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Abstract 

Adaptive human behavior builds on prior knowledge about stimulus relevance. Some 
environments cue such knowledge more than others. To behave adaptively, observers need 
to flexibly adjust sensory processing to the degree of contextual uncertainty. We hypothesize 
that the neural basis for these perceptual adjustments consists in the ability of the cortical 
network to switch back and forth between a rhythmic state that serves selective processing, 
and a state of elevated asynchronous neural activity that boosts sensitivity. To test this 
hypothesis, we recorded non-invasive EEG and fMRI BOLD dynamics while 47 healthy 
young adults performed a parametric visual attention task with varying numbers of relevant 
stimulus features. Drift-diffusion modeling of response behavior and electrophysiological 
signatures revealed that greater contextual uncertainty lowered the rate of evidence 
accumulation while increasing thalamocortical engagement, with concomitant increments in 
cortical excitability and pupil dilation. As predicted, uncertainty-related processing 
adjustments were expressed as switches between a state of phase-dependent excitability 
modulation in the alpha band and a state of increased irregularity of brain dynamics. We 
conclude that humans dynamically adjust sensory excitability according to the processing 
fidelity afforded by an upcoming choice, and that neuromodulatory processes involving the 
thalamus play a key role in adjusting excitability in the human brain. 

Highlights 

• With increasing contextual uncertainty, human cortical networks shift from a state of 
phase-dependent excitability modulation in the alpha band into a state of elevated 
excitatory tone and asynchronous neural activity 

• Evidence based on joint modeling of behavior, EEG, and BOLD suggests that 
neuromodulatory processes involving the thalamus regulate these shifts 

• Theoretical and empirical considerations suggest contributions of both frequency-specific 
and aperiodic neural dynamics to human behavior   
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Introduction 1 

Adaptive behavior requires dynamic adjustments to the perception of high-dimensional 2 
inputs. Prior knowledge about the momentary relevance of specific environmental features 3 
selectively enhances their processing while suppressing distractors (for reviews see 4 
Buschman & Kastner, 2015; Desimone & Duncan, 1995; Maunsell, 2015), which can be 5 
implemented via gain modulation in sensory cortex (Ferguson & Cardin, 2020). Crucially, a 6 
priori information regarding feature relevance is not always available; and how the brain 7 
flexibly adjusts the processing of complex inputs according to contextual uncertainty remains 8 
unclear (Bach & Dolan, 2012). 9 

Selective gain control has been associated with phasic (i.e., phase-dependent) inhibition of 10 
task-irrelevant stimulus dimensions during cortical alpha (˜8-12 Hz) rhythms (Klimesch, 11 
Sauseng, & Hanslmayr, 2007; Sadaghiani & Kleinschmidt, 2016). In particular, rhythmic 12 
modulations of feedforward excitability (Haegens, Nacher, Luna, Romo, & Jensen, 2011; 13 
Lorincz, Kekesi, Juhasz, Crunelli, & Hughes, 2009) may provide temporal ‘windows of 14 
opportunity’ for high-frequency gamma synchronization in sensory cortex (Spaak, 15 
Bonnefond, Maier, Leopold, & Jensen, 2012; van Kerkoerle et al., 2014) and increased 16 
sensory gain (Fries, 2015; Ni et al., 2016; Peterson & Voytek, 2017). However, specifically 17 
increasing the fidelity of single stimulus dimensions is theoretically insufficient when 18 
uncertain environments require joint sensitivity to multiple stimulus features (Pettine, Louie, 19 
Murray, & Wang, 2020). During high uncertainty, transient increases to the tonic 20 
excitation/inhibition (E/I) ratio in sensory cortex provide a principled mechanism for elevated 21 
sensitivity to – and a more faithful processing of – high-dimensional stimuli (Destexhe, 22 
Rudolph, & Pare, 2003; Marguet & Harris, 2011). In electrophysiological recordings, scale-23 
free 1/f slopes are sensitive to differences in E/I ratio (Gao, Peterson, & Voytek, 2017), and 24 
vary alongside sensory stimulation (Billig et al., 2019; Podvalny et al., 2015) and arousal 25 
states (Colombo et al., 2019; Lendner et al., 2019). Whether contextual demands modulate 26 
scale-free activity is unknown however. We hypothesize that high uncertainty shifts cortical 27 
regimes from rhythmic excitability modulations towards tonic excitability increases. 28 

Such state switches in network excitability may be shaped by neuromodulation and 29 
subcortical activity (Harris & Thiele, 2011). Neuromodulation potently alters cortical states 30 
(Froemke, 2015; Thiele & Bellgrove, 2018) and sensory processing (Berridge & Waterhouse, 31 
2003; McCormick, Pape, & Williamson, 1991; McGinley, David, & McCormick, 2015), and 32 
noradrenergic arousal in particular may permit high sensitivity to incoming stimuli (Posner & 33 
Rothbart, 2007). Yet, non-invasive evidence is lacking for whether/how neuromodulation 34 
affects contextual adaptability. Moreover, despite early proposals for thalamic involvement in 35 
attentional control (Crick, 2003; Jasper, 1948; Rafal & Posner, 1987), studies have 36 
dominantly focused on cortical information flow (e.g., Siegel, Buschman, & Miller, 2015), at 37 
least in part due to technical difficulties in characterizing thalamic contributions. Crucially, the 38 
thalamus provides a nexus for the contextual modulation of cortical circuits (Halassa & 39 
Kastner, 2017; Honjoh et al., 2018), is a key component of neuromodulatory networks 40 
(McCormick et al., 1991; Schiff, 2008; Song et al., 2017) and robustly modulates system 41 
excitability via rhythmic and aperiodic membrane fluctuations (Jones, 2009). However, 42 
human evidence for a central thalamic role in cortical state adjustments at the service of 43 
behavioral flexibility is missing. 44 
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Here, we aimed at overcoming this lacuna by assessing the effects of contextual uncertainty 45 
during stimulus encoding on cortical excitability, neuromodulation, and thalamic activity in 46 
humans. We performed a multi-modal (parallel) EEG-fMRI experiment to capture both fast 47 
cortical dynamics (EEG) and subcortical activity (fMRI) while recording pupil dilation as a 48 
non-invasive proxy for neuromodulatory drive (Joshi & Gold, 2020). Participants performed a 49 
parametric adaptation of the classic dot motion task (Gold & Shadlen, 2007) (Figure 1). 50 
Specifically, we manipulated the number of stimulus dimensions that are task-relevant in a 51 
given trial while holding the sensory features of the task (i.e., its appearance on the screen) 52 
constant across trials. By applying drift-diffusion modeling to participants’ choice behavior 53 
while jointly assessing electrophysiological signatures of decision processes, we found that 54 
uncertainty during sensation reduces the rate of subsequent evidence integration. This 55 
reduction in available sensory evidence for single targets was associated with increased 56 
cortical excitability, as indexed by joint low-frequency (~alpha) desynchronization and high-57 
frequency (~gamma) synchronization, and an increase in E/I ratio, as indicated by increased 58 
sample entropy and flatter scale-free 1/f slopes, during stimulus processing, in lines with 59 
broad sensitivity increases during periods of higher uncertainty. These excitability 60 
adjustments occurred in parallel with increases in pupil-based arousal. Finally, inter-61 
individual differences in the modulation of cortical excitability, drift rates and arousal were 62 
jointly associated with the extent of thalamic BOLD signal modulation, pointing to the 63 
importance of subcortical mechanisms for cortical state adjustments. Together, these 64 
findings suggest that neuromodulatory processes involving the thalamus shape cortical 65 
excitability states in humans, and that a shift from alpha-rhythmic to aperiodic neural 66 
dynamics adjusts the processing fidelity of external stimuli in service of upcoming decisions. 67 

 68 

Figure 1. Hypotheses & task design. (A) We probed whether participants modulate cortical 69 
excitability during stimulus processing to guide subsequent evidence accumulation. We hypothesized 70 
that when valid attentional cues about a single target feature are available in advance, a low 71 
excitability regime may optimize subsequent choices via the targeted selection of relevant – and 72 
inhibition of irrelevant – information. This can be conceptualized as the creation of a “single feature 73 
attractor.” In contrast, under high probe uncertainty, higher excitability may afford the concurrent 74 
sampling of multiple relevant features, but at the cost of a relative reduction of subsequently available 75 
evidence for any individual feature. (B) Participants performed a Multi-Attribute Attention Task 76 
(“MAAT”) during which they had to sample up to four visual features in a joint display for immediate 77 
subsequent recall. Prior to stimulus presentation, participants were validly cued to a set of potential 78 
target probes. The number and identity of cues were varied to experimentally manipulate the level of 79 
expected probe uncertainty. (C) We hypothesized that increasing probe uncertainty would induce a 80 
joint increase in neuromodulation and thalamic activity, associated with shifts from a phasic gain 81 
control mode (implemented via neural alpha rhythms) toward transient increases in tonic excitability 82 
(as indicated by aperiodic cortical activity). Participants performed the same task in both an EEG and 83 
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an fMRI session, allowing us to assess joint inter-individual differences in fast cortical dynamics (EEG) 84 
and subcortical sources (fMRI). 85 

Results 86 

We developed a dynamic visual Multi-Attribute Attention Task (“MAAT”) to uncover rapid 87 
adjustments to stimulus processing and perceptual decisions under expected uncertainty 88 
(Figure 1). Participants visually sampled a moving display of small squares, which were 89 
characterized by four stimulus features, with two exemplars each: their color (red/green), 90 
their movement direction (left/right), their size (large/small), and their color saturation 91 
(high/low). Any individual square was characterized by a conjunction of the four features, 92 
while one exemplar of each feature (e.g., green color) was most prevalent in the entire 93 
display. Following stimulus presentation, participants were probed on a single feature as to 94 
which of the two exemplars was most prevalent (via 2-AFC). Probe uncertainty was 95 
parametrically manipulated using valid pre-stimulus cues, indicating the feature set from 96 
which a probe would be selected. The feature set remained constant for a sequence of eight 97 
trials to reduce set switching demands. Optimal performance required flexible sampling of 98 
the cued feature set while jointly inhibiting uncued features; participants had to thus rapidly 99 
encode a varying number of targets (“target load”) to prepare for an upcoming probe. 100 
Participants performed the task well above chance level for different features and for different 101 
levels of probe uncertainty (Figure S1A). As the number of relevant targets increased, 102 
participants systematically became slower (median RT; EEG: b = .138, p ~ 0; MRI: b = .107, 103 
p ~ 0) and less accurate (EEG: b = -.032, p ~ 0; MRI: b = -.025, p = 2.4e-07) in their 104 
response to single-feature probes (Figure S1B).  105 

Probe uncertainty during sensation decreases the rate of subsequent evidence 
integration 

We leveraged the potential of sequential sampling models to disentangle separable decision 106 
processes in order to assess their modulation by probe uncertainty. In particular, drift-107 
diffusion models estimate (a) the non-decision time (NDT), (b) the drift rate at which 108 
information becomes available, and (c) the internal evidence threshold or boundary 109 
separation (see Figure 2A; for a review see Forstmann, Ratcliff, & Wagenmakers, 2016). We 110 
fitted a hierarchical drift-diffusion model (HDDM) separately for each testing session, and 111 
assessed individual parameter convergence with established EEG signatures (Donner, 112 
Siegel, Fries, & Engel, 2009; O'Connell, Dockree, & Kelly, 2012; Twomey, Kelly, & 113 
O'Connell, 2016; van Vugt, Beulen, & Taatgen, 2019). In particular, we investigated the 114 
Centroparietal Positive Potential (CPP) and lateralized beta suppression as established 115 
neural signatures of evidence integration from eidetic memory traces (Twomey et al., 2016). 116 
The best behavioral fit was obtained by a model incorporating probe uncertainty-based 117 
variations in drift rate, non-decision time and boundary separation (Figure S1B). Yet, there 118 
was no evidence for modulation of the threshold of the CPP or the contralateral beta 119 
response (Figure S1C). In line with prior work (McGovern, Hayes, Kelly, & O'Connell, 2018), 120 
we therefore selected an EEG-informed model with fixed thresholds across target load 121 
levels. With this model, reliability of individual parameters as well as of their load-related 122 
changes was high across EEG and MRI sessions (see below and Figure S1E, F). Parameter 123 
interrelations are reported in Text S1. 124 
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 125 

Figure 2: Evidence integration upon probe presentation decreases as a function of prior 126 
uncertainty. (A) Schematic of drift-diffusion model. Following visual encoding, evidence is 127 
successively accumulated towards either of two bounds when probed for the dominant prevalence of 128 
one of two options of a single feature. A button press indicates the decision once one of the bounds 129 
has been reached and motor preparation has concluded. A non-decision time parameter captures 130 
visual encoding and motor preparation, drift rate captures the amount of available information, and 131 
boundary separation captures response bias i.e., conservative vs. liberal). (B) Behavioral parameter 132 
estimates for drift rate and non-decision time (NDT; discussed in Text S3), as indicated by the 133 
hierarchical drift-diffusion model (HDDM). (C) Modulation of the Centroparietal Positive Potential 134 
(CPP) as a neural signature of evidence accumulation (mean +- within-subject SE). The probe-locked 135 
CPP indicates decreases in drift rate with prior probe uncertainty. Insets show CPP slope estimates 136 
from -250 to -100 ms relative to response execution, as well as the corresponding topography (CPP 137 
channel shown in yellow). [*** p < .001, ** p < .01, * p < .05] 138 

