

1 **Nicotinamide Riboside supplementation does not alter whole-body or skeletal muscle**
2 **metabolic responses to a single bout of endurance exercise**

3

4 Ben Stocks¹, Stephen P. Ashcroft¹, Sophie Joanisse¹, Yasir S. Elhassan², Gareth G. Lavery²,
5 Linda C. Dansereau^{3,4}, Ashleigh M. Philp^{3,4}, Gareth A. Wallis¹ & Andrew Philp^{1,3,4}

6

7 1. School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham,
8 Birmingham, UK.

9 2. Institute of Metabolism and Systems Research (IMSR), University of Birmingham,
10 Birmingham, UK.

11 3. Mitochondrial Metabolism and Ageing Laboratory, Garvan Institute of Medical Research,
12 Sydney, NSW, 2010, Australia.

13 4. St Vincent's Clinical School, UNSW Medicine, UNSW Sydney, Sydney, Australia.

14

15 Correspondence:

16 Dr Andrew Philp

17 Mitochondrial Metabolism and Ageing Laboratory

18 Garvan Institute of Medical Research

19 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia

20 Email: a.philp@garvan.org.au

21

22

23 **Short Title:** Post exercise responses to NR supplementation

24 **Keywords:** Skeletal Muscle, NAD⁺, Exercise, Metabolism

25 **Abstract**

26 Oral supplementation of the NAD⁺ precursor Nicotinamide Riboside (NR) has been reported
27 to increase Sirtuin (SIRT) signalling, mitochondrial biogenesis and endurance capacity in
28 rodent skeletal muscle. However, whether NR supplementation can elicit a similar response
29 in human skeletal muscle is unclear. This study aimed to assess the effect of 7-day NR
30 supplementation on exercise-induced transduction and transcriptional responses in skeletal
31 muscle of young, healthy, recreationally active human volunteers. In a double-blinded,
32 randomised, counter-balanced, crossover design, eight male participants (age: 23 ± 4 years,
33 VO₂peak: 46.5 ± 4.4 mL·kg⁻¹·min⁻¹) received one week of NR or cellulose placebo (PLA)
34 supplementation (1000 mg·d⁻¹) before performing one hour of cycling at 60% Wmax. Muscle
35 biopsies were collected prior to supplementation and pre-, immediately and three-hours
36 post-exercise from the medial vastus lateralis, whilst venous blood samples were collected
37 throughout the trial. Global acetylation, auto-PARylation of PARP1, acetylation of p53^{Lys382}
38 and MnSOD^{Lys122} were unaffected by NR supplementation or exercise. Exercise led to an
39 increase in AMPK^{Thr172} (1.6-fold), and ACC^{Ser79} (4-fold) phosphorylation, in addition to an
40 increase in PGC-1 α (~5-fold) and PDK4 (~10-fold) mRNA expression, however NR had no
41 additional effect on this response. There was also no effect of NR supplementation on
42 substrate utilisation at rest or during exercise or on skeletal muscle mitochondrial respiration.
43 Finally, NR supplementation blunted the exercise induced activation of skeletal muscle NNMT
44 mRNA expression, but had no effect on mRNA expression of NMRK1, NAMPT or NMNAT1,
45 which were not significantly affected by NR supplementation or exercise. In summary, one
46 week of NR supplementation does not augment skeletal muscle signal transduction pathways
47 implicated in mitochondrial adaptation to endurance exercise.

48

49 **Introduction**

50 Nicotinamide adenine dinucleotide (NAD⁺), including its reduced form NADH, is a redox co-
51 enzyme that shuttles hydride ions between processes of fuel oxidation, as well as within
52 biosynthetic pathways [1]. In addition to central roles in these critical metabolic processes,
53 NAD⁺ has emerged as a signalling moiety and an obligatory co-substrate for sirtuins (SIRTs),
54 poly ADP-ribose polymerases (PARPs) and cyclic ADP-ribose synthetases [2]. Thus NAD⁺ is an
55 important substrate in pathways governing metabolic adaptations, DNA repair and apoptosis
56 [1, 2]. Given the regulatory role of NAD⁺ in lifespan extending processes, it is unsurprising that
57 strategies to elevate cellular NAD⁺ are considered as promising therapies. For example,
58 elevating cellular NAD⁺ *in vivo* leads to positive outcomes in murine models of diabetes [3, 4],
59 ageing [3, 5, 6], obesity [7], vascular dysfunction [5], muscular dystrophy [8] and Alzheimer's
60 disease [9].

61

62 The vitamin B3 molecule nicotinamide riboside (NR) has emerged as one dietary strategy to
63 elevate NAD⁺ *in vivo*. In rodents, oral NR supplementation increases fat oxidation (at least
64 during the light, inactive phase) [7], promotes metabolic flexibility [10], improves insulin
65 sensitivity and may improve endurance performance [7], although a trend towards impaired
66 endurance performance has also been noted [11]. Mechanistically, NR supplementation
67 increases SIRT1 and SIRT3 activity, deacetylation of peroxisome proliferator-activated
68 receptor- γ coactivator 1- α (PGC-1 α) and induces mitochondrial biogenesis [7, 8, 12, 13].
69 Interestingly, and somewhat unsurprisingly, the effects of NR supplementation are much
70 more pronounced during models of elevated cellular stress [7, 8, 12-14].

71

72 Studies investigating NR supplementation in humans are in their infancy [6, 15-22].
73 Importantly, NR displays excellent safety and oral bioavailability in humans [6, 16, 17, 22],
74 with NR supplementation reported to improve blood pressure [6], liver health [16] and
75 physical function in the elderly [16], although the latter is not a consistent finding [6].
76 However, despite promising evidence from pre-clinical models [7, 10], several studies have
77 reported no effect of chronic NR supplementation on mitochondrial volume, mitochondrial
78 respiration, insulin sensitivity, body composition, cardiac function, lipolysis, VO_2peak and
79 resting or exercising substrate utilisation [6, 17-21], although one study has found increases
80 in relative fat free mass and sleeping metabolic rate [21]. The effect of NR on mitochondrial
81 biogenic signalling in skeletal muscle following exercise remains unstudied.

82

83 Therefore, the purpose of this study was to investigate the effects of oral NR supplementation
84 on whole body substrate utilisation and skeletal muscle mitochondrial biogenic signalling at
85 rest and following acute steady-state exercise in humans. It was hypothesised that NR
86 supplementation would increase whole body fat oxidation during exercise and augment
87 SIRT1, SIRT3 and PGC-1 α signalling in the post-exercise period compared to placebo.

88

89 **Materials and Methods**

90 *Participants*

91 Eight recreationally active males (mean \pm SD: age, 23 ± 4 years; body mass, 72.4 ± 5.3 kg; peak
92 oxygen uptake (VO_2peak), $46.5 \pm 4.4 \text{ mL}\cdot\text{kg}^{-1}\cdot\text{min}^{-1}$; maximal aerobic power (Wmax), $224 \pm$
93 29 W) were recruited to participate. Participants were fully informed of the study procedures
94 and their right to withdraw before providing written consent to participate. The study was
95 pre-approved by the National Health Service Research Ethics Committee, Black Country, West

96 Midlands, UK (17/WM/0321) and was conducted in accordance with the Declaration of
97 Helsinki.

98

99 *Experimental overview.*

100 Participants attended the laboratory on five occasions. Prior to the experimental periods,
101 participants attended the laboratory for a pre-testing visit to determine VO_2peak and Wmax .

102 The experimental period then consisted of two identical experimental blocks in which
103 participants visited the laboratory before and after a seven-day supplementation period.

104 During the supplementation period participants received either $1000 \text{ mg}\cdot\text{d}^{-1}$ nicotinamide
105 riboside (NR; Niagen, ChromaDex, Irvine CA, USA) or $1000 \text{ mg}\cdot\text{d}^{-1}$ of a cellulose placebo (PLA)

106 in a double-blinded, randomised, counter-balanced, crossover design. Supplements were
107 consumed twice daily such that participants were instructed to consume 500 mg of

108 supplement at ~9 am and ~9 pm each day. A two-week washout period was employed
109 between experimental blocks. After measuring height (Seca 220, Seca, Birmingham, UK) and

110 body mass (Champ II, OHAUS, Griefensee, Switzerland) participants performed a graded
111 exercise test to exhaustion on a cycle ergometer (Lode Excalibur, Groningen, Netherlands).

112 The test began at 50 W with power increasing by 25 W every three minutes thereafter.

113 Respiratory variables were measured continuously during exercise using a breath-by-breath
114 metabolic cart (Vyntus CPX, Jaeger, CareFusion, Germany), heart rate was monitored

115 throughout (RCX5, Polar Electro Oy, Kempele, Finland) and ratings of perceived exertion (RPE)
116 were determined using a 6-20 Borg scale during the final 15 seconds of each 3- minute stage

117 [23]. VO_2peak was determined as the highest rolling 30-second average of VO_2 . Wmax was
118 determined as work rate at the last completed stage plus the fraction of time spent in the

119 final non-completed stage multiplied by the increment in work rate (25W).

120

121 *Experimental trials.*

122 Participants refrained from alcohol for 72 h, caffeine for 24 h and exercise for 48 h prior to
123 each experimental trial. For 72 h prior to each experimental trial participants consumed a
124 replicated diet. For the first 48 h of this period participants consumed a diet that replicated
125 their ad libitum intake recorded via a weighed food diary prior to the first experimental visit.
126 For the final 24 h prior to each experimental visit participants were provided with a
127 standardised fixed energy intake diet (energy: 2271 kcal; macronutrient composition: 63%
128 carbohydrate, 21% fat and 16% protein). For the pre-supplementation visit, participants
129 arrived at the laboratory at ~8:30am following an ~12-hour overnight fast. Upon arrival,
130 participants rested in the supine position for approximately five minutes before a venous
131 blood sample was collected via venepuncture from an antecubital forearm vein. A resting
132 skeletal muscle biopsy was then taken from the medial vastus lateralis. Participants then
133 consumed the first 500 mg dose of their supplement prior to leaving the laboratory. For the
134 post-supplementation visit, participants arrived at the laboratory at ~7:30 am following an
135 ~12-hour overnight fast. Participants rested in the supine position for ten minutes prior to a
136 20-minute measurement of resting metabolic rate under a ventilated hood using the
137 GEMNutrition indirect calorimeter (GEMNutrition, Daresbury, UK). A cannula was then
138 inserted into an antecubital forearm vein and a baseline venous blood sample was collected
139 prior to providing a pre-exercise skeletal muscle biopsy from the medial vastus lateralis.

