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Brain network hubs are both highly connected and
highly inter-connected, forming a critical communi-
cation backbone for coherent neural dynamics. The
mechanisms driving this organization are poorly un-
derstood. Using diffusion-weighted imaging in twins,
we identify a major role for genes in shaping hub con-
nectivity of the human connectome, showing that
genes preferentially influence connectivity strength
between network hubs. In two independent samples,
we show that DINA variants preferentially related
to hub connectivity are expression quantitative trait
loci for genes that overlap with those implicated in
intelligence, schizophrenia, and metabolism. Using
transcriptomic atlas data, we show that connected
hubs demonstrate tight coupling of transcriptional
activity related to metabolic and cytoarchitectonic
similarity. Finally, comparing thirteen generative
models of network growth, we show that stochas-
tic processes cannot explain the spatial distribution,
and thus the precise wiring pattern, of hub connec-
tivity. Together, our findings indicate that genetic
influences on brain connectivity are not uniformly
distributed throughout the brain, but are instead
concentrated on the functionally valuable, metabol-
ically costly connections between connectome hubs.
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Introduction

Nervous systems are intricately connected networks with
complex wiring patterns that are neither completely ran-
dom nor completely ordered (1, 2). Numerous studies,
conducted in species as diverse as the nematode worm
Caenorhabditis elegans, mouse, macaque, and human,
and at scales ranging from the cellular to the macro-
scopic, have shown that this complex organization is,
in part, attributable to a heterogeneous distribution of

connectivity across neural elements, such that a large
fraction of network connections are concentrated on a
small subset of network nodes called hubs (3-7). These
hubs are more strongly interconnected with each other
than expected by chance, forming a rich-club (3-5, 7)
that is topologically positioned to integrate functionally
diverse neural systems and mediate a large proportion
of inter-regional communication (5, 8).

In human cortex, hubs are predominantly located in
multimodal association areas (6, 9) and are among the
most metabolically expensive elements of the connec-
tome (10), with rich-club connections between hubs ac-
counting for a disproportionate fraction of axonal wiring
costs (3-5, 7, 11). Association hubs of the human brain
also show marked inter-individual variability in connec-
tivity and function that relates to a diverse array of
behaviors (6, 12-14). These brain regions are dispro-
portionately expanded in individuals with larger brains
(15) and in human compared to non-human primates
(16). They also show greater topological centrality and
evolutionary divergence in the human connectome when
compared to chimpanzee (17). These findings support
the view that rapid expansion of multimodal association
hubs, and the costly, valuable rich-club connections be-
tween them, underlies the enhanced cognitive capacity
of humans compared to other species (18).

What influences the way in which hub regions connect
to each other? The rapid evolution of network hubs
in humans, coupled with evidence supporting the heri-
tability of many different aspects of brain organization
(19), suggests an important role for genes. In the de-
veloping brain, neurons can innervate precise targets,
even over long anatomical distances, by following genet-
ically regulated molecular cues (20, 21). However, it
is unknown whether genetic influences are preferentially
exerted across specific classes of connections, such as
the costly and functionally valuable links between net-
work hubs. Preliminary evidence from human twin re-
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search suggests that certain properties of hub functional
connectivity are strongly heritable (22), and analyses of
C. elegans, mouse, and human data suggest that hub
connectivity is associated with a distinct transcriptional
signature related to metabolic function (7, 11, 23-25).
Alternatively, some have suggested that the protracted
maturation of hub regions (16, 26, 27) may endow these
areas with enhanced plasticity (12), suggesting a promi-
nent role for environmental influences. Moreover, recent
computational models of whole-brain connectome wiring
suggest that it is possible to grow networks with com-
plex topological properties, including hubs, that mimic
actual brains using simple, stochastic wiring rules based
on geometric constraints (28-31) or trade-offs between
the wiring cost and functional value of a connection (32—
34). These findings imply that the emergence of network
hubs may not require precise genetic control and may
instead result from random processes shaped by generic
physical and/or functional properties.

Here we use a multifaceted strategy to test between
these competing views and characterize genetic influ-
ences on hub connectivity of the human cortical con-
nectome. First, using a connectome-wide heritability
analysis (Fig. 1A-B), we show that genetic influences
on phenotypic variance in connectivity strength are not
distributed homogeneously throughout the brain, but
are instead preferentially concentrated on links between
network hubs. Second, through analysis of genome-
wide single nucleotide polymorphisms (SNPs; Fig. 1C),
we demonstrate that variants preferentially related to
hub connectivity are expression quantitative trait loci
(eQTLs) for genes implicated in risk for schizophrenia,
intelligence, and energy metabolism. Third, as previ-
ously demonstrated in C. elegans (11) and mouse (7),
we show that connected pairs of hubs in the human
brain exhibit tightly coupled gene expression related to
the metabolic demand and cytoarchitectonic similarity
of these areas (Fig. 1D). Finally, we use computational
modeling to show that stochastic network wiring models
can indeed generate networks with brain-like properties,
but they fail to capture the spatial distribution of hub
regions and, by extension, the precise pattern of wiring
between network hubs.

Collectively, these findings demonstrate a direct link be-
tween molecular function and the large-scale network
organization of the human connectome and highlight a
prominent role for genes in shaping the costly and func-
tionally valuable connections between network hubs.

Results

Using diffusion weighted imaging (DWI) data for 972
subjects acquired through the Human Connectome
Project (HCP) (36) we generated a representative group-
level connectivity matrix [see Online methods] contain-
ing 12924 unique connections between 360 brain regions
defined by the HCPMMP1 atlas (37). This network con-
tains a set of highly connected regions, quantified using
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the measure of node degree (k), which represent network
hubs and which span sensorimotor, paracentral, mid-
cingulate (k > 105), insula, posterior cingulate, lateral
parietal, and dorsolateral prefrontal cortices (k > 145)
(Fig. 2A). As shown previously (5, 6, 8, 10), the net-
work also exhibits rich-club organization, with hubs be-
ing more densely and strongly interconnected than ex-
pected by chance (Fig. S1). Rich-club connections also
have higher average wiring cost and communicability
(Fig. S1), indicating that they are amongst the most
topologically central and costly elements of the connec-
tome.

Genetic influences on brain connectivity are concentrated
in the rich club. To investigate whether genes preferen-
tially influence certain classes of connections in the hu-
man brain, we performed a connectome-wide heritability
analysis of twin data acquired through the Human Con-
nectome Project. For each of 234 monozygotic (MZ)
twins and their 69 non-twin siblings as well as 120 dizy-
gotic (DZ) twins 48 of their non-twin siblings, we re-
constructed macroscale cortical connectomes using DWI
[see Online methods].

For each connection in the representative group con-
nectome, we used the classic ACTE model to estimate
the proportion of variance in connectivity strength that
is attributable to additive genetic factors (narrow-sense
heritability, annotated as h?, see Online methods).
Using the average fractional anisotropy (FA) of each con-
necting fibre bundle to quantify connectivity strength
[see Online methods], we observe a wide range of heri-
tability estimates across connections, spanning 0 to 0.99
(h®mean = 0.45, h?sp = 0.2). Non-trivial genetic influ-
ences, quantified using the A component of the ACTE
model, were observed for the majority of connections,
with the AE model showing the best fit for 86.7% of
edges, ACTE for 4.3%, and ACE for 1.3%. A total of
7.7% of connections were influenced only by environmen-
tal factors (CE model 6.8%, E model 0.9%).

To examine whether genetic influences are preferentially
concentrated on specific types of inter-regional connec-
tions, we distinguish between hub and nonhub regions,
resulting in three possible types of connections: rich
(hub-to-hub), feeder (between a hub and a nonhub), and
peripheral (nonhub-to-nonhub) links [see schematic in
Fig. 1A, (38)].

We find that mean heritability derived from the best-
fitting biometric model is highest for rich, intermediate
for feeder, and lowest for peripheral connections across
nearly all values of k (Fig. 2B—C). The increase in her-
itability for rich links as a function of the hub-defining
threshold, &, indicates that genetic influences are, on av-
erage, stronger for connections between the most highly
connected brain regions (see also Fig. 1E). The same pat-
tern is replicated when taking genetic parameters from
the full ACTE model, confirming that this result is not
an artefact of our model-selection procedure (Fig. S2).
Contrasting with rich links between hubs, phenotypic
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Fig. 1. Workflows used to characterize genetic influences on hub connectivity. (A) A schematic representation of the connectome showing different connection types
in the brain. Given a distinction between hub nodes (red outline) and nonhub nodes (grey outline), we can distinguish three classes of connections: rich links, which are
connections between two hubs (red); feeder links, which are connections between a hub and a nonhub (yellow); and peripheral links, which are connections between two
nonhubs (blue). (B) Connectome-wide heritability analysis. We use structural equation modeling to fit a classic ACTE biometric model to every connection within the brain,
resulting in estimates of genetic and environmental influences for each link. (C) DNA variation related to hub connectivity. (I) We perform a connectome-wide, genome-wide
association analysis (GWAS) to quantify the association between polymorphic variation at each of 5235153 variants and connectivity strength at each connection. (Il)
The resulting beta estimates, quantifying the associations between connection weights and SNPs, are sorted by connection type. (lll) ¢-tests are used to identify SNPs
more strongly associated with rich than peripheral links. (V) We identify which of a set of prioritized SNPs are eQTLs and map them to the genes whose expression they
influence. We then test for enrichment of these gene lists with respect to genes implicated in intelligence, mental illness, and annotated gene categories. (D) Analysis
of transcriptional coupling. (l) Each of 3702 tissue samples in the Allen Human Brain Atlas (AHBA) is mapped to a given region in our brain parcellation. (ll) Expression
values are then subjected to a quality control and processing pipeline (35) to construct a region x gene matrix of expression values. (lll) We estimate correlated gene
expression (CGE) between each pair of brain regions as the Pearson correlation between region-specific gene-expression profiles. (IV) Inter-regional CGE is corrected for
spatial autocorrelation of the expression data via regression of the exponential distance trend (35). (E) Schematic representation of how values assigned to each edge are
compared across connection types. We compare the mean of edge-level (pairwise) measures of heritability and CGE across rich, feeder, and peripheral links across all
possible hub-defining thresholds (horizontal axis). As k increases, the definition of a hub becomes more stringent and identifies the actual hubs of the network. Thus, if a
given effect is stronger for rich links, we expect the pairwise estimates to increase as a function of k, with the increase for rich links being particularly large relative to feeder
and peripheral links.

variance in peripheral connectivity (between nonhubs) is
predominantly influenced by unique environment (quan-
tified by the model parameter E, Fig. 2D), while com-
mon environmental influences are consistently low across
all link types (mean values (C) < 0.08 and (T") < 0.02
across all k thresholds). Critically, we obtain similar
evidence of preferential genetic influences on hub con-
nectivity when using different methods for parcellating
or thresholding our connectomes (Fig. S3) or when eval-
uating connection strength based on the number of re-
constructed streamlines (streamline count, SC) between
regions (Fig. S4).

