

1 Rate volatility and asymmetric segregation diversify
2 mutation burden in mutator cells.

3

4 Dowsett, I.T.^a, Sneeden, J. ^a, Olson, B.J. ^{b,c}, McKay-Fleisch, J. ^a, McAuley, E. ^a,
5 Kennedy, S.R. ^a, Herr, A.J.* ^a

6

7 **Author Information**

8 ^aDepartment of Pathology, University of Washington, Seattle, WA 98195-7705 ^bDepartment of Statistics,
9 University of Washington, Seattle, WA 98195-7705 ^cComputational Biology Program, Fred Hutchinson
10 Cancer Research Center, Seattle, WA 98109

11 **Mutations that compromise mismatch repair (MMR) or DNA polymerase exonuclease**
12 **domains produce mutator phenotypes capable of fueling cancer evolution. Tandem**
13 **defects in these pathways dramatically increase mutation rate. Here, we model how**
14 **mutator phenotypes expand genetic heterogeneity in budding yeast cells using a single-**
15 **cell resolution approach that tallies all replication errors arising from individual**
16 **divisions. The distribution of count data from cells lacking MMR and polymerase**
17 **proofreading was broader than expected for a single rate, consistent with volatility of the**
18 **mutator phenotype. The number of mismatches that segregated to the mother and**
19 **daughter cells after the initial round of replication co-varied, suggesting that**
20 **mutagenesis in each division is governed by a different underlying rate. The distribution**
21 **of “fixed” mutation counts that cells inherit is further broadened by an unequal sharing**
22 **of mutations due to semiconservative replication and Mendelian segregation. Modeling**
23 **suggests that this asymmetric segregation may diversify mutation burden in mutator-**
24 **driven tumors.**

25

26 **Introduction**

27 All tumors contain genetically divergent cells spawned by the evolutionary processes of
28 mutation and selection. In some tumors, genetic heterogeneity arises from a “mutator
29 phenotype”¹ due to mismatch repair (MMR) defects² or heterozygous exonuclease domain
30 mutations (EDM) affecting the leading or lagging strand DNA polymerases (pol), Pol ϵ or Pol δ ³⁻⁹.
31 Since MMR corrects polymerase errors, when MMR and EDM mutations occur together they
32 produce a dramatic increase in the number of unrepaired polymerase errors. The resulting
33 tumors rapidly evolve and possess “ultra-hypermutated” genomes. Yet a full understanding of
34 the relative contributions of mutagenesis and selection to the rise of heterogeneity within these
35 tumors remains elusive, since cells with more mutations tend to adapt more readily.

36 A key unanswered question is whether the mutation rate is constant within mutator cell
37 populations. The two most common ways of measuring mutation rates are fluctuation analysis¹⁰
38 and mutation accumulation lines¹¹. Both assume a uniform mutation rate and report the average
39 of hundreds or thousands of cell divisions. However, in recent years, evidence has emerged
40 that mutagenic processes may vary from one division to the next. Kataegis and chromothripsy,
41 for instance, sharply increase mutation burden in a single cell division¹²⁻¹⁴. Indirect evidence for
42 highly mutagenic sub-populations of cells also comes from studies of yeast exposed to 6-
43 hydroxylaminopurine or AID/APOBEC cytosine deaminase. Drug-resistant mutants in these

44 studies had substantially higher mutation burdens than non-selected isolates from the same
45 population¹⁵. More recently, limited single-cell propagation of human cancer cell lines coupled to
46 whole genome sequencing revealed broader than expected variation in mutation rate in closely
47 related subclones¹⁶. Observations such as these challenge the assumption that mutation rate is
48 constant and beg higher resolution studies of mutator cells.

49 The asymmetrically dividing budding yeast, *Saccharomyces cerevisiae*, is ideal for
50 studying mutator phenotypes with high resolution. It encodes many of the same DNA replication
51 and mismatch repair genes found in humans. Yeast “daughter” cells can be separated from their
52 larger “mother” cell at each division by micromanipulation and then moved to defined locations
53 on an agar plate, forming a “single cell lineage”. Whole genome sequencing (WGS) of cultures
54 derived from these cells permits the number of new mutations that arose in the mother cell at
55 each division to be counted. Moreover, the small size of the genome (12 megabases) makes it
56 cost effective to score enough cell divisions to see whether the distribution of mutation counts
57 conforms to that expected from a single underlying mutation rate.

58 We previously pioneered this approach with haploid mutator mother cells deficient in
59 Pole proofreading and MMR (*pol2-4 msh6Δ*)¹⁷. A single underlying mutation rate could not
60 explain the distribution of mutation counts from 87 divisions. However, the distribution did fit a
61 model with two underlying mutation rates that differed by 10-fold (0.4 and 4
62 mutations/genome/division). This led to a hypothesis of “mutator volatility” in which cells
63 assumed one of two mutator states as they passed through the cell cycle¹⁷. But since we only
64 scored mutations retained by the mother, we could not exclude an alternative hypothesis: that
65 polymerase errors sporadically segregated asymmetrically between mother and daughter cells,
66 either as mismatches at the initial division or as permanent, “fixed” mutations following the next
67 round of synthesis. Here, to distinguish between these two hypotheses, we sought to score all
68 replication errors that arose in individual cell divisions using more extensive single cell lineages.
69 Examination of the distribution of the full replication error counts from individual divisions
70 provided a way to test the mutator volatility hypothesis apart from the confounding influence of
71 segregation. At the same time, sequencing complete lineages gave us the means to determine
72 whether replication errors segregate equally on their way to fixation.

73 **Results**

74 To confidently score replication errors arising on all nascent DNA strands from each
75 division, we devised a scheme that ensured that all mutations were observed in at least two
76 members of a single cell lineage. After moving each daughter by micromanipulation from the
77 founding mother cell, we isolated a sublineage of three additional cells to help score the number
78 of errors segregated to that daughter. These cells included the first and second granddaughter
79 (born to the daughter cell) as well as the first great-granddaughter cell derived from the first
80 granddaughter (Fig.1a). Errors segregated to the daughter as mismatches in the first division
81 segregate as fixed mutations in the next division when the daughter produces the first
82 granddaughter. Mutations retained by the daughter after that segregation event will be inherited
83 by the second granddaughter, forming what we call the “Da” segregant group. Mutations
84 segregated to the first granddaughter will be inherited by the great-granddaughter, forming the
85 “Db” segregant group. In theory, the Da and Db segregant groups represent half of the errors
86 made by the mother cell during a given division. The remaining errors, retained initially by the
87 mother as mismatches, segregate between the mother and her next daughter as fixed
88 mutations in the next division. Fixed mutations segregated to that daughter will be uniquely
89 present in the next sublineage, forming the “Ma” segregant group. Mutations retained by the
90 mother will be found in all later sublineages, defining the “Mb” segregant group. After colony

91 formation and WGS, a full error count for a given division can be determined by simply summing
92 the number of fixed mutations in the Da, Db, Ma, and Mb segregant groups. With a complete set
93 of sublineages from the same mother cell, the full replication error counts from several
94 sequential cell divisions can be determined from the nested data (Extended Data Fig.1). By
95 requiring that all errors be observed in at least two members of the lineage, this approach
96 eliminates false positives due to sequencing errors or clonal sweeps within the cultures.

97 We initially began our experiments with the *pol2-4 msh6Δ* haploid strain used in the
98 previous study¹⁷. We found evidence for a more limited mutator volatility but were concerned
99 that lethality within some sublineages may have introduced a bias (see Supplementary
100 Information and Extended Data Fig. 2). To improve viability and the mutational signal, we
101 switched to using diploid yeast with a 10-fold higher mutation rate due to homozygous mutations
102 affecting Polδ proofreading and base-base mismatch repair (*pol3-01/pol3-01*
103 *msh6Δ/msh6Δ*)^{18,19}. To obtain *pol3-01/pol3-01 msh6Δ/msh6Δ* cells, we mated *pol3-01 msh6Δ*
104 haploids, freshly dissected from sporulated *POL3/pol3-01 MSH6/msh6Δ* diploids. We isolated
105 the newly formed zygotes and then used the first or second diploid daughters as founding
106 mother cells for the isolation of single-cell lineages, noting the time and placement of each cell.
107 Following colony formation, and WGS, we scored 13,801 mutations from 50 divisions obtained
108 from 7 different lineages (Fig.1b, Table 1, Extended Data Fig. 3). The mutations were distributed
109 across the genome and displayed a spectrum consistent with combined proofreading and MMR
110 deficiency (Extended Data Fig. 4). We only scored mutations at genomic sites confidently called
111 in all members of a lineage and carefully vetted the resulting variant lists. Having complete
112 lineage information allowed us to assign when the mutations arose using the logic described
113 above. In addition, we visually inspected the variant sites in all genomes from a given lineage
114 using the Integrative Genomics Viewer, which allowed us to detect discrepancies in the lineage
115 order or whether mutations had been incorrectly assigned (see Methods). We tallied the full
116 replication error counts from each division and determined whether the distribution could be
117 explained by a single underlying mutation rate.

118 Mutagenesis has been modeled for more than 70 years¹⁸⁻²⁰ with the Poisson distribution,
119 which is a discrete probability distribution of the number of expected independent events
120 occurring within a defined interval, assuming a constant rate (λ). A simple test of whether a
121 distribution matches a single Poisson is to calculate the index of dispersion (\hat{D}), which is equal
122 to the variance of the distribution divided by the mean (σ^2 / μ). The variance of Poisson
123 distributions always equals the mean, which results in a \hat{D} of 1. The *pol3-01/pol3-01*
124 *msh6Δ/msh6Δ* mother cells committed an average of 276 (± 37.7 , standard deviation (σ))
125 replication errors per division. This corresponds to a \hat{D} of 5.15 ($37.7^2/276$), which suggests that
126 the distribution does not conform to a single Poisson (Fig.1b). Two alternative explanations
127 failed to account for the overdispersion. For instance, we did not observe any relationship
128 between the mother's replicative age and the number of errors made by Polδ (Spearman's rank
129 correlation coefficient: 0.007209, $p = 0.9604$)(Extended Data Fig.5), nor did the number of
130 mutations correlate with the size of the scored genome, which differed between lineages due to
131 variation in sequencing depth and the number of members in each lineage (Spearman's rank
132 correlation coefficient: -0.0416, $p = 0.7743$)(Extended Data Fig.5). Instead, the broad
133 distribution of full replication error counts, free from the confounder of segregation, is consistent
134 with mutator volatility.

135 To better understand the nature of mutator volatility in *pol3-01/pol3-01 msh6Δ/msh6Δ*
136 cells, we used finite mixture modeling, which employs a maximum likelihood framework to
137 identify mixtures of two or more Poisson distributions that better fit the data. We also modeled
138 the data as a negative binomial (nb), which is a discrete distribution with separate rate (μ) and
139 shape parameters (θ) commonly used to interpret over dispersed count data. The rate

140 parameters λ and μ , for the Poisson and nb distributions, both define the mean number of
141 events. Since these models derive from different distributions, they cannot be directly compared
142 using standard statistical tests. Non-nested models such as these, however, can be evaluated
143 with Akaike Information Criteria (AIC), which uses maximum likelihood to estimate the loss of
144 information of each model relative to the observed distribution. To prevent overfitting, AIC
145 penalizes models with more parameters. Lower AIC values correspond to a more parsimonious
146 fit; however, interpreting differences in raw AIC values can be enigmatic. Thus, we transformed
147 the raw AIC values to “Akaike weighted values”, which conveys their relative likelihood
148 (Fig.1b)^{21,22}. We found that the negative binomial model was the most likely (relative likelihood
149 of 0.9999), followed by the two-Poisson-mixture model (2.2×10^{-6}), and the single Poisson ($4.3 \times$
150 10^{-28}) (Fig.1b). Similar results were obtained using Bayesian Information Criteria (BIC), which
151 imposes stronger penalties for overfitting. Thus, mutator volatility in *pol3-01/pol3-01*
152 *msh6Δ/msh6Δ* cells is more complex than just two distinct mutator states.

153 The superiority of the negative binomial model suggests that the mutator phenotype may
154 vary continuously. This rationale derives from the ability to describe a negative binomial as a
155 gamma-Poisson distribution (Fig.2a). The gamma function is a continuous, rather than discrete,
156 distribution. Here, it takes the same shape parameter (θ) as the negative binomial and serves
157 as a conjugate-prior to define variation in the rate parameter λ of a mixture of Poisson
158 distributions. The variation in λ that creates a negative binomial occurs between replication
159 events at the same site, or a collection of sites such as a chromosome or genome. Having
160 complete lineage information provided an opportunity to test whether λ varies at a chromosomal
161 or genome-wide level. The distributions of mismatches segregated to mother (Mm) or daughter
162 cells (Dm) across all divisions were the same and fit a negative binomial (Fig. 2b). If λ varied
163 widely during the replication of individual replicons (the units of DNA replication on a
164 chromosome), this could introduce asymmetry in the number of errors on sister chromatids,
165 which would then propagate to the daughter and mother cells (Fig. 2d). Consequently, Dm and
166 Mm from the same division would be free to vary within the observed negative binomial
167 distribution. Alternatively, if the genome-wide value for λ varies between cell divisions, a single
168 mutation rate would govern mismatch formation for both the mother and daughter genomes
169 (Fig. 2e). Dm and Mm would co-vary within the constraints of the corresponding Poisson
170 distribution. To distinguish between these two hypotheses, we first compared the correlation of
171 mismatches segregated to mother and daughter cells to simulated data generated under the
172 constraints of the two models. While no correlation was seen between Dm and Mm in the
173 simulated data from the first model ($R^2=0.001$), similar correlations were observed for both the
174 simulated data from the second model ($R^2=0.47$) and the actual data ($R^2=0.37$). This
175 correspondence in the number of mismatches segregated to mother and daughter cells
176 extended down to the level of chromosomes (Fig. 2f). The R^2 values are lower than typically
177 seen with strong correlations, but as our modeling shows, this is expected since both X and Y
178 values are randomly drawn from a Poisson distribution. As a second test of the hypotheses, we
179 also performed 10,000 simulations of how each model would affect the distribution of full
180 replication error counts from 50 divisions (Fig. 2g). With the first model, the simulated index of
181 dispersion (3.28 ± 0.66 , σ) was substantially less than observed with the actual data ($\hat{D}=5.15$),
182 while the second model produced a good match (5.54 ± 1.12 , σ). Together, these analyses
183 strongly suggest that the source of mutator volatility is variation in the genome-wide mutation
184 rate from one division to the next.