140

141 Participants then cycled for one-hour at 60% Wmax before a second skeletal muscle biopsy
142 was taken immediately post-exercise (completed within two minutes of exercise cessation)
143 after which they rested in a supine position prior to a third skeletal muscle biopsy obtained

144 three-hours post-exercise. A new incision was made for each biopsy at least 2 cm proximal
145 from the previous site. Venous blood was collected throughout rest periods and during
146 exercise. Respiratory variables were measured pre-exercise and at 15-minute intervals
147 throughout exercise, heart rate was monitored continuously throughout exercise and RPE
148 was determined at 15-minute intervals throughout exercise. Carbohydrate and fat oxidation
149 were calculated from VO_2 and VCO_2 using the moderate-high exercise intensities equation of
150 Jeukendrup and Wallis [24] during exercise and Frayn [25] at rest. Participants were allowed
151 to drink water ad libitum during rest and exercise periods during the visit following the first
152 supplementation period, which was matched during the second experimental trial.

153

154 *Muscle biopsies.*

155 Muscle biopsies were obtained from separate incision sites on the medial vastus lateralis
156 under local anaesthesia (1% lidocaine; B. Braun, Melsungen, Germany) by a Bergström needle
157 adapted with suction. Muscle was rapidly blotted to remove excess blood and was
158 immediately flash frozen in liquid nitrogen. In the case of pre-supplementation and pre
159 exercise biopsies, an ~20mg section was removed prior to freezing and placed in ice-cold
160 BIOPS buffer (2.77 mM CaK2EGTA, 7.23 mM K2EGTA, 5.77 mM Na2ATP, 6.56 mM MgCl2, 20
161 mM taurine, 15 mM Na2Phosphocreatine, 20 mM imidazole, 0.5 mM DTT, and 50 mM MES)
162 for the immediate measurement of mitochondrial respiration. Frozen muscle was powdered
163 using a Cellcrusher tissue pulverizer on dry ice and stored at -80°C prior to analysis.

164

165 *High-resolution respirometry.*

166 Skeletal muscle fibres were mechanically separated under a light microscope and
167 permeabilised by incubation in BIOPS buffer containing 50 mg·ml⁻¹ of saponin for 30 minutes

168 followed by a 15-minute wash in MiR05 buffer (0.5 mM EGTA, 3 mM MgCl₂.6H₂O, 60 mM K
169 lactobionate, 20 mM taurine, 10 mM KH₂PO₄, 20 mM HEPES, 110 mM sucrose, and 1 g.L⁻¹
170 fatty acid-free bovine serum albumin). Samples were then weighed and analysed in duplicate
171 using an Oroboros O2K (Oroboros Instruments, Innsbruck, Austria). When substantial
172 variability was apparent between duplicates a third sample was run. Data was collected at
173 37°C in hyperoxygenated (200-400 µM) conditions in MiR05 buffer. The substrate-uncoupler
174 inhibitor titration performed was as follows: 5 mM pyruvate, 2 mM malate, and 10 mM
175 glutamate was added to measure leak respiration through complex one (CIL); 5 mM ADP was
176 then added to measure coupled oxidative phosphorylation through complex one (CIP); 10
177 mM succinate was then added to measure coupled oxidative phosphorylation through
178 complexes one and two (CI+IIP); 10 µM cytochrome-c was added to test outer mitochondrial
179 membrane integrity; titrations of 0.5 µM FCCP until maximal respiration were then added to
180 measure maximal electron transport chain capacity (CI+IIE); 5 µM antimycin A was then added
181 to measure nonmitochondrial respiration. Respiration was normalised to tissue masses and
182 non-mitochondrial respiration was subtracted to give mass-specific mitochondrial
183 respiration. In all samples the increase in respiration following addition of cytochrome-c was
184 less than 10%, indicating preserved mitochondrial membrane integrity.

185

186 *Immunoblotting.*

187 Tissue was homogenized in a 10-fold mass excess of ice-cold sucrose lysis buffer (50 mM tris,
188 1 mM EDTA, 1 mM EGTA, 50 mM NaF, 5 mM Na₄P₂O₇-10H₂O, 270 mM sucrose, 1 M triton-
189 X, 25 mM β-glycerophosphate, 1 µM trichostatin A, 10 mM nicatinamide, 1mM 1,4
190 dithiothreitol, 1% phosphatase inhibitor Cocktail 2; Sigma, 1% phosphatase inhibitor cocktail
191 2; Sigma, 4.8% cComplete mini protease inhibitor cocktail; Roche) using an IKA T10 basic

192 ULTRA-TURRAX homogeniser (IKA, Oxford, UK) followed by shaking at 4°C for 30 minutes and
193 centrifuging at 4°C and 8000 g for 10 minutes to remove insoluble material. Protein
194 concentrations were determined by the DC protein assay (Bio-Rad, Hercules, California, USA).
195 Samples were prepared in laemmli sample buffer, boiled at 97°C for 5 min (with the exception
196 of an aliquot set aside for determination of electron transport chain protein content which
197 remained unboiled) and an equal volume of protein (18-36 µg) was separated by SDS-PAGE
198 on 8 - 12.5% gels at a constant current of 23 mA per gel. Proteins were transferred on to
199 BioTrace NT nitrocellulose membranes (Pall Life Sciences, Pensacola, Florida, USA) via wet
200 transfer at 100 V for one hour. Membranes were then stained with Ponceau S (Sigma-Aldrich,
201 Gillingham, UK) and imaged to check for even loading. Membranes were blocked in 3% dry-
202 milk in tris-buffered saline with tween (TBST) for one hour before being incubated in primary
203 antibody overnight at 4°C. Membranes were washed in TBST three times prior to incubation
204 in appropriate horse radish peroxidase (HRP)-conjugated secondary antibody at room
205 temperature for one hour. Membranes were then washed in TBST three times prior to
206 antibody detection via enhanced chemiluminescence HRP substrate detection kit (Millipore,
207 Watford, UK). Imaging and band quantification were undertaken using a G:Box Chemi-XR5
208 (Syngene, Cambridge, UK).

209

210 *Antibodies.*

211 All primary antibodies were used at a concentration of 1:1000 in TBST unless otherwise
212 stated. Pan-acetylation (ab193), ac-MnSOD^{K122} (ab214675) and OXPHOS cocktail (ab110411)
213 were purchased from abcam; AMP-activated protein kinase alpha (AMPK α ; 2603), p-
214 AMPK^{Thr172} (2535), p-ACC^{Ser79} (3661), calmodulin dependent kinase II (CAMKII; 3362), p-
215 CAMKII^{Thr268} (12716), cAMP response element binding protein (CREB; 1°: 1:500; 9197), p-

216 CREB^{Ser133} (1°: 1:500; 9191), glyceraldehyde 3-phosphate dehydrogenase (GAPDH; 1:5000;
217 2118), p38 mitogen activated protein kinase (p38 MAPK; 9212), p-p38 MAPK^{Thr180/Tyr182} (4511),
218 poly ADP-ribose polymerase 1 (PARP1; 1°: 1:500; 9542), tumour protein 53 (p53; 2°: 1:2000;
219 2527) and acp53^{K382} (1°: 1:500 in 3% BSA, 2°: 1:2000; 2570) were purchased from Cell
220 Signaling Technology; acetyl CoA carboxylase (ACC; 05-1098), superoxide dismutase (MnSOD;
221 1°: 1:2000; 06-984), PGC-1 α (ab3242) and poly-ADPribose (PAR; 1°: 1:500; MABE1031) were
222 purchased from Merck Millipore. Secondary antibodies were used at a concentration of
223 1:10000 in TBST unless otherwise stated. Anti-rabbit (7074) and anti-mouse (7076) antibodies
224 were from Cell Signaling Technology.

225

226 *Real time RT-qPCR.*

227 RNA was extracted from ~20 mg of muscle by homogenising in 1 mL of Tri reagent (Sigma
228 Aldrich, Gillingham, UK) using an IKA T10 basic ULTRATURRAX homogeniser (IKA, Oxford, UK).
229 Phase separation was achieved by addition of 200 μ L of chloroform and centrifugation at
230 12000 g for 15 minutes. The RNA-containing supernatant was removed and mixed with an
231 equal volume of 2-propanol. RNA was purified on Reliaprep spin columns (Promega, Madison,
232 Wisconsin, USA) using the manufacturer's instructions, which includes a DNase treatment
233 step. RNA concentrations were determined using the LVis function of the FLUOstar Omega
234 microplate reader (BMG Labtech, Aylesbury, UK). RNA was diluted to 30 ng· μ L⁻¹ and reverse
235 transcribed to cDNA in 20 μ L volumes using the nanoScript 2 RT kit and oligo(dT) primers
236 (Primerdesign, Southampton, UK) as per the manufacturer's instructions. RT-qPCR analysis of
237 mRNA content was performed in triplicate by using Primerdesign custom designed primers
238 (Table 1) and commercially available ACTB, B2M GAPDH, (Primerdesign) and Precision plus
239 qPCR Mastermix with low ROX and SYBR (Primerdesign) on a QuantStudio3 Real-Time PCR

240 System (Applied Biosystems, Thermo Fisher, UK). The qPCR reaction was run as per the
241 manufacturer's instructions (Primerdesign) and followed by a melt curve (Applied
242 Biosystems) to ascertain specificity. 2-20 ng of cDNA was added to each well in a 20 μ L
243 reaction volume. qPCR results were analysed using Experiment Manager (Thermo Fisher).
244 mRNA expression is expressed relative to the expression in the pre-exercise sample during
245 FED for each individual using the 2- $\Delta\Delta$ CQ method [26] with the geometric mean of Cq values
246 for ACTB, B2M and GAPDH used as an internal control [27]. Optimal stability of housekeeper
247 genes was determined using RefFinder [28]. Statistical analyses were performed on log-
248 transformed $\Delta\Delta$ CQ values.