To investigate whether genetic influences are specific to

certain functional systems of the brain, we next cate-
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gorize edges according to the major functional networks
that they connect, as defined using a network parcella-
tion (39) of the HCPMMP1 atlas (37) (Fig. 2E). Fig-
ure 2F shows the proportion of nodes with degree > k in
each functional network. High-degree nodes are present
in most networks until k =~ 120, beyond which they
are predominantly found in multimodal association net-
works; namely, the fronto-parietal, cinguolo-opercular,
and default mode systems.

Across all 12 canonical functional networks, rich links
both within and between networks demonstrate signifi-
cantly higher heritability than other types of connections
(Fig. 2G-1, one-sided Welch'’s t-test, comparing heritabil-
ity of rich vs feeder and rich vs peripheral connections,
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all p < 1.9x 10712), suggesting that the elevated genetic
influences observed for rich links cannot be explained
by the affiliation of hub nodes to any specific functional
network. Moreover, stronger heritability of rich links is
evident across different connection distances (Fig. S5),
suggesting that preferential genetic influences on hub
connectivity cannot be explained simply by the longer
average distance of rich links (Fig. S1D).

Together, these findings indicate that genetic influences
on phenotypic variance in connectivity strength are not
distributed homogeneously throughout the brain, nor
are they confined to specific functional networks or long
vs short-range connections. Instead, they are most
strongly concentrated on the connections between net-
work hubs. These hubs are distributed throughout the
cortex, with the most highly connected residing in mul-
timodal association networks.

DNA variation related to hub connectivity. We next devel-
oped a pipeline for identifying genes whose expression
in cortex is influenced by eQTLs preferentially related
to hub connectivity [see Online methods]. For each of
12924 unique connections in the representative group
connectome, we run a linear regression-based GWAS
in a sub-sample of unrelated Caucasian subjects from
the HCP dataset that have both DWI and genotyping
data available (n =254, Fig. 1C, I) and use the result-
ing 8 weights for each SNP to select the top 10% of
variants that show a stronger influence on rich link con-
nectivity strength compared to peripheral connectivity
(all PFDR < 0.05).

We then use data from the psychENCODE database
(40) for identifying, from our prioritized list of SNPs,
eQTLs that influence mRNA transcript levels in pre-
frontal cortex [see Online methods, Fig. 1C, IV]. Note
that our goal in this analysis is to use beta estimates
from the GWAS to prioritize SNPs for eQTL mapping
and not to conduct inference at the level of individual
SNPs with genome-wide significance. We therefore do
not have the same multiple comparison burden as tradi-
tional GWAS and the statistical power of this analysis
is determined by the psychENCODE database. Impor-
tantly, to ensure that our results are reliable, we perform
the same analysis in an independent sample of 276 unre-
lated Caucasians (Monash Sample, see Online methods
for details).

Using the HCP sample, we find that 883 of our 8207
prioritized SNPs are significant eQTLs, and that these
eQTLs influence the expression of 886 annotated genes.
For the Monash dataset, we identify 674 significant
eQTLs out of 6081 prioritized SNPs, influencing the ex-
pression of 644 annotated genes. A total of 96 of these
genes are common across the two samples [see supple-
mentary text S3], a statistically significant level of over-
lap (hypergeometric test, p =4 x 1073%).

Given the proposed role of rich links in supporting com-
plex, integrated brain function (10, 38, 41) and in me-
diating diverse behaviors and disorders (6, 12-14), we
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first test whether the lists of genes we identify as being
related to hub connectivity overlap with genes impacted
by eQTLs that we identify using prior GWAS of intelli-
gence and mental illness [see Online methods, (42-47)].
In the HCP sample, we find a statistically signifi-
cant overlap between genes related to hub connectiv-
ity and intelligence (hypergeometric test, p=1x 10727)
and schizophrenia (hypergeometric test, p = 3 x 10718,
see supplementary text S3), but not major depression,
attention-deficit hyperactivity disorder, autism spec-
trum disorder, or bipolar disorder (all hypergeomet-
ric tests p > 0.008, Bonferroni correction for n = 6
tests). Analysis of the Monash dataset replicated the
significant overlap with genes implicated in intelligence
(hypergeometric test, p = 1 x 107!!) and schizophre-
nia (p =3 x 10~13), while also identifying overlap with
major depressive (p =1 x 10~7) and bipolar disorder
(p=2x 1077, see supplementary text S3).

In enrichment analyses using the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) (48) and Gene
Ontology (GO) (49) annotation systems [see Online
methods], we find that hub connectivity genes in both
the HCP and Monash datasets are over-represented in
KEGG metabolic pathways (KEGG:01100) (Table S1,
Table S2). We also find qualitatively similar results
using the consensus list of 96 genes across both sam-
ples [see supplementary text S3 and Table S3]. To-
gether, these findings indicate that DNA variants prefer-
entially related to rich-club connectivity include eQTLs
for genes implicated in intelligence, schizophrenia, and
energy metabolism.

Transcriptional coupling is elevated between connected
hubs. We now investigate the transcriptional corre-
lates of hub connectivity using data from the Allen Hu-
man Brain Atlas (AHBA) (50), focusing on expression
profiles of 10027 genes surpassing our quality-control
criteria (35) within the 180 cortical regions of the left
hemisphere, where spatial coverage in the AHBA is most
comprehensive. We quantify transcriptional coupling
between different brain regions using spatially-corrected
correlated gene expression (CGE) (Fig. 1D, Fig. S6, see
also Online methods) and define inter-regional connec-
tivity using a binary group-representative matrix [see
Online methods]. The spatial correction is important as
prior studies of C. elegans, mouse, and human nervous
systems have shown that, across the brain, CGE decays
exponentially as a function of distance (7, 11, 24, 51).
Recent analyses of the mesoscale connectome of the
mouse (7) and microscale (cellular) connectome of C.
elegans (11) indicate that, after correcting for this bulk
trend, connected pairs of hubs show the highest CGE,
despite being separated by longer anatomical distances,
on average, than other neural elements.

Figures 3A-B show that the same effect is observed
in humans: CGE is highest for rich, intermediate for
feeder, and lowest for peripheral links. We obtain simi-
lar results under different connectome processing options
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Fig. 2. Genetic influences on connectivity strength are preferentially concentrated on rich-club links. (A) Anatomical locations of hubs defined at different levels of k.
(B) The degree distribution of the representative group-level connectome. Mean genetic (C) and unique environmental (D) influences for rich (hub-hub), feeder (hub-nonhub),
peripheral (nonhub-nonhub) connections as a function of the hub-defining threshold, k. The mean of the corresponding measure across all network links is shown as a
dotted black line. Shaded area corresponds to the standard error of the mean, circles indicate a statistically significant increase in mean heritability in a given link type
compared to the rest of the network (one-sided Welch’s ¢-test, uncorrected p < 0.05). (E) Regional assignments to canonical functional network modules (39), represented
using color. (F) The proportion of nodes with degree > k in each functional network module as a function of k. (G) Distributions of heritability estimates across edges within
functionally defined networks (39): VIS1 — primary visual; VIS2 — secondary visual; SM — somatomotor; CO — cingulo-opecular; DAN — dorsal attention; LAN — language;
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types for £ > 105. Rich links show significantly higher heritability compared to both feeder and peripheral links, within and between functional modules (one-sided Welch’s

t-test, all p < 1.9 x 10~ 12).

(Fig. S7), distance ranges (Fig. S8), and when using
connectivity data from the Monash Sample (Fig. S9).
The consistency of this effect between human, mouse,
and C. elegans [see Fig. S10 for comparison] is strik-
ing given the large physiological differences between
species, methods for connectome reconstruction (DWI,
viral tract tracing, electron microscopy), analysis res-
olution [macroscale (mm to cm), mesoscale (microns
tomm), microscale (individual cells and synapses)|, and
gene-expression assays (microarray, in situ hybridiza-
tion, curation of published reports).

As with heritability (Fig. 2C), higher CGE occurs
for connections between high-degree nodes distributed
across the brain; i.e., the effect is not confined to a single
functional network (Fig. 3C). Indeed, connected pairs of
hubs demonstrate higher CGE both within (Fig. 3D) and
between (Fig. 3E) functionally defined networks (one-
sided Welch’s t-test, comparing CGE of rich vs feeder
and rich vs peripheral connections, all p < 0.02).

