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Abstract

The discovery that somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs)
- cells that can be differentiated into any cell type of the three germ layers - has provided a
foundation for in vitro human disease modelling?, drug development?, and population
genetics studies®”. In the majority of instances, the expression levels of genes, plays a critical
role in contributing to disease risk, or the ability to identify therapeutic targets. However, while
the effect of the genetic background of cell lines has been shown to strongly influence gene
expression, the effect has not been evaluated at the level of individual cells. Differences in the
effect of genetic variation on the gene expression of different cell-types, would provide
significant resolution for in vitro research using preprogramed cells. By bringing together single

cell RNA sequencing™ !

and population genetics, we now have a framework in which to
evaluate the cell-types specific effects of genetic variation on gene expression. Here, we
performed single cell RNA-sequencing on 64,018 fibroblasts from 79 donors and we mapped
expression quantitative trait loci (eQTL) at the level of individual cell types. We demonstrate
that the large majority of eQTL detected in fibroblasts are specific to an individual sub-type of
cells. To address if the allelic effects on gene expression are dynamic across cell re-
programming, we generated scRNA-seq data in 19,967 iPSCs from 31 reprogramed donor lines.
We again identify highly cell type specific eQTL in iPSCs, and show that that the eQTL in
fibroblasts are almost entirely disappear during reprogramming. This work provides an atlas of

how genetic variation influences gene expression across cell subtypes, and provided evidence

for patterns of genetic architecture that lead to cell-types specific eQTL effects.

Introduction

Mapping expression quantitative trait loci (eQTL) is a powerful method to study how common

genetic variation between individuals influences gene expression™®. To date, nearly all eQTL

studies have been conducted while interrogating ‘bulk’ samples, where the RNA is collected
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from millions of lysed cells, and therefore gene expression represents an average across all cells
in a sample. However, even with ‘bulk’ RNA analyses, comparisons of eQTL identified from
different tissues””®, and cultured cell lines®'® has revealed differences in both the presence, and

1311 In stem cell systems, single cell approaches have

the directions of allelic effects of eQTL
already revealed that cell cultures do not contain homogeneous cell types®, instead consisting
of multiple cell types that have different transcriptional profiles. By harnessing technology and
recent methods that enable high-throughput generation of single cell data using cell

2224 provides an experimental framework in which cell-type specific

multiplexing across donors
genetic effects on gene expression can be tested - permitting the identification of eQTL that are

truly cell type specific, and that would otherwise be undetected by ‘bulk’ approaches.

Previous studies have identified cell type specific eQTL using scRNA-seq which were

2723 The first study to report this enhanced cell

unobservable in bulk RNA-sequence studies
type specific eQTL detection from scRNA-seq investigated 92 genes measured in 1,440 single
cells from lymphoblastoid cell lines in 15 individuals?’. In the current study, we set out to
understand the impact of single nucleotide polymorphisms (SNPs) - common genetic variants -
on gene expression in fibroblast and reprogrammed iPSC cell types through eQTL mapping at

the level of cell subpopulations.

Results
To identify cell-type specific eQTL in an unbiased manner, we generated scRNA-seq expression
profiles of 83,985 cells - 64,018 cultured dermal fibroblasts, generated from skin biopsies from
79 unrelated individuals, and 19,967 iPSCs reprogrammed from 31 of the dermal fibroblast lines
(Figure 1A). After quality control, we used an unbiased approach to map cells to reference

%031 demonstrating that the majority of

transcriptomes from the human primary cell atlas
fibroblasts mapped to the fibroblast reference, while the majority of iPSCs mapped to the iPSC
or embryonic stem cell references. We used an unsupervised clustering approach32 to identify
six types of fibroblasts and four types of iPSCs (Figures 1B-C and S1). Fibroblast and iPSC types

contained equal distributions of individual donors, pool batches and cell cycle states (Figures S2
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95 and S3). Cell types of fibroblasts and iPSCs were classified based on the expression of key
marker genes. For fibroblasts: TUBA1B"/DCN": CD9"/FTL: cD9"/C1R™: DCN"/C1R":
WISP2"/THBS1"; and TUBA1B"°/CD9". And the iPSCs: FTL"/ENO1"; FTL'°/BST2"; FTL/SNHG8";
and FTL"/ENO1". (Figures 1D-E, S4 and S5 and Tables S1 and S2). Further, pseudo-trajectory
analysis demonstrated that the identified cell types were positions along a clear lineage

100 trajectory for both fibroblast and iPSC types (Figure S6).

