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Abstract

Transfer learning has been a very active research topic in natural image processing.
But few studies have reported notable benefits of transfer learning on medical
imaging. In this study, we sought to investigate the transferability of deep arti-
ficial neural networks (DNN) in brain decoding, i.e. inferring brain state using
fMRI brain response over a short window. Instead of using pretrained models
from ImageNet, we trained our base model on a large-scale neuroimaging dataset
using graph convolutional networks (GCN). The transferability of learned graph
representations were evaluated under different circumstances, including knowl-
edge transfer across cognitive domains, between different groups of subjects, and
among different sites using distinct scanning sequences. We observed a significant
performance boost via transfer learning either from the same cognitive domain
or from other task domains. But the transferability was highly impacted by the
scanner site effect. Specifically, for datasets acquired from the same site using the
same scanning sequences, using transferred features highly improved the decoding
performance. By contrast, the transferability of representations highly decreased
between different sites, with the performance boost reducing from 20% down to 7%
for the Motor task and decreasing from 15% to 5% for Working-memory tasks. Our
results indicate that in contrast to natural images, the scanning condition, instead
of task domain, has a larger impact on feature transfer for medical imaging. With
other advanced tools such as layer-wise fine-tuning, the decoding performance can
be further improved through learning more site-specific high-level features while
retaining the transferred low-level representations of brain dynamics.

1 Introduction

Transfer learning has the potential to allow us to train complex models even in the absence of
extensive training data, which is highly beneficial in the field of medical imaging, where the lack of a
sufficiently large dataset for specific experimental questions is pervasive. Current literature on transfer
learning for medical imaging is still dominated by transferring features learned on ImageNet followed
by fine-tuning the model on medical images (13;10). There are however substantial differences
between natural and medical images. For instance Gabor filters were widely used for edge detection
in natural images but were not detected in medical images (10). The knowledge transfer from natural
images to medical images may thus suffer from fundamental limitations (13).

In this study, we specifically focused on the field of decoding brain cognitive states from recorded
neural activities using functional magnetic resonance imaging (fMRI). Convergent evidence has
shown that neural dynamics are integrated across multiple functional systems, and even the whole
brain in order to accomplish a particular cognitive task (11). In this case, the issue of low transferability
of features learned from natural images is severe. Therefore, instead of transferring from natural
images, we directly trained our base model on a large-scale neuroimaging dataset collected from
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the Human Connectome Project database. A deep graph neural network consisting of six graph
convolutional layers (feature extractor) followed by two fully connected layers (classifier) was
used for brain decoding (16). The transferability of brain decoding was evaluated under different
circumstances including knowledge transfer across different cognitive domains, different groups of
subjects, and even between different sites using different scanning sequences. We also investigate
other factors that might have an impact on the transfer learning, including the sample-size of the
dataset, the transferability of different layers, and whether to use fixed features or fine-tuning each
GCN layer. The interpretability of transfer learning was also investigated by analysing the similarity
of learned representations not only between different categories but also between different decoding
models, including the model trained from random initialization, transferring features from the base
model and after layer-wise fine-tuning of GCN layers. Moreover, in order to evaluate whether the
decoding inference was based on biologically meaningful features, we also generated saliency maps
for each type of the decoding model and specifically investigated how the saliency evolved after
transfer learning and fine-tuning.

2 Methods and Materials

2.1 fMRI Datasets and Preprocessing

We used the block-design task fMRI data from the Human Connectome Project (HCP) S1200 release
(https://db.humanconnectome.org/data/projects/HCP_1200). The minimal preprocessed
fMRI data of the CIFTI format were used, which maps individual fMRI time-series onto the standard
surface template with 32k vertices per hemisphere. The task fMRI data includes seven cognitive
tasks, which are emotion, gambling, language, motor, relational, social, and working memory. Here,
we mainly focused on two cognitive tasks: 1) Motor task: participants performed five different types
of body movements in scanner, i.e. movement of left and right foot, left and right hand, and tongue,
with each task event lasting for 12s; 2) Working-memory task, that involves two-levels of cognitive
functions, with a combination of the category recognition task and N-Back memory task. Specifically,
participants are presented with pictures of places, tools, faces and body parts in separate blocks, with
half of the blocks using a 2-back working memory task (showing the same image after two image
blocks) and the other half using a 0-back working memory task (requiring to recognize a single
image for the entire duration of one block), each block lasting for 25s. Further details on fMRI data
acquisition, task design and preprocessing can be found in (15 4).

