysis for all these
307 genes were shown in supplementary S2 Table with the log2 FC and adjusted p-value for each
308 detected gene between single and fused conditions. We also included the results from
309 comparisons that included an intermediate stage to explore our data in depth.

310

311 **Figure 4.** Heatmap of 64 genes (meiosis and sexual related) grouped according to their
312 functional categories in single and fused samples. The heatmap was generated by centering the
313 values across samples and thus shows the deviation of each gene in each sample using the data
314 set from DESeq2 package. The color scale from red (highly expressed) to blue (low expression)
315 represents the transformed, normalized counts from variance stabilizing transformation.
316 Functional categories are shown in the color-coded annotation bar.

317

318 Among all the sexual related genes available for expression examination, 33 of the 64
319 genes analyzed were upregulated in fused cells, while single cells had 30 of these genes
320 upregulated (see S2 Table for adjusted pvalue for each gene). One of the meiosis specific genes,
321 Pch2, had no result due to its low expression (S2 Table). Among the 33 upregulated genes in

322 fused samples, six were significant with threshold of adjusted pvalue of 0.05 (S2 Table). These
323 include genes that are involved in meiosis (Mer3 and Zip1-like), Nuclear congression (Kem1),
324 DNA damage sensing (Rad17) and Sister chromatid cohesion (Smc1/3) (Tables 1, S2, Fig 4). In
325 single samples, five of the 30 upregulated genes were significant (S2 Table), which includes
326 cellular congression (Bni1), plasmogamy (Myo2), double-strand break repair (Lig4/Dnl1) and
327 recombinational repair (Smc5, Msh2, Msh6) (Fig 4, S2 Table). When looking into the expression
328 for each functional category, all four genes involved in plasmogamy and some genes involved in
329 double-strand break repair had upregulation in single condition samples, albeit most of them
330 didn't pass the significance threshold (Fig 4, S2 Table). Upregulation of genes in
331 recombinational repair and sister chromatid cohesion categories were more prominent in fused
332 samples, most of them with $p_{adj} > 0.05$ (S2 Table). Expression pattern of some detected meiosis
333 genes (e.g. Pch2) and other genes in S2 Table could not be analyzed due to low expression
334 among samples or its lack in the reference transcriptome (e.g. Spo11). In general, we saw an
335 overall trend that differentially expressed (upregulated) genes in the fused condition play an
336 important role in sexual development. However, some meiosis specific genes such as Msh4/5
337 and Dmc1 were observed to be upregulated, without statistical significance, in some of the single
338 cell samples (S2 Table).

339

340 **Functional annotation of DEGs**

341 Blast2GO was applied to perform functional annotation of the two sets of DEGs
342 identified among the single (521 genes) and fused (360 genes) samples. Three GO categories
343 (Molecular function, Biological process, Cellular components) were inferred by mapping the
344 sequence information to existing annotation sources. Based on these analyses, we were able to

345 identify key functional categories that can be used to inform about sexual development in
346 *Cochliopodium* (S7-S9 Figs). GO category representations in fused samples were dominated by
347 nucleic acid (DNA) metabolism, nucleus and associated nuclear components (chromosome,
348 nuclear pore, nucleolus), RNA processing, ATP binding and helicase activities. These are based
349 on the most frequent GO terms and sequence distribution for each GO category (S7-S9 Figs). In
350 addition, the fused samples consisted of some notable functional categories directly or indirectly
351 related to sexual development (cell division) including ligase, histone acetylation, peroxisome
352 fission (PHD-finger protein) and MCM complex (S7-S9 Figs). Enzyme Class (EC) distribution
353 comparison of the two sets of DEGs showed that all the enzyme classes had more sequences in
354 single samples than in fused samples except for the EC class Ligases (Fig 5). Various ligase
355 enzymes were identified in fused samples including E3 ubiquitin-protein ligase previously
356 shown to play a role in sexual development [47]. GO category representations in single samples
357 were mostly dominated with metabolic activities (carbohydrate, lipid and protein), oxidation-
358 reduction process, vesicle transport, cytoskeleton and cellular and intracellular movements (S7-
359 S9 Figs). Among the top functional category representations in single samples are proteolysis
360 from BP category and membrane from CC category (S7 Fig). Enrichment analysis showed that
361 fused cells were abundant with GO categories of ATP binding and nucleus, while single cells
362 were abundant with peptidase activity (S9 Fig).

363

364 **Figure 5.** Enzyme Code (EC) distribution associated to the DEGs for single and fused group in
365 terms of sequence numbers for six classes of EC derived from Blast2GO.

366 **Cytological detection of selected sexual DEGs**

367 We performed RNA in situ hybridization (RNA-ISH) assay of selected genes
368 representative of sexual development in the life cycle of *Cochliopodium*. RNA-ISH analysis
369 gives both qualitative expression levels and spatial distribution of DEGs within intact cells. Our
370 RNA-ISH results are mostly congruent to the DGE analysis of the selected genes. The meiosis
371 genes, Mer3, Pch2 and Dmc1, and karyogamy gene (Kem1) were expressed mostly, but not
372 exclusively, in fused cells (Figs 6-8A,B). The expression of Mer3 was the most prominent in
373 fused cells at different stages pre-karyogamy (Fig 6A), during karyogamy (Fig 6B) and in
374 polyploidy nucleus, post-karyogamy (Fig 6C). Mer3 was also expressed in single cells but at a
375 much lower quantity (S10 Fig). The detection of Pch2 and Dmc1 was not as prominent as Mer3
376 (Fig 7). Pch2 was mostly detected in fused cells with multiple and polyploid nuclei (Fig 7C,D).
377 Similarly, Dmc1 was detected mostly in fused samples but some single condition samples also
378 expressed it (Fig 7A,B). The expression of Kem1 was noticeably visible around the nucleus
379 periphery (Fig 8A,B), while the detection of Bni1 was not that prominent; it was expressed both
380 in fused and single cells, but mostly in unfused/single cells (Fig 8C,D). We also attempted a
381 colocalization (co-expression) experiment, but this experiment had many technical challenges.
382 We were able to show that Mer3 and Dmc1 co-expressed in fused cells (S11 Fig).

383
384 **Figure 6.** RNA-ISH staining of a meiosis specific gene, Mer3. The gene is expressed throughout
385 the fused phases including pre-karyogamy (A), during-karyogamy (B) and post-karyogamy (C).
386 D. Expression levels of Mer3 in a fused (top left) and non-fused amoeba cells (faint red staining).
387 Red (Mer3) and Blue (DNA). Scale bar 10 μ m.

388 **Figure 7.** RNA-ISH staining of meiosis specific genes, Dmc1 (A-B) and Pch2 (C-D). Note high
389 levels of expression of these genes in fused cells (arrows). Red (Mer3) and Blue (DNA). Scale
390 bar 10 μ m.

391 **Figure 8.** RNA-ISH staining of Karyogamy, Kem1 (A-B) and Plasmogamy Bni1 (C-D) genes.
392 Note the localization of the karyogamy gene, Kem1, around nuclear periphery (A, arrows). Red
393 (Mer3) and Blue (DNA). Scale bar 10 μ m.

394

395 **Discussion**

396 **Fused cells are sexual stage in *Cochliopodium***

397 The present study conclusively demonstrates that the fused cells in *Cochliopodium* both
398 express and upregulate most of the meiosis and sexual related genes. Corroborative evidence
399 from the cytological (RNA-ISH) study also provides spatial and temporal expression for some of
400 these genes during the life cycle of *Cochliopodium* (Figs 6-8). Evidence for sex in a majority of
401 amoebozoans was based on gene inventory of genomic or transcriptomic data, without
402 supporting physical or stage specific DGE analysis [11]. Limited ultrastructural evidence for sex
403 is available for a few non-model amoebae [22, 23, 28]. Most of the detailed genetic, DGE and
404 cytological studies are limited to the model organism, *Dictyostelium discoideum* (e.g. [48-50])
405 and the pathogenic lineage, *Entamoeba* (e.g. [17, 20, 51-53]). However, both of these amoebae
406 have dramatically different types of life cycle and could not be representative of the diverse life
407 cycle observed in the supergroup: Amoebozoa. Our study is the first to report comprehensive
408 DGE and cytological studies of sexual development in amoebae characterized by multiple
409 cellular and nuclear fusions. The findings of this study have important implications in
410 understanding molecular mechanisms of cryptic sexual processes in microbial eukaryotes that

411 share similar behavior. Study of sexual processes in microbial eukaryotes has been curtailed
412 mainly due to lack of observational evidence. This study demonstrates that *Cochliopodium* can
413 serve as a model to understand some aspect of sexual processes shared among microbial
414 eukaryotes due to its well-defined life cycle, tractability and suitability for genetic manipulation
415 studies [16].

416

417 **Importance of cytological data in understanding DGE analysis in *Cochliopodium***

418 Our DGE analysis is largely corroborated by our RNA-ISH data for the selected sex
419 genes. Even though most of our results from DGE and RNA-ISH were consistent with the
420 expected sexual development of the amoeba, we observed some variations (albeit non-significant)
421 in the DGE analysis among our samples (S2 Table). Among the variations noteworthy of
422 mention include the detection and upregulation of meiosis specific genes in some single samples.
423 These results prompted us to explore if sexual development in *Cochliopodium* occurs
424 progressively with some intermediate stage. Our RNA-ISH results revealed some important clues
425 that can help understand the observed variations. As shown in our three-sample condition
426 analysis (S2-6 Figs) sexual development likely occurs in progressive fashion in *Cochliopodium*
427 with some single cells expressing sex genes. These single cells are likely preparing to enter the
428 sexual stage and can be considered intermediates. This observation is supported by the detection
429 of meiosis specific genes in our RNA-ISH staining in some unfused uninucleate cells, although
430 these genes were consistently detected in higher numbers in fused samples (Fig 6B, S10 Fig). All
431 of our data sources are based on transcriptome (RNAseq), the detection of these genes in unfused
432 cells, possibly entering sexual stage, might also be attributed to the time lag between
433 transcription and translation.

434

435 The distinction between single and fused cells would have been more apparent if we used
436 proteomic data. Immunostaining of meiosis protein could give substantial informative results
437 pertaining to the actual stage of the amoeba. Our attempt to immunostain proteins encoding
438 SPO11 and DMC1 using commercially available antibodies was not successful. Sex genes are
439 among the fastest evolving genes in eukaryotes [11, 14, 54]. Some sex genes that serve similar
440 function have evolved far beyond recognition making conventional sequence homology
441 comparison impractical. These genes can only be identified through structural domain
442 comparison or their localization in cytological studies (see [54]). Sex genes show great
443 divergence even among closely related species. For example, the RNA-ISH probes designed for
444 *Cochliopodium* did not yield good results in closely related species of amoebae (data not show).
445 Proteomic work of sex genes is critical for determining sexual stages by providing physical
446 (structural) localization of sexual stages as it occurs (e.g., synaptosomal complexes). However,
447 this will require development of species-specific antibodies, which is challenging due to lack of
448 genome data and the associated cost and time required to develop species-specific antibodies.
449 With genome sequencing of many amoebae underway, a more comprehensive proteomic and
450 gene manipulation experiments will be feasible in the near future, which will play an integral
451 role in unraveling the various molecular mechanism of sexual strategies employed in the
452 supergroup.

