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Abstract
Among all their sensations, agents need to distinguish between those caused by themselves and
those caused by external causes. The ability to infer agency is particularly challenging under
conditions of uncertainty. Within the predictive processing framework, this should happen
through active control of prediction error that closes the action-perception loop. Here we use a
novel, temporally-sensitive, behavioural proxy for prediction error to show that it is minimised
most quickly when variability is low, but also when volatility is high. Further, when human
participants report agency, they show steeper prediction error minimisation. We demonstrate
broad effects of uncertainty on accuracy of agency judgements, movement, policy selection, and
hypothesis switching. Measuring autism traits, we find differences in policy selection, sensitivity

to uncertainty and hypothesis switching despite no difference in overall accuracy.
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A significant challenge to an agent’s perceptual and decision-making processes is to
distinguish between sensations that it can control, and those out of its control. For example,
imagine you are working on your computer and it beeps. How do you know if you caused it, as
opposed to a colleague emailing you? Influential theoretical work on predictive processing and
active inference suggests that the brain relies on prediction errors to assess and test hypotheses
about agency (Friston et al., 2013), but empirical evidence for this suggestion is lacking.

Inferring the relations between actions and their sensory consequences is riddled with
uncertainty due to the complexities involved in deconstructing sensory evidence from the non-
linear confluence of hidden causes. Sometimes when you click, the ensuing beep occurs later
because the computer is updating its virus-software; other times, it happens straight away. The
brain must represent this uncertainty at numerous hierarchical levels to identify when it is
appropriate to attribute agency to oneself. In this example, the breadth of the distribution
representing how long it takes for the beep to occur is the variability and the frequency of the
virus-updates is the volatility (how often does the variability distribution change). Crucially, we
do not yet know how this uncertainty changes ongoing decisions about which actions to perform
when trying to explore and infer agency; thus, we have yet to explore how agents close the
action-perception loop under uncertainty.

A judgement of agency is the verdict that the agent was herself the source of a sensory
event — the conscious “I did that” response. It is often (but not always) based on a sense of
agency (or a feeling of authorship) during the movement. Predictability is often investigated in
sense and judgement of agency paradigms by manipulating whether or not the identity (Bednark,
Poonian, Palghat, McFadyen, & Cunnington, 2015; Engbert & Wohlschlager, 2007; Hughes,

Desantis, & Waszak, 2013; Kuhn et al., 2011; Majchrowicz & Wierzchon, 2018), timing (Hughes
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et al., 2013; Majchrowicz & Wierzchon, 2018) and/or presence (Moore & Haggard, 2008) of a
sensory outcome meets some prediction set up by the block-wise probability of each outcome.
However, very few studies consider a more continuous distribution of deviations from the
expected outcome (e.g., Zalla, Miele, Leboyer, and Metcalfe (2015)) and, to our knowledge, no
previous studies have considered volatility (changes to such a distribution) in an agency
paradigm.

In classic agency experiments, there are so few actions available to participants that
action-selection strategies (or policies) cannot easily change in response to changes in prediction
error or uncertainty. In some designs, such as Desantis, Hughes, and Waszak (2012), specific
actions trigger specific outcomes, but the participants are instructed to equally perform each
action. This does not allow participants to explore and attempt to optimally vary policy-selection.
In other studies, participants do have freedom to change strategy, and have online action outcome
mismatches, but the dependent variables are not sensitive to these strategies and so the temporal
dynamics of online decisions with respect to this error are unknown (Zama, Takahashi, &
Shimada, 2017). This gap in knowledge is crucial for understanding how we distinguish self-
generated and externally-caused sensations in the real world. The current study sought to close
this gap using a novel judgement of agency task that dynamically closed the action-perception
loop while independently manipulating variability and volatility.

In the current study, forty human participants made freeform mouse movements to
identify which (if any) of eight moving squares they controlled. Each block of trials had high or
low variability and high or low volatility (both within-trial). For a schematic diagram of the

experimental set up, task and experimental manipulation, see Figure 1 and a video of the task is
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available at https://figshare.com/s/fd2742b897¢21d901dd0 (DOI: 10.26180/5eabbfb9a8aa4). Full

details in Methods below.

Figure 1 — Task and Manipulation

The participants’ task involved using a hidden mouse to control eight squares on the screen. The mean of the target
square’s movement was the participants’ movement, and distractor squares moved at a random angle offset from
mouse movement. Jitter was added to the motion of all squares depending on the condition. In low variability
blocks, the 95% confidence interval from which jitter was sampled switched between 10° (light blue) and 30° (dark
blue), and for high variability, it switched between 90° (yellow) and 110° (brown) around the input movement or

offset. In low volatility the distribution changed three random times per trial (light grey), and in high volatility it

changed ten times (dark grey). See also https://figshare.com/s/fd2742b897e21d901dd0 (DOI:

10.26180/5eabbfb9a8aa4) for a video demonstration.

High Volatility
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To understand these missing components in the process of inferring agency, we turn to
recent accounts of agency from predictive processing - an explanatory framework whose
fundamental claim is that the brain’s function is to minimise the long-term average error between
its expected and actual sensory input (prediction error) (Clark, 2015; Friston, 2010; Hohwy,
2013). In doing so it reduces uncertainty by refining models of the hidden causes of sensory
input in the environment and in the agent itself.

Prediction error can be minimised by updating expectations while passively receiving
sensory input (perceptual inference; perception). Another way to minimise prediction error is
through action, by selectively sampling sensory input to satisfy beliefs about sensory input in
future states of the world and the agent’s own body, given certain actions (active inference;
action) (Friston, 2017). Previous agency research has focused on perceptual inference in the
context of agency, and has not interrogated the ongoing process of active inference.

Under an active inference account, agency attribution would occur by minimising the
divergence between the predicted outcomes of available policies for action and the most probable
future sensory states; in other words, when there is a belief that goals can be reached from the
agent’s current state (Friston, Samothrakis, & Montague, 2012; Friston et al., 2013; Hohwy,
2015). Thus, precision (i.e., the inverse of uncertainty) of these inferences is important (Friston et
al., 2013) and lead us to investigate the effect of such variability on actions, prediction error and
inferred agency.