Behavioral model estimates (Figure 2B) and EEG signatures (Figure 2C, Figure S2A) jointly 139 
indicated that probe uncertainty during stimulus presentation decreased the drift rate during 140 
subsequent evidence accumulation. This indicates a reduction of available evidence for 141 
single features when more features had to be sampled. Individual drift rate estimates for a 142 
single target were positively correlated with the slope of the CPP (r = 0.52, 95%CI [0.26, 143 
0.71], p = 3.59e-4), while individual drift rate reductions reflected the shallowing of CPP 144 
slopes (r(137) = 0.34, 95%CI [0.18, 0.48], p = 4.87e-5). Notably, the magnitude of evidence 145 
decreases with increasing probe uncertainty was strongly anticorrelated with the available 146 
evidence when the target attribute was known in advance (i.e., the single target condition; 147 
EEG session: r = -.93, p = 4e-22, MRI session: r = -.88, p = 1e-15). That is, participants with 148 
more available evidence after selectively attending to a single target showed larger drift rate 149 
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decreases under increased probe uncertainty. Importantly however, participants with higher 150 
drift rates for single targets also retained higher drift rates at higher probe uncertainty (i.e., 151 
high reliability for e.g., four targets: EEG: r = .48; p = 6e-4; MRI: r = .53, p = 2e-4). Moreover, 152 
individuals with higher drift rates across target loads exhibited lower average RTs (EEG: r = -153 
.42, p = .003; MRI: r = -.41, p = .007) and higher task accuracy (EEG: r = .86, p = 2e-14; 154 
MRI: r = .89, p = 4e-16). Thus, in the present paradigm, more pronounced drift rate 155 
decreases with increasing probe uncertainty index a successful modulation of feature-based 156 
attention during encoding, and better overall performance.  157 

We performed multiple control analyses to further elucidate decision properties. First, we did 158 
not observe a similar ramping of the CPP during stimulus presentation (Figure S2B), 159 
suggesting that evidence accumulation was primarily initiated by the probe. Second, drift rate 160 
reductions were not primarily driven by differences between feature attributes (Figure S2C). 161 
Third, concurrent variations in response agreement across cued attributes could not account 162 
for the observed effects (Text S2; Figure S1D). Fourth, individual drift rates for single targets 163 
were unrelated to threshold estimates (EEG: r = -.005, p = .74; MRI: r = -.006; p = .72), thus 164 
suggesting a lack of differences in response bias (Ratcliff & McKoon, 2008). Finally, 165 
participants with larger drift rate decreases exhibited more constrained non-decision time 166 
increases (EEG: r(137) = 0.32, 95% CI [0.16, 0.47], p = 1.04e-4; MRI: r(122) = 0.37, 95%CI 167 
[0.2, 0.51], p = 2.48e-5), indicating reduced additional motor transformation demands (see 168 
Text S3) in high performers. 169 

Cortical excitability increases under uncertainty guide subsequent evidence 
integration 

Decreases in the rate of evidence integration indicate the detrimental consequences of probe 170 
uncertainty, but not the mechanisms by which sensory processing is altered. To investigate 171 
the latter, we examined rhythmic and aperiodic cortical signatures during stimulus 172 
processing. To jointly assess multivariate changes in spectral power as a function of probe 173 
uncertainty, we performed a partial-least-squares (PLS) analysis that produces low-174 
dimensional, multivariate relations between brain-based data – in this case time-frequency-175 
space matrices – and other variables of interest (see methods). First, we assessed evoked 176 
changes compared to baseline using a task PLS. We observed a single latent variable (LV; 177 
permuted p < .001) with jointly increased power in the delta-theta and gamma bands and 178 
decreased alpha power upon stimulus onset (Figure S3A, Figure S4A), in line with increased 179 
cognitive control (Cavanagh & Frank, 2014) and heightened bottom-up visual processing 180 
(van Kerkoerle et al., 2014). We next performed a task PLS to assess spectral power 181 
changes as a function of target load. A single LV (permuted p < .001; Figure 3) indicated a 182 
stronger expression of this control- and excitability-like pattern with increasing probe 183 
uncertainty. Next, we assessed the link between individual changes in multivariate loadings 184 
on this “spectral power modulation factor” (SPMF) and behavioral modulations. We 185 
performed partial repeated measures correlations (see methods), a mixed modelling 186 
approach that controls for the main effect of probe uncertainty in both variables of interest 187 
and indicates interindividual associations independent of the specific shape of condition 188 
modulation in individual participants. Crucially, individual SPMF loadings were positively 189 
correlated with interindividual performance differences during selective attention (Figure 3F) 190 
and uncertainty-related performance changes (Figure 3G). Participants with stronger spectral 191 
power modulation during sensation exhibited faster evidence integration in the selective 192 
attention condition, as well as a stronger drift rate decreases under uncertainty [r(137) = -0.4, 193 
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95%CI [-0.53, -0.25], p = 1.12e-6], while showing constrained increases in non-decision time 194 
[r(137) = -0.26, 95%CI [-0.41, -0.1], p ~ 0]. In sum, this suggests that high performers flexibly 195 
increased visual throughput as more features became relevant via top-down control of 196 
cortical excitability. 197 

 198 

Figure 3: Multivariate power changes with probe uncertainty during stimulus encoding. (A, B) 199 
Topographies of stimulus-evoked power changes relative to pre-stimulus baseline (A, see Figure S3-200 
1) and load-related power modulation (B). With increasing attentional demands, theta and ‘broadband’ 201 
gamma power increased, whereas alpha rhythms desynchronize. Asterisks indicate the sensors 202 
across which data were averaged for presentation in D. Values indicate maximum (theta/gamma) or 203 
minimum (alpha range) bootstrap ratios (BSR) across time in the clusters. (C) Temporal traces of 204 
band-limited power as a function of target load, extracted from the clusters presented in D (mean +- 205 
within-subject SE). (D, E) Multivariate loading pattern (D) for spectral power changes under 206 
uncertainty and associated multivariate brain scores at different levels of target load (E). Black bars in 207 
panel D indicate discrete frequency ranges or sensors (shown in A). (F, G) Participants with stronger 208 
multivariate power modulation exhibit stronger drift rates for single targets (F), as well as stronger drift 209 
rate decreases under uncertainty (G). In G, dots represent linear model residuals (see methods), 210 
colored by participant. Coupled changes across target conditions are indicated by the black line. We 211 
indicate the direction of main effects for each variable via + and - (- = small decreases, -- = large 212 
decreases, + = small increases, ++ = large increases), with directions of variables on the x-axis 213 
indicated first. [*** p < .001] 214 

Here too, we performed multiple control analyses. First, the same multivariate power-band 215 
relations noted in our task PLS model (SPMF above) were also identified in a behavioral PLS 216 
model intended to estimate optimal statistical relations between power bands and behavior 217 
(Text S4, Figure S4B). Second, while we observed increases in pre-stimulus alpha power 218 
with increasing probe uncertainty, these changes did not relate to behavioral changes or 219 
power changes during stimulus processing (Text S5, Figure S4C). Third, the entrained 220 
steady-state visual evoked potential (SSVEP) magnitude was not modulated by target load 221 
(Text S6, Figure S4D). Fourth, multivariate power changes corresponded to narrow-band, 222 
rhythm-specific indices in the theta and alpha band (Text S7, Figure S4E), and thus did not 223 
exclusively result from changes in the aperiodic background spectrum (see below). 224 

Alpha phase modulates gamma power during sensation 

Alpha rhythms have been related to phasic control over bottom-up input, as putatively 225 
encoded in gamma power (Spaak et al., 2012). To assess phase-amplitude coupling (PAC) 226 
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in the present data, we selected temporal alpha episodes at the single-trial level (see 227 
methods, Figure 4A) and assessed the coupling between alpha phase and gamma power. 228 
We observed significant alpha-gamma PAC (Figure 4B, D left), consistent with alpha-phase-229 
dependent excitability modulation. This was constrained to the occurrence of alpha episodes, 230 
as no significant alpha-gamma PAC was observed prior to indicated alpha episodes (grey 231 
shading in Figure 4A; Figure 4D right). Phasic gamma power modulation was observed 232 
across target load levels (Figure 4F), but alpha duration decreased as a function of load 233 
(Figure 4C). This suggests that alpha rhythms consistently regulated gamma power, but that 234 
alpha engagement decreased as more targets became relevant.  235 

 236 

Figure 4. Alpha phase modulates gamma power during sensation. (A) Exemplary time series 237 
around the onset of a detected alpha event (example from 4-target condition). Segments were pooled 238 
across occipital channels (black dots in inset topography) and target load conditions. (B) Normalized 239 
gamma power (red; mean +- SE) during alpha events (yellow shading in A), is modulated by alpha 240 
phase (see methods). The unfiltered ERP aligned to the alpha trough is shown in black. Shaded 241 
regions indicate standard errors. (C) The relative duration of alpha events decreased with increased 242 
feature relevance. Data are individually centered across target loads. (D) Modulation index (MI) 243 
indicated significant coupling between the phase of alpha and gamma power during rhythmic events 244 
(left), but not during periods immediately prior to rhythm onset (right). MI was normalized using 245 
surrogate data to reduce erroneous coupling (see methods). Shaded regions indicate standard errors. 246 
(E) Gamma power (averaged from 60-150 Hz; mean +- SE) was maximal following alpha peaks. 247 
Power was normalized across all phase bins (see methods). (F) Gamma power systematic peaks 248 
between the peak and trough of alpha rhythms across target levels. For this analysis, alpha events 249 
were collapsed across all participants. [*** p < .001] 250 

Sample entropy and scale-free dynamics indicate shifts towards increased excitability 

Next, we assessed whether reduced alpha engagement was accompanied by increases in 251 
temporal irregularity, a candidate signature for system excitability (Kosciessa, Kloosterman, 252 
& Garrett, 2020). We probed time-resolved fluctuations in sample entropy (SampEn), an 253 
information-theoretic estimate of signal irregularity. As sample entropy is jointly sensitive to 254 
broadband dynamics and narrowband rhythms, we removed the alpha frequency range using 255 
band-stop-filters (8-15 Hz) to avoid contributions from alpha rhythms (see Kosciessa, 256 
Kloosterman, & Garrett, 2020). A cluster-based permutation test indicated SampEn 257 
increases under probe uncertainty over posterior-occipital channels (Figure 5A). Notably, the 258 
magnitude of individual entropy modulation in this cluster scaled with increases in the SPMF 259 
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[r(137) = 0.22, 95%CI [0.05, 0.37], p = 0.01], indicating that alpha desynchronization was 260 
accompanied by broadband changes in signal irregularity. 261 

 262 

Figure 5: Uncertainty increases aperiodic dynamics during sensation as reflected in neural 263 
entropy (A) and 1/f slopes (B). (A1) Temporal traces of sample entropy (mean +- within-subject SE). 264 
The yellow background indicates the period of stimulus presentation. The black bar indicates time 265 
points at which permutation tests indicated linear load effects. (A2) Topography of linear load effect 266 
estimates, with yellow dots representing the significant cluster. (A3) Post-hoc analysis of entropy 267 
estimates within significant cluster. Grey dots indicate individual outliers (defined as Cook’s distance > 268 
2.5*mean (Cook’s distance)) and have been removed from the statistical post-hoc assessment. 269 
Estimates have been within-subject centered for display purposes, while statistical analyses were run 270 
on uncentered data. (B1) Aperiodic slopes shallow with increased target load (i.e., spectral rotation 271 
across low- and high-frequencies; mean +- within-subject SE). Lower and upper insets highlight slope 272 
differences at low and high frequencies, respectively. (B2) Topography of linear load effects on 1/f 273 
slopes. Yellow dots indicate the significant occipital cluster used for post-hoc assessments. (B3) Same 274 
as A3, but for occipital aperiodic slopes. [*** p < .001, ** p < .01, * p < .05] 275 

Aperiodic, scale-free spectral slopes are a major contributor to broadband SampEn, due to 276 
their joint sensitivity to autocorrelative structure (Kosciessa, Kloosterman, et al., 2020), and a 277 
shallowing of aperiodic (1/f) slopes has theoretically been associated with system excitability 278 
(Gao et al., 2017). We therefore assessed aperiodic slope changes during the stimulus 279 
period (excluding onset transients). In line with our hypothesis, participants’ PSD slopes 280 
shallowed under uncertainty (Figure 5B), suggesting that participants increased their 281 
excitatory tone in posterior cortex. In line with the expectation that sample entropy should be 282 
highly sensitive to scale-free dynamics, sample entropy was strongly related to individual 283 
PSD slopes across conditions (r = .77, p <.001) and with respect to linear changes in PSD 284 
slope with increasing uncertainty [r(137) = 0.44, 95%CI [0.3, 0.57], p = 4.92e-8]. In sum, 285 
heightened probe uncertainty desynchronized low-frequency alpha rhythms, and elevated 286 
the irregularity of cortical dynamics, in line with enhanced tonic excitability. 287 
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Increases in phasic pupil diameter relate to transient excitability adjustments 

Phasic arousal changes modulate perception and local cortical excitability (for reviews see 288 
Lee & Dan, 2012; McGinley, Vinck, et al., 2015). To test whether arousal increased 289 
alongside uncertainty, we assessed phasic changes in pupillometric responses as a proxy for 290 
arousal during stimulus presentation. We quantified phasic pupil responses via the 1st 291 
temporal derivative (i.e. rate of change), as this measure has higher temporal precision and 292 
has been more strongly associated with noradrenergic responses than the overall pupil 293 
response (Reimer et al., 2014). Phasic pupil dilation systematically increased with probe 294 
uncertainty (Figure 6). This modulation occurred on top of a general pupil constriction due to 295 
stimulus-evoked changes in luminance (Figure 6A, inset), while the linear modulation 296 
occurred – by stimulus design – in the absence of systematic luminance changes.  297 

 298 

Figure 6: Effect of probe uncertainty on pupil diameter as a proxy for neuromodulation. (A) 299 
Phasic changes in pupil diameter increase with number of targets (mean +- within-subject SE). 300 
Significant linear load effects as indicated by a cluster-based permutation test are indicated via the 301 
black line. For follow-up analyses, we extracted median pupil values from 0 to 1.5 s. For display 302 
purposes but not statistics, derivative estimates were smoothed via application of a 200 ms median 303 
running average. (B) Post-hoc analysis of load effects in extracted median values. (C) Coupled 304 
changes between our spectral power modulation factor (SPMF) and pupil modulation. Dots represent 305 
linear model residuals (see methods), colored by participant. We indicate the direction of main effects 306 
for each variable via + and - (- = small decreases, -- = large decreases, + = small increases, ++ = 307 
large increases). [* p < .05] 308 