185 With this support for the mutator volatility hypothesis, we turned our attention to the
186 question of asymmetric inheritance. Individual cells averaged 69 (± 18 , σ) fixed mutations/diploid

187 genome/division ($n = 200$) (Fig. 3a) with an index of dispersion of 4.8. A negative binomial fit the
188 distribution most closely (relative likelihood = 0.82), followed by a four-Poisson mixture model
189 (relative likelihood = 0.18). A close examination of mutations arising from the same division
190 revealed a striking asymmetric pattern of inheritance. When pairs of segregant groups were
191 compared (e.g. Da vs Db or Ma vs Mb), half of the time one segregant group inherited all of the
192 mutations for a given chromosome while the other received none (Fig. 3b,c). This pattern is
193 explained by the sequential actions of semiconservative DNA replication and Mendelian
194 segregation (Extended Data Fig.6). At the end of the first S-phase, due to semiconservative
195 replication, all errors arising due to the Poisson process of polymerase error formation reside on
196 one of the two strands of each sister chromatid. These strands segregate equally between
197 mother and daughter cells. The next round of replication produces two new duplexes per cell,
198 only one of which contains fixed mutations. At metaphase, cells receive either all or none of the
199 fixed mutations for that chromosome from the previous division. This binomial process occurs
200 twice for every chromosome number in diploid cells. Consequently, for each chromosome
201 number, cells receive 0%, ~50%, or 100% of the mutations in a given division with a Mendelian
202 ratio of 1:2:1 (Fig. 3c) (actual ratio, 876:1490:834). Thus, we can describe how polymerase
203 errors arise in an individual division and later become fixed as a compound Poisson-binomial
204 process.

205 To determine the contribution of the Poisson-binomial process to the overdispersion of
206 mutation counts, we simulated mutagenesis in *pol3-01/pol3-01 msh6Δ/msh6Δ* cells assuming a
207 constant error rate. Given that we observed an average of 138 mismatches per diploid mother
208 or daughter cell (Fig. 2c), the average rate of error formation was 69 errors/haploid
209 genome/division. Since cells only inherit, on average, half of the polymerase errors, the
210 observed mutation rate in *pol3-01/pol3-01 msh6Δ/msh6Δ* cells was 34.5 fixed mutations/haploid
211 genome/division. To model the Poisson-binomial process we simulated mutagenesis on each
212 chromosome by setting λ equal to 69 errors/haploid genome and then, to mimic segregation,
213 multiplied the number of mutations apportioned to each chromosome by a randomly chosen 1 or
214 0, before summing the total fixed mutations (Fig.3d). For comparison, we simulated mutation
215 accumulation assuming a simple Poisson process in which mutations accumulated with a rate of
216 34.5 mutations per haploid genome (Fig.3d). With 1000 simulations of 200 cell cohorts, the
217 Poisson-binomial model produced a broader index of dispersion ($\hat{D} = 3.58 \pm 0.49$, σ) than the
218 Poisson model ($\hat{D} = 1.0 \pm 0.1$, σ) (Fig.3e), but narrower than the observed data ($\hat{D} = 4.8$).
219 However, substituting the constant mutation rate with the gamma-distributed set of λ values
220 from Fig.2c yielded simulated data with an equivalent dispersion ($\hat{D} = 4.80 \pm 0.49$, σ) (Fig. 3e).
221 Thus, the combination of mutator volatility and asymmetric segregation of mutations — a
222 gamma-Poisson-binomial process —accounts for the observed distribution of fixed mutations in
223 individual *pol3-01/pol3-01 msh6Δ/msh6Δ* cells.

224 To understand the potential implications of our findings for mutator-driven cancers, we
225 first focused on how the Poisson-binomial process would influence the heterogeneity of
226 mutation burden within a dividing population of tumor cells. Assuming a constant mutation rate
227 comparable to *pol3-01/pol3-01 msh6Δ/msh6Δ* yeast, the expected distribution of simulated
228 mutation counts in human cells after one division ($\hat{D} = 50$) was far broader than in yeast (Fig.3f)
229 and persisted through 30 simulated divisions (Fig. 3g,h). Adding a comparable level of volatility
230 to the mutator phenotype further increased the simulated dispersion ($\hat{D} = 82$) (Fig.3f). Using the
231 Poisson-binomial model, we simulated a range of mutator phenotypes observed in cancer cells
232 and found a linear relationship between mutation rate and predicted dispersion. For instance,

233 mutation accumulation in HCT116, the well-known MLH1 mutant colon cancer cell line,
234 increases from 48 to 190 mutations/haploid genome/division upon introduction of a
235 heterozygous *POLE* proofreading-deficient allele⁹. In these cells, the predicted index of
236 dispersion expanded from 3.4 to 10.8 (Fig.3i). Even greater heterogeneity may arise in human
237 cancers when more potent *POLE* mutator alleles occur in combination with MMR
238 deficiency^{5,7,23,24}. Thus, the fundamental Poisson-binomial process of asymmetric segregation
239 has the potential to dramatically expand the diversity of mutation burdens present among a
240 population of human mutator cells.

241

242 Discussion

243 Genetic heterogeneity progressively increases in a dividing population of cells as an
244 unavoidable consequence of errors made during DNA synthesis. Here, for the first time, we
245 describe the fate of polymerase errors made on all nascent DNA strands synthesized in
246 individual cell divisions. We developed this single cell resolution approach in order to
247 understand previous observations that the distribution of new fixed mutations in individual
248 mutator cells was broader than expected. To explain the phenomenon, we proposed two
249 hypotheses: (1) that mutator phenotypes are volatile and (2) that polymerase errors arise with a
250 constant rate but segregate asymmetrically on the way to fixation. The design of our single cell
251 pedigrees ensured at least two independent biological observations for each mutation, which
252 allowed us to confidently assign more than 13,000 mutations to fifty divisions. From the resulting
253 mutation count data, we found strong evidence that both mutator volatility and asymmetric
254 segregation significantly expand genetic heterogeneity in *pol3-01/pol3-01 msh6Δ/msh6Δ* yeast.

255 Historically, mutagenesis has been modeled with the Poisson distribution, which
256 describes the probability of the number of independent events per unit time given a constant
257 rate. The observed distribution of full replication error counts of mutator cells, free from the
258 influence of segregation, best a fit a negative binomial and not a single Poisson (Fig.1b).
259 Negative binomials are equivalent to a continuous mixture of Poisson distributions whose rates
260 vary according to a gamma distribution (Fig.2a). This suggests that mutator volatility may create
261 a continuum of mutation rates rather than discrete mutator states. We explored the idea that
262 mutation rate varies from one division to the next by simulating the number of mismatches
263 segregated to mother and daughter cells (Fig 2d,e) and the dispersion of full replication error
264 counts expected from small cohorts of cells (Fig.2f). Both simulations closely matched the
265 observed data, consistent with the hypothesis that mutator volatility derives from continuous
266 variation in mutation rate between divisions. Mutator polymerases do not operate as a closed
267 system. They interface with a myriad of other replication components and metabolites, such as
268 dNTPs, that influence their fidelity^{25,26}. Variation in the timing and duration of perturbations to
269 these interactions may produce a continuum of rates. The observed overall mutation rate that
270 cells exhibit represents a composite of mutation rates at all sites within the genome.
271 Conceivably, the change in replication fidelity could be localized to certain parts of the genome
272 in a given division. But if so, our data suggests, that the nascent strands from each pair of sister
273 chromatids in the affected region must be equally influenced by the change in rate (Fig.2c,f).

274 The asymmetric inheritance of mutations observed in mutator cells results from the
275 fundamental processes of semi-conservative replication and Mendelian inheritance acting in
276 concert. Current models of mutation accumulation generally ignore the potential for this synergy
277 to expand genetic heterogeneity, although there are exceptions. John Cairns proposed a far

278 more extreme asymmetric inheritance of mutations in the “Immortal Strand Hypothesis” in which
279 stem cells always segregated away newer DNA duplexes with fixed mutations²⁷. In keeping with
280 this hypothesis, a recent computational analysis of human somatic variants argued that the high
281 variance of mutation burden in adult stem cells with age supports a preferential inheritance of
282 ancestral strands²⁸. A second study from the field of evolutionary biology examined the potential
283 influence of disparate mutagenesis of leading and lagging strand synthesis to promote variable
284 evolutionary trajectories from the same cell population²⁹. Our findings here demonstrate that, in
285 the context of a mutator phenotype, the *normal* process of semi-conservative replication and
286 Mendelian inheritance has the potential to create unequal sharing of mutations. For every cell
287 that inherits disproportionately more mutations there will be another cell with fewer mutations.
288 The predicted impact of this process on the variation in mutation burden is larger in human cells
289 than in yeast due to the vast differences in chromosome length, and the correspondingly larger
290 number of fixed mutations per chromosome. However, with longer chromosomes comes an
291 increased likelihood that sister chromatid exchanges (SCEs) may mitigate the asymmetry.
292 SCEs clearly do not homogenize mutation burden in diploid mutator yeast cells as half of
293 cells either received all or none of the new fixed mutations for a given chromosome (Fig. 3c).
294 This finding is in keeping with recent evidence from a sensitive Next Generation Sequencing
295 methodology (Strand-seq) that SCE occurs with a rate of 0.26 events/division in yeast³⁰. Strand-
296 seq experiments of normal human fibroblasts and lymphoblasts indicate the SCEs occur with a
297 rate of 5 events/cell division³¹. At this rate, most chromatid pairs in mutator cells would be free
298 of SCEs even after the two divisions it takes for errors to become fixed mutations. Of course,
299 the frequency of SCEs may increase in some cancer cells, especially those with intrinsic DNA
300 repair defects³¹. However, the mutator yeast strains studied here do not show obvious signs of
301 elevated SCEs. Performing single cell lineage analysis of human mutator cells in future studies
302 should address both the prevalence of SCEs and the asymmetric inheritance of mutations.

303 Our simulation of a mutator-driven tumor rapidly generated substantial intra-tumoral
304 genetic heterogeneity during expansion (colored lines, Fig.3h) compared to a population in
305 which mutations accumulated by a simple Poisson process (black line, Fig.3h). The associated
306 variability in mutation load may be relevant to cancer evolution. Early during tumorigenesis the
307 subpopulation of cells that inherit disproportionately more mutations may adapt more readily.
308 With elevated mutation rates, polyclonal adaptation is almost certain. The unifying feature of
309 these adapted cells is a high mutation burden. As mutation burden mounts and mutator cells
310 contend with increasingly strong negative selection pressure due to immune surveillance and
311 negative epistatic interactions^{32,33}, adapted cells that inherit fewer new mutations due to
312 asymmetric inheritance may be at a relative fitness advantage. Selectively increasing mutation
313 rate in mutator cancer cells could represent a novel therapy²⁵. If, as a means of treatment, the
314 mutation rate of cancer cells is only transiently elevated to induce extinction, this subpopulation
315 may persist. Sustained elevation of mutation rate over many divisions of mutator cells may be
316 required to drive their extinction.

317 Methods

318 Yeast strains and culture conditions.

319 The diploid strains AH2801 (*POL2/URA3::pol2-4 MSH6/msh6Δ::LEU2*) and AH2601
320 (*POL3/URA3::pol3-01 MSH6/msh6Δ::LEU2*) were previously described^{17,34}. They are derived
321 from AH0401, a BY4743 derivative engineered to be heterozygous at the *CAN1* locus
322 (*CAN1::natMX/can1Δ::HIS3*) to facilitate forward mutation rate assays³². We followed standard

323 procedures for yeast propagation and tetrad dissection³⁵. For general propagation, we grew
324 liquid YPD cultures (1% wt/vol yeast extract, 2% wt/vol peptone, 2% wt/vol dextrose) at 30°C.
325 For sporulation, we diluted overnight YPD cultures 1:100 in 3 mls of YPD and grew until the
326 culture was 1-2 x 10⁷ cells/ml. We recovered the cells by centrifugation, resuspended and
327 pelleted the cells once in 1 ml H₂O, and then resumed growth at 22-25°C in sporulation media
328 (1% potassium acetate, 0.1% yeast extract, 0.05% dextrose) for five days. For rich solid media,
329 we used synthetic complete (SC) [6.7 g Difco yeast nitrogen base without amino acids, 2%
330 wt/vol dextrose, 2 g/L SC amino acid Mix (SCM) (Bufferad)] supplemented with 2% wt/vol agar.
331 For plates lacking leucine and uracil (SC-Leu-Ura), SCM was substituted for SCM-Leu-Ura
332 (Bufferad). Archival frozen stocks were stored in 23% glycerol at -80°C.