We also used a second task-fMRI dataset acquired from the Individual Brain Charting (IBC) project
) (https://www.openfmri.org/dataset/ds000244), consisting of 12 subjects performing the
same types of cognitive tasks as the HCP database. Modifications have been made in both scanning
environments and task protocols, for instance, 1) using a Siemens 3T Magnetom Prismafit scanner
at the NeuroSpin platform instead of using the 3T Connectome Scanner at the HCP informatics
platform (14); 2) translating all instructions and stimuli presented in experimental paradigms from
English to French; 3) using longer acquisition time (TR=2s in IBC, 0.72s in HCP) and more event
blocks per run (20 vs 10 blocks for the Motor task, 16 vs 8 blocks for Working-memory tasks). In
order to compensate for their difference in TR which might result in capturing different dynamics of
task-evoked hemodynamic response, we downsampled the temporal resolution for all HCP datasets
by using a time step of three TRs (equivalent TR=2.15s).

2.2 Brain State Annotation pipeline

We used the brain state annotation model (16), that has 6 graph convolutional layers with 32 graph
filters at each layer followed by 2 fully connected layers as the classifier. The model takes a short
series of fMRI data as input, propagates information among inter-connected brain regions and
networks, generates a high-order graph representation and finally predicts the corresponding cognitive
labels. Specifically, all fMRI volumes were first mapped onto the 360 regions of the Glasser atlas
(3), by averaging the BOLD signals within each parcel. Then, the time-series for each event task
was extracted, by 1) realigning fMRI volumes with the experimental designs using task onsets and
durations; 2) cutting the time-series into bins of the selected time window using a sliding-window
approach; 3) downsamping the time-series at the given time step; 4) tag the task labels for each
segment of fMRI time-series. The datasets were split into training (70%), validation (10%), test
(20%) sets using a subject-specific split scheme, such that time windows collected on the same subject
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could not appear simultaneously in the training and validation (or testing) set. The base models were
trained for 100 epochs with the batch size set to 10 subjects and learning rate set to 0.001, while
the other models were trained with a smaller batch size (2 subjects) and learning rate (0.0001) with
150 epochs. The best model with the highest prediction score on the validation set was saved, and
then evaluated separately on the test set. We also used a L2 regularization of 0.0005 on weights and
a dropout rate of 0.5 on all layers. The implementation of the GCN model for brain decoding was
based on Pytorch-1.0, and will be made publicly available.

2.3 Transfer learning of brain decoding

We trained the base model for brain decoding using fMRI data from 1000 subjects collected from
the HCP database. We chose different time window for the Motor and Working-memory task in
order to achieve their peak performance in brain decoding (16), i.e. a 10s window for Motor task (5
fMRI volumes as input) and a 20s window for Working-memory (10 fMRI volumes as input). Two
domain-general decoding models were also trained using the above time windows. For task events
with a shorter duration than the chosen time window, a neighborhood wrapping method was applied.
Here, we used two types of transfer learning, either transferring features from a domain-specific base
model trained by exclusively using fMRI signals from the corresponding task domain, or using a
domain-general base model trained using fMRI data from all available cognitive tasks. A layer-wise
fine-tuning approach was used that gradually tuned the last GCN layers while keeping the first few
layers fixed. Another type of transfer learning named transfusion (10) was also evaluated, which only
transferring the first few GCN layers while training the rest of network from random initialization. A
summary of all models used in this study can be found in Table[T]

Table 1: Models for brain decoding and transfer learning
Model name Description
abbrev.
Domain-specific | Training models using fMRI data of one specific task domain
e.g. Motor and Working-memory
Domain-general | Training models using all available fMRI data under 21 task conditions

Base Pretrained decoding model using 1000 subjects from HCP database

Scratch Training models from random initialization

Transfer Copying and fixing all GCN layers from the base model

Freeze k Freezing the weights up to k GCN layers and fine-tuning the rest of the network

GCN &k Copying and fine-tuning the weights upto k¥ GCN layers from the base model while
training the rest of the network from random initialization