Next, we assessed the relation between individual modulations in pupil diameter, cortical 309 
excitability and behavior. The magnitude of pupil increases tracked increases on the spectral 310 
power modulation factor (SPMF) [r(137) = 0.22, 95%CI [0.06, 0.38], p = 0.01], but did not 311 
directly relate to entropy [r(137) = -0.06, 95%CI [-0.23, 0.1], p = 0.45] or aperiodic slope 312 
changes [r(137) = -0.04, 95%CI [-0.2, 0.13], p = 0.67]. Participants with larger increases in 313 
pupil dilation also were faster integrators at baseline (r = .31, p = .033), and decreased 314 
integration more so with increasing probe uncertainty [r(137) = -0.17, 95%CI [-0.33, 0], p = 315 
0.05], while showing more constrained NDT increases [r(137) = -0.21, 95%CI [-0.36, -0.04], p 316 
= 0.01]. This suggests that arousal jointly related to increases in local cortical excitability and 317 
subsequent choices. 318 

Thalamic BOLD modulation tracks excitability increases during sensation 

Finally, we probed whether the thalamus acts as a subcortical nexus for sensory excitability 319 
adjustments under probe uncertainty. To allow spatially resolved insights into thalamic 320 
involvement, participants took part in a second, fMRI-based testing session during which 321 
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they performed the same task. First, we investigated uncertainty-related changes in BOLD 322 
magnitude during stimulus processing via a task PLS. This analysis suggested two reliable 323 
(LV1: permuted p = .001; LV2: permuted p = .007) latent variables (Figure 7; see Table S1 324 
for peak coordinates/statistics and Figure S5A, B for complete multivariate spatial patterns 325 
for the two LVs), with the first LV explaining the dominant amount of variance (89.6% 326 
crossblock covariance) compared to the second LV (8.7% crossblock covariance). 327 

 328 

Figure 7: Upregulation of thalamic BOLD responses during stimulus processing is related to 329 
stronger excitability increases and better performance in upcoming decision task. (A) Results 330 
from multivariate task PLS investigating the relation of BOLD magnitude to attentional uncertainty. 331 
Data are individually centered across target loads. Activity maps show positive (left) and negative 332 
(right) bootstrap ratios of LV1, thresholded at a bootstrap ratio of 3 (p ~.001). Figure S5A presents the 333 
full loading matrices for LV1 and LV2. (B) Results from behavioral PLS, probing the association 334 
between linear changes in BOLD magnitude with behavioral, electrophysiological and pupillary 335 
changes under uncertainty. Figure S5B presents the complete factor loadings. (C) Visualization of 336 
thalamic modulation with uncertainty, split between low- and high- behavioral drift modulators (mean 337 
+- SE). The yellow shading indicates the approximate stimulus presentation period after accounting for 338 
the delay in the hemodynamic response function. Figure S5C plots all target conditions by group. (D) 339 
Thalamic expression pattern of the first task LV (D1) and the behavioral LV (D2). Scatters below 340 
indicate the major nuclei and projection zones in which behavioral relations are maximally reliable. For 341 
abbreviations see methods. Strongest expression is observed in antero-medial nuclei that project to 342 
fronto-parietal cortical targets. [*** p < .001] 343 
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The first latent variable (LV1) indicated load-related increases dominantly in cortical areas 344 
encompassing the fronto-parietal and the salience network, as well as thalamus. Primary 345 
positive contributors to LV1 (i.e., representing increases in BOLD with increasing probe 346 
uncertainty) were located in mid-cingulate cortex (MCG), inferior parietal lobule (IPL), 347 
bilateral anterior insula (aINS), inferior occipital gyrus (IOG), thalamus and bilateral inferior 348 
frontal gyrus (IFG). In contrast, relative uncertainty-related decreases in BOLD magnitude 349 
were dominantly observed in pallidum (potentially reflecting reduced motor preparation), 350 
bilateral posterior insula (pINS), left SFG, and left mid-cingulate cortex. Individual brain score 351 
increases were associated with stronger drift rate decreases [r(122) = -0.36, 95%CI [-0.5, -352 
0.19], p = 5.11e-5], but not NDT, SPMF, or entropy (all p >.05). See Text S8 for results from 353 
the second latent variable (LV2), which might reflect decreased engagement at higher levels 354 
of target uncertainty. 355 

Finally, we performed a behavioral PLS to probe whether regional BOLD modulation tracked 356 
a unified set of individual differences in the modulation of cortical excitability, arousal and 357 
behavior. In fact, we observed a single significant LV (permuted p = .001, 46.2% crossblock 358 
covariance) that dominantly loaded on anterior and midline thalamic nuclei with fronto-359 
parietal projection zones (Figure 7D), and extended broadly across almost the entirety of 360 
thalamus. BOLD magnitude increases were more pronounced in participants exhibiting 361 
higher drift rates (i.e., more available evidence) (r = 0.75, 95% bootstrapped (bs) CI = 362 
[0.72,0.86]) and stronger drift reductions under probe uncertainty (r = -0.6, 95% bsCI = [-363 
0.78,-0.54]; Figure 7B), as well as lower baseline non-decision times (r = -.37, 95% bsCI = [-364 
.58, -.08]), confirming that increased thalamic responses reflected behaviorally adaptive 365 
contextual adjustments. This association was specific to the behavioral adjustments of 366 
interest, as we noted no relations with NDT modulation (r = .05, 95% bsCI = [-.31, .3]) or 367 
boundary separation (r = .08, 95% CI = [-.24, .37]). Importantly, higher (dominantly thalamic) 368 
BOLD modulation was further associated with greater increases on the SPMF (r = 0.31, 95% 369 
CI = [0.16,0.58]), in phasic pupil dilation (r = 0.67, 95% bsCI = [0.51,0.81]) and in entropy 370 
assessed during the EEG session (r = 0.22, 95% bsCI = [0.08,0.46]; Figure 7B). 1/f 371 
shallowing was not stably related to BOLD modulation (r = -0.18, 95% bsCI = [-0.38,0.17]), 372 
potentially due to noisier individual estimates. BOLD modulation was unrelated to 373 
chronological age (r = -.19, p = .21), gender (male vs. female; r = -.27, p = .08), subjective 374 
task difficulty (rated on 5-point Likert scale; r = -.02, p = .89), or framewise displacement of 375 
BOLD signals (an estimate of in-scanner motion; r = -.24, p = .13). Taken together, these 376 
results suggest a major role of the thalamus in integrating phasic neuromodulation to 377 
regulate rhythmic and aperiodic cortical excitability according to contextual demands.   378 

Discussion 379 

To efficiently process information, cortical networks must be flexibly tuned to environmental 380 
demands. Invasive studies indicate a crucial role of the thalamus in such adaptations (for a 381 
review see Halassa & Kastner, 2017), but human evidence on thalamic involvement in rapid 382 
cortical regime switches at the service of behavioral flexibility has been missing. By 383 
combining a multi-modal experimental design with a close look at individual differences, we 384 
found that processing under contextual uncertainty is associated with a triad characterized by 385 
thalamic BOLD modulation, EEG-based cortical excitability, and pupil-based indicators of 386 
arousal. In the light of this triad, we propose that thalamic regulation of sensory excitability is 387 
crucial for adaptive sensory filtering in information-rich environments. 388 
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By cueing relevant dimensions of otherwise physically identical stimuli, we observed that 389 
increases in the number of attentional targets reliably reduced participants’ available 390 
evidence (as evidenced by drift rate decreases) during subsequent perceptual decisions. We 391 
interpret these changes as a negative (Dube, Emrich, & Al-Aidroos, 2017) but necessary and 392 
adaptive consequence of the need to encode multiple relevant features for an eventual 393 
decision regarding a single target. Concurrently, BOLD activity increased in the frontoparietal 394 
network (Dosenbach et al., 2007), composed of the inferior frontal junction (Zanto, Rubens, 395 
Thangavel, & Gazzaley, 2011), inferior frontal gyrus (Hampshire, Chamberlain, Monti, 396 
Duncan, & Owen, 2010), and posterior parietal cortex (Weerda, Vallines, Thomas, 397 
Rutschmann, & Greenlee, 2006; Wojciulik & Kanwisher, 1999), and the salience network 398 
(Uddin, 2015) – including anterior insula (Nelson et al., 2010) and dorsal anterior cingulate 399 
cortex (Weissman, Gopalakrishnan, Hazlett, & Woldorff, 2005). These cortical networks are 400 
thought to establish the contextual relevance of environmental stimuli, and to communicate 401 
this information to sensory cortex (Siegel et al., 2015). Accordingly, their BOLD activity often 402 
increases alongside multifaceted demands (see above), further in line with increased 403 
mediofrontal theta engagement (Cavanagh & Frank, 2014). 404 

Besides such cortical responses at the group level however, we noted that individual 405 
increases in cortical excitability, drift rates, and arousal were tracked primarily by the extent 406 
of thalamic signal elevation, dominantly in areas with fronto-parietal projections. While past 407 
work emphasized the thalamic relay of peripheral information to cortex, recent theories 408 
highlight its dynamic involvement in cortical and cognitive function (for reviews see Dehghani 409 
& Wimmer, 2019; Halassa & Kastner, 2017; Halassa & Sherman, 2019; Pergola et al., 2018; 410 
Saalmann & Kastner, 2011; Ward, 2013; Wolff & Vann, 2019), with empirical support in 411 
humans (Garrett, Epp, Perry, & Lindenberger, 2018; Hwang, Bertolero, Liu, & D'Esposito, 412 
2017; Shine et al., 2019), monkeys (Fiebelkorn, Pinsk, & Kastner, 2019; Saalmann, Pinsk, 413 
Wang, Li, & Kastner, 2012) and mice (Lewis et al., 2015; Schmitt et al., 2017; Wimmer et al., 414 
2015). Notably, our task responds to demands for “tasks with multifaceted cognitive 415 
demands” (Pergola et al., 2018, p. 1017) to enhance sensitivity to higher-order thalamic 416 
involvement. In particular, anterior and midline thalamic nuclei, in which neuro-behavioral 417 
relations were maximal, may be essential for attentional set shifting (Marton, Seifikar, 418 
Luongo, Lee, & Sohal, 2018; Rikhye, Gilra, & Halassa, 2018; Wright, Vann, Aggleton, & 419 
Nelson, 2015) and to communicate such top-down information to sensory cortex via 420 
frontoparietal network coherence (Schmitt et al., 2017). Sensory processing in turn is shaped 421 
by thalamocortical transmission modes (Sherman, 2001). In ‘burst mode’, thalamic nuclei 422 
elicit synchronous activity that can boost stimulus detection (Alitto, Rathbun, Vandeleest, 423 
Alexander, & Usrey, 2019; Reinagel, Godwin, Sherman, & Koch, 1999) via non-linear gains 424 
of cortical responses (G. D. Smith, Cox, Sherman, & Rinzel, 2000; Swadlow & Gusev, 2001), 425 
whereas spike activity during ‘tonic mode’ more faithfully tracks incoming signals (Hartings, 426 
Temereanca, & Simons, 2003; Sherman, 2001). Shifts from sparse bursts towards tonic 427 
activity may underlie attention-related increases in thalamic BOLD magnitude observed here 428 
and in previous fMRI studies (Jagtap & Diwadkar, 2016; Kim, Cilles, Johnson, & Gold, 2012; 429 
Tomasi, Chang, Caparelli, & Ernst, 2007), although further work needs to elucidate the 430 
relation between thalamic transmission modes and BOLD responses (but see Liu et al., 431 
2015). 432 

Associated with thalamic bursting (Palva & Palva, 2007), cortical alpha rhythms may control 433 
sensory gain via periodic fluctuations in excitability (Dugue, Marque, & VanRullen, 2011; 434 
Haegens et al., 2011; Klimesch et al., 2007; Lorincz et al., 2009; Roux, Wibral, Singer, Aru, & 435 
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Uhlhaas, 2013) that can signify rapid temporal imbalances between excitation and inhibition 436 
(Atallah & Scanziani, 2009; Poo & Isaacson, 2009). Supporting this notion, we observed a 437 
coupling between alpha phase and high-frequency power during stimulus processing, with 438 
participants engaging alpha rhythms most prevalently when prior cues afforded them a focus 439 
on single stimulus features (i.e., high available sensory evidence). Alpha rhythms have been 440 
consistently linked to the pulvinar nucleus (Halgren et al., 2019; Lopes da Silva, Vos, 441 
Mooibroek, & Van Rotterdam, 1980; Saalmann et al., 2012; Stitt, Zhou, Radtke-Schuller, & 442 
Frohlich, 2018), which also contributed to our multi-modal model. The pulvinar diffusely 443 
connects to visual and fronto-parietal cortices (Arcaro, Pinsk, & Kastner, 2015), affording it to 444 
build up contextual priors (Kanai, Komura, Shipp, & Friston, 2015; O'Reilly, Wyatte, & 445 
Rohrlich, 2017; Rikhye, Wimmer, & Halassa, 2018) that can regulate ‘bottom-up’ stimulus 446 
processing (Jaramillo, Mejias, & Wang, 2019), potentially via alpha rhythms (Saalmann et al., 447 
2012; Suffczynski, Kalitzin, Pfurtscheller, & da Silva, 2001). While the localization of effects 448 
within the thalamus remains challenging in BOLD signals (Hwang et al., 2017), our results 449 
support a perspective in which alpha rhythms – shaped via thalamocortical circuits – 450 
dynamically extract relevant sensory information (Sadaghiani & Kleinschmidt, 2016) when 451 
contexts afford joint distractor suppression and target enhancement (Wöstmann, Alavash, & 452 
Obleser, 2019).  453 

Complementing such selective gain control, overall increases in excitatory tone may serve 454 
multi-feature attention when only broad attentional guidance is available. Our results provide 455 
initial evidence that probe uncertainty transiently (a) desynchronizes alpha rhythms, (b) 456 
increases gamma power, and (c) elevates sample entropy while shallowing spectral slopes, 457 
a pattern that suggests increases in excitatory contributions to E/I mixture currents (Destexhe 458 
& Rudolph, 2004; Gao et al., 2017) and asynchronous neural firing (Destexhe et al., 2003). 459 
Conceptually, elevated excitability during high probe uncertainty facilitates an efficient and 460 
rapid switching between parallel feature activations. In agreement with this idea, joint 461 
activation of neural populations coding multiple relevant features has been observed during 462 
multi-feature attention (Mo et al., 2019). Furthermore, computational modeling indicates that 463 
E/I modulations in hierarchical networks optimally adjust multi-attribute choices (Pettine et 464 
al., 2020). Similar to our observation of enhanced excitability during probe uncertainty, 465 
Pettine et al. (2020) found increases in excitatory tone optimal for a linear weighting of 466 
multiple features, whereas inhibitory engagement increased the gain for specific features 467 
during more difficult perceptual decisions. As discussed above, such inhibitory tuning may 468 
regulate selective target gains via alpha rhythms, in line with the presumed importance of 469 
inhibitory interneurons in alpha rhythmogenesis (Lorincz et al., 2009).  470 

