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Mutations that compromise mismatch repair (MMR) or DNA polymerase exonuclease
domains produce mutator phenotypes capable of fueling cancer evolution. Tandem
defects in these pathways dramatically increase mutation rate. Here, we model how
mutator phenotypes expand genetic heterogeneity in budding yeast cells using a single-
cell resolution approach that tallies all replication errors arising from individual
divisions. The distribution of count data from cells lacking MMR and polymerase
proofreading was broader than expected for a single rate, consistent with volatility of the
mutator phenotype. The number of mismatches that segregated to the mother and
daughter cells after the initial round of replication co-varied, suggesting that
mutagenesis in each division is governed by a different underlying rate. The distribution
of “fixed” mutation counts that cells inherit is further broadened by an unequal sharing
of mutations due to semiconservative replication and Mendelian segregation. Modeling
suggests that this asymmetric segregation may diversify mutation burden in mutator-
driven tumors.

Introduction

All tumors contain genetically divergent cells spawned by the evolutionary processes of
mutation and selection. In some tumors, genetic heterogeneity arises from a “mutator
phenotype™ due to mismatch repair (MMR) defects? or heterozygous exonuclease domain
mutations (EDM) affecting the leading or lagging strand DNA polymerases (pol), Pole or Pold *°.
Since MMR corrects polymerase errors, when MMR and EDM mutations occur together they
produce a dramatic increase in the number of unrepaired polymerase errors. The resulting
tumors rapidly evolve and possess “ultra-hypermutated” genomes. Yet a full understanding of
the relative contributions of mutagenesis and selection to the rise of heterogeneity within these
tumors remains elusive, since cells with more mutations tend to adapt more readily.

A key unanswered question is whether the mutation rate is constant within mutator cell
populations. The two most common ways of measuring mutation rates are fluctuation analysis *°
and mutation accumulation lines!!. Both assume a uniform mutation rate and report the average
of hundreds or thousands of cell divisions. However, in recent years, evidence has emerged
that mutagenic processes may vary from one division to the next. Kataegis and chromothripsis,
for instance, sharply increase mutation burden in a single cell division!?*4, Indirect evidence for
highly mutagenic sub-populations of cells also comes from studies of yeast exposed to 6-
hydroxylaminopurine or AID/APOBEC cytosine deaminase. Drug-resistant mutants in these
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studies had substantially higher mutation burdens than non-selected isolates from the same
population®®. More recently, limited single-cell propagation of human cancer cell lines coupled to
whole genome sequencing revealed broader than expected variation in mutation rate in closely
related subclones!®. Observations such as these challenge the assumption that mutation rate is
constant and beg higher resolution studies of mutator cells.

The asymmetrically dividing budding yeast, Saccharomyces cerevisiae, is ideal for
studying mutator phenotypes with high resolution. It encodes many of the same DNA replication
and mismatch repair genes found in humans. Yeast “daughter” cells can be separated from their
larger “mother” cell at each division by micromanipulation and then moved to defined locations
on an agar plate, forming a “single cell lineage”. Whole genome sequencing (WGS) of cultures
derived from these cells permits the number of new mutations that arose in the mother cell at
each division to be counted. Moreover, the small size of the genome (12 megabases) makes it
cost effective to score enough cell divisions to see whether the distribution of mutation counts
conforms to that expected from a single underlying mutation rate.

We previously pioneered this approach with haploid mutator mother cells deficient in
Pole proofreading and MMR (pol2-4 msh6A)*’. A single underlying mutation rate could not
explain the distribution of mutation counts from 87 divisions. However, the distribution did fit a
model with two underlying mutation rates that differed by 10-fold (0.4 and 4
mutations/genome/division). This led to a hypothesis of “mutator volatility” in which cells
assumed one of two mutator states as they passed through the cell cycle!’. But since we only
scored mutations retained by the mother, we could not exclude an alternative hypothesis: that
polymerase errors sporadically segregated asymmetrically between mother and daughter cells,
either as mismatches at the initial division or as permanent, “fixed” mutations following the next
round of synthesis. Here, to distinguish between these two hypotheses, we sought to score all
replication errors that arose in individual cell divisions using more extensive single cell lineages.
Examination of the distribution of the full replication error counts from individual divisions
provided a way to test the mutator volatility hypothesis apart from the confounding influence of
segregation. At the same time, sequencing complete lineages gave us the means to determine
whether replication errors segregate equally on their way to fixation.

Results

To confidently score replication errors arising on all nascent DNA strands from each
division, we devised a scheme that ensured that all mutations were observed in at least two
members of a single cell lineage. After moving each daughter by micromanipulation from the
founding mother cell, we isolated a sublineage of three additional cells to help score the number
of errors segregated to that daughter. These cells included the first and second granddaughter
(born to the daughter cell) as well as the first great-granddaughter cell derived from the first
granddaughter (Fig.1a). Errors segregated to the daughter as mismatches in the first division
segregate as fixed mutations in the next division when the daughter produces the first
granddaughter. Mutations retained by the daughter after that segregation event will be inherited
by the second granddaughter, forming what we call the “Da” segregant group. Mutations
segregated to the first granddaughter will be inherited by the great-granddaughter, forming the
“Db” segregant group. In theory, the Da and Db segregant groups represent half of the errors
made by the mother cell during a given division. The remaining errors, retained initially by the
mother as mismatches, segregate between the mother and her next daughter as fixed
mutations in the next division. Fixed mutations segregated to that daughter will be uniquely
present in the next sublineage, forming the “Ma” segregant group. Mutations retained by the
mother will be found in all later sublineages, defining the “Mb” segregant group. After colony
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91 formation and WGS, a full error count for a given division can be determined by simply summing
92 the number of fixed mutations in the Da, Db, Ma, and Mb segregant groups. With a complete set
93  of sublineages from the same mother cell, the full replication error counts from several

94  sequential cell divisions can be determined from the nested data (Extended Data Fig.1). By

95  requiring that all errors be observed in at least two members of the lineage, this approach

96 eliminates false positives due to sequencing errors or clonal sweeps within the cultures.

97 We initially began our experiments with the pol2-4 msh6A haploid strain used in the

98  previous study!’. We found evidence for a more limited mutator volatility but were concerned

99 that lethality within some sublineages may have introduced a bias (see Supplementary
100 Information and Extended Data Fig. 2). To improve viability and the mutational signal, we
101  switched to using diploid yeast with a 10-fold higher mutation rate due to homozygous mutations
102  affecting Pold proofreading and base-base mismatch repair (pol3-01/pol3-01
103  msh6A/msh6A)*®*°, To obtain pol3-01/pol3-01 msh6A/msh6A cells, we mated pol3-07 msh6A
104  haploids, freshly dissected from sporulated POL3/pol3-01 MSH6/msh6A diploids. We isolated
105 the newly formed zygotes and then used the first or second diploid daughters as founding
106  mother cells for the isolation of single-cell lineages, noting the time and placement of each cell.
107 Following colony formation, and WGS, we scored 13,801 mutations from 50 divisions obtained
108 from 7 different lineages (Fig.1b, Table 1, Extended Data Fig. 3). The mutations were distributed
109 across the genome and displayed a spectrum consistent with combined proofreading and MMR
110  deficiency (Extended Data Fig. 4). We only scored mutations at genomic sites confidently called
111  in all members of a lineage and carefully vetted the resulting variant lists. Having complete
112  lineage information allowed us to assign when the mutations arose using the logic described
113  above. In addition, we visually inspected the variant sites in all genomes from a given lineage
114  using the Integrative Genomics Viewer, which allowed us to detect discrepancies in the lineage
115  order or whether mutations had been incorrectly assigned (see Methods). We tallied the full
116  replication error counts from each division and determined whether the distribution could be
117  explained by a single underlying mutation rate.