We subsequently tested for cis-eQTL independently in each of the 10 cell types. We identified a
total of 30,574 eQTL for 1,951 genes (FDR < 0.05) across all cell types - 29,800 eQTL for 1,877
genes in fibroblast types and 774 cis-eQTL for 85 genes in iPSC types (Table S3 and S4).
105 Assessing the overlap of eQTL and eGenes, revealed that the majority of cis-eQTL are
predominantly cell type specific, with 82.4% of the eGenes (65.4% of the cis-eQTL) identified in
only one fibroblast type (Figures 2A-B and S7A) and 97.6% of the eGenes (99.6% of the cis-
eQTL) identified in only one iPSC type (Figure S7B-C). Cell-type ubiquitous (shared across cell
sub-types) were rare, with eight eGenes with eQTL in all fibroblast types (Figures 2A, S7A, S8),
110 and none across all iPSC types (Figure S7B). Looking across the cell reprogramming event, we
observed a complete lack of shared eQTL between fibroblast and iPSCs. Only 11 genes had
eQTL in both fibroblasts and iPSCs (Figure S7E), but none of those shared a common eSNP, or
SNPs in linkage disequilibrium with one another (r*>0.2), indicating that their expression was
likely associated with independent loci (Figures 2C, S9).
115
We then investigated whether the eQTL identified in fibroblasts replicated in bulk RNA-
sequence data from the Genotype-Tissue Expression (GTEx, culture fibroblasts n=483)>. Only
12% of the 29,800 eQTL identified in the six fibroblast types replicated (p<0.05/29,800) in GTEX,
although they had a consistent shared direction of allelic effects. Given the high percentage of
120 cell-type specific eQTL, one explanation for this observation is that bulk RNA approaches mask
cell-type specific effects through averaged gene expression across cells. From this, we
hypothesised that cell-type ubiquitous eQTL (from the single cell analysis) would have higher

replication rates compared to cell-type specific eQTL. Testing for replication for eQTL that were
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shared across multiple fibroblast cell types in the scRNA-seq, showed a highly significant
125  difference compared with eQTLs that were significant in just one fibroblast type (p<2% for
eGenes and p=1"% for eSNPs; Figures 2A and S7A). Further, we identified that the allelic effect
size of the eGenes and eQTLs in GTEx cultured fibroblasts was positively correlated with the
number of fibroblast types where those eGenes and eQTL were significant (Figure S10). These
results indicate that eQTL mapping using bulk RNA-sequence data is likely not sensitive enough

130 toidentify fibroblast type-specific eQTL.

Based on our initial observation of the specificity of cell type eQTL effects, we next sought to
identify how different types of genetic architecture and gene expression patterns contributed
to the cell-type specific effects in fibroblasts and iPSCs.
135
One potential explanation for the cell type-specific eQTL detection, is that the gene is only
expressed in one cell type, and therefore, we would not expect to observe an eQTL in the other
cell types that where the gene isn’t expressed. To evaluate this, we correlated the expression of
each gene that had a significant cell-type specific eQTL effect, with its expression levels in each
140  of the other cell types. (Figure S11, S12). These results indicate that cell type-specific eQTL are
not a function of cell type-specific gene expression, showing high levels of correlation in almost
all instances. Another possible explanation for the cell type-specific eQTL is low statistical
power to detect eQTL in multiple cell types. To assess this hypothesis, we implemented an
empirical framework to test the rank of the test statistics for eGene SNP effects across the non-
145  significant cell types for each cell-type specific eQTL. In almost all instances we observed none,
or very limited enrichment of the test statistic across cell types (Figure $12). In the instance
where we identified significant enrichment, it existed between the CD9"/FTL" and CD9"/CLR"
fibroblast cell-types that are similar to one another (Figure 1). Therefore, we conclude that the
majority of cell type-specific eQTL that we have identified were not a result of differences in
150 gene expression or due to lack of statistical power. We next set out to interrogate eGenes that

