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Mutations that compromise mismatch repair (MMR) or DNA polymerase exonuclease 11 
domains produce mutator phenotypes capable of fueling cancer evolution. Tandem 12 
defects in these pathways dramatically increase mutation rate.  Here, we model how 13 
mutator phenotypes expand genetic heterogeneity in budding yeast cells using a single-14 
cell resolution approach that tallies all replication errors arising from individual 15 
divisions. The distribution of count data from cells lacking MMR and polymerase 16 
proofreading was broader than expected for a single rate, consistent with volatility of the 17 
mutator phenotype. The number of mismatches that segregated to the mother and 18 
daughter cells after the initial round of replication co-varied, suggesting that 19 
mutagenesis in each division is governed by a different underlying rate. The distribution 20 
of “fixed” mutation counts that cells inherit is further broadened by an unequal sharing 21 
of mutations due to semiconservative replication and Mendelian segregation. Modeling 22 
suggests that this asymmetric segregation may diversify mutation burden in mutator-23 
driven tumors. 24 
 25 
Introduction 26 

All tumors contain genetically divergent cells spawned by the evolutionary processes of 27 
mutation and selection. In some tumors, genetic heterogeneity arises from a “mutator 28 
phenotype”1 due to mismatch repair (MMR) defects2 or heterozygous exonuclease domain 29 
mutations (EDM) affecting the leading or lagging strand DNA polymerases (pol), Polε or Polδ 3-9.  30 
Since MMR corrects polymerase errors, when MMR and EDM mutations occur together they 31 
produce a dramatic increase in the number of unrepaired polymerase errors. The resulting 32 
tumors rapidly evolve and possess “ultra-hypermutated” genomes. Yet a full understanding of 33 
the relative contributions of mutagenesis and selection to the rise of heterogeneity within these 34 
tumors remains elusive, since cells with more mutations tend to adapt more readily.  35 

A key unanswered question is whether the mutation rate is constant within mutator cell 36 
populations. The two most common ways of measuring mutation rates are fluctuation analysis 10 37 
and mutation accumulation lines11. Both assume a uniform mutation rate and report the average 38 
of hundreds or thousands of cell divisions. However, in recent years, evidence has emerged 39 
that mutagenic processes may vary from one division to the next. Kataegis and chromothripsis, 40 
for instance, sharply increase mutation burden in a single cell division12-14. Indirect evidence for 41 
highly mutagenic sub-populations of cells also comes from studies of yeast exposed to 6-42 
hydroxylaminopurine or AID/APOBEC cytosine deaminase. Drug-resistant mutants in these 43 
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studies had substantially higher mutation burdens than non-selected isolates from the same 44 
population15. More recently, limited single-cell propagation of human cancer cell lines coupled to 45 
whole genome sequencing revealed broader than expected variation in mutation rate in closely 46 
related subclones16. Observations such as these challenge the assumption that mutation rate is 47 
constant and beg higher resolution studies of mutator cells. 48 

The asymmetrically dividing budding yeast, Saccharomyces cerevisiae, is ideal for 49 
studying mutator phenotypes with high resolution. It encodes many of the same DNA replication 50 
and mismatch repair genes found in humans. Yeast “daughter” cells can be separated from their 51 
larger “mother” cell at each division by micromanipulation and then moved to defined locations 52 
on an agar plate, forming a “single cell lineage”.  Whole genome sequencing (WGS) of cultures 53 
derived from these cells permits the number of new mutations that arose in the mother cell at 54 
each division to be counted. Moreover, the small size of the genome (12 megabases) makes it 55 
cost effective to score enough cell divisions to see whether the distribution of mutation counts 56 
conforms to that expected from a single underlying mutation rate.  57 

We previously pioneered this approach with haploid mutator mother cells deficient in 58 
Polε proofreading and MMR (pol2-4 msh6Δ)17. A single underlying mutation rate could not 59 
explain the distribution of mutation counts from 87 divisions. However, the distribution did fit a 60 
model with two underlying mutation rates that differed by 10-fold (0.4 and 4 61 
mutations/genome/division). This led to a hypothesis of “mutator volatility” in which cells 62 
assumed one of two mutator states as they passed through the cell cycle17. But since we only 63 
scored mutations retained by the mother, we could not exclude an alternative hypothesis: that 64 
polymerase errors sporadically segregated asymmetrically between mother and daughter cells, 65 
either as mismatches at the initial division or as permanent, “fixed” mutations following the next 66 
round of synthesis. Here, to distinguish between these two hypotheses, we sought to score all 67 
replication errors that arose in individual cell divisions using more extensive single cell lineages. 68 
Examination of the distribution of the full replication error counts from individual divisions 69 
provided a way to test the mutator volatility hypothesis apart from the confounding influence of 70 
segregation.  At the same time, sequencing complete lineages gave us the means to determine 71 
whether replication errors segregate equally on their way to fixation.  72 

Results 73 
 To confidently score replication errors arising on all nascent DNA strands from each 74 
division, we devised a scheme that ensured that all mutations were observed in at least two 75 
members of a single cell lineage. After moving each daughter by micromanipulation from the 76 
founding mother cell, we isolated a sublineage of three additional cells to help score the number 77 
of errors segregated to that daughter. These cells included the first and second granddaughter 78 
(born to the daughter cell) as well as the first great-granddaughter cell derived from the first 79 
granddaughter (Fig.1a). Errors segregated to the daughter as mismatches in the first division 80 
segregate as fixed mutations in the next division when the daughter produces the first 81 
granddaughter. Mutations retained by the daughter after that segregation event will be inherited 82 
by the second granddaughter, forming what we call the “Da” segregant group. Mutations 83 
segregated to the first granddaughter will be inherited by the great-granddaughter, forming the 84 
“Db” segregant group. In theory, the Da and Db segregant groups represent half of the errors 85 
made by the mother cell during a given division. The remaining errors, retained initially by the 86 
mother as mismatches, segregate between the mother and her next daughter as fixed 87 
mutations in the next division. Fixed mutations segregated to that daughter will be uniquely 88 
present in the next sublineage, forming the “Ma” segregant group. Mutations retained by the 89 
mother will be found in all later sublineages, defining the “Mb” segregant group. After colony 90 
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formation and WGS, a full error count for a given division can be determined by simply summing 91 
the number of fixed mutations in the Da, Db, Ma, and Mb segregant groups. With a complete set 92 
of sublineages from the same mother cell, the full replication error counts from several 93 
sequential cell divisions can be determined from the nested data (Extended Data Fig.1). By 94 
requiring that all errors be observed in at least two members of the lineage, this approach 95 
eliminates false positives due to sequencing errors or clonal sweeps within the cultures.  96 

We initially began our experiments with the pol2-4 msh6Δ haploid strain used in the 97 
previous study17. We found evidence for a more limited mutator volatility but were concerned 98 
that lethality within some sublineages may have introduced a bias (see Supplementary 99 
Information and Extended Data Fig. 2).  To improve viability and the mutational signal, we 100 
switched to using diploid yeast with a 10-fold higher mutation rate due to homozygous mutations 101 
affecting Polδ proofreading and base-base mismatch repair (pol3-01/pol3-01 102 
msh6Δ/msh6Δ)18,19. To obtain pol3-01/pol3-01 msh6Δ/msh6Δ cells, we mated pol3-01 msh6Δ 103 
haploids, freshly dissected from sporulated POL3/pol3-01 MSH6/msh6Δ diploids. We isolated 104 
the newly formed zygotes and then used the first or second diploid daughters as founding 105 
mother cells for the isolation of single-cell lineages, noting the time and placement of each cell. 106 
Following colony formation, and WGS, we scored 13,801 mutations from 50 divisions obtained 107 
from 7 different lineages (Fig.1b, Table 1, Extended Data Fig. 3). The mutations were distributed 108 
across the genome and displayed a spectrum consistent with combined proofreading and MMR 109 
deficiency (Extended Data Fig. 4). We only scored mutations at genomic sites confidently called 110 
in all members of a lineage and carefully vetted the resulting variant lists.  Having complete 111 
lineage information allowed us to assign when the mutations arose using the logic described 112 
above. In addition, we visually inspected the variant sites in all genomes from a given lineage 113 
using the Integrative Genomics Viewer, which allowed us to detect discrepancies in the lineage 114 
order or whether mutations had been incorrectly assigned (see Methods).  We tallied the full 115 
replication error counts from each division and determined whether the distribution could be 116 
explained by a single underlying mutation rate.  117 