118 Mutagenesis has been modeled for more than 70 years!®2° with the Poisson distribution,
119  which is a discrete probability distribution of the number of expected independent events

120  occurring within a defined interval, assuming a constant rate (A). A simple test of whether a

121 distribution matches a single Poisson is to calculate the index of dispersion (D), which is equal
122  to the variance of the distribution divided by the mean (o2 /u). The variance of Poisson

123 distributions always equals the mean, which results in a D of 1. The pol3-01/pol3-01

124  msh6A/msh6A mother cells committed an average of 276 (+37.7, standard deviation (o))

125  replication errors per division. This corresponds to a D of 5.15 (37.7%/276), which suggests that
126  the distribution does not conform to a single Poisson (Fig.1b). Two alternative explanations

127  failed to account for the overdispersion. For instance, we did not observe any relationship

128  between the mother’s replicative age and the number of errors made by Pold (Spearman’s rank
129  correlation coefficient: 0.007209, p = 0.9604)(Extended Data Fig.5), nor did the number of

130  mutations correlate with the size of the scored genome, which differed between lineages due to
131  variation in sequencing depth and the number of members in each lineage (Spearman’s rank
132 correlation coefficient: -0.0416, p = 0.7743)(Extended Data Fig.5). Instead, the broad

133 distribution of full replication error counts, free from the confounder of segregation, is consistent
134  with mutator volatility.

135 To better understand the nature of mutator volatility in pol3-01/pol3-07 msh6A/msh6A
136  cells, we used finite mixture modeling, which employs a maximum likelihood framework to
137  identify mixtures of two or more Poisson distributions that better fit the data. We also modeled
138 the data as a negative binomial (nb), which is a discrete distribution with separate rate (4) and
139  shape parameters (6) commonly used to interpret over dispersed count data. The rate
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140 parameters A and y, for the Poisson and nb distributions, both define the mean number of

141  events. Since these models derive from different distributions, they cannot be directly compared
142 using standard statistical tests. Non-nested models such as these, however, can be evaluated
143 with Akaike Information Criteria (AIC), which uses maximum likelihood to estimate the loss of
144  information of each model relative to the observed distribution. To prevent overfitting, AIC

145  penalizes models with more parameters. Lower AIC values correspond to a more parsimonious
146  fit; however, interpreting differences in raw AIC values can be enigmatic. Thus, we transformed
147  the raw AIC values to “Akaike weighted values”, which conveys their relative likelihood

148  (Fig.1b)?*?2, We found that the negative binomial model was the most likely (relative likelihood
149  of 0.9999), followed by the two-Poisson-mixture model (2.2 x 10°°), and the single Poisson (4.3 x
150  1028) (Fig.1b). Similar results were obtained using Bayesian Information Criteria (BIC), which
151  imposes stronger penalties for overfitting. Thus, mutator volatility in pol3-01/pol3-01

152  msh6A/msh6A cells is more complex than just two distinct mutator states.

153 The superiority of the negative binomial model suggests that the mutator phenotype may
154  vary continuously. This rationale derives from the ability to describe a negative binomial as a
155 gamma-Poisson distribution (Fig.2a). The gamma function is a continuous, rather than discrete,
156  distribution. Here, it takes the same shape parameter (0) as the negative bionomial and serves
157  as a conjugate-prior to define variation in the rate parameter A of a mixture of Poisson

158  distributions. The variation in A that creates a negative binomial occurs between replication

159  events at the same site, or a collection of sites such as a chromosome or genome. Having

160 complete lineage information provided an opportunity to test whether A varies at a chromosomal
161  or genome-wide level. The distributions of mismatches segregated to mother (Mm) or daughter
162  cells (Dm) across all divisions were the same and fit a negative binomial (Fig. 2b). If A varied
163  widely during the replication of individual replicons (the units of DNA replication on a

164  chromosome), this could introduce asymmetry in the number of errors on sister chromatids,

165  which would then propagate to the daughter and mother cells (Fig. 2d). Consequently, Dm and
166  Mm from the same division would be free to vary within the observed negative binomial

167  distribution. Alternatively, if the genome-wide value for A varies between cell divisions, a single
168  mutation rate would govern mismatch formation for both the mother and daughter genomes
169  (Fig. 2e). Dm and Mm would co-vary within the constraints of the corresponding Poisson

170  distribution. To distinguish between these two hypotheses, we first compared the correlation of
171  mismatches segregated to mother and daughter cells to simulated data generated under the
172 constraints of the two models. While no correlation was seen between Dm and Mm in the

173 simulated data from the first model (R?=0.001), similar correlations were observed for both the
174  simulated data from the second model (R?=0.47) and the actual data (R?=0.37). This

175  correspondence in the number of mismatches segregated to mother and daughter cells

176  extended down to the level of chromosomes (Fig. 2f). The R? values are lower than typically
177  seen with strong correlations, but as our modeling shows, this is expected since both X and Y
178  values are randomly drawn from a Poisson distribution. As a second test of the hypotheses, we
179  also performed 10,000 simulations of how each model would affect the distribution of full

180 replication error counts from 50 divisions (Fig. 2g). With the first model, the simulated index of
181  dispersion (3.28 + 0.66, o) was substantially less than observed with the actual data (D=5.15),
182  while the second model produced a good match (5.54 + 1.12, ). Together, these analyses

183  strongly suggest that the source of mutator volatility is variation in the genome-wide mutation
184  rate from one division to the next.

185 With this support for the mutator volatility hypothesis, we turned our attention to the
186  question of asymmetric inheritance. Individual cells averaged 69 (18, o) fixed mutations/diploid
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genome/division (n = 200) (Fig. 3a) with an index of dispersion of 4.8. A negative binomial fit the
distribution most closely (relative likelihood = 0.82), followed by a four-Poisson mixture model
(relative likelihood = 0.18). A close examination of mutations arising from the same division
revealed a striking asymmetric pattern of inheritance. When pairs of segregant groups were
compared (e.g. Da vs Db or Ma vs Mb), half of the time one segregant group inherited all of the
mutations for a given chromosome while the other received none (Fig. 3b,c). This pattern is
explained by the sequential actions of semiconservative DNA replication and Mendelian
segregation (Extended Data Fig.6). At the end of the first S-phase, due to semiconservative
replication, all errors arising due to the Poisson process of polymerase error formation reside on
one of the two strands of each sister chromatid. These strands segregate equally between
mother and daughter cells. The next round of replication produces two new duplexes per cell,
only one of which contains fixed mutations. At metaphase, cells receive either all or none of the
fixed mutations for that chromosome from the previous division. This binomial process occurs
twice for every chromosome number in diploid cells. Consequently, for each chromosome
number, cells receive 0%, ~50%, or 100% of the mutations in a given division with a Mendelian
ratio of 1:2:1 (Fig. 3c) (actual ratio, 876:1490:834). Thus, we can describe how polymerase
errors arise in an individual division and later become fixed as a compound Poisson-binomial
process.

To determine the contribution of the Poisson-binomial process to the overdispersion of
mutation counts, we simulated mutagenesis in pol3-01/pol3-01 msh6A/msh6A cells assuming a
constant error rate. Given that we observed an average of 138 mismatches per diploid mother
or daughter cell (Fig. 2c), the average rate of error formation was 69 errors/haploid
genome/division. Since cells only inherit, on average, half of the polymerase errors, the
observed mutation rate in pol3-01/pol3-01 msh6A/msh6A cells was 34.5 fixed mutations/haploid
genome/division. To model the Poisson-binomial process we simulated mutagenesis on each
chromosome by setting A equal to 69 errors/haploid genome and then, to mimic segregation,
multiplied the number of mutations apportioned to each chromosome by a randomly chosen 1 or
0, before summing the total fixed mutations (Fig.3d). For comparison, we simulated mutation
accumulation assuming a simple Poisson process in which mutations accumulated with a rate of
34.5 mutations per haploid genome (Fig.3d). With 1000 simulations of 200 cell cohorts, the
Poisson-binomial model produced a broader index of dispersion (D = 3.58+0.49, o) than the
Poisson model (D = 1.0+0.1, o) (Fig.3e), but narrower than the observed data (D = 4.8).
However, substituting the constant mutation rate with the gamma-distributed set of A values
from Fig.2c yielded simulated data with an equivalent dispersion (D = 4.80+0.49, o) (Fig. 3e).
Thus, the combination of mutator volatility and asymmetric segregation of mutations — a
gamma-Poisson-binomial process —accounts for the observed distribution of fixed mutations in
individual pol3-01/pol3-07 msh6A/msh6A cells.