Finally, probe uncertainty increased phasic pupil diameter, with strong links to parallel 471 
adjustments in behavior, EEG-based excitability, and thalamic BOLD modulation. 472 
Fluctuations in pupil diameter provide a non-invasive proxy of particularly noradrenergic drive 473 
in mice (Breton-Provencher & Sur, 2019; Reimer et al., 2014; Zerbi et al., 2019), monkeys 474 
(Aston-Jones & Cohen, 2005; Joshi, Li, Kalwani, & Gold, 2016) and humans (de Gee et al., 475 
2017). As such, our results support neuromodulation as a potent regulator of excitability both 476 
directly at cortical targets (Constantinople & Bruno, 2011; McGinley, Vinck, et al., 2015) and 477 
via thalamic circuits (Liu et al., 2015; McCormick, 1989; McCormick, McGinley, & Salkoff, 478 
2015; Schiff, 2008). Functionally, pupil diameter rises during states of heightened uncertainty 479 
(Krishnamurthy, Nassar, Sarode, & Gold, 2017; Nassar et al., 2012; Urai, Braun, & Donner, 480 
2017), such as change points in dynamic environments (Murphy, Wilming, Hernandez-481 
Bocanegra, Prat Ortega, & Donner, 2020; Nassar et al., 2012), and multi-feature attention 482 
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(Alnaes et al., 2014; Koelewijn, Shinn-Cunningham, Zekveld, & Kramer, 2014), while 483 
increasing alongside cortical desynchronization (Dahl, Mather, Sander, & Werkle-Bergne, 484 
2020; Murphy et al., 2020; Stitt et al., 2018; Waschke, Tune, & Obleser, 2019). Our results 485 
extend those observations, and suggest that neuromodulatory drive accompanies excitability 486 
increases especially when contexts prevent the formation of single attentional targets, 487 
potentially to serve a more faithful processing of complex environments (Berridge & 488 
Waterhouse, 2003; McGinley, David, et al., 2015).  489 

Multiple neuromodulators, prominently noradrenaline and acetylcholine, regulate 490 
thalamocortical excitability (Lee & Dan, 2012; McCormick et al., 2015) and pupil responses 491 
(Reimer et al., 2014), but may differentially serve perceptual sensitivity vs. specificity 492 
demands (Shine, 2019). Specifically, noradrenergic drive may increase sensitivity to external 493 
stimuli (McCormick et al., 1991; Waterhouse & Navarra, 2019) by increasing E/I ratios 494 
(Froemke, Merzenich, & Schreiner, 2007; Martins & Froemke, 2015; Pfeffer et al., 2018), 495 
whereas cholinergic innervation might facilitate response selectivity (Bauer et al., 2012; 496 
Furey, Pietrini, & Haxby, 2000). However, as contrasting effects have also been observed for 497 
these modulators (e.g., Hirata, Aguilar, & Castro-Alamancos, 2006; Minces, Pinto, Dan, & 498 
Chiba, 2017; Vinck, Batista-Brito, Knoblich, & Cardin, 2015; Yu & Dayan, 2005), their 499 
functional separability necessitates further work.  500 

To conclude, we report initial evidence that thalamocortical excitability adjustments guide 501 
human perception and decisions under uncertainty. Our results point to neuromodulatory 502 
changes regulated by the thalamus that trigger behaviorally relevant switches in cortical 503 
dynamics, from alpha-rhythmic gain control to increased tonic excitability, when contexts 504 
require a more faithful processing of information-rich environments. Given that difficulties in 505 
dealing with uncertainty, neuro-sensory hyperexcitability, and deficient E/I control are 506 
hallmarks of several clinical disorders (e.g., McFadyen, Dolan, & Garrido, 2020; Yang et al., 507 
2016; Yizhar et al., 2011), we surmise that further research on individual differences in the 508 
modulation of contextual excitability might advance our understanding of cognitive flexibility 509 
in both healthy and diseased populations.  510 
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Methods 511 

Sample 

47 healthy young adults (18-35 years, mean age = 25.8 years, SD = 4.6, 25 women) 512 
performed a dynamic visual attention task during 64-channel active scalp EEG acquisition, 513 
42 of whom returned for a subsequent 3T fMRI session. Due to participant and scanner 514 
availability, the average span between EEG and MR testing sessions was 9.8 days (SD = 9.5 515 
days). Participants were recruited from the participant database of the Max Planck Institute 516 
for Human Development, Berlin, Germany (MPIB). Participants were right-handed, as 517 
assessed with a modified version of the Edinburgh Handedness Inventory (Oldfield, 1971), 518 
and had normal or corrected-to-normal vision. Participants reported to be in good health with 519 
no known history of neurological or psychiatric incidences, and were paid for their 520 
participation (10 € per hour). All participants gave written informed consent according to the 521 
institutional guidelines of the Deutsche Gesellschaft für Psychologie (DGPS) ethics board, 522 
which approved the study. 523 

Procedure: EEG Session 

Participants were seated at a distance of 60 cm in front of a monitor in an acoustically and 524 
electrically shielded chamber with their heads placed on a chin rest. Following electrode 525 
placement, participants were instructed to rest with their eyes open and closed, each for 3 526 
minutes. Afterwards, participants performed a standard Stroop task, followed by the visual 527 
attention task instruction & practice (see below), the performance of the task and a second 528 
Stroop assessment (Stroop results are not reported here). Stimuli were presented on a 60 Hz 529 
1920x1080p LCD screen (AG Neovo X24) using PsychToolbox 3.0.11 (Brainard, 1997; 530 
Kleiner, Brainard, & Pelli, 2007; Pelli, 1997). The session lasted ~3 hours. EEG was 531 
continuously recorded from 60 active (Ag/AgCl) electrodes using BrainAmp amplifiers (Brain 532 
Products GmbH, Gilching, Germany). Scalp electrodes were arranged within an elastic cap 533 
(EASYCAP GmbH, Herrsching, Germany) according to the 10% system (Oostenveld & 534 
Praamstra, 2001), with the ground placed at AFz. To monitor eye movements, two additional 535 
electrodes were placed on the outer canthi (horizontal EOG) and one electrode below the left 536 
eye (vertical EOG). During recording, all electrodes were referenced to the right mastoid 537 
electrode, while the left mastoid electrode was recorded as an additional channel. Online, 538 
signals were digitized at a sampling rate of 1 kHz. In addition to EEG, we simultaneously 539 
tracked eye movements and assessed pupil diameter using EyeLink 1000+ hardware (SR 540 
Research, v.4.594) with a sampling rate of 1kHz. 541 

Procedure: MRI session 

Forty-two participants returned for a second testing session that included structural and 542 
functional MRI assessments. First, participants took part in a short refresh of the visual 543 
attention task (“MAAT”, see below) instructions and practiced the task outside the scanner. 544 
Then, participants were located in the TimTrio 3T scanner and were instructed in the button 545 
mapping. We collected the following sequences: T1w, task (4 runs), T2w, resting state, DTI, 546 
with a 15 min out-of-scanner break following the task acquisition. The session lasted ~3 547 
hours. Whole-brain task fMRI data (4 runs á ~11,5 mins, 1066 volumes per run) were 548 
collected via a 3T Siemens TrioTim MRI system (Erlangen, Germany) using a multi-band EPI 549 
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sequence (factor 4; TR = 645 ms; TE = 30 ms; flip angle 60°; FoV = 222 mm; voxel size 550 
3x3x3 mm; 40 transverse slices. The first 12 volumes (12 × 645 ms = 7.7 sec) were removed 551 
to ensure a steady state of tissue magnetization (total remaining volumes = 1054 per run). A 552 
T1-weighted structural scan was also acquired (MPRAGE: TR = 2500 ms; TE = 4.77 ms; flip 553 
angle 7°; FoV = 256 mm; voxel size 1x1x1 mm; 192 sagittal slices). A T2-weighted structural 554 
scan was also acquired (GRAPPA: TR = 3200 ms; TE = 347 ms; FoV = 256 mm; voxel size 555 
1x1x1 mm; 176 sagittal slices). 556 

The multi-attribute attention task (“MAAT”) 

We designed a task to parametrically control top-down attention to multiple feature 557 
dimensions, in the absence of systematic variation in bottom-up visual stimulation (see 558 
Figure 1). Participants attended a dynamic square display that jointly consisted of four 559 
attributes: color (red/green), movement direction (left, right), size (small, large) and saturation 560 
(low, high). The task incorporates features from random dot motion tasks which have been 561 
extensively studied in both animal models (Gold & Shadlen, 2007; Hanks & Summerfield, 562 
2017; Siegel et al., 2015) and humans (Banca et al., 2015; Kelly & O'Connell, 2013). 563 
Following the presentation of these displays, a probe queried the prevalence of one of the 564 
four attributes in the display (e.g. whether the display comprised a greater proportion of 565 
either smaller or larger squares). Prior to stimulus onset, valid cue presentation informed 566 
participants about the active feature set, out of which one feature would be chosen as the 567 
probe. We parametrically manipulated uncertainty regarding the upcoming probe by 568 
systematically varying both the number and type of relevant features in the display. 569 

The difficulty of each feature was determined by (a) the fundamental feature difference 570 
between the two alternatives and (b) the sensory evidence for each alternative in the display. 571 
For (a) the following values were used: high (RGB: 192, 255, 128) and low saturation green 572 
(RGB: 255, 128, 149) and high (RGB: 128, 255, 0) and low saturated red (RGB: 255, 0, 43) 573 
for color and saturation, 5 and 8 pixels for size differences and a coherence of .2 for 574 
directions. For (b) the proportion of winning to losing option (i.e. sensory evidence) was 575 
chosen as follows: color: 60/40; direction: 80/20; size: 65/35; luminance: 60/40. Parameter 576 
difficulty was established in a pilot population, with the aim to produce above-chance 577 
accuracy for individual features.  578 

The experiment consisted of four runs of ~10 min, each consisting of eight blocks of eight 579 
trials (i.e., a total of 32 trial blocks; 256 trials). The size and constellation of the cue set was 580 
held constant within eight-trial blocks to reduce set switching and working memory demands. 581 
Each trial was structured as follows: cue onset during which the relevant targets were 582 
centrally presented (1 s), fixation phase (2 s), dynamic stimulus phase (3 s), probe phase 583 
(incl. response; 2 s); ITI (un-jittered; 1.5 s). At the onset of each block, the valid cue 584 
(attentional target set) was presented for 5 s. At the offset of each block, participants 585 
received feedback for 3 s. The four attributes spanned a constellation of 16 feature 586 
combinations (4x4), of which presentation frequency was matched within subjects. The size 587 
and type of cue set was pseudo-randomized, such that every size and constellation of the 588 
cue set was presented across blocks. Within each run of four blocks, every set size was 589 
presented once, but never directly following a block of the same set size. In every block, 590 
each feature in the active set acted as a probe in at least one trial. Moreover, any attribute 591 
equally often served as a probe across all blocks. Winning options for each feature were 592 
balanced across trials, such that (correct) button responses were equally distributed across 593 
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the experiment. To retain high motivation during the task and encourage fast and accurate 594 
responses, we instructed participants that one response would randomly be drawn at the end 595 
of each block; if this response was correct and faster than the mean RT during the preceding 596 
block, they would earn a reward of 20 cents. However, we pseudo-randomized feedback 597 
such that all participants received a fixed payout of 10 € per session. This extra money was 598 
paid in addition to the participation fee at the end of the second session, at which point 599 
participants were debriefed.  600 

Behavioral estimates of probe-related decision processes 

Sequential sampling models, such as the drift-diffusion model (DDM (Ratcliff & McKoon, 601 
2008)), have been used to characterize evolving perceptual decisions in 2-alternative forced 602 
choice (2AFC) random dot motion tasks (Kelly & O'Connell, 2013), where the evolving 603 
decision relates to overt stimulus dynamics. In contrast with such applications, evidence 604 
integration here is tied to eidetic memory traces following the probe onset, similar to 605 
applications during memory retrieval (Ratcliff, 1978) or probabilistic decision making (Frank 606 
et al., 2015). Here, we estimated individual evidence integration parameters within the 607 
HDDM 0.6.0 toolbox (Wiecki, Sofer, & Frank, 2013) to profit from the large number of 608 
participants that can establish group priors for the relatively sparse within-subject data. 609 
Independent models were fit to data from the EEG and the fMRI session to allow reliability 610 
assessments of individual estimates. Premature responses faster than 250 ms were 611 
excluded prior to modeling, and the probability of outliers was set to 5%. 7000 Markov-Chain 612 
Monte Carlo samples were sampled to estimate parameters, with the first 5000 samples 613 
being discarded as burn-in to achieve convergence. We judged convergence for each model 614 
by visually assessing both Markov chain convergence and posterior predictive fits. Individual 615 
estimates were averaged across the remaining 2000 samples for follow-up analyses. 616 

We fitted data to correct and incorrect RTs (termed ‘accuracy coding‘ in Wiecki et al. (2013)). 617 
To explain differences in decision components, we compared four separate models. In the 618 
‘full model’, we allowed the following parameters to vary between conditions: (i) the mean 619 
drift rate across trials, (ii) the threshold separation between the two decision bounds, (iii) the 620 
non-decision time, which represents the summed duration of sensory encoding and response 621 
execution. In the remaining models, we reduced model complexity, by only varying (a) drift, 622 
(b) drift + threshold, or (c) drift + NDT, with a null model fixing all three parameters. For 623 
model comparison, we first used the Deviance Information Criterion (DIC) to select the model 624 
which provided the best fit to our data. The DIC compares models on the basis of the 625 
maximal log-likelihood value, while penalizing model complexity. The full model provided the 626 
best fit to the empirical data based on the DIC index (Figure S1B) in both the EEG and the 627 
fMRI session. However, this model indicated an increase in decision thresholds (i.e., 628 
boundary separation) without an equivalent in the electrophysiological data (Figure S1C). We 629 
therefore fixed the threshold parameter across conditions, in line with previous work 630 
constraining model parameters on the basis of electrophysiological evidence (McGovern et 631 
al., 2018). 632 