Mutagenesis has been modeled for more than 70 years18-20 with the Poisson distribution, 118 
which is a discrete probability distribution of the number of expected independent events 119 
occurring within a defined interval, assuming a constant rate (λ). A simple test of whether a 120 
distribution matches a single Poisson is to calculate the index of dispersion (D̂), which is equal 121 
to the variance of the distribution divided by the mean (σ2 /μ). The variance of Poisson 122 
distributions always equals the mean, which results in a D̂ of 1. The pol3-01/pol3-01 123 
msh6Δ/msh6Δ mother cells committed an average of 276 (±37.7, standard deviation (σ)) 124 
replication errors per division. This corresponds to a D̂ of 5.15 (37.72/276), which suggests that 125 
the distribution does not conform to a single Poisson (Fig.1b). Two alternative explanations 126 
failed to account for the overdispersion. For instance, we did not observe any relationship 127 
between the mother’s replicative age and the number of errors made by Polδ (Spearman’s rank 128 
correlation coefficient: 0.007209, p = 0.9604)(Extended Data Fig.5), nor did the number of 129 
mutations correlate with the size of the scored genome, which differed between lineages due to 130 
variation in sequencing depth and the number of members in each lineage (Spearman’s rank 131 
correlation coefficient: -0.0416, p = 0.7743)(Extended Data Fig.5). Instead, the broad 132 
distribution of full replication error counts, free from the confounder of segregation, is consistent 133 
with mutator volatility. 134 

To better understand the nature of mutator volatility in pol3-01/pol3-01 msh6Δ/msh6Δ 135 
cells, we used finite mixture modeling, which employs a maximum likelihood framework to 136 
identify mixtures of two or more Poisson distributions that better fit the data. We also modeled 137 
the data as a negative binomial (nb), which is a discrete distribution with separate rate (μ) and 138 
shape parameters (θ) commonly used to interpret over dispersed count data. The rate 139 
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parameters λ and μ, for the Poisson and nb distributions, both define the mean number of 140 
events. Since these models derive from different distributions, they cannot be directly compared 141 
using standard statistical tests. Non-nested models such as these, however, can be evaluated 142 
with Akaike Information Criteria (AIC), which uses maximum likelihood to estimate the loss of 143 
information of each model relative to the observed distribution. To prevent overfitting, AIC 144 
penalizes models with more parameters. Lower AIC values correspond to a more parsimonious 145 
fit; however, interpreting differences in raw AIC values can be enigmatic. Thus, we transformed 146 
the raw AIC values to “Akaike weighted values”, which conveys their relative likelihood 147 
(Fig.1b)21,22. We found that the negative binomial model was the most likely (relative likelihood 148 
of 0.9999), followed by the two-Poisson-mixture model (2.2 x 10-6), and the single Poisson (4.3 x 149 
10-28) (Fig.1b). Similar results were obtained using Bayesian Information Criteria (BIC), which 150 
imposes stronger penalties for overfitting. Thus, mutator volatility in pol3-01/pol3-01 151 
msh6Δ/msh6Δ cells is more complex than just two distinct mutator states.  152 

The superiority of the negative binomial model suggests that the mutator phenotype may 153 
vary continuously. This rationale derives from the ability to describe a negative binomial as a 154 
gamma-Poisson distribution (Fig.2a).  The gamma function is a continuous, rather than discrete, 155 
distribution.  Here, it takes the same shape parameter (θ) as the negative bionomial and serves 156 
as a conjugate-prior to define variation in the rate parameter λ of a mixture of Poisson 157 
distributions. The variation in λ that creates a negative binomial occurs between replication 158 
events at the same site, or a collection of sites such as a chromosome or genome. Having 159 
complete lineage information provided an opportunity to test whether λ varies at a chromosomal 160 
or genome-wide level. The distributions of mismatches segregated to mother (Mm) or daughter 161 
cells (Dm) across all divisions were the same and fit a negative binomial (Fig. 2b). If λ varied 162 
widely during the replication of individual replicons (the units of DNA replication on a 163 
chromosome), this could introduce asymmetry in the number of errors on sister chromatids, 164 
which would then propagate to the daughter and mother cells (Fig. 2d). Consequently, Dm and 165 
Mm from the same division would be free to vary within the observed negative binomial 166 
distribution. Alternatively, if the genome-wide value for λ varies between cell divisions, a single 167 
mutation rate would govern mismatch formation for both the mother and daughter genomes 168 
(Fig. 2e). Dm and Mm would co-vary within the constraints of the corresponding Poisson 169 
distribution. To distinguish between these two hypotheses, we first compared the correlation of 170 
mismatches segregated to mother and daughter cells to simulated data generated under the 171 
constraints of the two models. While no correlation was seen between Dm and Mm in the 172 
simulated data from the first model (R2=0.001), similar correlations were observed for both the 173 
simulated data from the second model (R2=0.47) and the actual data (R2=0.37). This 174 
correspondence in the number of mismatches segregated to mother and daughter cells 175 
extended down to the level of chromosomes (Fig. 2f). The R2 values are lower than typically 176 
seen with strong correlations, but as our modeling shows, this is expected since both X and Y 177 
values are randomly drawn from a Poisson distribution. As a second test of the hypotheses, we 178 
also performed 10,000 simulations of how each model would affect the distribution of full 179 
replication error counts from 50 divisions (Fig. 2g). With the first model, the simulated index of 180 
dispersion (3.28 ± 0.66, σ) was substantially less than observed with the actual data (D̂=5.15), 181 
while the second model produced a good match (5.54 ± 1.12, σ). Together, these analyses 182 
strongly suggest that the source of mutator volatility is variation in the genome-wide mutation 183 
rate from one division to the next.  184 

With this support for the mutator volatility hypothesis, we turned our attention to the 185 
question of asymmetric inheritance. Individual cells averaged 69 (±18, σ) fixed mutations/diploid 186 
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genome/division (n = 200) (Fig. 3a) with an index of dispersion of 4.8. A negative binomial fit the 187 
distribution most closely (relative likelihood = 0.82), followed by a four-Poisson mixture model 188 
(relative likelihood = 0.18). A close examination of mutations arising from the same division 189 
revealed a striking asymmetric pattern of inheritance. When pairs of segregant groups were 190 
compared (e.g. Da vs Db or Ma vs Mb), half of the time one segregant group inherited all of the 191 
mutations for a given chromosome while the other received none (Fig. 3b,c). This pattern is 192 
explained by the sequential actions of semiconservative DNA replication and Mendelian 193 
segregation (Extended Data Fig.6). At the end of the first S-phase, due to semiconservative 194 
replication, all errors arising due to the Poisson process of polymerase error formation reside on 195 
one of the two strands of each sister chromatid. These strands segregate equally between 196 
mother and daughter cells. The next round of replication produces two new duplexes per cell, 197 
only one of which contains fixed mutations. At metaphase, cells receive either all or none of the 198 
fixed mutations for that chromosome from the previous division.  This binomial process occurs 199 
twice for every chromosome number in diploid cells. Consequently, for each chromosome 200 
number, cells receive 0%, ~50%, or 100% of the mutations in a given division with a Mendelian 201 
ratio of 1:2:1 (Fig. 3c) (actual ratio, 876:1490:834). Thus, we can describe how polymerase 202 
errors arise in an individual division and later become fixed as a compound Poisson-binomial 203 
process.  204 

To determine the contribution of the Poisson-binomial process to the overdispersion of 205 
mutation counts, we simulated mutagenesis in pol3-01/pol3-01 msh6Δ/msh6Δ cells assuming a 206 
constant error rate. Given that we observed an average of 138 mismatches per diploid mother 207 
or daughter cell (Fig. 2c), the average rate of error formation was 69 errors/haploid 208 
genome/division. Since cells only inherit, on average, half of the polymerase errors, the 209 
observed mutation rate in pol3-01/pol3-01 msh6Δ/msh6Δ cells was 34.5 fixed mutations/haploid 210 
genome/division. To model the Poisson-binomial process we simulated mutagenesis on each 211 
chromosome by setting λ equal to 69 errors/haploid genome and then, to mimic segregation, 212 
multiplied the number of mutations apportioned to each chromosome by a randomly chosen 1 or 213 
0, before summing the total fixed mutations (Fig.3d). For comparison, we simulated mutation 214 
accumulation assuming a simple Poisson process in which mutations accumulated with a rate of 215 
34.5 mutations per haploid genome (Fig.3d). With 1000 simulations of 200 cell cohorts, the 216 
Poisson-binomial model produced a broader index of dispersion (D̂ = 3.58±0.49, σ) than the 217 
Poisson model (D̂ = 1.0±0.1, σ) (Fig.3e), but narrower than the observed data (D̂ = 4.8). 218 
However, substituting the constant mutation rate with the gamma-distributed set of λ values 219 
from Fig.2c yielded simulated data with an equivalent dispersion (D̂ = 4.80±0.49, σ) (Fig. 3e). 220 
Thus, the combination of mutator volatility and asymmetric segregation of mutations — a 221 
gamma-Poisson-binomial process —accounts for the observed distribution of fixed mutations in 222 
individual pol3-01/pol3-01 msh6Δ/msh6Δ cells.  223 

