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Abstract  

Background & Aims: Gastric cancer (GC) cases are often diagnosed at an advanced stage with 

poor prognosis. Platinum-based chemotherapy has been internationally accepted as first-line 

therapy for inoperable or metastatic GC. To achieve greater benefits, it is critical to select patients 

who are eligible for the treatment. Albeit gene expression profiling has been widely used as a 

genomic classifier to identify molecular subtypes of GC and stratify patients for different 

chemotherapy regimens, the prediction accuracy remains to be improved. More recently, 

adenosine-to-inosine (A-to-I) RNA editing has emerged as a new player contributing to GC 

development and progression, offering potential clinical utility for diagnosis and treatment. 

Methods: We conducted a transcriptome-wide RNA editing analysis of a cohort of 104 patients 

with advanced GC and identified an RNA editing (GCRE) signature to guide GC chemotherapy, 

using a systematic computational approach followed by both in vitro validations and in silico 

validations in TCGA. 

Results: We found that RNA editing events alone stand as a prognostic and predictive biomarker 

in advanced GC. We developed a GCRE score based on the GCRE signature consisting of 50 

editing sites associated with 29 genes and achieved a high accuracy (84%) of predicting patient 

response to chemotherapy. Of note, patients demonstrating higher editing levels of this panel of 

sites present a better overall response. Consistently, GC cell lines with higher editing levels 

showed higher chemosensitivity. Applying the GCRE score on TCGA dataset confirmed that 

responders had significantly higher levels of editing in advanced GC. 

Conclusions: Overall, the GCRE signature reliably stratifies patients with advanced GC and 

predicts response from chemotherapy.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2020. ; https://doi.org/10.1101/2020.06.22.164038doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.22.164038
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4 

 

Significance 

Despite the increasing documentation of RNA editing and its functional regulation, the 

translational potential of RNA editome in cancer remains largely under-investigated. This study 

reports for the first time an RNA editing signature in advanced GC, to reliably stratify patients 

with advanced disease to predict response from chemotherapy independently of gene expression 

profiling and other genomic and epigenetic changes. For this purpose, a bioinformatics approach 

was used to develop a GCRE score based on a panel of 50 editing sites from 29 unique genes 

(GCRE signature), followed by an experimental evaluation of their clinical utility as predictive 

biomarker in GC cell lines and in silico validation in using RNA sequencing (RNA-Seq) datasets 

from TCGA. The applied methodology provides a robust means of an RNA editing signature to 

be investigated in patients with advanced GC. Overall, this study provides insights into the 

translation of RNA editing process into predictive clinical applications to direct chemotherapy 

against GC. 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2020. ; https://doi.org/10.1101/2020.06.22.164038doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.22.164038
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

5 

 

Introduction 

Gastric cancer is the third leading cause of cancer death worldwide responsible for more than 

780,000 deaths annually1, 2. Asian population carries a higher risk for the disease in terms of 

incidence and mortality. The current treatment options for the advanced stage mainly employ 

palliative chemotherapy based on fluoropyrimidine and platinum-based compounds. However, an 

important question is whether we can improve the selection of patients with advanced GC for 

chemotherapy in order to achieve greater benefit from the treatment. To address this, different 

groups have put much effort in stratifying patients with GC into molecular subtypes3-9; however, 

these studies heavily focused on gene expression and/or mutation profiling, often with the 

limitations of microarray-based platforms or small sample sizes, thus novel molecular data types 

and approaches are needed for better guiding the chemotherapy treatment for this class of patients. 

Here, we demonstrate A-to-I RNA editing as a novel epigenetic classifier to reliably identify 

responders to chemotherapy. 

RNA editing is a post- and/or co-transcriptional modification that results in specific 

nucleotide changes that occur on the RNA. In humans, the most frequent type of RNA editing is 

the conversion of adenosine to inosine (A-to-I), which is catalysed by ADAR proteins. In 

vertebrates, a family of 3 ADARs, ADAR1, ADAR2 and ADAR3, has been characterized10. 