To understand the potential implications of our findings for mutator-driven cancers, we
first focused on how the Poisson-binomial process would influence the heterogeneity of
mutation burden within a dividing population of tumor cells. Assuming a constant mutation rate
comparable to pol3-01/pol3-01 msh6A/msh6A yeast, the expected distribution of simulated
mutation counts in human cells after one division (D = 50) was far broader than in yeast (Fig.3f)
and persisted through 30 simulated divisions (Fig. 3g,h). Adding a comparable level of volatility
to the mutator phenotype further increased the simulated dispersion (D = 82) (Fig.3f). Using the
Poisson-binomial model, we simulated a range of mutator phenotypes observed in cancer cells
and found a linear relationship between mutation rate and predicted dispersion. For instance,
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233 mutation accumulation in HCT116, the well-known MLH1 mutant colon cancer cell line,

234  increases from 48 to 190 mutations/haploid genome/division upon introduction of a

235  heterozygous POLE proofreading-deficient allele®. In these cells, the predicted index of

236  dispersion expanded from 3.4 to 10.8 (Fig.3i). Even greater heterogeneity may arise in human
237  cancers when more potent POLE mutator alleles occur in combination with MMR

238  deficiency®”%*24, Thus, the fundamental Poisson-binomial process of asymmetric segregation
239  has the potential to dramatically expand the diversity of mutation burdens present among a
240  population of human mutator cells.

241
242  Discussion
243 Genetic heterogeneity progressively increases in a dividing population of cells as an

244  unavoidable consequence of errors made during DNA synthesis. Here, for the first time, we

245  describe the fate of polymerase errors made on all nascent DNA strands synthesized in

246  individual cell divisions. We developed this single cell resolution approach in order to

247  understand previous observations that the distribution of new fixed mutations in individual

248  mutator cells was broader than expected. To explain the phenomenon, we proposed two

249  hypotheses: (1) that mutator phenotypes are volatile and (2) that polymerase errors arise with a
250 constant rate but segregate asymmetrically on the way to fixation. The design of our single cell
251  pedigrees ensured at least two independent biological observations for each mutation, which
252  allowed us to confidently assign more than 13,000 mutations to fifty divisions. From the resulting
253  mutation count data, we found strong evidence that both mutator volatility and asymmetric

254  segregation significantly expand genetic heterogeneity in pol3-01/pol3-017 msh6A/msh6A yeast.

255 Historically, mutagenesis has been modeled with the Poisson distribution, which

256  describes the probability of the number of independent events per unit time given a constant
257  rate. The observed distribution of full replication error counts of mutator cells, free from the

258 influence of segregation, best a fit a negative binomial and not a single Poisson (Fig.1b).

259  Negative binomials are equivalent to a continuous mixture of Poisson distributions whose rates
260  vary according to a gamma distribution (Fig.2a). This suggests that mutator volatility may create
261  a continuum of mutation rates rather than discrete mutator states. We explored the idea that
262  mutation rate varies from one division to the next by simulating the number of mismatches

263  segregated to mother and daughter cells (Fig 2d,e) and the dispersion of full replication error
264  counts expected from small cohorts of cells (Fig.2f). Both simulations closely matched the

265  observed data, consistent with the hypothesis that mutator volatility derives from continuous
266  variation in mutation rate between divisions. Mutator polymerases do not operate as a closed
267  system. They interface with a myriad of other replication components and metabolites, such as
268  dNTPs, that influence their fidelity?>2°. Variation in the timing and duration of perturbations to
269  these interactions may produce a continuum of rates. The observed overall mutation rate that
270  cells exhibit represents a composite of mutation rates at all sites within the genome.

271  Conceivably, the change in replication fidelity could be localized to certain parts of the genome
272 in agiven division. But if so, our data suggests, that the nascent strands from each pair of sister
273  chromatids in the affected region must be equally influenced by the change in rate (Fig.2c,f).

274 The asymmetric inheritance of mutations observed in mutator cells results from the

275  fundamental processes of semi-conservative replication and Mendelian inheritance acting in
276  concert. Current models of mutation accumulation generally ignore the potential for this synergy
277  to expand genetic heterogeneity, although there are exceptions. John Cairns proposed a far
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278  more extreme asymmetric inheritance of mutations in the “Immortal Strand Hypothesis” in which
279  stem cells always segregated away newer DNA duplexes with fixed mutations?’. In keeping with
280 this hypothesis, a recent computational analysis of human somatic variants argued that the high
281  variance of mutation burden in adult stem cells with age supports a preferential inheritance of
282  ancestral strands?®. A second study from the field of evolutionary biology examined the potential
283  influence of disparate mutagenesis of leading and lagging strand synthesis to promote variable
284  evolutionary trajectories from the same cell population?®. Our findings here demonstrate that, in
285  the context of a mutator phenotype, the normal process of semi-conservative replication and
286  Mendelian inheritance has the potential to create unequal sharing of mutations. For every cell
287  that inherits disproportionately more mutations there will be another cell with fewer mutations.
288  The predicted impact of this process on the variation in mutation burden is larger in human cells
289  than in yeast due to the vast differences in chromosome length, and the correspondingly larger
290  number of fixed mutations per chromosome. However, with longer chromosomes comes an

291 increased likelihood that sister chromatid exchanges (SCEs) may mitigate the asymmetry.

292  SCEs clearly to do not homogenize mutation burden in diploid mutator yeast cells as half of

293  cells either received all or none of the new fixed mutations for a given chromosome (Fig. 3c).
294  This finding is in keeping with recent evidence from a sensitive Next Generation Sequencing
295  methodology (Strand-seq) that SCE occurs with a rate of 0.26 events/division in yeast®. Strand-
296  seq experiments of normal human fibroblasts and lymphoblasts indicate the SCEs occur with a
297 rate of 5 events/cell division®!. At this rate, most chromatid pairs in mutator cells would be free
298  of SCEs even after the two divisions it takes for errors to become fixed mutations. Of course,
299 the frequency of SCEs may increase in some cancer cells, especially those with intrinsic DNA
300 repair defects 3. However, the mutator yeast strains studied here do not show obvious signs of
301 elevated SCEs. Performing single cell lineage analysis of human mutator cells in future studies
302  should address both the prevalence of SCEs and the asymmetric inheritance of mutations.

303 Our simulation of a mutator-driven tumor rapidly generated substantial intra-tumoral
304 genetic heterogeneity during expansion (colored lines, Fig.3h) compared to a population in

305  which mutations accumulated by a simple Poisson process (black line, Fig.3h). The associated
306 variability in mutation load may be relevant to cancer evolution. Early during tumorigenesis the
307 subpopulation of cells that inherit disproportionately more mutations may adapt more readily.
308  With elevated mutation rates, polyclonal adaptation is almost certain. The unifying feature of
309 these adapted cells is a high mutation burden. As mutation burden mounts and mutator cells
310 contend with increasingly strong negative selection pressure due to immune surveillance and
311  negative epistatic interactions®233, adapted cells that inherit fewer new mutations due to

312  asymmetric inheritance may be at a relative fithess advantage. Selectively increasing mutation
313  rate in mutator cancer cells could represent a novel therapy?. If, as a means of treatment, the
314  mutation rate of cancer cells is only transiently elevated to induce extinction, this subpopulation
315  may persist. Sustained elevation of mutation rate over many divisions of mutator cells may be
316  required to drive their extinction.