Expression values in the AHBA are extracted from bulk
tissue samples, and thus agglomerate transcriptional in-
formation from many different cell types. It is there-
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fore possible that inter-regional CGE may be related
to similarity in regional cellular composition [see also
(52)]. We thus repeated the CGE analysis, this time us-
ing only data from genes showing cell-specific expression
for seven canonical cell types: excitatory and inhibitory
neurons, oligodendrocyte progenitor cell, astroglia, en-
dothelial cells, microglia, and oligodendrocytes [see On-
line methods, (53-57)]. We find that all classes of cell-
specific genes exhibit an increase in CGE for rich links
relative to peripheral (Fig. S11), with oligodendrocyte-
related genes showing a significantly stronger contribu-
tion to elevated CGE between connected hubs (one-sided
Welch’s t-test, p = 2 x 10711, Fig. 3F) compared to all
other genes [see Online methods].

These findings suggest that connected hubs have higher
cytoarchitectonic similarity than other pairs of regions.
We confirm this hypothesis using an analysis of the
BigBrain atlas (58), which is a high-resolution Merker-
stained histological reconstruction of a post-mortem hu-
man brain that provides an opportunity to map regional
variations in cellular density as a function of cortical
depth. Following Paquola et al. (59), we estimate in-
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Fig. 3. Transcriptional coupling is elevated for connected brain network hubs. (A) The degree distribution of the representative group-level connectome of brain regions
in the left cortical hemisphere. Degree is computed from whole-brain connectivity. (B) Mean correlated gene expression (CGE) for rich (hub-hub), feeder (hub-nonhub),
peripheral (nonhub-nonhub) connections as a function of the degree threshold, &, used to define hubs. The mean CGE across all network links is shown as a dotted black
line. The shaded area corresponds to the standard error of the mean, circles indicate a statistically significant increase in CGE in a given link type compared to the rest
of the network (one-sided Welch’s t-test, uncorrected p < 0.05). CGE estimates are corrected for distance effects, as explained in the Online methods. (C) CGE within
functionally defined networks as in Fig. 2E. Black dots represent CGE values for rich links (k > 105). CGE values within (D) and between (E) functional modules in the
left hemisphere across different link types (rich, feeder, and peripheral). Inter-module rich links show significantly higher CGE compared to both feeder (one-sided Welch’s
t-test, p = 0.03) and peripheral links (p = 1.5 x 10~ ). Within functional modules, rich links show higher CGE compared to peripheral (p = 1.2 x 10~ %) but not to feeder
links (p = 0.5). (F) Gene contribution score t-statistic values (GCS _s¢at) for cell-specific gene groups quantifying the contribution of individual genes towards increased
CGE for rich compared to peripheral links. Neuronal gene groups (excitatory — excitatory neurons; inhibitory — inhibitory neurons) are colored blue; glial gene groups (OPC
— oligodendrocyte progenitor cells, astroglia, endothelia — endothelial cells, microglia, oligodendrocytes) colored green; IQ and schizophrenia-related gene groups colored
pink, GC'St _stat; and values for all other genes presented in light orange. Oligodendrocyte-related genes show a statistically significant increase in GCC compared to all
other genes (one-sided Welch’s ¢-test, p = 2 x 10™1). No such effect was observed for schizophrenia or intelligence related genes. (G) The degree distribution of the
representative group-level cortical connectome. (H) Mean microstructural profile covariance (MPC) for rich (hub—hub), feeder (hub—nonhub), peripheral (nonhub—nonhub)
connections as a function of degree threshold, k used to define hubs. The MPC across all network links is shown as a dotted black line. Shaded area corresponds to the
standard error of the mean, circles indicate a statistically significant increase in MPC in a given link type compared to the rest of the network (one-sided Welch’s ¢-test,
uncorrected p < 0.05). Inset near the degree distribution shows examples of the intermediate surfaces used to assay microstructure across the cortical depth.

chondrial function (prpr < 0.05, Table S4) that mirror
those previously reported in the mouse brain (7). These

tensity profiles across 16 equivolumetric surfaces placed
between the gray/white and pial boundaries of the cor-

tical ribbon and compute the inter-regional microstruc-
tural profile covariance (MPC) [see Online methods] as
a proxy for cytoarchitectonic similarity. Mirroring the
CGE and heritability findings, rich links exhibit elevated
MPC compared to feeder and peripheral edges (Fig. 3H).
These convergent MPC and cell-specific CGE results in-
dicate that connected hubs have a more similar cytoar-
chitecture than other pairs of brain regions.

Finally, a gene set enrichment analysis of gene groups re-
lated to elevated CGE between hubs (Online methods)
identifies significant enrichment of 49 GO categories, no-
tably featuring genes related to oxidative metabolism,
ATP synthesis coupled electron transport, and mito-
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results align with our eQTL findings to suggest a close
genetic link between hub connectivity and metabolic
function [for additional considerations see (60) and On-
line methods].

Stochastic models of brain wiring do not capture the spa-
tial distribution of degree. The results above suggest
strong genetic control of hub connectivity, which seems
at odds with recent modeling studies suggesting that
simple stochastic wiring rules can generate networks
with complex, brain-like topologies, including heavy-
tailed degree distributions that imply the existence of
hubs (29, 30, 32, 33). Critically, our genetic analyses
focus on individual variability in the strength of connec-
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tivity between regions. Investigating variability in the
binary topology of connectivity—that is, the specific pat-
tern of wiring between regions—is more challenging, as
such variations at the level of macroscale human con-
nectomes are limited. It is thus possible that stochas-
tic processes may give rise to the basic binary topol-
ogy of hub connectivity, with variations in connectivity
strength subsequently being influenced by genetic fac-
tors.

To investigate the role of stochastic processes in shaping
hub connectivity, we fitted 13 different generative models
of network wiring to the HCP connectome data. Under
each model, synthetic connectomes are generated using
probabilistic wiring rules. The models we consider here
have been explored extensively in prior work (33) and
have the general form:

Gij = d?j X t;yj, (1)

where 0;; is a score that weights the probability of con-
necting nodes i and j, d;; is the Euclidean distance be-
tween node pairs, and ¢;; is a topological property of an
edge that may confer functional value to the network.
Each of the 13 models substitutes a different topological
property for ¢;; (definitions in Table 2). The exponents
7 and v are free parameters fitted to the data to op-
timally match the topological properties of the actual
human connectome, as defined using nodal distributions
of degree, clustering, and betweenness, and the edge-
level distribution of connection distances [(33), see On-
line methods].

In line with prior work (33), we find that models in
which connections form according to both spatial (sav-
ing wiring cost) and topological rules can fit the dis-
tributions of empirical network properties better than
a model based on wiring cost alone (the ‘sptl’ model),
as shown in Fig. 4A. The best-fitting model, ‘deg-avg’,
modulates a pure wiring cost term by favoring connec-
tivity between pairs of nodes that already have high av-
erage degree, and shows a good fit to the data (i.e., all
fits, indexed by the Kolmogorov-Smirnov statistic, were
KS < 0.18 [see Online methods for an extended discus-
sion]).

Despite this adequate fit to four key network properties
of the human connectome (Figs. 4B-E), we find that
node degree in the empirical and model networks have
very different spatial distributions. As shown in Fig. 4F,
hubs in the empirical data are distributed throughout
the brain, whereas hubs in the network that demon-
strates the best fit to data across 130 000 model runs are
predominantly confined to temporal cortex. As a result,
the correlation between the degree sequences of the em-
pirical and model networks is very low (e.g., p = —0.001,
Fig. 4G). This low correlation is observed consistently
across all models (Fig. 4H), and even when we fit model
parameters to explicitly optimize the correlation be-
tween empirical and model degree degree sequences [see
Fig. S13, Online methods]; across 260000 model runs,
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the degree sequence correlation with the empirical data
never exceeds p = 0.3.

Thus, while stochastic models of brain network wiring
can capture the statistical properties (node- and edge-
level distributions) of connectomes, they cannot repro-
duce the way in which these properties are spatially em-
bedded and thus do not accurately replicate the precise
pattern of wiring between connectome hubs.

Discussion

The complex topology of neural networks is thought to
have been sculpted by competitive selection pressures to
minimize wiring costs and promote complex, adaptive
function (10, 61). Across diverse species, rich-club con-
nections between hubs are among the most costly and
topologically central links of the connectome (3-5, 7)
and thus play a major role in determining how cost—
value trade-offs are negotiated within a given nervous
system. Here, we combine a multifaceted genetic analy-
sis with mathematical modeling to examine the mecha-
nisms that shape hub connectivity of the human connec-
tome. We find that: (i) genetic influences on phenotypic
variation in connection strength are principally concen-
trated on the rich links between hubs; (ii) DNA variants
that are preferentially related to rich-link microstruc-
ture are eQTLs for genes that overlap with those im-
plicated in intelligence, schizophrenia, and metabolism;
(iii) connected hubs have highly correlated gene expres-
sion patterns that are related to similarity in regional cy-
toarchitecture and energy metabolism; and (iv) current
stochastic models of network growth cannot reproduce
the spatial distribution of hubs, consistent with a major
role for genes in shaping the rich-club organization of
the brain.

Our connectome-wide heritability analysis presents evi-
dence for a non-uniform distribution of genetic influences
across the brain, characterized by a gradient in which
genetic influences are weak for peripheral connections
between nonhubs, intermediate for feeder connections
between hubs and nonhubs, and strongest for rich links
between hubs. Critically, this effect cannot be attributed
to connection distance or network affiliation, suggesting
some degree of specificity to hubs located throughout
the brain.

