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Abstract

Adaptive human behavior builds on prior knowledge about stimulus relevance. Some
environments cue such knowledge more than others. To behave adaptively, observers need
to flexibly adjust sensory processing to the degree of contextual uncertainty. We hypothesize
that the neural basis for these perceptual adjustments consists in the ability of the cortical
network to switch back and forth between a rhythmic state that serves selective processing,
and a state of elevated asynchronous neural activity that boosts sensitivity. To test this
hypothesis, we recorded non-invasive EEG and fMRI BOLD dynamics while 47 healthy
young adults performed a parametric visual attention task with varying numbers of relevant
stimulus features. Drift-diffusion modeling of response behavior and electrophysiological
signatures revealed that greater contextual uncertainty lowered the rate of evidence
accumulation while increasing thalamocortical engagement, with concomitant increments in
cortical excitability and pupil dilation. As predicted, uncertainty-related processing
adjustments were expressed as switches between a state of phase-dependent excitability
modulation in the alpha band and a state of increased irregularity of brain dynamics. We
conclude that humans dynamically adjust sensory excitability according to the processing
fidelity afforded by an upcoming choice, and that neuromodulatory processes involving the
thalamus play a key role in adjusting excitability in the human brain.

Highlights

e With increasing contextual uncertainty, human cortical networks shift from a state of
phase-dependent excitability modulation in the alpha band into a state of elevated
excitatory tone and asynchronous neural activity

e Evidence based on joint modeling of behavior, EEG, and BOLD suggests that
neuromodulatory processes involving the thalamus regulate these shifts

e Theoretical and empirical considerations suggest contributions of both frequency-specific
and aperiodic neural dynamics to human behavior
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Introduction

Adaptive behavior requires dynamic adjustments to the perception of high-dimensional
inputs. Prior knowledge about the momentary relevance of specific environmental features
selectively enhances their processing while suppressing distractors (for reviews see
Buschman & Kastner, 2015; Desimone & Duncan, 1995; Maunsell, 2015), which can be
implemented via gain modulation in sensory cortex (Ferguson & Cardin, 2020). Crucially, a
priori information regarding feature relevance is not always available; and how the brain
flexibly adjusts the processing of complex inputs according to contextual uncertainty remains
unclear (Bach & Dolan, 2012).

Selective gain control has been associated with phasic (i.e., phase-dependent) inhibition of
task-irrelevant stimulus dimensions during cortical alpha ("8-12 Hz) rhythms (Klimesch,
Sauseng, & Hanslmayr, 2007; Sadaghiani & Kleinschmidt, 2016). In particular, rhythmic
modulations of feedforward excitability (Haegens, Nacher, Luna, Romo, & Jensen, 2011;
Lorincz, Kekesi, Juhasz, Crunelli, & Hughes, 2009) may provide temporal ‘windows of
opportunity’ for high-frequency gamma synchronization in sensory cortex (Spaak,
Bonnefond, Maier, Leopold, & Jensen, 2012; van Kerkoerle et al., 2014) and increased
sensory gain (Fries, 2015; Ni et al., 2016; Peterson & Voytek, 2017). However, specifically
increasing the fidelity of single stimulus dimensions is theoretically insufficient when
uncertain environments require joint sensitivity to multiple stimulus features (Pettine, Louie,
Murray, & Wang, 2020). During high uncertainty, transient increases to the tonic
excitation/inhibition (E/I) ratio in sensory cortex provide a principled mechanism for elevated
sensitivity to — and a more faithful processing of — high-dimensional stimuli (Destexhe,
Rudolph, & Pare, 2003; Marguet & Harris, 2011). In electrophysiological recordings, scale-
free 1/f slopes are sensitive to differences in E/I ratio (Gao, Peterson, & Voytek, 2017), and
vary alongside sensory stimulation (Billig et al., 2019; Podvalny et al., 2015) and arousal
states (Colombo et al., 2019; Lendner et al., 2019). Whether contextual demands modulate
scale-free activity is unknown however. We hypothesize that high uncertainty shifts cortical
regimes from rhythmic excitability modulations towards tonic excitability increases.

Such state switches in network excitability may be shaped by neuromodulation and
subcortical activity (Harris & Thiele, 2011). Neuromodulation potently alters cortical states
(Froemke, 2015; Thiele & Bellgrove, 2018) and sensory processing (Berridge & Waterhouse,
2003; McCormick, Pape, & Williamson, 1991; McGinley, David, & McCormick, 2015), and
noradrenergic arousal in particular may permit high sensitivity to incoming stimuli (Posner &
Rothbart, 2007). Yet, non-invasive evidence is lacking for whether/how neuromodulation
affects contextual adaptability. Moreover, despite early proposals for thalamic involvement in
attentional control (Crick, 2003; Jasper, 1948; Rafal & Posner, 1987), studies have
dominantly focused on cortical information flow (e.g., Siegel, Buschman, & Miller, 2015), at
least in part due to technical difficulties in characterizing thalamic contributions. Crucially, the
thalamus provides a nexus for the contextual modulation of cortical circuits (Halassa &
Kastner, 2017; Honjoh et al., 2018), is a key component of neuromodulatory networks
(McCormick et al., 1991; Schiff, 2008; Song et al., 2017) and robustly modulates system
excitability via rhythmic and aperiodic membrane fluctuations (Jones, 2009). However,
human evidence for a central thalamic role in cortical state adjustments at the service of
behavioral flexibility is missing.
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45  Here, we aimed at overcoming this lacuna by assessing the effects of contextual uncertainty
46  during stimulus encoding on cortical excitability, neuromodulation, and thalamic activity in
47  humans. We performed a multi-modal (parallel) EEG-fMRI experiment to capture both fast
48  cortical dynamics (EEG) and subcortical activity (fMRI) while recording pupil dilation as a
49  non-invasive proxy for neuromodulatory drive (Joshi & Gold, 2020). Participants performed a
50  parametric adaptation of the classic dot motion task (Gold & Shadlen, 2007) (Figure 1).
51  Specifically, we manipulated the number of stimulus dimensions that are task-relevant in a
52 given trial while holding the sensory features of the task (i.e., its appearance on the screen)
53  constant across trials. By applying drift-diffusion modeling to participants’ choice behavior
54 while jointly assessing electrophysiological signatures of decision processes, we found that
55 uncertainty during sensation reduces the rate of subsequent evidence integration. This
56  reduction in available sensory evidence for single targets was associated with increased
57  cortical excitability, as indexed by joint low-frequency (~alpha) desynchronization and high-
58  frequency (~gamma) synchronization, and an increase in E/| ratio, as indicated by increased
59 sample entropy and flatter scale-free 1/f slopes, during stimulus processing, in lines with
60 broad sensitivity increases during periods of higher uncertainty. These excitability
61 adjustments occurred in parallel with increases in pupil-based arousal. Finally, inter-
62 individual differences in the modulation of cortical excitability, drift rates and arousal were
63  jointly associated with the extent of thalamic BOLD signal modulation, pointing to the
64  importance of subcortical mechanisms for cortical state adjustments. Together, these
65 findings suggest that neuromodulatory processes involving the thalamus shape cortical
66  excitability states in humans, and that a shift from alpha-rhythmic to aperiodic neural
67  dynamics adjusts the processing fidelity of external stimuli in service of upcoming decisions.

A Certainty Uncertainty C rhythmic AMANYY <§gr§'ﬁ?¢|g

Low excitability ngh ex0|tab|I|ty h'ghl avallable
ow |nte rated

attractor \/WV
dept evidence

selective Jomtly sensitive

Sensory Processing m Evidence Integration = Action

aperiodic

B Color  Direction L. Stimulus  *Probe

. OO S Each square .
20° oo is defined by 1 0
v i m

modul-ation fMRI

aconjunc- I
S T tion of the 0
Luminance = T ’ four features a

68 Prior cue indicates contextual feature relevance (1- 4 targets) |

pupil

69  Figure 1. Hypotheses & task design. (A) We probed whether participants modulate cortical
70 excitability during stimulus processing to guide subsequent evidence accumulation. We hypothesized
71 that when valid attentional cues about a single target feature are available in advance, a low
72 excitability regime may optimize subsequent choices via the targeted selection of relevant — and
73 inhibition of irrelevant — information. This can be conceptualized as the creation of a “single feature
74 attractor.” In contrast, under high probe uncertainty, higher excitability may afford the concurrent
75 sampling of multiple relevant features, but at the cost of a relative reduction of subsequently available
76 evidence for any individual feature. (B) Participants performed a Multi-Attribute Attention Task
77 (“MAAT”) during which they had to sample up to four visual features in a joint display for immediate
78 subsequent recall. Prior to stimulus presentation, participants were validly cued to a set of potential
79  target probes. The number and identity of cues were varied to experimentally manipulate the level of
80 expected probe uncertainty. (C) We hypothesized that increasing probe uncertainty would induce a
81 joint increase in neuromodulation and thalamic activity, associated with shifts from a phasic gain
82 control mode (implemented via neural alpha rhythms) toward transient increases in tonic excitability
83 (as indicated by aperiodic cortical activity). Participants performed the same task in both an EEG and
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84  an fMRI session, allowing us to assess joint inter-individual differences in fast cortical dynamics (EEG)
85  and subcortical sources (fMRI).

86 Results

87  We developed a dynamic visual Multi-Attribute Attention Task (“MAAT”) to uncover rapid
88 adjustments to stimulus processing and perceptual decisions under expected uncertainty
89  (Figure 1). Participants visually sampled a moving display of small squares, which were
90 characterized by four stimulus features, with two exemplars each: their color (red/green),
91 their movement direction (left/right), their size (large/small), and their color saturation
92  (high/low). Any individual square was characterized by a conjunction of the four features,
93  while one exemplar of each feature (e.g., green color) was most prevalent in the entire
94  display. Following stimulus presentation, participants were probed on a single feature as to
95 which of the two exemplars was most prevalent (via 2-AFC). Probe uncertainty was
96 parametrically manipulated using valid pre-stimulus cues, indicating the feature set from
97  which a probe would be selected. The feature set remained constant for a sequence of eight
98 trials to reduce set switching demands. Optimal performance required flexible sampling of
99 the cued feature set while jointly inhibiting uncued features; participants had to thus rapidly
100  encode a varying number of targets (“target load”) to prepare for an upcoming probe.
101 Participants performed the task well above chance level for different features and for different
102 levels of probe uncertainty (Figure S1A). As the number of relevant targets increased,
103 participants systematically became slower (median RT; EEG:  =.138, p ~ 0; MRI: § = .107,
104 p ~ 0) and less accurate (EEG: B = -.032, p ~ 0; MRI: B = -.025, p = 2.4e-07) in their
105  response to single-feature probes (Figure S1B).

Probe uncertainty during sensation decreases the rate of subsequent evidence
integration

106  We leveraged the potential of sequential sampling models to disentangle separable decision
107  processes in order to assess their modulation by probe uncertainty. In particular, drift-
108  diffusion models estimate (a) the non-decision time (NDT), (b) the drift rate at which
109 information becomes available, and (c) the internal evidence threshold or boundary
110  separation (see Figure 2A; for a review see Forstmann, Ratcliff, & Wagenmakers, 2016). We
111  fitted a hierarchical drift-diffusion model (HDDM) separately for each testing session, and
112 assessed individual parameter convergence with established EEG signatures (Donner,
113 Siegel, Fries, & Engel, 2009; O'Connell, Dockree, & Kelly, 2012; Twomey, Kelly, &
114  O'Connell, 2016; van Vugt, Beulen, & Taatgen, 2019). In particular, we investigated the
115  Centroparietal Positive Potential (CPP) and lateralized beta suppression as established
116  neural signatures of evidence integration from eidetic memory traces (Twomey et al., 2016).
117  The best behavioral fit was obtained by a model incorporating probe uncertainty-based
118  variations in drift rate, non-decision time and boundary separation (Figure S1B). Yet, there
119 was no evidence for modulation of the threshold of the CPP or the contralateral beta
120  response (Figure S1C). In line with prior work (McGovern, Hayes, Kelly, & O'Connell, 2018),
121  we therefore selected an EEG-informed model with fixed thresholds across target load
122 levels. With this model, reliability of individual parameters as well as of their load-related
123 changes was high across EEG and MRI sessions (see below and Figure S1E, F). Parameter
124 interrelations are reported in Text S1.


https://doi.org/10.1101/2020.06.22.165118
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.22.165118; this version posted June 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

A Drift-diffusion model B Behavioral estimates
. T Prevalence —kkk—
Sen_satllon._ © 4
‘ - ©
é 5 ! —kkk—_
o $<} (]
Drift rate
Motor o
; S —kkk—
. execution = —k Kk — ‘
............ c —kkk —
G .4
§ <t
NDT (1) o '
Visual % 2
processing () 5
&B“] = 1 2 3 4
Targets
C Neural signature of evidence integration ;4 »
_ x10™ 5 7 3
> x10 =
5 PARE LS 1 I [
N8l O o
8 S ! @
L o | <
® 6 , <
S 4 '
2 !
s .
€2 '
: ol 1 Target |
i —4 Targets
Lu 1 1 1 1 1 1 1 1 1 : ]
-1000 -800 -600 -400 -200 0
125 Time (ms); response-locked

126 Figure 2: Evidence integration upon probe presentation decreases as a function of prior
127  uncertainty. (A) Schematic of drift-diffusion model. Following visual encoding, evidence is
128 successively accumulated towards either of two bounds when probed for the dominant prevalence of
129  one of two options of a single feature. A button press indicates the decision once one of the bounds
130 has been reached and motor preparation has concluded. A non-decision time parameter captures
131 visual encoding and motor preparation, drift rate captures the amount of available information, and
132 boundary separation captures response bias i.e., conservative vs. liberal). (B) Behavioral parameter
133 estimates for drift rate and non-decision time (NDT; discussed in Text S3), as indicated by the
134 hierarchical drift-diffusion model (HDDM). (C) Modulation of the Centroparietal Positive Potential
135  (CPP) as a neural signature of evidence accumulation (mean +- within-subject SE). The probe-locked
136 CPP indicates decreases in drift rate with prior probe uncertainty. Insets show CPP slope estimates
137  from -250 to -100 ms relative to response execution, as well as the corresponding topography (CPP
138  channel shown in yellow). [*** p <.001, ** p < .01, * p < .05]

139  Behavioral model estimates (Figure 2B) and EEG signatures (Figure 2C, Figure S2A) jointly
140  indicated that probe uncertainty during stimulus presentation decreased the drift rate during
141  subsequent evidence accumulation. This indicates a reduction of available evidence for
142 single features when more features had to be sampled. Individual drift rate estimates for a
143 single target were positively correlated with the slope of the CPP (r = 0.52, 95%CI [0.26,
144  0.71], p = 3.59e-4), while individual drift rate reductions reflected the shallowing of CPP
145  slopes (r(137) = 0.34, 95%CI [0.18, 0.48], p = 4.87e-5). Notably, the magnitude of evidence
146  decreases with increasing probe uncertainty was strongly anticorrelated with the available
147  evidence when the target attribute was known in advance (i.e., the single target condition;
148  EEG session: r =-.93, p = 4e-22, MR session: r = -.88, p = 1e-15). That is, participants with
149  more available evidence after selectively attending to a single target showed larger drift rate
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150  decreases under increased probe uncertainty. Importantly however, participants with higher
151  drift rates for single targets also retained higher drift rates at higher probe uncertainty (i.e.,
152 high reliability for e.g., four targets: EEG: r = .48; p = 6e-4; MRI: r = .53, p = 2e-4). Moreover,
153  individuals with higher drift rates across target loads exhibited lower average RTs (EEG: r = -
154 .42, p = .003; MRI: r = -41, p = .007) and higher task accuracy (EEG: r = .86, p = 2e-14;
155 MRIL: r = .89, p = 4e-16). Thus, in the present paradigm, more pronounced drift rate
156  decreases with increasing probe uncertainty index a successful modulation of feature-based
157  attention during encoding, and better overall performance.