According to active inference, the very purpose of action is then to minimise expected
prediction error. To understand how this plays out in the action-perception loop it is then
essential to reveal the interplay between action selection and the magnitude of prediction error at

a given time, under a given policy. For the critical case of agency attribution, it is not known how
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an agent infers policies that may help reduce uncertainty about agency; this is mainly because
thus far its magnitude has been under the control of experimenters, not participants themselves.
Here, rather than dictating the magnitude of prediction error and measuring effects on behaviour
and neural processes, we instead measure the prediction error itself and allow participants to
control it with their actions.

The most straightforward expectation for active interrogation in an action-perception loop
is that, where possible, policies are inferred which minimise prediction error. Part of the
difficulty in testing this prediction is finding an appropriate way to measure prediction error.
Here, we operationalise prediction error using eye position to calculate the evolving divergence
between hand-movement and stimulus trajectories. Eye-tracking indicates moment-to-moment
beliefs about agency which can be tested by mouse-movement. We predict that variability and
volatility will have independent effects on movement patterns and policy selection, as well as on
prediction error minimisation and subsequent judgements of agency. Specifically, high variability
allows less precise representation of control states, which predicts more repetitive policy
selections (Perrykkad & Hohwy, 2020), more prediction error and less accurate judgements of
agency. High volatility suggests potentially discoverable interfering hidden causes, predicting
more policy exploration and more variance in prediction error which could aid accurate inference
of agency. Independent of accuracy, we expect a positive correlation between agency-driven
prediction error minimisation and judgements of agency, partly based on active inference theory
and partly on prior literature on the role of prediction-expectation mismatch for agency reports.

It is instructive to consider how prediction error minimisation might differ in clinical or
subclinical populations because such comparisons help reveal how the prediction error

mechanisms work. We focus here on predictive processing accounts of autism, according to
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which autistic individuals have difficulty abstracting causal rules to higher statistical levels, and
thus classify more uncertainty as irreducible. This has been theorised to be due to weaker priors,
weightier prediction errors or hyper-flexible estimates of volatility, which all result in a higher
learning rate in autism (for review and details, see (Palmer, Lawson, & Hohwy, 2017)).
Manipulation of uncertainty in tasks that rely on perceptual inference has been shown to change
performance in autistic populations (Lawson, Mathys, & Rees, 2017). Characteristic differences
in action in autism, such as restricted and repetitive behaviours, may indicate differences in
active inference in variable environments (Palmer et al., 2017). Previous research, not framed in
terms of predictive processing, have used basic versions of the task we use here, and found no
difference between groups of autistic and non-autistic participants (Grainger, Williams, & Lind,
2014; Russell & Hill, 2001; Williams & Happé, 2009), however, we predict the relationship
between autism traits and agency attribution should be specific to interactions with uncertainty in
the environment as the action-perception loop is dynamically closed (cf. Zalla et al. (2015)). This
in turn speaks to underexplored topics in autism research relating to the sense of self and agency
(Perrykkad & Hohwy, 2019). Hence, here we additionally measured autistic traits in our sample
and we predict that uncertainty will differently affect policies for movement and prediction error

minimisation for participants along this scale.

Results
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Table 1 — Significant Results Summary:

For variables, M.E.=Main Effect, *=Interaction, For results, *=p < 0.05, **=p <0.01, ***=p < 0.001 (Post-hoc values Bonferroni corrected for multiple
comparisons), Var=Variability, Vol=Volatility, AQ=Autism Quotient, T1-5=Time bins 1-5, diff.=difference

Dependent | Additional M.E. M.E.
. . N o1 M.E. A Var*Vol Var*A Vol*A Var*Vol*A
Variable Covariate | Variability | Volatility Q Q Q Q
* %k
% 3k %k
Task Accuracy . effect of var is
low>high i
stronger in high vol
% %k k.
Time Spent Time to oy only for high AQ in
Moving Movement low<high high var: low
vol>high vol
%k k
. low var high
Speed lowshigh vol>both low vol &
& high high; low
low>high high
. %k %k %k *
Acceleration low<high decreasing
& with AQ
Jerk
*
Turnin *%%
Behavi g lowshigh effect of var is
ehaviour € stronger in low vol
%k k
%
Dominant | Number of inlow AQ low |\ AQ*vol diff.
Policy U Turns vol<high vol. In is lost in hich
oY high AQ, low variabilitg
vol>high vol v
% %k
Hypothesis e )
Switch lowshigh in low var only low
IS & vol<high vol
. . Average ok ook
Prediction . g S )
Prediction . effect of var is var
Error low<high

Error

stronger in low vol

difference is



https://doi.org/10.1101/2020.06.22.166108
http://creativecommons.org/licenses/by-nc/4.0/

ACTION-PERCEPTION LOOP UNDER UNCERTAINTY

10
smaller in
high AQ
Condition- ok &
wise Slope low<high low>high
M.E. Accuracy Accuracy
M.E. Agency M.E. AQ Accuracy*AQ Agency*AQ
Accuracy *Agency *Agency*AQ
*
High AQ there is no
. diff. between
in no agenc accuracy; Low AQ
Agency-wise TR . gency when judge agency
Sl not>agent JUEEElme Beais correct<incorrect
(O3 & no diff. between !
. reverse when no-
correct and incorrect .
. .. agency and no diff.
Prediction .
between agency in
Error incorrect
M.E. M.E. . . . I
Variability Volatility M.E. AQ Var*Vol Var*AQ Vol*AQ Var*Vol*AQ
Volatility Average *
Prediction low<high
ERPE Error owshig
Average
P %k
iy sodnesl P“Efr'?rm" . ) lyinl |
. 5 . . only in low var, low
Switch ERPE | = oihesis | low>high | low<high vol<high vol
Switches
- —
M.E..Tlme AQ Tlme Var*Time Bin
Bin Bin
% 3k %k
ok In T3, AQ
T2 and T3 is HkE
(event) negatively Only in low var
are>T1, T4, | associated T2>T1, bigger var
T5 which with diff. at T3
are equal prediction

error



https://doi.org/10.1101/2020.06.22.166108
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.22.166108; this version posted June 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Running Head: ACTION-PERCEPTION LOOP UNDER UNCERTAINTY 11