The most strongly connected hubs in our connectomes
were located in multimodal association networks, which
show disproportionate expansion in size and connectiv-
ity in human compared to nonhuman primates (16-18).
Given the high centrality and cost of these connections
[Fig. S1, (3-5, 7)], the preferential genetic influence on
rich-club connectivity that we observe supports the hy-
pothesis that natural selection favors wiring patterns
that provide high value for low cost and that selec-
tion pressures are strongly concentrated on the valuable,
costly links between hubs (2, 10). This view is also sup-
ported by recent evidence that genes demonstrating ac-
celerated divergence between humans and chimpanzees
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Fig. 4. Generative brain network models do not reproduce the spatial distribution of brain network hubs. (A) Each distribution represents estimates of model fit, as
quantified by the maximum KS value of the top 100 networks (out of 10 000) produced by the model optimization procedure. The color of each box indicates conceptually
related models, as determined by the specific topology metric used in the model [see Table 2]. Models favoring homophilic connectivity between node pairs are shown in red,
those favoring clustering in orange, those based on degree in light blue, and a purely spatial model considering wiring costs alone is in dark blue. The specific wiring-rule
names are shown along the horizontal-axis, with formal definitions provided in Table 2. Cumulative distributions of: (B) node degree, k; (C) betweenness centrality, b; (D)
clustering coefficient, ¢; and (E) edge length, d, for the empirical connectome (darker line) and 100 runs (lighter lines) of the best-fitting ‘deg-avg’ model with optimized
parameters (n = —2.28, v = 2.89). (F) Anatomical locations of hubs defined for a single hemisphere at selected k thresholds for the empirical data (top) and the single run
of the optimized ‘deg-avg’ generative model demonstrating the best model fit across 10000 runs (bottom). (G) Correlation between the degree sequences of the empirical
data and the best-fitting generative model within a single hemisphere (Spearman’s p = —0.001). (H) The distribution of correlation values quantifying the relationship
between left hemisphere degree sequences of the empirical data and synthetic networks generated using the top 100 best-fitting parameter combinations for each of the 13

considered models, corresponding to the data points shown in A.

show elevated expression in multimodal association net-
works (62).

In contrast to rich-club connectivity, phenotypic vari-
ance in peripheral connections between nonhubs is pri-
marily influenced by unique environment. Topologically
peripheral connections are more strongly conserved be-
tween human and chimpanzee connectomes (17). More-
over, the spatial topography and function of nonhub sen-
sory areas is highly consistent across primates, presum-
ably being specified early in development by evolutionar-
ily conserved transcriptional gradients (18). These con-
served gradients may couple with simple physical pro-
cesses to give rise to predominantly short-range connec-
tivity between topologically peripheral pairs of regions
(31, 63). Subsequent modifications to peripheral connec-
tivity may be driven by activity-dependent mechanisms,
resulting in a greater environmental influence on pheno-
typic variance in connection strength.

It has been proposed that evolutionary expansion of
multimodal hubs untethers these regions from transcrip-
tional anchors in sensory areas, resulting in distinc-
tive, non-canonical anatomical and functional properties
(18). Our findings suggest that, despite this putative
untethering, genes still play an important role in shap-
ing phenotypic variance of hub connectivity. This result
aligns with evidence that non-conserved network prop-
erties reflect evolutionary innovations that are driven by
structural variation of DNA, yielding greater phenotypic
variation within a species (12) and higher trait heritabil-
ity when compared to more strongly conserved proper-
ties (64).

Our eQTL analysis revealed, in two independent sam-
ples, that SNPs preferentially related to variance in rich-
link connectivity have a greater influence on the expres-
sion of genes that overlap with those implicated in intelli-
gence and schizophrenia. The link to intelligence is con-
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sistent with the presumed role of association networks in
supporting higher-order cognitive abilities (12, 13, 18).
The link to schizophrenia is coherent with evidence that
rich-club connectivity is disproportionately affected in
this disorder (65, 66). An important future direction in-
volves quantifying the degree to which genetic influences
on intelligence and risk for schizophrenia are directly me-
diated by their effects on hub connectivity.

In addition to being highly heritable, pairs of connected
hubs also show the highest levels of transcriptional cou-
pling, as previously observed in the mesoscale mouse
connectome (7) and cellular connectome of C. elegans
(11) [see Fig. S10]. In C. elegans this result is not ex-
plained by the developmental proximity (i.e., similar-
ity in neuron birth time or cell lineage distance), neu-
rochemical identity, nor anatomical position of neuron
pairs, but is instead related to the functional identity
of hub neurons, which tend to be command interneu-
rons. Our analysis of cell-specific genes points to a sim-
ilar result at the regional level in humans, as rich-link
CGE was elevated for gene markers of seven different cell
types suggesting that network hubs have enhanced sim-
ilarity in regional cytoarchitecture. This conclusion was
supported by our MPC analysis of the BigBrain atlas.
Our results align with the structural model of cortical
connectivity, in which regions with similar cytoarchitec-
ture are more likely to connect with each other, even
over long distances (67). More specifically, when inter-
preted in light of the structural model, our findings sug-
gest that hub areas are the most similar in their cellular
composition, and that this similarity may play a critical
role in how genes preferentially sculpt long-range inter-
connectivity between hubs.

We also show that current stochastic models of net-
work growth, despite capturing key statistical network
properties of the connectome, do not reproduce the spa-
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tial locations of network hubs. For example, the actual
hubs of the human brain have a widespread anatom-
ical distribution, whereas the hubs in the best-fitting
model network were concentrated around centrally lo-
cated regions. In line with this result, recent work has
shown that cost-neutral randomizations, in which con-
nections are progressively randomized while preserving
total wiring cost and the existence (but not position)
of hubs, almost always degrade the functional complex-
ity of the network, disconnect high-cost hubs, and lead
to a distinct hub topography in which the most highly
connected nodes cluster near the centre of the brain
(68). These findings suggest that actual brains are very
close to optimally balancing wiring cost with topologi-
cal complexity, and that hub connectivity plays a criti-
cal role in determining how this balance is realized [see
also (69)]. Some models suggest that random growth of
connections, when coupled with changes in brain geome-
try and heterochronicity of connection formation across
regions, can yield brain-like networks with realistic fea-
tures (29), including connectivity between regions with
similar cytoarchitecture (70, 71). Although genes likely
influence heterochronous development, future work ex-
tending such models so that they can be directly fit-
ted to empirical data in humans will be important for
delineating the precise roles of genetic, environmental,
stochastic, and physical mechanisms in shaping connec-
tome architecture.

Online methods

Code for reproducing the results presented here is available at
github https://github.com/BMHLab/GeneticBrainHubs. Data are
available from an associated figshare repository.

Imaging data acquisition. We examined DWI data from two
independent cohorts. The first was obtained from the Human
Connectome Project [HCP, (36)]. We used the minimally pro-
cessed DWI and structural data from the HCP for 972 par-
ticipants (age mean + standard deviation: 28.7 3.7, 522 fe-
males), including a cohort of MZ and DZ twin pairs together
with their non-twin siblings (more details presented in Online
methods). Data were acquired on a customized Siemens 3T
“Connectome Skyra” scanner at Washington University in St
Louis, Missouri, USA using a multi-shell protocol for the DWI:
1.25 mm? isotropic voxels, repetition time (TR) = 5520 ms, echo
time (TE) = 89.5ms, field-of-view (FOV) of 210 x 180mm,
270 directions with b = 1000, 2000, 3000 s/mm? (90 per b value),
and 18 b = 0 volumes. Structural T1-weighted data were collected
using 0.7mm?® isotropic voxels, TR = 2400ms, TE = 2.14ms,
FOV of 224 x 224 mm. The full details can be found elsewhere
(72).

The second DWI dataset came from individuals recruited as part
of ongoing research conducted at Monash University. This Monash
Sample was primarily used for replication of the connectome-wide
GWAS and CGE analyses, and comprised 414 participants with
MRI data obtained on a Siemens Skyra 3T scanner at Monash
Biomedical Imaging in Clayton, Victoria, Australia using the fol-
lowing parameters: 2.5mm? voxel size, TR = 8800ms, TE =
110 ms, FOV of 240 x 240 mm, 60 directions with b = 3000s/mm?
and seven b = 0 volumes. In addition, a single b = Os/mm2 was
obtained with the reverse-phase encoding so distortion correction
could be performed. T1-weighted structural scans were acquired
using: 1mm?3 isotropic voxels, TR = 2300ms, TE = 2.07 ms,
FOV of 256 x 256 mm. Data for 82 subjects were excluded due
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to: low connectome density (n = 11, connectome density more
than 3 standard deviations lower than the mean) or no genotype
data (n = 69), resulting in a final sample of 334 participants (age
mean =+ standard deviation: 23.65+5.5, 190 females).

Image pre-processing. HCP DWI data were processed ac-
cording to the HCP minimal preprocessing pipeline, which in-
cluded normalization of mean by image across diffusion acqui-
sitions, and correction for EPI susceptibility and signal out-
liers, eddy-current-induced distortions, slice dropouts, gradient-
nonlinearities and subject motion. T1-weighted data were cor-
rected for gradient and readout distortions prior to being processed
with Freesurfer [full details can be found in (72)].

Pre-processing for T1-weighted structural images in the Monash
Sample consisted of visual screening for gross artefacts followed by
the reconstruction of the grey/white matter interface and the pial
surface using FreeSurfer v5.3.0 software. Surface reconstructions
for each subject were visually inspected, with manual corrections
performed as required to generate accurate surface models (72).
Distortions in the Monash DWI data were corrected with TOPUP
in FSL, using the forward and reverse phase-encoded b = 0 images
to estimate the susceptibility-induced off-resonance field (73, 74).
We corrected for eddy-current distortions, volume-to-volume head
motion, within-volume head motion, and signal outliers using
eddy tool in FSL [version 5.0.11; (75-77)]. This implementation
of EDDY significantly mitigates motion-related contamination of
DWTI connectivity estimates (78). DWI data were subsequently
corrected for B1 field inhomogeneities using FAST in FSL (74, 79).