333 **Single cell lineage isolation**

334 To isolate *pol2-4 msh6Δ* lineages we dissected AH2801 tetrads on SC-Leu-Ura selective
335 media and chose one germinating spore per plate to serve as the founding mother cell. To
336 obtain *pol3-01::URA3/pol3-01::URA3 msh6Δ::LEU2/msh6Δ::LEU2* cells for pedigree analysis we
337 first dissected *POL3/pol3-01::URA3 MSH6/msh6Δ::LEU2* tetrads on SC-Leu-Ura plates. After
338 two divisions, double mutant haploid cells from different tetrads were placed next to each other
339 to allow mating. Upon isolation of a zygote, the first or second daughter was used as the
340 founding mother (M) for the lineage. Mothers were placed at an isolated location and we
341 separated daughter cells (designated D_n, D_{n+1}, etc.) from the mother as they were generated
342 and moved them to select areas 5 mm apart on the plate. We repeated the procedure to obtain
343 each daughter's first daughter (GD.1, Fig.1b), second daughter (GD.2), and first granddaughter
344 (GGD, born to GD.1). This strategy was repeated for each daughter up to either the 20th division
345 or the end of the mother's replicative lifespan, whichever occurred first. In a typical experiment,
346 we pre-punched the agar with the dissecting needle at each drop-off location so that we would
347 always put the cell in a defined place, making it easy to later find the cell for inspection and
348 manipulations. We isolated lineages over the span of a week by performing rounds of
349 dissections every 90-120 minutes. Only a few cells on a plate were moved in any one round,
350 and then, only one cell at a time. We noted the timing of each round of bud dissections. We
351 incubated plates at 30°C between dissections. At the end of the day, plates were wrapped in
352 parafilm and stored overnight at 4°C. When plate dissections were concluded, we incubated
353 each plate an additional 48 hours at 30°C to allow colonies to fully develop. Prior to sequencing,
354 the *pol3-01/pol3-01 msh6Δ/msh6Δ* and *pol2-4 msh6Δ* genotypes were confirmed by previously
355 described allele-specific PCR assays³⁴.

356 **Genome sequencing**

357 We performed whole genome sequencing of yeast cultures as described³⁴. Briefly, each
358 colony in a pedigree was used to inoculate overnight 5 ml liquid YPD cultures. Glycerol stocks
359 were made and genomic DNA extraction extracted with the ZR Fungal/bacterial purification kit
360 (Zymo Research). DNA was sheered into 500 to 1000 bp fragments by sonication. After end-
361 repair, Illumina sequencing libraries were made by ligating on dsDNA adapters and indexing by
362 quantitative PCR. The samples were then sequenced on the HiSeq 2500 or Nextseq platforms.
363 We performed sequencing alignments and variant calling using a custom pipeline
364 (eex_yeast_pipeline.sh) that runs in the Unix command-line (see Github link below). Reads were
365 aligned to a repeat-masked S288C yeast genome¹⁷ using the Burrows-Wheeler Aligner
366 (0.7.17)³⁶. Discordant and split read groups were removed using Samblaster (0.1.24)³⁷. We
367 used Picard tools (2.21.9) AddOrReplaceReadGroups to add information to the header used for
368 later steps. We indexed the BAM files with Samtools (1.8)³⁸ and then sequentially processed
369 them with functions from the Genome Analysis Toolkit (GATK3)³⁹ to minimize false variant calls:
370 RealignerTargetCreator, IndelRealigner, LeftAlignIndels, BaseRecalibrator, and PrintReads.
371 We made a pileup file with Samtools and used VarScan (v2.3.9) mpileup2snp to call single

372 nucleotide variants⁴⁰. We limited our analysis to single nucleotide variants, which are by far the
373 most abundant polymerase error type in these cells. We used the Varscan2 tool to identify
374 variants present in our colonies with the following parameters. For *pol2-4 msh6Δ* haploid
375 lineages we used a variant frequency cut-off of 0.8 with a minimum read-depth of 18 (daughter
376 and GD.1 positions) or 10 (for GD.2 and GGD positions). Since these are haploid cells, new
377 variants should be present in 100% of reads. Setting the cut-off at 0.8 accommodates sites with
378 low read depth and one sequencing error. For *pol3-01/pol3-01 msh6Δ/msh6Δ* diploids, we used
379 a minimum read-depth of 18 for all strains and a variant frequency cut-off of 0.22. With a read
380 depth of 18, clonal heterozygous variants in diploid cells have a false negative rate of 6.1×10^{-5} .
381 With 1000 mutations we have a 6% chance of having 1 false negative in a genome. We filtered
382 the above results to remove variants present in the parental strains as well as recurrent
383 sequencing artifacts. A small number of variants (<0.1%) could be reliably scored with the
384 above parameters but fell below a quality threshold for a subset of genomes. These were
385 manually curated for inclusion. We detected these by visually inspecting the BAM files for all
386 strains in a single cell lineage at the same time using the Integrated Genome Viewer (IGV).

387 **Scoring of mutations and detection of assignment errors**

388 We used a custom Python script (JLSLineageCaller) to determine the number of shared
389 variants within each lineage. The program first determines all genomic positions with 18-fold
390 read-depth in all members of the lineage and then filters the called variant lists for mutations at
391 positions within the shared genome. Pairwise comparisons are done between certain strains to
392 identify shared mutations at different branch points in the lineage, resulting in a data-frame of
393 comparisons that allows all mutations arising in a lineage to be sorted and examined in
394 Microsoft Excel. The mutation counts for division *n* were determined by summing the number of
395 new mutations identified at branchpoints Da (GDn.1 vs GGDn.1), Db (Dn vs GDn.2), Ma (Dn+1
396 vs GDn+1.1), and Mb (Dn+2 vs Dn+3). Da mutations are only found in the daughter (Dn) and her
397 second daughter (GDn.2). Likewise, Db mutations are only found in GDn.1 and her first
398 daughter GGDn.1. Mismatches retained by the mother after the first division become fixed in
399 the next division and are either passed on to her next daughter (Dn+1) or are retained by the
400 mother and passed on to all future offspring. The fixed mutations inherited by Dn+1 that form
401 the Ma segregant group are only found in this branch of the lineage. Finally, the fixed mutations
402 retained by the mother, the Mb segregant group, first appear in Dn+2 and her offspring, but also
403 show up in all subsequent daughters (Dn+3, Dn+4, etc) and their offspring. Any deviation from
404 this pattern of inheritance indicates an “assignment error” has occurred, and that a cell was
405 inadvertently placed in the wrong position in the lineage. In the Supplementary Information we
406 describe two such cases. The divisions encompassing these strains were censored from the
407 analysis. Below we describe how these errors arise and are detected to illustrate the reliability of
408 the method.

409 One possible assignment error could occur at dissection when the daughter and mother
410 cells both divide before the next round of dissection. On the basis of size, the first daughter (Dn)
411 can be easily distinguished from the mother, the second daughter (Dn+1), and her own
412 daughter (GDn.1). Usually Dn+1 and GDn.1 can also be distinguished because Dn+1 buds
413 before GDn.1. However, in rare cases Dn+1 and GDn.1 are adjacent and similarly sized. If
414 Dn+1 is moved in place of GDn.1, we will have a sublineage consisting of Dn, Dn+1, GDn.2,
415 and GDn+1.1 (instead of Dn, GDn.1, GDn.2, and GGDn.1). Every sublineage should normally
416 contain subsets of mutations from different divisions (Da and Db mutations from the “n” division;
417 Ma mutations from the “n-1” division; and Mb mutations from the “n-2” division). In this
418 sublineage, the Ma segregant group mutation count will be 0, since there are no new mutations
419 that will be shared by these four colonies. However, a substantial subset of the mutations
420 assigned to the Db segregant group will also be found in later sublineages indicating that they

421 are *not* Db mutations but Mb mutations from a later division. The other half of what appear to
422 be Db mutations will in fact be Ma mutations from a different division. Added confirmation of the
423 dissection error comes from the analysis of the next sublineage, which will consist of GDn.1 (not
424 Dn+1 as it should be), GGDn.1, GGDn.2, GGGDn.1 (great-great-great granddaughter 1). There
425 will be 0 Mb mutations in this sublineage since all of these cells are directly descended from Dn.
426 These problematic cell divisions would be censored because we lack key lineage members
427 necessary to obtain a full replication error count. Another type of assignment errors could occur
428 during dissections to isolate the sublineages. For instance, if Dn divides twice in the interval
429 before the next round of dissection we would have to distinguish between GDn.1 and GDn.2.
430 This is usually easy to do because, as above, GDn.1 would be forming a bud while GDn.2
431 would be unbudded. If we inadvertently reversed those two cells, we would have a sublineage
432 consisting of Dn, GDn.2, GDn.1, and a great granddaughter born to the second granddaughter.
433 When calling the Da segregant group we would be calling shared mutations between Dn and
434 GDn.1 (and not between Gn and GDn.2). We would quickly see that these are, in fact, Ma
435 segregant group mutations because they would also be present as a subset of Db mutations
436 obtained in the comparison between GDn.2 and her offspring.

437 The most difficult potential assignment errors to detect would occur in the Da and Db
438 segregant groups. For example, if GDn.1 divided twice, producing GGDn.1 and GGDn.2, and
439 we selected GGDn.2 instead of GGDn.1, the mutation count for the Db segregant group would
440 be derived from two divisions instead of one. Again, this is unlikely, because GGDn.1 would
441 begin budding long before GGDn.2. But we lack an obvious distortion to the pattern of mutation
442 inheritance to flag this as an error. We don't think this is a common problem given the
443 correspondence between mismatches segregated to the mother (Mm) and daughter (Dm) cells
444 illustrated in Fig.2d,e. As described above, we regard the Ma and Mb segregant groups as
445 highly reliable because dissection errors lead to obvious perturbations in the pattern of mutation
446 inheritance. In favor of the reliability of the Da/Db data, an XY scatter plot of mutation counts
447 observed in pairs of Ma/Mb segregant groups corresponds very well to that observed with pairs
448 of Da/Db segregant groups (Extended Dataset Fig. 7). Both sets also correspond with what
449 would be expected based on simulated data. (The simulation assumed a gamma-Poisson
450 distribution as in Fig. 2). Interestingly, there are two Ma/Mb (47,36) and Da/Db (52, 20)
451 segregant pairs in the lower left-hand quadrant that appear as outliers. Both pairs are derived
452 from Division 15 (see Supplementary Dataset 1), leading to the conclusion that the mutation
453 rate in that division was inherently low. The highest Da/Db outlier (51,120), derived from
454 Division 8, is also associated with a Ma/Mb pair with high mutation counts (120,65), leading to
455 the conclusion that this division had a high mutation rate.

456 **Statistical modeling**

457 We grouped the fixed mutation counts from the above branch points into Da, Db, Ma,
458 and Mb segregant groups to determine their distributions. We also joined all segregant groups
459 into one larger group to examine the distribution of fixed mutation counts across all cell
460 divisions. To determine the distributions of mismatches segregated to the daughter (Dm) and
461 mother (Mm) cells, we first summed the Da and Db or Ma and Mb fixed mutation counts from
462 each division. We also combined these two sets into one group to view the distribution of
463 mismatches across all cell divisions. To determine the distribution of total polymerase errors per
464 division, we summed all fixed mutations from individual divisions (Da+Db+Ma+Mb). We
465 considered two common approaches for modeling over dispersed count data: the Poisson
466 mixture distribution and the negative binomial distribution.

467 A K -component Poisson mixture distribution, which we denote $\text{PM}(K)$, has a probability
468 mass function (pmf) given by

469 (1)

$$470 \quad f_{PM}(x; K, \mathbf{p}_K, \boldsymbol{\lambda}_K) := \sum_{k=1}^K p_k f_{Poisson}(x; \lambda_k)$$

471 where $\mathbf{p}_K = (p_1, \dots, p_K)$ is a vector of mixture proportions, $\boldsymbol{\lambda}_K = (\lambda_1, \dots, \lambda_K)$ is a vector of Poisson
472 means, and f is the pmf of a Poisson(λ_k):

$$473 \quad (2) \quad f_{Poisson}(x; \lambda_k) := \frac{\lambda_k^x e^{-\lambda_k}}{x!}.$$

474 From this formulation, we see that the full density of the distribution is decomposed as a sum of
475 the scaled Poisson densities. In (1), p_k represents the prior probability that a given count
476 measurement will be generated from the k th Poisson component distribution, parameterized by
477 λ_k . Since a given count measurement could have been generated from any of these K
478 components, we average over their densities based on their prior probabilities to get the full
479 density of that count.