ADAR1 and ADAR2 catalyse all currently known A-to-I editing sites. Inosine (I) essentially 

mimics guanosine (G), therefore ADAR proteins introduce a virtual A-to-G substitution in 

transcripts. Such changes can lead to specific amino acid substitutions11-16, alternative splicing17, 

microRNA-mediated gene silencing18, 19, or changes in transcript localization and stability20-22. 

As reported by us and others in the past decade, dysregulated A-to-I editing is a key driver 

in the pathogenesis of various cancers, such as breast cancer23, glioma24, 25, chronic myeloid 
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leukaemia26, hepatocellular carcinoma11, 27, and esophageal squamous cell carcinoma12. Our group 

provided the first extensive transcriptome-wide RNA editing analysis of primary gastric tumors 

and highlighted a major role for RNA editing in GC disease and progression28. This observation 

has been missed by previous next generation sequencing analyses of GC focused on DNA 

alterations alone. We reported that GC displays a severely disrupted RNA editing balance induced 

by the differentially expressed ADARs (ADAR1 and ADAR2). Clinically, the differentially 

expressed ADARs, which are characterized by ADAR1 overexpression and ADAR2 

downregulation in tumors, have great prognostic value and diagnostic potential for primary GC. 

However, the role of RNA editing in inoperable, locally advanced or recurrent and/or metastatic 

GC and whether RNA editing signature can be used to prospectively and retrospectively stratify 

patients with advanced GC and predict response from chemotherapy, remain largely unknown. 

Despite the fact that ADARs are responsible for A-to-I RNA editing activity, there is not 

always a linear relationship between the expression and activity of ADARs and editing frequencies 

of their target RNAs29-31, due to their differential subcellular distribution32, cis- and trans- 

regulatory interactors33-36 and post-transcriptional modifications30, 37. On the other hand, changes 

in the editing level of individual sites have been shown to play a driver role in several cancer 

types11, 24, 38. Therefore, RNA editing events are considered as a better proxy than ADAR 

expression per se to provide molecular information to be translated into clinical applications. We 

have previously initiated a translational “3G” trial to investigate the benefit of using a genomic 

classifier to guide the choice of two platinum-based chemotherapy regimens in an advanced GC 

setting7. In this study, we conducted a high-throughput RNA sequencing (RNA-Seq) analysis of 

104 patients with advanced GC who had been enrolled into the “3G” trial and investigated the 

clinical utility of RNA editing events in advanced GC. To our knowledge, this is the first report 
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which demonstrates that RNA editing alone can be employed as a prognostic and predictive factor 

in advanced GC, and more importantly, a panel of 50 editing sites could be readily detected in 

patients with advanced GC and accurately predicts outcome of chemotherapy. Overall, our study 

provides insight into the role of RNA editing in GC, which may facilitate the therapeutic decision 

making. 

Results 

The landscape of A-to-I RNA editing in advanced GC tumors 

We conducted a genome-wide A-to-I RNA editing analysis using RNA-Seq data of endoscopic 

tumor biopsies obtained from 104 patients with advanced, metastatic or recurrent GC prior to their 

first-line palliative chemotherapy (platinum-fluoropyrimidine doublet chemotherapy regime) 

(Supplementary Table S1). Applying our established RNA editing pipeline34, 39 with stringent 

filtering criteria (Materials and Methods), we identified a total of 2,154,091 high confidence A-

to-I RNA editing sites, with a median number of 17,000 editing sites per sample (Figure 1A), 

predominantly located in introns and 3 ’untranslated regions (Figure 1B), consistent with the 

previous reports28, 40. The number of editing sites moderately correlated with the total number of 

sequencing reads (Pearson’s r = 0.41, p = 1.96e-05) and with the overall editing activity (r = 0.39, 

p = 3.87e-05), where the latter was assessed by Alu Editing Index41. The overall editing activity, 

however, was independent of the total number of sequencing reads (r = -0.03, p = 0.8) and 

comparable across the samples (range 0.77-1.34, average = 1.03, stddev = 0.13, excluding 1 

outlier). The distribution of the number of editing sites across the samples revealed an 

overwhelming number of sample-specific sites (n = 159,146), as well as 780 shared sites referred 

to as hotspots (i.e. edited in all the samples in the cohort) (Figure 1C and Supplementary Table 