Connectome reconstruction. For both the HCP and Monash
datasets, network nodes for each individual were defined using a
recently-developed, data-driven group average HCPMMP1 parcel-
lation of the cortex into 360 regions [180 per hemisphere, (37)]. An
advantage of this parcellation is that it uses diverse structural and
functional information to derive a consensus partition of the cortex
into different areas. Each region has also been assigned to a dis-
tinct canonical functional network (39), allowing us to examine re-
sults in relation to the organization of these classic systems. How-
ever, the resulting areas can vary considerably in size, which can
affect regional connectivity estimates since larger regions are able
to accommodate more connections. To ensure that our results were
not driven by the use of this specific parcellation, we replicated
our main findings using a random cortical parcellation consisting
of 500 approximately equally sized regions [250 per hemisphere,
generated using the approach described in (80); code available at
https://github.com/miykael/parcellation_fragmenter|. This
offers a stringent test of the generalizability of our findings, as
the parcellations vary in terms of both method for construction
(data-driven vs random) and resolution (360 vs 500 nodes).

We focus our analysis on cortical connectivity for simplicity, as
we know of no unified parcellation of cortical and subcortical ar-
eas, positional differences between cortex and subcortex can affect
DWI connectivity estimates, and there are major differences be-
tween cortical and subcortical patterns of gene expression in the
AHBA data that can be difficult to appropriately accommodate
(35).

Subsequent, processing of the DWI data for both the HCP and
Monash data was performed using the MRtrix3 (81) and FMRIB
Software Library (82). Tractography was conducted in each partic-
ipant’s T'1 space using second order integration over fibre orienta-
tion distributions (iFOD2) (83). To further improve the biological
accuracy of the structural networks, we also applied Anatomically
Constrained Tractography (ACT), which uses a tissue segmenta-
tion of the brain into cortical grey matter, subcortical grey matter,
white matter, and cerebrospinal fluid to ensure that streamlines
are beginning, traversing, and terminating in anatomically plausi-
ble locations (84). Tissue types were determined using FSL soft-
ware (82). A total of 10 million streamlines were generated on
a probabilistic basis using a dynamic seeding approach that eval-
uates the relative difference between the estimated and current
reconstruction fibre density and preferentially samples from areas
of insufficient density (85). This method helps mitigate biases re-
lated to poor reconstruction of tracts from certain parts of the
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brain due to insufficient seeding. The resulting tractogram was
then combined with the cortical parcellation for each subject to
produce a network map of white matter connectivity. Streamline
termination points were assigned to the closest region within a
5mm radius.

Connection weights were quantified using both streamline count
(number of streamlines connecting two regions, SC) and the mean
fractional anisotropy (FA) of voxels traversed by streamlines con-
necting two regions, which is commonly used as a marker of white
matter microstructure. We focused on SC and FA as measures
of connectivity strength because they are the most widely used
in the literature, but note that they can be influenced by numer-
ous factors that are not directly related to physiological measures
of communication capacity between two regions (86). Moreover,
while diffusion tractography remains the only available tool for
in vivo connectivity mapping in humans, tractography algorithms
can vary in their specificity and sensitivity for tract reconstruction
(87, 88). To mitigate these effects, our data processing pipeline
has been designed to limit contributions from spurious streamlines
(84) and head motion (78). While the accuracy of all tractogra-
phy methods remains an open challenge for the field (89), we note
that any errors in tract reconstruction should reduce our chances
of identifying stronger genetic effects for rich links through a herit-
bility analysis, since noisy connectivity values will inflate estimates
of the E parameter (which also accounts for measurement error)
in our biometric models, and rich links tend to be long-range con-
nections, which are more prone to tractography errors (90). Our
findings may thus provide a conservative estimate of genetic influ-
ences on hub connectivity.

Connectome thresholding. As connectomes are estimated
with some degree of noise, it is common practice to threshold
weak or inconsistent edges to focus on connections that can be
more reliably estimated (91). We therefore selected edges that
were: i) present in at least 30% of subjects; and ii) were amongst
the 7% strongest edges (based on the streamline count) to achieve
a desired connectome density. Since the desired connection den-
sity is arbitrary, we examined our main results across a range
of densities: 7= 15%,20%,25% for 360 region parcellation and
7 =5%,10%,15% for the higher resolution parcellation of 500 re-
gions. We note that the actual connection density of the human
connectome remains unknown, and we chose these thresholds to
span a range commonly studied in the literature.

The connection matrix resulting from our thresholding procedure
was then used as a binary mask for selecting edges for the her-
itability, connectome-wide GWAS, and gene expression analyses.
This masking procedure thus restricted individual variability in
the binary topology of connectomes across individuals (indeed, in
healthy individuals such topology should be highly conserved). For
heritability and connectome-wide GWAS analyses, we used this
group-representative connectome as a mask to extract FA-based
connection weights. Heritability analyses were also repeated using
streamline count as a measure of connection strength.

Rich-club organization. The connectivity of each region
(node) in a network can be quantified by counting the number
of connections to which it is attached. This measure is known as
node degree. At a particular degree threshold, k, nodes can be la-
belled as hubs (degree > k) or nonhubs (degree < k), subsequently
classifying all connections within the network as ‘rich’ (connec-
tion between two hubs), ‘feeder’ (connection between a hub and
a nonhub), and ‘peripheral’ (connection between two nonhubs)
[see, Fig. 1A, (5)]. To quantify the inter-connectivity between hub
regions within a binary brain connectivity network, we used the
topological rich-club coefficient ¢(k):

P P — 2)
N>p(N>kp—1)

where N+ is the number of nodes with degree > k, and E~ is the

number of edges between nodes with degree > k (92). Therefore,

the rich-club coefficient quantifies the density of the subgraph com-

prising nodes with degree higher than the hub-defining threshold
k.
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Since nodes with higher degree make more connections, and can
thus be expected to have a higher connection density compared
to other nodes, we compared the ¢(k) of the empirical network to
the mean value across a 1000 randomized null networks, ¢ranqg(k),
generated by rewiring the edges of the empirical network while re-
taining the same degree sequence, using the randmio_und function
from the Brain Connectivity Toolbox (93), rewiring each edge 50
times per null network.

To assess whether the connections between high-degree nodes were
also more likely to have stronger connection weights than expected
by chance, we evaluated the weighted rich-club coefficient (94):

Wk

lE: >1k w;ank ’
where W, is the sum of weights in the sub-graph with degree
higher than k, and the denominator is the total sum of [ strongest
weights in the network. As a null model for the weighted rich-club
coefficient, we separate the definitions of weighted and topologi-
cal rich-club coefficients by randomly reassigning weights within
the network while preserving the binary topology (95) (instead of
rewiring the links).

In both binary and weighted cases, we computed the normalized
rich-club coefficient ¢norm (k) as the ratio between the rich-club
coefficient in the empirical network and the mean rich-club coeffi-
cient in the set of the corresponding randomized networks:

o(k)
<¢)rand (k» .

Values of ®porm > 1 indicate rich-club organization, where high-
degree nodes are more densely interconnected (in a case of the
topological rich-club) or have higher weights (in a case of the
weighted rich-club) than be expected by chance. The statistical
significance of the result is assessed by computing a p-value di-
rectly from the empirical null distribution of the 1000 randomized
networks, ¢and(k), as a permutation test (5). We note that in all
our analyses, we estimated node degree using SC-weighted con-
nectomes. Where indicated, FA-weighted connectomes were used
in analyses of connectivity weights.

¢% (k) = (3)

q>norm (k) = (4)

Communicability. We investigated the topological centrality of
rich links using a measure called communicability (96), estimated
across a range of degree thresholds. The communicability, Cj;,
between a pair of nodes i and j, is calculated by accounting for
all possible paths of length | between the nodes, weighted as 1/1!,
so that shorter paths make a stronger contribution to the overall
score. The communicability, C;;, for a binary matrix A is formally
defined as:

o0
(Al) -
Cy=) "3 =M (5)
=0
In a weighted network, communicability ,C},
weighted adjacency matrix W:

is defined using a

w __ (.S
Cij—(e

ws

[N
ol

)ig> (6)

1
where S™ 2 is the diagonal matrix with elements \/% and s; is the
k2

strength of node 7. We estimated the mean binary and weighted
communicability for rich links, as a function of the hub-defining
threshold k, to evaluate whether rich links are topologically cen-
tral within the human connectome (Figs. S1E,F). An advantage
of communicability is that, unlike classic measures of centrality,
it does not assume that information is routed exclusively along
shortest paths in the network, which is likely to be an inappropri-
ate assumption for brain networks (2, 97).

Heritability analysis. The HCP diffusion imaging dataset in-
cludes 117 pairs of genetically confirmed monozygotic (MZ) twin
pairs together with 69 of their non-twin siblings, as well as 60
dizygotic (DZ) same-sex twin pairs and 48 of their non-twin sib-
lings. For each twin pair with more than one non-twin sibling, we
selected one sibling at random (demographic details summarized
in the Table 1). Only twin pairs where both twins had genetically-
verified zygosity were included in the heritability analysis.
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Table 1. Demographic data for twin groups and their non-twin siblings. MZ —
monozygotic twins, DZ — dizygotic twins. Age is displayed in years: mean + SD.