EEG preprocessing 

Preprocessing and analysis of EEG data were conducted with the FieldTrip toolbox 633 
(Oostenveld, Fries, Maris, & Schoffelen, 2011) and using custom-written MATLAB (The 634 
MathWorks Inc., Natick, MA, USA) code. Offline, EEG data were filtered using a 4th order 635 
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Butterworth filter with a pass-band of 0.5 to 100 Hz. Subsequently, data were down-sampled 636 
to 500 Hz and all channels were re-referenced to mathematically averaged mastoids. Blink, 637 
movement and heart-beat artifacts were identified using Independent Component Analysis 638 
(ICA; Bell & Sejnowski, 1995) and removed from the signal. Artifact-contaminated channels 639 
(determined across epochs) were automatically detected using (a) the FASTER algorithm 640 
(Nolan, Whelan, & Reilly, 2010), and by (b) detecting outliers exceeding three standard 641 
deviations of the kurtosis of the distribution of power values in each epoch within low (0.2-2 642 
Hz) or high (30-100 Hz) frequency bands, respectively. Rejected channels were interpolated 643 
using spherical splines (Perrin, Pernier, Bertrand, & Echallier, 1989). Subsequently, noisy 644 
epochs were likewise excluded based on FASTER and on recursive outlier detection. Finally, 645 
recordings were segmented to participant cues to open their eyes, and were epoched into 646 
non-overlapping 3 second pseudo-trials. To enhance spatial specificity, scalp current density 647 
estimates were derived via 4th order spherical splines (Perrin et al., 1989) using a standard 648 
1005 channel layout (conductivity: 0.33 S/m; regularization: 1^-05; 14th degree polynomials). 649 

Electrophysiological estimates of probe-related decision processes 

Centroparietal Positive Potential (CPP). The centroparietal positive potential (CPP) is an 650 
electrophysiological signature of internal evidence-to-bound accumulation (Kelly & O'Connell, 651 
2013; McGovern et al., 2018; O'Connell et al., 2012). We probed the task modulation of this 652 
established signature and assessed its convergence with behavioral parameter estimates. 653 
To derive the CPP, preprocessed EEG data were low-pass filtered at 8 Hz with a 6th order 654 
Butterworth filter to exclude low-frequency oscillations, epoched relative to response and 655 
averaged across trials within each condition. In accordance with the literature, this revealed a 656 
dipolar scalp potential that exhibited a positive peak over parietal channel POz (see Figure 657 
2). We temporally normalized individual CPP estimates to a condition-specific baseline 658 
during the final 250 ms preceding probe onset. As a proxy of evidence drift rate, CPP slopes 659 
were estimates via linear regression from -250 ms to -100 ms surrounding response 660 
execution, while the average CPP amplitude from -50 ms to 50 ms served as an indicator of 661 
decision thresholds (i.e., boundary separation) (e.g., McGovern et al., 2018).  662 

To investigate whether a similar ‘ramping’ potential was observed during stimulus 663 
presentation, we aligned data to stimulus onset and temporally normalized signals to the 664 
condition-specific signal during the final 250 ms prior to stimulus onset. During stimulus 665 
presentation, no ‘ramp’-like signal or load modulation was observed at the peak CPP 666 
channel. This suggests that immediate choice requirements were necessary for the 667 
emergence of the CPP, although prior work has shown the CPP to be independent of explicit 668 
motor requirements (O'Connell et al., 2012).  669 

Finally, we assessed whether differences between probed stimulus attributes could account 670 
for load-related CPP changes (Figure S2C). For this analysis, we selected trials separately 671 
by condition and probed attribute. Note that for different probes, but not cues, trials were 672 
uniquely associated with each feature and trial counts were approximately matched across 673 
conditions. We explored differences between different conditions via paired t-tests. To 674 
assess load effects on CPP slopes and thresholds as a function of probed attribute, we 675 
calculated 1st-level load effects by means of a linear model, and assessed their difference 676 
from zero via paired t-tests. 677 
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Contralateral mu-beta. Decreases in contralateral mu-beta power provide a 678 
complementary, effector-specific signature of evidence integration (Donner et al., 2009; 679 
McGovern et al., 2018). We estimated mu-beta power using 7-cycle wavelets for the 8-25 Hz 680 
range with a step size of 50 ms. Spectral power was time-locked to probe presentation and 681 
response execution. We re-mapped channels to describe data recorded contra- and ipsi-682 
lateral to the executed motor response in each trial, and averaged data from those channels 683 
to derive grand average mu-beta time courses. Individual average mu-beta time series were 684 
baseline-corrected using the -400 to -200 ms prior to probe onset, separately for each 685 
condition. For contralateral motor responses, remapped sites C3/5 and CP3/CP5 were 686 
selected based on the grand average topography for lateralized response executions (see 687 
inset in Figure S2A). As a proxy of evidence drift rate, mu-beta slopes were estimates via 688 
linear regression from -250 ms to -50 ms prior to response execution, while the average 689 
power -50 ms to 50 ms served as an indicator of decision thresholds (e.g., McGovern et al., 690 
2018). 691 

Electrophysiological indices of top-down modulation during sensation 

Low-frequency alpha and theta power. We estimated low-frequency power via a 7-cycle 692 
wavelet transform, using, for linearly spaced center frequencies in 1 Hz steps from 2 to 15 693 
Hz. The step size of estimates was 50 ms, ranging from -1.5 s prior to cue onset to 3.5 s 694 
following stimulus offset. Estimates were log10-transformed at the single trial level 695 
(Smulders, ten Oever, Donkers, Quaedflieg, & van de Ven, 2018), with no explicit baseline. 696 

High-frequency gamma power. Gamma responses were estimated using multi-tapers (five 697 
tapers; discrete prolate spheroidal sequences) with a step size of 200 ms, a window length of 698 
400 ms and a frequency resolution of 2.5 Hz. The frequency range covered frequencies 699 
between 45-90 Hz, with spectral smoothing of 8 Hz. Estimates were log10-transformed at the 700 
single trial level. We normalized individual gamma-band responses via single-trial z-701 
normalization. In particular, for each frequency, we subtracted single-trial power -700 to -100 702 
ms prior to stimulus onset, and divided by the standard deviation of power values during the 703 
same period. Finally, to account for baseline shifts during the pre-stimulus period, we 704 
subtracted condition-wise averages during the same baseline period. 705 

Multivariate assessment of spectral power changes with stimulus onset and 706 
uncertainty. To determine changes in spectral power upon stimulus onset, and during 707 
stimulus presentation with load, we entered individual power values into multivariate partial 708 
least squares (PLS) analyses (see Multivariate partial least squares analyses) using the 709 
MEG-PLS toolbox [version 2.02b] (Cheung, Kovacevic, Fatima, Misic, & McIntosh, 2016). 710 
We concatenated low- (2-15 Hz) and high-frequency (45-90 Hz) power matrices to assess 711 
joint changes in the PLS models. To examine a multivariate contrast of spectral changes 712 
upon stimulus onset (averaged across conditions) with spectral power in the pre-stimulus 713 
baseline period, we performed a task PLS on data ranging from 500 ms pre-stim to 500 ms 714 
post-stim. Temporal averages from -700 to -100 ms pre-stimulus onset were subtracted as a 715 
baseline. To assess power changes as a function of probe uncertainty, we segmented the 716 
data from 500 ms post stim onset to stimulus offset (to exclude transient evoked onset 717 
responses), and calculated a task PLS concerning the relation between experimental 718 
uncertainty conditions and time-space-frequency power values. As a control, we performed a 719 
behavioral PLS analysis to assess the relevance of individual frequency contributions to the 720 
behavioral relation. For this analysis, we computed linear slopes (target amount) for each 721 
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time-frequency point at the 1st (within-subject) level, which were subsequently entered into 722 
the 2nd level PLS analysis. On the behavioral side, we assessed both linear changes in pupil 723 
diameter, as well as drift rates during selective attention and linear decreases in drift rate 724 
under uncertainty. Finally, spontaneous fluctuations in pre-stimulus power have been linked 725 
to fluctuations in cortical excitability (Iemi, Chaumon, Crouzet, & Busch, 2017; Lange, 726 
Oostenveld, & Fries, 2013). We thus probed the role of upcoming processing requirements 727 
on pre-stimulus oscillations, as well as the potential relation to behavioral outcomes using 728 
task and behavioral PLS analyses. The analysis was performed as described above, but 729 
restricted to time points occurring during the final second prior to stimulus onset.  730 

Steady State Visual Evoked Potential (SSVEP). The SSVEP characterizes the phase-731 
locked, entrained visual activity (here 30 Hz) during dynamic stimulus updates (e.g., Ding, 732 
Sperling, & Srinivasan, 2006). These features differentiate it from induced broadband activity 733 
or muscle artefacts in similar frequency bands. We used these properties to normalize 734 
individual single-trial SSVEP responses prior to averaging: (a) we calculated an FFT for 735 
overlapping one second epochs with a step size of 100 ms (Hanning-based multitaper), 736 
averaged them within each load condition and, (b) spectrally normalized 30 Hz estimates by 737 
subtracting the average of estimates at 28 and 32 Hz, effectively removing broadband effects 738 
(i.e., aperiodic slopes), (c) and finally, we subtracted a temporal baseline -700 to -100 ms 739 
prior to stimulus onset. Linear load effects on SSVEPs were assessed by univariate cluster-740 
based permutation tests on channel x time data (see Univariate statistical analyses using 741 
cluster-based permutation tests). 742 

Time-resolved sample entropy. Sample entropy (Richman & Moorman, 2000) quantifies 743 
the irregularity of a time series of length N by assessing the conditional probability that two 744 
sequences of m consecutive data points will remain similar when another sample (m+1) is 745 
included in the sequence (for a visual example see Figure 1A).  Sample entropy is defined as 746 
the inverse natural logarithm of this conditional similarity: SampEn((, *, +) =747 
− log 23

456(7)
34(7) 8.	The similarity criterion (r) defines the tolerance within which two points are 748 

considered similar and is defined relative to the standard deviation (~variance) of the signal 749 
(here set to r = .5). We set the sequence length m to 2, in line with previous applications 750 
(Kosciessa, Kloosterman, et al., 2020). An adapted version of sample entropy calculations 751 
was used (Grandy, Garrett, Schmiedek, & Werkle-Bergner, 2016; Kloosterman, Kosciessa, 752 
Lindenberger, Fahrenfort, & Garrett, 2019; Kosciessa, Kloosterman, et al., 2020), wherein 753 
entropy is estimated across discontinuous data segments to provide time-resolved estimates. 754 
The estimation of scale-wise entropy across trials allows for an estimation of coarse scale 755 
entropy also for short time-bins, i.e., without requiring long, continuous signals, while quickly 756 
converging with entropy estimates from continuous recordings (Grandy et al., 2016). To 757 
remove the influence of posterior-occipital low-frequency rhythms on entropy estimates, we 758 
notch-filtered the 8-15 Hz alpha band using 6th order Butterworth filter prior to the entropy 759 
calculation (Kosciessa, Kloosterman, et al., 2020). Time-resolved entropy estimates were 760 
calculated for 500 ms windows from -1 s pre-stimulus to 1.25 s post-probe with a step size of 761 
150 ms. As entropy values are implicitly normalized by the variance in each time bin via the 762 
similarity criterion, no temporal baselining was used. Linear load effects on entropy were 763 
assessed by univariate cluster-based permutation tests on channel x time data (see 764 
Univariate statistical analyses using cluster-based permutation tests). 765 

Aperiodic (1/f) slopes. The aperiodic 1/f slope of neural recordings is closely related to the 766 
sample entropy of broadband signals (Kosciessa, Kloosterman, et al., 2020), and has been 767 
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suggested as a proxy for ‘cortical excitability’ and excitation-inhibition balance (Gao et al., 768 
2017). Spectral estimates were computed by means of a Fast Fourier Transform (FFT) over 769 
the final 2.5 s of the presentation period (to exclude onset transients) for 41 logarithmically 770 
spaced frequencies between 2 and 64 Hz (Hanning-tapered segments zero-padded to 10 s) 771 
and subsequently averaged. Spectral power was log10-transformed to render power values 772 
more normally distributed across subjects. Power spectral density (PSD) slopes were derived 773 
by linearly regressing log-transformed power values on log-transformed frequencies. The 774 
spectral range from 7-13 Hz was excluded from the background fit to exclude a bias by the 775 
narrowband alpha peak (Kosciessa, Kloosterman, et al., 2020) and thus to increase the 776 
specificity to aperiodic variance. Linear load effects on 1/f slopes were assessed by 777 
univariate cluster-based permutation tests on channel data (see Univariate statistical 778 
analyses using cluster-based permutation tests). 779 

Rhythm-specific estimates. Spectral power estimates conflate rhythmicity with aperiodic 780 
events in time, space and magnitude (Kosciessa, Grandy, Garrett, & Werkle-Bergner, 2020). 781 
Given that we observed changes in aperiodic slopes, we verified that observed narrowband 782 
effects in the theta and alpha band describe narrowband changes in rhythmicity. For this 783 
purpose, we identified single-trial spectral events using the extended BOSC method (Caplan, 784 
Madsen, Raghavachari, & Kahana, 2001; Kosciessa, Grandy, et al., 2020; Whitten, Hughes, 785 
Dickson, & Caplan, 2011). In short, this method identifies stereotypic ‘rhythmic’ events at the 786 
single-trial level, with the assumption that such events have significantly higher power than 787 
the 1/f background and occur for a minimum number of cycles at a particular frequency. This 788 
procedure dissociates narrowband spectral peaks from the aperiodic background spectrum. 789 
Here, we used a three-cycle threshold during detection, while defining the power threshold 790 
as the 95th percentile above the individual background power. A 5-cycle wavelet was used to 791 
provide the time-frequency transformations for 49 logarithmically-spaced center frequencies 792 
between 1 and 64 Hz. Rhythmic episodes were detected as described in (Kosciessa, 793 
Grandy, et al., 2020). Prior to fitting the 1/f slopes, the most dominant individual rhythmic 794 
alpha peak between 8 and 15 Hz was removed, as well as the 28-32 Hz range, to exclude 795 
the SSVEP. Detection of episodes was restricted to the time of stimulus presentation, 796 
excluding the first 500 ms to reduce residual pre-stimulus activity and onset transients. 797 
Within each participant and channel, the duration and SNR of individual episodes with a 798 
mean frequency between 4-8 Hz (Theta) and 8-15 Hz (Alpha) were averaged across trials. 799 
Effects of target number were assessed within the averaged spatial clusters indicated in 800 
Figure 3 by means of paired t-tests.  801 