S2). We included these hotspot editing sites for further analysis. 
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Figure 1. A-to-I RNA editing landscape in advanced GC cases. (A) Number of RNA sequencing 

reads, number of editing sites and Alu Editing Index (AEI) of 104 GC samples. The samples are 

sorted based on the decreasing value of AEI. r = Pearson correlation coefficient. (B) Distribution 

of 2,154,091 high confidence editing sites over annotated genomic regions. others = 

ncRNA_exonic, upstream, 5’UTR, exonic, upstream;downstream, splicing. (C) Distribution of 

number of editing sites across the samples, where shared sites that are edited in all the samples in 

this cohort (hotspots) are highlighted. 

 

RNA editing is a prognostic marker in advanced GC 

First, we queried whether RNA editing has a prognostic value in advanced GC. To this end, we 

performed an unsupervised k-means clustering based on the RNA editing levels in an unbiased 
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manner, i.e. including all the hotspot editing sites (n = 780) identified from the RNA-Seq data and 

all the patients with available survival data (n = 54). This resulted in two distinct clusters, which 

we defined as “high editing cluster” and “low editing cluster” referring to the relative average 

editing levels in the clusters (Figure 2A). The high editing cluster demonstrated significantly 

better patient survival (p = 0.037, k = 2) (Figure 2B), which was also evident when using 

hierarchical clustering (p = 0.067) (Supplementary Figure 1). Instead, the baseline patient 

characteristics we investigated did not correlate with the patient survival (Cox Proportional-

Hazards univariate analysis, Supplementary Table S3). 

 

 

Figure 2. RNA editing hotspots as a prognostic marker in advanced GC. (A) Unsupervised k-

means (k = 2) clustering of advanced GC samples based on RNA editing levels of 780 hotspot 

editing sites. The scatterplot shows average editing levels per sample. Of the cohort, 54 samples 

with survival data available are included in the analysis. (B) Survival plot of the two editing 

clusters. Data with hierarchical clustering is given in Supplementary Figure 1. 
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RNA editing is a predictive marker in advanced GC 

To investigate whether RNA editing also has a predictive value in GC, we focused on the overall 

response data of the patients to palliative platinum-based chemotherapy. For each of 780 hotspot 

editing sites, we applied Pearson correlation test between the RNA editing levels and overall 

response to chemotherapy (Materials and Methods). This led us to identify 53 key editing sites 

which showed significant correlation (p < 0.05) (Figure 3A and Supplementary Table S4). 

Interestingly, 50 of these sites had a positive correlation, implying the higher the editing level the 

better the response (response categories are numerically represented as PD = 0, SD = 1, PR = 2). 

Re-applying clustering on the patients by using the editing levels of only these 53 sites resulted in 

75% accuracy of predicting the responders (i.e. patients who achieved PR) (Figure 3B), which 

was a significantly better prediction compared to a random selection of 53 sites (empirical p-value 

= 0.00409, N = 100,000, Supplementary Figure 2). Randomization test thus supports the validity 

of our selection method and highlights the importance of these sites as predictive markers. 
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Figure 3. GCRE signature as a predictive marker in advanced GC. (A) Correlation of hotspot 

editing sites with overall response to chemotherapy. Categorical values of overall response are 

converted to numerical values (PD = 0, SD = 1, PR = 2), and then Pearson correlation test is applied 

to each site between editing levels and numerical values of overall response. A representative 

example of a positive correlation is illustrated by the inset plot. Of the cohort, 55 samples with 

tumour response data available are included in the analysis, n(PD) = 8, n(SD) = 29, n(PR) = 18. 

Gene symbols associated with the editing sites are shown for the significant cases (n = 53, p < 

0.05), where genes with multiple sites are repeated. (B) k-means clustering of samples based on 

the RNA editing levels of 53 sites that significantly correlated with overall response (k = 2). 