453

454 Another variation in DGE analysis relates to upregulation of some meiosis genes in
455 single samples (Tables 1, S1, Fig 4). Although the upregulations of these genes (Msh5, Msh4
456 and Dmc1) were not significant (S2 Table), their detection in single samples requires an

457 explanation. As described above our single samples data come from 5-10 cells and hence it is
458 likely that our single samples might have included a mix of cells among which some cells were
459 preparing to enter sexual stage. Our RNA-ISH data showed that single cells to some extent were
460 observed to express meiosis genes (Figs 6B, S10). These single cells cannot be distinguished by
461 cell size alone in live cultures and might partly explain the discrepancies between our DGE and
462 RNA-ISH results. The detection of lowly expressed genes (e.g., Pch2) and a meiosis gene
463 (Dmc1), shown to be upregulated in DGE analysis in single cells, were seen in our RNA-ISH to
464 be more abundant in fused cells compared to in single cells (Figs 6-7, S10). Our RNA-ISH
465 results are consistent with the expected life cycle of the amoeba. Another possible explanation
466 for the observed discrepancies between DGE and RNA-ISH could be explained by the high
467 adjusted pvalue (18.9 %) of Dmc1, which can be interpreted as false positive upregulation [44].
468 The cytological data greatly helped us to interpret DGE results and overcome some of the
469 practical limitations of cell stage identification in *Cochliopodium*. Below we highlight the role of
470 keys genes, differentially expressed (detected) in our samples, in the sexual development of
471 *Cochliopodium*.

472

473 **DGE and cytological evidences point to the main crossover pathway employed in**
474 ***Cochliopodium***

475 One of the most significantly upregulated DEGs in fused samples is Mer3 (Table 1, Fig
476 4). This gene is a meiosis specific gene and a member of the ZMM group described in budding
477 yeast [55, 56]. Mer3 together with other members ZMM genes (Zip1-4, Msh4 and Msh5) play a
478 crucial role in sexual organisms by providing a link between recombination and synaptonemal
479 complex (SC) assembly during meiosis [57, 58]. Mer3 is among the highly expressed genes and

480 was easily detected in cytological RNA-ISH staining in higher quantities (Fig 6). It was
481 expressed at various phases of the fused cells including prior, during and post-nuclear fusion
482 (karyogamy, Fig 6), which is indicative of its critical role in sexual development of
483 *Cochliopodium*. Mer3, a highly evolutionary conserved DNA helicase, is involved in ZMM
484 genes dependent interference cross-over (class I cross-over (CO) pathway), where double-
485 Holliday junctions are preferentially resolved toward CO. Interference in this pathway prevents
486 nearby crossovers from occurring thereby ensuring widely spaced crossovers along
487 chromosomes [59, 60]. Most of the genes reported to play role in the class I CO pathway were
488 either differentially expressed or detected in fused cell samples. These include meiosis specific
489 ZMM genes (Zip4, Msh4 and Msh5) and other genes not specific to meiosis, including Mlh1-3,
490 Exo1 and Sgs1 (Fig 4, S1 Table). We also found a significant DEG, Zip1-like, gene, which is
491 one of the most important ZMM group members that forms the central component of SC [61].
492 However, the reference sequences of Zip1 gene retrieved from OrthoMCL database were few
493 and quite divergent, which created a challenge for accurate homology assessment of this gene in
494 our samples. Our homology search result for this gene in HMMER passed the inclusion
495 threshold (HMMER c-evalue e-6) with a matching length of 414bp but failed the Blast (evalue e-
496 7) threshold. HMMER is designed to detect remote homologs and takes into account shared
497 protein domains in its search algorithm [45]. Based on this result, we decided to report the
498 expression of Zip1-like genes from our transcriptome, which showed significant upregulation in
499 fused cells (Table 1). However, this requires further investigation by searching similar genes in
500 related species and acquisition of the full length of the gene in the genome of *Cochliopodium*,
501 currently unavailable. Most of the ZMM group genes were described from budding yeast, similar
502 genes playing the same role are known in plants and animals [62, 63]. It should be noted that the

503 Zip1 gene of the budding yeast and other eukaryotes shares little sequence homology; however,
504 their proteins share biochemical/structural similarities and localize in SC [54]. Given these
505 observed divergences and the significant upregulation of the Zip1-like gene in *Cochliopodium*
506 (Table 1), further analysis is needed to determine the identity and role of this gene in sexual
507 development of the amoeba.

Table 1. Expression results of meiosis specific genes in different group comparisons in terms of Log FC (bold significant) and Padj values.

meiosis specific genes	OG5_no	2Conditions_Single vs. Fused		3Conditions_Fused vs. Middle		3Conditions_Single vs. Middle	
		Log FC	Padj	Log FC	Padj	Log FC	Padj
Dmc1	OG5_126834	2.222450881	0.189492051	-3.832435	0.16088331	-0.1639937	0.979877097
Msh5	OG5_129379	1.37126777	0.632927864	7.383354	0.04214231	8.8304025	0.006747834
Mer3	OG5_129931	-6.410479585	2.62E-11	3.605149	0.06572329	-3.5057863	0.079603216
Msh4	OG5_130077	1.37126777	0.632927864	7.383354	0.04214231	8.8304025	0.006747834
Zip1-like	OG5_171209	-2.749784	1.17E-03	0.165884	0.98243318	-2.7213578	0.191818306
Zip4	OG5_142513	1.0839989	0.669460262	0.3876504	0.9682766	1.1420293	1.1420293
Rec8	OG5_150817	-2.141873391	0.629706156	-1.803302	0.83524684	-6.1878772	0.238359573
Pch2	OG5_128995	NA*	NA*	-5.220943	0.52161838	-7.5236607	0.264510855

* NA was observed when baseMean values from DESeq2 were 0 with the samples in the test.

508
509 The expression and detection of Mer3 and most of ZMM group genes suggests that
510 *Cochliopodium* predominantly employs class I CO and synaptonemal complexes for meiotic
511 recombination. We also detected Pch2, a protein reported to play a regulatory role associated
512 with other meiosis specific genes such as Zip1 and Hop1 (not detected here) in the maintenance
513 of synaptonemal complex organization [64, 65]. Pch2 is one of the lowly expressed genes in our
514 DGE analysis but was shown in our RNA-ISH data to localize more in fused samples (Fig 7C,D).
515 Class I CO is a common pathway eukaryotes [54, 58], however, the exact mechanism in which
516 class I CO pathway and SC operate in an amoeba characterized by multiparental nuclear fusion
517 awaits further investigation. We also detected Mus81, one of the genes involve in non-
518 interference class II CO pathway (S2 Table). Even though Mus81 is rarely detected in

519 *Cochliopodium* samples, its presence indicates that class II CO might be used as alternative
520 crossover pathway in this amoeba.

521

522 **Significance of cohesin complex in multiparental nuclear fusion**

523 Most of the genes comprising the cohesin complex genes, Smc1-4 and Rad21 as well as
524 the meiotic specific cohesin subunit, Rec8, that are essential in sister chromatid cohesion and
525 their faithful separation, were expressed in fused cells [66-68]. Understanding the functionality
526 and molecular mechanism of cohesin proteins is particularly of interest for further investigation
527 in *Cochliopodium*. Cellular fusion in *Cochliopodium* is followed by mutiparental nuclear fusion
528 and likely involves mixing of chromosomes from multiple individuals [16]. In conventional
529 mitosis and meiosis, cohesins hold sister chromatids together before anaphase during cell
530 division to ensure equal distribution of chromatids to dividing daughter/gamete cells. Any failure
531 in cohesins results in aneuploidy, which has drastic health and viability consequences [69].
532 *Cochliopodium* presents an atypical parasexual process where fusion can result in over 30 nuclei
533 in one large fused plasmodium. Investigation of how *Cochliopodium* sorts such a large number
534 of multiparental chromosomes precociously during subsequent fission of fused cells will likely
535 unravel a highly evolved or novel mechanism for the roles of cohesins.

536

537

538 **Other meiosis and sex related genes**

539 We detected several meiosis and sex-related genes that play a role in mismatch repair,
540 initiation of double-strand break (DSB) and their repair as well as homologous recombination
541 (Fig 4, S2 Table). Although these genes are detected in our DGE analysis, their patterns of

542 expression were neither significant nor consistent in our samples (S2 Table). For example, genes
543 involved in Homologous recombination (HR), Rad51 and Dmc1 (meiosis specific), were
544 expressed and upregulated in our single samples. Although Dmc1 was shown to localize with
545 Mer3 in our fused samples (S14 Fig), the temporal expression of these genes needs further
546 investigation. Both of these genes code for recombinases that play critical role in DNA lesions
547 repair including double-strand breaks (DSBs), single-strand DNA gaps and interstrand crosslinks
548 during meiosis [70]. Interestingly, genes involved in the alternative DSBs repair mechanism,
549 nonhomologous DNA end joining (NHEJ), were all upregulated in single samples. Proteins
550 involved in NHEJ pathway including KU70 and KU80 are operational during the vegetative
551 stage (G0/G1 phases of the cell cycle) when sister chromatids are not available [71]. These genes
552 are known to be downregulated during meiosis [72], which is consistent with the DGE results of
553 our fused samples (Fig 4, S2 Table). Lastly, one of the key meiosis genes, Spo11, that initiates
554 meiosis by programed DSB was not detected in our DGE analysis. Spo11 is detected in several
555 species of amoebae, but some amoebae (e.g., *Dictyostelium*) lack it in their genome [11, 12, 73].
556 Spo11 is likely one of the lowly expressed genes since we only detected it one time in one
557 sample; and our attempt to detect it using RNA-ISH with a probe designed from a closely related
558 species rendered no results.

559

560 **Other DEGs and Gene ontology (GO) provide information on the developmental and
561 sexual stage of *Cochliopodium***

562 Additional DEGs and GO categories mirroring cellular physiology of the amoeba shed
563 light on the life cycle of *Cochliopodium*. Genes engaged in plasmogamy and karyogamy were
564 upregulated in single and fused samples, respectively (Fig 4, S2 Table). This result is consistent

565 with the observed life cycle of *Cochliopodium*, where single cells entering a sexual stage would
566 be expected to produce proteins enabling them to fuse, and expression of karyogamy genes in
567 fused cells supports the observed nuclear fusion [16]. Among the most dominant DEGs in the
568 GO analyses in single samples were cellular processes related to metabolic activity and vesicles
569 mediated transportation (S7-S9 Figs). These are indicative of an active vegetative phase of our
570 single samples. Particularly, detection of a large number of proteolytic enzymes indicates that the
571 cells might be engaging in high protein metabolism (S7 Fig). The most dominate GO terms in
572 fused samples included DNA metabolism, nucleus, ATP binding, PHD-Finger protein and
573 ligases (S7-S9 Figs). These results can be interpreted as fused cells primarily engaged in ATP-
574 mediated, DNA-related processes, likely reflecting their sexual nature. Among these, E3
575 ubiquitin ligase [47] and PHD-Finger [74] have been implicated to play a role in sexual
576 development of plants. E3 ubiquitin ligase has a similar functional domain (i.e., RING-finger to
577 Zip3), a meiosis specific gene and a member of the ZMM group known to play roles in crossover
578 and SC assembly [54, 75]. While this finding will require in depth analysis of these genes, the
579 overall physiological and cellular processes of the GO analysis lend support to the sexual nature
580 of the fused samples.

581

582

583 **Understanding sexuality in Amoebozoa and future directions**

584 We are just starting to scratch the surface of the enormous life cycle diversity in the
585 supergroup Amoebozoa. The current study and previous studies indicated that members of
586 Amoebozoa might use various mechanisms of sexual pathways that reflect their life cycle and
587 behavior [11, 76]. For example, *Dicytostelium* has lost Spo11 but most amoebae seem to possess

588 this gene [11, 12, 73]; this observation indicates the existence of variation in the mechanism of
589 meiosis initiation in amoebozoans. A closer look of the known (yet to be described) diversity of
590 the amoebozoans will likely uncover even additional, and novel, forms of life cycle and sexual
591 strategies in this supergroup. Another layer of complexity in understanding sexuality in amoebae
592 is the observation that some amoebae that display no signs of sexual activity constitutively,
593 nonetheless express meiosis specific genes in actively growing cultures. Such an example is
594 *Acanthamoeba*, a well-studied amoebozoan lineage that show no evidence of fusion or other
595 sexual like behavior during its life cycle [76]. *Acanthamoeba* and other amoebae are reported to
596 change their ploidy during their life cycle [77-80]. This observation has led to a suggestion that
597 amoebae might still be asexual lineages but have evolved to use meiosis genes to perform
598 recombination through other means such as polyploidization and gene conversion [81]. Meiosis
599 genes have been used as a blueprint for sex, however, it has been suggested that detection of
600 meiosis genes should not be interpreted as evidence for sexual reproduction [82]. More
601 investigation is required to unravel the nature and roles of meiosis genes in the life cycle of
602 amoebozoans.