317 Methods

318 Yeast strains and culture conditions.

319 The diploid strains AH2801 (POL2/URA3::pol2-4 MSH6/msh6A::LEU2) and AH2601
320 (POL3/URAS3::pol3-01 MSH6/msh6A::LEU2) were previously described’:34. They are derived
321  from AHO0401, a BY4743 derivative engineered to be heterozygous at the CAN1 locus

322 (CANT1::natMX/can1A::HIS3) to facilitate forward mutation rate assays*?. We followed standard
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323  procedures for yeast propagation and tetrad dissection®. For general propagation, we grew
324  liquid YPD cultures (1% wt/vol yeast extract, 2% wt/vol peptone, 2% wt/vol dextrose) at 30°C.
325  For sporulation, we diluted overnight YPD cultures 1:100 in 3 mls of YPD and grew until the
326  culture was 1-2 x 107 cells/ml. We recovered the cells by centrifugation, resuspended and

327  pelleted the cells once in 1 ml H,O, and then resumed growth at 22-25°C in sporulation media
328 (1% potassium acetate, 0.1% yeast extract, 0.05% dextrose) for five days. For rich solid media,
329 we used synthetic complete (SC) [6.7 g Difco yeast nitrogen base without amino acids, 2%

330 wit/vol dextrose, 2 g/L SC amino acid Mix (SCM) (Bufferad)] supplemented with 2% wt/vol agar.
331  For plates lacking leucine and uracil (SC-Leu-Ura), SCM was substituted for SCM-Leu-Ura

332  (Bufferad). Archival frozen stocks were stored in 23% glycerol at -80°C.

333  Single cell lineage isolation

334 To isolate pol2-4 msh6A lineages we dissected AH2801 tetrads on SC-Leu-Ura selective
335 media and chose one germinating spore per plate to serve as the founding mother cell. To

336  obtain pol3-01::URA3/pol3-071::URA3 msh6A::LEU2/msh6A::LEU2 cells for pedigree analysis we
337 first dissected POL3/ pol3-01::URA3 MSH6/ msh6A::LEUZ tetrads on SC-Leu-Ura plates. After
338  two divisions, double mutant haploid cells from different tetrads were placed next to each other
339 to allow mating. Upon isolation of a zygote, the first or second daughter was used as the

340 founding mother (M) for the lineage. Mothers were placed at an isolated location and we

341  separated daughter cells (designated Dn, Dn+1, etc.) from the mother as they were generated
342  and moved them to select areas 5 mm apart on the plate. We repeated the procedure to obtain
343  each daughter’s first daughter (GD.1, Fig.1b), second daughter (GD.2), and first granddaughter
344  (GGD, born to GD.1). This strategy was repeated for each daughter up to either the 20™ division
345  orthe end of the mother’s replicative lifespan, whichever occurred first. In a typical experiment,
346  we pre-punched the agar with the dissecting needle at each drop-off location so that we would
347  always put the cell in a defined place, making it easy to later find the cell for inspection and

348  manipulations. We isolated lineages over the span of a week by performing rounds of

349  dissections every 90-120 minutes. Only a few cells on a plate were moved in any one round,
350 and then, only one cell at a time. We noted the timing of each round of bud dissections. We

351 incubated plates at 30°C between dissections. At the end of the day, plates were wrapped in
352  parafilm and stored overnight at 4°C. When plate dissections were concluded, we incubated

353  each plate an additional 48 hours at 30°C to allow colonies to fully develop. Prior to sequencing,
354  the pol3-01/pol3-01 msh6A/msh6A and pol2-4 msh6A genotypes were confirmed by previously
355  described allele-specific PCR assays®.

356 Genome sequencing

357 We performed whole genome sequencing of yeast cultures as described®*. Briefly, each
358 colony in a pedigree was used to inoculate overnight 5 ml liquid YPD cultures. Glycerol stocks
359  were made and genomic DNA extraction extracted with the ZR Fungal/bacterial purification kit
360 (Zymo Research). DNA was sheered into 500 to 1000 bp fragments by sonication. After end-
361 repair, lllumina sequencing libraries were made by ligating on dsDNA adapters and indexing by
362  quantitative PCR. The samples were then sequenced on the HiSeq 2500 or Nextseq platforms.
363  We performed sequencing alignments and variant calling using a custom pipeline

364 (eex_yeast_ pileline.sh) that runs in the Unix command-line (see Github link below). Reads were
365 aligned to a repeat-masked S288C yeast genome!’ using the Burrows-Wheeler Aligner

366 (0.7.17)%. Discordant and split read groups were removed using Samblaster (0.1.24) *'. We
367 used Picard tools (2.21.9) AddorReplaceReadGroups to add information to the header used for
368 later steps. We indexed the BAM files with Samtools (1.8)% and then sequentially processed
369  them with functions from the Genome Analysis Toolkit (GATK3)*® to minimize false variant calls:
370 RealignerTargetCreator, IndelRealigner, LeftAlignindels, BaseRecalibrator, and PrintReads.
371  We made a pileup file with Samtools and used VarScan (v2.3.9) mpileup2snp to call single
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372 nucleotide variants*®. We limited our analysis to single nucleotide variants, which are by far the
373  most abundant polymerase error type in these cells. We used the Varscan2 tool to identify

374  variants present in our colonies with the following parameters. For pol2-4 msh6A haploid

375 lineages we used a variant frequency cut-off of 0.8 with a minimum read-depth of 18 (daughter
376  and GD.1 positions) or 10 (for GD.2 and GGD positions). Since these are haploid cells, new
377  variants should be present in 100% of reads. Setting the cut-off at 0.8 accommodates sites with
378 low read depth and one sequencing error. For pol3-01/pol3-01 msh6A/msh6A diploids, we used
379 a minimum read-depth of 18 for all strains and a variant frequency cut-off of 0.22. With a read
380 depth of 18, clonal heterozygous variants in diploid cells have a false negative rate of 6.1 x 10°.
381  With 1000 mutations we have a 6% chance of having 1 false negative in a genome. We filtered
382  the above results to remove variants present in the parental strains as well as recurrent

383  sequencing artifacts. A small number of variants (<0.1%) could be reliably scored with the

384  above parameters but fell below a quality threshold for a subset of genomes. These were

385  manually curated for inclusion. We detected these by visually inspecting the BAM files for all
386 strains in a single cell lineage at the same time using the Integrated Genome Viewer (IGV).

387  Scoring of mutations and detection of assignment errors

388 We used a custom Python script (JLSLineageCaller) to determine the number of shared
389  variants within each lineage. The program first determines all genomic positions with 18-fold
390 read-depth in all members of the lineage and then filters the called variant lists for mutations at
391  positions within the shared genome. Pairwise comparisons are done between certain strains to
392 identify shared mutations at different branch points in the lineage, resulting in a data-frame of
393  comparisons that allows all mutations arising in a lineage to be sorted and examined in

394  Microsoft Excel. The mutation counts for division n were determined by summing the number of
395 new mutations identified at branchpoints Da (GDn.1 vs GGDn.1), Db (Dn vs GDn.2), Ma (Dn+1
396 vs GDn+1.1), and Mb (Dn+2 vs Dn+3) Da mutations are only found in the daughter (Dn) and her
397 second daughter (GDn.2). Likewise, Db mutations are only found in GDn.1 and her first

398 daughter GGDn.1. Mismatches retained by the mother after the first division become fixed in
399 the next division and are either passed on to her next daughter (Dn+1) or are retained by the
400 mother and passed on to all future offspring. The fixed mutations inherited by Dn+1 that form
401 the Ma segregant group are only found in this branch of the lineage. Finally, the fixed mutations
402 retained by the mother, the Mb segregant group, first appear in Dn+2 and her offspring, but also
403  show up in all subsequent daughters (Dn+3, Dn+4, etc) and their offspring. Any deviation from
404 this pattern of inheritance indicates an “assignment error” has occurred, and that a cell was

405 inadvertently placed in the wrong position in the lineage. In the Supplementary Information we
406  describe two such cases. The divisions encompassing these strains were censored from the
407  analysis. Below we describe how these errors arise and are detected to illustrate the reliability of
408  the method.

