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Abstract

Whether hard sweeps or soft sweeps dominate adaptation has been a matter of much debate.
Recently, we developed haplotype homozygosity statistics that (i) can detect both hard and soft
sweeps with similar power and (ii) can classify the detected sweeps as hard or soft. The
application of our method to population genomic data from a natural population of Drosophila
melanogaster (DGRP) allowed us to rediscover three known cases of adaptation at the loci Ace,
Cypb6gl, and CHKov1 known to be driven by soft sweeps, and detected additional candidate loci
for recent and strong sweeps. Surprisingly, all of the top 50 candidates showed patterns much
more consistent with soft rather than hard sweeps. Recently, Harris et al. 2018 criticized this
work, suggesting that all the candidate loci detected by our haplotype statistics, including the
positive controls, are unlikely to be sweeps at all and instead these haplotype patterns can be
more easily explained by complex neutral demographic models. They also claim, confusingly,
that these neutral non-sweeps are likely to be hard instead of soft sweeps. Here, we reanalyze the
DGRP data using a range of complex admixture demographic models and reconfirm our original
published results suggesting that the majority of recent and strong sweeps in D. melanogaster are
first likely to be true sweeps, and second, that they do appear to be soft. Furthermore, we discuss
ways to take this work forward given that the demographic models employed in such analyses
are generally necessarily too simple to capture the full demographic complexity, while more
realistic models are unlikely to be inferred correctly because they require fitting a very large
number of free parameters.

Introduction

Pervasive adaptation has been extensively documented in Drosophila melanogaster. Recent
studies suggest that (i) ~50% of amino acid changing and non-coding substitutions in D.
melanogaster evolution were adaptive, and (ii) there are abundant signatures of adaptation in the
population genomic data detectable as reductions of neutral diversity in the regions of higher
functional divergence and in the patterns of derived allele frequencies (/—11).
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In three cases -- at the loci CYP6gl, CHKovl, and Ace — we specifically know the causal
mutations and have functional hypotheses for the causes of adaptation (/2—18). Intriguingly, in
all three cases, there is strong evidence that adaptation was not driven by a single de novo
adaptive mutation that rose to high frequency, but rather, multiple adaptive mutations. In the case
of Cyp6gl, adaptive changes leading to resistance to DDT evolved via multiple insertions of
Accord transposon in the 5’ regulatory region of the locus on different genomic backgrounds, as
well as a duplication of the entire locus (12, 13). At the CHKov locus, the adaptive change led to
a higher resistance to organophosphates and viral infections and evolved by a transposon element
insertion in the protein coding region of CHKov, which then segregated in the ancestral
populations before rising to high frequency only recently (/4, 15). Finally, resistance to
pesticides such as carbamates and organophosphates evolved via multiple independent point
mutations at four highly conserved sites in the gene Ace on different genomic backgrounds on
multiple continents (/6—18). Not surprisingly, all three well-understood examples of adaptation
show signatures of soft sweeps (Figure 1), in which multiple adaptive alleles rise to high
frequency simultaneously at the same locus (/9-21), and suggest that recent and strong
adaptation is not mutation-limited in D. melanogaster.

These three empirical examples of soft sweeps at Ace, CYP6gI, and, CHKov were all defined
experimentally and suggested that soft sweeps might be common. However, until recently, it was
unknown how common soft selective sweeps are in the Drosophila genome. Most scans for
detecting selective sweeps were specifically designed to detect signatures of unusually low
diversity or the presence of a single common haplotype expressly associated with hard rather
than soft selective sweeps (2, 22-29), making it challenging to assess the frequency of soft
sweeps (30-33).