To understand the potential implications of our findings for mutator-driven cancers, we 224 
first focused on how the Poisson-binomial process would influence the heterogeneity of 225 
mutation burden within a dividing population of tumor cells.  Assuming a constant mutation rate 226 
comparable to pol3-01/pol3-01 msh6Δ/msh6Δ yeast, the expected distribution of simulated 227 
mutation counts in human cells after one division (D̂ = 50) was far broader than in yeast (Fig.3f) 228 
and persisted through 30 simulated divisions (Fig. 3g,h). Adding a comparable level of volatility 229 
to the mutator phenotype further increased the simulated dispersion (D̂ = 82) (Fig.3f). Using the 230 
Poisson-binomial model, we simulated a range of mutator phenotypes observed in cancer cells 231 
and found a linear relationship between mutation rate and predicted dispersion. For instance, 232 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.21.163451doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.21.163451
http://creativecommons.org/licenses/by-nc-nd/4.0/


mutation accumulation in HCT116, the well-known MLH1 mutant colon cancer cell line, 233 
increases from 48 to 190 mutations/haploid genome/division upon introduction of a 234 
heterozygous POLE proofreading-deficient allele9. In these cells, the predicted index of 235 
dispersion expanded from 3.4 to 10.8 (Fig.3i). Even greater heterogeneity may arise in human 236 
cancers when more potent POLE mutator alleles occur in combination with MMR 237 
deficiency5,7,23,24. Thus, the fundamental Poisson-binomial process of asymmetric segregation 238 
has the potential to dramatically expand the diversity of mutation burdens present among a 239 
population of human mutator cells.  240 

 241 
Discussion 242 

Genetic heterogeneity progressively increases in a dividing population of cells as an 243 
unavoidable consequence of errors made during DNA synthesis. Here, for the first time, we 244 
describe the fate of polymerase errors made on all nascent DNA strands synthesized in 245 
individual cell divisions. We developed this single cell resolution approach in order to 246 
understand previous observations that the distribution of new fixed mutations in individual 247 
mutator cells was broader than expected. To explain the phenomenon, we proposed two 248 
hypotheses: (1) that mutator phenotypes are volatile and (2) that polymerase errors arise with a 249 
constant rate but segregate asymmetrically on the way to fixation. The design of our single cell 250 
pedigrees ensured at least two independent biological observations for each mutation, which 251 
allowed us to confidently assign more than 13,000 mutations to fifty divisions. From the resulting 252 
mutation count data, we found strong evidence that both mutator volatility and asymmetric 253 
segregation significantly expand genetic heterogeneity in pol3-01/pol3-01 msh6Δ/msh6Δ yeast.  254 

Historically, mutagenesis has been modeled with the Poisson distribution, which 255 
describes the probability of the number of independent events per unit time given a constant 256 
rate. The observed distribution of full replication error counts of mutator cells, free from the 257 
influence of segregation, best a fit a negative binomial and not a single Poisson (Fig.1b). 258 
Negative binomials are equivalent to a continuous mixture of Poisson distributions whose rates 259 
vary according to a gamma distribution (Fig.2a). This suggests that mutator volatility may create 260 
a continuum of mutation rates rather than discrete mutator states. We explored the idea that 261 
mutation rate varies from one division to the next by simulating the number of mismatches 262 
segregated to mother and daughter cells (Fig 2d,e) and the dispersion of full replication error 263 
counts expected from small cohorts of cells (Fig.2f). Both simulations closely matched the 264 
observed data, consistent with the hypothesis that mutator volatility derives from continuous 265 
variation in mutation rate between divisions.  Mutator polymerases do not operate as a closed 266 
system. They interface with a myriad of other replication components and metabolites, such as 267 
dNTPs, that influence their fidelity25,26. Variation in the timing and duration of perturbations to 268 
these interactions may produce a continuum of rates. The observed overall mutation rate that 269 
cells exhibit represents a composite of mutation rates at all sites within the genome. 270 
Conceivably, the change in replication fidelity could be localized to certain parts of the genome 271 
in a given division. But if so, our data suggests, that the nascent strands from each pair of sister 272 
chromatids in the affected region must be equally influenced by the change in rate (Fig.2c,f).  273 

The asymmetric inheritance of mutations observed in mutator cells results from the 274 
fundamental processes of semi-conservative replication and Mendelian inheritance acting in 275 
concert. Current models of mutation accumulation generally ignore the potential for this synergy 276 
to expand genetic heterogeneity, although there are exceptions. John Cairns proposed a far 277 
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more extreme asymmetric inheritance of mutations in the “Immortal Strand Hypothesis” in which 278 
stem cells always segregated away newer DNA duplexes with fixed mutations27. In keeping with 279 
this hypothesis, a recent computational analysis of human somatic variants argued that the high 280 
variance of mutation burden in adult stem cells with age supports a preferential inheritance of 281 
ancestral strands28. A second study from the field of evolutionary biology examined the potential 282 
influence of disparate mutagenesis of leading and lagging strand synthesis to promote variable 283 
evolutionary trajectories from the same cell population29. Our findings here demonstrate that, in 284 
the context of a mutator phenotype, the normal process of semi-conservative replication and 285 
Mendelian inheritance has the potential to create unequal sharing of mutations. For every cell 286 
that inherits disproportionately more mutations there will be another cell with fewer mutations. 287 
The predicted impact of this process on the variation in mutation burden is larger in human cells 288 
than in yeast due to the vast differences in chromosome length, and the correspondingly larger 289 
number of fixed mutations per chromosome. However, with longer chromosomes comes an 290 
increased likelihood that sister chromatid exchanges (SCEs) may mitigate the asymmetry. 291 
SCEs clearly to do not homogenize mutation burden in diploid mutator yeast cells as half of 292 
cells either received all or none of the new fixed mutations for a given chromosome (Fig. 3c). 293 
This finding is in keeping with recent evidence from a sensitive Next Generation Sequencing 294 
methodology (Strand-seq) that SCE occurs with a rate of 0.26 events/division in yeast30. Strand-295 
seq experiments of normal human fibroblasts and lymphoblasts indicate the SCEs occur with a 296 
rate of 5 events/cell division31. At this rate, most chromatid pairs in mutator cells would be free 297 
of SCEs even after the two divisions it takes for errors to become fixed mutations. Of course, 298 
the frequency of SCEs may increase in some cancer cells, especially those with intrinsic DNA 299 
repair defects 31. However, the mutator yeast strains studied here do not show obvious signs of 300 
elevated SCEs. Performing single cell lineage analysis of human mutator cells in future studies 301 
should address both the prevalence of SCEs and the asymmetric inheritance of mutations.  302 

Our simulation of a mutator-driven tumor rapidly generated substantial intra-tumoral 303 
genetic heterogeneity during expansion (colored lines, Fig.3h) compared to a population in 304 
which mutations accumulated by a simple Poisson process (black line, Fig.3h). The associated 305 
variability in mutation load may be relevant to cancer evolution. Early during tumorigenesis the 306 
subpopulation of cells that inherit disproportionately more mutations may adapt more readily. 307 
With elevated mutation rates, polyclonal adaptation is almost certain. The unifying feature of 308 
these adapted cells is a high mutation burden. As mutation burden mounts and mutator cells 309 
contend with increasingly strong negative selection pressure due to immune surveillance and 310 
negative epistatic interactions32,33, adapted cells that inherit fewer new mutations due to 311 
asymmetric inheritance may be at a relative fitness advantage. Selectively increasing mutation 312 
rate in mutator cancer cells could represent a novel therapy25. If, as a means of treatment, the 313 
mutation rate of cancer cells is only transiently elevated to induce extinction, this subpopulation 314 
may persist. Sustained elevation of mutation rate over many divisions of mutator cells may be 315 
required to drive their extinction. 316 