249

250 *Blood analyses.*

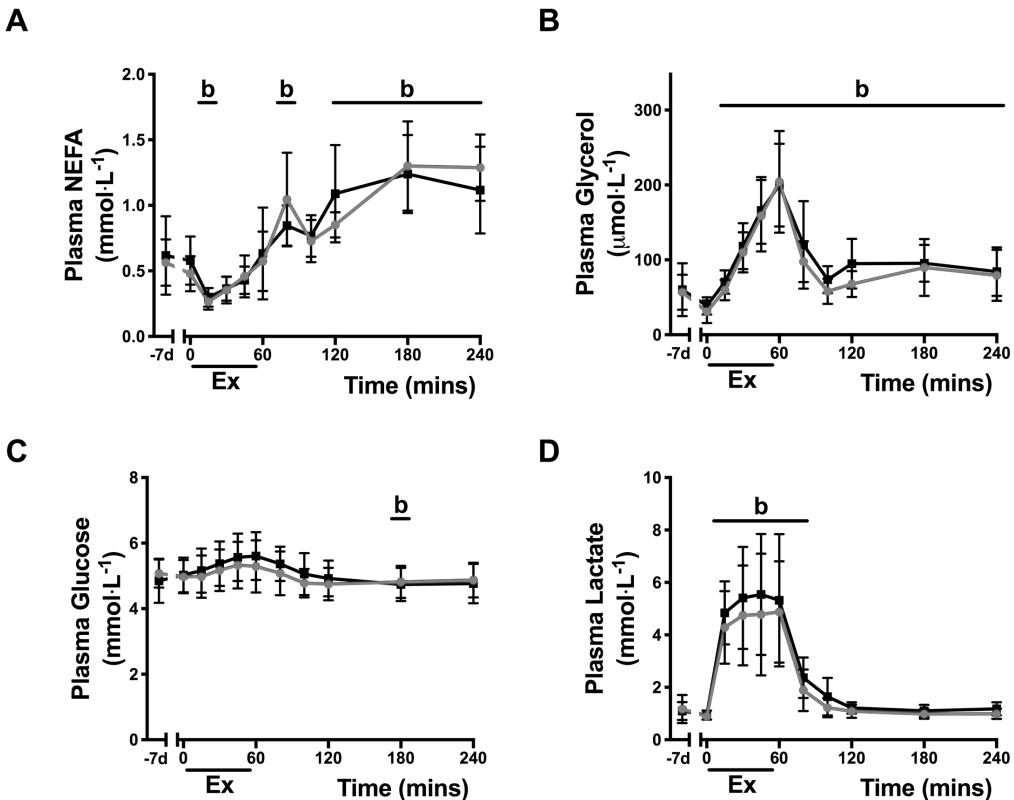
251 Blood samples were collected into tubes containing ethylenediaminetetraacetic acid (EDTA;
252 BD, Oxford, UK) for the collection of plasma. Samples were placed immediately upon ice prior
253 to centrifugation at 1600 g at 4°C for 10 minutes before collection of plasma from the
254 supernatant. Plasma was frozen at -80°C until further analysis. Plasma samples were
255 subsequently analysed on an autoanalyser (iLAB650, Instrumentation Laboratory, Bedford,
256 MA, USA) for glucose, lactate, non-esterified fatty acid (NEFA) and glycerol (Randox
257 Laboratories, County Antrim, UK) using commercially available kits.

258

259 *Statistics.*

260 Two-way repeated measures ANOVAs assessed effects of time, treatment and
261 time*treatment interaction effects for all time-course data. Ryan-Holm-Bonferroni multiple
262 comparison corrections were applied post-hoc where applicable. Differences in means for
263 resting and exercising VO₂, VCO₂, respiratory exchange ratio (RER), substrate utilisation, heart

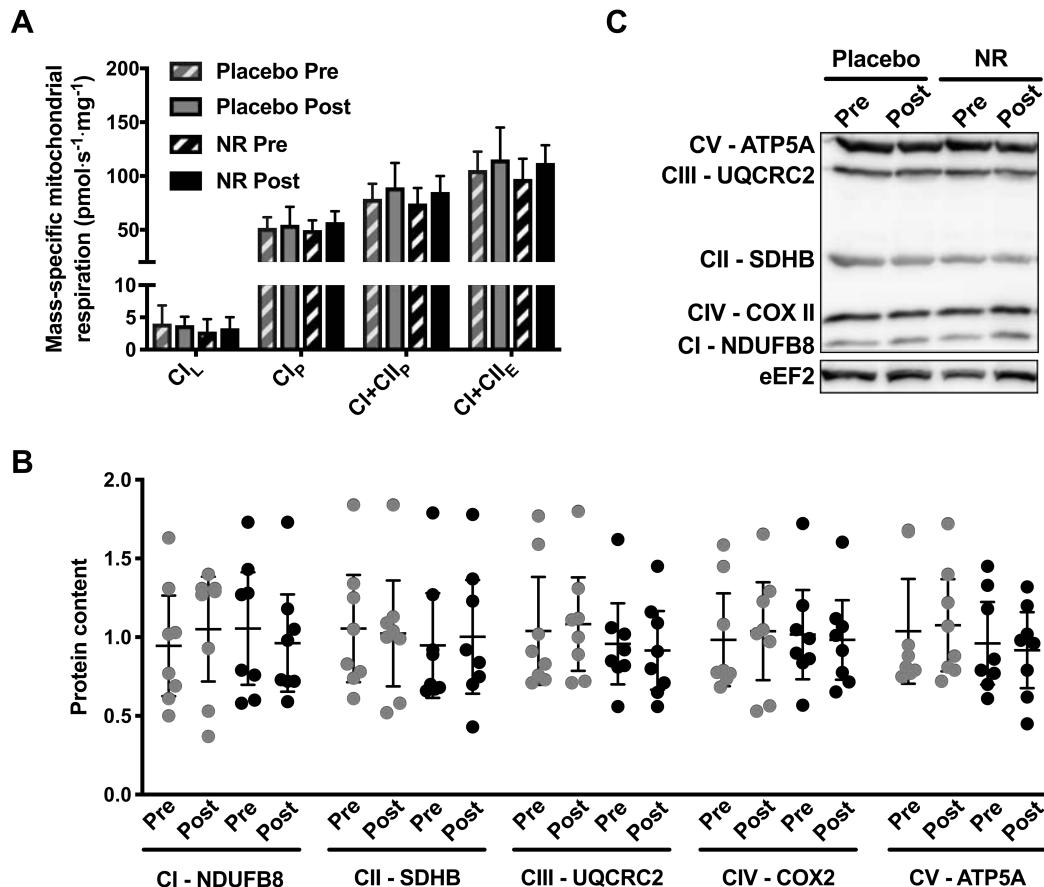
264 rate and RPE were assessed using repeated-measures t-tests. All statistics were performed
265 using the Statistical Package for the Social Sciences (SPSS) version 22.0. Data are presented
266 as means with 95% confidence intervals. Statistical significance was accepted as $p < 0.05$.


267

268 **Results**

269 Substrate utilisation and systemic availability.

270 Seven days of NR supplementation did not influence resting metabolic rate (PLA: 1859 ± 202
271 vs NR: $1772 \pm 211 \text{ kcal}\cdot\text{d}^{-1}$; $p = 0.486$). Furthermore, substrate utilisation at rest was similar
272 following supplementation of NR or PLA (carbohydrate oxidation: PLA: 0.09 ± 0.04 vs NR: 0.11
273 $\pm 0.03 \text{ g}\cdot\text{min}^{-1}$; $p = 0.446$, fat oxidation: PLA: 0.10 ± 0.03 vs NR: $0.09 \pm 0.02 \text{ g}\cdot\text{min}^{-1}$; $p = 0.395$,
274 RER: PLA: 0.79 ± 0.04 vs NR: 0.80 ± 0.03 ; $p = 0.563$). Carbohydrate and fat oxidation during
275 exercise were also similar between trials (Table 2). VO_2 , VCO_2 , RER, heart rate and RPE did not
276 differ between trials during exercise (Table 2). There was no effect of NR on resting or
277 exercising plasma NEFA, glycerol, glucose or lactate (Figure 1). Plasma NEFA concentration
278 initially decreased during the first 15 minutes of exercise before returning to pre-exercise
279 values for the remainder of the exercise bout (main effect of treatment; $p = 0.891$, time; $p <$
280 0.001 , interaction; $p = 0.296$). Following exercise (80 minutes) plasma NEFA concentration
281 increased and remained elevated above pre-exercise values from 120 minutes until the end
282 of the trial (240 minutes). Plasma glycerol concentration increased during exercise and
283 remained elevated above pre-exercise values for the remainder of the trial (main effect of
284 treatment; $p = 0.106$, time; $p < 0.001$, interaction; $p = 0.720$). Plasma glucose was marginally,
285 although significantly, decreased from pre-exercise values at two hours after the cessation of
286 exercise (main effect of treatment; $p = 0.175$, time; $p = 0.010$, interaction; $p = 0.174$). Plasma


287 lactate increased during exercise and remained elevated for the first 20 minutes of recovery
288 (main effect of treatment; $p = 0.192$, time; $p = 0.001$, interaction; $p = 0.585$).