603
604 Despite the progress we have made in the current study, many fundamental questions
605 about the sexual nature and details of the life cycle of *Cochliopodium* remain unknown. Mating
606 types, the nature of multiparental inheritance and polyploidization in *Cochliopodium* are still
607 poorly elucidated. *Cochliopodium* has been shown to fuse even in monoclonal cultures, though
608 fusion frequency was lower compared to mixed cultures (S12 Fig). Mating types are known in
609 *Dictyostelium* and other related amoebae [49, 83-85], further investigation is required to examine
610 if fusion in *Cochliopodium* occurs randomly or among compatible mating types. The mechanism

611 of inheritance involving multiple partners is a challenge to the classic mechanism of inheritance
612 in dimorphic systems – well known in various eukaryotes. Triparental inheritance involving
613 more than two mating types has been reported in *Dictyostelium* [50]. Further investigation using
614 genome data, gene manipulation and cell biology studies are required to elucidate these
615 fundamental questions in *Cochliopodium* and other amoebae showing similar life cycle
616 behaviors.

617 **Acknowledgments**

618 We would like to thank James T. Melton III, Fiona Wood, Stephen Kioko and Tori Concepcion
619 for technical assistance during data collection. O. Roger Anderson is thanked for his useful
620 comments and edits on the manuscript.

621

622 **Reference:**

623 1. Lahr D.J., Parfrey L.W., Mitchell E.A., Katz L.A., Lara E. 2011 The chastity of amoebae:
624 re-evaluating evidence for sex in amoeboid organisms. *Proceedings Biological sciences / The
625 Royal Society* **278**(1715), 2081-2090. (doi:10.1098/rspb.2011.0289).

626 2. Wenrich D.H. 1954 *Sex in Protozoa: a comparative review*. Washington, DC: AAAS.

627 3. Williams G.C. 1975 *Sex and evolution*. Princeton, Princeton University Press.

628 4. Cavalier-Smith T. 2002 Origins of the machinery of recombination and sex. *Heredity* **88**,
629 125-141.

630 5. Margulis L., Sagan D. 1985 Evolutionary origins of Sex. In *Oxford Surveys in
631 Evolutionary Biology* (eds. Dawkins R., Ridley M.), pp. 30-47. Oxford, England, Oxford
632 University Press.

633 6. Smith J.M. 1986 Evolution: contemplating life without sex. *Nature* **324**(6095), 300-301.
634 (doi:10.1038/324300a0).

635 7. Smith J.M., Szathmáry E. 1995 *The Major Transitions in Evolution.*, W. H. Freeman and
636 Company; 149 p.

637 8. Raikov I.B. 1995 Meiosis in protists: recent advances and persisting problems. *Eur J
638 Protistol* **31**, 1-7.

639 9. Fallis A.M. 1965 Protozoan Life Cycles. *Am Zool* **5**, 85-94.

640 10. Bell G., Koufopanou V., Harvey P.H., Partridge L., Southwood R. 1997 The architecture
641 of the life cycle in small organisms.
642 *Phil Trans R Soc Lond B*, 33281-33289. (doi:<http://doi.org/10.1098/rstb.1991.0035>).

643 11. Tekle Y.I., Wood F.C., Katz L.A., Ceron-Romero M.A., Gorfu L.A. 2017 Amoebozoans
644 Are Secretly but Ancestrally Sexual: Evidence for Sex Genes and Potential Novel Crossover
645 Pathways in Diverse Groups of Amoebae. *Genome Biol Evol* **9**(2), 375-387.
646 (doi:10.1093/gbe/evx002).

647 12. Hofstatter P.G., Brown M.W., Lahr D.J.G. 2018 Comparative Genomics Supports Sex
648 and Meiosis in Diverse Amoebozoa. *Genome Biol Evol* **10**(11), 3118-3128.
649 (doi:10.1093/gbe/evy241).

650 13. Wood F.C., Heidari A., Tekle Y.I. 2017 Genetic Evidence for Sexuality in
651 *Cochliopodium* (Amoebozoa). *J Hered* **108**(7), 769-779. (doi:10.1093/jhered/esx078).

652 14. Malik S.B., Pightling A.W., Stefaniak L.M., Schurko A.M., Logsdon J.M., Jr. 2008 An
653 expanded inventory of conserved meiotic genes provides evidence for sex in *Trichomonas
654 vaginalis*. *PloS one* **3**(8), e2879. (doi:10.1371/journal.pone.0002879).

655 15. Ramesh M.A., Malik S.-B., Logsdon J.M. 2005 A Phylogenomic Inventory of Meiotic
656 Genes: Evidence for Sex in *Giardia* and an Early Eukaryotic Origin of Meiosis. *15*(2), 185.

657 16. Tekle Y.I., Anderson O.R., Lecky A.F. 2014 Evidence of parasexual activity in "asexual
658 amoebae" *Cochliopodium* spp. (Amoebozoa): extensive cellular and nuclear fusion. *Protist*
659 **165**(5), 676-687. (doi:10.1016/j.protis.2014.07.008).

660 17. Mukherjee C., Clark G., Lohia A. 2008 *Entamoeba* shows reversible variation in ploidy
661 under different growth conditions and between life cycle phases. *PLoS neglected tropical
662 diseases* **2**(8), e281.

663 18. Chang M.T., Raper K.B. 1981 Mating types and macrocyst formation in *Dictyostelium*.
664 *Journal of bacteriology* **147**(3), 1049-1053.

665 19. Goodfellow L.P., Belcher J.H., Page F.C. 1974 A light- and electron-microscopical study
666 of *Sappinia diploidea*, a sexual amoeba. *Protistologica* **2**, 207-216.

667 20. Schensnovich V.B. 1967 [On the life cycle of *Entamoeba histolytica*]. *Meditinskaja*
668 *parazitologija i parazitarnye bolezni* **36**(6), 712-715.

669 21. Tekle Y.I., Anderson O.R., Lecky A.F., Kelly S.D. 2013 A New Freshwater Amoeba:
670 *Cochliopodium pentatrifurcatum* n. sp. (Amoebozoa, Amorphea). *The Journal of eukaryotic*
671 *microbiology* **60**(4), 342-349. (doi:10.1111/jeu.12038).

672 22. Aldrich H.C. 1967 The ultrastructure of meiosis in three species of *Physarum*. *Mycologia*
673 **59**(1), 127-148.

674 23. Furtado J.S., Olive L.S. 1971 Ultrastructural evidence of meiosis in *Ceratiomyxa*
675 *fruticulosa*. *Mycologia* **63**(2), 413-416.

676 24. Haskins E.F., Hinchee A.A., Cloney R.A. 1971 The occurrence of synaptonemal
677 complexes in the slime mold *Echinostelium minutum* de Bary. *J Cell Biol* **51**(3), 898-903.
678 (doi:10.1083/jcb.51.3.898).

679 25. Erdos G.W., A.W. N., K.B. R. 1972 Fine structure of macrocysts in *Polysphondylium*
680 *violaceum*. *Cytobiologie* **6**, 351-366.

681 26. Erdos G.W., Raper K.B., Vogen L.K. 1975 Sexuality In Cellular Slime-Mold
682 *Dictyostelium-Giganteum*. *Proceedings Of The National Academy Of Sciences Of The United*
683 *States Of America* **72**(3), 970-973.

684 27. Szabo S.P., O'Day D.H., Chagla A.H. 1982 Cell fusion, nuclear fusion, and zygote
685 differentiation during sexual development of *Dictyostelium discoideum*. *Dev Biol* **90**(2), 375-
686 382. (doi:10.1016/0012-1606(82)90387-6).

687 28. Mignot J.-P., Raikov I.B. 1992 Evidence for meiosis in the testate amoeba *Arcella*.
688 *Journal of Eukaryotic Microbiology* **39**(2), 287-289.

689 29. Martin G.W., Alexopoulos C.J. 1969 *The Myxomycetes*. Iowa City, University of Iowa
690 Press; 201 p.

691 30. Schaudinn F. 1899 Untersuchungen über den Generationswechsel
692 von *Trichosphaerium sieboldi*. *Schn Abh Königl Preuss Akad Wiss, Berlin*, , 93 p.

693 31. Anderson O.R., Tekle Y.I. 2013 A Description of *Cochliopodium megatetrastylus* n. sp.
694 Isolated from
695 a Freshwater Habitat. *Acta Protozool* **52**, 55-64. (doi:doi:10.4467/16890027AP.13.006.1085).

696 32. Melton III J.T., M. S., F.C. W., Collins S.J., Y.I. T. 2019 Three New Freshwater
697 *Cochliopodium* Species (Himatismenida, Amoebozoa) from the Southeastern United States.
698 *Journal of Eukaryotic Microbiology* **0**, 1-13. (doi:<https://doi.org/10.1111/jeu.12764>).

699 33. Davoli T., de Lange T. 2011 The causes and consequences of polyploidy in normal
700 development and cancer. *Annu Rev Cell Dev Biol* **27**, 585-610. (doi:10.1146/annurev-cellbio-
701 092910-154234).

702 34. Duncan A.W., Hickey R.D., Pault N.K., Culberson A.J., Olson S.B., Finegold M.J.,
703 Grompe M. 2009 Ploidy reductions in murine fusion-derived hepatocytes. *PLoS Genet* **5**(2),
704 e1000385. (doi:10.1371/journal.pgen.1000385).

705 35. Tekle Y.I., Wood F.C. 2018 A practical implementation of large transcriptomic data
706 analysis to resolve cryptic species diversity problems in microbial eukaryotes. *BMC evolutionary*
707 *biology* **18**(1), 170. (doi:10.1186/s12862-018-1283-1).

708 36. Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin
709 V.M., Nikolenko S.I., Pham S., Prjibelski A.D., et al. 2012 SPAdes: a new genome assembly
710 algorithm and its applications to single-cell sequencing. *J Comput Biol* **19**(5), 455-477.
711 (doi:10.1089/cmb.2012.0021).

712 37. Bray N.L., Pimentel H., Melsted P., Pachter L. 2016 Near-optimal probabilistic RNA-seq
713 quantification. *Nat Biotechnol* **34**(5), 525-527. (doi:10.1038/nbt.3519).

714 38. Tekle Y.I., Anderson O.R., Katz L.A., Maurer-Alcalá X.X., Romero M.A., Molestina R.
715 2016 Phylogenomics of 'Discosea': A new molecular phylogenetic perspective on Amoebozoa
716 with flat body forms. *Molecular phylogenetics and evolution* **99**, 144-154.
717 (doi:10.1016/j.ympev.2016.03.029).

718 39. Tekle Y.I., Wood F.C. 2017 Longamoebia is not monophyletic: Phylogenomic and
719 cytoskeleton analyses provide novel and well-resolved relationships of amoebozoan subclades.
720 *Molecular phylogenetics and evolution* **114**, 249-260. (doi:10.1016/j.ympev.2017.06.019).

721 40. Wood F.C., Heidari A., Tekle Y.I. 2017 Genetic Evidence for Sexuality in
722 *Cochliopodium*. *Journal of Heredity*. (doi:<https://doi.org/10.1093/jhered/esx078>).

723 41. Love M.I., Huber W., Anders S. 2014 Moderated estimation of fold change and
724 dispersion for RNA-seq data with DESeq2. *Genome biology* **15**(12), 550. (doi:10.1186/s13059-
725 014-0550-8).

726 42. Robinson M.D., McCarthy D.J., Smyth G.K. 2010 edgeR: a Bioconductor package for
727 differential expression analysis of digital gene expression data. *Bioinformatics* **26**(1), 139-140.
728 (doi:10.1093/bioinformatics/btp616).