Unfrozen Fine-tuning the weights of all GCN layers after feature transfer

3 Results and Discussion

We started with training the base models for brain decoding using task-fMRI data from HCP 1000
subjects. Using a 10s window with a time step of 3 TRs (equivalent TR=2.1s), the 21 cognitive
states across six cognitive domains were identified with an average test accuracy of 84.17%. Using a
20s window, the decoding accuracy increased up to 89.36%. Higher accuracy was achieved in the
domain-specific base models, for instance, distinguishing the five types of body movements (Motor
task) with an accuracy of 93.48% using 5 fMRI volumes and classifying the eight types of visual
working-memory tasks with an accuracy of 89.93% using 10 fMRI volumes.

3.1 Transfer Learning on datasets with the same scanning environment

In order to investigate the sample size effect on transfer learning, we generated three subsets from the
HCP database consisting of 12, 24, and 36 subjects, all of which have not been used to train the base
model. Due to the small sample size used in this analysis, all models were evaluated using a 10-fold
cross-validation.
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Figure 1: Transfer learning boost the decoding performance on the Motor (left) and Working-memory
tasks (right) from the HCP subsets.

3.1.1 Feature transfer performed better without fine-tuning

We observed a significant effect of sample size, not only on the model trained from scratch but
also via feature transfer and fine-tuning (see Figure[T). First, the generalizability of the scratch
model gradually improved as the available data samples enriched, for instance, 59%, 79% and 89%
respectively for 12, 24 and 36 subjects when distinguishing the five types of body movements. Second,
feature transfer largely compensated for the loss in generalizability due to the small sample size.
With the aid of transfer learning, we achieved an improvement in decoding accuracy similar to what
could be observed when doubling the sample size. For instance, the prediction accuracy on the Motor
task increased up to 78%, 90% and 93% for 12, 24 and 36 subjects after feature transfer. Third, no
further improvement was observed after fine-tuning the GCN layers even using a layer-wise approach
(around 3% decrease). Similar findings were observed in the classification of working-memory tasks,
with the decoding accuracy largely improved by increasing the sample size, for instance, 55%, 69%
and 80% respectively for 12, 24 and 36 subjects when training the model from random initialization.
The generalizability of brain decoding was highly improved by using features transferred from the
base model, with the average gain as 16% for 12 subjects, 10% for 24 subjects, 2% for 36 subjects,
but was weakened after fine-tuning the GCN layers with a decrease of around 4%.

This is probably due to the fact that the neuroimaging data acquired from the same scanner using the
same BOLD sequence and experimental protocols, can be embedded in the same low-dimensional
manifold in which different task conditions can be easily separated. Thus, the representations
transferred from the base model, that have been trained in a large population, provided an unbiased
projection onto the manifold regardless of the small sample size and consequently improved the
accuracy of task prediction. By contrast, fine-tuning the GCN layers forced the decoding model
to adapt to the data distribution of the small training set and possibly caused overfitting. In order
to verify this hypothesis, we performed additional analysis on the learned graph representations
for different types of decoding models, including similarity analysis of learned representations, the
nonlinear projections, as well as saliency maps.

3.1.2 Similarity analysis of graph representations

In order to understand the benefits of transfer learning, we compared the learned representations
between different layers and decoding models. The similarity of representations was calculated using
centered kernel alignment (CKA) with a linear kernel which has been shown to be robust to different
initializations (5). In the following similarity analysis of representations, we used the trained model
resulting from the first cross-validation. Layer activation of the base model was first calculated on the
HCP subsets of 24 subjects and then compared with other the decoding models either trained from
random initialization, or using feature transfer with and without further fine-tuning. It is worth noting
that the layer activation should be identical for the two models, since the transfer model used fixed
representations extracted from the base model. Consistent with this theory, we found a block structure
in the similarity matrix with CKA=1.0 in the diagonal. The similarity between GCN layers indicated
that, different representations were learned for the 1st, Sth and 6th GCN layers (CKA<0.5), while
highly similar representations were captured in the middle layers (2-4 GCN layers, mean CKA=0.95).
The scratch model also showed a similar pattern (Figure[2JA) with high similarities for the Ist, 5th and
6th GCN layers (mean CKA=0.85 comparing with the base model) but much lower similarities for
the middle layers (mean CKA=0.68). The results indicated that the scratch model captured similar
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Figure 2: Similarity of representations for the decoding models after transfer learning and
fine-tuning on the HCP-SUB (left) and IBC (right) Motor task. The learned representations of
the decoding models were evaluated by comparing them with the base model using CKA. Eight
different decoding models were evaluated, including training from scratch (A), using transferred
graph representations (B) and fine-tuning GCN layers (C-H). (A-B) showed the raw CKA values
between the chosen decoding model (x-axis) and the base model (y-axis), while (C-H) showed the
changes in CKA values when comparing to the transfer model. The similarity of representations
between tasks were calculated for each model (I) using the Mahalanobis distance.