158  We performed multiple control analyses to further elucidate decision properties. First, we did
159  not observe a similar ramping of the CPP during stimulus presentation (Figure S2B),
160  suggesting that evidence accumulation was primarily initiated by the probe. Second, drift rate
161  reductions were not primarily driven by differences between feature attributes (Figure S2C).
162  Third, concurrent variations in response agreement across cued attributes could not account
163  for the observed effects (Text S2; Figure S1D). Fourth, individual drift rates for single targets
164  were unrelated to threshold estimates (EEG: r = -.005, p = .74; MRI: r = -.006; p = .72), thus
165  suggesting a lack of differences in response bias (Ratcliff & McKoon, 2008). Finally,
166  participants with larger drift rate decreases exhibited more constrained non-decision time
167 increases (EEG: r(137) = 0.32, 95% CI [0.16, 0.47], p = 1.04e-4; MRI: r(122) = 0.37, 95%ClI
168 [0.2, 0.51], p = 2.48e-5), indicating reduced additional motor transformation demands (see
169  Text S3) in high performers.

Cortical excitability increases under uncertainty guide subsequent evidence
integration

170  Decreases in the rate of evidence integration indicate the detrimental consequences of probe
171  uncertainty, but not the mechanisms by which sensory processing is altered. To investigate
172  the latter, we examined rhythmic and aperiodic cortical signatures during stimulus
173  processing. To jointly assess multivariate changes in spectral power as a function of probe
174  uncertainty, we performed a partial-least-squares (PLS) analysis that produces low-
175  dimensional, multivariate relations between brain-based data — in this case time-frequency-
176  space matrices — and other variables of interest (see methods). First, we assessed evoked
177  changes compared to baseline using a task PLS. We observed a single latent variable (LV;
178  permuted p < .001) with jointly increased power in the delta-theta and gamma bands and
179  decreased alpha power upon stimulus onset (Figure S3A, Figure S4A), in line with increased
180  cognitive control (Cavanagh & Frank, 2014) and heightened bottom-up visual processing
181  (van Kerkoerle et al., 2014). We next performed a task PLS to assess spectral power
182  changes as a function of target load. A single LV (permuted p < .001; Figure 3) indicated a
183  stronger expression of this control- and excitability-like pattern with increasing probe
184  uncertainty. Next, we assessed the link between individual changes in multivariate loadings
185 on this “spectral power modulation factor” (SPMF) and behavioral modulations. We
186  performed partial repeated measures correlations (see methods), a mixed modelling
187  approach that controls for the main effect of probe uncertainty in both variables of interest
188 and indicates interindividual associations independent of the specific shape of condition
189  modulation in individual participants. Crucially, individual SPMF loadings were positively
190 correlated with interindividual performance differences during selective attention (Figure 3F)
191  and uncertainty-related performance changes (Figure 3G). Participants with stronger spectral
192  power modulation during sensation exhibited faster evidence integration in the selective
193  attention condition, as well as a stronger drift rate decreases under uncertainty [r(137) = -0.4,
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194  95%CI [-0.53, -0.25], p = 1.12e-6], while showing constrained increases in non-decision time
195  [r(137) = -0.26, 95%CI [-0.41, -0.1], p ~ O]. In sum, this suggests that high performers flexibly
196 increased visual throughput as more features became relevant via top-down control of
197  cortical excitability.
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199  Figure 3: Multivariate power changes with probe uncertainty during stimulus encoding. (A, B)
200  Topographies of stimulus-evoked power changes relative to pre-stimulus baseline (A, see Figure S3-
201 1) and load-related power modulation (B). With increasing attentional demands, theta and ‘broadband’
202  gamma power increased, whereas alpha rhythms desynchronize. Asterisks indicate the sensors
203  across which data were averaged for presentation in D. Values indicate maximum (theta/gamma) or
204  minimum (alpha range) bootstrap ratios (BSR) across time in the clusters. (C) Temporal traces of
205 band-limited power as a function of target load, extracted from the clusters presented in D (mean +-
206  within-subject SE). (D, E) Multivariate loading pattern (D) for spectral power changes under
207  uncertainty and associated multivariate brain scores at different levels of target load (E). Black bars in
208 panel D indicate discrete frequency ranges or sensors (shown in A). (F, G) Participants with stronger
209 multivariate power modulation exhibit stronger drift rates for single targets (F), as well as stronger drift
210  rate decreases under uncertainty (G). In G, dots represent linear model residuals (see methods),
211 colored by participant. Coupled changes across target conditions are indicated by the black line. We
212 indicate the direction of main effects for each variable via + and - (- = small decreases, -- = large
213 decreases, + = small increases, ++ = large increases), with directions of variables on the x-axis
214  indicated first. [*** p < .001]

215  Here too, we performed multiple control analyses. First, the same multivariate power-band
216  relations noted in our task PLS model (SPMF above) were also identified in a behavioral PLS
217  model intended to estimate optimal statistical relations between power bands and behavior
218  (Text S4, Figure S4B). Second, while we observed increases in pre-stimulus alpha power
219  with increasing probe uncertainty, these changes did not relate to behavioral changes or
220  power changes during stimulus processing (Text S5, Figure S4C). Third, the entrained
221  steady-state visual evoked potential (SSVEP) magnitude was not modulated by target load
222 (Text S6, Figure S4D). Fourth, multivariate power changes corresponded to narrow-band,
223 rhythm-specific indices in the theta and alpha band (Text S7, Figure S4E), and thus did not
224 exclusively result from changes in the aperiodic background spectrum (see below).

Alpha phase modulates gamma power during sensation

225 Alpha rhythms have been related to phasic control over bottom-up input, as putatively
226  encoded in gamma power (Spaak et al., 2012). To assess phase-amplitude coupling (PAC)
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227 in the present data, we selected temporal alpha episodes at the single-trial level (see
228 methods, Figure 4A) and assessed the coupling between alpha phase and gamma power.
229  We observed significant alpha-gamma PAC (Figure 4B, D left), consistent with alpha-phase-
230  dependent excitability modulation. This was constrained to the occurrence of alpha episodes,
231 as no significant alpha-gamma PAC was observed prior to indicated alpha episodes (grey
232 shading in Figure 4A; Figure 4D right). Phasic gamma power modulation was observed
233 across target load levels (Figure 4F), but alpha duration decreased as a function of load
234  (Figure 4C). This suggests that alpha rhythms consistently regulated gamma power, but that
235 alpha engagement decreased as more targets became relevant.
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237 Figure 4. Alpha phase modulates gamma power during sensation. (A) Exemplary time series
238 around the onset of a detected alpha event (example from 4-target condition). Segments were pooled
239  across occipital channels (black dots in inset topography) and target load conditions. (B) Normalized
240  gamma power (red; mean +- SE) during alpha events (yellow shading in A), is modulated by alpha
241  phase (see methods). The unfiltered ERP aligned to the alpha trough is shown in black. Shaded
242  regions indicate standard errors. (C) The relative duration of alpha events decreased with increased
243  feature relevance. Data are individually centered across target loads. (D) Modulation index (M)
244 indicated significant coupling between the phase of alpha and gamma power during rhythmic events
245 (left), but not during periods immediately prior to rhythm onset (right). Ml was normalized using
246 surrogate data to reduce erroneous coupling (see methods). Shaded regions indicate standard errors.
247  (E) Gamma power (averaged from 60-150 Hz; mean +- SE) was maximal following alpha peaks.
248 Power was normalized across all phase bins (see methods). (F) Gamma power systematic peaks
249 between the peak and trough of alpha rhythms across target levels. For this analysis, alpha events
250  were collapsed across all participants. [*** p < .001]

Sample entropy and scale-free dynamics indicate shifts towards increased excitability

251  Next, we assessed whether reduced alpha engagement was accompanied by increases in
252  temporal irregularity, a candidate signature for system excitability (Kosciessa, Kloosterman,
253 & Garrett, 2020). We probed time-resolved fluctuations in sample entropy (SampEn), an
254  information-theoretic estimate of signal irregularity. As sample entropy is jointly sensitive to
255  broadband dynamics and narrowband rhythms, we removed the alpha frequency range using
256  band-stop-filters (8-15 Hz) to avoid contributions from alpha rhythms (see Kosciessa,
257  Kloosterman, & Garrett, 2020). A cluster-based permutation test indicated SampEn
258 increases under probe uncertainty over posterior-occipital channels (Figure 5A). Notably, the
259  magnitude of individual entropy modulation in this cluster scaled with increases in the SPMF
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260  [r(137) = 0.22, 95%CI [0.05, 0.37], p = 0.01], indicating that alpha desynchronization was
261  accompanied by broadband changes in signal irregularity.
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263 Figure 5: Uncertainty increases aperiodic dynamics during sensation as reflected in neural
264  entropy (A) and 1/f slopes (B). (A1) Temporal traces of sample entropy (mean +- within-subject SE).
265  The yellow background indicates the period of stimulus presentation. The black bar indicates time
266  points at which permutation tests indicated linear load effects. (A2) Topography of linear load effect
267 estimates, with yellow dots representing the significant cluster. (A3) Post-hoc analysis of entropy
268  estimates within significant cluster. Grey dots indicate individual outliers (defined as Cook’s distance >
269  2.5*mean (Cook’s distance)) and have been removed from the statistical post-hoc assessment.
270 Estimates have been within-subject centered for display purposes, while statistical analyses were run
271 on uncentered data. (B1) Aperiodic slopes shallow with increased target load (i.e., spectral rotation
272 across low- and high-frequencies; mean +- within-subject SE). Lower and upper insets highlight slope
273 differences at low and high frequencies, respectively. (B2) Topography of linear load effects on 1/f
274  slopes. Yellow dots indicate the significant occipital cluster used for post-hoc assessments. (B3) Same
275  as A3, but for occipital aperiodic slopes. [*** p <.001, ** p < .01, * p < .05]

276  Aperiodic, scale-free spectral slopes are a major contributor to broadband SampEn, due to
277  their joint sensitivity to autocorrelative structure (Kosciessa, Kloosterman, et al., 2020), and a
278  shallowing of aperiodic (1/f) slopes has theoretically been associated with system excitability
279  (Gao et al.,, 2017). We therefore assessed aperiodic slope changes during the stimulus
280  period (excluding onset transients). In line with our hypothesis, participants’ PSD slopes
281  shallowed under uncertainty (Figure 5B), suggesting that participants increased their
282  excitatory tone in posterior cortex. In line with the expectation that sample entropy should be
283  highly sensitive to scale-free dynamics, sample entropy was strongly related to individual
284  PSD slopes across conditions (r = .77, p <.001) and with respect to linear changes in PSD
285  slope with increasing uncertainty [r(137) = 0.44, 95%CI [0.3, 0.57], p = 4.92e-8]. In sum,
286  heightened probe uncertainty desynchronized low-frequency alpha rhythms, and elevated
287  theirregularity of cortical dynamics, in line with enhanced tonic excitability.
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Increases in phasic pupil diameter relate to transient excitability adjustments

288  Phasic arousal changes modulate perception and local cortical excitability (for reviews see
289 Lee & Dan, 2012; McGinley, Vinck, et al., 2015). To test whether arousal increased
290 alongside uncertainty, we assessed phasic changes in pupillometric responses as a proxy for
291 arousal during stimulus presentation. We quantified phasic pupil responses via the 1°
292 temporal derivative (i.e. rate of change), as this measure has higher temporal precision and
293  has been more strongly associated with noradrenergic responses than the overall pupil
294  response (Reimer et al., 2014). Phasic pupil dilation systematically increased with probe
295  uncertainty (Figure 6). This modulation occurred on top of a general pupil constriction due to
296  stimulus-evoked changes in luminance (Figure 6A, inset), while the linear modulation
297  occurred — by stimulus design — in the absence of systematic luminance changes.
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299 Figure 6: Effect of probe uncertainty on pupil diameter as a proxy for neuromodulation. (A)
300 Phasic changes in pupil diameter increase with number of targets (mean +- within-subject SE).
301 Significant linear load effects as indicated by a cluster-based permutation test are indicated via the
302  black line. For follow-up analyses, we extracted median pupil values from 0 to 1.5 s. For display
303 purposes but not statistics, derivative estimates were smoothed via application of a 200 ms median
304  running average. (B) Post-hoc analysis of load effects in extracted median values. (C) Coupled
305 changes between our spectral power modulation factor (SPMF) and pupil modulation. Dots represent
306 linear model residuals (see methods), colored by participant. We indicate the direction of main effects
307  for each variable via + and - (- = small decreases, -- = large decreases, + = small increases, ++ =
308 large increases). [* p < .05]

309 Next, we assessed the relation between individual modulations in pupil diameter, cortical
310 excitability and behavior. The magnitude of pupil increases tracked increases on the spectral
311  power modulation factor (SPMF) [r(137) = 0.22, 95%CI [0.06, 0.38], p = 0.01], but did not
312  directly relate to entropy [r(137) = -0.06, 95%CI [-0.23, 0.1], p = 0.45] or aperiodic slope
313  changes [r(137) = -0.04, 95%CI [-0.2, 0.13], p = 0.67]. Participants with larger increases in
314  pupil dilation also were faster integrators at baseline (r = .31, p = .033), and decreased
315 integration more so with increasing probe uncertainty [r(137) = -0.17, 95%CI [-0.33, 0], p =
316  0.05], while showing more constrained NDT increases [r(137) = -0.21, 95%CI [-0.36, -0.04], p
317 = 0.01]. This suggests that arousal jointly related to increases in local cortical excitability and
318 subsequent choices.