729 43. Schurch N.J., Schofield P., Gierlinski M., Cole C., Sherstnev A., Singh V., Wrobel N.,
730 Gharbi K., Simpson G.G., Owen-Hughes T., et al. 2016 How many biological replicates are
731 needed in an RNA-seq experiment and which differential expression tool should you use? *RNA*
732 **22**(6), 839-851. (doi:10.1261/rna.053959.115).

733 44. Benjamini Y., Hochberg Y. 1995 Controlling the false discovery rate: a practical and
734 powerful approach to multiple testing. *J Royal Stat Soc Ser B* **57**(1), 449–518.

735 45. Eddy S.R. 2001 HMMER: Profile hidden markov models for biological sequence
736 analysis. (Available from: <http://hmmer.janelia.org/>).

737 46. Gotz S., Garcia-Gomez J.M., Terol J., Williams T.D., Nagaraj S.H., Nueda M.J., Robles
738 M., Talon M., Dopazo J., Conesa A. 2008 High-throughput functional annotation and data
739 mining with the Blast2GO suite. *Nucleic Acids Res* **36**(10), 3420-3435.
740 (doi:10.1093/nar/gkn176).

741 47. Zuhl L., Volkert C., Ibberson D., Schmidt A. 2019 Differential activity of F-box genes
742 and E3 ligases distinguishes sexual versus apomictic germline specification in *Boechera*. *J Exp
743 Bot* **70**(20), 5643-5657. (doi:10.1093/jxb/erz323).

744 48. Urushihara H., Muramoto T. 2006 Genes involved in *Dictyostelium discoideum* sexual
745 reproduction. *Eur J Cell Biol* **85**(9-10), 961-968. (doi:10.1016/j.ejcb.2006.05.012).

746 49. Bloomfield G., Skelton J., Ivens A., Tanaka Y., Kay R.R. 2010 Sex determination in the
747 social amoeba *Dictyostelium discoideum*. *Science* **330**(6010), 1533-1536.
748 (doi:10.1126/science.1197423).

749 50. Bloomfield G., Paschke P., Okamoto M., Stevens T.J., Urushihara H. 2019 Triparental
750 inheritance in *Dictyostelium*. *Proc Natl Acad Sci U S A* **116**(6), 2187-2192.
751 (doi:10.1073/pnas.1814425116).

752 51. De Cadiz A.E., Jeelani G., Nakada-Tsukui K., Caler E., Nozaki T. 2013 Transcriptome
753 analysis of encystation in *Entamoeba invadens*. *PloS one* **8**(9), e74840.
754 (doi:10.1371/journal.pone.0074840).

755 52. Singh N., Bhattacharya A., Bhattacharya S. 2013 Homologous recombination occurs in
756 *Entamoeba* and is enhanced during growth stress and stage conversion. *PloS one* **8**(9), e74465.
757 (doi:10.1371/journal.pone.0074465).

758 53. Stanley S.L., Jr. 2005 The *Entamoeba histolytica* genome: something old, something
759 new, something borrowed and sex too? *Trends in parasitology* **21**(10), 451-453. (doi:S1471-
760 4922(05)00213-8 [pii]
761 10.1016/j.pt.2005.08.006).

762 54. Pyatnitskaya A., Borde V., De Muyt A. 2019 Crossing and zipping: molecular duties of
763 the ZMM proteins in meiosis. *Chromosoma* **128**(3), 181-198. (doi:10.1007/s00412-019-00714-
764 8).

765 55. Jessop L., Rockmill B., Roeder G.S., Lichten M. 2006 Meiotic chromosome synapsis-
766 promoting proteins antagonize the anti-crossover activity of sgs1. *PLoS Genet* **2**(9), e155.
767 (doi:10.1371/journal.pgen.0020155).

768 56. Borner G.V., Kleckner N., Hunter N. 2004 Crossover/noncrossover differentiation,
769 synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene
770 transition of meiosis. *Cell* **117**(1), 29-45. (doi:10.1016/s0092-8674(04)00292-2).

771 57. Nakagawa T., Ogawa H. 1999 The *Saccharomyces cerevisiae* MER3 gene, encoding a
772 novel helicase-like protein, is required for crossover control in meiosis. *EMBO J* **18**(20), 5714-
773 5723. (doi:10.1093/emboj/18.20.5714).

774 58. Lynn A., Soucek R., Borner G.V. 2007 ZMM proteins during meiosis: crossover artists at
775 work. *Chromosome research : an international journal on the molecular, supramolecular and
776 evolutionary aspects of chromosome biology* **15**(5), 591-605. (doi:10.1007/s10577-007-1150-1).

777 59. Nakagawa T., Kolodner R.D. 2002 The MER3 DNA helicase catalyzes the unwinding of
778 holliday junctions. *J Biol Chem* **277**(31), 28019-28024. (doi:10.1074/jbc.M204165200).

779 60. Zakharyevich K., Tang S., Ma Y., Hunter N. 2012 Delineation of joint molecule
780 resolution pathways in meiosis identifies a crossover-specific resolvase. *Cell* **149**(2), 334-347.
781 (doi:10.1016/j.cell.2012.03.023).

782 61. Sym M., Engebrecht J.A., Roeder G.S. 1993 ZIP1 is a synaptonemal complex protein
783 required for meiotic chromosome synapsis. *Cell* **72**(3), 365-378. (doi:10.1016/0092-
784 8674(93)90114-6).

785 62. Higgins J.D., Sanchez-Moran E., Armstrong S.J., Jones G.H., Franklin F.C. 2005 The
786 *Arabidopsis* synaptonemal complex protein ZYP1 is required for chromosome synapsis and
787 normal fidelity of crossing over. *Genes Dev* **19**(20), 2488-2500. (doi:10.1101/gad.354705).

788 63. de Vries F.A., de Boer E., van den Bosch M., Baarends W.M., Ooms M., Yuan L., Liu
789 J.G., van Zeeland A.A., Heyting C., Pastink A. 2005 Mouse Sycp1 functions in synaptonemal
790 complex assembly, meiotic recombination, and XY body formation. *Genes Dev* **19**(11), 1376-
791 1389. (doi:10.1101/gad.329705).

792 64. Chen C., Jomaa A., Ortega J., Alani E.E. 2014 Pch2 is a hexameric ring ATPase that
793 remodels the chromosome axis protein Hop1. *Proc Natl Acad Sci U S A* **111**(1), E44-53.
794 (doi:10.1073/pnas.1310755111).

795 65. Zanders S., Sonntag Brown M., Chen C., Alani E. 2011 Pch2 modulates chromatid
796 partner choice during meiotic double-strand break repair in *Saccharomyces cerevisiae*. *Genetics*
797 **188**(3), 511-521. (doi:10.1534/genetics.111.129031).

798 66. Watanabe Y. 2004 Modifying sister chromatid cohesion for meiosis. *J Cell Sci* **117**(Pt
799 18), 4017-4023. (doi:10.1242/jcs.01352).

800 67. Klein F., Mahr P., Galova M., Buonomo S.B., Michaelis C., Nairz K., Nasmyth K. 1999
801 A central role for cohesins in sister chromatid cohesion, formation of axial elements, and
802 recombination during yeast meiosis. *Cell* **98**(1), 91-103. (doi:10.1016/S0092-8674(00)80609-1).

803 68. Peters J.M., Tedeschi A., Schmitz J. 2008 The cohesin complex and its roles in
804 chromosome biology. *Genes Dev* **22**(22), 3089-3114. (doi:10.1101/gad.1724308).

805 69. Chiang T., Duncan F.E., Schindler K., Schultz R.M., Lampson M.A. 2010 Evidence that
806 weakened centromere cohesion is a leading cause of age-related aneuploidy in oocytes. *Current*
807 *biology* : *CB* **20**(17), 1522-1528. (doi:10.1016/j.cub.2010.06.069).

808 70. Krejci L., Altmannova V., Spirek M., Zhao X. 2012 Homologous recombination and its
809 regulation. *Nucleic Acids Res* **40**(13), 5795-5818. (doi:10.1093/nar/gks270).

810 71. Ahmed E.A., Sfeir A., Takai H., Scherthan H. 2013 Ku70 and non-homologous end
811 joining protect testicular cells from DNA damage. *J Cell Sci* **126**(Pt 14), 3095-3104.
812 (doi:10.1242/jcs.122788).

813 72. Goedecke W., Eijpe M., Offenberg H.H., van Aalderen M., Heyting C. 1999 Mre11 and
814 Ku70 interact in somatic cells, but are differentially expressed in early meiosis. *Nat Genet* **23**(2),
815 194-198. (doi:10.1038/13821).

816 73. Bloomfield G. 2018 Spo11-Independent Meiosis in Social Amoebae. *Annu Rev Microbiol*
817 **72**, 293-307. (doi:10.1146/annurev-micro-090817-062232).

818 74. Yang X., Makaroff C.A., Ma H. 2003 The Arabidopsis MALE MEIOCYTE DEATH1
819 gene encodes a PHD-finger protein that is required for male meiosis. *Plant Cell* **15**(6), 1281-
820 1295.

821 75. Cheng C.H., Lo Y.H., Liang S.S., Ti S.C., Lin F.M., Yeh C.H., Huang H.Y., Wang T.F.
822 2006 SUMO modifications control assembly of synaptonemal complex and polycomplex in
823 meiosis of *Saccharomyces cerevisiae*. *Genes Dev* **20**(15), 2067-2081.
824 (doi:10.1101/gad.1430406).

825 76. Maciver S.K., Koutsogiannis Z., de Obeso Fernandez Del Valle A. 2019 'Meiotic genes'
826 are constitutively expressed in an asexual amoeba and are not necessarily involved in sexual
827 reproduction. *Biol Lett* **15**(3), 20180871. (doi:10.1098/rsbl.2018.0871).

828 77. Friz C.T. 1968 The biochemical composition of the free-living Amoebae *Chaos chaos*,
829 *Amoeba dubia* and *Amoeba proteus*. *Comp Biochem Physiol* **26**, 81-90.

830 78. Byers T.J. 1986 Molecular biology of DNA in Acanthamoeba, Amoeba, Entamoeba, and
831 Naegleria. *Int Rev Cytol* **99**, 311-341. (doi:10.1016/s0074-7696(08)61430-8).

832 79. Lohia A. 2003 The cell cycle of *Entamoeba histolytica*. *Molecular and Cellular*
833 *Biochemistry* **253**(1-2), 217-222.

834 80. Demin S.Y., Berdjeva M.A., Goodkov A.V. 2019 Cyclic Polyploidy in Obligate Agamic
835 Amoebae. *Cell and Tissue Biology* **13**.

836 81. Maciver S.K. 2016 Asexual Amoebae Escape Muller's Ratchet through Polyploidy.
837 *Trends in parasitology* **32**(11), 855-862. (doi:10.1016/j.pt.2016.08.006).

838 82. Spiegel F.W. 2011 Commentary on the chastity of amoebae: re-evaluating evidence for
839 sex in amoeboid organisms. *Proceedings Biological sciences / The Royal Society* **278**(1715),
840 2096-2097. (doi:10.1098/rspb.2011.0608).

841 83. Erdos G.W., Raper K.B., Vogen L.K. 1973 Mating Types And Macrocyt Formation In
842 Dictyostelium-Discoideum. *Proceedings Of The National Academy Of Sciences Of The United*
843 *States Of America* **70**(6), 1828-1830.

844 84. Erdos G.W., Raper K.B., Vogen L.K. 1976 Effects of light and temperature on macrocyt
845 formation in paired mating types of *Dictyostelium discoideum*. *Journal of bacteriology* **128**(1),
846 495-497.

847 85. Adler P.N., Holt C.E. 1975 Mating type and the differentiated state in *Physarum*
848 *polycephalum*. *Dev Biol* **43**(2), 240-253. (doi:10.1016/0012-1606(75)90024-x).

849

850

851 Supporting information

852

853

854 **Figure S1.** PCA plot of the 18 samples in the two-experiment condition (single vs. fused). PCA

855 data for the plot were the transformed normalized counts of each sample generated from DESeq2.

856

857 **Figure S2.** PCA plot of a three-condition experiment (single, fused and intermediate) each

858 represented by 3 replicates.