Methods 317 

Yeast strains and culture conditions. 318 
 The diploid strains AH2801 (POL2/URA3::pol2-4 MSH6/msh6Δ::LEU2) and AH2601 319 
(POL3/URA3::pol3-01 MSH6/msh6Δ::LEU2) were previously described17,34. They are derived 320 
from AH0401, a BY4743 derivative engineered to be heterozygous at the CAN1 locus 321 
(CAN1::natMX/can1Δ::HIS3) to facilitate forward mutation rate assays32. We followed standard 322 
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procedures for yeast propagation and tetrad dissection35. For general propagation, we grew 323 
liquid YPD cultures (1% wt/vol yeast extract, 2% wt/vol peptone, 2% wt/vol dextrose) at 30°C. 324 
For sporulation, we diluted overnight YPD cultures 1:100 in 3 mls of YPD and grew until the 325 
culture was 1-2 x 107 cells/ml. We recovered the cells by centrifugation, resuspended and 326 
pelleted the cells once in 1 ml H2O, and then resumed growth at 22-25°C in sporulation media 327 
(1% potassium acetate, 0.1% yeast extract, 0.05% dextrose) for five days. For rich solid media, 328 
we used synthetic complete (SC) [6.7 g Difco yeast nitrogen base without amino acids, 2% 329 
wt/vol dextrose, 2 g/L SC amino acid Mix (SCM) (Bufferad)] supplemented with 2% wt/vol agar. 330 
For plates lacking leucine and uracil (SC-Leu-Ura), SCM was substituted for SCM-Leu-Ura 331 
(Bufferad). Archival frozen stocks were stored in 23% glycerol at -80°C. 332 

Single cell lineage isolation 333 
To isolate pol2-4 msh6Δ lineages we dissected AH2801 tetrads on SC-Leu-Ura selective 334 

media and chose one germinating spore per plate to serve as the founding mother cell. To 335 
obtain pol3-01::URA3/pol3-01::URA3 msh6∆::LEU2/msh6∆::LEU2 cells for pedigree analysis we 336 
first dissected POL3/ pol3-01::URA3 MSH6/ msh6∆::LEU2 tetrads on SC-Leu-Ura plates. After 337 
two divisions, double mutant haploid cells from different tetrads were placed next to each other 338 
to allow mating. Upon isolation of a zygote, the first or second daughter was used as the 339 
founding mother (M) for the lineage. Mothers were placed at an isolated location and we 340 
separated daughter cells (designated Dn, Dn+1, etc.) from the mother as they were generated 341 
and moved them to select areas 5 mm apart on the plate. We repeated the procedure to obtain 342 
each daughter’s first daughter (GD.1, Fig.1b), second daughter (GD.2), and first granddaughter 343 
(GGD, born to GD.1). This strategy was repeated for each daughter up to either the 20th division 344 
or the end of the mother’s replicative lifespan, whichever occurred first. In a typical experiment, 345 
we pre-punched the agar with the dissecting needle at each drop-off location so that we would 346 
always put the cell in a defined place, making it easy to later find the cell for inspection and 347 
manipulations. We isolated lineages over the span of a week by performing rounds of 348 
dissections every 90-120 minutes. Only a few cells on a plate were moved in any one round, 349 
and then, only one cell at a time. We noted the timing of each round of bud dissections. We 350 
incubated plates at 30°C between dissections. At the end of the day, plates were wrapped in 351 
parafilm and stored overnight at 4°C. When plate dissections were concluded, we incubated 352 
each plate an additional 48 hours at 30°C to allow colonies to fully develop. Prior to sequencing, 353 
the pol3-01/pol3-01 msh6Δ/msh6Δ and pol2-4 msh6Δ genotypes were confirmed by previously 354 
described allele-specific PCR assays34. 355 

Genome sequencing 356 
We performed whole genome sequencing of yeast cultures as described34. Briefly, each 357 

colony in a pedigree was used to inoculate overnight 5 ml liquid YPD cultures. Glycerol stocks 358 
were made and genomic DNA extraction extracted with the ZR Fungal/bacterial purification kit 359 
(Zymo Research). DNA was sheered into 500 to 1000 bp fragments by sonication. After end-360 
repair, Illumina sequencing libraries were made by ligating on dsDNA adapters and indexing by 361 
quantitative PCR. The samples were then sequenced on the HiSeq 2500 or Nextseq platforms. 362 
We performed sequencing alignments and variant calling using a custom pipeline 363 
(eex_yeast_pileline.sh) that runs in the Unix command-line (see Github link below). Reads were 364 
aligned to a repeat-masked S288C yeast genome17 using the Burrows-Wheeler Aligner 365 
(0.7.17)36.  Discordant and split read groups were removed using Samblaster (0.1.24) 37. We 366 
used Picard tools (2.21.9) AddorReplaceReadGroups to add information to the header used for 367 
later steps.  We indexed the BAM files with Samtools (1.8)38 and then sequentially processed 368 
them with functions from the Genome Analysis Toolkit (GATK3)39 to minimize false variant calls: 369 
RealignerTargetCreator, IndelRealigner, LeftAlignIndels, BaseRecalibrator, and PrintReads.  370 
We made a pileup file with Samtools and used VarScan (v2.3.9) mpileup2snp to call single 371 
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nucleotide variants40. We limited our analysis to single nucleotide variants, which are by far the 372 
most abundant polymerase error type in these cells. We used the Varscan2 tool to identify 373 
variants present in our colonies with the following parameters. For pol2-4 msh6Δ haploid 374 
lineages we used a variant frequency cut-off of 0.8 with a minimum read-depth of 18 (daughter 375 
and GD.1 positions) or 10 (for GD.2 and GGD positions). Since these are haploid cells, new 376 
variants should be present in 100% of reads.  Setting the cut-off at 0.8 accommodates sites with 377 
low read depth and one sequencing error. For pol3-01/pol3-01 msh6Δ/msh6Δ diploids, we used 378 
a minimum read-depth of 18 for all strains and a variant frequency cut-off of 0.22. With a read 379 
depth of 18, clonal heterozygous variants in diploid cells have a false negative rate of 6.1 x 10-5. 380 
With 1000 mutations we have a 6% chance of having 1 false negative in a genome. We filtered 381 
the above results to remove variants present in the parental strains as well as recurrent 382 
sequencing artifacts. A small number of variants (<0.1%) could be reliably scored with the 383 
above parameters but fell below a quality threshold for a subset of genomes. These were 384 
manually curated for inclusion. We detected these by visually inspecting the BAM files for all 385 
strains in a single cell lineage at the same time using the Integrated Genome Viewer (IGV).    386 

Scoring of mutations and detection of assignment errors  387 
We used a custom Python script (JLSLineageCaller) to determine the number of shared 388 

variants within each lineage. The program first determines all genomic positions with 18-fold 389 
read-depth in all members of the lineage and then filters the called variant lists for mutations at 390 
positions within the shared genome. Pairwise comparisons are done between certain strains to 391 
identify shared mutations at different branch points in the lineage, resulting in a data-frame of 392 
comparisons that allows all mutations arising in a lineage to be sorted and examined in 393 
Microsoft Excel. The mutation counts for division n were determined by summing the number of 394 
new mutations identified at branchpoints Da (GDn.1 vs GGDn.1), Db (Dn vs GDn.2), Ma (Dn+1 395 
vs GDn+1.1), and Mb (Dn+2 vs Dn+3). Da mutations are only found in the daughter (Dn) and her 396 
second daughter (GDn.2).  Likewise, Db mutations are only found in GDn.1 and her first 397 
daughter GGDn.1.  Mismatches retained by the mother after the first division become fixed in 398 
the next division and are either passed on to her next daughter (Dn+1) or are retained by the 399 
mother and passed on to all future offspring.  The fixed mutations inherited by Dn+1 that form 400 
the Ma segregant group are only found in this branch of the lineage.  Finally, the fixed mutations 401 
retained by the mother, the Mb segregant group, first appear in Dn+2 and her offspring, but also 402 
show up in all subsequent daughters (Dn+3, Dn+4, etc) and their offspring. Any deviation from 403 
this pattern of inheritance indicates an “assignment error” has occurred, and that a cell was 404 
inadvertently placed in the wrong position in the lineage. In the Supplementary Information we 405 
describe two such cases. The divisions encompassing these strains were censored from the 406 
analysis. Below we describe how these errors arise and are detected to illustrate the reliability of 407 
the method. 408 