Thalamic BOLD modulation tracks excitability increases during sensation

319  Finally, we probed whether the thalamus acts as a subcortical nexus for sensory excitability
320 adjustments under probe uncertainty. To allow spatially resolved insights into thalamic
321 involvement, participants took part in a second, fMRI-based testing session during which
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322 they performed the same task. First, we investigated uncertainty-related changes in BOLD
323  magnitude during stimulus processing via a task PLS. This analysis suggested two reliable
324  (LV1: permuted p = .001; LV2: permuted p = .007) latent variables (Figure 7; see Table S1
325  for peak coordinates/statistics and Figure S5A, B for complete multivariate spatial patterns
326  for the two LVs), with the first LV explaining the dominant amount of variance (89.6%
327  crossblock covariance) compared to the second LV (8.7% crossblock covariance).
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329 Figure 7: Upregulation of thalamic BOLD responses during stimulus processing is related to
330  stronger excitability increases and better performance in upcoming decision task. (A) Results
331 from multivariate task PLS investigating the relation of BOLD magnitude to attentional uncertainty.
332  Data are individually centered across target loads. Activity maps show positive (left) and negative
333 (right) bootstrap ratios of LV1, thresholded at a bootstrap ratio of 3 (p ~.001). Figure S5A presents the
334 full loading matrices for LV1 and LV2. (B) Results from behavioral PLS, probing the association
335 between linear changes in BOLD magnitude with behavioral, electrophysiological and pupillary
336  changes under uncertainty. Figure S5B presents the complete factor loadings. (C) Visualization of
337  thalamic modulation with uncertainty, split between low- and high- behavioral drift modulators (mean
338 +- SE). The yellow shading indicates the approximate stimulus presentation period after accounting for
339  the delay in the hemodynamic response function. Figure S5C plots all target conditions by group. (D)
340  Thalamic expression pattern of the first task LV (D1) and the behavioral LV (D2). Scatters below
341 indicate the major nuclei and projection zones in which behavioral relations are maximally reliable. For
342 abbreviations see methods. Strongest expression is observed in antero-medial nuclei that project to
343  fronto-parietal cortical targets. [*** p < .001]
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344  The first latent variable (LV1) indicated load-related increases dominantly in cortical areas
345  encompassing the fronto-parietal and the salience network, as well as thalamus. Primary
346  positive contributors to LV1 (i.e., representing increases in BOLD with increasing probe
347  uncertainty) were located in mid-cingulate cortex (MCG), inferior parietal lobule (IPL),
348  Dbilateral anterior insula (aINS), inferior occipital gyrus (IOG), thalamus and bilateral inferior
349  frontal gyrus (IFG). In contrast, relative uncertainty-related decreases in BOLD magnitude
350 were dominantly observed in pallidum (potentially reflecting reduced motor preparation),
351 Dbilateral posterior insula (pINS), left SFG, and left mid-cingulate cortex. Individual brain score
352 increases were associated with stronger drift rate decreases [r(122) = -0.36, 95%CI [-0.5, -
353  0.19], p = 5.11e-5], but not NDT, SPMF, or entropy (all p >.05). See Text S8 for results from
354  the second latent variable (LV2), which might reflect decreased engagement at higher levels
355  of target uncertainty.

356  Finally, we performed a behavioral PLS to probe whether regional BOLD modulation tracked
357 a unified set of individual differences in the modulation of cortical excitability, arousal and
358  behavior. In fact, we observed a single significant LV (permuted p = .001, 46.2% crossblock
359  covariance) that dominantly loaded on anterior and midline thalamic nuclei with fronto-
360 parietal projection zones (Figure 7D), and extended broadly across almost the entirety of
361 thalamus. BOLD magnitude increases were more pronounced in participants exhibiting
362  higher drift rates (i.e., more available evidence) (r = 0.75, 95% bootstrapped (bs) Cl =
363 [0.72,0.86]) and stronger drift reductions under probe uncertainty (r = -0.6, 95% bsClI = [-
364 0.78,-0.54]; Figure 7B), as well as lower baseline non-decision times (r = -.37, 95% bsClI = [-
365 .58, -.08]), confirming that increased thalamic responses reflected behaviorally adaptive
366 contextual adjustments. This association was specific to the behavioral adjustments of
367 interest, as we noted no relations with NDT modulation (r = .05, 95% bsCI = [-.31, .3]) or
368  boundary separation (r = .08, 95% CI = [-.24, .37]). Importantly, higher (dominantly thalamic)
369 BOLD modulation was further associated with greater increases on the SPMF (r = 0.31, 95%
370 Cl =[0.16,0.58]), in phasic pupil dilation (r = 0.67, 95% bsCIl = [0.51,0.81]) and in entropy
371 assessed during the EEG session (r = 0.22, 95% bsCl = [0.08,0.46]; Figure 7B). 1/f
372  shallowing was not stably related to BOLD modulation (r = -0.18, 95% bsCl = [-0.38,0.17]),
373  potentially due to noisier individual estimates. BOLD modulation was unrelated to
374  chronological age (r = -.19, p = .21), gender (male vs. female; r = -.27, p = .08), subjective
375 task difficulty (rated on 5-point Likert scale; r = -.02, p = .89), or framewise displacement of
376  BOLD signals (an estimate of in-scanner motion; r = -.24, p = .13). Taken together, these
377 results suggest a major role of the thalamus in integrating phasic neuromodulation to
378  regulate rhythmic and aperiodic cortical excitability according to contextual demands.

379 Discussion

380  To efficiently process information, cortical networks must be flexibly tuned to environmental
381 demands. Invasive studies indicate a crucial role of the thalamus in such adaptations (for a
382  review see Halassa & Kastner, 2017), but human evidence on thalamic involvement in rapid
383  cortical regime switches at the service of behavioral flexibility has been missing. By
384 combining a multi-modal experimental design with a close look at individual differences, we
385  found that processing under contextual uncertainty is associated with a triad characterized by
386 thalamic BOLD modulation, EEG-based cortical excitability, and pupil-based indicators of
387 arousal. In the light of this triad, we propose that thalamic regulation of sensory excitability is
388  crucial for adaptive sensory filtering in information-rich environments.
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389 By cueing relevant dimensions of otherwise physically identical stimuli, we observed that
390 increases in the number of attentional targets reliably reduced participants’ available
391 evidence (as evidenced by drift rate decreases) during subsequent perceptual decisions. We
392 interpret these changes as a negative (Dube, Emrich, & Al-Aidroos, 2017) but necessary and
393  adaptive consequence of the need to encode multiple relevant features for an eventual
394  decision regarding a single target. Concurrently, BOLD activity increased in the frontoparietal
395  network (Dosenbach et al., 2007), composed of the inferior frontal junction (Zanto, Rubens,
396 Thangavel, & Gazzaley, 2011), inferior frontal gyrus (Hampshire, Chamberlain, Monti,
397 Duncan, & Owen, 2010), and posterior parietal cortex (Weerda, Vallines, Thomas,
398  Rutschmann, & Greenlee, 2006; Wojciulik & Kanwisher, 1999), and the salience network
399  (Uddin, 2015) — including anterior insula (Nelson et al., 2010) and dorsal anterior cingulate
400 cortex (Weissman, Gopalakrishnan, Hazlett, & Woldorff, 2005). These cortical networks are
401  thought to establish the contextual relevance of environmental stimuli, and to communicate
402  this information to sensory cortex (Siegel et al., 2015). Accordingly, their BOLD activity often
403 increases alongside multifaceted demands (see above), further in line with increased
404  mediofrontal theta engagement (Cavanagh & Frank, 2014).

405 Besides such cortical responses at the group level however, we noted that individual
406 increases in cortical excitability, drift rates, and arousal were tracked primarily by the extent
407  of thalamic signal elevation, dominantly in areas with fronto-parietal projections. While past
408 work emphasized the thalamic relay of peripheral information to cortex, recent theories
409  highlight its dynamic involvement in cortical and cognitive function (for reviews see Dehghani
410 & Wimmer, 2019; Halassa & Kastner, 2017; Halassa & Sherman, 2019; Pergola et al., 2018;
411 Saalmann & Kastner, 2011; Ward, 2013; Wolff & Vann, 2019), with empirical support in
412  humans (Garrett, Epp, Perry, & Lindenberger, 2018; Hwang, Bertolero, Liu, & D'Esposito,
413  2017; Shine et al., 2019), monkeys (Fiebelkorn, Pinsk, & Kastner, 2019; Saalmann, Pinsk,
414  Wang, Li, & Kastner, 2012) and mice (Lewis et al., 2015; Schmitt et al., 2017; Wimmer et al.,
415 2015). Notably, our task responds to demands for “tasks with multifaceted cognitive
416 demands” (Pergola et al., 2018, p. 1017) to enhance sensitivity to higher-order thalamic
417  involvement. In particular, anterior and midline thalamic nuclei, in which neuro-behavioral
418 relations were maximal, may be essential for attentional set shifting (Marton, Seifikar,
419  Luongo, Lee, & Sohal, 2018; Rikhye, Gilra, & Halassa, 2018; Wright, Vann, Aggleton, &
420  Nelson, 2015) and to communicate such top-down information to sensory cortex via
421  frontoparietal network coherence (Schmitt et al., 2017). Sensory processing in turn is shaped
422 by thalamocortical transmission modes (Sherman, 2001). In ‘burst mode’, thalamic nuclei
423  elicit synchronous activity that can boost stimulus detection (Alitto, Rathbun, Vandeleest,
424  Alexander, & Usrey, 2019; Reinagel, Godwin, Sherman, & Koch, 1999) via non-linear gains
425  of cortical responses (G. D. Smith, Cox, Sherman, & Rinzel, 2000; Swadlow & Gusev, 2001),
426  whereas spike activity during ‘tonic mode’ more faithfully tracks incoming signals (Hartings,
427  Temereanca, & Simons, 2003; Sherman, 2001). Shifts from sparse bursts towards tonic
428  activity may underlie attention-related increases in thalamic BOLD magnitude observed here
429 and in previous fMRI studies (Jagtap & Diwadkar, 2016; Kim, Cilles, Johnson, & Gold, 2012;
430 Tomasi, Chang, Caparelli, & Emnst, 2007), although further work needs to elucidate the
431  relation between thalamic transmission modes and BOLD responses (but see Liu et al.,
432 2015).

433  Associated with thalamic bursting (Palva & Palva, 2007), cortical alpha rhythms may control
434  sensory gain via periodic fluctuations in excitability (Dugue, Marque, & VanRullen, 2011;
435 Haegens et al., 2011; Klimesch et al., 2007; Lorincz et al., 2009; Roux, Wibral, Singer, Aru, &
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436  Uhlhaas, 2013) that can signify rapid temporal imbalances between excitation and inhibition
437  (Atallah & Scanziani, 2009; Poo & Isaacson, 2009). Supporting this notion, we observed a
438  coupling between alpha phase and high-frequency power during stimulus processing, with
439  participants engaging alpha rhythms most prevalently when prior cues afforded them a focus
440  on single stimulus features (i.e., high available sensory evidence). Alpha rhythms have been
441  consistently linked to the pulvinar nucleus (Halgren et al., 2019; Lopes da Silva, Vos,
442  Mooibroek, & Van Rotterdam, 1980; Saalmann et al., 2012; Stitt, Zhou, Radtke-Schuller, &
443  Frohlich, 2018), which also contributed to our multi-modal model. The pulvinar diffusely
444  connects to visual and fronto-parietal cortices (Arcaro, Pinsk, & Kastner, 2015), affording it to
445  build up contextual priors (Kanai, Komura, Shipp, & Friston, 2015; O'Reilly, Wyatte, &
446  Rohrlich, 2017; Rikhye, Wimmer, & Halassa, 2018) that can regulate ‘bottom-up’ stimulus
447  processing (Jaramillo, Mejias, & Wang, 2019), potentially via alpha rhythms (Saalmann et al.,
448  2012; Suffczynski, Kalitzin, Pfurtscheller, & da Silva, 2001). While the localization of effects
449  within the thalamus remains challenging in BOLD signals (Hwang et al., 2017), our results
450  support a perspective in which alpha rhythms — shaped via thalamocortical circuits —
451  dynamically extract relevant sensory information (Sadaghiani & Kleinschmidt, 2016) when
452  contexts afford joint distractor suppression and target enhancement (Wéstmann, Alavash, &
453  Obleser, 2019).

454  Complementing such selective gain control, overall increases in excitatory tone may serve
455  multi-feature attention when only broad attentional guidance is available. Our results provide
456 initial evidence that probe uncertainty transiently (a) desynchronizes alpha rhythms, (b)
457  increases gamma power, and (c) elevates sample entropy while shallowing spectral slopes,
458 a pattern that suggests increases in excitatory contributions to E/I mixture currents (Destexhe
459 & Rudolph, 2004; Gao et al., 2017) and asynchronous neural firing (Destexhe et al., 2003).
460  Conceptually, elevated excitability during high probe uncertainty facilitates an efficient and
461 rapid switching between parallel feature activations. In agreement with this idea, joint
462  activation of neural populations coding multiple relevant features has been observed during
463  multi-feature attention (Mo et al., 2019). Furthermore, computational modeling indicates that
464  E/I modulations in hierarchical networks optimally adjust multi-attribute choices (Pettine et
465 al.,, 2020). Similar to our observation of enhanced excitability during probe uncertainty,
466  Pettine et al. (2020) found increases in excitatory tone optimal for a linear weighting of
467  multiple features, whereas inhibitory engagement increased the gain for specific features
468  during more difficult perceptual decisions. As discussed above, such inhibitory tuning may
469 regulate selective target gains via alpha rhythms, in line with the presumed importance of
470  inhibitory interneurons in alpha rhythmogenesis (Lorincz et al., 2009).