Alpha-gamma phase-amplitude coupling (PAC) 

We assessed alpha-phase-to-gamma-amplitude coupling to assess the extent of phasic 802 
modulation of gamma power within the alpha band. As phase information is only 803 
interpretable during the presence of a narrowband rhythm (Aru et al., 2015), we focused our 804 
main analysis on 250 ms time segments following the estimated onset of a rhythm in the 8-805 
15 Hz alpha range (see Rhythm-specific estimates above; Figure 4A). This time window 806 
ensured that segments fulfilled the 3-cycle criterion imposed during eBOSC rhythm detection 807 
to ensure that a rhythm was present. We selected three occipital channels with maximal 808 
gamma power (O1, O2, Oz; shown in Figure 4A) and pooled detected alpha episodes across 809 
these channels. We pooled data across load conditions, as we observed no consistent PAC 810 
within individual load conditions (data not shown), perhaps due to low episode counts. To 811 
derive the alpha carrier phase, we band-pass filtered signals in the 8-15 Hz band, and 812 
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estimated the analytic phase time series via Hilbert transform. For the amplitude of 813 
modulated frequencies, we equally applied band-pass filters from 40 to 150 Hz (step size: 2 814 
Hz), with adaptive bandwidths (+/- 20% of center frequency). Filtering was implemented 815 
using MATLAB’s acausal filtfilt() routine using linear finite impulse response (FIR) filters  with 816 
an adaptive filter order set as 3 times the ratio of the sampling frequency to the low-817 
frequency cutoff (Tort et al., 2008). For each applied bandpass filter, we removed 250 ms at 818 
each edge to avoid filter artifacts. For each frequency, narrowband signals were z-scored to 819 
normalize amplitudes across frequencies, and absolute values of the Hilbert-derived complex 820 
signal were squared to produce instantaneous power time series. We estimated the MI 821 
between the 8-15 Hz phase and high-frequency power via normalized entropy (Tort et al., 822 
2008) using 16 phase bins. Power estimates were normalized by dividing the bin-specific 823 
power by the sum of power across bins. To make MI estimates robust against random 824 
coupling, we estimated MI for 1000 surrogate data, which shuffled the trial association of 825 
phase and amplitude information. We subtracted the mean surrogate MI value from the 826 
original MI index for a final, surrogate-normalized MI estimate. The resulting MI estimates 827 
across frequencies were then subjected to a cluster-based permutation test to assess 828 
significant clusters from zero using paired t-tests. For Figure 4B, we followed the procedure 829 
by Canolty et al. (2006). Alpha troughs were identified as local minima of phases < [-pi+.01]. 830 
For visualization, data were averaged across center frequencies from 80-150 Hz, as 831 
significant coupling overlapped with this range. We performed identical analyses for the 250 832 
ms periods prior to rhythm onset (grey shading in Figure 4A) as a control condition. We 833 
performed analogous phase-amplitude-coupling analyses for the Mean Vector Length (MVL; 834 
Canolty et al., 2006) index, with comparable results (data not shown). 835 

Analyses of pupil diameter 

Pupil diameter was recorded during the EEG session using EyeLink 1000 at a sampling rate 836 
of 1000 Hz, and was analyzed using FieldTrip and custom-written MATLAB scripts. Blinks 837 
were automatically indicated by the EyeLink software (version 4.40). To increase the 838 
sensitivity to periods of partially occluded pupils or eye movements, the first derivative of 839 
eye-tracker-based vertical eye movements was calculated, z-standardized and outliers >= 3 840 
STD were removed. We additionally removed data within 150 ms preceding or following 841 
indicated outliers. Finally, missing data were linearly interpolated and data were epoched to 842 
3.5 s prior to stimulus onset to 1 s following stimulus offset. We quantified phasic arousal 843 
responses via the 1st temporal derivative (i.e. rate of change) of pupil diameter traces, as this 844 
measure (i) has higher temporal precision and (ii) has been more strongly associated with 845 
noradrenergic responses than the overall response (Reimer et al., 2014). We downsampled 846 
pupil time series to 200 Hz. For visualization, but not statistics, we smoothed pupil traces 847 
using a moving average median of 200 ms. We statistically assessed a linear load effect 848 
using a cluster-based permutation test on the 1D pupil traces (see Univariate statistical 849 
analyses using cluster-based permutation tests). For post-hoc assessments, we extracted 850 
the median pupil derivative during the first 1.5 s following stimulus onset. 851 

fMRI-based analyses 

Preprocessing of functional MRI data. fMRI data were preprocessed with FSL 5 852 
(RRID:SCR_002823) (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012; S. M. Smith 853 
et al., 2004). Pre-processing included motion correction using McFLIRT, smoothing (7mm) 854 
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and high-pass filtering (.01 Hz) using an 8th order zero-phase Butterworth filter applied using 855 
MATLAB’s filtfilt function. We registered individual functional runs to the individual, ANTs 856 
brain-extracted T2w images (6 DOF), to T1w images (6 DOF) and finally to 3mm standard 857 
space (ICBM 2009c MNI152 nonlinear symmetric) (Fonov et al., 2011) using nonlinear 858 
transformations in ANTs (Avants et al., 2011). (For one participant, no T2w image was 859 
acquired and 6 DOF transformation of BOLD data was preformed directly to the T1w 860 
structural scan.) We then masked the functional data with the ICBM 2009c GM tissue prior 861 
(thresholded at a probability of 0.25), and detrended the functional images (up to a cubic 862 
trend) using SPM8.  863 

We also used a series of extended preprocessing steps to further reduce potential non-864 
neural artifacts (Garrett, Kovacevic, McIntosh, & Grady, 2010; Garrett et al., 2015). 865 
Specifically, we examined data within-subject, within-run via spatial independent component 866 
analysis (ICA) as implemented in FSL-MELODIC (Beckmann & Smith, 2004). Due to the high 867 
multiband data dimensionality in the absence of low-pass filtering, we constrained the 868 
solution to 30 components per participant. Noise components were identified according to 869 
several  key  criteria:  a) Spiking  (components  dominated  by  abrupt  time  series  spikes);  870 
b) Motion (prominent  edge or “ringing” effects, sometimes [but not always] accompanied by 871 
large time series spikes); c) Susceptibility and flow artifacts (prominent air-tissue boundary or 872 
sinus  activation;  typically  represents  cardio/respiratory  effects); d) White matter (WM) and 873 
ventricle  activation (Birn, 2012); e) Low-frequency signal  drift (A. M. Smith et al., 1999); f) 874 
High power in high-frequency ranges unlikely to represent neural activity (≥ 75% of total 875 
spectral power present above .10 Hz;); and g) Spatial distribution (“spotty” or “speckled” 876 
spatial pattern that appears scattered randomly across ≥ 25% of the brain, with few if any 877 
clusters with ≥ 80 contiguous voxels [at 2x2x2 mm voxel size]). Examples of these various 878 
components we typically deem to be noise can be found in (Garrett, McIntosh, & Grady, 879 
2014). By default, we utilized a conservative set of rejection criteria; if manual classification 880 
decisions were challenging due to mixing of “signal” and “noise” in a single component, we 881 
generally elected to keep such components. Three independent raters of noise components 882 
were utilized; > 90% inter-rater reliability was required on separate data before denoising 883 
decisions were made on the current data. Components identified as artifacts were then 884 
regressed from corresponding fMRI runs using the regfilt command in FSL. 885 

To reduce the influence of motion and physiological fluctuations, we regressed FSL’s 6 DOF 886 
motion parameters from the data, in addition to average signal within white matter and CSF 887 
masks. Masks were created using 95% tissue probability thresholds to create conservative 888 
masks. Data and regressors were demeaned and linearly detrended prior to multiple linear 889 
regression for each run. To further reduce the impact of potential motion outliers, we 890 
censored significant DVARS outliers during the regression as described by (Power et al., 891 
2014). In particular, we calculated the ‘practical significance’ of DVARS estimates and 892 
applied a threshold of 5 (Afyouni & Nichols, 2018). The regression-based residuals were 893 
subsequently spectrally interpolated during DVARS outliers as described in (Power et al., 894 
2014) and (Parkes, Fulcher, Yucel, & Fornito, 2018). BOLD analyses were restricted to 895 
participants with both EEG and MRI data available (N = 42). 896 

1st level analysis: univariate beta weights for load conditions. We conducted a 1st level 897 
analysis using SPM12 to identify beta weights for each load condition separately. Design 898 
variables included stimulus presentation by load (4 volumes; parametrically modulated by 899 
sequence position), onset cue (no mod.), probe (2 volumes, parametric modulation by RT). 900 
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Design variables were convolved with a canonical HRF, including its temporal derivative as a 901 
nuisance term. Nuisance regressors included 24 motion parameters (Friston, Williams, 902 
Howard, Frackowiak, & Turner, 1996), as well as continuous DVARS estimates. 903 
Autoregressive modelling was implemented via FAST. Output beta images for each load 904 
condition were finally averaged across runs. 905 

2nd level analysis: Multivariate modulation of BOLD responses. We investigated the 906 
multivariate modulation of the BOLD response at the 2nd level using PLS analyses (see 907 
Multivariate partial least squares analyses). Specifically, we probed the relationship between 908 
voxel-wise 1st level beta weights and probe uncertainty within a task PLS. Next, we assessed 909 
the relationship between task-related BOLD signal changes and interindividual differences in 910 
the joint modulation of decision processes, cortical excitability, and pupil modulation by 911 
means of a behavioral PLS. For this, we first calculated linear slope coefficients for voxel-912 
wise beta estimates. Then, we included behavioral variables including HDDM parameter 913 
estimates during selective attention, as well as linear changes with load, individual linear 914 
condition modulation of the following variables: multivariate spectral power, pupil dilation, 1/f 915 
modulation and entropy residuals. Prior to these covariates in the model, we visually 916 
assessed whether the distribution of linear changes variables was approximately Gaussian. 917 
In the case of outliers (as observed for the SPMF, 1/f slopes, and entropy), we winsorized 918 
values at the 95th percentile. For visualization, spatial clusters were defined based on a 919 
minimum distance of 10 mm, and by exceeding a size of 25 voxels. We identified regions 920 
associated with peak activity based on cytoarchitectonic probabilistic maps implemented in 921 
the SPM Anatomy Toolbox (Version 2.2c) (Eickhoff et al., 2005). If no assignment was found, 922 
the most proximal assignment to the coordinates reported in Table S1 within the cluster was 923 
reported. 924 

Temporal dynamics of thalamic engagement. To visualize the modulation of thalamic 925 
activity by load, we extracted signals within a binary thalamic mask extracted from the Morel 926 
atlas, including all subdivisions. Preprocessed BOLD timeseries were segmented into trials, 927 
spanning the period from the stimulus onset to the onset of the feedback phase. Given a 928 
time-to-peak of a canonical hemodynamic response function (HRF) between 5-6 seconds, 929 
we designated the 3 second interval from 5-8 seconds following the stimulus onset trigger as 930 
the stimulus presentation interval, and the 2 second interval from 3-5 s as the fixation 931 
interval, respectively. Single-trial time series were then temporally normalized to the temporal 932 
average during the approximate fixation interval. To visualize inter-individual differences in 933 
thalamic engagement, we performed a median split across participants based on their 934 
individual drift modulation.  935 

Thalamic loci of behavioral PLS. To assess the thalamic loci of most reliable behavioral 936 
relations (Figure S5C), we assessed bootstrap ratios within two thalamic masks. First, for 937 
nucleic subdivisions, we used the Morel parcellation scheme as consolidated and kindly 938 
provided by (Hwang et al., 2017) for 3 mm data at 3T field strength. The abbreviations are as 939 
follows: AN: anterior nucleus; VM: ventromedial; VL: ventrolateral; MGN: medial geniculate 940 
nucleus; LGN: lateral geniculate nucleus; MD: mediodorsal; PuA: anterior pulvinar; LP: 941 
lateral-posterior; IL: intra-laminar; VA: ventral-anterior; PuM: medial pulvinar; Pul: pulvinar 942 
proper; PuL: lateral pulvinar. Second, to assess cortical white-matter projections we 943 
considered the overlap with seven structurally-derived cortical projection zones suggested 944 
by (Horn & Blankenburg, 2016), which were derived from a large adult sample (N = 169). We 945 
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binarized continuous probability maps at a relative 75% threshold of the respective maximum 946 
probability, and re-sliced masks to 3 mm size.  947 

Statistical analyses 

Assessment of covarying load effect magnitudes between measures. To assess a linear 948 
modulation of dependent variables, we calculated 1st level beta estimates for the effect of 949 
load (y = intercept+β*LOAD+e) and assessed the slope difference from zero at the group 950 
level using paired t-tests. We assessed the relation of individual load effects between 951 
measures of interest by means of partial repeated measures correlations. In a simplified 952 
form, repeated measured correlation (Bakdash & Marusich, 2017) fits a linear model 953 
between two variables x1 and x2 of interest, while controlling for repeated assessments 954 
within subjects [x1~1+β1*ID+β2*x2+e] (1). Crucially, to exclude bivariate relations that 955 
exclusively arise from joint main effects of number of targets, we added target load as an 956 
additional categorical covariate [x1~1+β1*ID+β2*LOAD+β3*x2+e] (2) to remove group 957 
condition means. Resulting estimates characterize the group-wise coupling in the (zero-958 
centered) magnitude of changes between the DV and the IV across the four load levels. To 959 
identify the directionality of the coupling, we assessed the direction of main effects for x1 and 960 
x2. We statistically compared this model to a null model without the term of interest 961 
[x1~1+β1*ID+β2*LOAD +e] (3) to assess statistical significance. We report the bivariate 962 
residual effect size by assessing the square root of partial eta squared. We extend this model 963 
with additional beta*covariate terms when reporting control for additional covariates.  964 