859

860 **Figure S3.** Venn diagram of the number of DEGs ($P_{adj} < 0.05$) within the three-condition

861 experiment, showing shared DEGs between experimental conditions: single vs. intermediate,

862 single vs. fused, and intermediate vs. fused.

863

864 **Figure S4.** Clustered heatmap of all the 738 DEGs identified between each of the 2-stage

865 comparisons in the three-condition experiment with a total 9 replicates. The color scale from red

866 (highly expressed) to blue (low expression) represents the transformed, normalized counts from

867 variance stabilizing transformation.

868

869 **Figure S5.** Heatmap of the 64 genes (meiosis and sexually related) grouped according to their

870 function categories for the three-condition experiment. The heatmap was generated by centering

871 the values across samples and thus shows the deviation of each gene in each sample using the

872 data set from DESeq2 package. The color scale from red (highly expressed) to blue (low

873 expression) represents the transformed, normalized counts from variance stabilizing

874 transformation. Function categories were shown in the annotation bar.

875

876 **Figure S6.** Heatmap of the meiosis specific genes grouped according to their function categories
877 for the three-condition experiment: single, fused, intermediate.

878

879 **Figure S7.** Direct Go Count plots showing the most frequent GO terms from each set of DEGs
880 identified from the two-condition experiment for each GO category (Biological process (BP),
881 Cellular components (CC), and Molecular function (MF)). The plots were generated from
882 Blast2GO without taking account of the GO hierarchy. The left panel shows the results for 360
883 DEGs upregulated in fused samples and the right panel shows the results for 521 DEGs
884 upregulated in single samples.

885

886 **Figure S8.** Multilevel pie chart showing the sequence distribution by GO categories. These were
887 generated with the lowest node per branch of the combined GO graph from Blast2GO for each of
888 the three GO categories (Molecular function, Biological process, Cellular components) with
889 sequence number and percentage. The left panel shows the results for 360 DEGs upregulated in
890 fused samples and the right panel shows the results for 521 DEGs upregulated in single samples.

891

892 **Figure S9.** Enrichment analysis of the 2 sets of DEGs from Blast2GO. (A) The test gene set was
893 for the 360 DEGs upregulated in fused samples. (B) The test gene set was for the 521 DEGs
894 upregulated in single samples. In both tests, all 881 DEGs were set as the reference set.

895

896

897 **Figure S10.** RNA-ISH staining of a meiosis specific gene, Mer3, showing the distribution of
898 Mer3 expression in single, fused and possibly intermediate cells (A-C). Note that the variation in

899 expression levels among single uninucleate cells. In (A) single cells seem to be expressing less
900 Mer3 than single cells in (B). Mer3 is consistently expressed in higher quantity in fused cells (A
901 and B, arrows). Red (Mer3) and Blue (DNA). Scale bar 10 μ m.

902

903 **Figure S11.** RNA-ISH staining showing the co-expression of two meiosis specific genes, Mer3
904 (red) and Dmc1 (green) in fused cells.

905

906 **Figure S12.** Fusion rate measured by average size between monoclonal (broken) and mixed
907 (solid) cultures.