One possible assignment error could occur at dissection when the daughter and mother 409 
cells both divide before the next round of dissection. On the basis of size, the first daughter (Dn) 410 
can be easily distinguished from the mother, the second daughter (Dn+1), and her own 411 
daughter (GDn.1). Usually Dn+1 and GDn.1 can also be distinguished because Dn+1 buds 412 
before GDn.1. However, in rare cases Dn+1 and GDn.1 are adjacent and similarly sized. If 413 
Dn+1 is moved in place of GDn.1, we will have a sublineage consisting of Dn, Dn+1, GDn.2, 414 
and GDn+1.1 (instead of Dn, GDn.1, GDn.2, and GGDn.1).  Every sublineage should normally 415 
contain subsets of mutations from different divisions (Da and Db mutations from the “n” division; 416 
Ma mutations from the “n-1” division; and Mb mutations from the “n-2” division).  In this 417 
sublineage, the Ma segregant group mutation count will be 0, since there are no new mutations 418 
that will be shared by these four colonies.  However, a substantial subset of the mutations 419 
assigned to the Db segregant group will also be found in later sublineages indicating that they 420 
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are not Db mutations but Mb mutations from a later division.  The other half of what appear to 421 
be Db mutations will in fact be Ma mutations from a different division.  Added confirmation of the 422 
dissection error comes from the analysis of the next sublineage, which will consist of GDn.1 (not 423 
Dn+1 as it should be), GGDn.1, GGDn.2, GGGDn.1 (great-great-great granddaughter 1).  There 424 
will be 0 Mb mutations in this sublineage since all of these cells are directly descended from Dn.  425 
These problematic cell divisions would be censored because we lack key lineage members 426 
necessary to obtain a full replication error count.  Another type of assignment errors could occur 427 
during dissections to isolate the sublineages. For instance, if Dn divides twice in the interval 428 
before the next round of dissection we would have to distinguish between GDn.1 and GDn.2.  429 
This is usually easy to do because, as above, GDn.1 would be forming a bud while GDn.2 430 
would be unbudded.  If we inadvertently reversed those two cells, we would have a sublineage 431 
consisting of Dn, GDn.2, GDn.1, and a great granddaughter born to the second granddaughter.  432 
When calling the Da segregant group we would be calling shared mutations between Dn and 433 
GDn.1 (and not between Gn and GDn.2).  We would quickly see that these are, in fact, Ma 434 
segregant group mutations because they would also be present as a subset of Db mutations 435 
obtained in the comparison between GDn.2 and her offspring.   436 

The most difficult potential assignment errors to detect would occur in the Da and Db 437 
segregant groups. For example, if GDn.1 divided twice, producing GGDn.1 and GGDn.2, and 438 
we selected GGDn.2 instead of GGDn.1, the mutation count for the Db segregant group would 439 
be derived from two divisions instead of one. Again, this is unlikely, because GGDn.1 would 440 
begin budding long before GGDn.2. But we lack an obvious distortion to the pattern of mutation 441 
inheritance to flag this as an error. We don’t think this is a common problem given the 442 
correspondence between mismatches segregated to the mother (Mm) and daughter (Dm) cells 443 
illustrated in Fig.2d,e. As described above, we regard the Ma and Mb segregant groups as 444 
highly reliable because dissection errors lead to obvious perturbations in the pattern of mutation 445 
inheritance.  In favor of the reliability of the Da/Db data, an XY scatter plot of mutation counts 446 
observed in pairs of Ma/Mb segregant groups corresponds very well to that observed with pairs 447 
of Da/Db segregant groups (Extended Dataset Fig. 7).  Both sets also correspond with what 448 
would be expected based on simulated data.  (The simulation assumed a gamma-Poisson 449 
distribution as in Fig. 2).  Interestingly, there are two Ma/Mb (47,36) and Da/Db (52, 20) 450 
segregant pairs in the lower left-hand quadrant that appear as outliers.  Both pairs are derived 451 
from Division 15 (see Supplementary Dataset 1), leading to the conclusion that the mutation 452 
rate in that division was inherently low. The highest Da/Db outlier (51,120), derived from 453 
Division 8, is also associated with a Ma/Mb pair with high mutation counts (120,65), leading to 454 
the conclusion that this division had a high mutation rate.  455 

Statistical modeling 456 
We grouped the fixed mutation counts from the above branch points into Da, Db, Ma, 457 

and Mb segregant groups to determine their distributions. We also joined all segregant groups 458 
into one larger group to examine the distribution of fixed mutation counts across all cell 459 
divisions. To determine the distributions of mismatches segregated to the daughter (Dm) and 460 
mother (Mm) cells, we first summed the Da and Db or Ma and Mb fixed mutation counts from 461 
each division. We also combined these two sets into one group to view the distribution of 462 
mismatches across all cell divisions. To determine the distribution of total polymerase errors per 463 
division, we summed all fixed mutations from individual divisions (Da+Db+Ma+Mb). We 464 
considered two common approaches for modeling over dispersed count data: the Poisson 465 
mixture distribution and the negative binomial distribution. 466 

A K-component Poisson mixture distribution, which we denote PM(K), has a probability 467 
mass function (pmf) given by  468 
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(1) 469 

𝑓PM(x; 𝐾, 𝐩𝐾 , 𝛌𝐾): = ∑ 𝑝𝑘𝑓𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑥; λ𝑘)

𝐾

𝑘=1

 470 

where 𝐩𝐾 = (p1,…,pK) is a vector of mixture proportions, 𝛌𝐾= (λ1,…, λ𝐾) is a vector of Poisson 471 
means, and 𝑓 is the pmf of a Poisson(λ𝑘): 472 

(2)      𝑓𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑥; λ𝑘): =  
𝜆𝑘

𝑥 𝑒−𝜆𝑘

𝑥!
. 473 

From this formulation, we see that the full density of the distribution is decomposed as a sum of 474 
the scaled Poisson densities.  In (1), 𝑝𝑘 represents the prior probability that a given count 475 
measurement will be generated from the kth Poisson component distribution, parameterized by 476 
λ𝑘. Since a given count measurement could have been generated from any of these K 477 
components, we average over their densities based on their prior probabilities to get the full 478 
density of that count. 479 

 The negative binomial distribution can be specified by the following probability mass 480 
function: 481 

(3)     𝑓𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(𝑥; 𝜇, 𝜃): =  
Γ(𝑥+ 𝜃)

𝑥!Γ(𝜃)
 (

𝜃

𝜃+𝜇
)

𝜃
(

𝜃

𝜃+𝜇
)

𝑥
  482 

where μ is the rate parameter and θ is the shape or dispersion parameter.  As θ tends towards 483 
zero, the variance increases.  As θ → ∞, the negative binomial reduces to a Poisson 484 
distribution. 485 

We implemented these principles using a single R script (FMM.R, see Github link 486 
below).To fit Poisson mixture models we used the flexmix R package in R v3.5.341. To fit 487 
negative binomial models we used the glm.nb function of the MASS R package42. Goodness of 488 
fit testing of the models was performed using both Akaike information criterion (AIC) and 489 
Bayesian information Criterion (BIC) in R. Although these two approaches score fit in slightly 490 
different ways, BIC returned results consistent with AIC and we thus report only the more 491 
commonly used AIC scores. We scored each tested distribution against up to 4 parameters. We 492 
reported only up to the number of parameters that improved model fit. Lower raw AIC values 493 
indicate better fit; however, the relative differences are not immediately intuitive and so we 494 
calculated Akaike weighted values as described21,22. To illustrate this approach, the AIC values 495 
in Fig.1b were 637, 537, and 511.  The first step in getting weighted AIC values is to determine 496 
ΔiAIC: the difference between each AIC value and the AIC with the lowest value (so for these 497 
numbers: 126, 26, 0).  The likelihood of each is then calculated by exp(-1/2 x ΔiAIC).  The 498 
weighted AIC value for a given model is its likelihood divided by the sum of all competing 499 
likelihoods.  From these calculations the weighted AIC values are 4.3e-28 (P, k=1), 2.2e-6 (P, 500 
k=2), and 0.9999978 (nb), respectively.  Thus, the negative binomial model is far more likely 501 
than the other two models to account for the observed data. Mixture model graphs were 502 
constructed using the ggplot2 package R43. Spearman rank correlation coefficients were 503 
calculated using the Scipy Stats package in Python and graphs generated with Seaborn 0.9. 504 