Zygosity Number of subjects Sex (F/M) Age

MZ twins 117 pairs 69/48 29.3+£3.3
MZ non-twin siblings 69 34/35 29.1+£4.2
DZ twins 60 pairs 33/27 28.8+3.5
DZ non-twin siblings 48 24/24 29.1+4.0

Heritability analysis relies on the assumption that both shared ge-
netic factors and common environment contribute to phenotypic
similarity between twins within a pair, whereas unique environ-
mental factors and non-shared genetic effects contribute to the dif-
ferences observed between them. In the classical twin design, MZ
twins are assumed to be genetically identical whereas DZ twins on
average share half of their DNA, which is similar to non-twin sib-
lings. Structural equation modeling can thus be used to decompose
phenotypic variance and covariance in any particular trait into ad-
ditive genetic (A), common environmental (C), and unique envi-
ronmental (E) influences. Considering that twins raised together
might have experienced a more similar environment compared to
their non-twin siblings, including a set of non-twin siblings into the
analysis allows us to separate the common environmental contri-
butions into twin-specific (T) and twin non-specific (C) common
environmental factors.

We used the binary group-representative cortical connectome
mask described above to extract FA-weighted edges and applied
standard structural equation modeling (SEM) to every connection
in the connectome using OpenMx software (98, 99) in R. The anal-
ysis reported in the main text was performed on the 360 region (37)
cortical connectome at 20% density (12924 unique connections)
using FA as a connection weight. The analyses were subsequently
reproduced using SC (Fig. S4) and at different connectome densi-
ties (Fig. S3A-C) and using a higher resolution 500-region random
cortical parcellation at 5%, 10% and 15% densities (Fig. S3D-F).
A range of biometric models — ACTE, ACE, AE, CE, E — were
fitted to each edge defined by the group connectome mask in or-
der to find connection-specific maximum likelihood estimates of
additive genetic (A), twin-specific common environmental (T),
twin non-specific common environmental (C) and unique envi-
ronment (E) factors, using age and sex as covariates. Outly-
ing connection weights for each analysis were removed using the
boxplot function in R by keeping data points (w) in a range
Ql—15XIQR<w< Q3+ 1.5xIQR where Q1 and Q3 are the
first and third quartiles respectively and IQR is the interquartile
range. The Akaike information criterion (AIC) (100) was used to
compare the goodness of fit of all tested models in order to find the
most parsimonious model. For each edge, the model with the low-
est AIC was selected. Consequently, the narrow-sense heritability
(the proportion of variance attributable to additive genetic fac-
tors, referred to as heritability) was estimated for each connection
using the best-fitting model. We also show heritability results us-
ing parameter estimates from the full ACTE model to ensure that
our findings cannot be explained by our model selection procedure
(Fig. S2).

Connectome-wide GWAS: discovery cohort. DNA samples
from non-transformed and non-amplified white blood cells for 1141
individuals from the HCP were genotyped using the Infinium
Multi-Ethnic Genotyping Array (MEGA). We restricted our anal-
ysis to a randomly selected a subset of unrelated individuals of
self-reported Caucasian ancestry resulting in a set of 312 subjects.
We performed standard quality control (QC) using PLINK 1.9
software at both the individual subject and SNP level. Initially,
we checked if any subjects had a very low-genotyping score (> 0.10
of missing data, n = 0) and excluded SNPs with genotyping call
rate < 90% and with a minor allele frequency (MAF) < 0.01. Fur-
ther, several subject-level QC steps were performed by checking for
and removing individuals: i) with disparities between the recorded
and observed sex status as determined through X-chromosome ho-
mozygosity (n =1); ii) with low genotyping score (> 0.05 of miss-
ing data, n = 0); iii) with cryptic relatedness higher than 0.25
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(n=0); iv) displaying outlying mean heterozygosity (greater than
+3 SDs from the sample mean, n = 6). In order to identify any
potential sources of population stratification in the sample we per-
formed multidimensional scaling (MDS) using HapMap3 dataset
(101) and saved first 10 principal components for future use as co-
variates. The data for a total of 305 subjects were used for imputa-
tion. SNPs with low genotyping call rate < 95%, MAF< 0.01 and
significantly departing from Hardy—Weinberg (H-W) equilibrium
(p < 10~ 7) were excluded leaving 502 027 variants in the final set
taken forward to imputation. We used MaCH (102) and Minimac2
(103) for phasing and genotype imputation respectively employing
the 1000 Genomes (phase one release three) reference panel. Af-
ter imputation, SNPs with 0.05 < M AF < 0.98 were selected. To
eliminate poorly imputed variants, SNPs with imputation quality
r2 < 0.8 were excluded, resulting in a total of 5235153 variants
used for the connectome-wide GWAS.

We performed a GWAS for each connection (n =12924) in the
group-representative 360 region (37) cortical connectome at 20%
density. We used a binary mask of a group-representative connec-
tome to extract FA-weighted edges across HCP subjects that had
both DWI and genotype data available (n = 254). For each edge
in the binary mask, subjects with an absent connection were re-
moved and then connection weights were z-score normalized across
subjects. We used the fastGWAS tool (104) implemented in the
gcta software package (version 1.92.3beta3) to perform a linear
regression-based association analysis (fastGWA-Ir) for every edge
controlling for age, sex and the first 10 principal components of
the MDS as covariates. For each SNP, we extracted the effect sizes
(B) associated with each connection and compared them between
rich and peripheral links using a one-sided Welch’s ¢-test. We
then selected the top 10% of SNPs showing the largest differences
between those two link types (all passing Bonferroni correction,
p-threshold = 0.05/12924), thus representing SNPs that showed a
preferential influence on rich compared to peripheral connectivity
(Fig. 1C).

To reduce the SNP-set to an array of independent variants we per-
formed a clumping procedure using the summary statistics from
a GWAS of the mean FA across all available links in PLINK
(p1 = 0.01, p2 = 0.05, r2 = 0.5, kb= 250). To accurately estimate
LD, we used the 1000 genomes phase 3 dataset (European ances-
try sample, https://sites.google.com/a/broadinstitute.org/
ricopili/reference-panels). The reduced set of SNPs consisted
of 8207 variants that were subsequently used for eQTL mapping
[see Online methods].

It is important to emphasize that our goal in conducting this
connectome-wide GWAS is not to identify individual SNPs in-
fluencing hub connectivity at a genome-wide significant level. In-
stead, we use our GWAS to obtain beta estimates that are used to
prioritize SNPs for eQTL mapping. We therefore do not suffer the
same multiple comparison burden and sample size constraints as
in a conventional GWAS. To ensure that our sample size was suf-
ficient to reliably characterize the effects of interest, we replicated
our analysis in an independent cohort of individuals, as described
in the following section.

Connectome-wide GWAS: replication cohort. DNA sam-
ples for 715 individuals of European descent from the Monash
Sample were genotyped using the Illumina Infinium PsychArray-
24v1.2 BeadChip at Path West’s Diagnostic Genomics Labora-
tory in Western Australia. The Illumina Psych-Chip comprising
of 510 000 markers: 265000 tagging SNPs from the Infinium Core-
24 BeadChip and 245000 markers from the Infinium Exome-24
BeadChip. Ilumina Psych-Chip was developed in collaboration
with the Psychiatric Genomics Consortium (PGC) and supple-
mented with an additional 50 000 SNPs implicated in psychiatric
and neurodevelopmental disorders.

SNP and subject-level quality control procedures were identical
to the ones applied in the Discovery cohort. Subjects were re-
moved due to: disparities between the recorded and observed sex
status (n = 10); low genotyping score (> 0.05 of missing data,
n = 2); cryptic relatedness higher than 0.25 (n = 13); outlying
mean heterozygosity (greater than £3 SDs from the sample mean,
n = 10). In order to identify any potential sources of popula-
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tion stratification in the sample we performed multidimensional
scaling (MDS) using HapMap3 dataset (101) and excluded sub-
jects exceeding +2 SD on the 15t or 2"¢ principal components
(n =15) and saved the first 4 PCs for future use as covariates,
leaving a total of 665 subjects for the imputation. SNPs with
low genotyping call rate < 95%, MAF< 0.01 and significantly de-
parting from Hardy—Weinberg (H-W) equilibrium (p < 10~7) were
excluded leaving 291 107 variants that were used for the imputa-
tion utilising 1000 Genomes (phase one release three) reference
panel. After applying post-imputation quality control using the
same criteria as in the Discovery cohort, a total of 5723894 vari-
ants used for the replication of the connectome-wide GWAS [see
Connectome-wide GWAS: discovery cohort].

As in the HCP cohort, a group-representative connectome was
generated by keeping the connections present in at least 30% sub-
jects and retaining the strongest links based on the streamline
count to achieve 20% connectome density, as done for the HCP
sample. The resulting connectome was then used as a binary mask
to select FA-weighted edges for the genome wide association anal-
ysis. Individuals with absent connections for a given edge were
removed and then connection weights were normalized across sub-
jects using z-score transformation. The final replication sample
consisted of 276 subjects that had available both connectivity and
genotyping data surpassing our quality control criteria. Edge-wise
GWAS were performed following identical procedures outlined in
the section Connectome-wide GWAS: discovery cohort, resulting
in a set of 6081 prioritized SNPs used for eQTL mapping.

eQTL mapping. We sought to characterize the functional ef-
fects of our prioritized SNP list for hub connectivity by iden-
tifying which individual SNPs impact cortical gene expression
(i-e., act as eQTLs) and mapping the specific genes that they
influence. To maximize the power of eQTL mapping for prior-
itized SNPs identified separately in the HCP and Monash sam-
ples, we downloaded significant (FDR < 0.05) cis-eQTLs for gene
expression in dorsolateral prefrontal cortex from psychENCODE
(http://resource.psychencode.org/), a large publicly available
genomic compendium with eQTL information measured from the
brains of 1866 individuals (40). The psychENCODE eQTL dataset
was filtered to genes with expression > 0.1 Fragments Per Kilo-
base of transcript (FPKM) in at least 10 samples, and contained
2542908 SNP-gene pairs with false discovery rate, FDR < 0.05
(105). For the prioritized SNPs from the connectome-wide GWAS,
we extracted the paired eQTL target gene in psychENCODE from
the total of 25699 genes available in the database. This procedure
thus resulted in a list of genes whose expression is affected by SNPs
that are preferentially related to hub connectivity microstructure.
We next sought to determine whether this gene list overlapped
with genes related to intelligence and mental illness. We thus ob-
tained summary results from prior GWAS of 1Q (42), schizophre-
nia (43), bipolar disorder (44), major depression (45), autism spec-
trum disorder (46), and attention-deficit hyperactivity disorder
(47) and used eMAGMA (106) to identify genes associated with
each phenotype. eMAGMA is a validated pipeline that uses tissue-
specific SNP-gene associations from the psychENCODE database
(40) to assign SNPs to genes based on their association with gene
expression. The SNP-gene associations are then aggregated in
a gene-based test, while adjusting for linkage disequilibrium and
correlated gene expression (107). We again used eQTL data from
the prefrontal cortex in psychENCODE in our gene-based anal-
yses. To identify genes for each disorder/trait, we controlled the
family-wise error at 0.05 using Bonferroni correction (i.e., setting a
p-value threshold equal to 0.05 divided by the number of identified
genes). We used a hypergeometric test to test for overlap between
gene lists, considering a total of n = 25699 possible genes (based
on the number of genes in the eQTL mapping) by quantifying the
probability to find a higher number of matches.