908

909

910

911

912

913

914

915

916

917

918

919

920

921

PC2: 6% variance

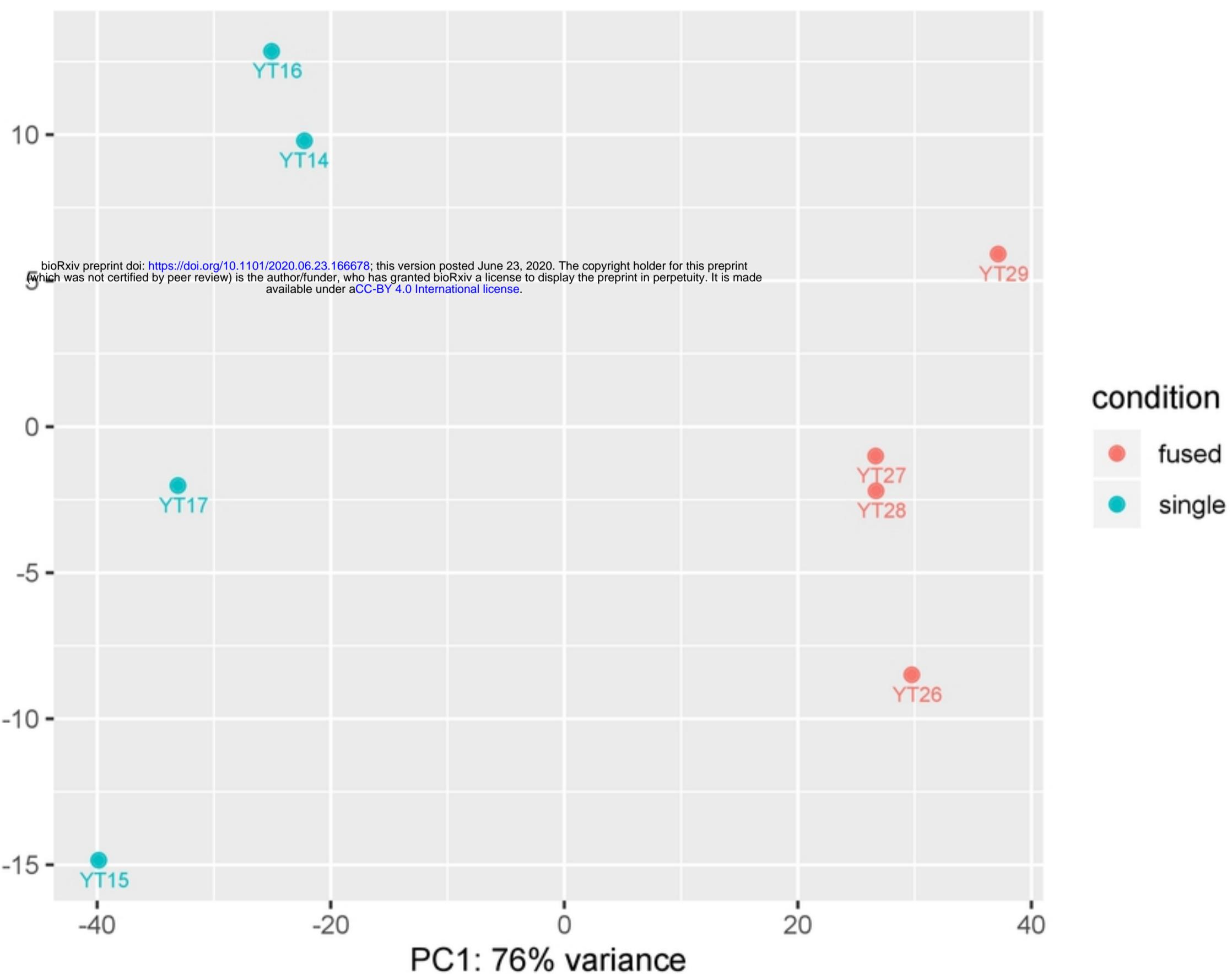


Figure 1

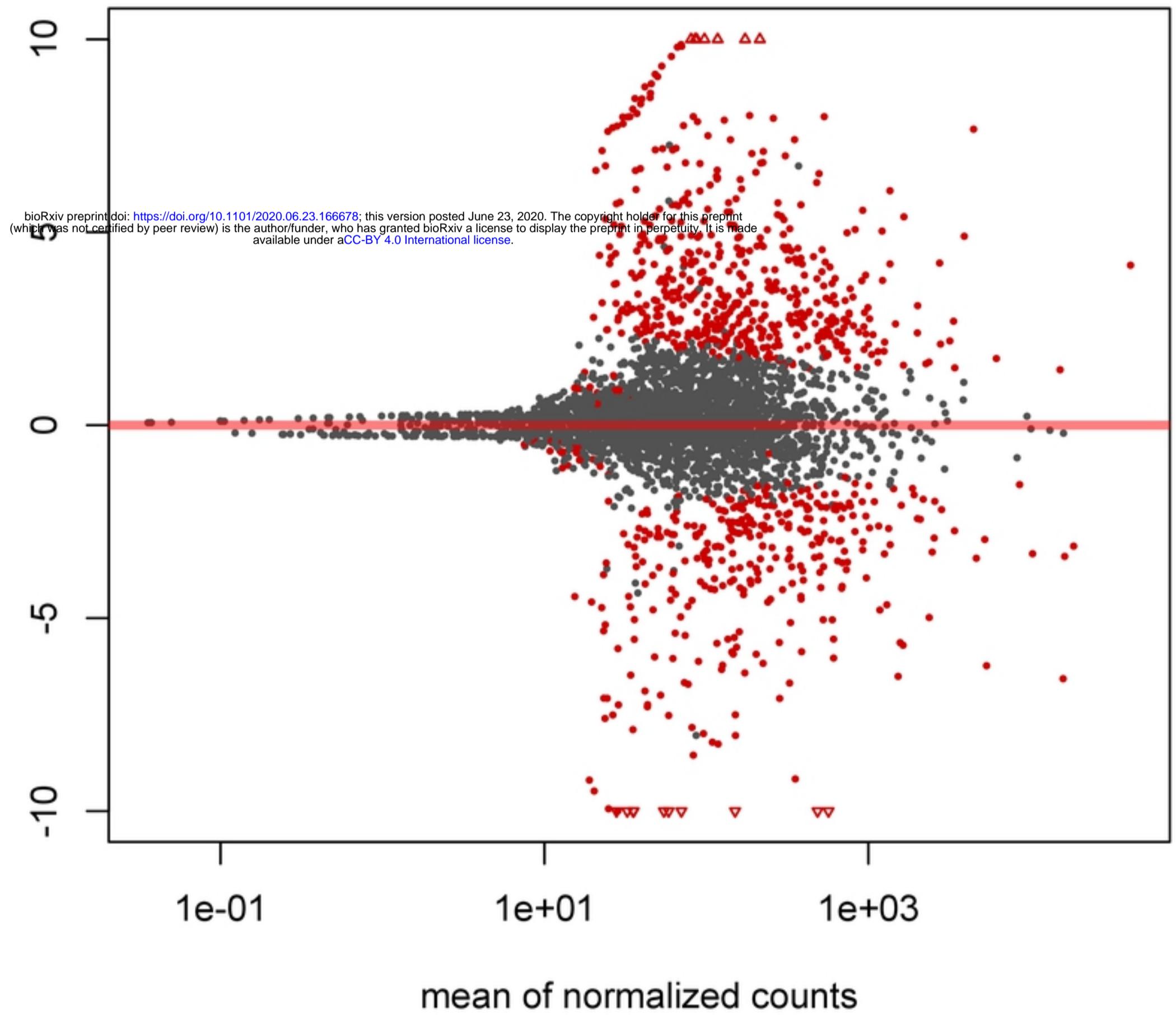


Figure 2

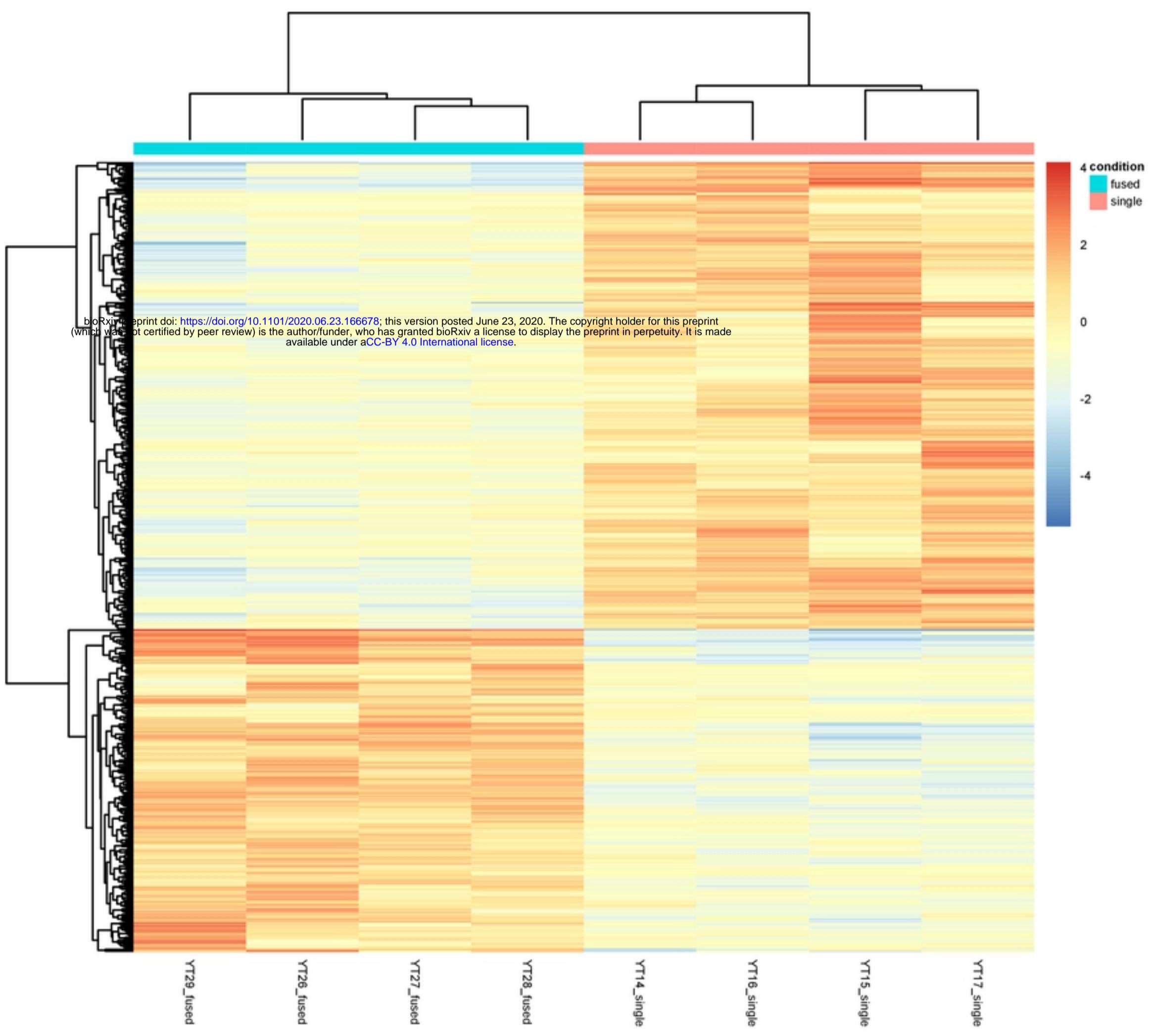


Figure 3

Expression of Sexual related Genes

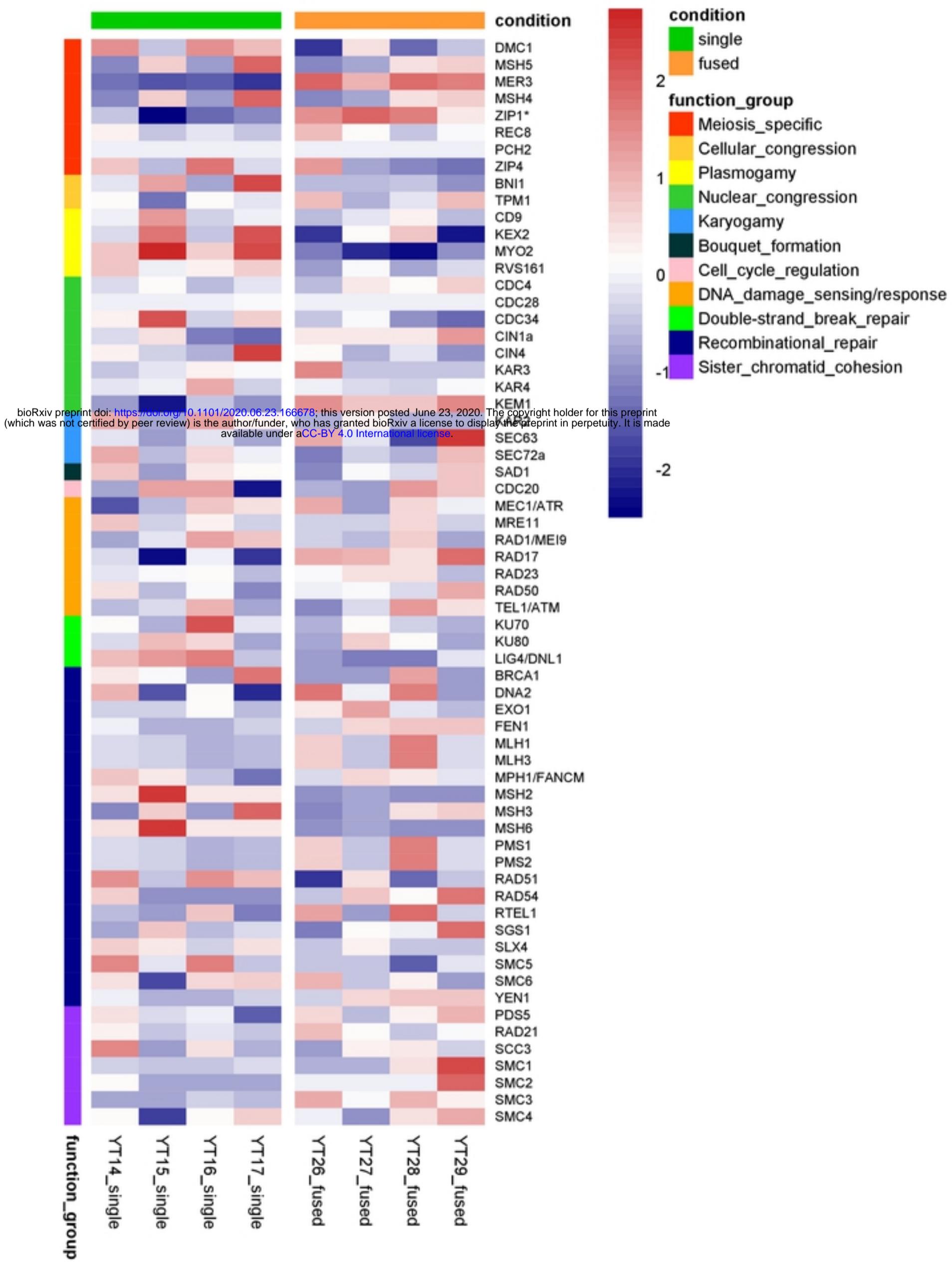


Figure 4

Enzyme Code Distribution

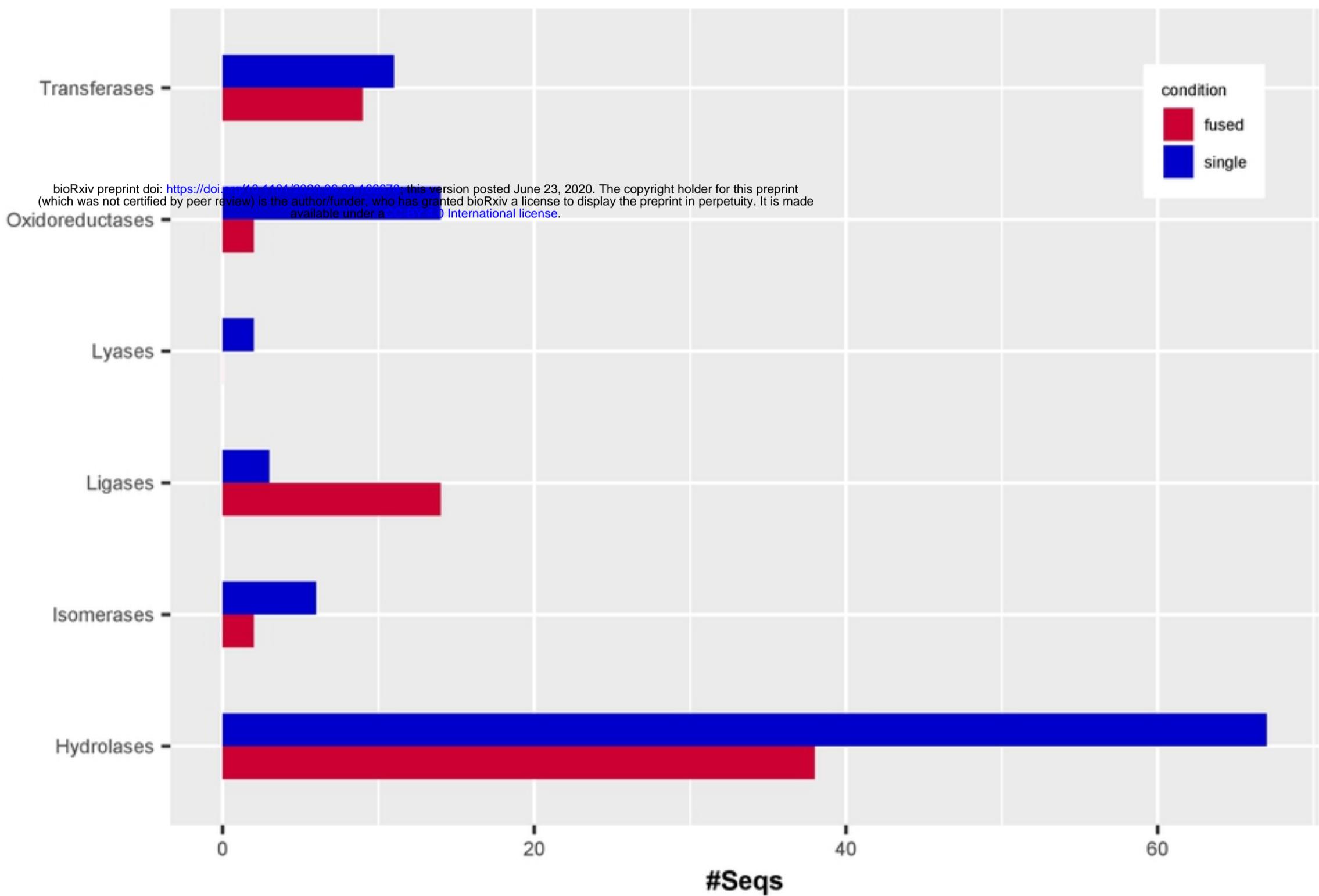


Figure 5

A.

bioRxiv preprint doi: <https://doi.org/10.1101/2020.06.23.166678>; this version posted June 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [CC-BY 4.0 International license](#).