Within-subject centering. To better visualize effects within participants, we use within-965 
subject centering across repeated measures conditions by subtracting individual condition 966 
means, and adding global means. For these visualizations, only the mean of the dependent 967 
values is directly informative, as the plotted spread reflects within-subject, and not between-968 
subject, variation. This procedure is similar to the creation of within-subject standard errors. 969 
Within-subject centering is exclusively used for display, but not statistical calculations. 970 

Univariate cluster-based permutation analyses. For data with a low-dimensional structure 971 
(e.g., based on a priori averaging or spatial cluster assumptions), we used univariate cluster-972 
based permutation analyses (CBPAs) to assess significant modulations by target load or with 973 
stimulus onset. These univariate tests were performed by means of dependent samples t-974 
tests; cluster-based permutation tests (Maris & Oostenveld, 2007) were performed to control 975 
for multiple comparisons. Initially, a clustering algorithm formed clusters based on significant 976 
t-tests of individual data points (p <.05, two-sided; cluster entry threshold) with the spatial 977 
constraint of a cluster covering a minimum of three neighboring channels. Then, the 978 
significance of the observed cluster-level statistic, based on the summed t-values within the 979 
cluster, was assessed by comparison to the distribution of all permutation-based cluster-level 980 
statistics. The final cluster p-value that we report in all figures was assessed as the 981 
proportion of 1000 Monte Carlo iterations in which the cluster-level statistic was exceeded. 982 
Cluster significance was indicated by p-values below .025 (two-sided cluster significance 983 
threshold). 984 

Multivariate partial least squares analyses. For data with a high-dimensional structure, we 985 
performed multivariate partial least squares analyses (Krishnan, Williams, McIntosh, & Abdi, 986 
2011; McIntosh, Bookstein, Haxby, & Grady, 1996; McIntosh & Lobaugh, 2004). To assess 987 
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main effect of probe uncertainty or stimulus onset, we performed Task PLS analyses. Task 988 
PLS begins by calculating a between-subject covariance matrix (COV) between conditions 989 
and each neural value (e.g., time-space-frequency power), which is then decomposed using 990 
singular value decomposition (SVD). This yields a left singular vector of experimental 991 
condition weights (U), a right singular vector of brain weights (V), and a diagonal matrix of 992 
singular values (S). Task PLS produces orthogonal latent variables (LVs) that reflect optimal 993 
relations between experimental conditions and the neural data. To examine multivariate 994 
relations between neural data and other variables of interest, we performed behavioral PLS 995 
analyses. This analysis initially calculates a between-subject correlation matrix (CORR) 996 
between (1) each brain index of interest (e.g., spectral power, 1st level BOLD beta values) 997 
and (2) a second ‘behavioral’ variable of interest (note that although called behavioral, this 998 
variable can reflect any variable of interest, e.g., behavior, pupil dilation, spectral power). 999 
CORR is then decomposed using singular value decomposition (SVD): SVDCORR = USV´, 1000 
which produces a matrix of left singular vectors of cognition weights (U), a matrix of right 1001 
singular vectors of brain weights (V), and a diagonal matrix of singular values (S). For each 1002 
LV (ordered strongest to weakest in S), a data pattern results which depicts the strongest 1003 
available relation to the variable of interest. Significance of detected relations of both PLS 1004 
model types was assessed using 1000 permutation tests of the singular value corresponding 1005 
to the LV. A subsequent bootstrapping procedure indicated the robustness of within-LV 1006 
neural saliences across 1000 resamples of the data (Efron & Tibshirani, 1986). By dividing 1007 
each brain weight (from V) by its bootstrapped standard error, we obtained “bootstrap ratios” 1008 
(BSRs) as normalized robustness estimates. We generally thresholded BSRs at values of 1009 
±3.00 (∼99.9% confidence interval). We also obtained a summary measure of each 1010 
participant’s robust expression of a particular LV’s pattern (a within-person “brain score”) by 1011 
either (1) multiplying the vector of brain weights (V) from each LV by within-subject vectors of 1012 
the neural values (separately for each condition within person) for the Task PLS models, or 1013 
(2) in the behavioral PLS model, by multiplying the model-based vector of weights (V) by 1014 
each participant’s vector of neural values (P), producing a single within-subject value: Brain 1015 
score = VP´.  1016 
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Text S1. Parameter interrelations. To better understand individual differences in behavioral 
performance, we explored inter-individual associations between model parameter estimates and ‘raw’ 
median RT and mean accuracy. Linear drift rate decreases were inter-individually associated with 
decreases in accuracy (EEG: r = .35, p = .015, MRI: r = .46, p = .001), but not RT increases (both p > 
.05), whereas non-decision-time (NDT) increases tracked individual RT increases (EEG: r = .56, p = 3e-
5, MRI: r = .64, p = 2e-6), but not accuracy decreases (both p > .05). For single targets, faster RTs were 
associated with larger drift rates (EEG: r = -.63, p = 3e-6, MRI: r = -.47, p = .002), lower non-decision 
times (EEG: r = .41, p = .005, MRI: r = .58, p = 3e-5), and lower boundary separation (EEG: r = .58, p = 
3e-5, MRI: r = .5, p = 6e-4). More accurate performance for single targets was related to higher drift 
rates (EEG: r = .74, p = 3e-9; MRI: r = .79, p = 3e-10), but unrelated to boundary separation (EEG: r = 
.23, p = .121, MRI: r = .18, p = .244) or non-decision times (EEG: r = -.27, p = .069, MRI: r = -.38, p = 
.011). Amongst model parameters, we observed no parameter relations for single targets (all p > .05). 
However, we observed intercept-change correlations: subjects with larger drift rates for single targets 
exhibited strong linear drift rate reductions (EEG: r = -.93, p = 4e-22, MRI: r = -.88, p = 1e-15). Moreover, 
subjects with larger boundary separation showed stronger linear increases in non-decision time (r = .46, 
p = 9e-4, MRI: r = .59, p =2e-5). Non-decision time under selective attention, putatively dominantly 
reflecting visual encoding time, did not relate to changes in drift rate or NDT (both p > .05). Similarly, 
boundary separation did not relate to drift rate decreases (both p > .05) and drift rates under selective 
attention were unrelated to NDT increases (both p > .05). 
 
Text S2. Behavioral benefits due to convergent responses. To reduce response mapping demands 
following probe presentation, we fixed response mapping for the two options of each feature throughout 
the experiment. Given that multiple attributes converge onto a similar response in a given trial, the 
potential to prepare motor action prior to probe presentation co-varies as a function of load. To assess 
the influence of this response agreement on our results, we ran an additional HDDM that simultaneously 
modelled both a main effect of load, as well as categorical response agreement. Notably, the obtained 
target load effects on drift rate and NDT were virtually identical to those observed in the selected model 
in both sessions (reliability of all linear effects: r >= .9 p <.001; data not shown), while linear decreases 
in drift and increases in NDT were also observed as a function of response divergence (i.e., lower drift 
and higher NDT if the probed attribute required a differential response than the other cued attributes; 
shown in Figure S1D for the EEG session; qualitatively similar results were obtained for MRI session; 
all linear effects p < .001). This suggests that response agreement systematically impacted decision 
processes, but cannot account for the main effects of target load. However, the large amount of added 
model parameters introduced partial convergence issues. We therefore chose the simpler model without 
response agreement for our main analyses. 
 
Text S3. NDT increases indicate extended motor preparation demands. We observed a parametric 
increase in non-decision time (NDT) with target uncertainty (Figure 2B) that described shifts in RT 
distribution onset (Figure S3A). NDT is thought to characterize the duration of processes preceding and 
following evidence accumulation, i.e., probe encoding and planning/execution of the motor response. 
We therefore examined sensory probe- and response-related ERP components regarding their 
modulation by prior target uncertainty. We time-locked the CPP to the NDT group estimate for a single 
target – for which no button remapping was required – and (2) to the condition-wise NDT estimate. 
However, we observed no shift in CPP onset (Figure S3B), suggesting constant visual encoding time. 
To probe increases during response preparation, we assessed parametric changes in ERP amplitudes 
during the interval spanning the final 100 ms prior to response. This interval covered the timeframe of 
indicated NDT increases, after accounting for the constant probe encoding duration (Figure S3B). 
Notably, we observed a late frontal potential that increased in amplitude (Figure S3D) and whose onset 
corresponded to the temporal NDT shift (Figure S3C) after controlling for constant encoding duration 
(Figure S3B). This suggests that baseline NDT estimates approximate the duration of probe encoding 
(Nunez, Vandekerckhove, & Srinivasan, 2017), whereas NDT increases characterize increased 
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demands for transforming the sensory decision into a motor command (Lui et al., 2018). This further 
suggests that drift diffusion modelling successfully dissociated contributions from evidence integration, 
sensory encoding, and motor preparation. Interestingly, evidence accumulation consistently peaked 
at/near response execution, suggesting that additional motor demands may unravel in parallel, rather 
than succeed finished integration (as is often assumed in sequential sampling models). 
 
Text S4. Behavioral PLS of spectral power during sensation. Task PLS describes the multivariate 
co-variation of spectral power with load. However, inter-individual behavioral differences may relate to 
power changes in specific bands. To probe whether inter-individual relations of power modulation to 
behavior would vary from the mean changes as identified via task PLS, we calculated a behavioral PLS 
by considering the individual linear change in spectral power with target uncertainty. This revealed a 
similar multivariate loading pattern as observed for the task PLS (Figure S4B), with high agreement 
between individual brainscores (r = .7, p < .001), suggesting that the identified frequency ranges jointly 
contributed to behavioral relations.  
 
Text S5. Pre-stimulus alpha power increases with load, but does not relate to behavioral changes 
or power changes during sensation. Furthermore, decreases in pre-stimulus alpha power have been 
linked to increases in cortical excitability at stimulus onset (Iemi, Chaumon, Crouzet, & Busch, 2017; 
Lange, Oostenveld, & Fries, 2013). To probe whether expected uncertainty modulated pre-stimulus 
alpha power, we performed another task PLS, covering the final second of the fixation interval prior to 
stimulus onset. This analysis indicated that pre-stimulus alpha power increased alongside uncertainty 
(Figure S4C). Notably, in contrast to current results, elevated levels of anticipatory alpha power are 
often associated with decreased gamma power upon stimulus onset. Notably, linear models did not 
indicate associations between pre-stimulus alpha power increases across load with either drift rate 
decreases [r(137) = 0.02, 95%CI [-0.15, 0.18], p = 0.86], non-decision time increases [r(137) = 0.06, 
95%CI [-0.1, 0.23], p = 0.45] or increases on the SPMF [r(137) = -0.13, 95%CI [-0.29, 0.04], p = 0.13]. 
These results are in line with increasing evidence suggesting that anticipatory alpha power modulation 
more closely tracks subjective confidence in upcoming decisions than sensory fidelity (Benwell et al., 
2017; Limbach & Corballis, 2016). 
 
Text S6. SSVEP magnitude is not modulated during sensation. Moreover, SSVEP magnitude has 
been suggested as a signature of encoded sensory information (O'Connell, Dockree, & Kelly, 2012), 
that is enhanced by attention (Morgan, Hansen, & Hillyard, 1996; Muller et al., 2006) and indicates 
fluctuations in excitability (Zhigalov, Herring, Herpers, Bergmann, & Jensen, 2019). However, despite a 
clear SSVEP signature, we did not observe significant effects of encoding demands on the global 
SSVEP magnitude (Figure S4D). As attentional effects on SSVEP magnitude have been shown to vary 
by SSVEP frequency (Ding, Sperling, & Srinivasan, 2006), the 30 Hz range may have been suboptimal 
here. Furthermore, the SSVEP frequency was shared across different features, thus not allowing us to 
assess whether uncertainty modulated the selective processing of single features. Implementing 
feature-specific flicker frequencies may overcome such limitations in future work, and allow to assess 
the changes in feature-specific processing under uncertainty. 
 
Text S7. Rhythm-specific indices in theta and alpha band relate to multivariate spectral power 
modulation. Finally, as spectral power conflates rhythmic and arrhythmic signal contributions in 
magnitude, space and time (Kosciessa, Grandy, Garrett, & Werkle-Bergner, 2020), we performed 
single-trial rhythm detection, observing similar decreases in the duration and power of alpha rhythms 
(see Figure S4E) that were jointly related to stronger increases on the latent factor [duration: r(137) = -
0.61, 95%CI [-0.71, -0.49], p = 1.31e-15; power: r(137) = -0.63, 95%CI [-0.72, -0.52], p = 9.66e-17]. 
Notably, this analysis indicated increases in theta duration, but not power, suggesting that narrowband 
theta power changes mainly reflected modulations in the duration of non-stationary theta rhythms, rather 
than changes in their strength. In line with this suggestion, increases on the spectral power factor related 
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to increases in theta duration [r(137) = 0.19, 95%CI [0.02, 0.35], p = 0.03], but not theta SNR [r(137) = 
0.09, 95%CI [-0.08, 0.25], p = 0.31]. 
 