Simulation of negative binomial models 505 
We wrote a Python script (Fig2a-d.py, see Github link below) to simulate the expected 506 

correlation between Dm and Mm under two distinct models of mutagenesis (Fig.2). The script 507 
uses the θ (60.42) and μ (138) parameters estimated by glm.nb for the negative binomial model 508 
of mismatches segregated to mother (Mm) or daughter (Dm) cells (see FMM.R). (Note that 509 
glm.nb actually returns the natural log value for μ (in this case 4.927), which must be 510 
exponentiated (e4.927) to get 138). In the first model, we assumed that the negative binomial 511 
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distribution was created by variation in mutation rate along chromatid pairs, so that upon 512 
segregation, Dm and Mm from the same division were free to vary within the predicted negative 513 
binomial distribution. To simulate this process with Scipy.stats.nbinom.rvs, we converted the θ 514 
and μ shape parameters to the n and p inputs (see script for details) for nbinom.rvs and then, for 515 
each division, we selected two random values from the distribution to represent the Dm and Mm 516 
counts. In the second model, we assumed that the negative binomial was created by a gamma 517 
distribution of λ values for a series of Poisson processes acting in different cell divisions. We 518 
used Scipy.stats.gamma.rvs to simulate λ values from a gamma distribution with shape and 519 
scale parameters derived from those of the negative binomial. The shape parameter for the 520 
gamma distribution is simply equal to θ. With variance (v) equal to μ2/θ, the scale parameter is 521 
equal to v/μ. With a random λ from the gamma distribution as an input for 522 
Scipy.stats.poisson.rvs, we selected two values from the associated Poisson distribution to 523 
serve as Dm and Mm counts for each division. To examine the relationship between Dm and 524 
Mm in these different models and the actual data, we performed linear regression with 525 
Scipy.stats.linregress and visualized the data and regression line using Seaborn 0.9 regplot.  526 

Simulation of gamma-Poisson-binomial process 527 
 We created Python scripts to create a Poisson-binomial model of the contributions of 528 

semi-conservative DNA replication and Mendelian segregation to the over-dispersion of fixed 529 
mutations in individual yeast (Fig3de.py) and human cells (Fig3f-i.py). For yeast simulations, we 530 
determined the amount of unmasked DNA on each chromosome in the repeat-masked genome 531 
and then divided these values by the total length of unmasked DNA in the haploid genome. The 532 
rate of mismatches per haploid genome (69 mismatches/haploid genome/division for pol3-533 
01/pol3-01 msh6Δ/msh6Δ cells) was then multiplied in each case by these fractions to obtain 534 
the per chromosome rate of mismatch formation. These values were used as input for 535 
scipy.stats.poisson.rvs to simulate the number of errors per chromosome in a single division. 536 
We created two independent entries per chromosome to model the diploid genome. To mimic 537 
the binomial process of Mendelian segregation, we then multiplied the number of simulated 538 
errors on each chromosome by a randomly chosen 1 or 0. Finally, we summed the mutation 539 
counts from all chromosomes to obtain the total number of fixed mutations per cell. To create a 540 
gamma-Poisson-binomial model, we selected a value for lambda at each division from the 541 
gamma distribution described in Fig.2 rather than using a constant rate for mismatch formation. 542 
As a control we performed the above simulation without the binomial process, using the rate of 543 
fixed mutations per haploid genome (34.5 fixed mutations/haploid genome/division). We used 544 
the same approach for the human simulations except that we multiplied the fraction of each 545 
human chromosome of the total genome (GRCh38) by a mismatch rate comparable to that 546 
observed with pol3-01/pol3-01 msh6Δ/msh6Δ yeast: 69 mismatches/ haploid yeast 547 
genome/division x (3.03 x 109 bp/human haploid genome / 11 x 107 bp/yeast haploid genome) = 548 
1900 mismatches/human haploid genome/division. We compared the resulting distribution to 549 
that from a Poisson distribution with λ equal to 950 fixed mutations/haploid genome. To simulate 550 
the diversity in mutation burdens that this process generates, we summed the simulated 551 
mutation counts for individual lines from 30 divisions. 552 

Data Availability 553 

Sequence data used to generate the findings of this study have been deposited in the 554 
NCBI Sequence Read Archive (SRA), BioProject accession: PRJNA586886. 555 
Scripts used to generate figures and perform statistical tests have been deposited to github: 556 
https://github.com/idowsett/Asymmetric-segregation-of-polymerase-errors-and-rate-volatility-557 
diversify-mutation-burden 558 
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Figures 695 
 696 

Fig.1: Mutator DNA polymerase errors at single cell resolution 697 

 698 

a, Isolation of single cell pedigrees. Using microdissection, the founding mother (M), daughter 699 
(e.g. D1), granddaughter (e.g. GD1.1, GD1.2) and great-granddaughter (e.g. GGD1.1) cells 700 
from each maternal division (n = 50) are separated (red arrows) and moved to isolated regions 701 
on the plate to form colonies, which are then sequenced. Polymerase errors arising during the 702 
initial S-phase are passed on to four segregant groups, highlighted by large colored boxes (Da, 703 
Db, Ma, Mb), the sum of which represents the full error count for that division. Large spheres 704 
connected by black arrows represent the same cell through multiple divisions. Small spheres 705 
circled in red represent budding daughter cells; parallel lines in cells, double-stranded DNA; 706 
colored boxes on lines, polymerase errors. b, Fitting the distributions of full error counts from 707 
diploid pol3-01/pol3-01 msh6Δ/msh6Δ divisions to different models. k = 1, single Poisson; k = 2, 708 
two-Poisson; nb, negative binomial; AIC, Akaike information criterion. 709 
  710 
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Fig. 2: Evidence that mutation rate varies between divisions 711 
 712 

 713 
 714 
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a, The negative binomial as a gamma-Poisson distribution. The gamma distribution takes the 715 
same shape parameter (θ) as the negative binomial and describes the variation in the rate 716 
parameter (λ) of a continuous mixture of Poisson distributions. b, Schematic of single cell 717 
lineage showing summing of segregant groups to determine the number of mismatches 718 
segregated to the mother (Mm) or daughter (Dm) in a single division. Actual distributions are 719 
represented by gold (Dm) and purple (Mm) bars. Lines depict models of data: pink, single 720 
Poisson (P, k = 1); aqua, negative binomial (nb). c, d, Correlations between Mm and Dm counts 721 
from actual data (green, n = 50) and simulations (n = 1000) under two different models. In c, top 722 
panel depicts a cell with converging replication forks from two replicons with different mutation 723 
rates. Bottom panel shows correlation of simulated Mm and Dm values (blue) drawn from the 724 
full negative binomial and their linear regression. In d, top panel depicts two cells replicating 725 
DNA with different mutation rates. Bottom shows correlation of simulated Mm and Dm values 726 
(orange) and their linear regression. e, Correlation between the number of mismatches per 727 
chromosome segregated to Mother (Mm) or Daughter cells (Dm). green, observed counts; 728 
orange, simulated counts from model in (d). f, Simulated index of dispersion of full replication 729 
error counts from small cohorts (n = 50) assuming the models from (c and d). 730 

Fig. 3: Asymmetric segregation broadens the distribution of mutation burden in mutator 731 
cell populations. 732 
 733 

 734 
 735 
a, Combined distribution of mutations fixed in the Da, Db, Ma, and Mb segregant groups (see 736 
inset) from pol3-01/pol3-01 msh6Δ/msh6Δ lineages (n = 200). Key of models (top): gray line, 737 
single Poisson (P, k = 1); blue lines, four-Poisson (P, k = 4), green line, negative binomial (nb). 738 
AIC, Akaike information criterion. b, Table of representative mutation counts from one division of 739 
a diploid mutator cell. Columns represent different segregant groups; rows, the chromosome 740 
(chr) number; values, the total number of new mutations found on homologous chromosome 741 
pairs. Red box indicates a chromosome with both asymmetric and equal sharing of mutations. 742 
c, Segregation of fixed mutations between Da and Db. For each division, the fraction of 743 
mutations observed in Da or Db on each chromosome was determined and then plotted against 744 
each other. d, Simulated distributions of mutations/division at a rate of µ = 34.5 (n = 10000) 745 
assuming a single Poisson process (grey), a Poisson-binomial process (orange), or a gamma-746 
Poisson-binomial process (green). e, Variation in the index of dispersion of simulated data from 747 
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the 3 models (n = 200) over 1000 iterations. f, Simulated distribution of mutations/division in 748 
human ultra-mutator cells assuming a fixed mutation rate (μ = 950, n = 10000) comparable to 749 
pol3-01/pol3-01 msh6Δ/msh6Δ yeast and a single Poisson process (grey), Poisson-binomial 750 
process (orange), or gamma-Poisson-binomial process (green). g, The cumulative mutation 751 
burden of a human ultra-mutator cell after 30 simulated divisions with (orange) and without 752 
(grey) asymmetric segregation. h, Simulated trajectory of mutation burden of human mutator 753 
tumor cells (Colored lines, n = 1000) undergoing a Poisson-binomial process compared to a 754 
Poisson process (black line). i, Change in the index of dispersion under a Poisson-Binomial 755 
process (orange line) compared to the static index of dispersion under a Poisson process (grey 756 
line at bottom) with an increasing mutation rate. Colored markers represent estimated mutation 757 
rates for clinically relevant mutator-driven HCT116-derived mammalian cancer cell lines9 and a 758 
tumor from a patient with biallelic MMR deficiency (bMMRD)33.  759 
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Supplementary Information 760 