471 Finally, probe uncertainty increased phasic pupil diameter, with strong links to parallel
472  adjustments in behavior, EEG-based excitability, and thalamic BOLD modulation.
473  Fluctuations in pupil diameter provide a non-invasive proxy of particularly noradrenergic drive
474  in mice (Breton-Provencher & Sur, 2019; Reimer et al., 2014; Zerbi et al., 2019), monkeys
475  (Aston-Jones & Cohen, 2005; Joshi, Li, Kalwani, & Gold, 2016) and humans (de Gee et al.,
476  2017). As such, our results support neuromodulation as a potent regulator of excitability both
477  directly at cortical targets (Constantinople & Bruno, 2011; McGinley, Vinck, et al., 2015) and
478 via thalamic circuits (Liu et al., 2015; McCormick, 1989; McCormick, McGinley, & Salkoff,
479  2015; Schiff, 2008). Functionally, pupil diameter rises during states of heightened uncertainty
480  (Krishnamurthy, Nassar, Sarode, & Gold, 2017; Nassar et al., 2012; Urai, Braun, & Donner,
481  2017), such as change points in dynamic environments (Murphy, Wilming, Hernandez-
482  Bocanegra, Prat Ortega, & Donner, 2020; Nassar et al., 2012), and multi-feature attention

14


https://doi.org/10.1101/2020.06.22.165118
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.22.165118; this version posted June 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

483  (Alnaes et al.,, 2014; Koelewijn, Shinn-Cunningham, Zekveld, & Kramer, 2014), while
484 increasing alongside cortical desynchronization (Dahl, Mather, Sander, & Werkle-Bergne,
485  2020; Murphy et al., 2020; Stitt et al., 2018; Waschke, Tune, & Obleser, 2019). Our results
486  extend those observations, and suggest that neuromodulatory drive accompanies excitability
487 increases especially when contexts prevent the formation of single attentional targets,
488  potentially to serve a more faithful processing of complex environments (Berridge &
489  Waterhouse, 2003; McGinley, David, et al., 2015).

490  Multiple neuromodulators, prominently noradrenaline and acetylcholine, regulate
491  thalamocortical excitability (Lee & Dan, 2012; McCormick et al., 2015) and pupil responses
492  (Reimer et al.,, 2014), but may differentially serve perceptual sensitivity vs. specificity
493  demands (Shine, 2019). Specifically, noradrenergic drive may increase sensitivity to external
494 stimuli (McCormick et al., 1991; Waterhouse & Navarra, 2019) by increasing E/I ratios
495  (Froemke, Merzenich, & Schreiner, 2007; Martins & Froemke, 2015; Pfeffer et al., 2018),
496  whereas cholinergic innervation might facilitate response selectivity (Bauer et al., 2012;
497  Furey, Pietrini, & Haxby, 2000). However, as contrasting effects have also been observed for
498 these modulators (e.g., Hirata, Aguilar, & Castro-Alamancos, 2006; Minces, Pinto, Dan, &
499  Chiba, 2017; Vinck, Batista-Brito, Knoblich, & Cardin, 2015; Yu & Dayan, 2005), their
500 functional separability necessitates further work.

501  To conclude, we report initial evidence that thalamocortical excitability adjustments guide
502  human perception and decisions under uncertainty. Our results point to neuromodulatory
503  changes regulated by the thalamus that trigger behaviorally relevant switches in cortical
504  dynamics, from alpha-rhythmic gain control to increased tonic excitability, when contexts
505  require a more faithful processing of information-rich environments. Given that difficulties in
506 dealing with uncertainty, neuro-sensory hyperexcitability, and deficient E/I control are
507  hallmarks of several clinical disorders (e.g., McFadyen, Dolan, & Garrido, 2020; Yang et al.,
508  2016; Yizhar et al., 2011), we surmise that further research on individual differences in the
509  modulation of contextual excitability might advance our understanding of cognitive flexibility
510 in both healthy and diseased populations.

15


https://doi.org/10.1101/2020.06.22.165118
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.22.165118; this version posted June 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

511 Methods

Sample

512 47 healthy young adults (18-35 years, mean age = 25.8 years, SD = 4.6, 25 women)
513  performed a dynamic visual attention task during 64-channel active scalp EEG acquisition,
514 42 of whom returned for a subsequent 3T fMRI session. Due to participant and scanner
515 availability, the average span between EEG and MR testing sessions was 9.8 days (SD = 9.5
516  days). Participants were recruited from the participant database of the Max Planck Institute
517  for Human Development, Berlin, Germany (MPIB). Participants were right-handed, as
518 assessed with a modified version of the Edinburgh Handedness Inventory (Oldfield, 1971),
519  and had normal or corrected-to-normal vision. Participants reported to be in good health with
520 no known history of neurological or psychiatric incidences, and were paid for their
521 participation (10 € per hour). All participants gave written informed consent according to the
522  institutional guidelines of the Deutsche Gesellschaft flir Psychologie (DGPS) ethics board,
523 which approved the study.

Procedure: EEG Session

524  Participants were seated at a distance of 60 cm in front of a monitor in an acoustically and
525  electrically shielded chamber with their heads placed on a chin rest. Following electrode
526  placement, participants were instructed to rest with their eyes open and closed, each for 3
527  minutes. Afterwards, participants performed a standard Stroop task, followed by the visual
528  attention task instruction & practice (see below), the performance of the task and a second
529  Stroop assessment (Stroop results are not reported here). Stimuli were presented on a 60 Hz
530  1920x1080p LCD screen (AG Neovo X24) using PsychToolbox 3.0.11 (Brainard, 1997;
531 Kleiner, Brainard, & Pelli, 2007; Pelli, 1997). The session lasted ~3 hours. EEG was
532 continuously recorded from 60 active (Ag/AgCIl) electrodes using BrainAmp amplifiers (Brain
533 Products GmbH, Gilching, Germany). Scalp electrodes were arranged within an elastic cap
534 (EASYCAP GmbH, Herrsching, Germany) according to the 10% system (Oostenveld &
535  Praamstra, 2001), with the ground placed at AFz. To monitor eye movements, two additional
536  electrodes were placed on the outer canthi (horizontal EOG) and one electrode below the left
537 eye (vertical EOG). During recording, all electrodes were referenced to the right mastoid
538 electrode, while the left mastoid electrode was recorded as an additional channel. Online,
539  signals were digitized at a sampling rate of 1 kHz. In addition to EEG, we simultaneously
540 tracked eye movements and assessed pupil diameter using EyeLink 1000+ hardware (SR
541  Research, v.4.594) with a sampling rate of 1kHz.

Procedure: MRI session

542  Forty-two participants returned for a second testing session that included structural and
543  functional MRI assessments. First, participants took part in a short refresh of the visual
544  attention task (“MAAT”, see below) instructions and practiced the task outside the scanner.
545  Then, participants were located in the TimTrio 3T scanner and were instructed in the button
546  mapping. We collected the following sequences: T1w, task (4 runs), T2w, resting state, DTI,
547  with a 15 min out-of-scanner break following the task acquisition. The session lasted ~3
548  hours. Whole-brain task fMRI data (4 runs a ~11,5 mins, 1066 volumes per run) were
549  collected via a 3T Siemens TrioTim MRI system (Erlangen, Germany) using a multi-band EPI
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550 sequence (factor 4; TR = 645 ms; TE = 30 ms; flip angle 60°; FoV = 222 mm; voxel size
551  3x3x3 mm; 40 transverse slices. The first 12 volumes (12 x 645 ms = 7.7 sec) were removed
552 to ensure a steady state of tissue magnetization (total remaining volumes = 1054 per run). A
553  T1-weighted structural scan was also acquired (MPRAGE: TR = 2500 ms; TE = 4.77 ms; flip
554  angle 7°; FoV = 256 mm; voxel size 1x1x1 mm; 192 sagittal slices). A T2-weighted structural
555  scan was also acquired (GRAPPA: TR = 3200 ms; TE = 347 ms; FoV = 256 mm; voxel size
556  1x1x1 mm; 176 sagittal slices).

The multi-attribute attention task (“MAAT”)

557 We designed a task to parametrically control top-down attention to multiple feature
558 dimensions, in the absence of systematic variation in bottom-up visual stimulation (see
559  Figure 1). Participants attended a dynamic square display that jointly consisted of four
560 attributes: color (red/green), movement direction (left, right), size (small, large) and saturation
561  (low, high). The task incorporates features from random dot motion tasks which have been
562  extensively studied in both animal models (Gold & Shadlen, 2007; Hanks & Summerfield,
563  2017; Siegel et al.,, 2015) and humans (Banca et al., 2015; Kelly & O'Connell, 2013).
564  Following the presentation of these displays, a probe queried the prevalence of one of the
565  four attributes in the display (e.g. whether the display comprised a greater proportion of
566  either smaller or larger squares). Prior to stimulus onset, valid cue presentation informed
567 participants about the active feature set, out of which one feature would be chosen as the
568 probe. We parametrically manipulated uncertainty regarding the upcoming probe by
569  systematically varying both the number and type of relevant features in the display.

570  The difficulty of each feature was determined by (a) the fundamental feature difference
571  between the two alternatives and (b) the sensory evidence for each alternative in the display.
572  For (a) the following values were used: high (RGB: 192, 255, 128) and low saturation green
573  (RGB: 255, 128, 149) and high (RGB: 128, 255, 0) and low saturated red (RGB: 255, 0, 43)
574  for color and saturation, 5 and 8 pixels for size differences and a coherence of .2 for
575  directions. For (b) the proportion of winning to losing option (i.e. sensory evidence) was
576  chosen as follows: color: 60/40; direction: 80/20; size: 65/35; luminance: 60/40. Parameter
577  difficulty was established in a pilot population, with the aim to produce above-chance
578  accuracy for individual features.

579  The experiment consisted of four runs of ~10 min, each consisting of eight blocks of eight
580 trials (i.e., a total of 32 trial blocks; 256 trials). The size and constellation of the cue set was
581  held constant within eight-trial blocks to reduce set switching and working memory demands.
582  Each trial was structured as follows: cue onset during which the relevant targets were
583  centrally presented (1 s), fixation phase (2 s), dynamic stimulus phase (3 s), probe phase
584  (incl. response; 2 s); ITI (un-jittered; 1.5 s). At the onset of each block, the valid cue
585 (attentional target set) was presented for 5 s. At the offset of each block, participants
586 received feedback for 3 s. The four attributes spanned a constellation of 16 feature
587  combinations (4x4), of which presentation frequency was matched within subjects. The size
588 and type of cue set was pseudo-randomized, such that every size and constellation of the
589  cue set was presented across blocks. Within each run of four blocks, every set size was
590 presented once, but never directly following a block of the same set size. In every block,
591 each feature in the active set acted as a probe in at least one trial. Moreover, any attribute
592  equally often served as a probe across all blocks. Winning options for each feature were
593  balanced across trials, such that (correct) button responses were equally distributed across
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594  the experiment. To retain high motivation during the task and encourage fast and accurate
595  responses, we instructed participants that one response would randomly be drawn at the end
596  of each block; if this response was correct and faster than the mean RT during the preceding
597  block, they would earn a reward of 20 cents. However, we pseudo-randomized feedback
598  such that all participants received a fixed payout of 10 € per session. This extra money was
599 paid in addition to the participation fee at the end of the second session, at which point
600 participants were debriefed.

Behavioral estimates of probe-related decision processes

601  Sequential sampling models, such as the drift-diffusion model (DDM (Ratcliff & McKoon,
602  2008)), have been used to characterize evolving perceptual decisions in 2-alternative forced
603  choice (2AFC) random dot motion tasks (Kelly & O'Connell, 2013), where the evolving
604  decision relates to overt stimulus dynamics. In contrast with such applications, evidence
605 integration here is tied to eidetic memory traces following the probe onset, similar to
606  applications during memory retrieval (Ratcliff, 1978) or probabilistic decision making (Frank
607 et al.,, 2015). Here, we estimated individual evidence integration parameters within the
608 HDDM 0.6.0 toolbox (Wiecki, Sofer, & Frank, 2013) to profit from the large number of
609 participants that can establish group priors for the relatively sparse within-subject data.
610 Independent models were fit to data from the EEG and the fMRI session to allow reliability
611 assessments of individual estimates. Premature responses faster than 250 ms were
612  excluded prior to modeling, and the probability of outliers was set to 5%. 7000 Markov-Chain
613 Monte Carlo samples were sampled to estimate parameters, with the first 5000 samples
614  being discarded as burn-in to achieve convergence. We judged convergence for each model
615 by visually assessing both Markov chain convergence and posterior predictive fits. Individual
616 estimates were averaged across the remaining 2000 samples for follow-up analyses.

617  We fitted data to correct and incorrect RTs (termed ‘accuracy coding‘ in Wiecki et al. (2013)).
618 To explain differences in decision components, we compared four separate models. In the
619  ‘full model’, we allowed the following parameters to vary between conditions: (i) the mean
620  drift rate across trials, (ii) the threshold separation between the two decision bounds, (iii) the
621  non-decision time, which represents the summed duration of sensory encoding and response
622  execution. In the remaining models, we reduced model complexity, by only varying (a) drift,
623  (b) drift + threshold, or (c) drift + NDT, with a null model fixing all three parameters. For
624  model comparison, we first used the Deviance Information Criterion (DIC) to select the model
625  which provided the best fit to our data. The DIC compares models on the basis of the
626  maximal log-likelihood value, while penalizing model complexity. The full model provided the
627  Dbest fit to the empirical data based on the DIC index (Figure S1B) in both the EEG and the
628 fMRI session. However, this model indicated an increase in decision thresholds (i.e.,
629  boundary separation) without an equivalent in the electrophysiological data (Figure S1C). We
630 therefore fixed the threshold parameter across conditions, in line with previous work
631  constraining model parameters on the basis of electrophysiological evidence (McGovern et
632 al., 2018).

EEG preprocessing

633  Preprocessing and analysis of EEG data were conducted with the FieldTrip toolbox
634  (Oostenveld, Fries, Maris, & Schoffelen, 2011) and using custom-written MATLAB (The
635  MathWorks Inc., Natick, MA, USA) code. Offline, EEG data were filtered using a 4™ order
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636  Butterworth filter with a pass-band of 0.5 to 100 Hz. Subsequently, data were down-sampled
637  to 500 Hz and all channels were re-referenced to mathematically averaged mastoids. Blink,
638 movement and heart-beat artifacts were identified using Independent Component Analysis
639  (ICA; Bell & Sejnowski, 1995) and removed from the signal. Artifact-contaminated channels
640 (determined across epochs) were automatically detected using (a) the FASTER algorithm
641  (Nolan, Whelan, & Reilly, 2010), and by (b) detecting outliers exceeding three standard
642  deviations of the kurtosis of the distribution of power values in each epoch within low (0.2-2
643  Hz) or high (30-100 Hz) frequency bands, respectively. Rejected channels were interpolated
644  using spherical splines (Perrin, Pernier, Bertrand, & Echallier, 1989). Subsequently, noisy
645  epochs were likewise excluded based on FASTER and on recursive outlier detection. Finally,
646  recordings were segmented to participant cues to open their eyes, and were epoched into
647  non-overlapping 3 second pseudo-trials. To enhance spatial specificity, scalp current density
648  estimates were derived via 4™ order spherical splines (Perrin et al., 1989) using a standard
649 1005 channel layout (conductivity: 0.33 S/m; regularization: 12-05; 14" degree polynomials).