were in common between multiple cell types.
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We identified 283 eGenes that were significant in multiple cell types, but which had different
top eSNPs - 255 eGenes in at least two fibroblast types, no eGenes with different top eSNPs in
155  two iPSC types and 11 eGenes with different top eSNPs in a fibroblast type and an iPSC type. In
these instances, we considered two alternative hypotheses: 1) that there was one eQTL shared
between cell types but that it was tagged by a different top eSNP in each cell type, or 2) that
there were two independent cell type-specific eQTLs for the same gene. To address these
hypotheses, we tested whether the top eSNP in a given cell type was still significantly
160 associated with gene expression after correcting for the top eSNP in the other cell type. A
significant association of the SNP with the eGene expression after correction for the other eSNP
would indicate that the two eSNPs were not tagging the same eQTL and were, therefore,
independent loci. The analysis identified that between 44.4% and 73.8% of these loci for a given
fibroblast type were independent (Figure 3 and Table S5), and 100% of the eGenes shared
165 between the fibroblast and iPSC types were also independent loci (Table S6). These results
denote that many of the eGenes that were shared between multiple cell types, are in fact
regulated by different loci, providing further support to our previous finding that the majority

of eQTL are cell type-specific.

170  Next, we investigated the 153 eGenes that shared at least one significant eSNP-eGene pair (i.e.
same top eSNP) across multiple fibroblast types. We evaluated the potential interactions
between cell type and eSNP, leading to difference magnitude of the allelic effect in different
cell types by testing for a SNP-fibroblast cell type interaction for each of the 153 eSNP-eGene
pairs. In cases where multiple eSNP-eGene pairs were significant for the same eGene across

175  multiple cell types, we tested the eSNP-eGene pair with the largest beta difference between
two fibroblast types. This analysis identified 64 (41.8%) significant eSNP-fibroblast type
interactions (Table S7). This analysis identifies instances where there are eQTL that are

ubiquitous, but whose alleleic effect significantly varies across cell types.

180  After identifying that the majority of eQTL are cell type-specific, and that the cell type can

interact with the SNP locus to alter the allelic effect, we interrogated our results for loci that


https://doi.org/10.1101/2020.06.21.163766
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.21.163766; this version posted June 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

were statistically significant across multiple analyses. We first asked whether any eGene was
significant in all six fibroblast types and was also a significant interaction between cell type and
eQTL, and identified the guanylate binding protein 3 (GBP3) locus that was significant in both
185  tests (Figure 4A-B). The rs541032500-GBP3 locus has a significant eQTL in five of the six
fibroblast cell types, and demonstrated a significant interaction with the cell type (p=1.5%).
Interestingly, GBP3 has been shown to be induced in fibroblasts by interferon treatment®**.
Our results indicate that the effect of interferon induction of GBP3 is likely to be mediated by
the genotypes carries at the rs541032500 loci, and it’'s magnitude vary based on the cell type

190 context.

Following this, we evaluated whether any of the differentially expressed genes (Figures 1C, S4
and Table S1) also had a significant interaction with eQTL. From this we identified the copine 1
(CPNE1) locus, which was significantly increased in the CD9"/FTL° and the CD9"°/C1R"

195 fibroblast types, and significantly decreased in the WISP2"°/THBS1" and TUBA1B"°/CD9"
fibroblast types (Figure 4C). In addition, the rs374587283-CPNE1 cis-eQTL was significant in five
of the six fibroblast types (Figure 4D-E) and demonstrated a significant SNP-cell type interaction
(p=4.9"": Figure 4E).