480 The negative binomial distribution can be specified by the following probability mass
481 function:

$$482 \quad (3) \quad f_{NegBinom}(x; \mu, \theta) := \frac{\Gamma(x+\theta)}{x! \Gamma(\theta)} \left(\frac{\theta}{\theta+\mu}\right)^\theta \left(\frac{\theta}{\theta+\mu}\right)^x$$

483 where μ is the rate parameter and θ is the shape or dispersion parameter. As θ tends towards
484 zero, the variance increases. As $\theta \rightarrow \infty$, the negative binomial reduces to a Poisson
485 distribution.

486 We implemented these principles using a single R script (FMM.R, see Github link
487 below). To fit Poisson mixture models we used the flexmix R package in R v3.5.3⁴¹. To fit
488 negative binomial models we used the glm.nb function of the MASS R package⁴². Goodness of
489 fit testing of the models was performed using both Akaike information criterion (AIC) and
490 Bayesian information Criterion (BIC) in R. Although these two approaches score fit in slightly
491 different ways, BIC returned results consistent with AIC and we thus report only the more
492 commonly used AIC scores. We scored each tested distribution against up to 4 parameters. We
493 reported only up to the number of parameters that improved model fit. Lower raw AIC values
494 indicate better fit; however, the relative differences are not immediately intuitive and so we
495 calculated Akaike weighted values as described^{21,22}. To illustrate this approach, the AIC values
496 in Fig.1b were 637, 537, and 511. The first step in getting weighted AIC values is to determine
497 $\Delta_i AIC$: the difference between each AIC value and the AIC with the lowest value (so for these
498 numbers: 126, 26, 0). The likelihood of each is then calculated by $\exp(-1/2 \times \Delta_i AIC)$. The
499 weighted AIC value for a given model is its likelihood divided by the sum of all competing
500 likelihoods. From these calculations the weighted AIC values are 4.3e-28 (P, k=1), 2.2e-6 (P,
501 k=2), and 0.9999978 (nb), respectively. Thus, the negative binomial model is far more likely
502 than the other two models to account for the observed data. Mixture model graphs were
503 constructed using the ggplot2 package R⁴³. Spearman rank correlation coefficients were
504 calculated using the Scipy Stats package in Python and graphs generated with Seaborn 0.9.

505 Simulation of negative binomial models

506 We wrote a Python script (Fig2a-d.py, see Github link below) to simulate the expected
507 correlation between Dm and Mm under two distinct models of mutagenesis (Fig.2). The script
508 uses the θ (60.42) and μ (138) parameters estimated by glm.nb for the negative binomial model
509 of mismatches segregated to mother (Mm) or daughter (Dm) cells (see FMM.R). (Note that
510 glm.nb actually returns the natural log value for μ (in this case 4.927), which must be
511 exponentiated ($e^{4.927}$) to get 138). In the first model, we assumed that the negative binomial

512 distribution was created by variation in mutation rate along chromatid pairs, so that upon
513 segregation, Dm and Mm from the same division were free to vary within the predicted negative
514 binomial distribution. To simulate this process with Scipy.stats.nbinom.rvs, we converted the θ
515 and μ shape parameters to the n and p inputs (see script for details) for nbinom.rvs and then, for
516 each division, we selected two random values from the distribution to represent the Dm and Mm
517 counts. In the second model, we assumed that the negative binomial was created by a gamma
518 distribution of λ values for a series of Poisson processes acting in different cell divisions. We
519 used Scipy.stats.gamma.rvs to simulate λ values from a gamma distribution with shape and
520 scale parameters derived from those of the negative binomial. The shape parameter for the
521 gamma distribution is simply equal to θ . With variance (v) equal to μ^2/θ , the scale parameter is
522 equal to v/μ . With a random λ from the gamma distribution as an input for
523 Scipy.stats.poisson.rvs, we selected two values from the associated Poisson distribution to
524 serve as Dm and Mm counts for each division. To examine the relationship between Dm and
525 Mm in these different models and the actual data, we performed linear regression with
526 Scipy.stats.linregress and visualized the data and regression line using Seaborn 0.9 regplot.

527 **Simulation of gamma-Poisson-binomial process**

528 We created Python scripts to create a Poisson-binomial model of the contributions of
529 semi-conservative DNA replication and Mendelian segregation to the over-dispersion of fixed
530 mutations in individual yeast (Fig3de.py) and human cells (Fig3f-i.py). For yeast simulations, we
531 determined the amount of unmasked DNA on each chromosome in the repeat-masked genome
532 and then divided these values by the total length of unmasked DNA in the haploid genome. The
533 rate of mismatches per haploid genome (69 mismatches/haploid genome/division for *pol3-01/pol3-01 msh6Δ/msh6Δ* cells) was then multiplied in each case by these fractions to obtain
534 the per chromosome rate of mismatch formation. These values were used as input for
535 scipy.stats.poisson.rvs to simulate the number of errors per chromosome in a single division.
536 We created two independent entries per chromosome to model the diploid genome. To mimic
537 the binomial process of Mendelian segregation, we then multiplied the number of simulated
538 errors on each chromosome by a randomly chosen 1 or 0. Finally, we summed the mutation
539 counts from all chromosomes to obtain the total number of fixed mutations per cell. To create a
540 gamma-Poisson-binomial model, we selected a value for lambda at each division from the
541 gamma distribution described in Fig.2 rather than using a constant rate for mismatch formation.
542 As a control we performed the above simulation without the binomial process, using the rate of
543 fixed mutations per haploid genome (34.5 fixed mutations/haploid genome/division). We used
544 the same approach for the human simulations except that we multiplied the fraction of each
545 human chromosome of the total genome (GRCh38) by a mismatch rate comparable to that
546 observed with *pol3-01/pol3-01 msh6Δ/msh6Δ* yeast: 69 mismatches/ haploid yeast
547 genome/division x (3.03 x 10⁹ bp/human haploid genome / 11 x 10⁷ bp/yeast haploid genome) =
548 1900 mismatches/human haploid genome/division. We compared the resulting distribution to
549 that from a Poisson distribution with λ equal to 950 fixed mutations/haploid genome. To simulate
550 the diversity in mutation burdens that this process generates, we summed the simulated
551 mutation counts for individual lines from 30 divisions.

553 **Data Availability**

554 Sequence data used to generate the findings of this study have been deposited in the
555 NCBI Sequence Read Archive (SRA), BioProject accession: PRJNA586886.
556 Scripts used to generate figures and perform statistical tests have been deposited to github:
557 [https://github.com/idowsett/Asymmetric-segregation-of-polymerase-errors-and-rate-volatility-
558 diversify-mutation-burden](https://github.com/idowsett/Asymmetric-segregation-of-polymerase-errors-and-rate-volatility-diversify-mutation-burden)

559 References

560 1 Beckman, R. A. & Loeb, L. A. Evolutionary dynamics and significance of multiple
561 subclonal mutations in cancer. *DNA repair* **56**, 7-15,
562 doi:<https://doi.org/10.1016/j.dnarep.2017.06.002> (2017).

563 2 Lynch, H. T. *et al.* Review of the Lynch syndrome: history, molecular genetics,
564 screening, differential diagnosis, and medicolegal ramifications. *Clinical Genetics* **76**, 1-
565 18, doi:[10.1111/j.1399-0004.2009.01230.x](https://doi.org/10.1111/j.1399-0004.2009.01230.x) (2009).

566 3 Network, C. G. A. Comprehensive molecular characterization of human colon and rectal
567 cancer. *Nature* **487**, 330-337, doi:[10.1038/nature11252](https://doi.org/10.1038/nature11252) (2012).

568 4 Palles, C. *et al.* Germline mutations affecting the proofreading domains of POLE and
569 POLD1 predispose to colorectal adenomas and carcinomas. *Nature Genetics* **45**, 136-
570 144, doi:[10.1038/ng.2503](https://doi.org/10.1038/ng.2503) (2012).

571 5 Church, D. N. *et al.* DNA polymerase ϵ and δ exonuclease domain mutations in
572 endometrial cancer. *Human Molecular Genetics* **22**, 2820-2828, doi:[10.1093/hmg/ddt131](https://doi.org/10.1093/hmg/ddt131)
573 (2013).

574 6 Yoshida, R. *et al.* Concurrent genetic alterations in DNA polymerase proofreading and
575 mismatch repair in human colorectal cancer. *European Journal of Human Genetics* **19**,
576 320-325, doi:[10.1038/ejhg.2010.216](https://doi.org/10.1038/ejhg.2010.216) (2011).

577 7 Kandoth, C. *et al.* Integrated genomic characterization of endometrial carcinoma. *Nature*
578 **497**, 67-73, doi:[10.1038/nature12113](https://doi.org/10.1038/nature12113) (2013).

579 8 Barbari, S. R. & Shcherbakova, P. V. Replicative DNA polymerase defects in human
580 cancers: Consequences, mechanisms, and implications for therapy. *DNA repair* **56**, 16-
581 25, doi:<https://doi.org/10.1016/j.dnarep.2017.06.003> (2017).

582 9 Hodel, K. P. *et al.* Explosive mutation accumulation triggered by heterozygous human
583 Pol ϵ proofreading-deficiency is driven by suppression of mismatch repair. *eLife* **7**,
584 e32692, doi:[10.7554/eLife.32692](https://doi.org/10.7554/eLife.32692) (2018).

585 10 Foster, P. L. Methods for determining spontaneous mutation rates. *Methods Enzymol*
586 **409**, 195-213 (2006).

587 11 Lynch, M. *et al.* A genome-wide view of the spectrum of spontaneous mutations in yeast.
588 *Proc Natl Acad Sci U S A* **105**, 9272-9277, doi:[10.1073/pnas.0803466105](https://doi.org/10.1073/pnas.0803466105) (2008).

589 12 Nik-Zainal, S. *et al.* Mutational Processes Molding the Genomes of 21 Breast Cancers.
590 *Cell* **149**, 979-993 (2012).

591 13 Alexandrov, L. B. *et al.* Signatures of mutational processes in human cancer. *Nature*
592 **500**, 415-421, doi:[10.1038/nature12477](https://doi.org/10.1038/nature12477) (2013).

593 14 Zhang, C. Z. *et al.* Chromothripsis from DNA damage in micronuclei. *Nature* **522**, 179-
594 184, doi:[10.1038/nature14493](https://doi.org/10.1038/nature14493) (2015).

595 15 Lada, A. G. *et al.* Genome-wide mutation avalanches induced in diploid yeast cells by a
596 base analog or an APOBEC deaminase. *PLoS Genet* **9**, e1003736,
597 doi:[10.1371/journal.pgen.1003736](https://doi.org/10.1371/journal.pgen.1003736) (2013).

598 16 Brody, Y. *et al.* Quantification of somatic mutation flow across individual cell division
599 events by lineage sequencing. *Genome Res* **28**, 1901-1918, doi:[10.1101/gr.238543.118](https://doi.org/10.1101/gr.238543.118)
600 (2018).

601 17 Kennedy, S. R. *et al.* Volatility of Mutator Phenotypes at Single Cell Resolution. *PLoS*
602 *Genet* **11**, e1005151, doi:[10.1371/journal.pgen.1005151](https://doi.org/10.1371/journal.pgen.1005151) (2015).

603 18 Luria, S. E. & Delbrück, M. Mutations of bacteria from virus sensitivity to virus resistance.
604 *Genetics* **28**, 491-511 (1943).

605 19 Youn, A. & Simon, R. Using passenger mutations to estimate the timing of driver
606 mutations and identify mutator alterations. *BMC Bioinformatics* **14**, 363,
607 doi:[10.1186/1471-2105-14-363](https://doi.org/10.1186/1471-2105-14-363) (2013).

608 20 Jackson, A. L. & Loeb, L. A. The mutation rate and cancer. *Genetics* **148**, 1483-1490
609 (1998).

610 21 Wagenmakers, E.-J. & Farrell, S. AIC model selection using Akaike weights.
Psychonomic Bulletin & Review **11**, 192-196, doi:10.3758/bf03206482 (2004).

611 22 Burnham, K. P. & Anderson, D. R. Multimodel Inference: Understanding AIC and BIC in
612 Model Selection. *Sociological Methods & Research* **33**, 261-304,
613 doi:10.1177/0049124104268644 (2004).

614 23 Li, H. D. *et al.* Polymerase-mediated ultramutagenesis in mice produces diverse cancers
615 with high mutational load. *Journal of Clinical Investigation* **128**, 4179-4191,
616 doi:10.1172/JCI122095 (2018).

617 24 Kane, D. P. & Shcherbakova, P. V. A common cancer-associated DNA polymerase ϵ
618 mutation causes an exceptionally strong mutator phenotype, indicating fidelity defects
619 distinct from loss of proofreading. *Cancer Research*, doi:10.1158/0008-5472.CAN-13-
620 2892 (2014).

621 25 Williams, L. N. *et al.* dNTP pool levels modulate mutator phenotypes of error-prone DNA
622 polymerase ϵ variants. *Proceedings of the National Academy of Sciences of the United
623 States of America*, doi:10.1073/pnas.1422948112 (2015).

624 26 Mertz, T. M., Sharma, S., Chabes, A. & Shcherbakova, P. V. Colon cancer-associated
625 mutator DNA polymerase δ variant causes expansion of dNTP pools increasing its own
626 infidelity. *Proceedings of the National Academy of Sciences of the United States of
627 America*, doi:10.1073/pnas.1422934112 (2015).

628 27 Cairns, J. Mutation selection and the natural history of cancer. *Nature* **255**, 197-200,
629 doi:10.1038/255197a0 (1975).