Over-representation enrichment analysis. We comple-
mented our hypothesis-driven enrichment analysis with a more
global test for enrichment of our hub gene list for certain
functional classes of genes. Specifically, we performed over-
representation enrichment analysis for GO categories and KEGG
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pathways on g:Profiler (108). We used the default g:SCS
algorithm for multiple comparison correction while accounting
for the hierarchical relationships between categories to provide
a more reliable threshold for significance compared to standard
hierarchy-naive correction methods (109).

Gene expression data. We used brain-wide gene expression
data from the Allen Human Brain Atlas (AHBA), which consists
of microarray expression measures in 3702 spatially distinct tis-
sue samples taken from six neurotypical postmortem adult brains
(50). Different brain regions were sampled across each of the six
AHBA donors to maximise spatial coverage, resulting in approx-
imately 400-500 tissue samples in each brain. The samples were
distributed across cortical, subcortical, brainstem and cerebellar
regions, measuring the expression levels of 58 692 probes quantify-
ing the transcriptional activity of 20737 genes. Considering that
only two out of six brains were sampled from both left and right
hemispheres whereas the other four brains had samples collected
only from the left hemisphere, we focused our analyses on the left
cortex only.

The pre-processing procedures applied to the data are outlined be-
low and the choices detailed in (35). Briefly, probe-to-gene annota-
tions were first updated using the Re-Annotator toolbox (110) re-
sulting in the selection of 45 821 probes corresponding to the total
of 20 232 genes. Second, tissue samples annotated to the brainstem
and cerebellum were removed. Then, intensity-based filtering (35)
was applied in order to exclude probes that do not exceed back-
ground noise in more than 50% of samples, excluding 13 844 probes
corresponding to 4486 unique genes. Afterwards, a representative
probe for each gene was selected based on the highest correla-
tion to RNA sequencing data in two of the six brains (111). Gene
expression samples were assigned to regions-of-interest by generat-
ing donor-specific grey matter parcellations and assigning samples
located within 2mm of the parcellation voxels. To increase the
accuracy of assigning samples to regions, the samples were first
divided into four separate groups based on their location: hemi-
sphere (left/right) and structure assignment (cortex/subcortex),
so samples listed as coming from the left cortical hemisphere in
the AHBA ontology are only mapped to left cortical voxels of
the parcellation (applying a 2 mm distance threshold, almost 90%
of all cortical and subcortical samples were assigned to a non-zero
voxel of the parcellation). Then, samples assigned to the subcorti-
cal regions as well as the right hemisphere were removed. Finally,
gene-expression measures within a given brain were normalized
first by applying a scaled robust sigmoid normalization for every
sample across genes and then for every gene across samples in or-
der to evaluate the relative expression of each gene across regions,
while controlling for donor-specific differences in gene expression
[see (35) for a validation]. Normalized expression measures in sam-
ples assigned to the same region were averaged within each donor
brain and aggregated into a region by gene X matrix consisting
of expression measures for 10027 genes over 180 (left hemisphere,
HCP parcellation) and 250 regions (left hemisphere of the random
parcellation), respectively.

Distances between region pairs that were subsequently used to
account for the spatial effects on transcriptional coupling were es-
timated on the cortical surface (pial) using the annotation files
for each parcellation mapped onto the spherical representation of
the fsaverage cortical surface. First, all the vertices that cor-
respond to a particular region of interest in the spherical rep-
resentation were identified and their centroid coordinates were
calculated. Then the centroid coordinates were mapped to the
fsaverage cortical surface and the distances between each pair of
regions were calculated using the toolbox fast_marching_toolbox
in MATLAB.

Transcriptional coupling.  The result of the above mapping of
AHBA data was an expression profile for each brain region, quan-
tifying transcriptional activity across 10027 genes. We used these
profiles to quantify transcriptional coupling, or correlated gene ex-
pression (CGE), between every pair of regions. We defined CGE
as the Pearson correlation between the normalized expression mea-
sures of the genes available after pre-processing (n = 10027). As
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shown in Fig. S6A and described in (35), CGE exhibits a strong
spatial autocorrelation that can be approximated as an exponen-
tial relationship with separation distance. To investigate whether
CGE differs between different topological classes of connections
beyond any low-order spatial effect, we fitted an exponential func-
tion with form r(d) = Ae=%/™ + B. The parameters A = 0.64,
B = —0.19 and n = 90.4 capture the trend well, allowing us to
retain the residuals for further analysis (Fig. S6B), defined as

@j =CGE;j —r(d;j). These distance-corrected residual CGE
values were used in all CGE analyses.

To evaluate transcriptional coupling for different connection types,
for every edge within the connectivity matrix, we assigned a
distance-corrected CGE measure. At each degree threshold, k,
for defining hubs (nodes with degree> k), we then computed the
average CGE of rich, feeder, and peripheral links. Significant in-
creases in the CGE for a given link type compared to the rest of the
network were evaluated using a one-sided Welch’s ¢-test (p < 0.05).

Gene contribution score.  To determine which functional gene
groups contribute the most to any observed differences in CGE
across different link types in the brain, we quantified the degree
to which each gene contributes to the overall CGE between a pair
of regions, following prior work (7):

N N

_ 1 ~ 1

CGE;; =CGE;j —r(d;;) = N g gfg? —r(diz)] = N E GC’SZ@]—,
a=1 a=1

(M

where N is the number of genes (N = 10027), Ega}l the product
of the z-score normalized expression values for gene a in regions i
and j, and 7(d;;) is the previously defined spatial autocorrelation
effect approximated as an exponential line (Fig. S6). Therefore,
the gene contribution score between a pair of regions ¢ and j for
gene a was defined as GCS?]. :Eg;}l —7r(dij).
We then assigned each gene a t-statistic quantifying the increase
in GCS for rich compared to peripheral links (GCS¢—_stat ), as these
two groups constitute the most distinct link types. A high value in-
dicates increased CGE in rich compared to peripheral links. These
t-statistic measures were used in the enrichment analyses as gene
scores for determining whether any functional gene groups made
a stronger contribution to CGE than others.

Cell-specific genes.  Given that the AHBA assays gene expres-
sion using bulk tissue samples, it is possible that regional varia-
tions in cellular architecture drive differences in CGE between dif-
ferent link types. To test this hypothesis, we conducted a second
CGE analysis focused on subsets of genes that have previously
been identified as cell-specific markers. The set of cell-specific
genes was compiled based on data from five different single-cell
studies that used postmortem cortical samples of human post-
natal subjects. Genes identified in each study as a cell-specific
marker or as specifically enriched within a cell type were aggre-
gated into study-specific lists (54-57). In the case of (53) where
the normalized gene expression values were available for each cell
type, we identified enriched genes as those with an average Frag-
ments per kilobase million, FPKM> 5 and at least a four-fold en-
richment over other cell types, as per authors recommendations.
We then assigned genes within each of the resulting study-specific
gene lists to one of seven canonical cell classes: astroglia, endothe-
lial cells, excitatory neurons, inhibitory neurons, oligodendrocytes,
and oligodendrocyte progenitor cell restricting each cell-class list
to only contain genes unique to that class.

Gene-set enrichment analysis using gene score resampling.
Gene-set enrichment analyses assess whether any functionally re-
lated groups of genes, annotated using Gene Ontology (GO), are
associated with a selected phenotype. Every gene in our sample
(n=10027 genes) was assigned a t-statistic score quantifying its
contribution towards the increase in GCS for rich links relative to
peripheral (GCS¢_gtat). Using these scores, we determined which
specific functional groups of genes contribute to the observed in-
crease in correlated gene expression. Functional gene group anal-
ysis was performed using version 3.1.2 of ErmineJ software (112).
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Gene ontology (113) annotations were obtained from GEMMA
(114) as Generic_human_ensemblIds_noParents.an.txt on De-
cember 9, 2019. Gene Ontology terms and definitions were ac-
quired from the archive.geneontology.org/latest-termdb/go_
daily-termdb.rdf-xml.gz on January 13 2020. We performed
gene score resampling (GSR) analysis on the GCSy_gtat scores
testing the biological process GO categories with 5 to 100 genes
available using the mean t-statistic score across genes to summa-
rize the GO category and applying full resampling with 106 it-
erations. The resulting p-values were corrected across 6201 GO
categories, controlling the false discovery rate (FDR) at 0.05 us-
ing the method of Benjamini and Hochberg (115). Recent work
indicates that the default null models used in such analyses are
insufficiently constrained for spatially embedded transcriptomic
atlas data (60). This problem can lead to inflated significance for
some GO categories when testing for spatial correlations between
regional variations in gene expression patterns and measures of
brain structure or function. The extent to which this problem
generalizes to phenotypes defined for pairs of regions, such as the
connectivity metrics considered here, is unclear. We nonetheless
suggest caution in interpreting the findings of this analysis, as ap-
propriate null models for the analysis of pairwise phenotypes have
not yet been developed. We report the enrichment findings to test
for consistency with prior findings in the mouse (7), and note that
the enrichment of metabolic categories that we observe aligns with
the findings of our eQTL analysis, which does not suffer from the
same biases.