200 Finally, we investigated whether any of the eGenes had evidence for association with multiple
independent loci using conditional association analysis (Methods). One example of this genetic
architecture is the gem nuclear organelle associated protein 5 (GEMIN5) locus, which has three
independent loci in three cell types - two fibroblast types and one iPSC type (Figure 4F-I).
GEMIN5 was a significant eGene for the TUBA1B"/DCN" fibroblast type, the CcD9"/C1R"

205 fibroblast type and the FTL°/SNHGS" iPSC type. However, the top eSNP from each cell type for
GEMINS are independent of one another. For example, the rs74656936-GEMIN5 eQTL was
significant in the CD9"/C1R™ but not the TUBA1B"/DCN® fibroblast cell types (Figure 4G).
Meanwhile, the rs5635348-GEMINS5 eQTL was significant in the FTL°/SNHG8" iPSC type but was
not significant in either of the fibroblast types (Figure 4H). Finally, the rs12055298-GEMIN5


https://doi.org/10.1101/2020.06.21.163766
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.21.163766; this version posted June 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

210  eQTL was significant in the TUBA1B"/DCN® fibroblast type but not in the CD9"/C1R" fibroblast
type or the FTL/SNHG8" iPSC type (Figure 41).

We set out to identify and define the dynamics of eQTL in fibroblasts and fibroblast-derived
iPSC cell types. Collectively, our results provide evidence that there is a high degree of cell type-

215  specific gene regulation that is not captured with bulk RNA-seq. Further, our results indicate
that even when the same eGene is observed in different cell types, the allelic effect may be
altered in different cell types, or may be regulated by different loci entirely. Our findings
support previous reports that many cell type-specific eQTL are not detected using bulk RNA-
sequencing and that scRNA-seq can be utilised to enhance eQTL detection®®.

220
scRNA-seq provides a number of advantages over bulk RNA-sequencing for eQTL mapping.
Specifically, scRNA-seq enables cell types to be identified in an unbiased manner before eQTL
detection. Therefore, even cell types that have previously not been described or well
characterised can be identified and separated for eQTL mapping, thereby decreasing the

225 measurement noise that is introduced due to heterogeneity of cells in bulk RNA-sequence
profiling. Furthermore, scRNA-seq enables the cells from multiple individuals to be pooled in a
single experiment, thereby decreasing technical batch effects that can confound biological
variation between individuals. Finally, this study has provided a map of eQTL in fibroblast and
fibroblast-derived iPSC types that will be an important reference for future studies in iPSC-

230  derived cell types.
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Methods

Participant Recruitment and Ethics Approval

Experimental work was approved by the Human Research Ethics committees of the Royal
235  Victorian Eye and Ear Hospital (11/1031), University of Melbourne (1545394), University of

Tasmania (HO014124) in accordance with the requirements of the National Health & Medical

Research Council of Australia (NHMRC) and conformed with the Declaration of Helsinki®’.

Fibroblast culture

240  Human skin punch biopsies were obtained from subjects over the age of 18 years. Fibroblasts
were cultured in DMEM high glucose supplemented with 10% foetal bovine serum (FBS), L-
glutamine, penicillin (100 U/mL), streptomycin 100 (pg/mL) (all from Thermo Fisher Scientific,
USA). All cell lines were mycoplasma-free (MycoAlert mycoplasma detection kit, Lonza,
Switzerland).

245
Generation and maintenance of iPSCs
Human iPSCs were reprogrammed from fibroblast cultures by nucleofection (Amaxa™
Nucleofector™) of episomal vectors expressing OCT-4, SOX2, KLF4, L-MYC, LIN28 and shRNA
against p53* in feeder- and serum-free conditions using TeSR™-E7™ medium (STEMCELL

250 Technologies, Canada) and selected by sorting with anti-human TRA-1-60 Microbeads using a
MultiMACS (Miltenyi, Germany) as described by Crombie et al*® and Daniszewski et al*. Cells
were maintained on vitronectin XF™™ (STEMCELL Technologies™") -coated plates using TeSR™-
E8™ (Stem Cell Technologies). At passage eight, cells were assessed for quality control as
described previously*.