Corresponding author:  Alan J. Herr, alanherr@uw.edu 761 

Haploid pol2-4 msh6Δ Mutators 762 
Prior to switching to stronger diploid mutators, we first obtained full replication error 763 

counts for 44 pol2-4 msh6Δ divisions from 7 independent lineages, encompassing 308 764 
mutations (Extended Data Table 1, Supplementary Dataset 2). We sequenced only those 765 
clones that would contribute to a full error count (Extended Data Fig.2). Since our previous 766 
study suggested that mutations were fixed in pol2-4 msh6Δ mother cells at a rate of 0.4 or 4 767 
mutations/genome/division, with full replication error counts, the volatility model predicts two 768 
well-separated Poisson distributions centered around 1.6 and 16 replication errors per division. 769 
Instead, we observed a single distribution centered around 6.5 (±3.9) replication errors per 770 
division. The distribution of full replication error counts in pol2-4 msh6Δ cells had a D̂ of 2.2, 771 
which is consistent with a less pronounced volatility of the pol2-4 msh6Δ mutator phenotype. In 772 
keeping with this interpretation, fitting these data to different probability distributions revealed 773 
they matched a negative binomial better than a single or two-Poisson mixture as judged by AIC. 774 
Parsing this data into the number of mutations fixed per individual cell produces a distribution 775 
(N=176) that fits a single Poisson with a rate of 1.75 mutations/division. This finding does not 776 
negate the hypothesis of a mild mutator volatility based on the full replication error counts.  The 777 
expected dispersions of fixed mutations in pol2-4 msh6Δ haploid cells (n=176, λ=1.75) are 778 
comparable for the Poisson-binomial (D̂ = 1.13±0.12) and Poisson (D̂ = 1.0±0.1) models 779 
(Extended Data Fig.8). The rate of 1.75 mutations/division lies almost directly between the 780 
predicted underlying rates from our published two-Poisson Model17. Thus, our previous 781 
distribution likely contained a preponderance of cell divisions with this intermediate mutation 782 
rate. The high number of divisions in that earlier dataset with no mutations could have partly 783 
been the result of a biological “zero-inflation” due to the unequal sharing of mutations described 784 
in Fig. 3 for pol3-01/pol3-01 msh6Δ/msh6Δ cells.  If so, why are there fewer cells with 0 785 
mutations in the current distribution? We suspect that the stringent requirement of eight viable 786 
clones to obtain a full replication error count may have introduced an ascertainment bias.  Due 787 
to unequal sharing of mutations, members of the lineage with the highest number of mutations 788 
may fail to form a colony. The reciprocal clones with no errors from that same division would 789 
also not be scored.  This potential ascertainment bias would affect our estimates of mutator 790 
volatility, since divisions with a higher mutation rate are more likely to have at least one progeny 791 
fail to form a colony.   792 

 793 
Colonies Not Included In Analysis 794 

Many complete sub-lineages (comprised of d, gd1, gd2, and ggd) were not sequenced 795 
because inviability later in the lineage prevented us from gaining a full replication error count. 796 
For instance, full replication error counts for AH120 divisions that yielded d3 and d4 are not 797 
possible because the d5 sublineage was completely inviable (Extended Fig.2). Likewise, 798 
sometimes colonies within informative sub-lineages (e.g. AH119 gd8-2, AH120 gd10-2/ggd10, 799 
AH121 gd9-1) were not sequenced because they were not required for a full replication error 800 
count. In some cases (AH156 d14, AH160 d5, AH157 d8), colonies that provided identical 801 
information on a division segregant subgroup were sequenced when the preferred colony failed 802 
to form a viable clone (Extended Fig.3).  In other cases (AH158 gd4-2/ggd4, AH158 gd7-2/ggd7, 803 
AH162 gd6-2/ggd6), colonies had poor sequencing coverage and were censored from the 804 
analysis. In rare cases, sequence analysis and review of dissection notes suggested an 805 
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assignment error occurred; however, our careful analysis of the patterns of shared mutations 806 
enabled post-hoc deconvolution of the events.  In one example, in the 8th division of AH156, we 807 
separated 3 cells from the mother. The two larger, similarly sized cells were both clearly 808 
daughter cells and the smaller cell was a granddaughter cell, although it was not clear which 809 
was its parent. We moved the daughter cells to the d8 (AH15629) and d9 positions (AH15633) 810 
and placed the smaller cell below in the gd8-1 position (AH15630).  We then proceeded to 811 
isolate the remaining members of the lineage.  Sequencing analysis of the resulting colonies 812 
revealed that AH15633 was in fact d8, AH15629 was d9, and AH15630, the daughter of 813 
AH15633, not AH15729.  This error meant we had to reorder the lineage.  AH15631 was gd9-1 814 
not gd8-2.  AH15632, daughter of AH15630, was ggd8 and AH15634 was gd8-2.  Since we 815 
didn’t realize AH15631 was gd9-1, we failed to dissect her first daughter to serve as ggd9 and 816 
consequently were unable to obtain a full replication error count for the 9th division.  In another 817 
example, AH160 division 2 was censored entirely from analysis after finding from the pattern of 818 
mutations that AH16005 was a granddaughter derived from d1 of this lineage (AH16001). 819 

 820 
Distribution of Mutations and Spectrum 821 

Plotting the mutations scored from all divisions of pol3-01/pol3-01 msh6Δ/msh6Δ 822 
mutator mother cells reveals mutations were generated across much of the unmasked portions 823 
of the sequenced genome (Extended Data Fig.4a). Upon investigation, the few tracts of 824 
unmasked chromosomes lacking mutations are likely artifacts of regions of low sequence 825 
coverage which consistently fell below our target thresholds for quality and depth in at least one 826 
or more members of a lineage.  827 

As expected, C→T mutations are the most abundant single nucleotide substitutions, 828 
followed by T→C and C→A. The trinucleotide context reveals a prominent peak of C→A 829 
mutations at a TCT context, a hallmark of proofreading deficiency13,44, as well as a peak at CCT 830 
(Extended Data Fig.4b). 831 

 832 

Extended Data Table 1 833 
Lineagea Scored Sitesb Mutationsc Divisionsd Mutation Ratee 

pol2-4 msh6     

119 11,080,506 33 5 0.006 

120 11,120,599 51 7 0.0066 

121 11,203,731 38 6 0.0057 

122 10,909,400 59 7 0.0077 

123 11,099,548 24 4 0.0054 

124 10,094,023 58 10 0.0057 

125 10,897,295 45 5 0.0083 

Total  308 44  

Mean (stdev ±) 10,915,014 (3.51 x 105) 44 (12) 6.3 (1.8) 0.0065 (0.001) 

 

pol3-01/pol3-01 msh6Δ/msh6Δ 

151 10,541,044 1,597 6 2.53 

153 10,636,360 1,582 6 2.48 

156 9,521,963 2,976 10 3.13 

157 10,594,546 1,599 6 2.52 

158 9,818,623 1,347 5 2.74 

160 9,679,326 1,543 5 3.19 

162 8,578,576 3,157 12 3.07 

Total  13,801 50  

Mean (stdev ±) 9,910,063 (6.95 x 105) 1,972 (699) 7 (2.5) 2.81 (0.29) 
a Lineage refers to descendants of the same mother cell.  See Extended Data Figs.2 and 3 for images of colonies 834 
and Supplementary Datasets for mutations. 835 
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b Scored sites refers to the number of genomic nucleotide positions confidently scored in all members of the 836 
lineage. 837 
c The total number of independent mutations identified within each lineage.  838 
d The number of divisions with full replication error counts (see Fig.1). 839 
e Mutation rate (x 10-5 mutations/bp/division):  the number of mutations divided by the total number scored sites 840 
divided by the number of divisions. 841 

  842 
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Extended Data Figures 843 

Extended Data Fig. 1: Scoring mutations from multiple divisions from the same lineage.  844 