409 One possible assignment error could occur at dissection when the daughter and mother
410 cells both divide before the next round of dissection. On the basis of size, the first daughter (Dn)
411  can be easily distinguished from the mother, the second daughter (Dn+1), and her own

412 daughter (GDn.1). Usually Dn+1 and GDn.1 can also be distinguished because Dn+1 buds

413  before GDn.1. However, in rare cases Dn+1 and GDn.1 are adjacent and similarly sized. If

414 Dn+1 is moved in place of GDn.1, we will have a sublineage consisting of Dn, Dn+1, GDn.2,
415 and GDn+1.1 (instead of Dn, GDn.1, GDn.2, and GGDn.1). Every sublineage should normally
416 contain subsets of mutations from different divisions (Da and Db mutations from the “n” division;
417  Ma mutations from the “n-1” division; and Mb mutations from the “n-2” division). In this

418  sublineage, the Ma segregant group mutation count will be 0, since there are no new mutations
419 that will be shared by these four colonies. However, a substantial subset of the mutations

420  assigned to the Db segregant group will also be found in later sublineages indicating that they
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421  are not Db mutations but Mb mutations from a later division. The other half of what appear to
422  be Db mutations will in fact be Ma mutations from a different division. Added confirmation of the
423  dissection error comes from the analysis of the next sublineage, which will consist of GDn.1 (not
424  Dn+l as it should be), GGDn.1, GGDn.2, GGGDn.1 (great-great-great granddaughter 1). There
425  will be 0 Mb mutations in this sublineage since all of these cells are directly descended from Dn.
426  These problematic cell divisions would be censored because we lack key lineage members

427  necessary to obtain a full replication error count. Another type of assignment errors could occur
428  during dissections to isolate the sublineages. For instance, if Dn divides twice in the interval

429  before the next round of dissection we would have to distinguish between GDn.1 and GDn.2.
430 This is usually easy to do because, as above, GDn.1 would be forming a bud while GDn.2

431  would be unbudded. If we inadvertently reversed those two cells, we would have a sublineage
432  consisting of Dn, GDn.2, GDn.1, and a great granddaughter born to the second granddaughter.
433  When calling the Da segregant group we would be calling shared mutations between Dn and
434  GDn.1 (and not between Gn and GDn.2). We would quickly see that these are, in fact, Ma

435  segregant group mutations because they would also be present as a subset of Db mutations
436  obtained in the comparison between GDn.2 and her offspring.

437 The most difficult potential assignment errors to detect would occur in the Da and Db
438  segregant groups. For example, if GDn.1 divided twice, producing GGDn.1 and GGDn.2, and
439  we selected GGDn.2 instead of GGDn.1, the mutation count for the Db segregant group would
440  be derived from two divisions instead of one. Again, this is unlikely, because GGDn.1 would
441  begin budding long before GGDn.2. But we lack an obvious distortion to the pattern of mutation
442  inheritance to flag this as an error. We don'’t think this is a common problem given the

443  correspondence between mismatches segregated to the mother (Mm) and daughter (Dm) cells
444  illustrated in Fig.2d,e. As described above, we regard the Ma and Mb segregant groups as

445  highly reliable because dissection errors lead to obvious perturbations in the pattern of mutation
446  inheritance. In favor of the reliability of the Da/Db data, an XY scatter plot of mutation counts
447  observed in pairs of Ma/Mb segregant groups corresponds very well to that observed with pairs
448  of Da/Db segregant groups (Extended Dataset Fig. 7). Both sets also correspond with what
449  would be expected based on simulated data. (The simulation assumed a gamma-Poisson

450  distribution as in Fig. 2). Interestingly, there are two Ma/Mb (47,36) and Da/Db (52, 20)

451  segregant pairs in the lower left-hand quadrant that appear as outliers. Both pairs are derived
452  from Division 15 (see Supplementary Dataset 1), leading to the conclusion that the mutation
453  rate in that division was inherently low. The highest Da/Db outlier (51,120), derived from

454  Division 8, is also associated with a Ma/Mb pair with high mutation counts (120,65), leading to
455  the conclusion that this division had a high mutation rate.

456  Statistical modeling

457 We grouped the fixed mutation counts from the above branch points into Da, Db, Ma,
458 and Mb segregant groups to determine their distributions. We also joined all segregant groups
459  into one larger group to examine the distribution of fixed mutation counts across all cell

460  divisions. To determine the distributions of mismatches segregated to the daughter (Dm) and
461  mother (Mm) cells, we first summed the Da and Db or Ma and Mb fixed mutation counts from
462  each division. We also combined these two sets into one group to view the distribution of

463  mismatches across all cell divisions. To determine the distribution of total polymerase errors per
464  division, we summed all fixed mutations from individual divisions (Da+Db+Ma+Mb). We

465  considered two common approaches for modeling over dispersed count data: the Poisson

466  mixture distribution and the negative binomial distribution.

467 A K-component Poisson mixture distribution, which we denote PM(K), has a probability
468  mass function (pmf) given by
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469 (1)

K
470 fPM(X; K,pg, )LK): = Z pkaoisson(x; }\k)
k=1

471  where pg = (pa,...,Pk) iS a vector of mixture proportions, Ax= (A4,..., Ax) is a vector of Poisson
472  means, and f is the pmf of a Poisson(A;):

473 (2 fpoisson (X3 A): =

474  From this formulation, we see that the full density of the distribution is decomposed as a sum of
475 the scaled Poisson densities. In (1), p, represents the prior probability that a given count

476  measurement will be generated from the kth Poisson component distribution, parameterized by
477 ). Since a given count measurement could have been generated from any of these K

478  components, we average over their densities based on their prior probabilities to get the full
479  density of that count.

e Mk
x!

480 The negative binomial distribution can be specified by the following probability mass
481  function:

)= Cere) (0 )7 0\
482 (3) fnegBinom (X 1, 6): = T ®) (ew) (9+H)

483  where y is the rate parameter and 6 is the shape or dispersion parameter. As 6 tends towards
484  zero, the variance increases. As 6 — oo, the negative binomial reduces to a Poisson
485  distribution.

486 We implemented these principles using a single R script (FMM.R, see Github link

487  below).To fit Poisson mixture models we used the flexmix R package in R v3.5.3%. To fit

488  negative binomial models we used the glm.nb function of the MASS R package*?. Goodness of
489 fit testing of the models was performed using both Akaike information criterion (AIC) and

490  Bayesian information Criterion (BIC) in R. Although these two approaches score fit in slightly
491  different ways, BIC returned results consistent with AIC and we thus report only the more

492  commonly used AIC scores. We scored each tested distribution against up to 4 parameters. We
493  reported only up to the number of parameters that improved model fit. Lower raw AIC values
494  indicate better fit; however, the relative differences are not immediately intuitive and so we

495  calculated Akaike weighted values as described?!??, To illustrate this approach, the AIC values
496  in Fig.1b were 637, 537, and 511. The first step in getting weighted AIC values is to determine
497  AAIC: the difference between each AIC value and the AIC with the lowest value (so for these
498 numbers: 126, 26, 0). The likelihood of each is then calculated by exp(-1/2 x A/AIC). The

499  weighted AIC value for a given model is its likelihood divided by the sum of all competing

500 likelihoods. From these calculations the weighted AIC values are 4.3e-28 (P, k=1), 2.2e-6 (P,
501 k=2), and 0.9999978 (nb), respectively. Thus, the negative binomial model is far more likely
502 than the other two models to account for the observed data. Mixture model graphs were

503  constructed using the ggplot2 package R*:. Spearman rank correlation coefficients were

504  calculated using the Scipy Stats package in Python and graphs generated with Seaborn 0.9.