In this section, we summarise all statistical models in three sections, first, covering
prediction error measures, second, the movement and strategy measures and last, overall task
performance. For each section, we describe the effect of uncertainty on the dependent variables
followed by AQ results (though all statistical models included all fixed factors as above). For
brevity, we report only main effects of uncertainty in the movement and policy variables. Full
statistical reporting is included in Supplementary Materials. See also Table 1 for a summary of
all significant results.
Prediction Error

Across all participants, the average calculated prediction error per trial was 10.5 pixels
per frame (Figure 2a; 6=4.93, Range=0.43-50.1). An MLM analysis revealed that, as expected,
average prediction error across each trial was significantly associated with the variability
condition (F(1,4661)=742.63, p<0.001). Additionally, there was a significant interaction between
variability and volatility (F(1,4661)=5.14, p=0.023). Post-hoc analyses showed that this was
because the effect of variability was stronger under low volatility than high (z>17.80, p<0.001).

Comparing the slope of prediction error in each condition, an MLM revealed a significant
main effect of variability (F(1,114)=58.15, p<0.001), which indicated that there was more
prediction error minimisation in the low variability condition (lower gradient) than the high (See
Figure 2a and 2b; t=7.63, p<0.001). There was also a marginally significant main effect of
volatility (F=3.96, p=0.049), which showed a trend toward more prediction error minimisation in
high volatility compared to low volatility (t=1.99, p=0.049).

To investigate the relationship between prediction error minimisation and the
participant’s judgements, we performed an MLM with a different structure. For each participant,

a linear fit to prediction error across trials with the same accuracy and agency judgement served
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as the dependent variable. AQ score, accuracy and agency were included as fixed effects, and
participant as a random intercept. This MLM showed a main effect of agency (F(1,113)=82.89,
p<0.001) and an interaction between agency and accuracy (Figure 2¢; F(1,113)=12.79, p<0.001).
Agency was associated with increased prediction error minimisation (t(113)=9.10, p<0.001).
Post-hoc tests for the interaction showed that only when participants judge that they did not
control any of the stimuli was there no difference in prediction error minimisation between
correct and incorrect trials (t(113)=1.74, p=0.51). When participants judge that they did have
agency, there is more prediction error minimisation when they are correct than incorrect
(t(113)=3.31, p=0.007). Numerically, the mean slope of the prediction error was only negative
(indicating successful prediction error minimisation) when participants were both accurate and

judged that they had agency.
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Figure 2 — Prediction Error Average and Gradient

Panel a) shows the grand average prediction error across the trial split by condition with lines of best fit for each.
The box at the end of the graph shows the average prediction error across trials in each condition. Panel b) shows the
mean gradient or slope for the lines of best fit for each participant in each condition. Panel c) shows the grand
average prediction error across the trial split by correct (green) and incorrect (purple) trials and whether the
participants chose a square (Judged Agency, dark colours) or said that it was a no-control trial (Judged No Agency,
light colours) with lines of best fit for each. Panels d-f show the mean gradient or slope for the lines of best fit for

each participant in each combination, split by AQ score. Error bars are 95% CI.
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To look at the effect of uncertainty and AQ score on dynamics of prediction error and
hypothesis testing, we performed an MLM on the ERPE centered on hypothesis switches. In
addition to the standard MLM, we included time-bin as an additional fixed effect of interest and
average prediction error and average number of hypothesis switches in each condition as fixed-
effect covariates. Figure 3a shows the timeseries for the average prediction error across
conditions and participants in the analysed epoch. There were significant main effects of
variability (F(1,512)=125.10, p<0.001), volatility (F(1,719)=6.14, p=0.013) and time-bin
(F(4,719)=252.29, p<0.001) and two-way interactions between variability and volatility (Figure
3b; F(1,729)=10.76, p=0.001) and variability and time-bin (F(4,719)=17.94, p<0.001). Time bins
one, four and five were not significantly different from one another (t(720)=0.06-1.55, p=1.00)
but that the others were all significantly different from one another (t(720)=5.24-26.79,
p<0.001), indicating a significant increase before the hypothesis switch starting at least 300ms
before, and a drop after back to the initial level of prediction error. Post-hoc analyses into the
main effect of variability showed that low variability conditions had greater prediction error
around the time of a hypothesis switch than did high variability conditions (t(519)=11.09,
p<0.001), which is the inverse of the pattern for average prediction error across the whole trial.
Post-hoc analysis of the interaction between time-bin and variability showed that the difference
between variability conditions held across all time bins surrounding the hypothesis switch
(t(697)=6.15—13.81, p<0.001), but that this difference was greater during time bin three (3.89
pixels, greater than other bin averages by at least 1.69 pixels). Further, only in low variability is
there a significant increase from time bin one to two (t(720)=6.15, p<0.001), indicating the
increase may occur closer to the event in high variability conditions. While overall, low volatility

was associated with less prediction error than high volatility around the time of hypothesis
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switches (t(721)=2.48, p=0.013), post-hoc analysis of the interaction between variability and
volatility showed that this only holds when variability was low (t(727)=4.07, p<0.001).