Prediction accuracy of responders is 41/55 = 75%. 
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GCRE score predicts responders with high accuracy 

To predict chemotherapy outcome in a robust way, we derived a score based on the editing levels 

of 50 sites (GCRE signature) having positive correlation with the overall response (Materials and 

Methods). Briefly, we obtained the average z-score per sample based on GCRE signature (GCRE 

score), then we stratified the patients into 3 response groups (PD, SD, and PR) and predicted the 

responders based on this GCRE score. Overall, we observed a good performance (AUC = 0.77, 

Figure 4A), and at the cut-off value of 0.4, we achieved an accuracy of 84% (sensitivity = 67%, 

specificity = 92%) to predict the responders (Figure 4B), which was a better prediction compared 

to the clustering method (75%, Figure 3B). We also confirmed that reducing the number of editing 

sites or including 3 negatively correlated sites compromised accuracy (Supplementary Figure 3). 

Overall, these results suggest that employing the GCRE score based on the 50 sites contributing 

to the GCRE signature could stratify responders and non-responders to chemotherapy with high 

accuracy. 
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Figure 4. Utilisation of a GCRE score to predict chemotherapy response. (A) Receiver operating 

characteristic (ROC) curve showing the performance of GCRE score in prediction of responders. 

TPR = true positive rate, FPR = false positive rate, AUC = area under the curve. (B) Stratification 

of GC patients into chemotherapy response groups and prediction of responders based on GCRE 

score at the cut-off value of 0.4. GCRE score for each patient denotes average z-score of RNA 

editing levels across the panel of 50 sites in the GCRE signature. The statistical measures refer to 

the classification of responders and non-responders. PPV = positive predictive value, NPV = 

negative predictive value, non-responder = progressive disease + (PD) stable disease (SD), 

responder = partial response (PR). 

 

Validation of GCRE signature in GC cell lines 

We next validated the GCRE signature in 6 commercially available GC cell lines. First, we 

assessed the drug response of each cell line to oxaliplatin by IC50 (the half maximal inhibitory 

concentration) values (Figure 5A) and further confirmed by foci formation assay (Figure 5B). 

Then, we quantified the RNA editing levels of 26 randomly selected sites from 50 sites of the 

GCRE signature in the same 6 cell lines by Sanger sequencing (Figure 5C, Materials and 
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Methods). We found a negative correlation between the IC50 values and RNA editing levels (r = -

0.5), implying that GC cells with higher editing levels of the GCRE signature sites demonstrate 

higher chemosensitivity, which was consistent with our observation in the patient samples. 
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Figure 5. Validation of GCRE signature in GC cell lines. (A) Chemosensitivity of 6 GC cell lines 

to oxaliplatin. The bars show the average IC50 value of 3 biological replicates with standard error 

of means. (B) Foci formation assay of GC cell lines cultured with indicated concentration of 

oxaliplatin for 48 hours. Cells are stained with crystal violet. (C) Editing levels of 26 sites from 

the panel of GCRE signature quantified by Sanger sequencing. Numbers in cells denote the 

percentage of editing levels and colouring shows the relative gradient across the row (scale). Black 

cells denote undetectable editing level. 

 

GCRE signature is a prevalent in late-stage GC, independent of chemotherapy regimen 

To infer whether our GCRE signature is representative of different tumor stages and chemotherapy 

regimens, we applied the GCRE score in TCGA STAD (stomach adenocarcinoma) cohort6. This 

cohort comprises of patients diagnosed with different stages of GC and treated with multiple 

combinations of drugs, along with multiple data points reporting for primary and follow-up 

treatment outcome (Supplementary Table S5). When we applied the GCRE score on these 

patients, we observed that responders in the latest stage (IV), but not in the previous stages (II and 

III), had significantly higher levels of editing in the panel of 50 sites compared to non-responders 

(Figure 6), confirming our observation in our advanced GC cohort, despite the diverse drug 

regimens between the two cohorts. We have excluded the patients at early stage (I) from the 

analysis as these patients most likely had undergone tumor removal rather than chemotherapy, so 

the response information was ambiguous. With available data, however, we could not validate the 

prognostic value of the GCRE signature possibly due to the small sample size (Supplementary 