255
iPSC quality control
Pluripotency was assessed by immunochemistry for expression of OCT3/4 (sc-5279, Santa Cruz
Biotechnology, USA) and TRA-1-60 (MA1-023-PE, Thermo Fisher Scientific). Copy number

variation (CNV) analysis of original fibroblasts and iPSCs was performed using Illumina
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42 and QuantiSNP* with default parameter

260 HumanCore Beadchip arrays with PennCNV
settings. Chromosomal aberrations were deemed to involve 2 20 contiguous SNPs or a genomic
region spanning = 1IMB ***’. The B allele frequency (BAF) and the log R ratio (LRR) were

extracted from GenomeStudio (lllumina, USA) for representation.

265  Generating the single cell RNA-sequence data
Viable cells were sorted on a BD Influx cell sorter (Becton-Dickinson) using Propidium lodide
into Dulbecco's phosphate buffered saline (PBS) + 0.1% bovine serum albumin and retained on
ice. Sorted cells were counted and assessed for viability with Trypan Blue using a Countess
automated counter (Invitrogen), and then resuspended at a concentration of 800-1000 cells/pL

270 (8 x 10’ to 1 x 10° cells/mL). Final cell viability estimates ranged between 92-96%.

Single cell suspensions were loaded onto 10X Genomics Single Cell 3' Chips along with the
reverse transcription (RT) mastermix as per the manufacturer's protocol for the Chromium
Single Cell 3' Library (10X Genomics; PN-120233), to generate single cell gel beads in emulsion

275  (GEMs). Reverse transcription was performed using a C1000 Touch Thermal Cycler with a Deep
Well Reaction Module (Bio-Rad) as follows: 55°C for 2h; 85°C for 5min; hold 4°C. cDNA was
recovered and purified with DynaBeads MyOne Silane Beads (Thermo Fisher Scientific; Cat#
37002D) and SPRIselect beads (Beckman Coulter; Cat# B23318). Purified cDNA was amplified as
follows: 98°C for 3min; 12x (98°C for 15s, 67°C for 20s, 72°C for 60s); 72°C for 60s; hold 4°C.

280 Amplified cDNA was purified using SPRIselect beads and sheared to approximately 200bp with a
Covaris S2 instrument (Covaris) using the manufacturer’'s recommended parameters.
Sequencing libraries were generated with unique sample indices (SI) for each chromium
reaction. Libraries were multiplexed, and sequenced on an lllumina NextSeq 500 (NextSeq
control software v2.0.2/Real Time Analysis v2.4.11) using a 150-cycle NextSeq 500/550 High

285  OQutput Reagent Kit v2 (lllumina, FC-404-2002) in standalone mode as follows: 98 bp (Read 1),
14 bp (17 Index), 8 bp (15 Index), and 10 bp (Read 2).

SCRNA-seq Cellranger Processing
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Processing of the sequencing data into transcript count tables was performed using the Cell
290  Ranger Single Cell Software Suite by 10X Genomics (http://10xgenomics.com/). Raw base call
files from the NextSeq 500 sequencer were demultiplexed, using the cellranger mkfastq
pipeline, into sample-specific FASTQ files. These FASTQ files were then processed with the
cellranger count pipeline where each sample was processed independently. First, cellranger
count used STAR to align cDNA reads to the hgl9 human reference transcriptome, which
295  accompanied the Cell Ranger Single Cell Software Suite*’. We note that, since the expression
data is limited to the 3’ end of a gene and we used gene-level annotations, differences between
reference versions, such as GRCh38, are unlikely to significantly alter conclusions. Aligned reads
were filtered for valid cell barcodes and unique molecular identifiers (UMI) and observed cell
barcodes were retained if they were 1-Hamming-distance away from an entry in a whitelist of
300 known barcodes. UMIs were retained if they were not homopolymers and had a quality score >
10 (90% base accuracy). Cellranger count corrected mismatched barcodes if the base mismatch
was due to sequencing error, determined by the quality of the mismatched base pair and the
overall distribution of barcode counts. A UMI was corrected to another, more prolific UMI if it
was 1-Hamming-distance away and it shared the same cell barcode and gene. Cellranger count
305 examined the distribution of UMI counts for each unique cell barcode in the sample and
selected cell barcodes with UMI counts that fell within the 99th percentile of the range defined
by the estimated cell count value. The default estimated cell count value of 3,000 was used for
this experiment. Counts that fell within an order of magnitude of the 99th percentile were also
retained. The resulting analysis files for each sample were then aggregated using the cellranger
310  aggr pipeline, which performed a between-sample normalisation step and merged all samples
into one. Post-aggregation, the count data was processed and analysed using a comprehensive

pipeline assembled and optimised in-house as described below.