Electrophysiological estimates of probe-related decision processes

650 Centroparietal Positive Potential (CPP). The centroparietal positive potential (CPP) is an
651  electrophysiological signature of internal evidence-to-bound accumulation (Kelly & O'Connell,
652  2013; McGovern et al., 2018; O'Connell et al., 2012). We probed the task modulation of this
653  established signature and assessed its convergence with behavioral parameter estimates.
654  To derive the CPP, preprocessed EEG data were low-pass filtered at 8 Hz with a 6™ order
655  Butterworth filter to exclude low-frequency oscillations, epoched relative to response and
656  averaged across trials within each condition. In accordance with the literature, this revealed a
657  dipolar scalp potential that exhibited a positive peak over parietal channel POz (see Figure
658 2). We temporally normalized individual CPP estimates to a condition-specific baseline
659  during the final 250 ms preceding probe onset. As a proxy of evidence drift rate, CPP slopes
660 were estimates via linear regression from -250 ms to -100 ms surrounding response
661  execution, while the average CPP amplitude from -50 ms to 50 ms served as an indicator of
662  decision thresholds (i.e., boundary separation) (e.g., McGovern et al., 2018).

663 To investigate whether a similar ‘ramping’ potential was observed during stimulus
664  presentation, we aligned data to stimulus onset and temporally normalized signals to the
665  condition-specific signal during the final 250 ms prior to stimulus onset. During stimulus
666  presentation, no ‘ramp’-like signal or load modulation was observed at the peak CPP
667 channel. This suggests that immediate choice requirements were necessary for the
668  emergence of the CPP, although prior work has shown the CPP to be independent of explicit
669  motor requirements (O'Connell et al., 2012).

670  Finally, we assessed whether differences between probed stimulus attributes could account
671  for load-related CPP changes (Figure S2C). For this analysis, we selected trials separately
672 by condition and probed attribute. Note that for different probes, but not cues, trials were
673  uniquely associated with each feature and trial counts were approximately matched across
674  conditions. We explored differences between different conditions via paired t-tests. To
675 assess load effects on CPP slopes and thresholds as a function of probed attribute, we
676  calculated 1%-level load effects by means of a linear model, and assessed their difference
677  from zero via paired t-tests.
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678  Contralateral mu-beta. Decreases in contralateral mu-beta power provide a
679  complementary, effector-specific signature of evidence integration (Donner et al., 2009;
680  McGovern et al., 2018). We estimated mu-beta power using 7-cycle wavelets for the 8-25 Hz
681 range with a step size of 50 ms. Spectral power was time-locked to probe presentation and
682  response execution. We re-mapped channels to describe data recorded contra- and ipsi-
683 lateral to the executed motor response in each trial, and averaged data from those channels
684  to derive grand average mu-beta time courses. Individual average mu-beta time series were
685  baseline-corrected using the -400 to -200 ms prior to probe onset, separately for each
686  condition. For contralateral motor responses, remapped sites C3/5 and CP3/CP5 were
687  selected based on the grand average topography for lateralized response executions (see
688 inset in Figure S2A). As a proxy of evidence drift rate, mu-beta slopes were estimates via
689 linear regression from -250 ms to -50 ms prior to response execution, while the average
690 power -50 ms to 50 ms served as an indicator of decision thresholds (e.g., McGovern et al.,
691  2018).

Electrophysiological indices of top-down modulation during sensation

692 Low-frequency alpha and theta power. We estimated low-frequency power via a 7-cycle
693  wavelet transform, using, for linearly spaced center frequencies in 1 Hz steps from 2 to 15
694  Hz. The step size of estimates was 50 ms, ranging from -1.5 s prior to cue onset to 3.5 s
695  following stimulus offset. Estimates were log10-transformed at the single trial level
696  (Smulders, ten Oever, Donkers, Quaedflieg, & van de Ven, 2018), with no explicit baseline.

697  High-frequency gamma power. Gamma responses were estimated using multi-tapers (five
698  tapers; discrete prolate spheroidal sequences) with a step size of 200 ms, a window length of
699 400 ms and a frequency resolution of 2.5 Hz. The frequency range covered frequencies
700  between 45-90 Hz, with spectral smoothing of 8 Hz. Estimates were log10-transformed at the
701  single trial level. We normalized individual gamma-band responses via single-trial z-
702 normalization. In particular, for each frequency, we subtracted single-trial power -700 to -100
703  ms prior to stimulus onset, and divided by the standard deviation of power values during the
704  same period. Finally, to account for baseline shifts during the pre-stimulus period, we
705  subtracted condition-wise averages during the same baseline period.

706  Multivariate assessment of spectral power changes with stimulus onset and
707  uncertainty. To determine changes in spectral power upon stimulus onset, and during
708  stimulus presentation with load, we entered individual power values into multivariate partial
709 least squares (PLS) analyses (see Multivariate partial least squares analyses) using the
710  MEG-PLS toolbox [version 2.02b] (Cheung, Kovacevic, Fatima, Misic, & Mcintosh, 2016).
711  We concatenated low- (2-15 Hz) and high-frequency (45-90 Hz) power matrices to assess
712 joint changes in the PLS models. To examine a multivariate contrast of spectral changes
713 upon stimulus onset (averaged across conditions) with spectral power in the pre-stimulus
714  baseline period, we performed a task PLS on data ranging from 500 ms pre-stim to 500 ms
715  post-stim. Temporal averages from -700 to -100 ms pre-stimulus onset were subtracted as a
716  baseline. To assess power changes as a function of probe uncertainty, we segmented the
717  data from 500 ms post stim onset to stimulus offset (to exclude transient evoked onset
718  responses), and calculated a task PLS concerning the relation between experimental
719  uncertainty conditions and time-space-frequency power values. As a control, we performed a
720  behavioral PLS analysis to assess the relevance of individual frequency contributions to the
721  behavioral relation. For this analysis, we computed linear slopes (target amount) for each
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722 time-frequency point at the 1% (within-subject) level, which were subsequently entered into
723 the 2" level PLS analysis. On the behavioral side, we assessed both linear changes in pupil
724  diameter, as well as drift rates during selective attention and linear decreases in drift rate
725  under uncertainty. Finally, spontaneous fluctuations in pre-stimulus power have been linked
726  to fluctuations in cortical excitability (lemi, Chaumon, Crouzet, & Busch, 2017; Lange,
727  Oostenveld, & Fries, 2013). We thus probed the role of upcoming processing requirements
728  on pre-stimulus oscillations, as well as the potential relation to behavioral outcomes using
729  task and behavioral PLS analyses. The analysis was performed as described above, but
730  restricted to time points occurring during the final second prior to stimulus onset.

731  Steady State Visual Evoked Potential (SSVEP). The SSVEP characterizes the phase-
732 locked, entrained visual activity (here 30 Hz) during dynamic stimulus updates (e.g., Ding,
733 Sperling, & Srinivasan, 2006). These features differentiate it from induced broadband activity
734  or muscle artefacts in similar frequency bands. We used these properties to normalize
735  individual single-trial SSVEP responses prior to averaging: (a) we calculated an FFT for
736  overlapping one second epochs with a step size of 100 ms (Hanning-based multitaper),
737  averaged them within each load condition and, (b) spectrally normalized 30 Hz estimates by
738  subtracting the average of estimates at 28 and 32 Hz, effectively removing broadband effects
739  (i.e., aperiodic slopes), (c) and finally, we subtracted a temporal baseline -700 to -100 ms
740  prior to stimulus onset. Linear load effects on SSVEPs were assessed by univariate cluster-
741  based permutation tests on channel x time data (see Univariate statistical analyses using
742 cluster-based permutation tests).

743  Time-resolved sample entropy. Sample entropy (Richman & Moorman, 2000) quantifies
744 the irregularity of a time series of length N by assessing the conditional probability that two
745  sequences of m consecutive data points will remain similar when another sample (m+17) is
746  included in the sequence (for a visual example see Figure 1A). Sample entropy is defined as
747  the inverse natural logarithm of this conditional similarity: SampEn(m,r,N) =

748  —log P . The similarity criterion (r) defines the tolerance within which two points are
p™(r)

749  considered similar and is defined relative to the standard deviation (~variance) of the signal
750  (here set to r = .5). We set the sequence length m to 2, in line with previous applications
751  (Kosciessa, Kloosterman, et al., 2020). An adapted version of sample entropy calculations
752  was used (Grandy, Garrett, Schmiedek, & Werkle-Bergner, 2016; Kloosterman, Kosciessa,
753  Lindenberger, Fahrenfort, & Garrett, 2019; Kosciessa, Kloosterman, et al., 2020), wherein
754  entropy is estimated across discontinuous data segments to provide time-resolved estimates.
755  The estimation of scale-wise entropy across trials allows for an estimation of coarse scale
756  entropy also for short time-bins, i.e., without requiring long, continuous signals, while quickly
757  converging with entropy estimates from continuous recordings (Grandy et al., 2016). To
758  remove the influence of posterior-occipital low-frequency rhythms on entropy estimates, we
759  notch-filtered the 8-15 Hz alpha band using 6™ order Butterworth filter prior to the entropy
760  calculation (Kosciessa, Kloosterman, et al., 2020). Time-resolved entropy estimates were
761  calculated for 500 ms windows from -1 s pre-stimulus to 1.25 s post-probe with a step size of
762 150 ms. As entropy values are implicitly normalized by the variance in each time bin via the
763  similarity criterion, no temporal baselining was used. Linear load effects on entropy were
764  assessed by univariate cluster-based permutation tests on channel x time data (see
765  Univariate statistical analyses using cluster-based permutation tests).

766  Aperiodic (1/f) slopes. The aperiodic 1/f slope of neural recordings is closely related to the
767  sample entropy of broadband signals (Kosciessa, Kloosterman, et al., 2020), and has been
21
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768  suggested as a proxy for ‘cortical excitability’ and excitation-inhibition balance (Gao et al.,
769  2017). Spectral estimates were computed by means of a Fast Fourier Transform (FFT) over
770  the final 2.5 s of the presentation period (to exclude onset transients) for 41 logarithmically
771  spaced frequencies between 2 and 64 Hz (Hanning-tapered segments zero-padded to 10 s)
772  and subsequently averaged. Spectral power was log10-transformed to render power values
773  more normally distributed across subjects. Power spectral density (PSD) slopes were derived
774 by linearly regressing log-transformed power values on log-transformed frequencies. The
775  spectral range from 7-13 Hz was excluded from the background fit to exclude a bias by the
776  narrowband alpha peak (Kosciessa, Kloosterman, et al., 2020) and thus to increase the
777  specificity to aperiodic variance. Linear load effects on 1/f slopes were assessed by
778  univariate cluster-based permutation tests on channel data (see Univariate statistical
779  analyses using cluster-based permutation tests).

780  Rhythm-specific estimates. Spectral power estimates conflate rhythmicity with aperiodic
781  events in time, space and magnitude (Kosciessa, Grandy, Garrett, & Werkle-Bergner, 2020).
782  Given that we observed changes in aperiodic slopes, we verified that observed narrowband
783  effects in the theta and alpha band describe narrowband changes in rhythmicity. For this
784  purpose, we identified single-trial spectral events using the extended BOSC method (Caplan,
785  Madsen, Raghavachari, & Kahana, 2001; Kosciessa, Grandy, et al., 2020; Whitten, Hughes,
786  Dickson, & Caplan, 2011). In short, this method identifies stereotypic ‘rhythmic’ events at the
787  single-trial level, with the assumption that such events have significantly higher power than
788  the 1/f background and occur for a minimum number of cycles at a particular frequency. This
789  procedure dissociates narrowband spectral peaks from the aperiodic background spectrum.
790  Here, we used a three-cycle threshold during detection, while defining the power threshold
791  as the 95" percentile above the individual background power. A 5-cycle wavelet was used to
792  provide the time-frequency transformations for 49 logarithmically-spaced center frequencies
793  between 1 and 64 Hz. Rhythmic episodes were detected as described in (Kosciessa,
794  Grandy, et al., 2020). Prior to fitting the 1/f slopes, the most dominant individual rhythmic
795  alpha peak between 8 and 15 Hz was removed, as well as the 28-32 Hz range, to exclude
796 the SSVEP. Detection of episodes was restricted to the time of stimulus presentation,
797  excluding the first 500 ms to reduce residual pre-stimulus activity and onset transients.
798  Within each participant and channel, the duration and SNR of individual episodes with a
799  mean frequency between 4-8 Hz (Theta) and 8-15 Hz (Alpha) were averaged across trials.
800 Effects of target number were assessed within the averaged spatial clusters indicated in
801  Figure 3 by means of paired t-tests.

Alpha-gamma phase-amplitude coupling (PAC)

802 We assessed alpha-phase-to-gamma-amplitude coupling to assess the extent of phasic
803  modulation of gamma power within the alpha band. As phase information is only
804 interpretable during the presence of a narrowband rhythm (Aru et al., 2015), we focused our
805  main analysis on 250 ms time segments following the estimated onset of a rhythm in the 8-
806 15 Hz alpha range (see Rhythm-specific estimates above; Figure 4A). This time window
807  ensured that segments fulfilled the 3-cycle criterion imposed during eBOSC rhythm detection
808 to ensure that a rhythm was present. We selected three occipital channels with maximal
809  gamma power (O1, O2, Oz; shown in Figure 4A) and pooled detected alpha episodes across
810 these channels. We pooled data across load conditions, as we observed no consistent PAC
811  within individual load conditions (data not shown), perhaps due to low episode counts. To
812  derive the alpha carrier phase, we band-pass filtered signals in the 8-15 Hz band, and
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813 estimated the analytic phase time series via Hilbert transform. For the amplitude of
814  modulated frequencies, we equally applied band-pass filters from 40 to 150 Hz (step size: 2
815  Hz), with adaptive bandwidths (+/- 20% of center frequency). Filtering was implemented
816  using MATLAB'’s acausal filtfilt() routine using linear finite impulse response (FIR) filters with
817 an adaptive filter order set as 3 times the ratio of the sampling frequency to the low-
818  frequency cutoff (Tort et al., 2008). For each applied bandpass filter, we removed 250 ms at
819  each edge to avoid filter artifacts. For each frequency, narrowband signals were z-scored to
820  normalize amplitudes across frequencies, and absolute values of the Hilbert-derived complex
821  signal were squared to produce instantaneous power time series. We estimated the MI
822  between the 8-15 Hz phase and high-frequency power via normalized entropy (Tort et al.,
823  2008) using 16 phase bins. Power estimates were normalized by dividing the bin-specific
824  power by the sum of power across bins. To make MI estimates robust against random
825  coupling, we estimated MI for 1000 surrogate data, which shuffled the trial association of
826  phase and amplitude information. We subtracted the mean surrogate Ml value from the
827  original Ml index for a final, surrogate-normalized MI estimate. The resulting Ml estimates
828 across frequencies were then subjected to a cluster-based permutation test to assess
829  significant clusters from zero using paired t-tests. For Figure 4B, we followed the procedure
830 by Canolty et al. (2006). Alpha troughs were identified as local minima of phases < [-pi+.01].
831  For visualization, data were averaged across center frequencies from 80-150 Hz, as
832  significant coupling overlapped with this range. We performed identical analyses for the 250
833  ms periods prior to rhythm onset (grey shading in Figure 4A) as a control condition. We
834  performed analogous phase-amplitude-coupling analyses for the Mean Vector Length (MVL;
835  Canolty et al., 2006) index, with comparable results (data not shown).