These findings suggest that increased prediction error minimisation is associated with
reduced environmental variability but increased volatility, and correctly and positively inferring
agency. We have also shown that hypothesis switches function to reduce rising prediction error,
and that the dynamics of minimising prediction error in this way is affected by environmental

uncertainty.
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Figure 3 — Hypothesis Switch Event-Related Prediction Error (ERPE)

Panel a) shows the grand average (blue line) prediction error across participants in a one second epoch centered on
hypothesis switches. Time bins used for statistical models are represented in grey shaded bars below. Data used in
statistical models, and therefore in panels b) and c) is adjusted for average prediction error differences between
conditions and average number of hypothesis switches. Panel b) shows average prediction error in each time bin for
each condition. There is more prediction error in this epoch in low variability (blue) conditions than high (orange).
This difference is greatest in time bin three, at the time of the event. In low variability (blue), low volatility (light
blue) conditions showed less prediction error in this epoch than high (dark blue). Time bin three has the greatest
prediction error, followed by time bin two, and none of the others are significantly different from each other. The
increase from time bin one to two is only significant in low variability (blue). Panel c) shows the data split by AQ
score - lower AQ scores (lightest blue) are associated with greater prediction error at the time of the event (time bin

three). Error bars and shading are 95% CI.
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Autism Traits and Prediction Error

The model considering the effect of uncertainty and autism traits on average prediction
error across a trial showed a significant interaction between variability and AQ
(F(1,4661)=31.74, p<0.001). Post-hoc analyses of the variability x AQ interaction showed that
the difference between variability conditions decreases as AQ increases (though they are still
significantly different across all AQ scores; z=15.28-27.25, p<0.001).

Additionally, the MLM considering agency, accuracy and AQ showed a three-way
interaction between these variables (F(1,113)=5.69, p=0.02). Post-hoc analyses showed no
difference between agency judgements for incorrect trials for participants with a low AQ score
(Figure 2d; F(1,113)=3.51, p=0.064), but otherwise, when participants judged that they had
agency over one of the stimuli, the slope of their prediction error was lower, indicating that they
were more effective at minimising prediction error (t(113)=9.10, p<0.001) (both the mean and
high AQ groups, and when correct in low AQ). Further, while low AQ participants’ prediction
error was maximally sensitive to accuracy (lower slopes when correctly judging agency than
incorrectly doing so, F(1,113)=10.06, p=0.002; and lower slopes when incorrectly denying
agency than when correctly doing so F(1,113)=7.75,p=0.006); high AQ participants’ prediction
error was not sensitive to accuracy at all (Figure 2f; F(1,113)=0.11-2.29, p=0.13-0.74).
Participants with a mean AQ showed the appropriate difference only when they judged that they
had agency (F(1,113)=10.99, p=0.001, F=10.99).

Looking at the prediction error dynamics limited to the epoch around hypothesis switches
showed a significant interaction between AQ and time-bin (Figure 3¢; F(4,719)=12.16,
p<0.001). Post-hoc analysis showed a significant difference only in time-bin three (the time of

the event) depending on the AQ score (F(1,50)=8.58, p=0.005). A further Pearson’s correlation
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ACTION-PERCEPTION LOOP UNDER UNCERTAINTY 18
test of AQ by prediction error in this time-bin showed that as AQ increased, the prediction error
at the time of a hypothesis switch decreased (r=-0.21, p<0.001).

These findings suggest that uncertainty in the environment differentially affects
participants’ prediction error depending on measured autism traits, including the relationship
between prediction error minimisation and judgement of agency, and propensity to switch
hypotheses in response to increasing prediction error.

Movement Characteristics and Policy Selection

Participants moved for an average of 13.7 seconds per trial (6=1.55, Range=3.95-15.1).
An MLM comparing the average duration of each trial spent moving across conditions (with the
additional fixed effect of time to movement on each trial to account for possible confound) found
a significant main effect of variability (Figure 4a; F(1,4660)=727.71, p<0.001). Participants
moved for longer in high variability conditions compared to low variability conditions by an
average of 801ms.

An MLM analysis on average speed of movement revealed a significant main effect of
variability (Figure 4b; F(1,4661)=36.42, p<0.001) such that participants moved faster in the low
variability condition compared to high (z=6.03, p<0.001). An MLM on acceleration showed a
main effect of variability (Figure 4¢; F(1,4664)=12.68, p<0.001), with faster average
acceleration in the high variability trials, compared to low (z=3.56, p<0.001). An MLM on jerk

showed no significant results (Figure 4d).
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Figure 4 — Movement and Strategy

These graphs depict movement and strategy variables (except dominant policy use, see Figure 5) across all
participants. Volatility is along the x-axis for each graph. Orange bars represent high variability, blue bars represent
low variability. Error bars are 95% CI. a) shows mean duration of each trial spent moving, controlling for time to
movement onset on each trial. b) shows average speed of movement, ¢) average acceleration and d) average jerk. €)
shows average turn count on each trial. f) shows the average number of hypothesis switches on each trial, when the

participant moves their eyes from one square to another.
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On average, each trial contained 35 turns (Figure 4e; 6=13.9, Range=6-107). An MLM
on turn count showed a significant main effect of variability (F(1,4661)=346.22, p<0.001) such
that participants turned more frequently in low variability than high variability trials (z=18.61,
p<0.001). The dominant turn-types (policies) in order of frequency across participants were Non-
Cardinal (n=22), Hesitant-straight (n=14), Horizontal (n=3) and Circle (n=1). On average, in
each trial, participants used their dominant policy 39.3% of the time (6=16.0, Range=0-100), and
within each participant, the average percent of turns on each trial that were of their dominant
policy ranged from 30.1% to 51.9%. For the MLM on dominant policy turn count for each trial,
the additional covariate of absolute number of turns on each trial was included to account for this
confound. There were no significant main effects.

On average participants switched hypotheses 42.2 times per trial (Figure 4f; 6=13.48,
Range=6-134). An MLM on hypothesis switch counts in each trial showed a main effect of
variability (F(1,4661)=195.91, p<0.001) such that there are more switches in low variability than
in high (z=14.00, p<0.001).

These findings suggest that participants’ movement was strongly affected by increased
environmental variability, causing participants to move more, move slower but accelerate more
quickly, and switch hypotheses less often.