To pre-process the mapped data, we constructed a cell quality matrix based on the following
315 data types: library size (total mapped reads), the total number of genes detected, percent of
reads mapped to mitochondrial genes, and percent of reads mapped to ribosomal genes

(Figure S13). Cells that had any of the four parameter measurements that were greater than 3x
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median absolute deviation (MAD) of all cells were considered outliers and removed from
subsequent analysis. In addition, we applied two thresholds to remove cells with mitochondrial
320 reads above 20% or ribosomal reads above 50%. To exclude genes that were potentially
detected from random noise, we removed genes that were detected in fewer than 1% of all
cells. These quality control filters resulted in consistent total reads per individual and per pool
in both fibroblasts and iPSCs (Figure S14). Before normalisation, abundantly expressed
ribosomal genes and mitochondrial genes were discarded to minimise the influence of those

325  genes in driving clustering and differential expression analysis.

Demultiplexing
We adapted the Demuxlet method to our 10x scRNAseq data.’® The likelihood that a cell
originated from a sample is the cumulative likelihood of single nucleotide polymorphism
330 genotypes identified in each cell. We calculated posterior probability of a genotype g identified
for a cell based on scRNA-seq data given the DNA data from the imputed BeadChip genotypes.
Since the single cell SNP genotype data is sparse, to increase the coverage of SNPs called from
scRNA-seq data that are in the SNP genotype data, we imputation SNP genotypes using the
haplotype reference panel. We applied an ensemble approach using the outputs from pre-
335 imputed genotype data, imputed genotype likelihood data, and impute genotype dosage data,
increased the singlet probabilities from Demuxlet (Figure S15). The ensemble approach enabled
the unique donor assignment of 90.6% of all cells, with high confidence to each sample, where
demuxlet predicted no ambiguously assigned droplets. Of note, 100% of the cells before
Demuxlet were identified in cellranger pipeline as a singlet. Demuxlet identified 90.6% of all
340 cellranger singlet cells as ‘real’ single cells. Therefore, these cells were ascertained as singlets.
To recover the cell assignment to the remaining 9.4% cell ranger singlets, predicted as doublets
by Demuxlet, we utilised gene expression matrix to model cell doublets, using a simulation-
based approach®. For each cell that was identified as both a singlet by demuxlet and the
doublet expression simulation, was assigned to a donor based on the highest likelihood

345  probability from demuxlet.
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Normalisation
Normalisation was conducted at four levels: between samples within a pool, between pools,
between cells, and between clusters. The between-pool normalisation followed the
350 subsampling strategy in the cellranger pipeline, where the reads, genes and cells were
randomly subsampled following subsampling rates determined by the total read per sample
and binomial distribution.” Four pools were randomly multiplexed into one sequencing lane.
For cell-to-cell normalisation, a cell-pooling strategy was applied to circumvent the zero-
inflation issue, as described by Lun et al.*® Between pool normalisation followed Combat
355  parametric empirical Bayesian strategy. To select the normalisation strategy, we compared
results from using Combat, RUV and SCRAN methods by using k-BET batch-effect scores>>. We
found that a combination of SCRAN normalisation followed by Combat was superior in reducing
batch effects compared to other methods, consistent with the results reported by Buttner and
colleagues®®. Prior to eQTL analysis, the mean expression of each gene per individual per cell

360  subpopulation was computed and Z-transformed for eQTL mapping.