505 Simulation of negative binomial models

506 We wrote a Python script (Fig2a-d.py, see Github link below) to simulate the expected
507  correlation between Dm and Mm under two distinct models of mutagenesis (Fig.2). The script
508 uses the 8 (60.42) and u (138) parameters estimated by glm.nb for the negative binomial model
509 of mismatches segregated to mother (Mm) or daughter (Dm) cells (see FMM.R). (Note that

510  glm.nb actually returns the natural log value for p (in this case 4.927), which must be

511  exponentiated (e*°?") to get 138). In the first model, we assumed that the negative binomial
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512  distribution was created by variation in mutation rate along chromatid pairs, so that upon

513  segregation, Dm and Mm from the same division were free to vary within the predicted negative
514  binomial distribution. To simulate this process with Scipy.stats.nbinom.rvs, we converted the 6
515 and p shape parameters to the n and p inputs (see script for details) for nbinom.rvs and then, for
516  each division, we selected two random values from the distribution to represent the Dm and Mm
517  counts. In the second model, we assumed that the negative binomial was created by a gamma
518  distribution of A values for a series of Poisson processes acting in different cell divisions. We
519  used Scipy.stats.gamma.rvs to simulate A values from a gamma distribution with shape and

520 scale parameters derived from those of the negative binomial. The shape parameter for the

521  gamma distribution is simply equal to 8. With variance (v) equal to u%/6, the scale parameter is
522  equal to v/p. With a random A from the gamma distribution as an input for

523  Scipy.stats.poisson.rvs, we selected two values from the associated Poisson distribution to

524  serve as Dm and Mm counts for each division. To examine the relationship between Dm and
525  Mm in these different models and the actual data, we performed linear regression with

526  Scipy.stats.linregress and visualized the data and regression line using Seaborn 0.9 regplot.

527  Simulation of gamma-Poisson-binomial process

528 We created Python scripts to create a Poisson-binomial model of the contributions of
529  semi-conservative DNA replication and Mendelian segregation to the over-dispersion of fixed
530 mutations in individual yeast (Fig3de.py) and human cells (Fig3f-i.py). For yeast simulations, we
531 determined the amount of unmasked DNA on each chromosome in the repeat-masked genome
532  and then divided these values by the total length of unmasked DNA in the haploid genome. The
533  rate of mismatches per haploid genome (69 mismatches/haploid genome/division for pol3-

534  01/pol3-01 msh6A/msh6A cells) was then multiplied in each case by these fractions to obtain
535  the per chromosome rate of mismatch formation. These values were used as input for

536  scipy.stats.poisson.rvs to simulate the number of errors per chromosome in a single division.
537  We created two independent entries per chromosome to model the diploid genome. To mimic
538 the binomial process of Mendelian segregation, we then multiplied the number of simulated

539 errors on each chromosome by a randomly chosen 1 or 0. Finally, we summed the mutation
540  counts from all chromosomes to obtain the total number of fixed mutations per cell. To create a
541 gamma-Poisson-binomial model, we selected a value for lambda at each division from the

542  gamma distribution described in Fig.2 rather than using a constant rate for mismatch formation.
543  As a control we performed the above simulation without the binomial process, using the rate of
544  fixed mutations per haploid genome (34.5 fixed mutations/haploid genome/division). We used
545  the same approach for the human simulations except that we multiplied the fraction of each

546  human chromosome of the total genome (GRCh38) by a mismatch rate comparable to that

547  observed with pol3-01/pol3-01 msh6A/msh6A yeast: 69 mismatches/ haploid yeast

548  genome/division x (3.03 x 10° bp/human haploid genome / 11 x 107 bp/yeast haploid genome) =
549 1900 mismatches/human haploid genome/division. We compared the resulting distribution to
550 that from a Poisson distribution with A equal to 950 fixed mutations/haploid genome. To simulate
551 the diversity in mutation burdens that this process generates, we summed the simulated

552  mutation counts for individual lines from 30 divisions.

553 Data Availability

554 Sequence data used to generate the findings of this study have been deposited in the
555  NCBI Sequence Read Archive (SRA), BioProject accession: PRINA586886.

556  Scripts used to generate figures and perform statistical tests have been deposited to github:
557  https://github.com/idowsett/Asymmetric-segregation-of-polymerase-errors-and-rate-volatility-
558  diversify-mutation-burden
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Figures

Fig.1: Mutator DNA polymerase errors at single cell resolution
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a, Isolation of single cell pedigrees. Using microdissection, the founding mother (M), daughter
(e.g. D1), granddaughter (e.g. GD1.1, GD1.2) and great-granddaughter (e.g. GGD1.1) cells
from each maternal division (n = 50) are separated (red arrows) and moved to isolated regions
on the plate to form colonies, which are then sequenced. Polymerase errors arising during the
initial S-phase are passed on to four segregant groups, highlighted by large colored boxes (Da,
Db, Ma, Mb), the sum of which represents the full error count for that division. Large spheres
connected by black arrows represent the same cell through multiple divisions. Small spheres
circled in red represent budding daughter cells; parallel lines in cells, double-stranded DNA,;
colored boxes on lines, polymerase errors. b, Fitting the distributions of full error counts from
diploid pol3-01/pol3-01 msh6A/msh6A divisions to different models. k = 1, single Poisson; k = 2,
two-Poisson; nb, negative binomial; AIC, Akaike information criterion.
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711  Fig. 2: Evidence that mutation rate varies between divisions
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a, The negative binomial as a gamma-Poisson distribution. The gamma distribution takes the
same shape parameter (6) as the negative binomial and describes the variation in the rate
parameter (A) of a continuous mixture of Poisson distributions. b, Schematic of single cell
lineage showing summing of segregant groups to determine the number of mismatches
segregated to the mother (Mm) or daughter (Dm) in a single division. Actual distributions are
represented by gold (Dm) and purple (Mm) bars. Lines depict models of data: pink, single
Poisson (P, k = 1); aqua, negative binomial (nb). ¢, d, Correlations between Mm and Dm counts
from actual data (green, n = 50) and simulations (n = 1000) under two different models. In c, top
panel depicts a cell with converging replication forks from two replicons with different mutation
rates. Bottom panel shows correlation of simulated Mm and Dm values (blue) drawn from the
full negative binomial and their linear regression. In d, top panel depicts two cells replicating
DNA with different mutation rates. Bottom shows correlation of simulated Mm and Dm values
(orange) and their linear regression. e, Correlation between the number of mismatches per
chromosome segregated to Mother (Mm) or Daughter cells (Dm). green, observed counts;
orange, simulated counts from model in (d). f, Simulated index of dispersion of full replication
error counts from small cohorts (n = 50) assuming the models from (c and d).

Fig. 3: Asymmetric segregation broadens the distribution of mutation burden in mutator
cell populations.
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a, Combined distribution of mutations fixed in the Da, Db, Ma, and Mb segregant groups (see
inset) from pol3-01/pol3-01 msh6A/msh6A lineages (n = 200). Key of models (top): gray line,
single Poisson (P, k = 1); blue lines, four-Poisson (P, k = 4), green line, negative binomial (nb).
AIC, Akaike information criterion. b, Table of representative mutation counts from one division of
a diploid mutator cell. Columns represent different segregant groups; rows, the chromosome
(chr) number; values, the total number of new mutations found on homologous chromosome
pairs. Red box indicates a chromosome with both asymmetric and equal sharing of mutations.
¢, Segregation of fixed mutations between Da and Db. For each division, the fraction of
mutations observed in Da or Db on each chromosome was determined and then plotted against
each other. d, Simulated distributions of mutations/division at a rate of p = 34.5 (n = 10000)
assuming a single Poisson process (grey), a Poisson-binomial process (orange), or a gamma-
Poisson-binomial process (green). e, Variation in the index of dispersion of simulated data from
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748  the 3 models (n = 200) over 1000 iterations. f, Simulated distribution of mutations/division in
749  human ultra-mutator cells assuming a fixed mutation rate (v = 950, n = 10000) comparable to
750  pol3-01/pol3-01 msh6A/msh6A yeast and a single Poisson process (grey), Poisson-binomial
751  process (orange), or gamma-Poisson-binomial process (green). g, The cumulative mutation
752  burden of a human ultra-mutator cell after 30 simulated divisions with (orange) and without

753  (grey) asymmetric segregation. h, Simulated trajectory of mutation burden of human mutator
754  tumor cells (Colored lines, n = 1000) undergoing a Poisson-binomial process compared to a
755  Poisson process (black line). i, Change in the index of dispersion under a Poisson-Binomial
756  process (orange line) compared to the static index of dispersion under a Poisson process (grey
757 line at bottom) with an increasing mutation rate. Colored markers represent estimated mutation
758 rates for clinically relevant mutator-driven HCT116-derived mammalian cancer cell lines® and a
759  tumor from a patient with biallelic MMR deficiency (0bMMRD)3.
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Supplementary Information