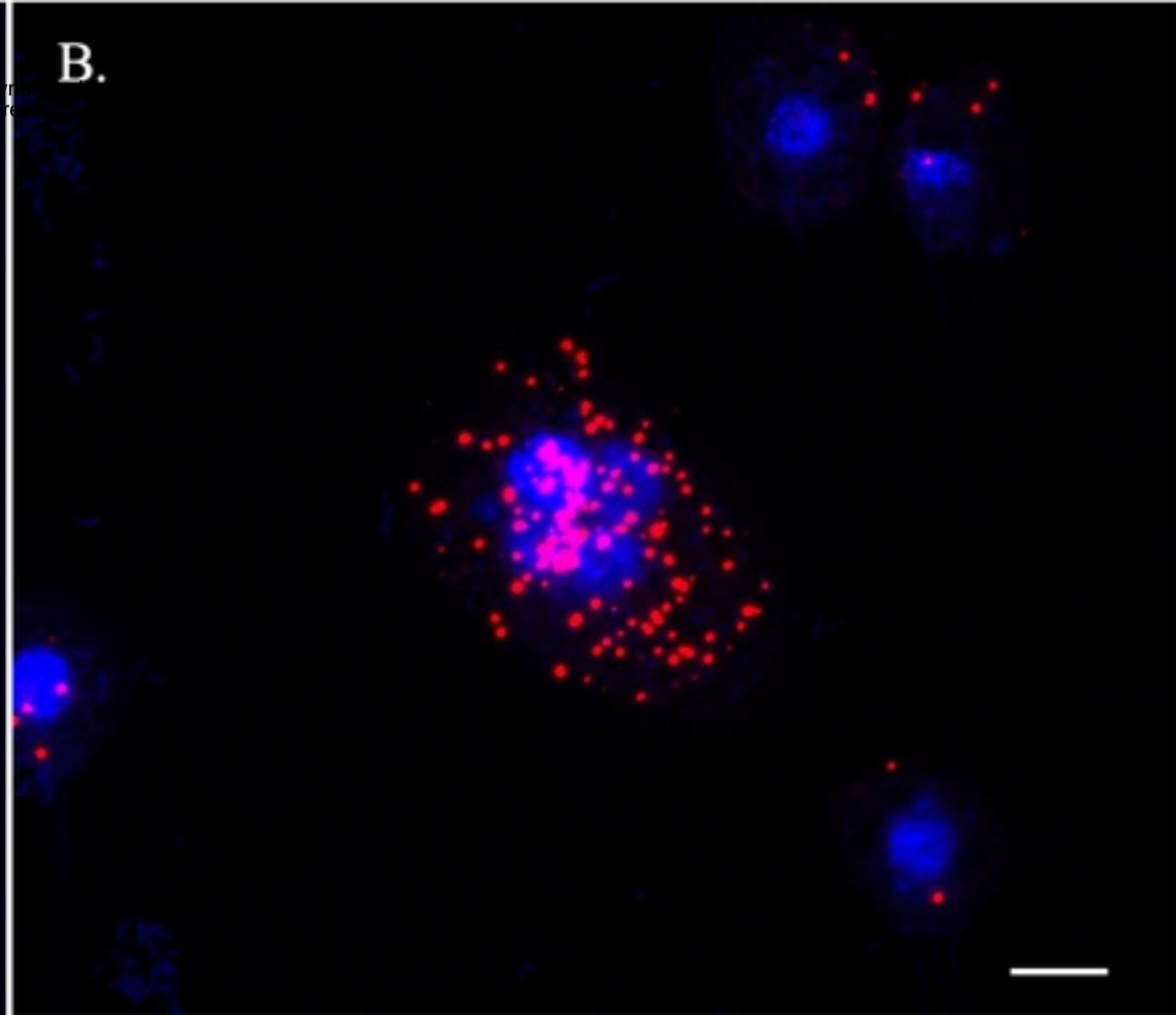
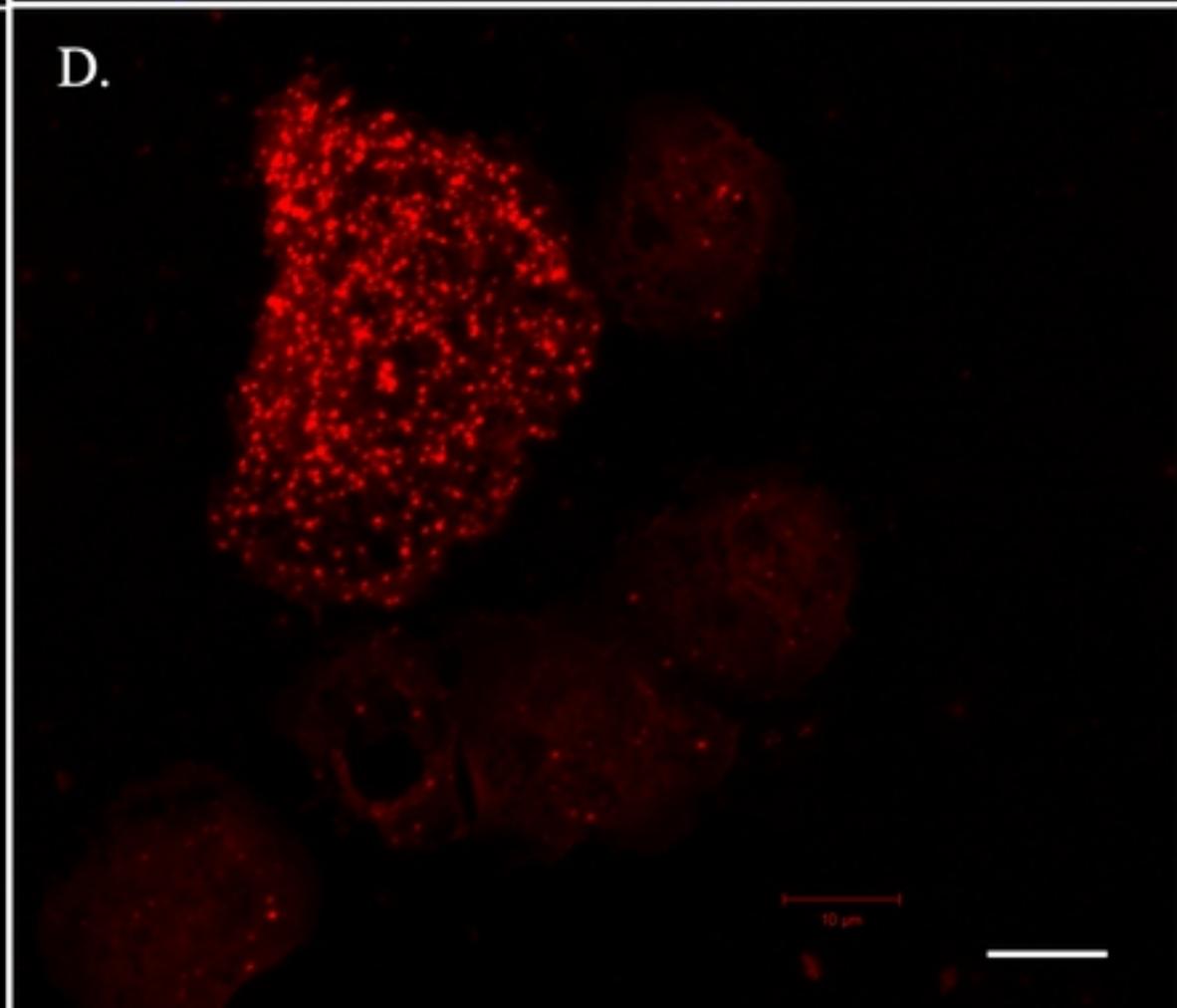
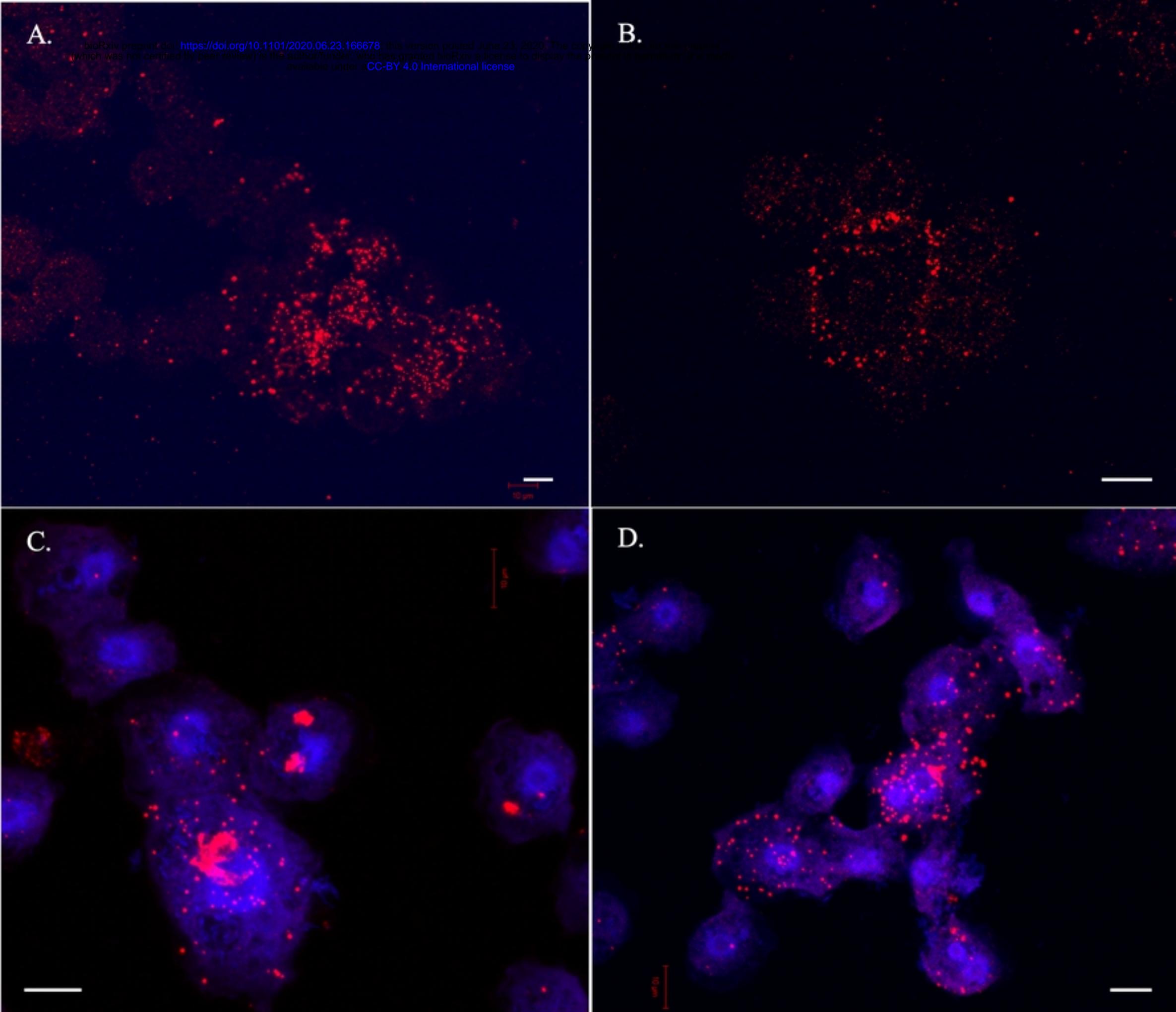
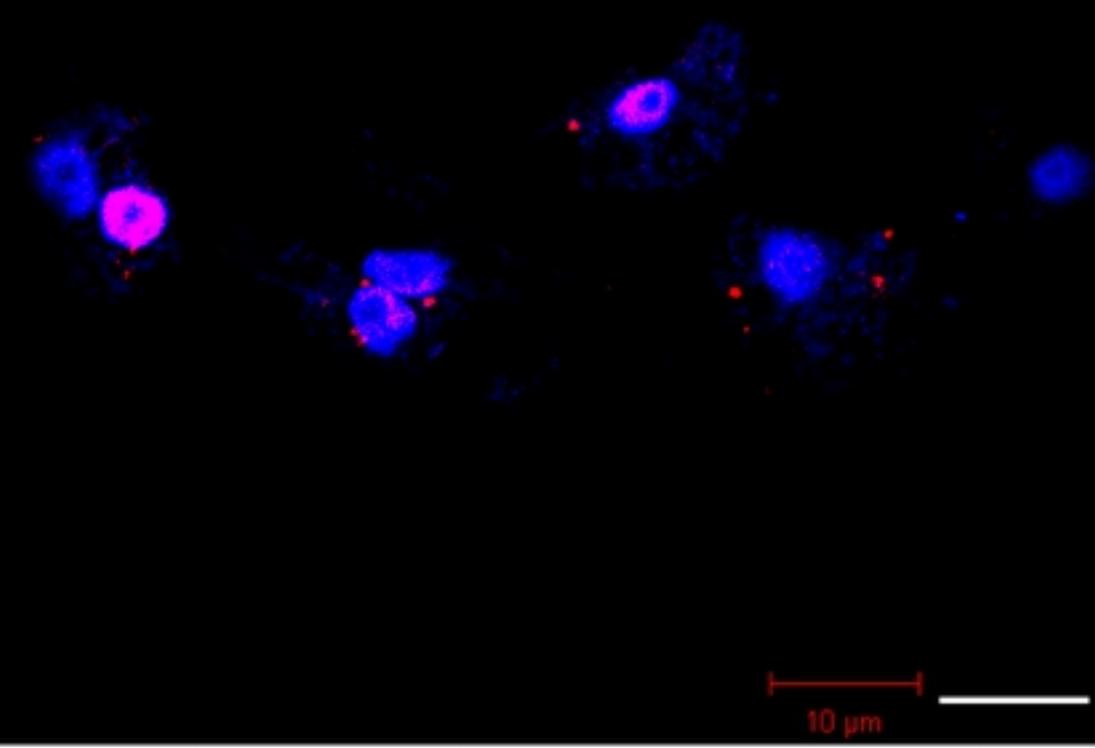



B.**C.****D.**

Figure 6

A.


bioRxiv preprint doi: <https://doi.org/10.1101/2020.06.23.166678>; this version posted June 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

B.**Figure 7**

A.