low- and high-level representations by training from random initialization on the small dataset, but
learned very different representations for the middle layers. By contrast, the fine-tuning models
retained the transferred representations to a large degree, with only small changes in the last GCN
layers by gradually embedding more mid-layer representations in order to adapt to the specific dataset
or population (mean CKA increasing from 0.47 to 0.77). Similar findings were observed for the
working-memory tasks (see Section 3 and Figure S4 in Supplementary).

3.1.3 Projections of graph representations

The learned graph representations of brain dynamics were projected onto a 2-dimensional space
using t-SNE (6). The similarity of representations between tasks were calculated using Mahalanobis
distance. The transfer model achieved the highest decoding accuracy on the Motor task (92.5%)
where the five types of body movements can be visually separated after the projection of learned
graph representations (Figure [2J). Small mixing effect was still observed between the left- and
right-side of body movements, for instance, between left and right-hand movement, which can be
further distinguished when projecting the representations to a higher dimension (see Figure S6 in
Supplementary). The scratch model achieved a much lower decoding accuracy (83.7%) with stronger
mixing effects among the projections of left and right foot movement as well as right hand movement
that were not separable even in a higher dimension. The decodability of the fine-tuning models
gradually decreased after layer-wise fine-tuning (0.925, 0.9125, 0.8875 respectively for only tuning
the last GCN layers, the last three GCN layers and all GCN layers). But the representations of
different movements were gradually separated from each other, especially between left and right
foot movements, as well as between left and right hand, with a tradeoff of smaller distinctions
with the tongue movement. For the data distribution after projecting graph representations using
t-SNE and other methods, see Figure S7 for Motor task and Figure S9 for Working-memory tasks in
Supplementary.

3.1.4 Saliency maps: brain activations and inter-subject variability

In order to investigate whether the decoding models learned a set of biologically meaningful features,
we generated saliency maps on the trained model by propagating the non-negative gradients backwards
to the input layer (12). An input feature is salient or important only if its little variation causes big
changes in the decoding output. Thus, high values in the saliency map indicate large contributions
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Figure 3: Saliency maps of decoding brain activities on the HCP-SUB (A-C) and IBC (D-F)
Motor task. The effect of task conditions on the saliency maps were evaluated using repeated-
measure ANOVA with “subject” as the random factor and “task™ as the within-group factor. We
only showed brain regions with a high saliency (>0.2) and having a significant effect of task (FWE
corrected p<0.001) in the saliency maps. For Motor task, the data samples includes five types of
movements, i.e. the movement of right foot (in blue), left foot (in orange), right hand (in green),
left hand (in red), and tongue (in purple). The inter-subject variability was shown for four regions,
including regions selectively responding to foot (region a), hand (region b), and tongue movement
(regions c and d).