630 28 Werner, B. & Sottoriva, A. Variation of mutational burden in healthy human tissues
631 suggests non-random strand segregation and allows measuring somatic mutation rates.
PLOS Computational Biology **14**, e1006233, doi:10.1371/journal.pcbi.1006233 (2018).

632 29 Furusawa, M. The disparity mutagenesis model predicts rescue of living things from
633 catastrophic errors. *Frontiers in Genetics* **5**, doi:10.3389/fgene.2014.00421 (2014).

634 30 Claussin, C. *et al.* Genome-wide mapping of sister chromatid exchange events in single
635 yeast cells using Strand-seq. *eLife* **6**, e30560, doi:10.7554/eLife.30560 (2017).

636 31 van Wietmarschen, N. & Lansdorp, P. M. Bromodeoxyuridine does not contribute to
637 sister chromatid exchange events in normal or Bloom syndrome cells. *Nucleic Acids
638 Research* **44**, 6787-6793, doi:10.1093/nar/gkw422 (2016).

639 32 Herr, A. J., Kennedy, S. R., Knowels, G. M., Schultz, E. M. & Preston, B. D. DNA
640 replication error-induced extinction of diploid yeast. *Genetics* **196**, 677-691,
641 doi:10.1534/genetics.113.160960 (2014).

642 33 Shlien, A. *et al.* Combined hereditary and somatic mutations of replication error repair
643 genes result in rapid onset of ultra-hypermutated cancers. *Nature Genetics* **47**, 257-262,
644 doi:10.1038/ng.3202 (2015).

645 34 Lee, M. B. *et al.* Defining the impact of mutation accumulation on replicative lifespan in
646 yeast using cancer-associated mutator phenotypes. *Proc Natl Acad Sci U S A* **116**,
647 3062-3071, doi:10.1073/pnas.1815966116 (2019).

648 35 Sherman, F. in *Part B: Guide to Yeast Genetics and Molecular and Cell Biology* Vol. 350
649 *Methods in Enzymology* (eds Christine Guthrie & Gerald R. Fink) 3-41 (Academic
650 Press, 2002).

651 36 Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler
652 transform. *Bioinformatics* **25**, 1754-1760, doi:10.1093/bioinformatics/btp324 (2009).

653 37 Faust, G. G. & Hall, I. M. SAMBLASTER: fast duplicate marking and structural variant
654 read extraction. *Bioinformatics (Oxford, England)* **30**, 2503-2505,
655 doi:10.1093/bioinformatics/btu314 (2014).

656

657

658 38 Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**,
659 2078-2079, doi:10.1093/bioinformatics/btp352 (2009).
660 39 DePristo, M. A. *et al.* A framework for variation discovery and genotyping using next-
661 generation DNA sequencing data. *Nature Genetics* **43**, 491-498, doi:10.1038/ng.806
662 (2011).
663 40 Koboldt, D. C. *et al.* VarScan 2: somatic mutation and copy number alteration discovery
664 in cancer by exome sequencing. *Genome Research* **22**, 568-576,
665 doi:10.1101/gr.129684.111 (2012).
666 41 Leisch, F. FlexMix: A General Framework for Finite Mixture Models and Latent Class
667 Regression in R. *2004* **11**, 18, doi:10.18637/jss.v011.i08 (2004).
668 42 Venables, W. N. & Ripley, B. D. *Modern Applied Statistics with S*. Fourth edn, (Springer,
669 2002).
670 43 Wickham, H. *ggplot2: Elegant Graphics for Data Analysis*. 213 (Springer_Verlag, 2009).
671 44 Shinbrot, E. *et al.* Exonuclease mutations In DNA polymerase epsilon reveal replication
672 strand specific mutation patterns and human origins of replication. *Genome Research*,
673 doi:10.1101/gr.174789.114 (2014).
674

675 Acknowledgments

676 We would like to thank Larry Loeb, Sage Malingen and Marina Watowich for their critical
677 review of our manuscript. This study was supported by National Institute for General Medical
678 Sciences (NIH/NIGMS R01GM118854). ITD was supported by the UW Molecular Medicine
679 Training Grant (NIH/NIGMS T32GM095421) and Genetic Approaches to Aging Training Grant
680 (NIH/NIA T32AG000057). The content is solely the responsibility of the authors and does not
681 necessarily represent the official views of the NIH, NIA, or NIGMS.
682

683 Author Contributions

684 I.T.D., S.R.K., and A.J.H. designed research; I.T.D., J.S., J.M., E.M., and A.J.H. performed
685 research; I.T.D., J.S., B.J.O., and A.J.H. analyzed data; I.T.D., and A.J.H. wrote the paper.

686 The authors declare no competing interests.

687 Competing Interests

688 Materials & Correspondence

689

690 Additional Information

691 Supplementary Information is available for this paper.

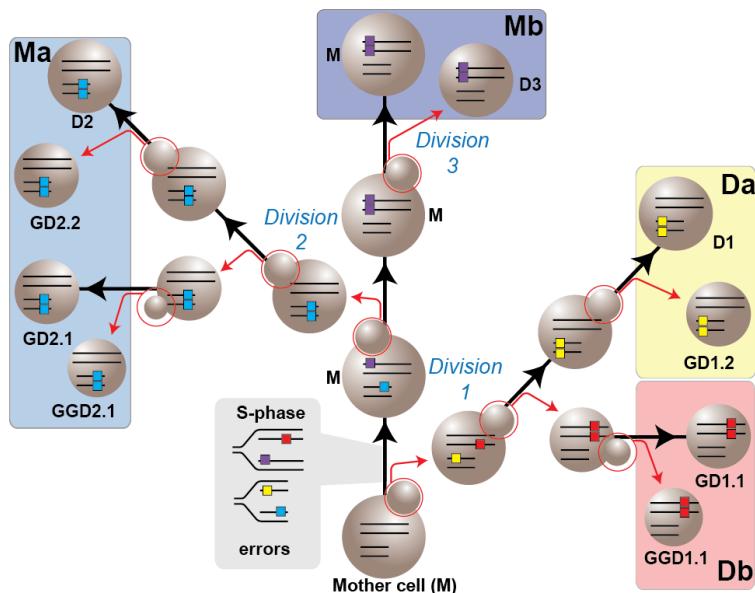
692 Correspondence and requests for materials should be addressed to Alan Herr
693 (alanherr@uw.edu).
694

695 **Figures**

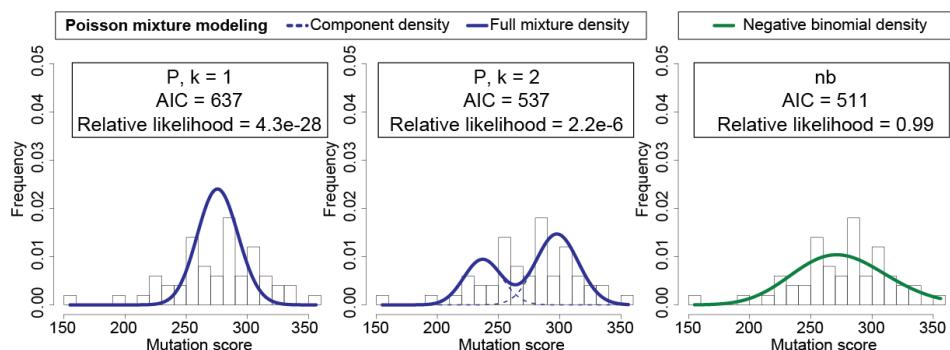
696

697 **Fig.1: Mutator DNA polymerase errors at single cell resolution**

a



b

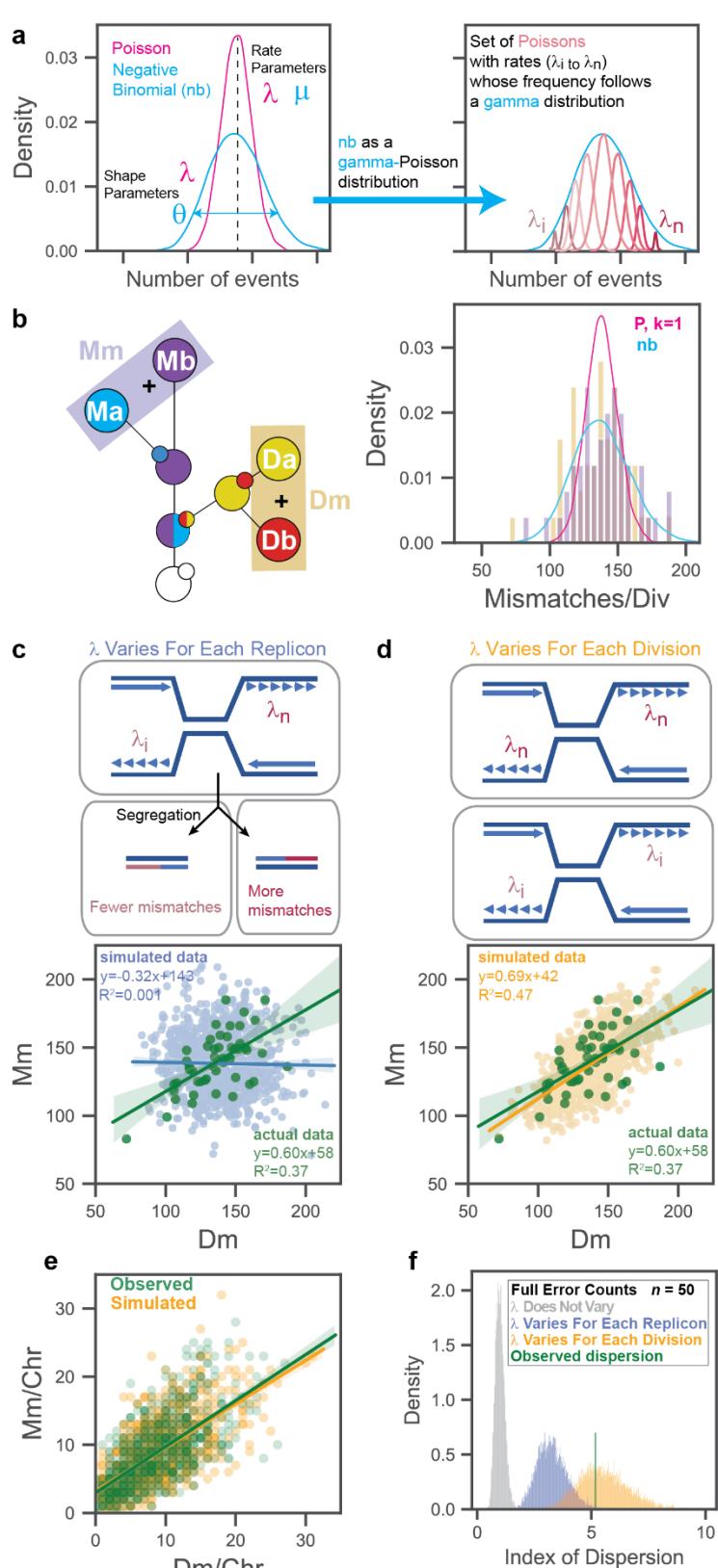


698

699 **a**, Isolation of single cell pedigrees. Using microdissection, the founding mother (M), daughter
700 (e.g. D1), granddaughter (e.g. GD1.1, GD1.2) and great-granddaughter (e.g. GGD1.1) cells
701 from each maternal division ($n = 50$) are separated (red arrows) and moved to isolated regions
702 on the plate to form colonies, which are then sequenced. Polymerase errors arising during the
703 initial S-phase are passed on to four segregant groups, highlighted by large colored boxes (Da,
704 Db, Ma, Mb), the sum of which represents the full error count for that division. Large spheres
705 connected by black arrows represent the same cell through multiple divisions. Small spheres
706 circled in red represent budding daughter cells; parallel lines in cells, double-stranded DNA;
707 colored boxes on lines, polymerase errors. **b**, Fitting the distributions of full error counts from
708 diploid *pol3-01/pol3-01 msh6Δ/msh6Δ* divisions to different models. $k = 1$, single Poisson; $k = 2$,
709 two-Poisson; nb, negative binomial; AIC, Akaike information criterion.