Figure 4). These results suggest that the GCRE signature is coherent to very late stage of the 

disease as a predictive marker, independently of different chemotherapy regimens. 
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Figure 6. Validation of GCRE signature in TCGA STAD. Distribution (violin plots) and 

performance (ROC curves) of GCRE scores in TCGA STAD cohort stratified by disease stage and 

response type. For score calculation, 50 sites in GCRE signature and their editing levels in TCGA 

patients are used wherever available and at least 8 sites were required to be edited to calculate the 

score. Primary response (A) refers to the “primary_therapy_outcome” and follow-up response (B) 

denotes the “followup_treatment_success” as reported by TCGA. Response groups are merged 

based on the consensus of the individual treatment outcomes: Non-responder = stable/progressive 

disease, Responder = partial/complete remission, STAD = stomach adenocarcinoma, TPR = true 

positive rate, FPR = false positive rate, AUC = area under the curve. p-values are shown for 

Wilcoxon rank-sum test. 

 

Discussion 

Patient stratification based on molecular information promises a great value for guiding diagnosis 

and treatment choice, particularly in genetically heterogeneous diseases such as gastric cancer. Till 

date, a number of studies attempted for the molecular classification of patients for this purpose, 

most of which are based on gene expression profiling utilizing microarray data3-5, 7-9. With the 

broader availability and better quality of next-generation sequencing data, now it became possible 

to reliably study other molecular features than gene expression. In this study, we propose A-to-I 

RNA editing as a novel molecular classifier in advanced GC, and show that an RNA editing 

signature can be used to stratify patients with differential benefit from chemotherapy, which may 

not be limited to GC and can be potentially extended to other cancer types and cohorts. 

In recent studies, systematic and unbiased analysis of RNA editing led to the establishment 

of the driver role of individual editing events in several cancers11, 12, 23, 24, 26, 27. It also became 
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evident that editing level of a considerable number of RNA editing sites is correlated with patient 

survival, indicating their utility as prognostic markers11, 28, 38, 42, 43. Several studies have also 

reported that a specific RNA editing event could selectively affect the outcome of cancer therapies. 

For example, protein-recoding RNA editing of COG3 and GRIA2 gene increases the drug 

sensitivity to MEK inhibitors38. In this study, we followed a top-down approach, starting from 

transcriptome-wide global editing events towards a small panel of sites with potential clinical 

utility. Accurate identification of RNA editing events rely on several factors, such as high 

sequencing quality, sufficient sequencing depth, rigorous filtering and strict inclusion criteria. In 

our dataset, we achieved a median of 117M reads per sample after adapter and quality trimming, 

so that we could apply a very high coverage threshold (>= 20 reads) to identify the editing sites. 

This led us to accurately quantify the differential editing levels across the samples, which was 

crucial for the high resolution of the clustering and correlation analyses. 

Our approach demonstrates a simple yet powerful way of identification of key editing 

events in advanced GC, uncovering the GCRE signature consisting of 50 editing sites associated 

with 29 genes. Once clinically validated, this RNA editing signature can be conveniently managed 

in the laboratory setting for individual patients to assist in therapeutic decision-making. 

In addition to the GCRE signature, we report a list of 780 editing sites shared by 104 

advanced GC tumors, which presents a valuable resource for follow up studies. These sites include 

previously reported hotspots (frequently edited) with pathogenic role (e.g. EIF2AK2, MAVS, 

GATC, CTSS, METTL7A)34, 42, 44-46 as well as novel sites reported here for the first time (e.g. 

NEAT1, ORC2, FGD5-AS1). Although in this study we mainly focused on a small panel of 53 sites 

having significant correlation with the tumor response, the remaining sites potentially carry 

important information for GC pathology awaiting further exploration. 
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The availability of TCGA data gave us a great opportunity to validate the GCRE signature 

independently. The heterogeneity of these patients additionally allowed us to assess its specificity 

in terms of disease stage and treatment regimen, although the information on the type of 

chemotherapy for stage IV was limited. However, additional GC datasets comprising of diverse 

patient characteristics with available RNA-Seq and tumor response data are needed to conclude 

whether this signature is cohort-specific or representative of a certain patient class, and whether 

these 50 editing sites are definitive. In particular, the prognostic value of the GCRE signature needs 

investigation in cohorts with larger sample size. 