Corresponding author: Alan J. Herr, alanherr@uw.edu

Haploid pol2-4 msh6A Mutators

Prior to switching to stronger diploid mutators, we first obtained full replication error
counts for 44 pol2-4 msh6A divisions from 7 independent lineages, encompassing 308
mutations (Extended Data Table 1, Supplementary Dataset 2). We sequenced only those
clones that would contribute to a full error count (Extended Data Fig.2). Since our previous
study suggested that mutations were fixed in pol2-4 msh6A mother cells at a rate of 0.4 or 4
mutations/genome/division, with full replication error counts, the volatility model predicts two
well-separated Poisson distributions centered around 1.6 and 16 replication errors per division.
Instead, we observed a single distribution centered around 6.5 (+3.9) replication errors per
division. The distribution of full replication error counts in pol2-4 msh6A cells had a D of 2.2,
which is consistent with a less pronounced volatility of the pol2-4 msh6A mutator phenotype. In
keeping with this interpretation, fitting these data to different probability distributions revealed
they matched a negative binomial better than a single or two-Poisson mixture as judged by AIC.
Parsing this data into the number of mutations fixed per individual cell produces a distribution
(N=176) that fits a single Poisson with a rate of 1.75 mutations/division. This finding does not
negate the hypothesis of a mild mutator volatility based on the full replication error counts. The
expected dispersions of fixed mutations in pol2-4 msh6A haploid cells (n=176, A=1.75) are
comparable for the Poisson-binomial (D = 1.13+0.12) and Poisson (D = 1.0£0.1) models
(Extended Data Fig.8). The rate of 1.75 mutations/division lies almost directly between the
predicted underlying rates from our published two-Poisson Model*’. Thus, our previous
distribution likely contained a preponderance of cell divisions with this intermediate mutation
rate. The high number of divisions in that earlier dataset with no mutations could have partly
been the result of a biological “zero-inflation” due to the unequal sharing of mutations described
in Fig. 3 for pol3-01/pol3-01 msh6A/msh6A cells. If so, why are there fewer cells with 0
mutations in the current distribution? We suspect that the stringent requirement of eight viable
clones to obtain a full replication error count may have introduced an ascertainment bias. Due
to unequal sharing of mutations, members of the lineage with the highest number of mutations
may fail to form a colony. The reciprocal clones with no errors from that same division would
also not be scored. This potential ascertainment bias would affect our estimates of mutator
volatility, since divisions with a higher mutation rate are more likely to have at least one progeny
fail to form a colony.

Colonies Not Included In Analysis

Many complete sub-lineages (comprised of d, gd1, gd2, and ggd) were not sequenced
because inviability later in the lineage prevented us from gaining a full replication error count.
For instance, full replication error counts for AH120 divisions that yielded d3 and d4 are not
possible because the d5 sublineage was completely inviable (Extended Fig.2). Likewise,
sometimes colonies within informative sub-lineages (e.g. AH119 gd8-2, AH120 gd10-2/ggd10,
AH121 gd9-1) were not sequenced because they were not required for a full replication error
count. In some cases (AH156 d14, AH160 d5, AH157 d8), colonies that provided identical
information on a division segregant subgroup were sequenced when the preferred colony failed
to form a viable clone (Extended Fig.3). In other cases (AH158 gd4-2/ggd4, AH158 gd7-2/ggd?,
AH162 gd6-2/ggd6), colonies had poor sequencing coverage and were censored from the
analysis. In rare cases, sequence analysis and review of dissection notes suggested an
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806  assignment error occurred; however, our careful analysis of the patterns of shared mutations
807 enabled post-hoc deconvolution of the events. In one example, in the 8" division of AH156, we
808  separated 3 cells from the mother. The two larger, similarly sized cells were both clearly

809  daughter cells and the smaller cell was a granddaughter cell, although it was not clear which
810 was its parent. We moved the daughter cells to the d8 (AH15629) and d9 positions (AH15633)
811 and placed the smaller cell below in the gd8-1 position (AH15630). We then proceeded to

812  isolate the remaining members of the lineage. Sequencing analysis of the resulting colonies
813 revealed that AH15633 was in fact d8, AH15629 was d9, and AH15630, the daughter of

814  AH15633, not AH15729. This error meant we had to reorder the lineage. AH15631 was gd9-1
815 not gd8-2. AH15632, daughter of AH15630, was ggd8 and AH15634 was gd8-2. Since we
816  didn’t realize AH15631 was gd9-1, we failed to dissect her first daughter to serve as ggd9 and
817  consequently were unable to obtain a full replication error count for the 9™ division. In another
818 example, AH160 division 2 was censored entirely from analysis after finding from the pattern of
819  mutations that AH16005 was a granddaughter derived from d1 of this lineage (AH16001).

820

821  Distribution of Mutations and Spectrum

822 Plotting the mutations scored from all divisions of pol3-01/pol3-01 msh64A/msh6A

823  mutator mother cells reveals mutations were generated across much of the unmasked portions
824  of the sequenced genome (Extended Data Fig.4a). Upon investigation, the few tracts of

825 unmasked chromosomes lacking mutations are likely artifacts of regions of low sequence

826  coverage which consistently fell below our target thresholds for quality and depth in at least one
827  or more members of a lineage.

828 As expected, C—T mutations are the most abundant single nucleotide substitutions,
829 followed by T—C and C—A. The trinucleotide context reveals a prominent peak of C—A

830 mutations at a TCT context, a hallmark of proofreading deficiency!*#4, as well as a peak at CCT
831 (Extended Data Fig.4b).

832
833 Extended Data Table 1
Lineage? Scored Sites Mutations® Divisions® Mutation Rate®
pol2-4 msh6é
119 11,080,506 33 5 0.006
120 11,120,599 51 7 0.0066
121 11,203,731 38 6 0.0057
122 10,909,400 59 7 0.0077
123 11,099,548 24 4 0.0054
124 10,094,023 58 10 0.0057
125 10,897,295 45 5 0.0083
Total 308 44
Mean (stdev ) 10,915,014 (3.51 x 10°) 44 (12) 6.3 (1.8) 0.0065 (0.001)
pol3-01/pol3-01 msh6A/msh6A
151 10,541,044 1,597 6 2.53
153 10,636,360 1,582 6 2.48
156 9,521,963 2,976 10 3.13
157 10,594,546 1,599 6 2.52
158 9,818,623 1,347 5 2.74
160 9,679,326 1,543 5 3.19
162 8,578,576 3,157 12 3.07
Total 13,801 50
Mean (stdev ) 9,910,063 (6.95 x 10°) 1,972 (699) 7 (2.5) 2.81 (0.29)
834 2 Lineage refers to descendants of the same mother cell. See Extended Data Figs.2 and 3 for images of colonies

835 and Supplementary Datasets for mutations.
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836 b Scored sites refers to the number of genomic nucleotide positions confidently scored in all members of the
837 lineage.

838 ¢ The total number of independent mutations identified within each lineage.

839 9The number of divisions with full replication error counts (see Fig.1).

840 ¢ Mutation rate (x 10> mutations/bp/division): the number of mutations divided by the total number scored sites

841 divided by the number of divisions.