Analyses of pupil diameter

836  Pupil diameter was recorded during the EEG session using EyeLink 1000 at a sampling rate
837  of 1000 Hz, and was analyzed using FieldTrip and custom-written MATLAB scripts. Blinks
838  were automatically indicated by the Eyelink software (version 4.40). To increase the
839  sensitivity to periods of partially occluded pupils or eye movements, the first derivative of
840  eye-tracker-based vertical eye movements was calculated, z-standardized and outliers >= 3
841  STD were removed. We additionally removed data within 150 ms preceding or following
842  indicated outliers. Finally, missing data were linearly interpolated and data were epoched to
843 3.5 s prior to stimulus onset to 1 s following stimulus offset. We quantified phasic arousal
844  responses via the 1% temporal derivative (i.e. rate of change) of pupil diameter traces, as this
845  measure (i) has higher temporal precision and (ii) has been more strongly associated with
846  noradrenergic responses than the overall response (Reimer et al., 2014). We downsampled
847  pupil time series to 200 Hz. For visualization, but not statistics, we smoothed pupil traces
848  using a moving average median of 200 ms. We statistically assessed a linear load effect
849  using a cluster-based permutation test on the 1D pupil traces (see Univariate statistical
850 analyses using cluster-based permutation tests). For post-hoc assessments, we extracted
851  the median pupil derivative during the first 1.5 s following stimulus onset.

fMRI-based analyses

852  Preprocessing of functional MRI data. fMRI data were preprocessed with FSL 5
853 (RRID:SCR_002823) (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012; S. M. Smith
854 et al., 2004). Pre-processing included motion correction using McFLIRT, smoothing (7mm)
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855  and high-pass filtering (.01 Hz) using an 8™ order zero-phase Butterworth filter applied using
856 MATLAB’s filtfilt function. We registered individual functional runs to the individual, ANTs
857  brain-extracted T2w images (6 DOF), to T1w images (6 DOF) and finally to 3mm standard
858 space (ICBM 2009c MNI152 nonlinear symmetric) (Fonov et al., 2011) using nonlinear
859  transformations in ANTs (Avants et al.,, 2011). (For one participant, no T2w image was
860 acquired and 6 DOF transformation of BOLD data was preformed directly to the T1w
861  structural scan.) We then masked the functional data with the ICBM 2009c GM tissue prior
862  (thresholded at a probability of 0.25), and detrended the functional images (up to a cubic
863  trend) using SPMS8.

864 We also used a series of extended preprocessing steps to further reduce potential non-
865 neural artifacts (Garrett, Kovacevic, Mcintosh, & Grady, 2010; Garrett et al., 2015).
866  Specifically, we examined data within-subject, within-run via spatial independent component
867  analysis (ICA) as implemented in FSL-MELODIC (Beckmann & Smith, 2004). Due to the high
868  multiband data dimensionality in the absence of low-pass filtering, we constrained the
869  solution to 30 components per participant. Noise components were identified according to
870  several key criteria: a) Spiking (components dominated by abrupt time series spikes);
871  b) Motion (prominent edge or “ringing” effects, sometimes [but not always] accompanied by
872  large time series spikes); c) Susceptibility and flow artifacts (prominent air-tissue boundary or
873  sinus activation; typically represents cardio/respiratory effects); d) White matter (WM) and
874  ventricle activation (Birn, 2012); e) Low-frequency signal drift (A. M. Smith et al., 1999); f)
875  High power in high-frequency ranges unlikely to represent neural activity (= 75% of total
876  spectral power present above .10 Hz;); and g) Spatial distribution (“spotty” or “speckled”
877  spatial pattern that appears scattered randomly across = 25% of the brain, with few if any
878  clusters with = 80 contiguous voxels [at 2x2x2 mm voxel size]). Examples of these various
879  components we typically deem to be noise can be found in (Garrett, Mcintosh, & Grady,
880  2014). By default, we utilized a conservative set of rejection criteria; if manual classification
881  decisions were challenging due to mixing of “signal” and “noise” in a single component, we
882  generally elected to keep such components. Three independent raters of noise components
883  were utilized; > 90% inter-rater reliability was required on separate data before denoising
884  decisions were made on the current data. Components identified as artifacts were then
885  regressed from corresponding fMRI runs using the regfilt command in FSL.

886  To reduce the influence of motion and physiological fluctuations, we regressed FSL’s 6 DOF
887  motion parameters from the data, in addition to average signal within white matter and CSF
888  masks. Masks were created using 95% tissue probability thresholds to create conservative
889  masks. Data and regressors were demeaned and linearly detrended prior to multiple linear
890  regression for each run. To further reduce the impact of potential motion outliers, we
891  censored significant DVARS outliers during the regression as described by (Power et al.,
892  2014). In particular, we calculated the ‘practical significance’ of DVARS estimates and
893  applied a threshold of 5 (Afyouni & Nichols, 2018). The regression-based residuals were
894  subsequently spectrally interpolated during DVARS outliers as described in (Power et al.,
895 2014) and (Parkes, Fulcher, Yucel, & Fornito, 2018). BOLD analyses were restricted to
896  participants with both EEG and MRI data available (N = 42).

897 1% level analysis: univariate beta weights for load conditions. We conducted a 1% level
898  analysis using SPM12 to identify beta weights for each load condition separately. Design
899  variables included stimulus presentation by load (4 volumes; parametrically modulated by
900 sequence position), onset cue (no mod.), probe (2 volumes, parametric modulation by RT).
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901  Design variables were convolved with a canonical HRF, including its temporal derivative as a
902 nuisance term. Nuisance regressors included 24 motion parameters (Friston, Williams,
903 Howard, Frackowiak, & Turner, 1996), as well as continuous DVARS estimates.
904  Autoregressive modelling was implemented via FAST. Output beta images for each load
905  condition were finally averaged across runs.

906 2" level analysis: Multivariate modulation of BOLD responses. We investigated the
907  multivariate modulation of the BOLD response at the 2™ level using PLS analyses (see
908  Multivariate partial least squares analyses). Specifically, we probed the relationship between
909  voxel-wise 1% level beta weights and probe uncertainty within a task PLS. Next, we assessed
910 the relationship between task-related BOLD signal changes and interindividual differences in
911 the joint modulation of decision processes, cortical excitability, and pupil modulation by
912 means of a behavioral PLS. For this, we first calculated linear slope coefficients for voxel-
913 wise beta estimates. Then, we included behavioral variables including HDDM parameter
914  estimates during selective attention, as well as linear changes with load, individual linear
915 condition modulation of the following variables: multivariate spectral power, pupil dilation, 1/f
916 modulation and entropy residuals. Prior to these covariates in the model, we visually
917 assessed whether the distribution of linear changes variables was approximately Gaussian.
918 In the case of outliers (as observed for the SPMF, 1/f slopes, and entropy), we winsorized
919 values at the 95™ percentile. For visualization, spatial clusters were defined based on a
920  minimum distance of 10 mm, and by exceeding a size of 25 voxels. We identified regions
921 associated with peak activity based on cytoarchitectonic probabilistic maps implemented in
922  the SPM Anatomy Toolbox (Version 2.2c) (Eickhoff et al., 2005). If no assignment was found,
923  the most proximal assignment to the coordinates reported in Table S1 within the cluster was
924  reported.

925 Temporal dynamics of thalamic engagement. To visualize the modulation of thalamic
926  activity by load, we extracted signals within a binary thalamic mask extracted from the Morel
927  atlas, including all subdivisions. Preprocessed BOLD timeseries were segmented into trials,
928  spanning the period from the stimulus onset to the onset of the feedback phase. Given a
929  time-to-peak of a canonical hemodynamic response function (HRF) between 5-6 seconds,
930  we designated the 3 second interval from 5-8 seconds following the stimulus onset trigger as
931 the stimulus presentation interval, and the 2 second interval from 3-5 s as the fixation
932 interval, respectively. Single-trial time series were then temporally normalized to the temporal
933  average during the approximate fixation interval. To visualize inter-individual differences in
934  thalamic engagement, we performed a median split across participants based on their
935 individual drift modulation.

936  Thalamic loci of behavioral PLS. To assess the thalamic loci of most reliable behavioral
937 relations (Figure S5C), we assessed bootstrap ratios within two thalamic masks. First, for
938  nucleic subdivisions, we used the Morel parcellation scheme as consolidated and kindly
939  provided by (Hwang et al., 2017) for 3 mm data at 3T field strength. The abbreviations are as
940  follows: AN: anterior nucleus; VM: ventromedial; VL: ventrolateral; MGN: medial geniculate
941 nucleus; LGN: lateral geniculate nucleus; MD: mediodorsal; PuA: anterior pulvinar; LP:
942  lateral-posterior; IL: intra-laminar; VA: ventral-anterior; PuM: medial pulvinar; Pul: pulvinar
943  proper; PuL: lateral pulvinar. Second, to assess cortical white-matter projections we
944  considered the overlap with seven structurally-derived cortical projection zones suggested
945 by (Horn & Blankenburg, 2016), which were derived from a large adult sample (N=169). We

25


https://doi.org/10.1101/2020.06.22.165118
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.22.165118; this version posted June 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

946  binarized continuous probability maps at a relative 75% threshold of the respective maximum
947  probability, and re-sliced masks to 3 mm size.

Statistical analyses

948  Assessment of covarying load effect magnitudes between measures. To assess a linear
949  modulation of dependent variables, we calculated 1% level beta estimates for the effect of
950 load (y = intercept+B*LOAD+e) and assessed the slope difference from zero at the group
951 level using paired t-tests. We assessed the relation of individual load effects between
952  measures of interest by means of partial repeated measures correlations. In a simplified
953  form, repeated measured correlation (Bakdash & Marusich, 2017) fits a linear model
954  between two variables x1 and x2 of interest, while controlling for repeated assessments
955  within subjects [x1~1+B1*ID+pB2*x2+e] (1). Crucially, to exclude bivariate relations that
956  exclusively arise from joint main effects of number of targets, we added target load as an
957  additional categorical covariate [x1~1+B1*ID+B2*LOAD+p3*x2+e] (2) to remove group
958 condition means. Resulting estimates characterize the group-wise coupling in the (zero-
959  centered) magnitude of changes between the DV and the IV across the four load levels. To
960 identify the directionality of the coupling, we assessed the direction of main effects for x1 and
961 x2. We statistically compared this model to a null model without the term of interest
962 [x1~1+B1*ID+B2*LOAD +e] (3) to assess statistical significance. We report the bivariate
963 residual effect size by assessing the square root of partial eta squared. We extend this model
964  with additional beta*covariate terms when reporting control for additional covariates.

965  Within-subject centering. To better visualize effects within participants, we use within-
966  subject centering across repeated measures conditions by subtracting individual condition
967 means, and adding global means. For these visualizations, only the mean of the dependent
968 values is directly informative, as the plotted spread reflects within-subject, and not between-
969  subject, variation. This procedure is similar to the creation of within-subject standard errors.
970  Within-subject centering is exclusively used for display, but not statistical calculations.

971  Univariate cluster-based permutation analyses. For data with a low-dimensional structure
972  (e.g., based on a priori averaging or spatial cluster assumptions), we used univariate cluster-
973  based permutation analyses (CBPASs) to assess significant modulations by target load or with
974  stimulus onset. These univariate tests were performed by means of dependent samples t-
975  tests; cluster-based permutation tests (Maris & Oostenveld, 2007) were performed to control
976  for multiple comparisons. Initially, a clustering algorithm formed clusters based on significant
977  t-tests of individual data points (p <.05, two-sided; cluster entry threshold) with the spatial
978  constraint of a cluster covering a minimum of three neighboring channels. Then, the
979  significance of the observed cluster-level statistic, based on the summed t-values within the
980 cluster, was assessed by comparison to the distribution of all permutation-based cluster-level
981  statistics. The final cluster p-value that we report in all figures was assessed as the
982  proportion of 1000 Monte Carlo iterations in which the cluster-level statistic was exceeded.
983  Cluster significance was indicated by p-values below .025 (two-sided cluster significance
984  threshold).