Overall, in this study we have investigated the translational potential of RNA editing 

process in advanced GC by using transcriptomic and clinical data of a large cohort of patients. We 

discovered an RNA editing signature consisting of a small panel of genes independently of 

expression profiling, developed an RNA editing score which can predict responders with high 

accuracy, and validated them in GC cell lines and an independent cohort of TCGA. These findings 

suggest a novel clinical utility of RNA editing events for guiding chemotherapy treatment in this 

deadly cancer. 

 

Materials and Methods 

Gastric cancer cohort 

A total of 104 patients from the 3G Trial7 were involved in this study. The patients were diagnosed 

with metastatic or recurrent GC and enrolled onto the first line palliative chemotherapy (platinum-

fluoropyrimidine doublet chemotherapy regime). For each eligible patient, fresh endoscopic 

biopsies of the primary tumor in situ within 3 weeks prior to treatment initiation were used for 

RNA-Seq analysis. Treatment response to chemotherapy (PD: progressive disease; SD: stable 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2020. ; https://doi.org/10.1101/2020.06.22.164038doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.22.164038
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

21 

 

disease; PR: partial response) was assessed by radiologists who were blinded to the study. At the 

cut-off date, in this cohort of 104 patients, overall survival and tumor response data had been 

obtained for 54 and 55 patients, respectively, where a total of 50 patients had both OS and tumor 

response data. 

Samples were collected from the cancer centres in Singapore (n = 37) and South Korea (n 

= 67) between 2010 - 2018. A written informed consent was obtained from all the patients prior to 

the enrolment to the trial, and the study was done in accordance with the Declaration of Helsinki 

and International Conference on Harmonisation and Good Clinical Practice guidelines. The 

protocol was approved by the Institutional Review Board at each study site and complied with 

local laws and regulations. 

 

RNA sequencing 

A total of 1 μg of total RNA was used to create libraries with Illumina TruSeq Stranded Total RNA 

Library Prep Kit (Illumina) according to manufacturer’s instructions. Library fragment size was 

determined using the DNA 1000 Kit on the Agilent Bioanalyzer (Agilent Technologies). Libraries 

were quantified by qPCR using the KAPA Library Quantification Kit (KAPA Biosystems). 

Libraries were pooled in equimolar and cluster generation was performed on the Illumina cBOT 

system (Illumina). Sequencing (150bp pair-end) was performed on the Illumina HiSeq 3000 

system at the Duke-NUS Genome Biology Facility, according to manufacturer’s protocol 

(Illumina). 
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Identification of RNA editing events 

A bioinformatics pipeline adapted from a previously published method47 was used to identify RNA 

editing events from RNA-Seq data by using the CSI NGS Portal48 

(https://csibioinfo.nus.edu.sg/csingsportal). For each sample, raw reads with adapters were 

trimmed by using Trimmomatic (v0.38)49 retaining the reads with >= 35 bases and average read 

quality score > 20 after trimming. Clean reads were mapped to the reference human genome (hg19) 

with a splicing junction database generated from transcript annotations derived from UCSC50, 

RefSeq51, Ensembl52 and GENCODE (v19)53 by using Burrows–Wheeler Aligner with default 

parameters (bwa mem, v0.7.17-r1188)54. To retain high quality data, PCR duplicates were removed 

(samtools markdup -r, v1.9)55 and the reads with mapping quality score < 20 were discarded. 