289
290 **Figure 1. NR supplementation does not alter plasma NEFA, glycerol, glucose or lactate at**
291 **rest or during exercise.** Time-course for plasma NEFA (A.), glycerol (B.), glucose (C.) and
292 lactate (D.) in PLA (black) and NR (grey). b: main effect of time (significantly different to pre-
293 exercise; $p \leq 0.05$). Data presented as means \pm 95% confidence intervals ($n = 8$).

294
295 Skeletal muscle mitochondrial function and protein content.
296 Rates of mitochondrial respiration were similar to those previously reported [29, 30]. There
297 were no changes observed in CIL (main effect of treatment; $p = 0.319$, time; $p = 0.833$,
298 interaction; $p = 0.588$), CIP (main effect of treatment; $p = 0.979$, time; $p = 0.388$, interaction;
299 $p = 0.551$), CI+IIP (main effect of treatment; $p = 0.612$, time; $p = 0.216$, interaction; $p = 0.993$)
300 or CI+IIE (main effect of treatment; $p = 0.657$, time; $p = 0.190$, interaction; $p = 0.621$)

301 respiration following supplementation of NR or PLA (Figure 2A). Furthermore, the content of
302 proteins within each of the five electron transport chain complexes were unchanged
303 following NR or PLA supplementation (Figure 2B; $p > 0.05$).

304

305 **Figure 2. Seven days of NR supplementation does not induce mitochondrial biogenesis in**
306 **skeletal muscle. A. There were no changes in the mass-specific mitochondrial leak respiration**
307 **through complex I (Cl⁻), coupled respiration through complex I (Cl⁻_P), coupled respiration**
308 **through complexes I and II (Cl⁻_P_P), or maximal electron transport chain capacity (Cl⁻_E)**
309 **following seven days of NR supplementation ($p > 0.05$). B. Similar content of proteins within**
310 **the five electron transport chain complexes pre- and post-supplementation of PLA (grey) or**
311 **NR (black) ($p > 0.05$). C. Representative immunoblot images. Data presented as means \pm 95%**
312 **confidence intervals ($n = 8$).**

313

314 Skeletal muscle signalling.

315 Global acetylation within skeletal muscle was unaffected by NR supplementation or exercise

316 (Figure 3A; main effect of treatment; $p = 0.845$, time; $p = 0.120$, interaction; $p = 0.106$).

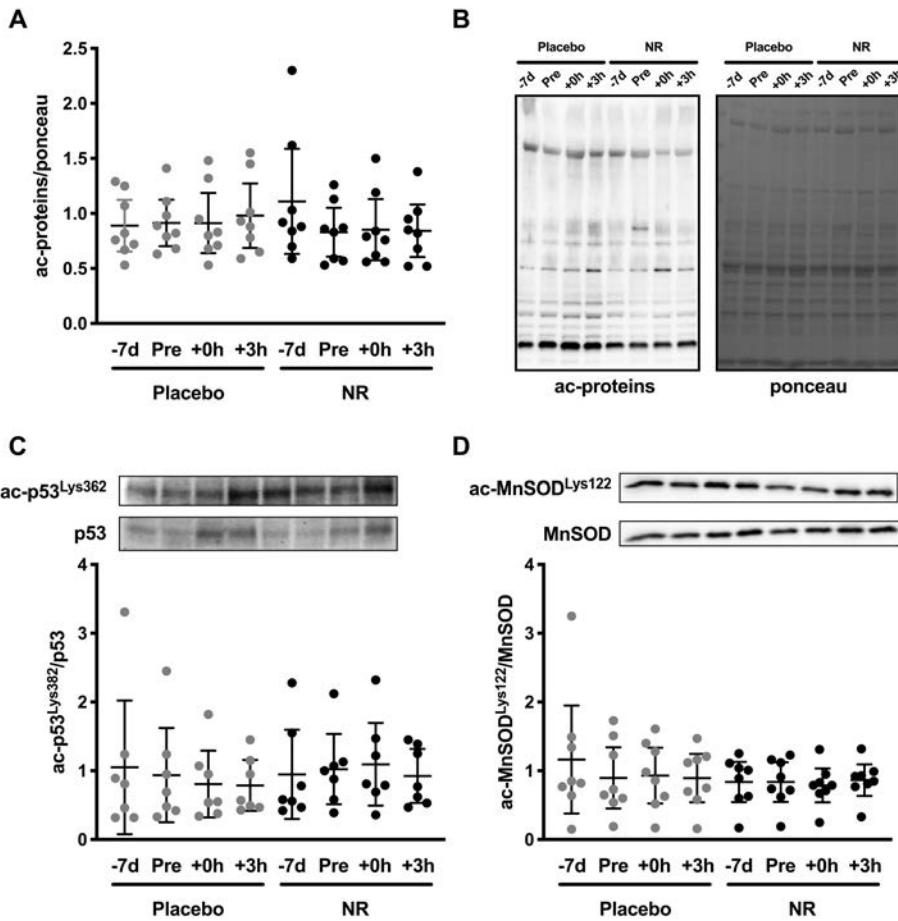
317 Furthermore, the acetylation of $\text{p53}^{\text{Lys382}}$, a SIRT1 deacetylation target [31], and $\text{MnSOD}^{\text{K122}}$,

318 a SIRT3 deacetylation target [32], were unchanged throughout the intervention (Figure 3C &

319 D ; $\text{p53}^{\text{Lys382}}$: main effect of treatment; $p = 0.723$, time; $p = 0.786$, interaction; $p = 0.354$,

320 $\text{MnSOD}^{\text{K122}}$: main effect of treatment; $p = 0.324$, time; $p = 0.409$, interaction; $p = 0.332$). The

321 protein content of PARP1 was unaffected by NR supplementation as post-hoc analyses


322 revealed no significant difference despite a significant treatment*time interaction effect

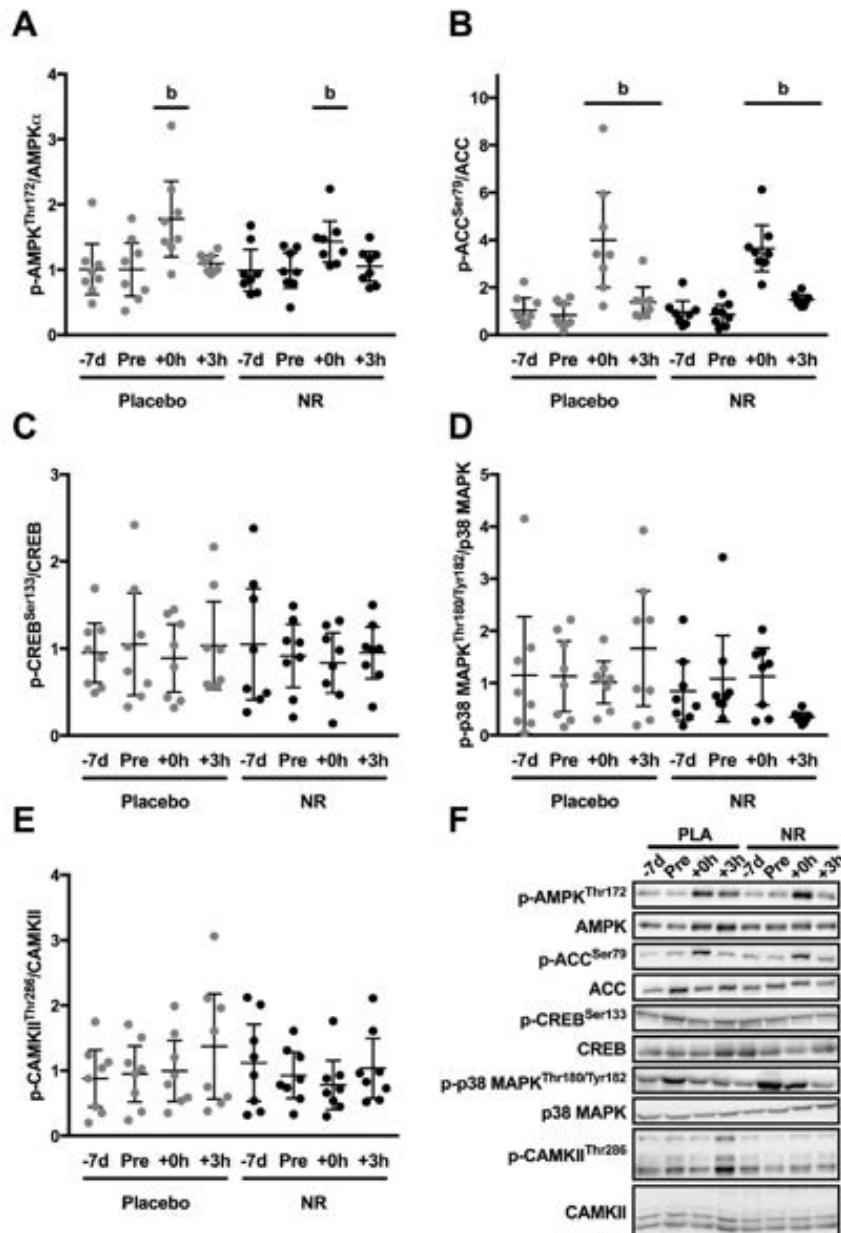
323 (main effect of treatment; $p = 0.498$, time; $p = 0.520$, interaction; $p = 0.040$; Figure 4A). Auto-

324 PARylation of PARP1, a proxy of PARP1 activity [33], was also unchanged by NR or exercise

325 (main effect of treatment; $p = 0.512$, time; $p = 0.255$, interaction; $p = 0.115$; Figure 4B).