<https://doi.org/10.1101/2020.06.23.166678>

CC-BY 4.0 International license

B.

right holder for this preprint
preprint in perpetuity, it is made
available by the author under a
CC-BY 4.0 International license

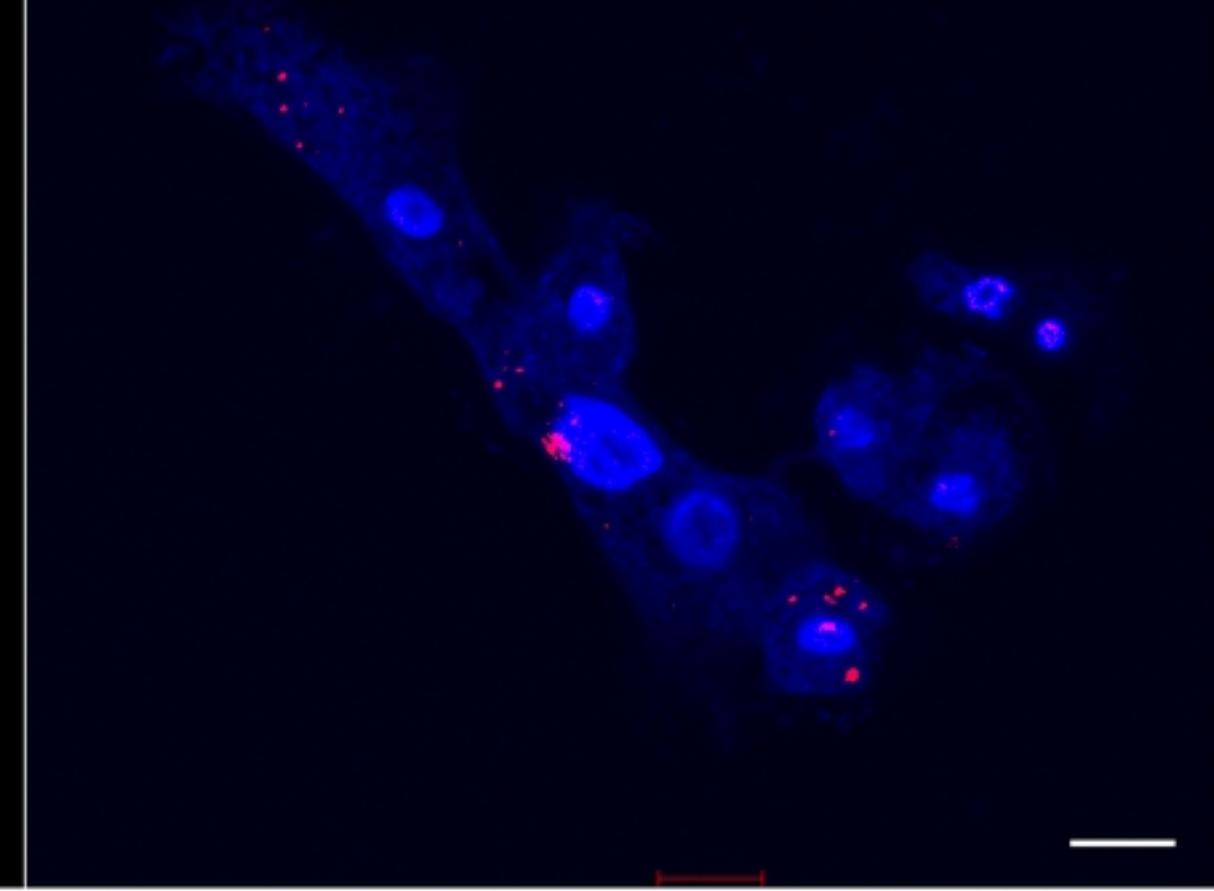
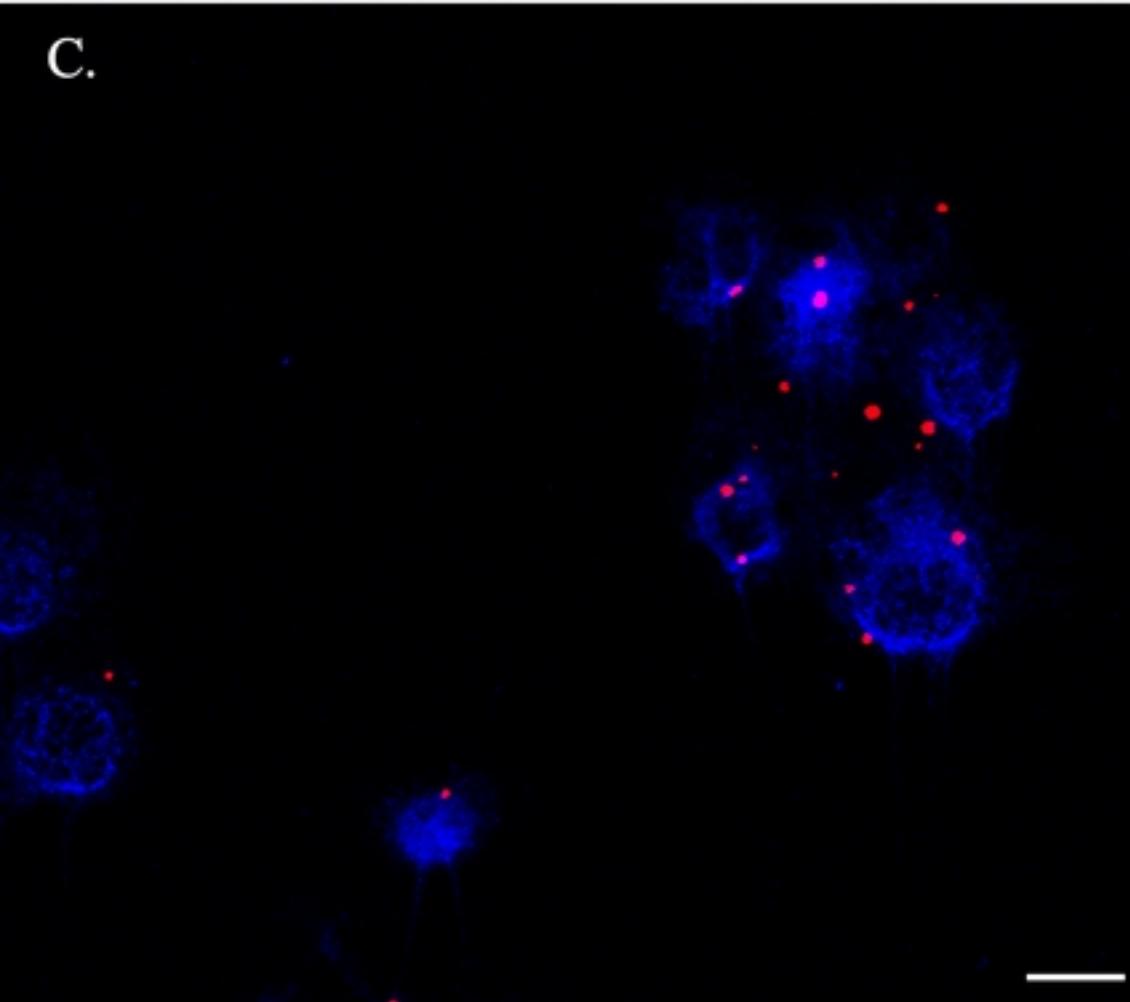
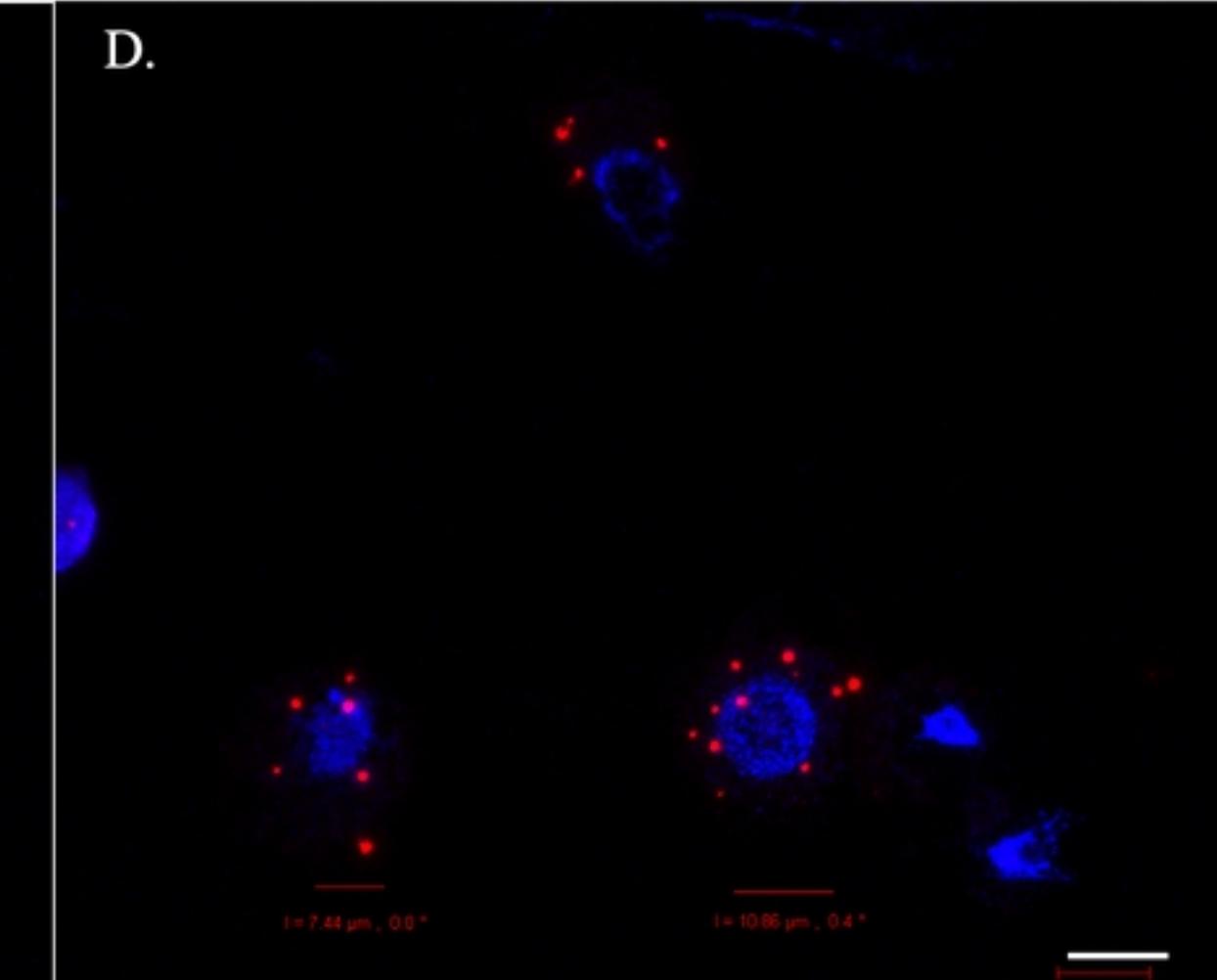



C.**D.**

Figure 8