Autism Traits and Movement and Policy

For the dependent variable of time spent moving, there was a significant three-way
interaction between AQ, variability and volatility (F(1,4660)=11.37, p<0.001). Post-hoc tests
showed that for participants with high AQ only, under high variability only, participants moved
for an average of 200ms longer in low volatility than high volatility conditions. Additionally, the

model considering acceleration showed a main effect of AQ (F(1,38)=5.73, p=0.022), such that
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mean acceleration decreased with AQ (R?=-0.011, p<0.001). There were no significant findings
relating to autism traits across other movement characteristics.

Considering how participants across the AQ range changed their policies in response to
uncertainty, the model for dominant policy use showed a significant interaction between AQ and
volatility (F(1,4660)=19.17, p<0.001), and a significant three way interaction between AQ,
variability and volatility (Figure 5; F(1,4661)=4.27, p=0.039). Post-hoc analyses for the two-
way interaction showed that for low AQ (Figure 5a) participants used their dominant policy
more in the high volatility condition (z=2.14, p=0.032), but only when variability was low
(z=2.92, p=0.004), otherwise volatility made no difference (z=0.10, p=0.918). For high AQ
(Figure Sc¢) participants used their dominant policy more in the low volatility condition (z=4.05,
p<0.001), regardless of the variability (high: z=2.20, p=0.028; low: z=3.53, p<0.001).

Figure 5 — Dominant Policy Use

The turns participants made were categorised into types. This figure shows the number of turns in the participants’
own dominant strategy, controlling for total number of turns. For participants with low AQ (<16, panel a), only for
low variability trials (blue), participants used their dominant policy more in high volatility (right) than low (left). For
participants with AQ scores within one standard deviation of the mean (panel b), there was no difference between
volatility conditions (left/right). In both variability conditions (blue and orange), participants with high AQ (>27,

panel c) used their dominant policy more in low volatility (left) than high (right). Error bars are 95% CI.
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These findings suggest that different levels of autism traits were associated with
differences in the quantity of sampling behaviour, differences in fine-grained movement qualities
and differences in the flexibility of policy-selection itself.
Overall Task Performance: Judgement of Agency

Average accuracy in the judgement of agency task (Figure 6) was moderately high across
conditions (u=81.0%, 6=9.12%). MLM results show a significant main effect of variability
(F(1,4664)=85.07, p<0.001) such that accuracy was approximately 10% higher in the low
variability condition than in the high variability condition. Additionally, there was a significant
interaction between variability and volatility (F(1,4665)=8.62, p=0.003). Post-hoc analysis
revealed significant differences in all comparisons between the four conditions (z=4.41-8.66,
p<0.001) except between low and high volatility when variability remained constant (low/low vs
low/high p=0.421, high/low vs high/high p=0.115). This result indicates that while volatility does
not make a significant difference to accuracy on its own, the effect of variability on accuracy was

stronger under high volatility. There was no significant effect of AQ on accuracy.
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Figure 6 — Accuracy
Proportion of trials where participants chose the correct square. Participants were more accurate in low variability
(blue) than high variability (orange), and this difference was more pronounced under high volatility (right) than low

(left). Error bars are 95% CI.
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Discussion

In this experiment, we closed the action-perception loop to investigate how uncertainty in
self-caused sensations influences successive choices about which actions to perform to infer
agency. Unlike many previous studies, these actions were freeform and temporally contiguous
with ongoing sensory consequences. We showed that action selection changes depending on
uncertainty in the mapping between actions and sensory outcomes. We also demonstrate that
agency inferences reflect the temporal dynamics of prediction error.

One of the most significant advances of this study on previous designs is the ability to
measure and interrogate the temporal dynamics of prediction error, and how this relates to

participant behaviour. Using this proxy for prediction error there were particularly interesting
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findings in the behavioural pattern around hypothesis switches and prediction error minimisation
for trials with different judgements of agency. We will now discuss each of these in turn.

Our eye-tracking analysis indicates a hypothesis switch when the participant moves from
looking at one square to another and is indicative of a change in the moment to moment beliefs
about agency with respect to the candidate square. For action to occur under the active inference
account, prediction error comes first, and the action is performed to resolve it. This is consistent
with the increasing prediction error leading to a hypothesis switch in our task, indicated by the
significant peak in prediction error at the time of the hypothesis switch. The current agential
hypothesis is abandoned when the prediction error is too high — there is decreasing evidence that
one can achieve one’s expected state with the available actions under the current hypothesis,
which leads to a switch that alleviates prediction error. This finding is uniquely consistent with
predictive processing (Friston, 2017).

Environmental uncertainty influences this pattern too; after removing trial-wise average
prediction error, low variability conditions have a higher prediction error in the hypothesis
switch epoch. Also, only in these low variability conditions is there a significant increase from
time bin one to time bin two, preceding the switch. Both of these findings suggest that when
variability is low, prediction error is allowed to increase for a comparatively longer period of
time before the participant decides to switch. This may reflect more reliance on priors in such
environments, which allow stable accumulation of evidence for a given hypothesis, and a
reluctance to abandon hypotheses in the face of sensory evidence to the contrary.

By looking at the relationship between participants’ agency reports and the trend in
prediction error over time, our results suggest that participants could be using these trends to

inform their judgment of agency. Agency judgements, whether correct or not, were associated
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with a more negative prediction error slope. Under the predictive processing account, a correct
judgement of agency should be associated with a negative trend in prediction error, and a correct
judgement of no-agency should not be associated with prediction error minimisation, as the
participant cannot effectively control the stimuli to reduce prediction error. These hypotheses
were fully borne out for participants with low AQ scores — when participants correctly judged
that they had no agency, the slope of the prediction error was more positive (i.e. failed prediction
error minimisation) than when they incorrectly said that they had no agency.