985  Multivariate partial least squares analyses. For data with a high-dimensional structure, we
986  performed multivariate partial least squares analyses (Krishnan, Williams, McIntosh, & Abdi,
987  2011; MclIntosh, Bookstein, Haxby, & Grady, 1996; McIntosh & Lobaugh, 2004). To assess
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988  main effect of probe uncertainty or stimulus onset, we performed Task PLS analyses. Task
989  PLS begins by calculating a between-subject covariance matrix (COV) between conditions
990 and each neural value (e.g., time-space-frequency power), which is then decomposed using
991 singular value decomposition (SVD). This yields a left singular vector of experimental
992  condition weights (U), a right singular vector of brain weights (V), and a diagonal matrix of
993  singular values (S). Task PLS produces orthogonal latent variables (LVs) that reflect optimal
994  relations between experimental conditions and the neural data. To examine multivariate
995 relations between neural data and other variables of interest, we performed behavioral PLS
996 analyses. This analysis initially calculates a between-subject correlation matrix (CORR)
997  between (1) each brain index of interest (e.g., spectral power, 1% level BOLD beta values)
998 and (2) a second ‘behavioral’ variable of interest (note that although called behavioral, this
999 variable can reflect any variable of interest, e.g., behavior, pupil dilation, spectral power).
1000 CORR is then decomposed using singular value decomposition (SVD): SVDcorr = USV’,
1001  which produces a matrix of left singular vectors of cognition weights (U), a matrix of right
1002  singular vectors of brain weights (V), and a diagonal matrix of singular values (S). For each
1003 LV (ordered strongest to weakest in S), a data pattern results which depicts the strongest
1004 available relation to the variable of interest. Significance of detected relations of both PLS
1005  model types was assessed using 1000 permutation tests of the singular value corresponding
1006 to the LV. A subsequent bootstrapping procedure indicated the robustness of within-LV
1007  neural saliences across 1000 resamples of the data (Efron & Tibshirani, 1986). By dividing
1008  each brain weight (from V) by its bootstrapped standard error, we obtained “bootstrap ratios”
1009  (BSRs) as normalized robustness estimates. We generally thresholded BSRs at values of
1010 +3.00 (~99.9% confidence interval). We also obtained a summary measure of each
1011  participant’s robust expression of a particular LV’s pattern (a within-person “brain score”) by
1012 either (1) multiplying the vector of brain weights (V) from each LV by within-subject vectors of
1013  the neural values (separately for each condition within person) for the Task PLS models, or
1014 (2) in the behavioral PLS model, by multiplying the model-based vector of weights (V) by
1015  each participant’s vector of neural values (P), producing a single within-subject value: Brain
1016  score = VP".
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Text S1. Parameter interrelations. To better understand individual differences in behavioral
performance, we explored inter-individual associations between model parameter estimates and ‘raw’
median RT and mean accuracy. Linear drift rate decreases were inter-individually associated with
decreases in accuracy (EEG: r = .35, p = .015, MRI: r = .46, p = .001), but not RT increases (both p >
.05), whereas non-decision-time (NDT) increases tracked individual RT increases (EEG: r = .56, p = 3e-
5, MRI: r = .64, p = 2e-6), but not accuracy decreases (both p > .05). For single targets, faster RTs were
associated with larger drift rates (EEG: r = -.63, p = 3e-6, MRI: r = -.47, p = .002), lower non-decision
times (EEG: r = .41, p =.005, MRI: r = .58, p = 3e-5), and lower boundary separation (EEG: r = .58, p =
3e-5, MRI: r = .5, p = 6e-4). More accurate performance for single targets was related to higher drift
rates (EEG: r = .74, p = 3e-9; MRI: r = .79, p = 3e-10), but unrelated to boundary separation (EEG: r =
.23, p =.121, MRI: r = .18, p = .244) or non-decision times (EEG: r = -.27, p =.069, MRIl: r = -.38, p =
.011). Amongst model parameters, we observed no parameter relations for single targets (all p > .05).
However, we observed intercept-change correlations: subjects with larger drift rates for single targets
exhibited strong linear drift rate reductions (EEG: r =-.93, p = 4e-22, MRI: r =-.88, p = 1e-15). Moreover,
subjects with larger boundary separation showed stronger linear increases in non-decision time (r = .46,
p = 9e-4, MRI: r = .59, p =2e-5). Non-decision time under selective attention, putatively dominantly
reflecting visual encoding time, did not relate to changes in drift rate or NDT (both p > .05). Similarly,
boundary separation did not relate to drift rate decreases (both p > .05) and drift rates under selective
attention were unrelated to NDT increases (both p > .05).

Text S2. Behavioral benefits due to convergent responses. To reduce response mapping demands
following probe presentation, we fixed response mapping for the two options of each feature throughout
the experiment. Given that multiple attributes converge onto a similar response in a given trial, the
potential to prepare motor action prior to probe presentation co-varies as a function of load. To assess
the influence of this response agreement on our results, we ran an additional HDDM that simultaneously
modelled both a main effect of load, as well as categorical response agreement. Notably, the obtained
target load effects on drift rate and NDT were virtually identical to those observed in the selected model
in both sessions (reliability of all linear effects: r >= .9 p <.001; data not shown), while linear decreases
in drift and increases in NDT were also observed as a function of response divergence (i.e., lower drift
and higher NDT if the probed attribute required a differential response than the other cued attributes;
shown in Figure S1D for the EEG session; qualitatively similar results were obtained for MRI session;
all linear effects p < .001). This suggests that response agreement systematically impacted decision
processes, but cannot account for the main effects of target load. However, the large amount of added
model parameters introduced partial convergence issues. We therefore chose the simpler model without
response agreement for our main analyses.

Text S3. NDT increases indicate extended motor preparation demands. We observed a parametric
increase in non-decision time (NDT) with target uncertainty (Figure 2B) that described shifts in RT
distribution onset (Figure S3A). NDT is thought to characterize the duration of processes preceding and
following evidence accumulation, i.e., probe encoding and planning/execution of the motor response.
We therefore examined sensory probe- and response-related ERP components regarding their
modulation by prior target uncertainty. We time-locked the CPP to the NDT group estimate for a single
target — for which no button remapping was required — and (2) to the condition-wise NDT estimate.
However, we observed no shift in CPP onset (Figure S3B), suggesting constant visual encoding time.
To probe increases during response preparation, we assessed parametric changes in ERP amplitudes
during the interval spanning the final 100 ms prior to response. This interval covered the timeframe of
indicated NDT increases, after accounting for the constant probe encoding duration (Figure S3B).
Notably, we observed a late frontal potential that increased in amplitude (Figure S3D) and whose onset
corresponded to the temporal NDT shift (Figure S3C) after controlling for constant encoding duration
(Figure S3B). This suggests that baseline NDT estimates approximate the duration of probe encoding
(Nunez, Vandekerckhove, & Srinivasan, 2017), whereas NDT increases characterize increased
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demands for transforming the sensory decision into a motor command (Lui et al., 2018). This further
suggests that drift diffusion modelling successfully dissociated contributions from evidence integration,
sensory encoding, and motor preparation. Interestingly, evidence accumulation consistently peaked
at/near response execution, suggesting that additional motor demands may unravel in parallel, rather
than succeed finished integration (as is often assumed in sequential sampling models).

Text S4. Behavioral PLS of spectral power during sensation. Task PLS describes the multivariate
co-variation of spectral power with load. However, inter-individual behavioral differences may relate to
power changes in specific bands. To probe whether inter-individual relations of power modulation to
behavior would vary from the mean changes as identified via task PLS, we calculated a behavioral PLS
by considering the individual linear change in spectral power with target uncertainty. This revealed a
similar multivariate loading pattern as observed for the task PLS (Figure S4B), with high agreement
between individual brainscores (r = .7, p <.001), suggesting that the identified frequency ranges jointly
contributed to behavioral relations.

Text S5. Pre-stimulus alpha power increases with load, but does not relate to behavioral changes
or power changes during sensation. Furthermore, decreases in pre-stimulus alpha power have been
linked to increases in cortical excitability at stimulus onset (lemi, Chaumon, Crouzet, & Busch, 2017;
Lange, Oostenveld, & Fries, 2013). To probe whether expected uncertainty modulated pre-stimulus
alpha power, we performed another task PLS, covering the final second of the fixation interval prior to
stimulus onset. This analysis indicated that pre-stimulus alpha power increased alongside uncertainty
(Figure S4C). Notably, in contrast to current results, elevated levels of anticipatory alpha power are
often associated with decreased gamma power upon stimulus onset. Notably, linear models did not
indicate associations between pre-stimulus alpha power increases across load with either drift rate
decreases [r(137) = 0.02, 95%CI [-0.15, 0.18], p = 0.86], non-decision time increases [r(137) = 0.06,
95%CI [-0.1, 0.23], p = 0.45] or increases on the SPMF [r(137) = -0.13, 95%CI [-0.29, 0.04], p = 0.13].
These results are in line with increasing evidence suggesting that anticipatory alpha power modulation
more closely tracks subjective confidence in upcoming decisions than sensory fidelity (Benwell et al.,
2017; Limbach & Corballis, 2016).

Text S6. SSVEP magnitude is not modulated during sensation. Moreover, SSVEP magnitude has
been suggested as a signature of encoded sensory information (O'Connell, Dockree, & Kelly, 2012),
that is enhanced by attention (Morgan, Hansen, & Hillyard, 1996; Muller et al., 2006) and indicates
fluctuations in excitability (Zhigalov, Herring, Herpers, Bergmann, & Jensen, 2019). However, despite a
clear SSVEP signature, we did not observe significant effects of encoding demands on the global
SSVEP magnitude (Figure S4D). As attentional effects on SSVEP magnitude have been shown to vary
by SSVEP frequency (Ding, Sperling, & Srinivasan, 2006), the 30 Hz range may have been suboptimal
here. Furthermore, the SSVEP frequency was shared across different features, thus not allowing us to
assess whether uncertainty modulated the selective processing of single features. Implementing
feature-specific flicker frequencies may overcome such limitations in future work, and allow to assess
the changes in feature-specific processing under uncertainty.

Text S7. Rhythm-specific indices in theta and alpha band relate to multivariate spectral power
modulation. Finally, as spectral power conflates rhythmic and arrhythmic signal contributions in
magnitude, space and time (Kosciessa, Grandy, Garrett, & Werkle-Bergner, 2020), we performed
single-trial rhythm detection, observing similar decreases in the duration and power of alpha rhythms
(see Figure S4E) that were jointly related to stronger increases on the latent factor [duration: r(137) = -
0.61, 95%CI [-0.71, -0.49], p = 1.31e-15; power: r(137) = -0.63, 95%ClI [-0.72, -0.52], p = 9.66e-17].
Notably, this analysis indicated increases in theta duration, but not power, suggesting that narrowband
theta power changes mainly reflected modulations in the duration of non-stationary theta rhythms, rather
than changes in their strength. In line with this suggestion, increases on the spectral power factor related
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to increases in theta duration [r(137) = 0.19, 95%CI [0.02, 0.35], p = 0.03], but not theta SNR [r(137) =
0.09, 95%CI [-0.08, 0.25], p = 0.31].

Text S8. A second LV may indicate decreased task engagement due to heightened difficulty
at higher uncertainty levels. A 2nd significant LV (p =.012) indicated strong positive loadings in angular
gyrus, middle frontal gyrus, and inferior frontal gyrus, as well as occipital cortex (see Figure S5A).
Negative loadings were observed dominantly in medial PFC, precuneus and V5. This component
increased from selective attention to target load 2, but then declined towards higher loads. Decreases
in angular gyrus have been strongly to increased visual working memory load (Sheremata, Somers, &
Shomstein, 2018; Todd & Marois, 2004). Increases in DMN regions, in addition to decreased prefrontal
activity suggest that this component reflects relative task disengagement towards high load conditions,
while increases in lateral visual cortex may reflect increased entrainment, and lack of top-down
inhibition. In line with more negative loadings on this component being detrimental, we observed that
inter-individually higher brainscores (i.e., positive loadings) were associated with lower non-decision
times during selective attention (r = -0.46, p = .002), while stronger within-subject decreases with load
were associated with larger individual NDT increases [r(122) = -0.18, 95%CI [-0.35, -0.01], p = 0.04] but
not changes in drift rate [r(122) = 0.01, 95%CI [-0.17, 0.18], p = 0.95]. Larger decreases on this
component were moreover related to more constrained increases in spectral modulation [r(122) = 0.39,
95%CI [0.23, 0.53], p = 6.83e-6]. Jointly, this suggests that individual drop-offs in the positive cluster of
regions reflects decreased task engagement under increased difficulty, with adverse behavioral
consequences.
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Figure S1. Additional behavioral analyses. (A1) Accuracies for single target cue and maximum
target uncertainty. For all features, mean accuracy was above chance accuracy (0.5, indicated by
broken lines) at the group level. Dots indicate individual accuracies. *** = p < .001 (paired t-test vs.
chance accuracy). (A2) Reaction times and accuracies by load. All linear effects were significant (p
<.001). (B-C) HDDM model comparison. (B) DIC-based model comparison indicates that full model,
including threshold modulation, provides the best group fit to the behavioral data. However, load-related
threshold increases (C) were not supported by EEG-based signatures (D). The inset shows an additional
comparison of the selected model with an alternative model including starting point variation across load
levels (displayed in red). Due to very constrained fit improvements, we selected the simpler model
without starting point variation for further analyses. (C) Threshold increases in full model are not
indicated by electrophysiology. The full model indicates additional threshold (also called boundary
separation) increases with added target load, with qualitatively identical effects on drift rate and NDT
(not shown). Boundary separation captures the conservativeness of the decision criterion and has been
related to decision conflict during the choice process (e.g., Cavanagh et al.,, 2011). EEG-based
signatures of evidence integration do not indicate threshold differences. While the full model suggested
increased boundary separation, neither of the electrophysiological proxies (i.e., CPP, contralateral beta)
of evidence bounds mirrors such increases. While this suggests the absence of threshold increases
(McGovern, Hayes, Kelly, & O'Connell, 2018), it alternately questions the sensitivity of
electrophysiological threshold estimates, which should be investigated with specific threshold
modulations, such as speed-accuracy trade-off instructions, in future work. (D) Differences in
response convergence do not account for main effects of target load. A separate model including
both target load and response convergence indicated practically identical NDT and drift rate effects of
target amount, while highlighting additional linear effects of response convergence. Data are
individually-centered across conditions. (E-F) Reliability of individual parameter estimates across
sessions. A separate hierarchical DDM was fit to data from each session. (E) Similar group-level effects
were indicated for the MRI and EEG (cf. Figure 2B) session: whereas drift rate decreased with load,
non-decision time increased. (F) Session reliability of inter-individual differences was high both for
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single-target performance and for linear changes with target load. Reliability was also high for threshold
estimates (r = .79, p = 6e-10). [* p <.05; ** p <.01; *** p < .001]
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Figure S2. Additional drift rate analyses. (A) The slope of lateralized motor preparation indicates
load-related decreases in drift rate. (A) Slopes of contralateral mu-beta power shallows with
increasing attentional load levels. The inset displays linear slope estimates, estimated via linear
regression from -250 ms to -50 ms, relative to response. (B) Topography of response-locked mu-beta
power, averaged from -50 ms to +50 ms around response. White dots indicate the contralateral channels
from which data was extracted. (B) The centro-parietal positive potential (CPP) does not show clear
ramping increases during stimulus presentation. The yellow background indicated the stimulus
presentation period. Note the modulated ramping following the probe onset at the end of stimulus
presentation. The inset shows the topography of the grand average ERPs, temporally averaged during
the final 2 seconds of the stimulus presentation period. The black dot indicates channel POz, at which
the group-wise CPP was maximal (see Figure 2C1). (C) Differences between probed stimulus
attributes do not account for drift rate decreases under target load. (A) Response-locked CPP as
a function of probed attribute, shown for the single target (complete lines) and four target (broken lines)
conditions. Data were selected by condition and probed (cf. cued), attribute, ensuring that unique trials
contributed to each load condition. (B) Comparison of CPP slopes and thresholds for different probed
features, when the probe target was known in advance. Slopes and thresholds were increased for
direction than for other attributes, indicating relatively larger available evidence and more cautious
responses (putatively ‘easier’ feature). (C) Load effect of CPP slopes and thresholds for different probed
feature attributes. CPP slopes (i.e., evidence drift) exhibited load-related decreases for each probed
attribute, whereas no threshold modulation was indicated for any of the probed attributes. [* p <.05; ** p
<.01; *** p <.001]
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Figure S3. Non-decision time (NDT) increases putatively relate to additional motor demands, not
temporal delays in CPP onset. (A) NDT estimates describe the onset of individual RT
distributions (see also Lui et al., 2018). Response counts (here shown for EEG session) were sorted
into 40 bins of 50 ms each. White lines indicate individual NDT estimates; the red dotted line indicates
NDT estimates for the single-target condition. (B, C) Relation of visual encoding and frontal potential
to indicated NDT increases. When response preparation can be made in advance (i.e., when only a
single target is indicated) and probe onset only requires response execution, the average NDT estimate
aligns with the onset of the CPP (B, top). However, load-related increases in NDT occur in the absence
of temporal shifts in CPP onset (B, bottom). In C, arrows indicate the average probe onset time in each
condition. In contrast, a frontal potential (see D) increases around the time of residual NDT increases
(i.e., NDT estimate for each condition minus constant NDT from single-target condition; C, bottom). In
D, arrows indicate the average response time in each condition. (D) A frontal potential increase prior
to response, suggesting that observed NDT increase reflect additional motor preparation
demands (e.g., button remapping). Left: Topography of test for linear ERP changes as a function of
load during the final 200 ms prior to response. Clusters in white did not exhibit changes that were
exclusive to the period preceding the response (data not shown). Center: Extracted traces averaged
within the frontal cluster shown with black asterisks on the left. Right: Post-hoc tests on amplitudes of