326

327


328

329 **Figure 3. Seven days NR supplementation does not influence Sirtuin deacetylase activity at**
330 **rest or following endurance exercise. A. Global acetylation within skeletal muscle is**
331 **unaffected by NR supplementation or exercise ($n = 8$; $p > 0.05$). B. Representative immunoblot**
332 **images of global acetylation and Ponceau S stain. C. Acetylation of $p53^{Lys382}$, a SIRT1**
333 **deacetylation site, is unchanged by NR supplementation at rest or following endurance**
334 **exercise ($n = 7$; $p > 0.05$). D. Acetylation of $MnSOD^{Lys122}$, a SIRT3 deacetylation site, is**
335 **unchanged by NR supplementation at rest or following endurance exercise ($n = 8$; $p > 0.05$). -**
336 **7d: pre-supplementation; Pre: pre-exercise (post-supplementation); +0h: immediately post-**
337 **exercise; +3h: three hours post-exercise. All values are presented relative to the group mean**
338 **for all pre-supplementation samples. Data presented as means \pm 95% confidence intervals.**

339

342 **Figure 4. Seven days of NR supplementation does not influence PARP1 protein content or**
343 **PARylated PARP1 protein content.** PARP1 protein content (A.) and auto-PARylation of PARP1
344 (**B.**) are unaffected by NR supplementation or exercise ($p < 0.05$). C. Representative
345 immunoblot images of PARylation and Ponceau S stain. -7d: pre-supplementation; Pre:
346 preexercise; +0h: immediately post-exercise; +3h: three hours post-exercise. All values are
347 presented relative to the group mean for all pre-supplementation samples. Data presented as
348 means \pm 95% confidence intervals ($n = 8$).

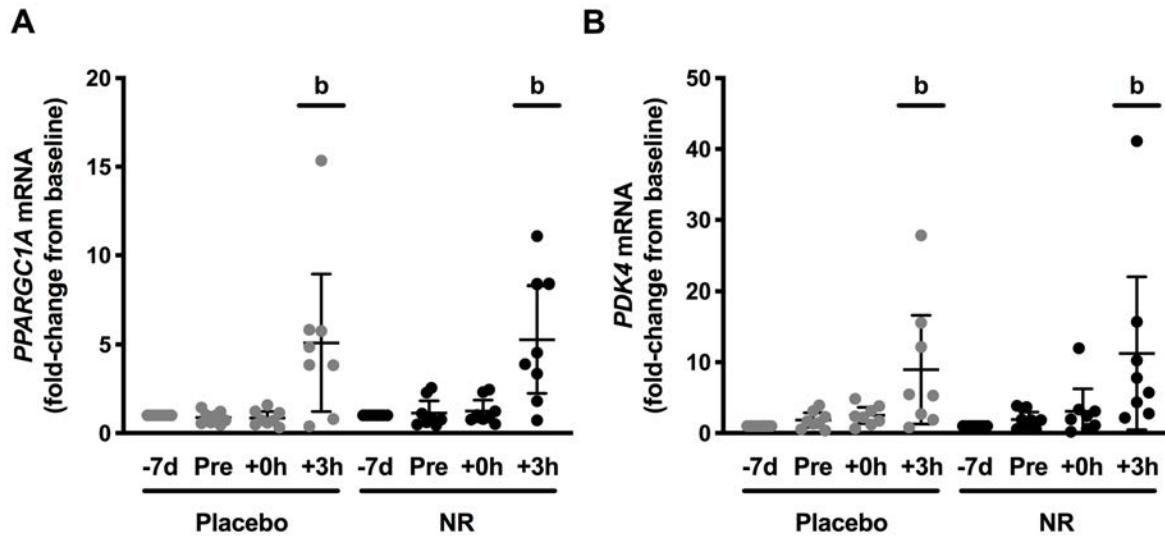
349

350 **Figure 5. Activation of exercise-sensitive signalling pathways following NR supplementation**

351 **and endurance exercise. A. Phosphorylation of AMPK^{Thr172} is increased immediately post**
352 **exercise in each trial. B. Phosphorylation of ACC^{Ser79} is increased immediately postexercise and**
353 **remains elevated three hours post-exercise in each trial. C. CREB^{Ser133}, D. p38 MAPK^{Thr180/Tyr182}**
354 **and E. CAMKII^{Thr286} remain unchanged throughout the intervention. F. Representative**
355 **immunoblot images. -7d: presupplementation; Pre: pre-exercise (post supplementation); +0h:**
356 **immediately post-exercise; +3h: three hours post-exercise. b: main effect of time (significantly**

357 *different to pre-exercise; p ≤ 0.05). All values are presented relative to the group mean for all*
358 *pre-supplementation samples. Data presented as means ± 95% confidence intervals (n = 8).*

359


360 Exercise increased the phosphorylation of AMPK^{Thr172} (Figure 5A, main effect of time; p =
361 0.002) by ~1.6-fold immediately post-exercise (p = 0.031 vs pre-exercise). There was no effect
362 of treatment (p = 0.216) or a treatment*time interaction effect (p = 0.472). Phosphorylation
363 of ACC^{Ser79} (Figure 5B) increased ~4-fold immediately post-exercise (p < 0.001 vs pre-exercise)
364 and remained ~1.4-fold elevated 3-h post-exercise (p = 0.013 vs pre-exercise, main effect of
365 time; p < 0.001). CREB^{Ser133} phosphorylation was unaffected by exercise or NR (main effect of
366 treatment; p = 0.651, time; p = 0.462, interaction; p = 0.810; Figure 5C). p38 MAPK^{Thr180/Tyr182}
367 phosphorylation was not significantly affected by exercise or NR (Figure 5D), as post-hoc
368 analyses revealed no significant differences despite a treatment*time interaction effect (main
369 effect of treatment; p = 0.124, time; p = 0.942, interaction; p = 0.034). CAMKII^{Thr286}
370 phosphorylation was not altered by exercise or NR (main effect of treatment; p = 0.574, time;
371 p = 0.177, interaction; p = 0.236; Figure 5E).

372

373 Metabolic mRNA response.

374 Seven days of NR supplementation did not alter resting PPARGC1A mRNA expression in
375 skeletal muscle (Figure 6A). PPARGC1A mRNA increased ~5-fold three hours post-exercise (p
376 = 0.025 vs pre-exercise, main effect of time; p = 0.003). Post-exercise PPARGC1A mRNA
377 expression was similar in PLA and NR trials (main effect of treatment; p = 0.257, interaction;
378 p = 0.591). Expression of pyruvate dehydrogenase kinase 4 (PDK4; Figure 6B) increased post-
379 exercise (main effect of time; p = 0.001) and was ~10-fold elevated three hours post-exercise

380 (p = 0.029 vs pre-exercise). mRNA expression of PDK4 was similar between PLA and NR trials
381 (main effect of treatment; p = 0.827, interaction; p = 0.521).
382

383

384 **Figure 6. Seven days of NR supplementation does not alter resting or exercise-induced PGC-
385 1 α or PDK4 mRNA expression. A. Resting and exercise induced PGC-1 α mRNA expression is
386 similar between NR and PLA trials. B. Resting and exercise induced PDK4 mRNA expression is
387 similar between NR and PLA trials. -7d: pre-supplementation; Pre: pre-exercise (post-
388 supplementation); +0h: immediately post-exercise; +3h: three hours post-exercise. b: main
389 effect of time (significantly different to pre exercise; p ≤ 0.05). All values are presented relative
390 to individual pre supplementation values for each trial and reported as means ± 95%
391 confidence intervals (n = 8).**

392

393 mRNA expression of enzymes within the NAD⁺ synthesis and salvage pathways.

394 NR supplementation did not alter the mRNA expression of nicotinamide riboside kinase 1

395 (NMRK1; main effect of treatment; $p = 0.432$) within skeletal muscle (Figure 7A). NMRK1

396 mRNA expression did show a tendency for a main effect of time ($p = 0.071$). There was no

397 treatment*time interaction effect for NMRK1 mRNA ($p = 0.203$). mRNA expression of NAMPT,

398 the rate limiting enzyme in NAD⁺-salvage (8, 12, 14), was unaffected by NR supplementation

399 or exercise (Figure 7B; main effect of treatment; $p = 0.303$, time; $p = 0.305$, interaction; $p =$

400 0.442). Nicotinamide mononucleotide acetyl transferase 1 (NMNAT1) mRNA expression was

401 not influenced by NR supplementation (Figure 7C), however showed a trend to decrease