Traditionally, internal representations of agency have been explained using a comparator
model. In this model, upon movement, the neural system creates an efference copy of motor
commands, which predicts “future states of the motor system and the sensory consequences of
movement” (Moore & Obhi, 2012, p. 549). This is then compared with incoming sensory
information. In both the comparator and predictive processing accounts, agency is associated
with small prediction error, or a match between expected and actual outcomes of actions. The
comparator however focuses on net retrospective prediction error and cannot account for
hypothesis switches in the face of accumulating prediction error or other changes in future action
based on inferences of agency (see also Zaadnoordijk, Besold, and Hunnius (2019)). The
predictive processing account positions agency in a broader theory of action and policy selection.
So, if the projected reliability of policy-outcome mappings over time under a particular
hypothesis (occurrent agency) changes, this account is consistent with a threshold in
accumulating prediction error after which the agent switches hypotheses and is especially well
equipped if this threshold is sensitive to environmental volatility. Our hypothesis switch ERPE
suggests that hypothesis switching is sensitive to volatility when variability is low, with more

prediction error around a hypothesis switch when volatility is high.
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These results provide a reminder that agents’ ability to discern, and make judgements
about, agency arises as they actively close the action-perception loop, not just in passive
perceptual processes. The results also offer an indication of how agents do this, namely through
exploratory titration of prediction error, in a pattern that is sensitive to variability and volatility. It
may be that affording agents the opportunity for exploration of the action-perception loop is
critical for agency inference and judgement.

Variability also affected the temporal dynamics of prediction error. For instance, under
low variability, prediction error was minimised more quickly than in high variability conditions.
Comparing the two levels of uncertainty manipulated here, changes to variability caused the
most broad-reaching effects. Under high variability, participants were less accurate but spent
longer sampling the environment, moved slower but accelerated more quickly, switched
hypotheses less frequently and turned less, compared to the low variability conditions. The
finding that participants move more under increased variability is consistent with the findings by
Wen and Haggard (2020) in a similar judgement of agency paradigm.

While volatility was expected to have effects independent from variability, most of the
significant effects for volatility were interactions with variability; volatility only showed two
main effects. The first main effect indicated that prediction error was reduced more quickly
under high volatility. In our manipulation, the timing of volatile switches was unpredictable, so
this effect is likely due to an increased vigilance or sensitivity to incoming information
manifesting as an increased learning rate under high volatility (Mathys, Daunizeau, Friston, &
Stephan, 2011). The second main effect of volatility indicated that higher volatility was related to
higher prediction error in the epoch surrounding hypothesis switches, however this was only true

when variability was low. In two further cases, the effect of volatility was only seen in low
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variability; specifically that participants move faster and switch hypotheses more in high
volatility than low. This could reflect an attempt to garner more evidence about the current state
of the world before it changes. Lower volatility also increased the effect of variability on
frequency of turns and average prediction error across the trial. Conversely, higher volatility
increased the effect of variability on task accuracy. Future studies should consider ways of
highlighting changes in volatility to enhance the potential effect of higher order uncertainty, such
as making them large enough to stand out more saliently to the participant.

It is important to keep in mind too that our analyses of prediction error were limited to a
behavioural proxy (combining eye-tracking and mouse movement) for prediction error that does
not directly reflect changing internal representations of environmental uncertainty. Future
research should consider using neural estimates of prediction error or computational modelling
that appropriately changes priors with uncertainty.

Here, we found no difference in accuracy of judgement of agency between healthy
participants across a range of autism traits, consistent with previous research comparing autistic
and healthy participants on similar measures (David et al., 2008; Grainger et al., 2014; Russell &
Hill, 2001; Williams & Happé, 2009; Zalla et al., 2015). As previously noted by Perrykkad and
Hohwy (2019) and Zalla and Sperduti (2015), this is in contrast to sense of agency in autism
being shown to be reduced under typical experimental paradigms (Sperduti, Pieron, Leboyer, &
Zalla, 2014; van Laarhoven, Stekelenburg, Eussen, & Vroomen, 2019). Our study also shows no
main effects of AQ on other outcomes, except for a negative association with acceleration.

To our knowledge, Zalla et al. (2015) is the only other case where variability of a similar
kind (which they labelled ‘furbulence’) was added in a judgement of agency task pertaining to

autism, in their case contrasting participants with and without an autism spectrum diagnosis.
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Their results demonstrated that the accuracy of autistic participants’ agency judgements was less
sensitive to differences in variability than the neurotypical group. This study supports our
hypothesis that the addition of uncertainty has a distinctive effect on judgement of agency related
to autistic traits. While we do not show any significant interactions with AQ in accuracy, our
results showed participants with high autism traits were less sensitive to differences in variability
in their average prediction error. Since this measure is behavioural, this suggests that participants
with high AQ were moving (that is, exploring the environment) in a way that did not reflect
underlying differences in variability. Further, AQ was negatively associated with prediction error
in the 200ms window surrounding hypothesis switches. This suggests participants with high AQ
are switching hypotheses earlier than participants with low AQ, or tolerating less uncertainty
before abandoning their current hypothesis (see also Lawson et al. (2017)).

By additionally manipulating volatility, we could demonstrate further effects of
uncertainty dependent on AQ. Participants with high AQ were more sensitive to differences in
volatility such that only for this group was increased volatility associated with more time spent
moving (if only in high variability) and more flexibility in policy selection. This might reflect
less consistent or shallower internal models (Perrykkad & Hohwy, 2019), which leads to less
precision over all policies in high volatility, and so the selection of one over another fluctuates
more frequently. This pattern is the opposite of the low AQ group, where high volatility was
associated with more dominant policy use (but only in low variability). This is also consistent
with Lawson et al. (2017), who showed that autistic participants update their learning in response
to volatility more readily than neurotypical participants.

Of note, our findings with respect to autism are limited to scores on a trait-based

measure, which may not generalise to diagnosed autistic populations. Our sample had a high
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average AQ score compared to what is expected in the general population (Baron-Cohen,
Wheelwright, Skinner, Martin, & Clubley, 2001), so our results for “low” AQ may actually be
more representative of “average” AQ individuals. While overall the sample size in post-hoc
analyses is low, the omnibus interactions were based on modelled trends in the full dataset of
continuous AQ scores. Nevertheless, environmental uncertainty might be particularly relevant to
action selection for different levels of autistic traits and we do show interactions between
uncertainty and AQ. These are worth following up in future studies in diagnosed samples.