the frontal potential across the final 100 ms prior to response. Data are individually centered across
target loads. [* p <.05; ** p <.01; *** p < .001]
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Figure S4. Additional spectral power analyses prior and during sensation. (A) Multivariate
baseline changes and behavioral PLS. Note that data correspond to the different clusters indicated
in Figure 3A. (B) Behavioral PLS, linking linear multivariate spectral power changes with target #
to drift rate decreases and pupil diameter modulation. (C) Parieto-occipital pre-stimulus alpha
power increases with target load but is not related to drift changes (see Text S4). (D) SSVEP
amplitude is not modulated by attentional load. Top: Time-resolved, spectrally-normalized, SSVEP
power, averaged across occipital channels (O1, Oz, O2), indicates SSVEP presence during stimulus
presentation. Bottom left: Topography of stimulus-evoked SSVEP contrast minus baseline. Black dots
indicate significant channels as indicated by CBPA. Bottom right: No linear load-related SSVEP
modulation was indicated by CBPA. (E) Modulation of rhythm-specific duration and power by target
number. Left: Schematic of the assessment of amplitude and duration from non-stationary rhythmic
events. Right: Topographies of relative theta and alpha occurrence (‘abundance’), averaged across
target levels. Orange dots indicate the channels used to extract the data in E, which were the same
channels also used in Figure 3AB. Target load decreased alpha duration and power and increased theta
duration, but not power. Data are individually centered across target loads. [* p <.05; ** p <.01; " p <
.001]
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Figure S5. Additional BOLD analyses. (A, B) Full multivariate brainscore loadings for the two
significant latent variables (LVs) produced by the task PLS (A) and behavioral PLS (B). (A2 left)
The brainscore loadings of the second LV designate an initial increase followed by a subsequent
decrease towards higher target loads. Data are individually centered across target loads. Thus, the
negative components of the pattern expressed on the right become more strongly activated at low and
high loads, whereas the positive components are maximally expressed when two targets are relevant.
(C) Thalamic BOLD magnitude for a median split of high- and low drift rate modulators. The inset
shows the thalamic ROl in a glass brain view. [* p <.05; ** p <.01; *** p <.001]
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Table S1. PLS model peak activations, bootstrap ratios, and cluster sizes.

MNI Coordinates

Model Region Hem X Y Z BSR #Voxels
Mid-cingulate cortex (MCC) L -6 15 42 13.42 2708
Inferior Parietal Lobule (IPS) L -45 -45 45 11.14 2664
Insula Lobe (anterior) R 33 18 -3 10.86 175
[33.021.0 -3]
Inferior Occipital Gyrus L -57 -69 -12 10.1 702
[-54 -69 -12]
Thalamus L -6 -30 -3 9.93 1121
[-8-27 -2]
Superior Frontal Gyrus R 27 -3 54 9.47 880
taskPLS Inferior Temporal Gyrus R 51 -60 -12 6.72 265
LV1 Superior Orbital Gyrus L -27 54 -3 6.2 232
Cerebellum (Crus 1) R 6 -81 -24 6.12 109
PCC L -9 -33 27 5.72 62
BSR[-33] [-6.0-35.028.0]
Cerebellum (VI) R 30 -63 -30 5.64 59
Cerebellar Vermis (9) 0 -57 -36 4.32 32
Cerebellum (Crus 2) L -6 -84 -33 3.82 26
Pallidum R 24 0 -9 -11.74 3882
[24.0 3.0 -6.0]; bilateral
Insula Lobe L -33 -18 6 -11.05 3776
Superior Frontal Gyrus L -12 36 54 -10.6 2096
MCC L 0 -15 36 -9.72 706
Lingual Gyrus R 21 -84 -6 -7.43 440
Superior Occipital Gyrus R 27 -96 15 -5.54 318
Middle Frontal Gyrus L -33 24 39 -5.48 44
Angular Gyrus L -48 -63 27 -5.31 106
Superior Parietal Lobule L -21 -45 63 -5.12 94
Postcentral Gyrus R 21 -39 63 -4.98 89
BSR [-6 6] IFG L -45 9 30 12.576 790
(additional Insula Lobe L -33 18 -3 10 93
lusters IFG R 42 27 18 7 32
c IFG R 51 33 -9 -8.69 125
that were  gug R 57 -39 39 -7.80 56
merged in Inferior Temporal Gyrus L -57 -6 -33 -7.57 96
+/-3
threshold)
Angular Gyrus R 54 -51 36 8.69 638
Middle Frontal Gyrus R 39 18 39 8.24 1238
IFG (p. Orbitalis) R 42 45 -12 6.37 141
SupraMarginal Gyrus L -60 -45 33 6.36 317
Middle Frontal Gyrus L -42 24 33 6.21 477
Inferior Occipital Gyrus L -27 -90 -12 5.66 110
Precuneus R 3 -60 45 5.54 383
Middle Temporal Gyrus R 60 -33 -12 5.26 154
IFG (p. Triangularis) R 48 18 3 5.07 115
Lingual Gyrus R 21 -84 -6 4.99 77
Putamen L -30 3 -3 4.62 115
Cerebelum (Crus 2) L -9 -81 -27 4.22 34
Putamen R 24 0 6 3.93 30
taskPLS Inferior Occipital Gyrus L -48 -75 -6 -7.92 378
LV2 Inferior Occipital Gyrus R 51 -72 -15 -7.61 706
Olfactory cortex L -3 18 -12 -5.63 502
Precuneus L -6 -63 21 -5.56 220
Superior Parietal Lobule R 27 -54 63 -4.46 39
Fusiform Gyrus L -24 -45 -15 -4.43 83
Postcentral Gyrus L -57 -3 42 -4.38 58
Postcentral Gyrus L -45 -27 57 -4.36 85
Superior Orbital Gyrus R 21 27 -15 -4.32 25
Superior Occipital Gyrus R 27 -69 36 -4.29 58
Precentral Gyrus L -42 0 30 -4.23 28
Middle Temporal Gyrus L -54 -57 12 -4.18 38
-69 -42 9 -4.13 51
Middle Occipital Gyrus L -30 -81 36 -4.1 60
Posterior-Medial Frontal L -6 6 60 -3.95 33
Hippocampus L -27 -18 -21 7.04 111
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behavioral Inferior Temporal Gyrus L -57 -24 -30 5.5 40
. [-56 -24 -30]

PLS: LV1 Superior Medial Gyrus R 3 63 15 5.43 345
ParaHippocampal Gyrus R 21 -12 -24 5.35 35
MCC R 3 -33 48 5.3 174
Middle Temporal Gyrus L -60 0 -30 4.77 27
MCC L -12 -45 36 4.72 64
Superior Frontal Gyrus R 18 51 30 4.68 33
Fusiform Gyrus R 24 12 -45 4.67 30
Middle Temporal Gyrus R 57 -3 -15 4.64 239
Superior Frontal Gyrus L -21 42 36 4.61 26
Superior Temporal Gyrus L -57 -21 3 4.6 61
Angular Gyrus R 39 -72 39 4.59 36
Middle Temporal Gyrus L -51 -3 -21 4.52 72
Temporal Pole R 36 6 -21 4.42 25
Superior Medial Gyrus L 9 36 45 4.25 29
Thalamus L -9 -9 12 -9.73 591
Superior Frontal Gyrus L -24 -3 69 -5.59 38
Posterior-Medial Frontal L -3 15 45 -5.22 154
Superior Occipital Gyrus R 27 -96 21 -5.15 39
SupraMarginal Gyrus L -60 -48 24 -5.13 28
Cerebelum (Crus 2) L -6 -84 -33 -5.09 35
Superior Parietal Lobule L -18 -69 48 -5.07 36
IFG (p. Opercularis) L -57 15 33 -4.87 173
Insula Lobe L -30 21 -3 -4.37 44
Inferior Parietal Lobule L -33 -54 45 -4.03 30
Superior Frontal Gyrus R 24 0 54 -3.9 51
Middle Frontal Gyrus R 45 36 33 -3.78 35

Note: Locations where peaks had to be shifted for a label are indicated with coordinates in the label.

12


https://doi.org/10.1101/2020.06.22.165118
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.22.165118; this version posted June 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Supplementary References

Benwell, C. S. Y., Tagliabue, C. F., Veniero, D., Cecere, R., Savazzi, S., & Thut, G. (2017).
Prestimulus EEG power predicts conscious awareness but not objective visual performance.
Eneuro, 4(6). doi:10.1523/ENEURO.0182-17.2017

Cavanagh, J. F., Wiecki, T. V., Cohen, M. X., Figueroa, C. M., Samanta, J., Sherman, S. J., & Frank,
M. J. (2011). Subthalamic nucleus stimulation reverses mediofrontal influence over decision
threshold. Nature Neuroscience, 14(11), 1462-1467. doi:10.1038/nn.2925

Ding, J., Sperling, G., & Srinivasan, R. (2006). Attentional modulation of SSVEP power depends on
the network tagged by the flicker frequency. Cerebral Cortex, 16(7), 1016-1029.
doi:10.1093/cercor/bhj044

lemi, L., Chaumon, M., Crouzet, S. M., & Busch, N. A. (2017). Spontaneous neural oscillations bias
perception by modulating baseline excitability. Journal of Neuroscience, 37(4), 807-819.
doi:10.1523/JNEUROSCI.1432-16.2016

Kosciessa, J. Q., Grandy, T. H., Garrett, D. D., & Werkle-Bergner, M. (2020). Single-trial
characterization of neural rhythms: Potential and challenges. Neuroimage, 206, 116331.
doi:10.1016/j.neuroimage.2019.116331

Lange, J., Oostenveld, R., & Fries, P. (2013). Reduced occipital alpha power indexes enhanced
excitability rather than improved visual perception. Journal of Neuroscience, 33(7), 3212-
3220. doi:10.1523/Jneurosci.3755-12.2013

Limbach, K., & Corballis, P. M. (2016). Prestimulus alpha power influences response criterion in a
detection task. Psychophysiology, 53(8), 1154-1164. doi:10.1111/psyp.12666

Lui, K. K., Nunez, M. D., Cassidy, J. M., Vandekerckhove, J., Cramer, S. C., & Srinivasan, R. (2018).
Timing of readiness potentials reflect a decision-making process in the human brain. bioRxiv.

McGovern, D. P., Hayes, A., Kelly, S. P., & O'Connell, R. G. (2018). Reconciling age-related changes
in behavioural and neural indices of human perceptual decision-making. Nature Human
Behaviour, 2(12), 955-966. doi:10.1038/s41562-018-0465-6

Morgan, S. T., Hansen, J. C., & Hillyard, S. A. (1996). Selective attention to stimulus location
modulates the steady-state visual evoked potential. Proceedings of the National Academy of
Sciences of the United States of America, 93(10), 4770-4774. doi:10.1073/pnas.93.10.4770

Muller, M. M., Andersen, S., Trujillo, N. J., Valdes-Sosa, P., Malinowski, P., & Hillyard, S. A. (2006).
Feature-selective attention enhances color signals in early visual areas of the human brain.
Proceedings of the National Academy of Sciences of the United States of America, 103(38),
14250-14254. doi:10.1073/pnas.0606668103

Nunez, M. D., Vandekerckhove, J., & Srinivasan, R. (2017). How attention influences perceptual
decision making: Single-trial EEG correlates of drift-diffusion model parameters. Journal of
Mathematical Psychology, 76, 117-130. doi:10.1016/j.jmp.2016.03.003

O'Connell, R. G., Dockree, P. M., & Kelly, S. P. (2012). A supramodal accumulation-to-bound signal
that determines perceptual decisions in humans. Nature Neuroscience, 15(12), 1729-+.
doi:10.1038/nn.3248

Sheremata, S. L., Somers, D. C., & Shomstein, S. (2018). Visual short-term memory activity in parietal
lobe reflects cognitive processes beyond attentional selection. Journal of Neuroscience, 38(6),
1511-1519. doi:10.1523/Jneurosci.1716-17.2017

Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal
cortex. Nature, 428(6984), 751-754. doi:10.1038/nature02466

Zhigalov, A., Herring, J. D., Herpers, J., Bergmann, T. O., & Jensen, O. (2019). Probing cortical
excitability using rapid frequency tagging. Neuroimage, 195, 59-66.
doi:10.1016/j.neuroimage.2019.03.056

13


https://doi.org/10.1101/2020.06.22.165118
http://creativecommons.org/licenses/by-nc/4.0/