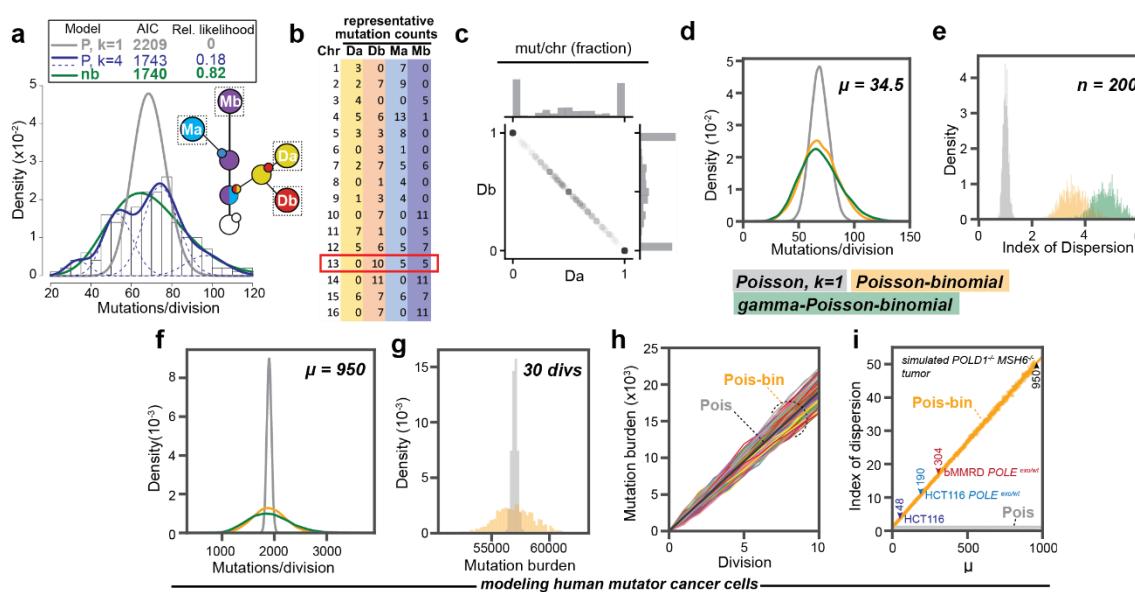
710

711 **Fig. 2: Evidence that mutation rate varies between divisions**
 712



715 **a**, The negative binomial as a gamma-Poisson distribution. The gamma distribution takes the
 716 same shape parameter (θ) as the negative binomial and describes the variation in the rate
 717 parameter (λ) of a continuous mixture of Poisson distributions. **b**, Schematic of single cell
 718 lineage showing summing of segregant groups to determine the number of mismatches
 719 segregated to the mother (Mm) or daughter (Dm) in a single division. Actual distributions are
 720 represented by gold (Dm) and purple (Mm) bars. Lines depict models of data: pink, single
 721 Poisson (P , $k = 1$); aqua, negative binomial (nb). **c, d**, Correlations between Mm and Dm counts
 722 from actual data ($n = 50$) and simulations ($n = 1000$) under two different models. In **c**, top
 723 panel depicts a cell with converging replication forks from two replicons with different mutation
 724 rates. Bottom panel shows correlation of simulated Mm and Dm values (blue) drawn from the
 725 full negative binomial and their linear regression. In **d**, top panel depicts two cells replicating
 726 DNA with different mutation rates. Bottom shows correlation of simulated Mm and Dm values
 727 (orange) and their linear regression. **e**, Correlation between the number of mismatches per
 728 chromosome segregated to Mother (Mm) or Daughter cells (Dm). green, observed counts;
 729 orange, simulated counts from model in **(d)**. **f**, Simulated index of dispersion of full replication
 730 error counts from small cohorts ($n = 50$) assuming the models from **(c and d)**.

731 **Fig. 3: Asymmetric segregation broadens the distribution of mutation burden in mutator**
 732 **cell populations.**



734
 735 **a**, Combined distribution of mutations fixed in the Da, Db, Ma, and Mb segregant groups (see
 736 inset) from *pol3-01/pol3-01 msh6 Δ /msh6 Δ* lineages ($n = 200$). Key of models (top): gray line,
 737 single Poisson (P , $k = 1$); blue lines, four-Poisson (P , $k = 4$), green line, negative binomial (nb).
 738 AIC, Akaike information criterion. **b**, Table of representative mutation counts from one division of
 739 a diploid mutator cell. Columns represent different segregant groups; rows, the chromosome
 740 (chr) number; values, the total number of new mutations found on homologous chromosome
 741 pairs. Red box indicates a chromosome with both asymmetric and equal sharing of mutations.
 742 **c**, Segregation of fixed mutations between Da and Db. For each division, the fraction of
 743 mutations observed in Da or Db on each chromosome was determined and then plotted against
 744 each other. **d**, Simulated distributions of mutations/division at a rate of $\mu = 34.5$ ($n = 10000$)
 745 assuming a single Poisson process (grey), a Poisson-binomial process (orange), or a gamma-
 746 Poisson-binomial process (green). **e**, Variation in the index of dispersion of simulated data from

748 the 3 models ($n = 200$) over 1000 iterations. **f**, Simulated distribution of mutations/division in
749 human ultra-mutator cells assuming a fixed mutation rate ($\mu = 950$, $n = 10000$) comparable to
750 *pol3-01/pol3-01 msh6Δ/msh6Δ* yeast and a single Poisson process (grey), Poisson-binomial
751 process (orange), or gamma-Poisson-binomial process (green). **g**, The cumulative mutation
752 burden of a human ultra-mutator cell after 30 simulated divisions with (orange) and without
753 (grey) asymmetric segregation. **h**, Simulated trajectory of mutation burden of human mutator
754 tumor cells (Colored lines, $n = 1000$) undergoing a Poisson-binomial process compared to a
755 Poisson process (black line). **i**, Change in the index of dispersion under a Poisson-Binomial
756 process (orange line) compared to the static index of dispersion under a Poisson process (grey
757 line at bottom) with an increasing mutation rate. Colored markers represent estimated mutation
758 rates for clinically relevant mutator-driven HCT116-derived mammalian cancer cell lines⁹ and a
759 tumor from a patient with biallelic MMR deficiency (bMMRD)³³.

760 Supplementary Information

761 Corresponding author: Alan J. Herr, alanherr@uw.edu

762 Haploid *pol2-4 msh6Δ* Mutators

763 Prior to switching to stronger diploid mutators, we first obtained full replication error
764 counts for 44 *pol2-4 msh6Δ* divisions from 7 independent lineages, encompassing 308
765 mutations (Extended Data Table 1, Supplementary Dataset 2). We sequenced only those
766 clones that would contribute to a full error count (Extended Data Fig.2). Since our previous
767 study suggested that mutations were fixed in *pol2-4 msh6Δ* mother cells at a rate of 0.4 or 4
768 mutations/genome/division, with full replication error counts, the volatility model predicts two
769 well-separated Poisson distributions centered around 1.6 and 16 replication errors per division.
770 Instead, we observed a single distribution centered around 6.5 (± 3.9) replication errors per
771 division. The distribution of full replication error counts in *pol2-4 msh6Δ* cells had a \hat{D} of 2.2,
772 which is consistent with a less pronounced volatility of the *pol2-4 msh6Δ* mutator phenotype. In
773 keeping with this interpretation, fitting these data to different probability distributions revealed
774 they matched a negative binomial better than a single or two-Poisson mixture as judged by AIC.
775 Parsing this data into the number of mutations fixed per individual cell produces a distribution
776 ($N=176$) that fits a single Poisson with a rate of 1.75 mutations/division. This finding does not
777 negate the hypothesis of a mild mutator volatility based on the full replication error counts. The
778 expected dispersions of fixed mutations in *pol2-4 msh6Δ* haploid cells ($n=176$, $\lambda=1.75$) are
779 comparable for the Poisson-binomial ($\hat{D} = 1.13 \pm 0.12$) and Poisson ($\hat{D} = 1.0 \pm 0.1$) models
780 (Extended Data Fig.8). The rate of 1.75 mutations/division lies almost directly between the
781 predicted underlying rates from our published two-Poisson Model¹⁷. Thus, our previous
782 distribution likely contained a preponderance of cell divisions with this intermediate mutation
783 rate. The high number of divisions in that earlier dataset with no mutations could have partly
784 been the result of a biological “zero-inflation” due to the unequal sharing of mutations described
785 in Fig. 3 for *pol3-01/pol3-01 msh6Δ/msh6Δ* cells. If so, why are there fewer cells with 0
786 mutations in the current distribution? We suspect that the stringent requirement of eight viable
787 clones to obtain a full replication error count may have introduced an ascertainment bias. Due
788 to unequal sharing of mutations, members of the lineage with the highest number of mutations
789 may fail to form a colony. The reciprocal clones with no errors from that same division would
790 also not be scored. This potential ascertainment bias would affect our estimates of mutator
791 volatility, since divisions with a higher mutation rate are more likely to have at least one progeny
792 fail to form a colony.

793

794 Colonies Not Included In Analysis

795 Many complete sub-lineages (comprised of d, gd1, gd2, and ggd) were not sequenced
796 because inviability later in the lineage prevented us from gaining a full replication error count.
797 For instance, full replication error counts for AH120 divisions that yielded d3 and d4 are not
798 possible because the d5 sublineage was completely inviable (Extended Fig.2). Likewise,
799 sometimes colonies within informative sub-lineages (e.g. AH119 gd8-2, AH120 gd10-2/ggd10,
800 AH121 gd9-1) were not sequenced because they were not required for a full replication error
801 count. In some cases (AH156 d14, AH160 d5, AH157 d8), colonies that provided identical
802 information on a division segregant subgroup were sequenced when the preferred colony failed
803 to form a viable clone (Extended Fig.3). In other cases (AH158 gd4-2/ggd4, AH158 gd7-2/ggd7,
804 AH162 gd6-2/ggd6), colonies had poor sequencing coverage and were censored from the
805 analysis. In rare cases, sequence analysis and review of dissection notes suggested an

806 assignment error occurred; however, our careful analysis of the patterns of shared mutations
807 enabled post-hoc deconvolution of the events. In one example, in the 8th division of AH156, we
808 separated 3 cells from the mother. The two larger, similarly sized cells were both clearly
809 daughter cells and the smaller cell was a granddaughter cell, although it was not clear which
810 was its parent. We moved the daughter cells to the d8 (AH15629) and d9 positions (AH15633)
811 and placed the smaller cell below in the gd8-1 position (AH15630). We then proceeded to
812 isolate the remaining members of the lineage. Sequencing analysis of the resulting colonies
813 revealed that AH15633 was in fact d8, AH15629 was d9, and AH15630, the daughter of
814 AH15633, not AH15729. This error meant we had to reorder the lineage. AH15631 was gd9-1
815 not gd8-2. AH15632, daughter of AH15630, was ggd8 and AH15634 was gd8-2. Since we
816 didn't realize AH15631 was gd9-1, we failed to dissect her first daughter to serve as ggd9 and
817 consequently were unable to obtain a full replication error count for the 9th division. In another
818 example, AH160 division 2 was censored entirely from analysis after finding from the pattern of
819 mutations that AH16005 was a granddaughter derived from d1 of this lineage (AH16001).
820

821 Distribution of Mutations and Spectrum

822 Plotting the mutations scored from all divisions of *pol3-01/pol3-01 msh6Δ/msh6Δ*
823 mutator mother cells reveals mutations were generated across much of the unmasked portions
824 of the sequenced genome (Extended Data Fig.4a). Upon investigation, the few tracts of
825 unmasked chromosomes lacking mutations are likely artifacts of regions of low sequence
826 coverage which consistently fell below our target thresholds for quality and depth in at least one
827 or more members of a lineage.

828 As expected, C→T mutations are the most abundant single nucleotide substitutions,
829 followed by T→C and C→A. The trinucleotide context reveals a prominent peak of C→A
830 mutations at a TCT context, a hallmark of proofreading deficiency^{13,44}, as well as a peak at CCT
831 (Extended Data Fig.4b).

832

833 Extended Data Table 1

Lineage ^a	Scored Sites ^b	Mutations ^c	Divisions ^d	Mutation Rate ^e
<i>pol2-4 msh6</i>				
119	11,080,506	33	5	0.006
120	11,120,599	51	7	0.0066
121	11,203,731	38	6	0.0057
122	10,909,400	59	7	0.0077
123	11,099,548	24	4	0.0054
124	10,094,023	58	10	0.0057
125	10,897,295	45	5	0.0083
<i>Total</i>		308	44	
Mean (stdev ±)	10,915,014 (3.51 x 10 ⁵)	44 (12)	6.3 (1.8)	0.0065 (0.001)
<i>pol3-01/pol3-01 msh6Δ/msh6Δ</i>				
151	10,541,044	1,597	6	2.53
153	10,636,360	1,582	6	2.48
156	9,521,963	2,976	10	3.13
157	10,594,546	1,599	6	2.52
158	9,818,623	1,347	5	2.74
160	9,679,326	1,543	5	3.19
162	8,578,576	3,157	12	3.07
<i>Total</i>		13,801	50	
Mean (stdev ±)	9,910,063 (6.95 x 10 ⁵)	1,972 (699)	7 (2.5)	2.81 (0.29)

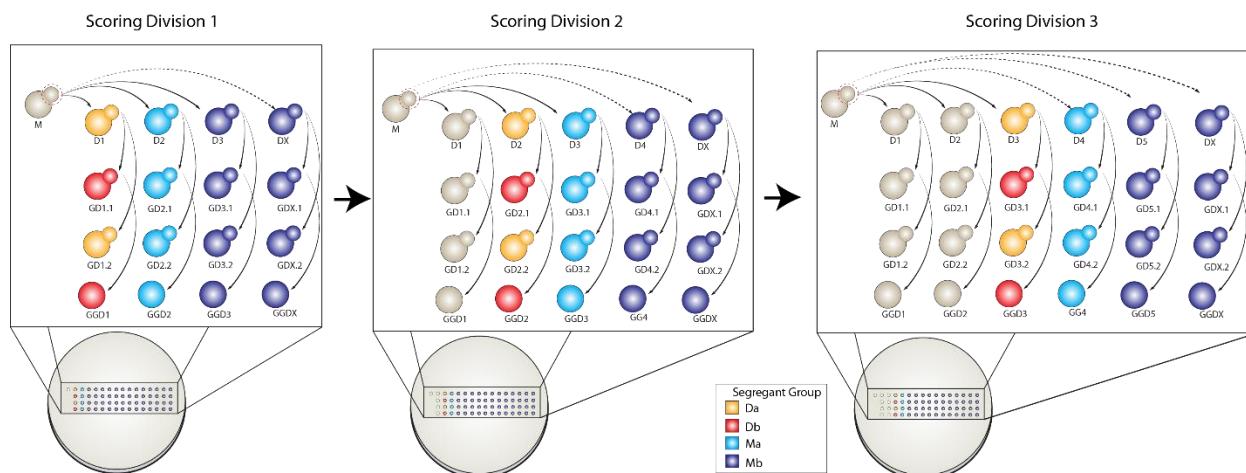
834 ^a Lineage refers to descendants of the same mother cell. See Extended Data Figs.2 and 3 for images of colonies
835 and Supplementary Datasets for mutations.