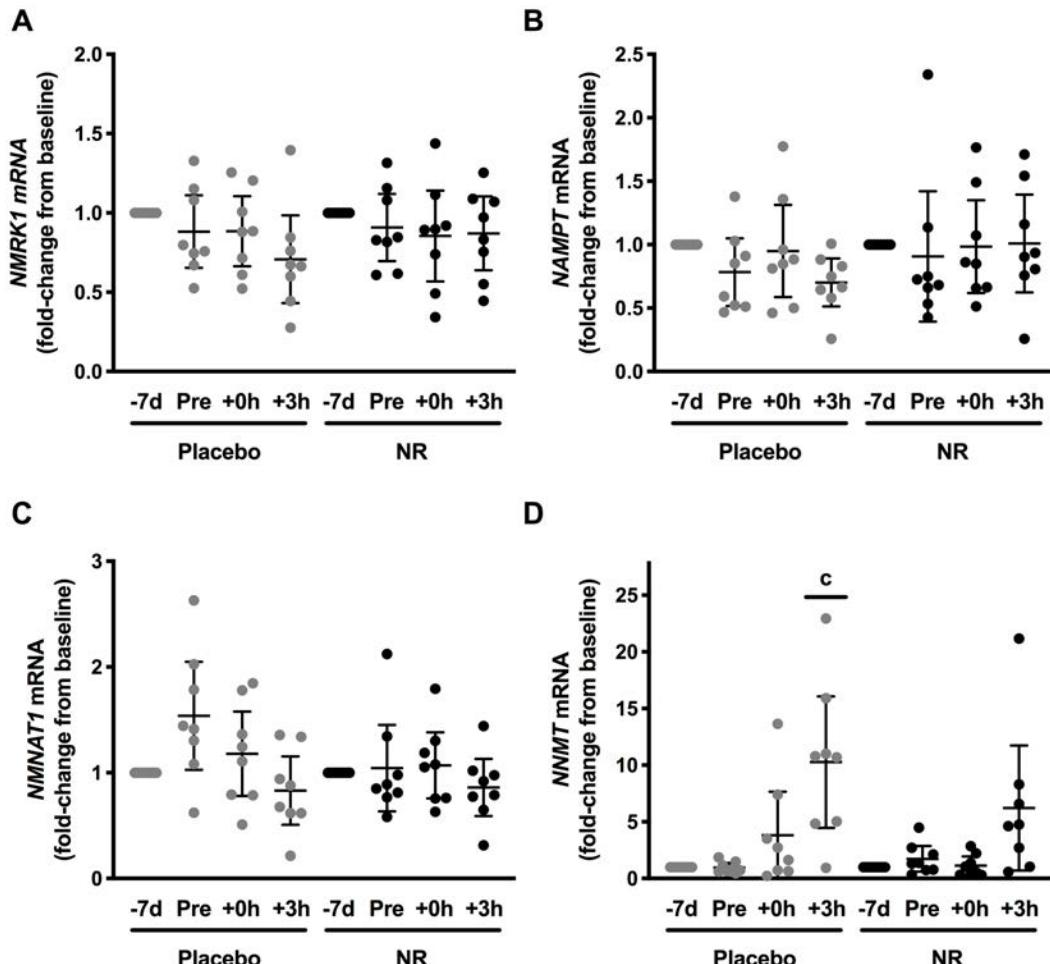
402 three hours post-exercise ($p = 0.065$ vs preexercise, main effect of time: $p = 0.046$). There was

403 no effect of treatment ($p = 0.482$) nor a treatment*time interaction effect ($p = 0.168$).

404 Nicotinamide N-methyltransferase (NNMT) increased in expression three-hours post-exercise

405 (Figure 7D; $p = 0.010$ vs pre-exercise, main effect of time: $p = 0.001$). However, the post-

406 exercise mRNA expression of NNMT was suppressed following NR supplementation


407 (treatment*time interaction: $p = 0.029$), such that the exercise-induced NNMT mRNA

408 expression was only increased in the PLA trial (PLA 3h post-exercise vs PLA pre-exercise: $p =$

409 0.010), while there was also a trend towards a difference between NR and PLA three hours

410 post-exercise ($p = 0.116$). There was no main effect of treatment ($p = 0.148$).

411

412

413 **Figure 7. mRNA expression of enzymes in the NAD⁺ synthesis and salvage pathways within**
414 **skeletal muscle following NR supplementation and endurance exercise. mRNA expression of**
415 **A. NMRK1 and B. NAMPT were unaffected by NR supplementation or endurance exercise. C.**
416 **NMNAT1 mRNA expression displayed a tendency to decrease three hours post-exercise ($p =$**
417 **0.065). D. mRNA expression of NNMT increased three hours post-exercise in PLA but this was**
418 **impaired following NR supplementation. -7d: pre-supplementation; Pre: pre-exercise (post**
419 **supplementation); +0h: immediately post-exercise; +3h: three hours post-exercise. c:**
420 **interaction effect (different to pre-exercise within Nutrition and post-exercise energy-sensing**
421 **in skeletal muscle treatment; $p \leq 0.05$). All values are presented relative to individual pre**
422 **supplementation values for each trial and reported as means \pm 95% confidence intervals ($n =$**
423 **8).**

424 **Discussion**

425 Contrary to our hypothesis, the activity of the NAD⁺-dependent deacetylases SIRT1 and SIRT3
426 and the mRNA expression of PPARGC1A were unaffected by NR supplementation, both at rest
427 and in the post-exercise recovery period. Furthermore, seven days of NR supplementation
428 (1000 mg·d⁻¹) did not alter whole-body metabolism or substrate utilisation. Finally, and
429 somewhat surprisingly, NR impaired the exercise-induced increase of NNMT mRNA
430 expression, an enzyme putatively involved in regulating whole-body fatty acid metabolism
431 [34].

432

433 Previous work in rodents supplemented with NR for periods of 4-16 weeks have reported an
434 increase in skeletal muscle NAD⁺ content in parallel to increased SIRT1 and SIRT3 activity and
435 mitochondrial biogenesis [7, 8, 12, 13]. However, in the current study, NR supplementation
436 did not alter sirtuin activity or PPARGC1A mRNA expression in human skeletal muscle at rest
437 or following endurance exercise. NAD⁺-dependent signalling does appear to be more tightly
438 regulated in human compared to rodent skeletal muscle [16]. For example, endurance
439 exercise increases SIRT1 activity in mice (assessed via p53 deacetylation) [35] but does not
440 appear to produce the same response in humans (Figure 3), possibly indicative of slower NAD⁺
441 turnover in human skeletal muscle or additional levels of regulation [16]. In addition, the
442 protein content and activity of the NAD⁺-dependent protein PARP1 was also unchanged by
443 exercise or NR supplementation in the current study. However, this does support rodent data
444 showing that NR supplementation does not alter basal PARylation within skeletal muscle [7,
445 8]. Therefore, NR supplementation appears less efficient in altering skeletal muscle NAD⁺-
446 content in healthy human skeletal muscle [18, 20, 21] when compared to rodent skeletal
447 muscle, where effects of supplementation are more pronounced (~10% increase in NAD⁺) [7]

448 and even more so when NR is provided during metabolic stress (~30% increase in NAD⁺) [7].
449 We have previously shown that 21 days NR supplementation increases MeNAM and NAAD
450 content in old human skeletal muscle indicative of altered NAD⁺ flux [20, 21], however did not
451 observe changes in NAD⁺ content or mitochondrial respiration [20, 21]. Collectively,
452 therefore, NAD⁺ metabolism in human skeletal muscle seems to be more tightly regulated
453 and resistant to precursor supplementation than in rodents.

454

455 NR supplementation for one week did not alter circulating substrate availability or whole-
456 body substrate utilisation either at rest or during 60% Wmax cycling in healthy recreationally
457 active males. This is in accordance with recent reports where NR supplementation of 1000
458 mg·d⁻¹ for six weeks or 2000 mg·d⁻¹ for 12 weeks had no effect on resting energy expenditure,
459 substrate utilisation or fasting concentrations of glucose or NEFA [6, 17, 20, 21]. Furthermore,
460 six weeks of NR supplementation does not alter RER during an incremental exercise test in
461 elderly males [6]. However, these data are in contrast to rodent studies, which have
462 demonstrated that NR supplementation can increase metabolic flexibility [10] and fat
463 oxidation during the inactive phase [7], which occurs alongside induced mitochondrial
464 biogenesis [7]. Changes in substrate utilisation with NR supplementation may therefore be a
465 physiological outcome of mitochondrial biogenesis. Indeed, in the current study, no changes
466 in skeletal muscle mitochondrial respiration or content of electron transport chain proteins
467 were apparent, which perhaps is unsurprising given the relatively short supplementation
468 period. However, 6 and 12 weeks of NR supplementation also failed to increase skeletal
469 muscle mitochondrial volume or respiratory capacity in humans [18, 20, 21]. In contrast, two
470 weeks of acipimox administration (750 mg·d⁻¹), a nicotinic acid-derivative, increased skeletal
471 muscle mitochondrial respiratory capacity in type II diabetes [36], whilst four months of

472 nicotinic acid supplementation increased mitochondrial mass and cytochrome c oxidase
473 activity in healthy participants and patients with mitochondrial myopathies [37]. It remains
474 unclear why nicotinic acid may be more potent than NR in stimulating mitochondrial
475 biogenesis in human skeletal muscle.

476

477 Our data indicates that exercise and NR alter the NAD⁺-consumption/salvage machinery
478 within skeletal muscle. The mRNA expression of NNMT, a methyltransferase of nicotinamide
479 (NAM) that produces methylated NAM (MeNAM) and prevents NAD⁺-salvage [38], is
480 increased following endurance exercise although this response was impaired by NR
481 supplementation. Previous studies have also shown an increase in skeletal muscle NNMT
482 mRNA and/or protein expression following endurance exercise training in rats [39] and four
483 days of energy restriction in humans [34]. Ström et al [34] went on to demonstrate elevated
484 skeletal muscle NNMT mRNA expression coincided with an increase in circulating MeNAM. In
485 addition, plasma MeNAM concentrations are increased following a single bout of endurance
486 exercise in mice, an effect that could only be partially explained by increased NNMT activity
487 in the liver [40]. MeNAM can be secreted from human primary myotubes and can induce
488 lipolysis in rat primary adipocytes [34]. However, despite elevations in systemic and skeletal
489 muscle MeNAM during NR supplementation in humans [20-22], whole-body fatty acid
490 availability at rest, during exercise and during the post-exercise recovery period are
491 unaffected by NR supplementation. The reduction in exercise-induced skeletal muscle NNMT
492 mRNA expression following NR supplementation is a particularly surprising finding given
493 elevated plasma and skeletal muscle MeNAM concentrations during NR supplementation [20-
494 22]. However, this potentially represents a negative feedback loop preventing additional
495 activation of NNMT in skeletal muscle when MeNAM concentrations are high. The chronic

496 effects of NR on skeletal muscle NNMT content and activity, and whole-body and skeletal
497 muscle fatty acid metabolism, warrant further investigation.

498

499 **Conclusions**

500 NR supplementation ($1000 \text{ mg}\cdot\text{d}^{-1}$) for seven days did not alter substrate metabolism or
501 mitochondrial biogenic signalling in resting or exercised human skeletal muscle. In contrast,
502 NR supplementation did reduce the exercise-induced expression of NNMT mRNA in skeletal
503 muscle, an enzyme proposed to play a putative role in whole-body fatty acid metabolism.
504 Collectively our data would therefore suggest that NAD^+ metabolism is tightly regulated in
505 human skeletal muscle, with short-term NAD^+ precursor supplementation unable to
506 modulate this response at rest or during and in recovery from endurance exercise. Our data
507 therefore adds to a growing list of studies suggesting that NR supplementation does not alter
508 mitochondrial biogenic signalling in healthy human skeletal muscle.