Text S8. A second LV may indicate decreased task engagement due to heightened difficulty 
at higher uncertainty levels. A 2nd significant LV (p =.012) indicated strong positive loadings in angular 
gyrus, middle frontal gyrus, and inferior frontal gyrus, as well as occipital cortex (see Figure S5A). 
Negative loadings were observed dominantly in medial PFC, precuneus and V5. This component 
increased from selective attention to target load 2, but then declined towards higher loads. Decreases 
in angular gyrus have been strongly to increased visual working memory load (Sheremata, Somers, & 
Shomstein, 2018; Todd & Marois, 2004). Increases in DMN regions, in addition to decreased prefrontal 
activity suggest that this component reflects relative task disengagement towards high load conditions, 
while increases in lateral visual cortex may reflect increased entrainment, and lack of top-down 
inhibition. In line with more negative loadings on this component being detrimental, we observed that 
inter-individually higher brainscores (i.e., positive loadings) were associated with lower non-decision 
times during selective attention (r = -0.46, p = .002), while stronger within-subject decreases with load 
were associated with larger individual NDT increases [r(122) = -0.18, 95%CI [-0.35, -0.01], p = 0.04] but 
not changes in drift rate [r(122) = 0.01, 95%CI [-0.17, 0.18], p = 0.95]. Larger decreases on this 
component were moreover related to more constrained increases in spectral modulation [r(122) = 0.39, 
95%CI [0.23, 0.53], p = 6.83e-6]. Jointly, this suggests that individual drop-offs in the positive cluster of 
regions reflects decreased task engagement under increased difficulty, with adverse behavioral 
consequences.   
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Figure S1. Additional behavioral analyses. (A1) Accuracies for single target cue and maximum 
target uncertainty. For all features, mean accuracy was above chance accuracy (0.5, indicated by 
broken lines) at the group level. Dots indicate individual accuracies. *** = p < .001 (paired t-test vs. 
chance accuracy). (A2) Reaction times and accuracies by load. All linear effects were significant (p 
< .001). (B-C) HDDM model comparison. (B) DIC-based model comparison indicates that full model, 
including threshold modulation, provides the best group fit to the behavioral data. However, load-related 
threshold increases (C) were not supported by EEG-based signatures (D). The inset shows an additional 
comparison of the selected model with an alternative model including starting point variation across load 
levels (displayed in red). Due to very constrained fit improvements, we selected the simpler model 
without starting point variation for further analyses. (C) Threshold increases in full model are not 
indicated by electrophysiology. The full model indicates additional threshold (also called boundary 
separation) increases with added target load, with qualitatively identical effects on drift rate and NDT 
(not shown). Boundary separation captures the conservativeness of the decision criterion and has been 
related to decision conflict during the choice process (e.g., Cavanagh et al., 2011). EEG-based 
signatures of evidence integration do not indicate threshold differences. While the full model suggested 
increased boundary separation, neither of the electrophysiological proxies (i.e., CPP, contralateral beta) 
of evidence bounds mirrors such increases. While this suggests the absence of threshold increases 
(McGovern, Hayes, Kelly, & O'Connell, 2018), it alternately questions the sensitivity of 
electrophysiological threshold estimates, which should be investigated with specific threshold 
modulations, such as speed-accuracy trade-off instructions, in future work. (D) Differences in 
response convergence do not account for main effects of target load. A separate model including 
both target load and response convergence indicated practically identical NDT and drift rate effects of 
target amount, while highlighting additional linear effects of response convergence. Data are 
individually-centered across conditions.  (E-F) Reliability of individual parameter estimates across 
sessions. A separate hierarchical DDM was fit to data from each session. (E) Similar group-level effects 
were indicated for the MRI and EEG (cf. Figure 2B) session: whereas drift rate decreased with load, 
non-decision time increased. (F) Session reliability of inter-individual differences was high both for 
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single-target performance and for linear changes with target load.  Reliability was also high for threshold 
estimates (r = .79, p = 6e-10). [* p <.05; ** p <.01; *** p < .001]
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Figure S2. Additional drift rate analyses. (A) The slope of lateralized motor preparation indicates 
load-related decreases in drift rate. (A) Slopes of contralateral mu-beta power shallows with 
increasing attentional load levels. The inset displays linear slope estimates, estimated via linear 
regression from -250 ms to -50 ms, relative to response. (B) Topography of response-locked mu-beta 
power, averaged from -50 ms to +50 ms around response. White dots indicate the contralateral channels 
from which data was extracted. (B) The centro-parietal positive potential (CPP) does not show clear 
ramping increases during stimulus presentation. The yellow background indicated the stimulus 
presentation period. Note the modulated ramping following the probe onset at the end of stimulus 
presentation. The inset shows the topography of the grand average ERPs, temporally averaged during 
the final 2 seconds of the stimulus presentation period. The black dot indicates channel POz, at which 
the group-wise CPP was maximal (see Figure 2C1). (C) Differences between probed stimulus 
attributes do not account for drift rate decreases under target load. (A) Response-locked CPP as 
a function of probed attribute, shown for the single target (complete lines) and four target (broken lines) 
conditions. Data were selected by condition and probed (cf. cued), attribute, ensuring that unique trials 
contributed to each load condition. (B) Comparison of CPP slopes and thresholds for different probed 
features, when the probe target was known in advance. Slopes and thresholds were increased for 
direction than for other attributes, indicating relatively larger available evidence and more cautious 
responses (putatively ‘easier’ feature). (C) Load effect of CPP slopes and thresholds for different probed 
feature attributes. CPP slopes (i.e., evidence drift) exhibited load-related decreases for each probed 
attribute, whereas no threshold modulation was indicated for any of the probed attributes. [* p <.05; ** p 
<.01; *** p < .001] 
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Figure S3. Non-decision time (NDT) increases putatively relate to additional motor demands, not 
temporal delays in CPP onset. (A) NDT estimates describe the onset of individual RT 
distributions (see also Lui et al., 2018). Response counts (here shown for EEG session) were sorted 
into 40 bins of 50 ms each. White lines indicate individual NDT estimates; the red dotted line indicates 
NDT estimates for the single-target condition. (B, C) Relation of visual encoding and frontal potential 
to indicated NDT increases. When response preparation can be made in advance (i.e., when only a 
single target is indicated) and probe onset only requires response execution, the average NDT estimate 
aligns with the onset of the CPP (B, top). However, load-related increases in NDT occur in the absence 
of temporal shifts in CPP onset (B, bottom). In C, arrows indicate the average probe onset time in each 
condition. In contrast, a frontal potential (see D) increases around the time of residual NDT increases 
(i.e., NDT estimate for each condition minus constant NDT from single-target condition; C, bottom). In 
D, arrows indicate the average response time in each condition. (D) A frontal potential increase prior 
to response, suggesting that observed NDT increase reflect additional motor preparation 
demands (e.g., button remapping). Left: Topography of test for linear ERP changes as a function of 
load during the final 200 ms prior to response. Clusters in white did not exhibit changes that were 
exclusive to the period preceding the response (data not shown).  Center: Extracted traces averaged 
within the frontal cluster shown with black asterisks on the left. Right: Post-hoc tests on amplitudes of 
the frontal potential across the final 100 ms prior to response. Data are individually centered across 
target loads. [* p <.05; ** p <.01; *** p < .001] 
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Figure S4. Additional spectral power analyses prior and during sensation. (A) Multivariate 
baseline changes and behavioral PLS. Note that data correspond to the different clusters indicated 
in Figure 3A. (B) Behavioral PLS, linking linear multivariate spectral power changes with target # 
to drift rate decreases and pupil diameter modulation. (C) Parieto-occipital pre-stimulus alpha 
power increases with target load but is not related to drift changes (see Text S4). (D) SSVEP 
amplitude is not modulated by attentional load. Top: Time-resolved, spectrally-normalized, SSVEP 
power, averaged across occipital channels (O1, Oz, O2), indicates SSVEP presence during stimulus 
presentation. Bottom left: Topography of stimulus-evoked SSVEP contrast minus baseline. Black dots 
indicate significant channels as indicated by CBPA. Bottom right: No linear load-related SSVEP 
modulation was indicated by CBPA. (E) Modulation of rhythm-specific duration and power by target 
number. Left: Schematic of the assessment of amplitude and duration from non-stationary rhythmic 
events. Right: Topographies of relative theta and alpha occurrence (‘abundance’), averaged across 
target levels. Orange dots indicate the channels used to extract the data in E, which were the same 
channels also used in Figure 3AB. Target load decreased alpha duration and power and increased theta 
duration, but not power. Data are individually centered across target loads. [* p <.05; ** p <.01; *** p < 
.001] 
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Figure S5. Additional BOLD analyses. (A, B) Full multivariate brainscore loadings for the two 
significant latent variables (LVs) produced by the task PLS (A) and behavioral PLS (B). (A2 left) 
The brainscore loadings of the second LV designate an initial increase followed by a subsequent 
decrease towards higher target loads. Data are individually centered across target loads. Thus, the 
negative components of the pattern expressed on the right become more strongly activated at low and 
high loads, whereas the positive components are maximally expressed when two targets are relevant.  
(C) Thalamic BOLD magnitude for a median split of high- and low drift rate modulators. The inset 
shows the thalamic ROI in a glass brain view. [* p <.05; ** p <.01; *** p < .001] 
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Table S1. PLS model peak activations, bootstrap ratios, and cluster sizes. 
 
   MNI Coordinates   
Model Region Hem X Y Z BSR #Voxels 

taskPLS 
LV1 

 
BSR [-3 3] 

Mid-cingulate cortex (MCC) L -6 15 42 13.42 2708 
Inferior Parietal Lobule (IPS) L -45 -45 45 11.14 2664 
Insula Lobe (anterior) 
[33.0 21.0 -3] 

R 33 18 -3 10.86 175 

Inferior Occipital Gyrus  
[-54 -69 -12] 

L -57 -69 -12 10.1 702 

Thalamus 
[-8 -27 -2] 

L -6 -30 -3 9.93 1121 

Superior Frontal Gyrus R 27 -3 54 9.47 880 
Inferior Temporal Gyrus R 51 -60 -12 6.72 265 
Superior Orbital Gyrus L -27 54 -3 6.2 232 
Cerebellum (Crus 1) R 6 -81 -24 6.12 109 
PCC 
[-6.0 -35.0 28.0] 

L -9 -33 27 5.72 62 

Cerebellum (VI) R 30 -63 -30 5.64 59 
Cerebellar Vermis (9)  0 -57 -36 4.32 32 
Cerebellum (Crus 2) L -6 -84 -33 3.82 26 
Pallidum 
 [24.0 3.0 -6.0]; bilateral 

R 24 0 -9 -11.74 3882 

Insula Lobe L -33 -18 6 -11.05 3776 
Superior Frontal Gyrus L -12 36 54 -10.6 2096 
MCC L 0 -15 36 -9.72 706 
Lingual Gyrus R 21 -84 -6 -7.43 440 

 Superior Occipital Gyrus R 27 -96 15 -5.54 318 
 Middle Frontal Gyrus L -33 24 39 -5.48 44 
 Angular Gyrus L -48 -63 27 -5.31 106 
 Superior Parietal Lobule L -21 -45 63 -5.12 94 
 Postcentral Gyrus R 21 -39 63 -4.98 89 

BSR [-6 6] 
(additional 
clusters 
that were 
merged in 
+/- 3 
threshold) 

IFG L -45 9 30 12.576 790 
Insula Lobe L -33 18 -3 10 93 
IFG R 42 27 18 7 32 
IFG R 51 33 -9 -8.69 125 
SMG R 57 -39 39 -7.80 56 
Inferior Temporal Gyrus L -57 -6 -33 -7.57 96 

taskPLS 
LV2 

Angular Gyrus R 54 -51 36 8.69 638 
Middle Frontal Gyrus R 39 18 39 8.24 1238 
IFG (p. Orbitalis) R 42 45 -12 6.37 141 
SupraMarginal Gyrus L -60 -45 33 6.36 317 
Middle Frontal Gyrus L -42 24 33 6.21 477 
Inferior Occipital Gyrus L -27 -90 -12 5.66 110 
Precuneus R 3 -60 45 5.54 383 
Middle Temporal Gyrus R 60 -33 -12 5.26 154 
IFG (p. Triangularis) R 48 18 3 5.07 115 
Lingual Gyrus R 21 -84 -6 4.99 77 
Putamen L -30 3 -3 4.62 115 
Cerebelum (Crus 2) L -9 -81 -27 4.22 34 
Putamen R 24 0 6 3.93 30 
Inferior Occipital Gyrus L -48 -75 -6 -7.92 378 
Inferior Occipital Gyrus R 51 -72 -15 -7.61 706 
Olfactory cortex L -3 18 -12 -5.63 502 
Precuneus L -6 -63 21 -5.56 220 
Superior Parietal Lobule R 27 -54 63 -4.46 39 
Fusiform Gyrus L -24 -45 -15 -4.43 83 
Postcentral Gyrus L -57 -3 42 -4.38 58 
Postcentral Gyrus L -45 -27 57 -4.36 85 
Superior Orbital Gyrus R 21 27 -15 -4.32 25 
Superior Occipital Gyrus R 27 -69 36 -4.29 58 
Precentral Gyrus L -42 0 30 -4.23 28 
Middle Temporal Gyrus L -54 -57 12 -4.18 38 
  -69 -42 9 -4.13 51 
Middle Occipital Gyrus L -30 -81 36 -4.1 60 
Posterior-Medial Frontal L -6 6 60 -3.95 33 
Hippocampus L -27 -18 -21 7.04 111 
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behavioral 
PLS: LV1 

Inferior Temporal Gyrus 
[-56 -24 -30] 

L -57 -24 -30 5.5 40 

Superior Medial Gyrus R 3 63 15 5.43 345 
ParaHippocampal Gyrus R 21 -12 -24 5.35 35 
MCC R 3 -33 48 5.3 174 
Middle Temporal Gyrus L -60 0 -30 4.77 27 
MCC L -12 -45 36 4.72 64 
Superior Frontal Gyrus R 18 51 30 4.68 33 
Fusiform Gyrus R 24 12 -45 4.67 30 
Middle Temporal Gyrus R 57 -3 -15 4.64 239 
Superior Frontal Gyrus L -21 42 36 4.61 26 
Superior Temporal Gyrus L -57 -21 3 4.6 61 
Angular Gyrus R 39 -72 39 4.59 36 
Middle Temporal Gyrus L -51 -3 -21 4.52 72 
Temporal Pole R 36 6 -21 4.42 25 
Superior Medial Gyrus L 9 36 45 4.25 29 
Thalamus L -9 -9 12 -9.73 591 
Superior Frontal Gyrus L -24 -3 69 -5.59 38 
Posterior-Medial Frontal L -3 15 45 -5.22 154 
Superior Occipital Gyrus R 27 -96 21 -5.15 39 
SupraMarginal Gyrus L -60 -48 24 -5.13 28 
Cerebelum (Crus 2) L -6 -84 -33 -5.09 35 
Superior Parietal Lobule L -18 -69 48 -5.07 36 
IFG (p. Opercularis) L -57 15 33 -4.87 173 
Insula Lobe L -30 21 -3 -4.37 44 
Inferior Parietal Lobule L -33 -54 45 -4.03 30 
Superior Frontal Gyrus R 24 0 54 -3.9 51 
Middle Frontal Gyrus R 45 36 33 -3.78 35 

Note: Locations where peaks had to be shifted for a label are indicated with coordinates in the label. 
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