836 ^b Scored sites refers to the number of genomic nucleotide positions confidently scored in all members of the
837 lineage.
838 ^c The total number of independent mutations identified within each lineage.
839 ^d The number of divisions with full replication error counts (see Fig.1).
840 ^e Mutation rate (x 10⁻⁵ mutations/bp/division): the number of mutations divided by the total number scored sites
841 divided by the number of divisions.

842

843 **Extended Data Figures**

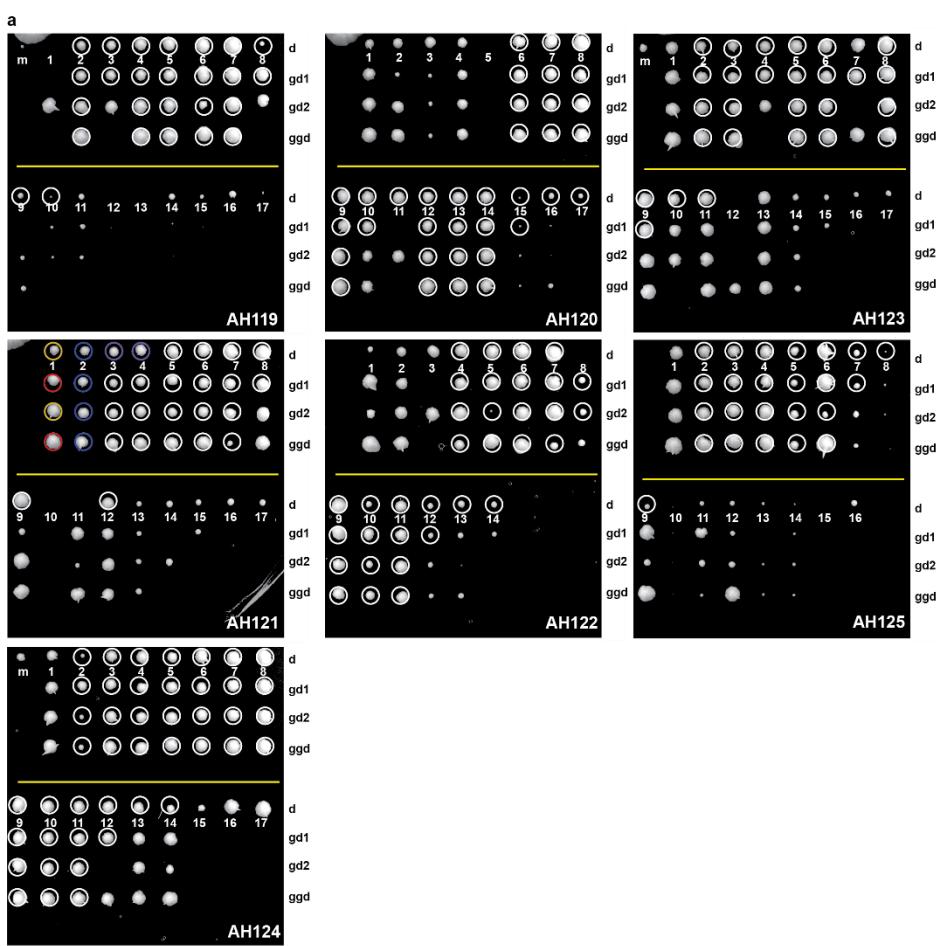
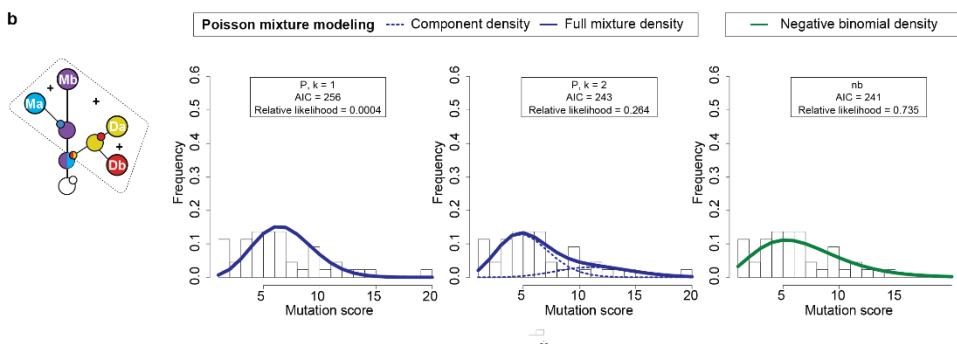
844 **Extended Data Fig. 1: Scoring mutations from multiple divisions from the same lineage.**



845

846 Arrows depict movement of dissected daughter cells and their descendants to unique positions
847 on the plate, where they form colonies that are sequenced. For each division, mutations unique
848 to the yellow (Da) or red (Db) colonies are counted as errors made during the division.
849 Mutations uniquely shared by all blue cells (from the next division) represent segregant group
850 Ma, and new mutations shared by all subsequent offspring of the mother (Purple) represent
851 group Mb. A full replication error count is the sum of Da, Db, Ma, and Mb. Obtaining full error
852 counts in subsequent divisions shifts the identities of the red, yellow, blue and purple cells one
853 column to the right and repeats the procedure (See AH121 in Extended Data Fig. 2 for an
854 example). While the genomes of colonies used to score mutations from prior divisions are used
855 again, the new mutations scored in the current division were not previously assigned to one of
856 the prior segregant groups.
857

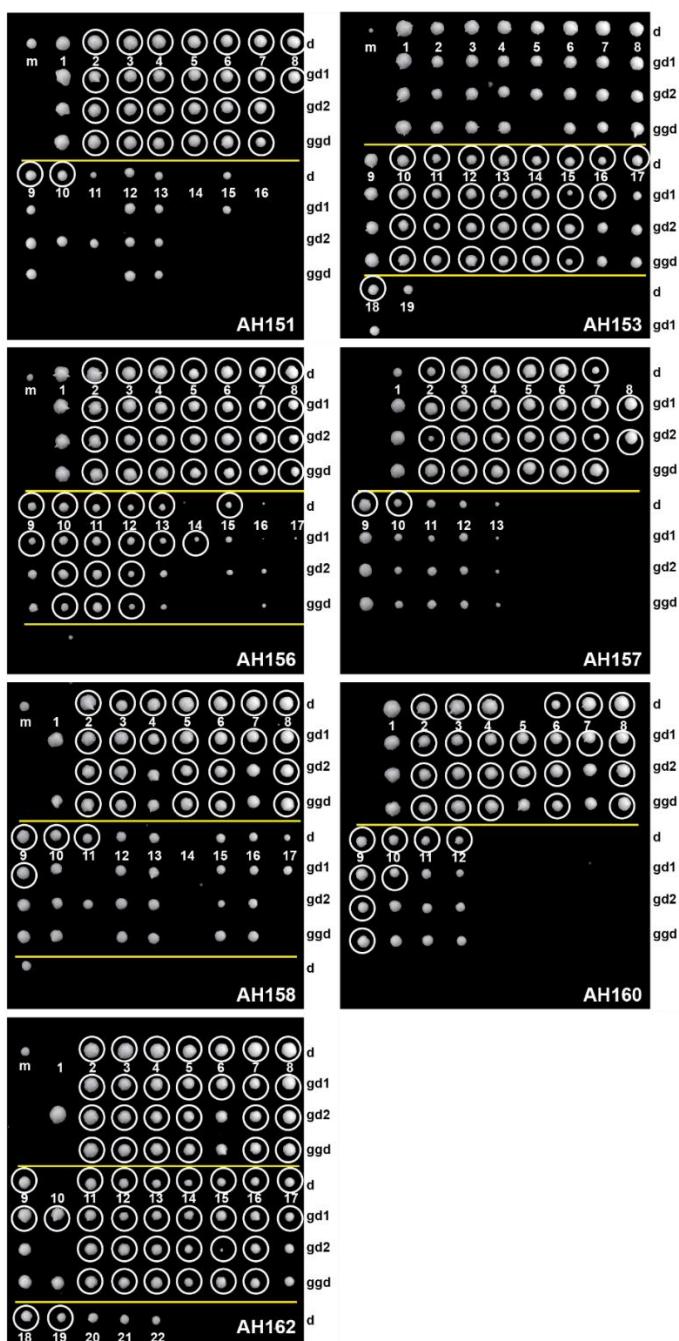
858 Extended Data Fig. 2: *pol2-4 msh6Δ* lineages.



859

860 **a**, Photographs of agar plates with colonies formed from single cell lineages. The lineage
 861 number is given in the lower right-hand corner. Locations of rows of daughter (d), first
 862 granddaughter (gd1), second granddaughter (gd2), and great-granddaughter (ggd) colonies are
 863 given on the right-hand side of the images. Sublineage number is indicated below each
 864 daughter colony. Circles indicate sequenced colonies. Colored circles in Lineage AH121
 865 illustrate segregant groupings for the first division (see Extended Data Fig. 1). Yellow line
 866 divides earlier sublineages from later sublineages. Gaps in colony growth reflect lethality. **b**,
 867 Fitting the distributions of full error counts from haploid *pol2-4 msh6Δ* to alternative models. k=1,
 868 single Poisson; k=2, two-Poisson; nb, negative binomial; AIC, Akaike information criterion.

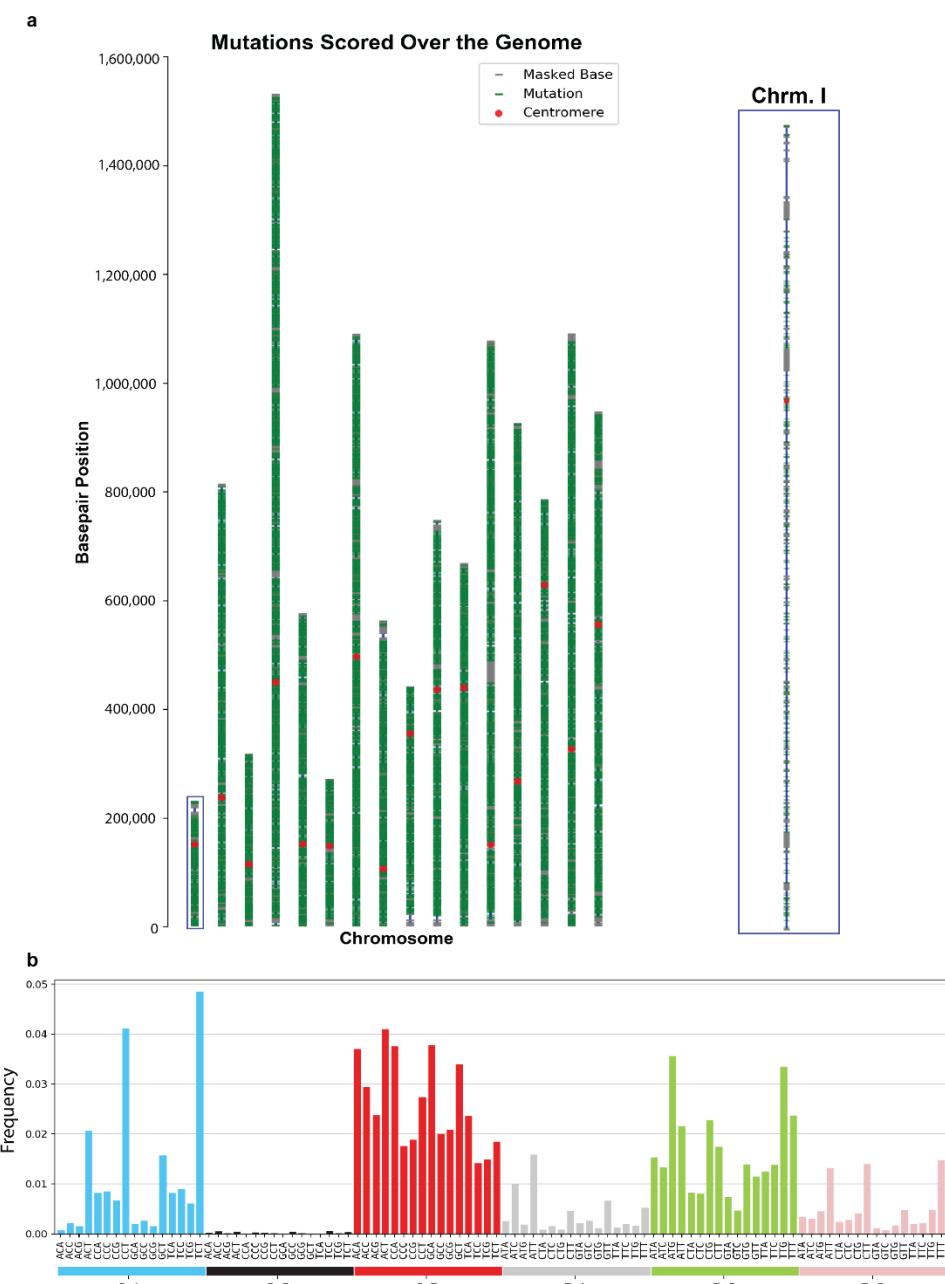
869 **Extended Data Fig. 3: *pol3-01/pol3-01 msh6Δ/msh6Δ* lineages.**