842
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Extended Data Figures
Extended Data Fig. 1: Scoring mutations from multiple divisions from the same lineage.
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Arrows depict movement of dissected daughter cells and their descendants to unique positions
on the plate, where they form colonies that are sequenced. For each division, mutations unique
to the yellow (Da) or red (Db) colonies are counted as errors made during the division.
Mutations uniquely shared by all blue cells (from the next division) represent segregant group
Ma, and new mutations shared by all subsequent offspring of the mother (Purple) represent
group Mb. A full replication error count is the sum of Da, Db, Ma, and Mb. Obtaining full error
counts in subsequent divisions shifts the identities of the red, yellow, blue and purple cells one
column to the right and repeats the procedure (See AH121 in Extended Data Fig. 2 for an
example). While the genomes of colonies used to score mutations from prior divisions are used
again, the new mutations scored in the current division were not previously assigned to one of
the prior segregant groups.
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858 Extended Data Fig. 2: pol2-4 msh6A lineages.
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859 2

860 a, Photographs of agar plates with colonies formed from single cell lineages. The lineage

861 number is given in the lower right-hand corner. Locations of rows of daughter (d), first

862  granddaughter (gdl1), second granddaughter (gd2), and great-granddaughter (ggd) colonies are
863  given on the right-hand side of the images. Sublineage number is indicated below each

864  daughter colony. Circles indicate sequenced colonies. Colored circles in Lineage AH121

865 illustrate segregant groupings for the first division (see Extended Data Fig. 1). Yellow line

866  divides earlier sublineages from later sublineages. Gaps in colony growth reflect lethality. b,

867  Fitting the distributions of full error counts from haploid pol2-4 msh6A to alternative models. k=1,
868 single Poisson; k=2, two-Poisson; nb, negative binomial; AIC, Akaike information criterion.
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869  Extended Data Fig. 3: pol3-01/pol3-01 msh6A/msh6A lineages.
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870

871  Photographs of agar plates with colonies formed from single cell lineages. The lineage number
872  is given in the lower right-hand corner. Locations of rows of daughter (d), first granddaughter
873  (gdl), second granddaughter (gd2), and great-granddaughter (ggd) colonies are given on the
874  right-hand side of the images. Sublineage number is indicated below each daughter colony.
875  Yellow line divides earlier sublineages from later sublineages. Gaps in colony growth reflect
876 lethality.
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877 Extended Data Fig. 4: Distribution of mutations and spectra in pol3-01/pol3-01
878 msh6A/msh6A lineages.
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880 a, Genome level distribution of mutations (green) over yeast chromosomes (blue lines). 13,801
881  mutations pooled from 50 scored divisions of pol3-01/pol3-01 msh6A/msh6A diploid mother
882  cells, representing approximately 1 mutation per 1000 bases of the yeast genome. Close up
883  view of representative chromosome | (right). Masked bases are represented by grey ticks. b,
884  96-trinucleoide mutation spectra context of all mutations (spectrum) by frequency that arose
885  over 50 divisions of pol3-01/pol3-01 msh6A/msh6A diploid mother cells, generated using the
886  snv-spectrum program (https://github.com/aroth85/snv-spectrum).

887
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888 Extended Data Fig. 5: Excluding simple explanations for pol3-01/pol3-01 msh6A/msh6A
889  mutator volatility.

a  Distribution of Mutations During P Correlation of Mutations per Division and Scored Sites
Mother Cell Aging
400 400
\/\ 350 - *
325 . : ..
* o
0 0 00 e : s b ]
400 400 - [ ] L] L]
5 25| © . ‘ .’
:g /\/‘/\ % . . .
Aa 5 250 @ . Set
= = . ®
o 3 251 o ¢ ‘
@
E 400 400
s 200 .
8 ~_"
b 175
S r=-0.04158
E o4 P= 0.774 .
§ 0— ‘ 085 0.90 0.95 1.00 1.05
400 400 Scored Sites (*1e7)
01 16 u1 16
890 Division Number

891  a, Mutation counts and maternal age. The total mutation counts from individual divisions is
892  plotted relative to maternal age (Division number). b, Mutation counts and size of scored

893 genome. The proportion of the genome scored in all members of a lineage varies between
894 lineages due to sequencing depth and number of lineage members, but is not correlated with
895  mutation counts (Spearman Correlation).

896
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897 Extended Data Fig. 6: Semi-conservative DNA replication and segregation cause
898 asymmetrical inheritance of mutations.
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901 a, Table of representative mutation data from one division of a diploid mutator cell. Columns
902 represent different segregant groups (see Fig.1); rows, the chromosome number; values, the
903 total number of new mutations found on homologous chromosome pairs. The red box indicates
904  an example with both asymmetric and equal sharing of mutations. b, Five-step model of

905 unequal segregation: 1) Two homologous chromosomes (orange and blue) prior to scored

906 division of mother cell. 2) Mother cell duplicates chromosomes and mutator Pol & generates
907  errors (colored boxes) on the nascent strands. 3) Progeny each inherit two chromosomes with
908 mismatches. 4) Each unresolved mispair is fixed’ as a point mutation in the next S-phase.

909 Error-free strands are free of newly fixed mutations. 5) segregation results in cells with 0, 1, or 2
910 mutagenized chromosomes.

911
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912 Extended Data Fig. 7: Correlations between segregation groups.
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916  X/Y Scatter plots of segregant group pairs (Da/Db, Ma/Mb, n = 50 for each) from pol3-01/pol3-
917 01 msh6A/msh6A divisions are plotted alongside simulated data (n = 100, left; n = 1000, right).
918  Segregant 1 corresponds to Da or Ma. Segregant 2 corresponds to Db or Mb. The highest
919  outlier point for Da/Db in the upper left- hand quadrant (51, 120) comes from Division 8

920 (Supplementary Dataset 1), which produced a Ma/Mb point located at (120, 65) that yielded
921  similar mismatch totals (Dm, 171; Mm, 185). This suggests the division had a high mutation
922 rate. Ma/Mb (47,36) and Da/Db (52, 20) segregant pairs in the lower left-hand quadrant also
923  appear as outliers. Both pairs are derived from Division 15 (see Supplementary Dataset 1),
924  leading to the conclusion that the mutation rate in that division was inherently low.

925
926 Extended Data Fig. 8: Simulation of pol2-4 msh6A haploid mutagenesis.
927
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930 a, The simulated distribution of mutations from haploid pol2-4 msh6A cells at a rate of p = 1.75
931  mutations/division (n=10000) assuming a single Poisson process (grey) or a Poisson-binomial
932  process (orange). b, Variation in the index of dispersion of simulated data from Poisson and
933  Poisson-binomial models (n=176) over 10,000 iterations.

934

Supplementary Dataset 1: pol3-01/pol3-01 msh6A/msh6A sequencing data

Page Description

SRA submission List of sequence files submitted to the Short Read Archive (SRA)
Mutation Summary  Summary of mutation counts from different single cell lineages
MutInSegGroups Table of mutation counts broken down into segregant groups
MutIinSegGroupsChr Segregant group table further broken down by chromosome
Full Mutation List All mutations observed, organized by segregant groups.

Lineage 151 Sorted spreadsheet from Lineage 151 showing variants in segregant groups
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Lineage 153 Sorted spreadsheet from Lineage 153 showing variants in segregant groups
Lineage 156 Sorted spreadsheet from Lineage 156 showing variants in segregant groups
Lineage 157 Sorted spreadsheet from Lineage 157 showing variants in segregant groups
Lineage 158 Sorted spreadsheet from Lineage 158 showing variants in segregant groups
Lineage 160 Sorted spreadsheet from Lineage 160 showing variants in segregant groups
Lineage 162 Sorted spreadsheet from Lineage 162 showing variants in segregant groups

935
Supplementary Dataset 2: pol2-4 msh6A sequencing data

Page Description

SRA submission List of sequence files submitted to the Short Read Archive (SRA)
Mutation Summary Summary of mutation counts from different single cell lineages
Full Mutation List All mutations observed, organized by segregant groups.

R1_Lineage Sorted spreadsheet from Lineage R1 showing variants in segregant groups
R2_Lineage Sorted spreadsheet from Lineage R2 showing variants in segregant groups
R4 Lineage Sorted spreadsheet from Lineage R4 showing variants in segregant groups
R5_Lineage Sorted spreadsheet from Lineage R5 showing variants in segregant groups
R6_Lineage Sorted spreadsheet from Lineage R6 showing variants in segregant groups
R9 Lineage Sorted spreadsheet from Lineage R9 showing variants in segregant groups
R10 Lineage Sorted spreadsheet from Lineage R10 showing variants in segregant groups
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