Junction-mapped reads were then converted back to the genomic-based coordinates. An in-house 

perl script was utilized to call the variants from samtools pileup data and the sites with at least two 

supporting reads were initially retained. The candidate events were filtered by removing the single 

nucleotide polymorphisms reported in different cohorts (1000 Genomes Project56), NHLBI GO 

Exome Sequencing Project (https://evs.gs.washington.edu/EVS/), dbSNP (v150)57) and excluding 

the sites within the first six bases of the reads caused by imperfect priming of random hexamer 

during cDNA synthesis. For the sites not located in Alu elements, the candidates within the four 

bases of a splice junction on the intronic side, and those residing in the homopolymeric regions 

and in the simple repeats were all removed. Candidate variants located in the reads that map to the 

non-unique regions of the genome by using BLAST-like alignment tool58 were also excluded. At 

last, only A-to-G editing sites based on the strand information from the strand-specific RNA-Seq 

data were considered for all the downstream analyses. The genomic regions of the editing variants 

and the associated genes were annotated by using ANNOVAR (v2018)59 with the UCSC refGene 
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table annotation60. We applied the same pipeline on TCGA STAD (The Cancer Genome Atlas - 

stomach adenocarcinoma) cohort6. 

To identify high confidence and common editing events, stringent filtering criteria were 

applied. Specifically, each editing site was required to have a coverage of at least 20 reads and 

editing frequency higher than 0.1 (10%) in all the samples. This resulted in 780 high confidence 

editing sites shared by 104 samples of our GC cohort (Figure 1C). For TCGA STAD cohort, we 

did not apply these thresholds for the validation of GCRE signature in order to include more sites, 

as the number of high-confidence editing sites were relatively fewer in TCGA due to the lower 

sequencing depth. In TCGA, we included only those samples with at least 8 out 50 sites in the 

GCRE signature were found to be edited (Figure 6). 

 

Clustering analyses and heatmaps 

The clustering and heatmap analyses were performed by using R package “superheat”61. The RNA 

editing levels of the corresponding sites were used as the distance matrix to perform the k-means 

clustering for the heatmaps in an unsupervised manner (scale = TRUE, n.clusters.rows = 2, 

clustering.method = “kmeans”). The side plots were drawn using “scattersmooth” parameter with 

the “lm” method based on the average editing value of the corresponding rows or columns 

calculated by “rowMeans2” and “colMeans2” functions from the “matrixStats” package, 

respectively. 

 

Correlation of RNA editing with response to chemotherapy 

Pearson correlation analysis was performed by using “cor.test” function in R with “pearson” 

method. For each of 780 editing sites, Pearson correlation coefficient (r) and associated p-value 
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were calculated between RNA editing levels and the overall response to chemotherapy across 55 

patients with available data. The editing frequencies calculated from the RNA-Seq data were used 

as the first vector. As the second vector, the overall response data was used after transforming the 

original categorical variables into numerical variables (PD = 0, SD = 1, PR = 2) so that the 

correlation analysis can be performed. P-values were used to assess the editing sites with 

significant correlations at p < 0.05 threshold, which resulted in 50 positively and 3 negatively 

correlated sites (Figure 3A). 

 

GCRE score calculation and GCRE signature 

To predict the chemotherapy outcome based on RNA editing, we developed a GCRE score based 

on the “z-score” using 50 sites that showed significant positive correlation with the overall 

response. First, z-transformation was performed for each site based on the RNA editing levels. 

Then the samples were ranked by using the average z-score across the sites. The samples above 

and below a cut-off value (0.4) were regarded as the high and low editing groups, respectively. 

The statistical measures were calculated based on the prediction of the responders in the cohort. 

 

Gastric cancer cell lines and validation of the GCRE signature 

A total of 6 cell lines were used for the validation of the GCRE signature. AGS and NCI-N87 were 

purchased from the American Type Culture Collection (Manassas, VA). MKN28, MKN1, and 

MKN74 were obtained from Japanese Collection of Research Bioresources Cell Bank. YCC11 

cell line was provided by Singapore Gastric Cancer Consortium (SGCC). All the cell lines were 

cultured in Roswell Park Memorial Institute (RPMI) medium (Gibco BRL, Grand Island, NY, 
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USA) supplemented with 10% fetal bovine serum (FBS) (Gibco BRL). Cells were grown in a 

humidified incubator with 5% CO2 at 37℃. 