509

510 **Conflict of interests**

511 ChromaDex provided nicotinamide riboside and placebo supplements free of charge under a
512 material transfer agreement with the University of Birmingham. The University of
513 Birmingham did not receive any financial support from ChromaDex for the completion of this
514 trial. The authors declare no other conflicts of interest.

515

516 **Acknowledgements**

517 The authors would like to thank the participants for their efforts, their time and their tissue.
518 The authors would also like to acknowledge the support of Lauren Homer and Nathan Hodson
519 in the data collection of this study.

520

521 **Funding**

522 This publication was supported in part through a BBSRC Midlands Integrative Biosciences
523 Training Programme (MIBTP) studentship (BB/J014532/1) to BS and BBSRC New Investigator
524 Award (BB/L023547/1) to AP.

525

526 **References**

527 [1] W. Ying, NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation
528 and biological consequences, *Antioxid. Redox. Signal.* 10(2) (2008) 179-206.

529 [2] P. Belenky, K.L. Bogan, C. Brenner, NAD+ metabolism in health and disease, *Trends
530 Biochem. Sci.* 32(1) (2007) 12-9.

531 [3] K.M. Ramsey, K.F. Mills, A. Satoh, S. Imai, Age-associated loss of Sirt1-mediated
532 enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-
533 overexpressing (BESTO) mice, *Aging cell* 7(1) (2008) 78-88.

534 [4] J. Yoshino, Kathryn F. Mills, Myeong J. Yoon, S.-i. Imai, Nicotinamide mononucleotide, a
535 key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice,
536 *Cell. Metab.* 14(4) (2011) 528-536.

537 [5] N.E. de Picciotto, L.B. Gano, L.C. Johnson, C.R. Martens, A.L. Sindler, K.F. Mills, S.i. Imai,
538 D.R. Seals, Nicotinamide mononucleotide supplementation reverses vascular dysfunction and
539 oxidative stress with aging in mice, *Aging cell* 15(3) (2016) 522-530.

540 [6] C.R. Martens, B.A. Denman, M.R. Mazzo, M.L. Armstrong, N. Reisdorff, M.B. McQueen,
541 M. Chonchol, D.R. Seals, Chronic nicotinamide riboside supplementation is well-tolerated and
542 elevates NAD+ in healthy middle-aged and older adults, *Nat. Commun.* 9(1) (2018) 1286.

543 [7] C. Canto, R.H. Houtkooper, E. Pirinen, D.Y. Youn, M.H. Oosterveer, Y. Cen, P.J. Fernandez-
544 Marcos, H. Yamamoto, P.A. Andreux, P. Cettour-Rose, K. Gademann, C. Rinsch, K. Schoonjans,
545 A.A. Sauve, J. Auwerx, The NAD+ precursor nicotinamide riboside enhances oxidative
546 metabolism and protects against high-fat diet-induced obesity, *Cell. Metab.* 15(6) (2012) 838-
547 47.

548 [8] D. Ryu, H. Zhang, E.R. Ropelle, V. Sorrentino, D.A.G. Mázala, L. Mouchiroud, P.L. Marshall,
549 M.D. Campbell, A.S. Ali, G.M. Knowels, S. Bellemin, S.R. Iyer, X. Wang, K. Gariani, A.A. Sauve,
550 C. Cantó, K.E. Conley, L. Walter, R.M. Lovering, E.R. Chin, B.J. Jasmin, D.J. Marcinek, K.J.
551 Menzies, J. Auwerx, NAD+ repletion improves muscle function in muscular dystrophy and
552 counters global PARylation, *Sci. Transl. Med.* 8(361) (2016) 361ra139-361ra139.

553 [9] A.N. Long, K. Owens, A.E. Schlappal, T. Kristian, P.S. Fishman, R.A. Schuh, Effect of
554 nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer's
555 disease-relevant murine model, *BMC Neurol.* 15 (2015) 19.

556 [10] W. Shi, M.A. Hegeman, D.A.M. van Dartel, J. Tang, M. Suarez, H. Swarts, B. van der Hee,
557 L. Arola, J. Keijer, Effects of a wide range of dietary nicotinamide riboside (NR) concentrations
558 on metabolic flexibility and white adipose tissue (WAT) of mice fed a mildly obesogenic diet,
559 *Mol. Nutr. Food. Res.* 61(8) (2017) 1600878.

560 [11] I.A. Kourtzidis, A.T. Stoupas, I.S. Gioris, A.S. Veskoukis, N.V. Margaritelis, M.
561 Tsantarliotou, I. Taitzoglou, I.S. Vrabas, V. Paschalidis, A. Kyparos, M.G. Nikolaidis, The NAD(+)
562 precursor nicotinamide riboside decreases exercise performance in rats, *Journal of the
563 International Society of Sports Nutrition* 13 (2016) 32.

564 [12] R. Cerutti, E. Pirinen, C. Lamperti, S. Marchet, Anthony A. Sauve, W. Li, V. Leoni, Eric A.
565 Schon, F. Dantzer, J. Auwerx, C. Visconti, M. Zeviani, NAD+-dependent activation of Sirt1
566 corrects the phenotype in a mouse model of mitochondrial disease, *Cell. Metab.* 19(6) (2014)
567 1042-1049.

568 [13] N.A. Khan, M. Auranen, I. Paetau, E. Pirinen, L. Euro, S. Forsstrom, L. Pasila, V. Velagapudi,
569 C.J. Carroll, J. Auwerx, A. Suomalainen, Effective treatment of mitochondrial myopathy by
570 nicotinamide riboside, a vitamin B3, *EMBO Mol. Med.* 6(6) (2014) 721-31.

571 [14] D.W. Frederick, J.G. Davis, A. Davila, Jr., B. Agarwal, S. Michan, M.A. Puchowicz, E.
572 Nakamaru-Ogiso, J.A. Baur, Increasing NAD synthesis in muscle via nicotinamide
573 phosphoribosyltransferase is not sufficient to promote oxidative metabolism, *J. Biol. Chem.*
574 290(3) (2015) 1546-58.

575 [15] S.E. Airhart, L.M. Shireman, L.J. Risler, G.D. Anderson, G.A. Nagana Gowda, D. Raftery, R.
576 Tian, D.D. Shen, K.D. O'Brien, An open-label, non-randomized study of the pharmacokinetics
577 of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD⁺ levels
578 in healthy volunteers, *PLoS One* 12(12) (2017) e0186459.

579 [16] R.W. Dellinger, S.R. Santos, M. Morris, M. Evans, D. Alminana, L. Guarente, E. Marcotulli,
580 Repeat dose NRPT (nicotinamide riboside and pterostilbene) increases NAD⁺ levels in humans
581 safely and sustainably: a randomized, double-blind, placebo-controlled study, *NPJ. Aging.*
582 *Mech. Dis.* 3(1) (2017) 17.

583 [17] O.L. Dollerup, B. Christensen, M. Svart, M.S. Schmidt, K. Sulek, S. Ringgaard, H. Stokilde-
584 Jorgensen, N. Moller, C. Brenner, J.T. Treebak, N. Jessen, A randomized placebo-controlled
585 clinical trial of nicotinamide riboside in obese men: Safety, insulin-sensitivity, and lipid-
586 mobilizing effects, *Am. J. Clin. Nutr.* 108(2) (2018) 343-353.

587 [18] O.L. Dollerup, S. Chubanova, M. Agerholm, S.D. Søndergård, A. Altıntaş, A.B. Møller, K.F.
588 Høyer, S. Ringgaard, H. Stødkilde-Jørgensen, G.G. Lavery, R. Barrès, S. Larsen, C. Prats, N.
589 Jessen, J.T. Treebak, Nicotinamide riboside does not alter mitochondrial respiration, content
590 or morphology in skeletal muscle from obese and insulin-resistant men, *J. Physiol.* 598(4)
591 (2020) 731-754.

592 [19] O.L. Dollerup, S.A.J. Trammell, B. Hartmann, J.J. Holst, B. Christensen, N. Møller, M.P.
593 Gillum, J.T. Treebak, N. Jessen, Effects of Nicotinamide Riboside on Endocrine Pancreatic
594 Function and Incretin Hormones in Nondiabetic Men With Obesity, *J. Clin. Endocrinol. Metab.*
595 104(11) (2019) 5703-5714.

596 [20] Y.S. Elhassan, K. Kluckova, R.S. Fletcher, M.S. Schmidt, A. Garten, C.L. Doig, D.M.
597 Cartwright, L. Oakey, C.V. Burley, N. Jenkinson, M. Wilson, S.J.E. Lucas, I. Akerman, A.
598 Seabright, Y.C. Lai, D.A. Tennant, P. Nightingale, G.A. Wallis, K.N. Manolopoulos, C. Brenner,
599 A. Philp, G.G. Lavery, Nicotinamide Riboside Augments the Aged Human Skeletal Muscle
600 NAD⁽⁺⁾ Metabolome and Induces Transcriptomic and Anti-inflammatory Signatures, *Cell*
601 reports 28(7) (2019) 1717-1728.e6.

602 [21] C.M.E. Remie, K.H.M. Roumans, M.P.B. Moonen, N.J. Connell, B. Havekes, J. Mevenkamp,
603 L. Lindeboom, V.H.W. de Wit, T. van de Weijer, S. Aarts, E. Lutgens, B.V. Schomakers, H.L.
604 Elfrink, R. Zapata-Pérez, R.H. Houtkooper, J. Auwerx, J. Hoeks, V.B. Schrauwen-Hinderling, E.
605 Phielix, P. Schrauwen, Nicotinamide riboside supplementation alters body composition and
606 skeletal muscle acetylcarnitine concentrations in healthy obese humans, *Am. J. Clin. Nutr.*
607 (2020).