Imputation and Quality control of genotype data
The 79 cell lines were genotyped by Infinium HumanCore-24 v1.1 BeadChip assay (lllumina).
GenomeStudioTM V2.0 (lllumina) was used for SNP genotype calling of the BeadChip data (total
365 306,670 SNPs for one assay). The full genotype report files were reformatted into Plink map,
fam, and Igen files and were then converted into variant calling format (vcf) using custom shell
scripts and Plink2*’. Plink2-converted files contained predicted reference and alternative alleles
with no information for homozygous genotypes, which were fixed using the GenomeStudio
report file and a custom script. For each sorted, indexed vcf file (separated by chromosomes), a
370 strand fixing step was performed using bcf fixref function®®. Prior to imputation, Eagle V.2.3.5
was used for haplotype phasing the strand-fixed genotype vcf files”. The phased data were
imputed based on the 1000 genome phase 3 reference panel (2,535 samples) using the

minimac3 program in the Michigan Imputation server™’.

375  Cell type classification and annotation


https://doi.org/10.1101/2020.06.21.163766
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.21.163766; this version posted June 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

SingleR*® was used to map single cell transcriptomes against 713 reference transcriptomes.
Then, we combined all cells from the fibroblasts and iPSCs pools separately. Using these two
merged datasets, we normalised and clustered cells, ensuring the clustering was not affected
by pool-specific data processing. We performed clustering using the SCORE method to identify
380 subpopulations of cells®*. Clustree®® was used to display the cluster stability at different
resolutions (Figure S16). To visualise cell distributions, we used non-linear Uniform Manifold
Approximation and Projection (UMAP) dimensionality reduction®. Cyclone®® was used to
estimate cell cycle stages of each cell. Pseudo-trajectory analysis was carried out with slingshot
>> using the UMAP cell projections.
385
eQTL association analysis
To study specific regulation effects of genomic variance to gene expression, we performed
statistical analysis of the association between genotypes of single nucleotide polymorphisms
and single-cell gene expression for 79 fibroblast cell lines and 31 iPSC cell lines generated from
390 the same individuals. We filtered for common SNPs (minor allele frequency > 0.05) that were
within +/- 1 Mb of an expressed gene (detected in > 1% of the cells), resulting in 5,368,223 SNPs
and 9,796 genes for the fibroblasts, and 4,508,778 and 10,899 genes for the iPSCs. SNP
genotypes were recoded as 0, 1, or copies of the reference allele. eQTL mapping was
performed for each subpopulation identified by the clustering analysis. Cis-eQTLs (SNP < 1 Mb)
395 were detected using a linear model implemented in the MatrixEQTL R software with study-wide

FDR lower than 5%°.

Differential Expression

We used edgeR®"°®

to identify differentially expressed genes between each cell type compared
400 with the other cell types combined (i.e. each fibroblast type compared to the other five
fibroblast types and each iPSC type compared to the other three iPSC types). Differentially
expressed genes were detected using the gene-wise negative binomial generalised model with

a quasi-likelihood test. Detection rate and pool batches were included as covariates following
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the recommendations of Soneson and Robinson®®. Heatmaps and upset plots were generated

405  using ComplexHeatmap®’ in R. Heatmaps were created with scaled, normalised data.

Independent eQTL analysis

Given an eGene that was significant in a pair of cell types (a and b), the top eSNPs from each

cell type (S, and Sp) were tested for independency with relation to eGene expression.
410  Accordingly, the top eSNP (S,) in cell type b was regressed from the linear model for the

association of the top eSNP, S,, for cell type a with gene expression of the eGene (G,) in cell

type a.

G, ~ Bl + B;S, + PSSy +
415
eSNPs were deemed independent if the association between S, and G, was significant following

regression of S in the linear model.

Interaction eQTL analysis

420 Given an eGene that was significant in at least two cell types, the eSNP with the largest
difference between their beta allelic effects between any two clusters was used to test for cell
type interaction. Two models were fit for gene expression G, with SNP S and cell type C. The
first model (1) was a normal linear model and the second model (2) included an interaction
term. An interaction was considered significant if an anova comparing the two models was

425  significant.