870

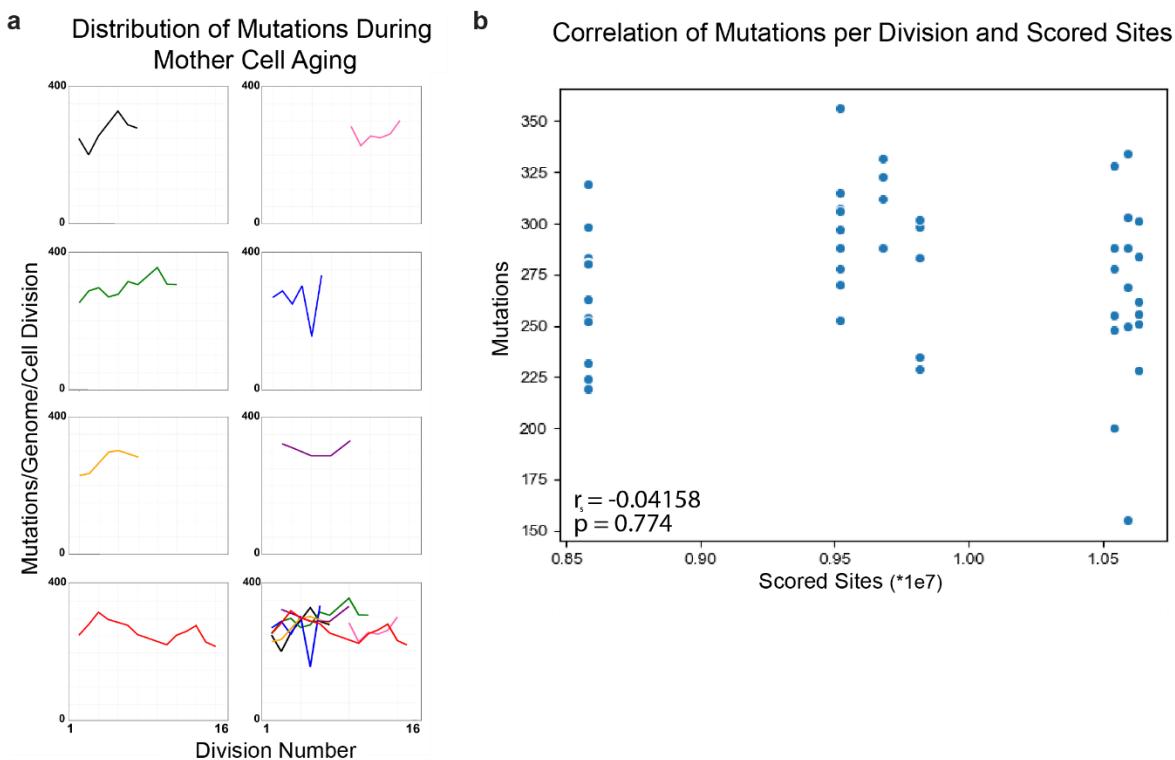
871 Photographs of agar plates with colonies formed from single cell lineages. The lineage number
872 is given in the lower right-hand corner. Locations of rows of daughter (d), first granddaughter
873 (gd1), second granddaughter (gd2), and great-granddaughter (ggd) colonies are given on the
874 right-hand side of the images. Sublineage number is indicated below each daughter colony.
875 Yellow line divides earlier sublineages from later sublineages. Gaps in colony growth reflect
876 lethality.

877 **Extended Data Fig. 4: Distribution of mutations and spectra in *pol3-01/pol3-01***
878 ***msh6Δ/msh6Δ* lineages.**



879
880 **a**, Genome level distribution of mutations (green) over yeast chromosomes (blue lines). 13,801
881 mutations pooled from 50 scored divisions of *pol3-01/pol3-01 msh6Δ/msh6Δ* diploid mother
882 cells, representing approximately 1 mutation per 1000 bases of the yeast genome. Close up
883 view of representative chromosome I (right). Masked bases are represented by grey ticks. **b**,
884 96-trinucleotide mutation spectra context of all mutations (spectrum) by frequency that arose
885 over 50 divisions of *pol3-01/pol3-01 msh6Δ/msh6Δ* diploid mother cells, generated using the
886 snv-spectrum program (<https://github.com/arothe85/snv-spectrum>).
887

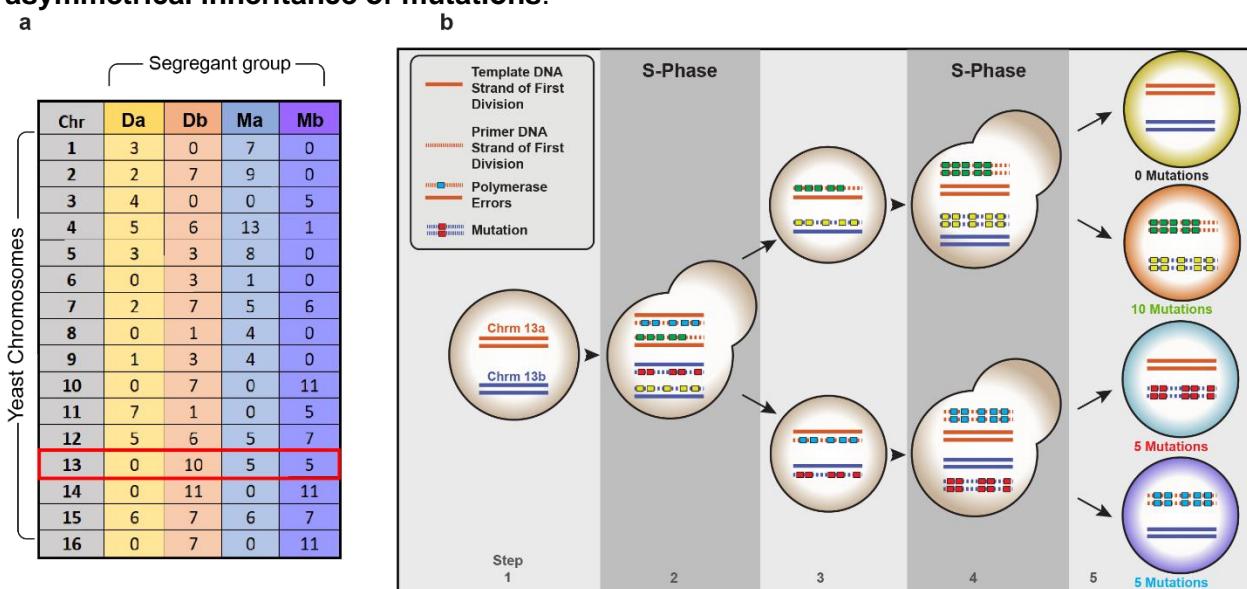
888 **Extended Data Fig. 5: Excluding simple explanations for *pol3-01/pol3-01 msh6Δ/msh6Δ***
889 **mutator volatility.**



890

891 **a**, Mutation counts and maternal age. The total mutation counts from individual divisions is
892 plotted relative to maternal age (Division number). **b**, Mutation counts and size of scored
893 genome. The proportion of the genome scored in all members of a lineage varies between
894 lineages due to sequencing depth and number of lineage members, but is not correlated with
895 mutation counts (Spearman Correlation).
896

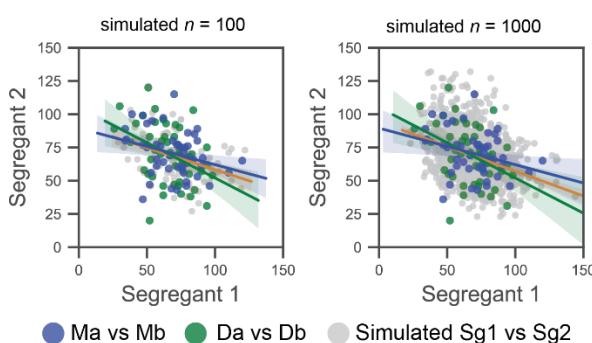
897 **Extended Data Fig. 6: Semi-conservative DNA replication and segregation cause**
898 **asymmetrical inheritance of mutations.**



899
900
901 **a**, Table of representative mutation data from one division of a diploid mutator cell. Columns
902 represent different segregant groups (see Fig.1); rows, the chromosome number; values, the
903 total number of new mutations found on homologous chromosome pairs. The red box indicates
904 an example with both asymmetric and equal sharing of mutations. **b**, Five-step model of
905 unequal segregation: 1) Two homologous chromosomes (orange and blue) prior to scored
906 division of mother cell. 2) Mother cell duplicates chromosomes and mutator Pol δ generates
907 errors (colored boxes) on the nascent strands. 3) Progeny each inherit two chromosomes with
908 mismatches. 4) Each unresolved mispair is 'fixed' as a point mutation in the next S-phase.
909 Error-free strands are free of newly fixed mutations. 5) Segregation results in cells with 0, 1, or 2
910 mutagenized chromosomes.
911

912 **Extended Data Fig. 7: Correlations between segregation groups.**

913



914

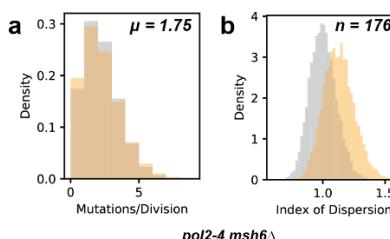
915

916 X/Y Scatter plots of segregant group pairs (Da/Db, Ma/Mb, $n = 50$ for each) from *pol3-01/pol3-01 msh6Δ/msh6Δ* divisions are plotted alongside simulated data ($n = 100$, left; $n = 1000$, right).
917 Segregant 1 corresponds to Da or Ma. Segregant 2 corresponds to Db or Mb. The highest
918 outlier point for Da/Db in the upper left-hand quadrant (51, 120) comes from Division 8
919 (Supplementary Dataset 1), which produced a Ma/Mb point located at (120, 65) that yielded
920 similar mismatch totals (Dm, 171; Mm, 185). This suggests the division had a high mutation
921 rate. Ma/Mb (47,36) and Da/Db (52, 20) segregant pairs in the lower left-hand quadrant also
922 appear as outliers. Both pairs are derived from Division 15 (see Supplementary Dataset 1),
923 leading to the conclusion that the mutation rate in that division was inherently low.
924

925

926 **Extended Data Fig. 8: Simulation of *pol2-4 msh6Δ* haploid mutagenesis.**

927



928

929

930 **a**, The simulated distribution of mutations from haploid *pol2-4 msh6Δ* cells at a rate of $\mu = 1.75$
931 mutations/division ($n=10000$) assuming a single Poisson process (grey) or a Poisson-binomial
932 process (orange). **b**, Variation in the index of dispersion of simulated data from Poisson and
933 Poisson-binomial models ($n=176$) over 10,000 iterations.
934

Supplementary Dataset 1: *pol3-01/pol3-01 msh6Δ/msh6Δ* sequencing data

Page	Description
SRA submission	List of sequence files submitted to the Short Read Archive (SRA)
Mutation Summary	Summary of mutation counts from different single cell lineages
MutInSegGroups	Table of mutation counts broken down into segregant groups
MutInSegGroupsChr	Segregant group table further broken down by chromosome
Full Mutation List	All mutations observed, organized by segregant groups.
Lineage 151	Sorted spreadsheet from Lineage 151 showing variants in segregant groups

Lineage 153	Sorted spreadsheet from Lineage 153 showing variants in segregant groups
Lineage 156	Sorted spreadsheet from Lineage 156 showing variants in segregant groups
Lineage 157	Sorted spreadsheet from Lineage 157 showing variants in segregant groups
Lineage 158	Sorted spreadsheet from Lineage 158 showing variants in segregant groups
Lineage 160	Sorted spreadsheet from Lineage 160 showing variants in segregant groups
Lineage 162	Sorted spreadsheet from Lineage 162 showing variants in segregant groups

935

Supplementary Dataset 2: *pol2-4 msh6Δ* sequencing data

<i>Page</i>	<i>Description</i>
SRA submission	List of sequence files submitted to the Short Read Archive (SRA)
Mutation Summary	Summary of mutation counts from different single cell lineages
Full Mutation List	All mutations observed, organized by segregant groups.
R1_Lineage	Sorted spreadsheet from Lineage R1 showing variants in segregant groups
R2_Lineage	Sorted spreadsheet from Lineage R2 showing variants in segregant groups
R4_Lineage	Sorted spreadsheet from Lineage R4 showing variants in segregant groups
R5_Lineage	Sorted spreadsheet from Lineage R5 showing variants in segregant groups
R6_Lineage	Sorted spreadsheet from Lineage R6 showing variants in segregant groups
R9_Lineage	Sorted spreadsheet from Lineage R9 showing variants in segregant groups
R10_Lineage	Sorted spreadsheet from Lineage R10 showing variants in segregant groups

936