In summary, this suggests autistic traits are related to 1) subtle differences in more
abstract action policies, which are more sensitive to volatility, 2) smaller differences in prediction
error between variability conditions, and 3) a greater propensity to switch hypotheses at a lower
prediction error threshold when inferring agency. Notably, despite these differences, there was no
significant effect of AQ on overall number of hypothesis switches or on accuracy.

Conclusion

This experiment shows that uncertainty in the mapping between actions and their
outcomes changes not only how effectively participants can identify which stimuli they have
control over, but also changes the actions they make and the overall strategies they employ.
These changes have downstream impacts on the prediction error which can be used to inform
their next action, and their overall response in each trial. In addition, our data illuminates subtle

differences in this perception-action loop dependent on autism traits.
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Methods

Participants

Fifty neurotypical adult participants were recruited. Ten participants were excluded: five
participants were removed for technical errors in recording, two for poor quality eye-tracking
data (>35% lost trials) and three for poor accuracy (<45%). The final sample of 40 participants
were primarily undergraduate students (55%, the remainder had completed tertiary degrees) with
an overall mean age of 22.8 years (SD: 3.65, range: 18-34) and included 24 female participants.
None of the participants reported neurological conditions, taking medications which affect
cognition, nor a history of drug abuse. One participant reported a diagnosis of depression, and
one of ADHD, removing these participants did not affect the primary results of interest (see
supplementary materials). Two participants reported previously suffering a blow to the head that
rendered them unconscious. All participants were fluent in English, had normal or corrected-to-
normal vision and 95% were right handed. This study was approved by Monash University
Human Research Ethics Committee (Project Number 11396). The experiment was conducted in
accordance with the relevant guidelines and regulations, and all participants signed informed
consent documents upon commencing the protocol.
Autism Quotient

None of the participants were previously diagnosed with Autism Spectrum Disorder or its
nominal variants. All participants completed the Autism Quotient questionnaire (Baron-Cohen et

al., 2001) to quantify autistic traits. The mean AQ score was 21.43 (SD: 5.89, range: 12-38).
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Experimental Task Design and Procedure

For a schematic diagram of the experimental set up, task and experimental manipulation,
see Figure 1 and a video of the task is available at

https://tfigshare.com/s/fd2742b897¢21d901dd0 (DOI: 10.26180/5eabbfb9a8aa4).

Testing was conducted in a quiet, darkened room. Participants were seated at a table with
a chin rest set to a comfortable height, 84cm from the screen, and approximately 55cm from eye
to eye-tracking camera. The task was completed using a computer mouse in the participant’s
dominant hand which was hidden in a curtained box (base dimensions: 32cm wide x 30cm deep).
Their opposite hand gave judgment of agency responses using the numbers on a keyboard.
Participants had self-timed breaks between blocks.

We implemented a variant of the Squares Task (Grainger et al., 2014; Russell & Hill,
2001; Williams & Happé, 2009), presented using Psychtoolbox-3.0.14 version beta in Matlab
2017b (Mathworks, Natick, Massachusetts) on a 1920x1080 screen (60Hz refresh rate). Eight
randomly coloured squares (100px?) appeared in an array at the beginning of each trial. All the
squares moved when the mouse was moved and all the squares stopped when the mouse stopped,
so participants had to move in order to accurately complete the task. Participants were given
15sec to identify the target square which they controlled. Distracter squares moved at a random
angle offset from the vector of mouse movement, and this angle was also independently and
randomly changed (and smoothly transitioned) five times in each trial. This means that each
distracter square appeared to turn five times when the participant did not initiate a turn, breaking
any illusion of control resulting from motor adaptation. There were also less frequent no-control

trials in which all the eight squares were distracter squares. After the 15sec, all squares froze and
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were numbered, and prompted an unspeeded numerical response from participants indicating
which square they controlled or ‘0’ if they thought they controlled none of the squares.

There were four uncertainty conditions in a 2x2 design (variability x volatility). Some
jitter was added to all squares (variability), such that depending on the condition, there was a
range (95% CI) of random noise around the mean angle input by the mouse (or the distractor
offset). This specified range also changed throughout the trial; the number of these changes was
specified by the volatility. In the low variability condition, the distribution switched between a
10° and 30° 95% confidence interval around the mean, and for high variability, it switched
between 90° and 110°. In the low volatility condition, the variability changed three times, while
in high volatility, there were 10 switches (pseudo-randomly timed with at least 50 frames
between). Each trial’s starting distribution was randomly selected. There were two blocks of each
condition (variability-volatility pair) with 18 trials per block (16 agentive trials, 2 no-control
trials) and block order was randomized for each participant.

Prior to completing the task blocks, participants engaged in an interactive instruction
demonstration. Participants then completed a practice block containing sixteen total trials
consisting of all trial types, which was excluded from all analyses.

At the end of the experiment there was a short motor control task. In this task,
participants were asked to move a perfectly controllable square along a white path as fast and as
accurately as possible. There were 10 predesignated paths ranging in length and complexity. This

task allowed us to quantify participants’ ability to execute motor intentions.
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Analysis
Behaviour

Performance on the motor control task was summarised by multiplying average area
traversed outside the white path by average reaction time. This was taken as an index of speed-
accuracy trade-off, where low scores indicate better motor performance. Performance on the
motor control task did not significantly correlate with AQ (r=0.07, p=0.65) or overall accuracy
(r=-0.21, p=0.20), and so was not included as a random effect in any mixed model.

In the ‘squares’ task, Accurate trials were those in which participants either correctly
identified the target square, or correctly identified that there was no such square (no-control
trials). Accuracy was the primary measure of overall task performance.

The time spent moving on each trial was calculated in seconds. This served as a proxy for
environmental sampling, as participants were given freedom to start and stop moving as they
pleased though only got task-relevant information by moving.