during the prediction of task states. The saliency maps on the Motor task showed that different types
of movements were associated with high salience in the primary motor and somatosensory cortices
(Figure[3), which have been shown to be the main territories engaged during movements of the human
body in the neuroscience literature (8)). No clear somatotopic organization was identified here, which
was somewhat expected because the primary motor and somatosensory cortex were parcellated into
single strips in the Glasser’s atlas (Glasser et al. 2016). To compensate for this effect, other regions
beyond the sensorimotor cortex were detected in the saliency map. For instance, regions around
the operculum were selectively activated for the tongue movement (regions ¢ and d in Figure [3),
while BA2 was selectively activated for hand movement (region b in Figure [3). High consistency and
notable divergence in the saliency maps were observed between different decoding models. First, a
similar set of brain regions were detected across all decoding models, using biologically meaningful
features during task prediction. Second, different brain signatures were generated from the neural
dynamics of these brain regions. Specifically, the feature transfer model learned highly stable and
task-distinctive brain signatures, consisting of regions selectively responding to foot (region a),
hand (region b), and tongue movement (regions ¢ and d), while suppressing their response to other
movements. Fine-tuning the GCN layers slightly disrupted such clean and stable distinctiveness
between tasks, for instance reduced response to foot movement in region a. High inter-subject
variability was also detected in the saliency map which may infer the complexity of the trained model
and be used as an indicator of model overfitting. When training the model from random initialization,
we observed much higher inter-subject variability in the saliency maps, along with a random or
high-order relationship between tasks and regions, which implied a high overfitting effect during
model training by treating each subject differently.

3.1.5 Domain-specific transfer learning vs domain-general transfer learning

The above transfer-learning analysis was performed by using the domain-specific base model, for
instance, the base model for the Motor task was trained only using fMRI data from the task sessions
when participants performed the five types of body movements. An alternative approach was to
train a domain-general base model using fMRI data from all available task domains. Smaller gains
were obtained by transferring features from other cognitive tasks instead of copying domain-specific
features, for instance, performance boost on Motor task as 10% for 12 subjects, 4% for 24 subjects,
2% for 36 subjects. Further fine-tuning the GCN layers provided an additional boost of 1%. Another
approach was to transfer only a part of graph representations instead of copying features of all
GCN layers. For within-domain transfer learning, higher boost on decoding performance was
achieved by transferring all GCN layers. On the contrary, for across-domain transfer learning, the
best performance was achieved by only transferring and fine-tuning the first 4 GCN layers, with
performance boost over the scratch model as 12% for 12 subjects, 6.8% for 24 subjects, 2% for 36
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Figure 4: Transfer learning boosts the decoding performance on the Motor (left) and Working-memory
(right) tasks from the IBC database

subjects. Our results indicated that the low-level representations of brain dynamics were transferable
among different cognitive tasks, while both low and high-level representations were shared within
the same task domain and transferable among different groups of subjects. In both cases, the benefits
of transfer learning were dismissed as the sample size of the training set increased.

3.2 Transfer Learning on datasets with different scanning conditions

We tested the above pipeline on an independent dataset consisting of 12 subjects from the Individual
Brain Charting (IBC) database, where fMRI data were acquired using a different scanner, different
BOLD sequences, and different repetition time (TR=2s). For the Motor task, training from ran-
dom initialization using less than 1k data samples resulted in an effective decoding (average test
accuracy=91% across 10-fold cross-validation, random chance=20%). Still, using features trans-
ferred from the domain-specific base model provided an additional gain of 7%, but with no further
improvement or even slightly lower performance after fine-tuning the GCN layers. Interestingly,
the direct prediction on the IBC Motor task using the base model on HCP subjects yielded a very
high decoding accuracy (97.5%). These results indicated that the neural representations of the
Motor task were highly stable not only between subjects but also across sites. Further fine-tuning
learned site-specific features but may overfit on the small dataset (Figure ). We found consistent
but somewhat distinct patterns on the Working-memory task. First, the base model trained on HCP
subjects showed poor generalizability on IBC subjects (test accuracy=30%, chance level=12.5%),
coinciding with the literature that high inter-subject variability has been reported in both behavior
and neural activity of the Working-memory tasks (2} [7). On the contrary, the decoding model trained
from random initialization performed much better (41%), with a performance boost of 5% by using
features transferred from the base model and an additional gain of 4% after further fine-tuning the
GCN layers. Our results indicated a strong site effect in the learned representations of brain dynamics
for the Working-memory task, but with a smaller effect of task domain (see Table [2).

These observations somewhat coincided with the findings of transfer learning on natural images
that features from the first few layers were generalized across different tasks while features from
higher layers were more specific to a particular task (15). In our experiments, we also found that the
representations of brain activities from the first three GCN layers showed high generalizability across
different task domains, while the high-level representations (from 5th and 6th GCN layers) were
only generalizable within the same task domain especially for fMRI data acquired from a different
scanning environment. On the other hand, unlike natural images, the scanning conditions had a much
higher impact on the transferability of graph representations of brain dynamics as, for instance, the
performance boost was reduced from 20% to 7% for the Motor task, and from 15% to 10% for the
Working-memory tasks when transferring across different sites.