608 [22] S.A.J. Trammell, M.S. Schmidt, B.J. Weidemann, P. Redpath, F. Jaksch, R.W. Dellinger, Z.
609 Li, E.D. Abel, M.E. Migaud, C. Brenner, Nicotinamide riboside is uniquely and orally
610 bioavailable in mice and humans, *Nat. Commun.* 7 (2016) 12948.

611 [23] G.A.V. Borg, Perceived exertion - note on history and methods, *Med. Sci. Sports Exerc.*
612 5(2) (1973) 90-93.

613 [24] A.E. Jeukendrup, G.A. Wallis, Measurement of substrate oxidation during exercise by
614 means of gas exchange measurements, *Int. J. Sports Med.* 26 Suppl 1 (2005) S28-37.

615 [25] K.N. Frayn, Calculation of substrate oxidation rates in vivo from gaseous exchange,
616 *Journal of applied physiology: respiratory, environmental and exercise physiology* 55(2)
617 (1983) 628-34.

618 [26] K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time
619 quantitative PCR and the 2(-Delta Delta C(T)) method, *Methods* 25(4) (2001) 402-8.
620 [27] J. Vandesompele, K. De Preter, F. Pattyn, B. Poppe, N. Van Roy, A. De Paepe, F. Speleman,
621 Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of
622 multiple internal control genes, *Genome Biol.* 3(7) (2002) research0034.1-research0034.11.
623 [28] F. Xie, P. Xiao, D. Chen, L. Xu, B. Zhang, miRDeepFinder: a miRNA analysis tool for deep
624 sequencing of plant small RNAs, *Plant Mol. Biol.* (2012).
625 [29] C. Granata, R.S. Oliveira, J.P. Little, K. Renner, D.J. Bishop, Training intensity modulates
626 changes in PGC-1alpha and p53 protein content and mitochondrial respiration, but not
627 markers of mitochondrial content in human skeletal muscle, *FASEB J.* 30(2) (2016) 959-70.
628 [30] C. Granata, R.S. Oliveira, J.P. Little, K. Renner, D.J. Bishop, Mitochondrial adaptations to
629 high-volume exercise training are rapidly reversed after a reduction in training volume in
630 human skeletal muscle, *FASEB J.* 30(10) (2016) 3413-3423.
631 [31] H. Vaziri, S.K. Dessain, E. Ng Eaton, S.I. Imai, R.A. Frye, T.K. Pandita, L. Guarente, R.A.
632 Weinberg, hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase, *Cell* 107(2) (2001)
633 149-59.
634 [32] R. Tao, M.C. Coleman, J.D. Pennington, O. Ozden, S.H. Park, H. Jiang, H.S. Kim, C.R. Flynn,
635 S. Hill, W. Hayes McDonald, A.K. Olivier, D.R. Spitz, D. Gius, Sirt3-mediated deacetylation of
636 evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress, *Mol. Cell*
637 40(6) (2010) 893-904.
638 [33] Z. Tao, P. Gao, H.W. Liu, Identification of the ADP-ribosylation sites in the PARP-1
639 automodification domain: Analysis and implications, *J. Am. Chem. Soc.* 131(40) (2009) 14258-
640 60.
641 [34] K. Ström, D. Morales-Alamo, F. Ottosson, A. Edlund, L. Hjort, S.W. Jörgensen, P. Almgren,
642 Y. Zhou, M. Martin-Rincon, C. Ekman, A. Pérez-López, O. Ekström, I. Perez-Suarez, M.
643 Mattiasson, P. de Pablos-Velasco, N. Oskolkov, E. Ahlqvist, N. Wierup, L. Eliasson, A. Vaag, L.
644 Groop, K.G. Stenkula, C. Fernandez, J.A.L. Calbet, H.-C. Holmberg, O. Hansson, N1-
645 methylnicotinamide is a signalling molecule produced in skeletal muscle coordinating energy
646 metabolism, *Sci. Rep.* 8(1) (2018) 3016.
647 [35] A. Philp, A. Chen, D. Lan, G.A. Meyer, A.N. Murphy, A.E. Knapp, I.M. Olfert, C.E. McCurdy,
648 G.R. Marcotte, M.C. Hogan, K. Baar, S. Schenk, Sirtuin 1 (SIRT1) deacetylase activity is not
649 required for mitochondrial biogenesis or peroxisome proliferator-activated receptor- γ
650 coactivator-1 α (PGC-1 α) deacetylation following endurance exercise, *J. Biol. Chem.* 286(35)
651 (2011) 30561-30570.
652 [36] T. van de Weijer, E. Phielix, L. Bile, E.G. Williams, E.R. Ropelle, A. Bierwagen, R.
653 Livingstone, P. Nowotny, L.M. Sparks, S. Paglialunga, J. Szendroedi, B. Havekes, N. Moullan, E.
654 Pirinen, J.H. Hwang, V.B. Schrauwen-Hinderling, M.K. Hesselink, J. Auwerx, M. Roden, P.
655 Schrauwen, Evidence for a direct effect of the NAD $^{+}$ precursor acipimox on muscle
656 mitochondrial function in humans, *Diabetes* 64(4) (2015) 1193-201.
657 [37] E. Pirinen, M. Auranen, N.A. Khan, V. Brilhante, N. Urho, A. Pessia, A. Hakkarainen, J.
658 Kuula, U. Heinonen, M.S. Schmidt, K. Haimilahti, P. Piirilä, N. Lundbom, M.-R. Taskinen, C.
659 Brenner, V. Velagapudi, K.H. Pietiläinen, A. Suomalainen, Niacin Cures Systemic
660 NAD $^{+}$ Deficiency and Improves Muscle Performance in Adult-Onset
661 Mitochondrial Myopathy, *Cell. Metab.* 31(6) (2020) 1078-1090.e5.
662 [38] S. Aksoy, C.L. Szumlanski, R.M. Weinshilboum, Human liver nicotinamide N-
663 methyltransferase. cDNA cloning, expression, and biochemical characterization, *J. Biol. Chem.*
664 269(20) (1994) 14835-40.

665 [39] J.H. Li, L.Q. Qiu, X.J. Zhu, C.X. Cai, Influence of exercises using different energy
666 metabolism systems on NNMT expression in different types of skeletal muscle fibers, Sci.
667 Sports 32(1) (2017) 27-32.

668 [40] S. Chlopicki, M. Kurdziel, M. Sternak, M. Szafarz, J. Szymura-Oleksiak, K. Kaminski, J.A.
669 Zoladz, Single bout of endurance exercise increases NNMT activity in the liver and MNA
670 concentration in plasma; the role of IL-6, Pharmacol. Rep. 64(2) (2012) 369-76.

671

672

673 **Table 1. Gene Accession numbers and corresponding primer sequences.**

674

Gene Name	Accession number	Forward primer (5'-3')	Reverse primer (3'-5')
NAMPT	NM_005746	TTCCCACTACTCCAGCCTAA G	TTTGTGAAAGGGCAGGTT AATAAA
NMNAT1	NM_022787	AGTCCTTGCTGTTCCAATT AAAC	AGCACATCCGATTCATAGAT
NMRK1	NM_017881.2	GCCAGAGTCTGAGATAGAG ACAG	TCCTGGTCTGTTGATACCAC AG
NNMT	NM_006169.2	TGCTGTTAGCCTGAGACTCA G	GAGGTGAAGCCTGATTCCA TTATG

675

676 **Table 2. Effect of NR supplementation on cardio-respiratory changes and substrate utilisation during exercise.**

677

		Time (minutes into exercise)				Mean	<i>p</i>
		15	30	45	60		
Gas exchange							
VO ₂ (L·min ⁻¹)	PLA	2.26 ± 0.25	2.28 ± 0.27	2.35 ± 0.27	2.38 ± 0.28	2.31 ± 0.68	0.702
	NR	2.23 ± 0.24	2.27 ± 0.24	2.28 ± 0.26	2.38 ± 0.23	2.29 ± 0.23	
VCO ₂ (L·min ⁻¹)	PLA	2.11 ± 0.20	2.10 ± 0.24	2.12 ± 0.23	2.13 ± 0.24	2.11 ± 0.22	0.945
	NR	2.09 ± 0.23	2.10 ± 0.23	2.08 ± 0.24	2.17 ± 0.23	2.11 ± 0.23	
Oxidation rates							
Carbohydrate (g·min ⁻¹)	PLA	2.22 ± 0.26	2.09 ± 0.36	1.96 ± 0.30	1.93 ± 0.26	2.05 ± 0.28	0.720
	NR	2.20 ± 0.27	2.12 ± 0.28	2.00 ± 0.25	2.08 ± 0.34	2.10 ± 0.22	
Fat (g·min ⁻¹)	PLA	0.25 ± 0.12	0.30 ± 0.14	0.38 ± 0.14	0.41 ± 0.12	0.33 ± 0.13	0.356
	NR	0.22 ± 0.08	0.27 ± 0.07	0.33 ± 0.07	0.35 ± 0.10	0.29 ± 0.06	
Intensity							
Heart rate (beats·min ⁻¹)	PLA	153 ± 7	160 ± 7	165 ± 8	169 ± 9	162 ± 7	0.179
	NR	154 ± 10	163 ± 9	168 ± 9	172 ± 9	164 ± 9	
RPE	PLA	11 ± 1	13 ± 2	14 ± 2	15 ± 2	13 ± 1	0.952
	NR	11 ± 1	13 ± 1	14 ± 1	15 ± 2	13 ± 1	

678 Data presented as mean ± 95% confidence intervals (n = 8). Mean values represent the mean of the recorded values during exercise. *p* values

679 represent repeated-measures t-test comparisons between exercising means for PLA and NR.