 845 

Arrows depict movement of dissected daughter cells and their descendants to unique positions 846 
on the plate, where they form colonies that are sequenced. For each division, mutations unique 847 
to the yellow (Da) or red (Db) colonies are counted as errors made during the division. 848 
Mutations uniquely shared by all blue cells (from the next division) represent segregant group 849 
Ma, and new mutations shared by all subsequent offspring of the mother (Purple) represent 850 
group Mb. A full replication error count is the sum of Da, Db, Ma, and Mb. Obtaining full error 851 
counts in subsequent divisions shifts the identities of the red, yellow, blue and purple cells one 852 
column to the right and repeats the procedure (See AH121 in Extended Data Fig. 2 for an 853 
example). While the genomes of colonies used to score mutations from prior divisions are used 854 
again, the new mutations scored in the current division were not previously assigned to one of 855 
the prior segregant groups.  856 
  857 
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Extended Data Fig. 2: pol2-4 msh6Δ lineages.  858 

 859 

a, Photographs of agar plates with colonies formed from single cell lineages. The lineage 860 
number is given in the lower right-hand corner. Locations of rows of daughter (d), first 861 
granddaughter (gd1), second granddaughter (gd2), and great-granddaughter (ggd) colonies are 862 
given on the right-hand side of the images. Sublineage number is indicated below each 863 
daughter colony. Circles indicate sequenced colonies. Colored circles in Lineage AH121 864 
illustrate segregant groupings for the first division (see Extended Data Fig. 1). Yellow line 865 
divides earlier sublineages from later sublineages. Gaps in colony growth reflect lethality. b, 866 
Fitting the distributions of full error counts from haploid pol2-4 msh6Δ to alternative models. k=1, 867 
single Poisson; k=2, two-Poisson; nb, negative binomial; AIC, Akaike information criterion. 868 
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Extended Data Fig. 3: pol3-01/pol3-01 msh6Δ/msh6Δ lineages.  869 

 870 

Photographs of agar plates with colonies formed from single cell lineages. The lineage number 871 
is given in the lower right-hand corner. Locations of rows of daughter (d), first granddaughter 872 
(gd1), second granddaughter (gd2), and great-granddaughter (ggd) colonies are given on the 873 
right-hand side of the images. Sublineage number is indicated below each daughter colony. 874 
Yellow line divides earlier sublineages from later sublineages. Gaps in colony growth reflect 875 
lethality.  876 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.21.163451doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.21.163451
http://creativecommons.org/licenses/by-nc-nd/4.0/


Extended Data Fig. 4: Distribution of mutations and spectra in pol3-01/pol3-01 877 
msh6Δ/msh6Δ lineages.  878 

 879 

a, Genome level distribution of mutations (green) over yeast chromosomes (blue lines). 13,801 880 
mutations pooled from 50 scored divisions of pol3-01/pol3-01 msh6Δ/msh6Δ diploid mother 881 
cells, representing approximately 1 mutation per 1000 bases of the yeast genome. Close up 882 
view of representative chromosome I (right). Masked bases are represented by grey ticks. b, 883 
96-trinucleoide mutation spectra context of all mutations (spectrum) by frequency that arose 884 
over 50 divisions of pol3-01/pol3-01 msh6Δ/msh6Δ diploid mother cells, generated using the 885 
snv-spectrum program (https://github.com/aroth85/snv-spectrum).  886 
 887 
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Extended Data Fig. 5: Excluding simple explanations for pol3-01/pol3-01 msh6Δ/msh6Δ 888 
mutator volatility.  889 

 890 

a, Mutation counts and maternal age. The total mutation counts from individual divisions is 891 
plotted relative to maternal age (Division number). b, Mutation counts and size of scored 892 
genome. The proportion of the genome scored in all members of a lineage varies between 893 
lineages due to sequencing depth and number of lineage members, but is not correlated with 894 
mutation counts (Spearman Correlation).  895 
  896 
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Extended Data Fig. 6: Semi-conservative DNA replication and segregation cause 897 
asymmetrical inheritance of mutations.  898 

 899 
 900 
a, Table of representative mutation data from one division of a diploid mutator cell. Columns 901 
represent different segregant groups (see Fig.1); rows, the chromosome number; values, the 902 
total number of new mutations found on homologous chromosome pairs. The red box indicates 903 
an example with both asymmetric and equal sharing of mutations. b, Five-step model of 904 
unequal segregation: 1) Two homologous chromosomes (orange and blue) prior to scored 905 
division of mother cell. 2) Mother cell duplicates chromosomes and mutator Pol δ generates 906 
errors (colored boxes) on the nascent strands. 3) Progeny each inherit two chromosomes with 907 
mismatches. 4) Each unresolved mispair is ‘fixed’ as a point mutation in the next S-phase. 908 
Error-free strands are free of newly fixed mutations. 5) segregation results in cells with 0, 1, or 2 909 
mutagenized chromosomes. 910 
  911 
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Extended Data Fig. 7: Correlations between segregation groups. 912 
 913 

 914 
 915 

X/Y Scatter plots of segregant group pairs (Da/Db, Ma/Mb, n = 50 for each) from pol3-01/pol3-916 
01 msh6Δ/msh6Δ divisions are plotted alongside simulated data (n = 100, left; n = 1000, right). 917 
Segregant 1 corresponds to Da or Ma.  Segregant 2 corresponds to Db or Mb.  The highest 918 
outlier point for Da/Db in the upper left- hand quadrant (51, 120) comes from Division 8 919 
(Supplementary Dataset 1), which produced a Ma/Mb point located at (120, 65) that yielded 920 
similar mismatch totals (Dm, 171; Mm, 185).  This suggests the division had a high mutation 921 
rate. Ma/Mb (47,36) and Da/Db (52, 20) segregant pairs in the lower left-hand quadrant also 922 
appear as outliers.  Both pairs are derived from Division 15 (see Supplementary Dataset 1), 923 
leading to the conclusion that the mutation rate in that division was inherently low. 924 

 925 
Extended Data Fig. 8: Simulation of pol2-4 msh6Δ haploid mutagenesis.  926 
 927 

 928 
 929 
a, The simulated distribution of mutations from haploid pol2-4 msh6Δ cells at a rate of µ = 1.75 930 
mutations/division (n=10000) assuming a single Poisson process (grey) or a Poisson-binomial 931 
process (orange). b, Variation in the index of dispersion of simulated data from Poisson and 932 
Poisson-binomial models (n=176) over 10,000 iterations. 933 
 934 

Supplementary Dataset 1:  pol3-01/pol3-01 msh6Δ/msh6Δ sequencing data 

  
Page Description 

SRA submission List of sequence files submitted to the Short Read Archive (SRA) 

Mutation Summary Summary of mutation counts from different single cell lineages 

MutInSegGroups Table of mutation counts broken down into segregant groups 

MutInSegGroupsChr Segregant group table further broken down by chromosome 

Full Mutation List All mutations observed, organized by segregant groups. 

Lineage 151 Sorted spreadsheet from Lineage 151 showing variants in segregant groups 
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Lineage 153 Sorted spreadsheet from Lineage 153 showing variants in segregant groups 

Lineage 156 Sorted spreadsheet from Lineage 156 showing variants in segregant groups 

Lineage 157 Sorted spreadsheet from Lineage 157 showing variants in segregant groups 

Lineage 158 Sorted spreadsheet from Lineage 158 showing variants in segregant groups 

Lineage 160 Sorted spreadsheet from Lineage 160 showing variants in segregant groups 

Lineage 162 Sorted spreadsheet from Lineage 162 showing variants in segregant groups 
 935 

Supplementary Dataset 2:  pol2-4 msh6Δ sequencing data 

  

Page Description 

SRA submission List of sequence files submitted to the Short Read Archive (SRA) 

Mutation Summary Summary of mutation counts from different single cell lineages 

Full Mutation List All mutations observed, organized by segregant groups. 

R1_Lineage Sorted spreadsheet from Lineage R1 showing variants in segregant groups 

R2_Lineage Sorted spreadsheet from Lineage R2 showing variants in segregant groups 

R4_Lineage Sorted spreadsheet from Lineage R4 showing variants in segregant groups 

R5_Lineage Sorted spreadsheet from Lineage R5 showing variants in segregant groups 

R6_Lineage Sorted spreadsheet from Lineage R6 showing variants in segregant groups 

R9_Lineage Sorted spreadsheet from Lineage R9 showing variants in segregant groups 

R10_Lineage Sorted spreadsheet from Lineage R10 showing variants in segregant groups 
 936 
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