1) G~o+1s+2C+
2) G ~[Ep+ [,S + BlL,C+ [E3SC + B

430 eGene correlation
The expression of eGenes that were unique to a given cell type were correlated with their

expression in the other cell types using a Pearson correlation test.
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eGene enrichment

435 eGenes from a specific cell type were tested for enrichment in the other cell types. eGenes
were ranked based on the lowest P-value for each eGene. An expected distribution of mean
rank scores were generated from 10,000 permutations of randomly selected genes (selecting
the same number of genes as eGenes). The mean rank of the eGenes in the testing cell types
were then tested for significance with a t-test.

440
GTEx comparison
Gene Tissue Expression (GTEx)33 database version seven results were downloaded on 6 July,
2019. The cultured fibroblast cell eQTL were compared with the fibroblast cell type eQTL results
to identify common and unique results.

445
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Tables

Table 1: Summary of fibroblast type cis-eQTL. The median number of cells per individuals, the

450 number of significant eSNPs detected, the number of significant eGenes detected and the

number of unique eGenes per cell type are enumerated.

455
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Single cell eQTL analysis identifies cell-type specific genetic control of gene expression in
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Figure 1: Fibroblast and iPSC Cluster Characterization. A) This study used skin biopsies to
generate fibroblasts from 79 healthy volunteers and reprogrammed them into induced
pluripotent stem cell (iPSC) lines for 31 of the original 79 individuals. B) Six fibroblast subtypes
were identified from the transcriptional profiles of 64,018 single fibroblast cells. C) The top 20
differentially expressed genes from each fibroblast subtype demonstrate a continuum of
expression across the six fibroblast subtypes. D) Four iPSC subtypes were identified from
19,967 single iPSCs. E) The top 20 differentially expressed genes from each iPSC subtype.
*Indicates the genes used to name each subtype.
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Figure 3: eGene Comparison across Fibroblast subtypes. A) The correlation of fibroblast
eGenes from subtype 1 (x-axis) with fibroblast eGenes from subtype 2 (y-axis) demonstrates
that eGenes are similarly expressed across all fibroblast subtypes. B) eGenes that were shared
between at least two fibroblast subtypes were tested for independence. The top eSNP for
eGenes that were shared between two fibroblast subtypes was regressed from the other
subtype in order to test if those were independent eSNP loci. Many (40-73%) of the fibroblast
top eSNPs remained significant after regression of the top eSNP from another fibroblast

subtype.
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Figure 4: Examples of eQTL identified in fibroblast and iPSC subtypes. A) The GBP3 gene
was the only eGene that was significant in all fibroblast subtypes and also B) demonstrated an
interaction between the fibroblast subtypes and the eQTL. C) CPNE1 was differentially
expressed across the fibroblast subtypes and D) was a significant eGene in five of the six
fibroblast subtypes. E) Further, the rs3474587283-CPNE1 eQTL demonstrated striking subtype
by SNP interaction. E) The GEMIN5 gene was an eGene in two fibroblast subtypes and one
iPSC subtype the top eSNPs were different in each subtype. The CD9"/C1R" fibroblast subtype
eQTL was 3’ of the GEMIN5 gene, the GAPDH"/SNHG8" iPSC subtype eQTL was 5’ of the
GEMIN5 gene and the TUBA1B"/DCNP fibroblast subtype was further 5" of the GEMIN5 gene.
All three loci were independent of one another (P < 0.05). F) The top eSNP (rs74656936) for the
GEMINS gene in the CD9"/C1R" fibroblast subtype was not significant in the TUBA1B"/DCN"
fibroblast subtype and the rs74656936 was not frequent enough in the iPSC lines to be
analyzed. G) The top eSNP (rs56353548) for the GEMIN5 gene in the GAPDH"/SNHG8" iPSC
subtype was not significant in either the CD9"/C1R" fibroblast subtype or the TUBA1B"/DCN"
fibroblast subtype. H) The top eSNP (rs12055298) for the GEMIN5 gene in the TUBA1B"/DCN®
fibroblast subtype was not significant in the CD9"/C1R" fibroblast subtype or the
GAPDH"/SNHG8" iPSC subtype. *P < 0.05; **P < 0.01; ***P < 0.001; NS=non-significant.
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