The speed of movement was calculated as the average pixels moved per frame,
acceleration as change in speed per frame, and jerk as the change in acceleration per frame.
Derivatives to the level of jerk were analysed to investigate the minimum jerk hypothesis of
motor control (Wolpert, 1997) and for its possible relationship to movement trajectories in
autism and its traits (Palmer, Paton, Hohwy, & Enticott, 2013; Palmer, Paton, Kirkovski,
Enticott, & Hohwy, 2015).

On each frame, the participant’s angle of motion was discretised into one of eight
cardinal directions. These were plotted for visual inspection. Participants were found to primarily
move in the cardinal directions (up, down, left, right), with smaller peaks at the diagonal

midpoints. These plots, in combination with observation of trial replays, informed subsequent
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policy definition. A turn was defined as any change in direction which was preceded by at least
three frames of one direction and sustained for at least three frames. More than simply sampling,
which also occurred in straight movements, turning involves participant induced intervention on
expected stimuli direction. These turns were further grouped into types, which were taken to
indicate the participant’s policy. These are pictorially and algorithmically defined in the
Supplementary Materials. In brief, six policy types were identified: 1) Horizontal, 2) Vertical, 3)
Perpendicular-Cardinal, 4) Non-Cardinal, 5) Hesitant-straight and 6) Circle. Note that rounded
corners and circles were redefined for analysis as one turn each as they are taken as a unified
intent of intervention by the participant.

While none of these policies has an a priori advantage over any other for task
performance, we were interested in how flexible each participant was in switching between
policies. For each policy, we created a mean percentage of turns that were of that type, across all
conditions. We defined a participants’ dominant policy as the policy which had the highest
percentage of turns across the entire experiment. This allowed us to look at the number of turns
in each trial which were of the participants’ dominant policy as compared to alternative policies,
as a proxy for exploratory behaviour (i.e., more dominant policy use as exploitative policy
selection, less dominant policy use as exploratory). The number of turns on each trial which fell
into a participants’ dominant policy were used for this analysis.

Eyetracking

Binocular eyetracking data was collected using the SR Research Eyelink 1000 system.
For each participant, binocular thirteen-point calibration was conducted; where calibration was
unsuccessful for both eyes, one eye was used. The screen x and y coordinates were preprocessed

for analysis. Preprocessing involved removing any values outside of the screen bounds,
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interpolating eyeblinks (as defined by pupil size outside of 1.5 standard deviations below to 2
standard deviations above participant average pupil size), applying a Hanning window of 15
samples (93% overlap) to smooth the eyetrace, and replacing temporarily lost values in one eye
with valid data from the other eye (including for whole trials if one eye was excessively noisy).
Data was then epoched into trials, and downsampled to match the stimuli framerate for
alignment with behavioural data. Trials with poor signal were defined as those with more than
30% of the samples interpolated in both eyes, or whose recorded behavioural data was outside of
two standard deviations above or below the participants mean recorded trial length (as the source
of these outliers could not be identified). For the final sample of participants, there were a
maximum of 65 poor-signal trials (mean = 33.4). Poor-signal trials were removed from all
analyses (including behavioural only dependent variables above).

The square the participant was looking at was determined by a novel biased-nearest-
object method (see Supplementary Materials). Times of hypothesis switch from one square to
another were defined as any change in the looked-at square that lasts longer than one frame.

The Euclidean distance between the expected location (had the stimuli followed the
mouse) and the actual location of the hypothesised square was calculated as a proxy for
prediction error. This means that the prediction error is contingent on how quickly the
participants move (the error is higher if they move faster) and the quality of their hypothesis.
Due to the manipulation, this means that low variability trials accrue less prediction error on
average than high variability trials. The average prediction error for each participant was
calculated across each trial. The slope of prediction error, representing the rate of prediction
error minimisation, was the slope of the line of best fit of the average prediction error at each

time point in each condition for each participant (see Figures Sa and 5c¢). As such, negative
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values here represent prediction error minimisation, while positive values represent accumulating
prediction error.

Finally, given the temporal resolution of our prediction error measure, we were interested
in the pattern of prediction error around key temporal events — namely hypothesis switches and
changes to the variability distribution (due to volatility). We call these analyses event-related
prediction errors (ERPE). A one second epoch was centred on the event of interest (time zero)
and prediction errors were averaged for each participant in each condition to create an average
pattern of activity around the event. Means over five 200ms time bins for each participant were
taken for statistical analysis (bin number three is centered on the event onset, see Figure 6a).
There was no effect of time-bin in the volatility ERPE analysis, hence these are reported in the
Supplementary Materials.

Statistics

All statistical analyses were conducted as Mixed Linear Models (MLM) using Jamovi
version 1.1.4 and the GAMLj module (Gallucci, 2019; R Core Team, 2018; The Jamovi Project,
2019). Trial-wise data was used for all dependent variables except prediction error slopes and
ERPEs for which condition-wise data was used. Variability and volatility were modelled as
simple fixed effect factors, and AQ score was modelled as a continuous fixed effect. All
interactions between fixed effects were included. By-participant random intercepts were included
to address the non-independence of subject-level observations across trials and capture
individual variability in task performance. Compared to traditional methods, this approach
affords more sophisticated handling of missing and outlying data, thus improving the accuracy,
precision, and generalisability of fixed effect estimates (Singmann & Kellen, 2020). See Table 1

for additional covariates for each model. Degrees of freedom are reported as estimated by the
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Satterthwaite method. Post-hoc analyses were conducted with Bonferroni correction for multiple
comparisons and post-hoc p-values are reported with this correction. Post-hoc tests for
interactions with AQ were simple effects contrasting participants with low (<Mean-1SD=16,
n=6), within one standard deviation from the mean and high (*Mean+1SD=27, n=6) scores for
ease of interpretation.
Data Availability

Dataset used for Results, Table 1, and Figures 2-6 freely available at

https://figshare.com/s/77dececaa2b966db4ct7 (DOI:10.26180/5ed0708f103a2).
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