Microstructural profiles. Our CGE analysis of cell-specific
genes indicated that connected hubs have more similar cellular
composition than other region pairs. To independently verify
this result, we estimated the microstructural profile covariance
(MPC) between each pair of regions using the BigBrain atlas,
which is a Merker-stained 3D volumetric histological reconstruc-
tion of a human brain (58, 59). MPC was estimated using methods
described in [(59), see https://github.com/MICA-MNI/micaopen/
tree/master/MPC]. In brief, the MPC procedure involved con-
structing 16 equivolumetric surfaces between the pial and white
matter boundaries, followed by systematic sampling of the inten-
sity values along these surfaces at 163842 matched vertices per
hemisphere. The intensity profiles, reflecting depth-wise changes
in cellular density and soma size, were corrected for the midsur-
face y-coordinate to account for an anterior—posterior increase in
intensity values across the BigBrain related to coronal slicing and
reconstruction. Standardized residual intensity profiles were aver-
aged within areas of the HCPMMP1 (n = 360) (37) and random
(n = 500) parcellations. We quantified cytoarchitectural similar-
ity between cortical areas by correlating areal intensity profiles
(covarying for cortex-wide mean intensity profile), thresholding to
retain only positive values (r > 0) and applying a log transforma-
tion, resulting in the measure of microstructural profile covariance
(MPC) (59). We repeated the same analysis using the 500-region
random parcellation. Notably, this analysis did not replicate the
elevated MPC for rich links seen with the HCPMMP1 atlas (com-
pare Fig. 3H with Fig. S12). This discrepancy likely reflects the
fact that the HCPMMP1 parcellation more closely approximates
boundaries between functional zones of the cortex, as it is based
on a fusion of multimodal imaging data (37). The random parcel-
lation makes no attempt to capture such boundaries and may blur
different cytoarchitectonic regions within the same network node,
thus resulting in noisier MPC estimates. In this way, the MPC
results appear to depend on accurate approximation of cytoarchi-
tectonic boundaries in cortex.

Models of brain network wiring. To evaluate the role of
stochastic processes in shaping connectome architecture, we eval-
uated a series of generative models of network wiring that have
the general form:

Qij = d;’] X tzj’ (8)
where 0;; is a score that weights the probability of connecting
nodes i and j, d;; is the Euclidean distance between nodes i and
J, and t;; is some topological property of nodes i and j or an edge
between them. This topological term modulates the probabilities
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of forming an edge along with wiring cost (operationalized as d;;).
Numerous topological properties have been evaluated for ¢;; in
past work (32, 33), and we consider these same models here. A
summary is provided in Table 2.

Table 2. A list of topological terms, ¢, ;, used in the generative models [see Eq. 8].

Name tij
clu-avg S+9
clu-diff lei — ¢4
cluumax  max[c;, ¢;]
clu-min  min|e;, ¢

clu-prod ciCy
deg-avg % + %J
deg—diff |kl - k’j|
deg-max  max[k;, k;]
deg-min  min[k;, k;]
deg-prod kik;

matching %

neighbors Y7, A;1Aj;

sptl 1

where ¢ is the local clustering coefficient, k represents node de-
gree, A - adjacency matrix and N;; - neighbors of the node i
excluding node j. The exponents, n and -, act as weights on the
distance and topological terms, respectively (32, 33). At each it-
eration, the computed connection score, 6;;, is used to calculate
the probability of a given edge, (i,7), being formed in that iter-
ation, as P;; = 0;;/©, where © is the sum of 6;; over all edges
that have not yet been formed. Thus, at a given iteration, the
model calculates the probability of each edge forming based on its
distance and the current value of its topological term, ¢;;. This
topological value is recalculated at each iteration. Edges are added
iteratively until the total number of edges is equal to the number
of edges in the empirical connectome. Due to computational bur-
den, and in line with prior analyses (33), we fitted models to a
single (left) hemisphere connectome defined using the HCPMMP1
(37) parcellation, containing 5025 unique edges (20% whole cortex
connectome density).

As per prior work (33), we quantified model performance using
the Kolmogorov-Smirnov (KS) statistic. The KS statistic quanti-
fies the distances between distributions of key topological statis-
tics of the network; as such, lower values indicate better model fit.
We focused on four key metrics: node-level distributions of de-
gree, clustering, and betweenness, and the edge-level distribution
of connection distance (33). The quality of model fit was defined as
the maximum KS value across all four distributions; that is, model
performance is defined by the property that is fitted most poorly.
In principle, any number of other topological parameters could be
used in this objective function, but these are some of the most
widely used to characterize brain networks and were employed in
prior work evaluating the same models (32, 33)

The free parameters n and -« were optimized as done previously
(33). Specifically, we randomly sample the parameter space and
evaluate the fits of the resulting networks. After sampling 2500
points in this space, Voronoi tessellation is then used to identify
areas — or cells — of this space where the parameters produce net-
works with the best fits, as defined by the KS statistic. We then
preferentially sample from cells with better fits. This procedure
is repeated four times so that the algorithm gradually converges
on an optimum. We ran each generative model on the group con-
nectome 10000 times and then evaluated each different model by
comparing the 100 lowest energy values obtained from the opti-
mization procedure.

For our analysis, we draw a critical distinction between the distri-
bution and sequence of a topological property. The distribution
refers to how a property is statistically distributed across the nodes
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of the network. The sequence refers to the exact assignment of a
particular value to individual nodes or edges; in other words, how
the property is spatially embedded in the brain. It is possible that
two networks may have similar distributions for a given property,
but with very different underlying sequences.

The models we consider here are optimized to match distributions,
not sequences. As we are specifically interested in understanding
the mechanisms driving the precise way in which hubs are con-
nected, and given evidence that the specific anatomical location
of network hubs has important implications for network dynamics
(68), we seek to evaluate whether the models can not only gener-
ate networks with hubs, which would be shown by accurate fitting
of the degree distribution, but also whether they also yield hubs
the same anatomical regions as the empirical data, which would
be shown by accurate fitting of the degree sequence. To this end,
we also evaluate the correlation between the degree sequences of
the empirical and synthetic networks using the Spearman corre-
lation coefficient, p. A high correlation between the model and
data implies that hubs are located in the same anatomical regions
across the two networks. Conversely, a low correlation indicates
that the model does not accurately capture the spatial embedding
of connectivity in the connectome. Put simply, a low correlation
implies that the hubs in the model network reside in anatomical
locations that differ from the actual connectome.

An important consideration is that the correlation between model
and empirical degree sequences was not a part of the objective
function used in model fitting. We fitted the models using topo-
logical distributions and then evaluated their performance in cap-
turing the empirical degree sequence. This procedure allows us
to examine how well these models, as traditionally implemented,
capture spatial properties of hub connectivity. However, this pro-
cedure also raises the question of whether it is possible to ob-
tain a higher degree sequence correlation if model parameters are
chosen to optimize this specific quantity. We therefore repeated
the analysis after replacing the objective function with one that
maximized the similarity between model and empirical degree se-
quences. Specifically, we optimized the Spearman correlation be-
tween model and empirical degree sequences with no other con-
straints to give the models the best possible chance of reproducing
the empirically observed spatial topography of hub regions. The
results of this analysis are shown in Fig. S13. Qualitatively simi-
lar results were obtained when optimizing the Pearson correlation
between model and empirical degree sequences.

We note that across the 13 models evaluated in our analysis, we
find that the best-fitting model is the ‘deg-avg’ model, which in-
volves a trade-off between forming connections between highly
connected nodes (i.e., node pairs with high average degree) and
penalizing long-range connections (i.e., minimizing wiring cost).
This result differs from past work, in which a homophilic attach-
ment trade-off model that balances wiring cost with a preference
for forming connections between nodes with similar neighbors of-
fered the best fit to empirical connectome data (32, 33). This
discrepancy may be related to our use of a higher resolution net-
work parcellation, a connectome mapped at a different connection
density, a different tractography algorithm, and/or a different dif-
fusion MRI processing pipeline. Investigating the effect of these
factors on modeling results is an important direction of future
work, but these potential effects do not change the substantive
point of our results that current stochastic models do a poor job
of reproducing the spatial embedding of hub connectivity, as across
260000 runs of the 13 different models considered, no degree se-
quence correlation exceeded p =0.3. We also note that our model
fits (Figs 4B-E) are in the same range as those reported by Betzel
et al. (33), indicating that our discrepant results are not due to
differences in model accuracy.

Finally, while our analysis mimics prior comprehensive evalua-
tions of generative network models based on cost-value trade-offs
(32, 33), other formulations and approaches are also possible (116—
118) and we cannot completely rule out a role for stochastic pro-
cesses in shaping hub connectivity. In particular, more abstract
models suggest that stochastic wiring, acting in concert with devel-
opmental changes in brain geometry and heterogeneous timing of
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connection formation across regions, can indeed generate networks
with brain-like properties (34, 71, 119). However, a framework for
directly fitting such models to human DWI data has not yet been
developed.
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