3.2.1 Similarity of graph representations

The scratch model captured similar representations as the base model for high-level GCN layers
(mean CKA=0.82), as shown in Figure |Z][ By contrast, the first GCN layer embedded all mid-layer
representations of the base model (mean CKA=0.84), while retaining a much lower similarity with the
low-level representations (CKA=0.71), which may indicate an overfitting effect in the scratch model
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Table 2: Performance boost of transfer learning on IBC Motor and Working-memory tasks

ALLTask-Motor ALLTask-WM MOTOR-Motor WM-WM
Transfer-Learning (%)  Transfer-Learning (%) Transfer-Learning (%) Transfer-Learning (%)
Boost Boost Boost Boost Boost Boost Boost Boost Boost Boost

Models over over over over over over over over over over

Scratch Transfer Scratch Transfer Scratch Base Transfer Scratch  Base Transfer

(90.3) (93.8) (43.7) (43.8) (89.5)  (97.5)  (96.7) (42) (30) (47
GCN 1 2.3 —-0.5 7.1 4.5 2.2 —4.1 ) 4 15 -1
GCN 2 2.4 0.7 7.2 4.6 1.9 —4.4 —-5.3 6.2 17 1.2
GCN3 3.7 1.0 8.6 6.0 2.9 —3.4 —4.3 7.6 18.8 2.7
GCN 4 3.1 0.4 8.2 5.6 2.9 —3.4 —4.3 7.5 18.7 2.6
GCN 5 2.4 0 5.6 3 5 —2.1 -3 8.3 19.4 3.3
GCN o6 2.3 0 04 -2 7.2 -1.3 2.2 9 21 4

by learning complex representations in the low-level GCN layers. Using a layer-wise fine-tuning
approach after feature transfer, the last GCN layers gradually enhanced the embedding of the mid-
layer representations of the base model (mean CKA increasing from 0.50 to 0.78), while retaining
the low-level representations to a large degree. Similar findings were observed when projecting the
graph representations onto 2-dimensional spaces, for instance, fine-tuning GCN layers gradually
separated the representations for the left- and right-side of body movements while learned highly
similar representations for movements of the same category (see Figure S8 in Supplementary).

3.2.2 Saliency maps: brain activations and inter-subject variability

We compared the saliency maps of different decoding models on the IBC Motor fMRI dataset
(see Figure [3). A similar set of brain regions were detected that were highly contributed to the
classification of different types of movements, consisting of the sensorimotor cortex and regions
around the operculum. The transferred model learned stable and task-distinctive brain signatures by
including regions selectively responding to foot (region a), hand (region b), and tongue movement
(regions c and d). After fine-tuning the GCN layers, the model learned more complex representations
along with high inter-subject variability in the saliency maps, especially for the hand and foot
movements in regions a and b. When training the model from random initialization, a much higher
inter-subject variability was detected, along with complex combinations among different movements,
which implied a strong overfitting effect on the small dataset by learning different representations on
each individual and using subject-specific decoding inference.

4 Conclusion

We proposed a new pipeline for transfer learning on medical imaging that used a base model trained
on a large-scale neuroimaging dataset instead of transferring features from natural images. We
evaluated the transferability of brain decoding across different cognitive domains, different groups of
subjects, and even between different sites using different scanning sequences. Our results suggested
that the learned representations of brain dynamics were highly transferable not only within the same
cognitive domain but also across different task domains, as well as to new datasets acquired from
a different scanning environment. Different from transfer learning on natural images, where the
similarity of task domains played an important role (15)), we observed a small effect in the domain
of the base model, yielding a significant performance boost for both within-domain and across-
domain transfer learning. By contrast, the scanning condition showed a much higher impact on the
transferability of representations. Fine-tuning can further boost the decoding performance by learning
more site-specific high-level features while retaining the transferred low-level representations of
brain dynamics. Our study suggests a great potential of transfer learning and domain adaptation in
medical imaging, possibly making contributions in a variety of domains, including neurological and
psychiatric disorders.
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