The editing levels of 26 out of 50 editing sites in these 6 cell lines were quantified by 

Sanger sequencing. The sites were selected as the top 10 sites which showed the highest change in 

editing level between high and low editing group as defined in the RNA-Seq data, and additional 

16 sites that are randomly picked from the remaining sites in the panel of GCRE signature. Drug 

response of the cell lines to oxaliplatin (Sigma-Aldrich) were assessed by IC50 values using MTT 

(3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Briefly, GC cell lines were 

seeded in 96-well plates with 2.5 × 103 to 10 × 103 cells/well according to their growth rate. After 

72-h oxaliplatin drug treatment, 10 µL MTT substrate (Sigma-Aldrich) was added into each well 

followed by 3-hour incubation. MTT substrate was then removed and cells were lysed by addition 

of 100 µL MTT stop solution. Absorbance at 570 nm was measured using Tecan microplate reader. 

For the foci formation, cells were seeded in 6-well plate with 3 × 104 to 15 × 104 cells/well 

and cultured with indicated concentration of oxaliplatin for 48 hours. Cells were stained with 

crystal violet (Sigma-Aldrich) for colony visualization. 

 

Statistical analyses 

As a rule of thumb, all the available features and the samples were included in the respective 

analyses as long as the data being investigated were non-missing. Initial clustering analysis was 

performed in an unbiased manner based on the editing levels of all the sites identified in all the 

samples. The downstream analyses were performed by using a panel of 50 sites that are selected 

solely based on the correlation value of their editing levels obtained from RNA-Seq data and the 

overall response to chemotherapy assessed by clinicians and radiologists. GCRE score was derived 
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based on the editing levels of the selected genes in all the samples with response data available. 

No manual selection or exclusion was applied on the genes, editing sites or samples for this study, 

unless limited by the availability of data under investigation, e.g. 55 out of 104 samples had 

response data. These criteria were also applied to the cell lines in the same way as per patient 

samples. For the experimental validations, unless otherwise indicated, the data are presented as the 

mean ± standard error of mean (SEM) of three independent experiments. Wilcoxon rank-sum test 

was applied when comparing distributions, Pearson correlation coefficient was reported for paired 

correlation analyses, and log-rank test p-value was shown for the survival analyses. A p-value of 

less than 0.05 was considered to be statistically significant, and the type of the statistical test 

applied was indicated appropriately. 

 

Data availability 

RNA-Editing pipeline is available online at the CSI NGS Portal48 

(https://csibioinfo.nus.edu.sg/csingsportal). The bioinformatics code for the downstream analyses 

are available upon reasonable request. The processed data are available as Supplementary Tables. 
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Supplementary Figure 1. RNA editing hotspots as a prognostic marker in advanced GC. (A) 

Hierarchical clustering of GC samples based on RNA editing levels of 780 hotspot editing sites. 

The scatterplot shows average editing levels per sample. Of the cohort, 54 samples with survival 

data available are included in the analysis. (B) Survival plot of the two editing clusters. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2020. ; https://doi.org/10.1101/2020.06.22.164038doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.22.164038
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

36 

 

 

Supplementary Figure 2. A randomization test of GCRE signature. Histogram of prediction 

accuracies for chemotherapy response in a randomized control. The test is performed by 

hierarchical clustering of 55 samples based on the editing levels of randomly picked 53 sites out 

of 780 hotspot editing sites repeated for 100,000 times. In each round, the test statistic is calculated 

as the prediction accuracy of responders in the clusters. The observed accuracy of the actual GCRE 

signature derived from the correlation test is highlighted with the red line, where empirical p-value 

= 0. 00409. TP = true positive, TN = true negative. 
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Supplementary Figure 3. Selection of optimal number of editing sites for GCRE signature. 

Accuracy distribution based on cumulative number of editing sites. The sites are ranked based on 

the difference in editing level between responders and non-responders, and accuracy is calculated 

for increasing number of sites from 2 to 53. The first 50 sites are the positively correlated sites 

whereas the last 3 are the negatively correlated sites with the overall response, where accuracy is 

steadily highest around 50 sites. 
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Supplementary Figure 4. Survival plots of patients with high vs low editing in TCGA STAD 

cohort stratified by disease stage and response type. High and low editing was defined as the GCRE 

score higher and lower than 0.4, respectively. The total number of patients correspond to those in 

Figure 6, with 2 patients missing survival information in Stage III. 
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