To address this, we recently introduced novel haplotype homozygosity statistics for the detection
and differentiation of hard and soft sweeps that are capable of detecting both hard and soft
sweeps with similar power and then to determine whether detected sweeps are likely to be either
hard or soft (34). Application of these statistics to the Drosophila Genetic Reference Panel
(DGRP) (35), composed of 145 whole-genome sequences from a North Carolina D.
melanogaster population, revealed several putative sweeps with unusually high haplotype
homozygosity relative to expectations under several neutral demographic scenarios (Figure 2).
The top 50 empirical outliers, which included the rediscovered positive controls at CYP6G,
CHKovl, and Ace, had multiple unusually long haplotypes present at high frequency, consistent
with soft sweeps (Figure 1). We found that simulations of hard sweeps were unable to produce
signatures observed in the data, whereas simulations of soft sweeps easily could. Subsequent
studies found that soft sweeps seem to be common not only in this North American population,
but also in Sub Saharan populations of D. melanogaster (17, 18, 36). Finally, these haplotype
homozygosity statistics have been applied to several other organisms including pigs (37, 38),
dogs (37), cattle (39, 40), soy beans (41), and humans (42) to identify hard and soft sweeps, and
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have become standard summary statistics in machine learning methods for detecting selection
(43, 44).

Harris et al. 2018 (45) recently reanalyzed the DGRP data using our statistics and argued that
that there is scant evidence for abundant recent strong selective sweeps in the North American D.
melanogaster population. They claim that correct neutral admixture models naturally generate
detected haplotype signatures in the absence of positive selection and thus most of the detected
signatures do not correspond to selective sweeps. They also argue that if these sweeps exist, then
they would be hard rather than soft sweeps. Here we re-evaluate our analysis using a range of
demographic models and show that our previous findings stand. We then discuss the reasons for
the different conclusions from Harris et al. 2018 (45), implications of these results, and
directions for future work.

Results
Summary of our previous results in Garud et al. 2015

The increase in frequency of an adaptive allele is expected to also lead to the increase in
frequency of the linked haplotype (46—48). Such an increase of haplotype frequency is expected
to elevate levels of haplotype homozygosity (H1) in the vicinity of the selected locus (25, 26, 28,
29, 49). H1 is defined as

H1 =3(p))’,

where p; is the frequency of the i™ most common haplotype. H1 is expected to be elevated for
both hard and soft selective sweeps, but hard sweeps should still have higher H1 values than soft
sweeps, given that soft sweeps bring multiple haplotypes to high frequency.

In Garud et al. 2015 (34) we define a similar haplotype homozygosity statistic H12, which
combines the frequencies of the first and second most common haplotypes into a single
frequency and is defined as follows:

HI2 = (p/+ p2)° + 25 ()*
Using extensive simulations, we showed that H12 has reasonably similar power to detect hard
and soft sweeps with a slight bias in favor of hard sweeps (34).

The application of these statistics requires one to define a window size. Longer windows should
have lower false positive rates for distinguishing selection from neutrality, but simultaneously
have reduced ability to detect weaker sweeps. In Garud et al. 2015 (34) we used windows of 401
SNPs in length (~10Kb in Drosophila), and we show that this biases our analysis towards
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detecting sweeps with selection coefficients (s) >= 0.1%. Note that most of the detected sweeps
span multiple analysis windows with the peaks ranging from ~11kb to ~870 kb, and with half of
the peaks over 100kb (Figure 2), suggesting that the identified sweeps were substantially
stronger on average than s = 0.1%.

We tested a range of neutral models fitting overall polymorphism levels in the data and found
that these rarely generate elevated values of H12 on such long length scales (34). We specifically
considered six models of increasing complexity (Figure 3). We included four simple models that
were fit to site frequency spectrum-based summary statistics measured from short introns in the
DGRP data: two constant population size models (the standard Ne=10° and Ne=2.2*10° which fit
the levels of diversity better) and two bottleneck models with varying bottleneck durations and
sizes. Finally, we included two complex admixture models inferred by Duchen et al. 2013 (50)
using an approximate Bayesian computation (ABC) approach and data from 242 short intronic
and intergenic fragments from the X-chromosome. These models were fit to both site frequency
spectrum-based summary statistics (number of segregating sites, S/bp, and average nucleotide
diversity, Pi/bp) and LD measured on short length-scales (~500bp) using Kelly’s ZnS. Using
their ABC method, Duchen et al. 2013 (50) inferred a posterior distribution for each of the 11
parameters for the admixture models.

Upon revisiting the Duchen et al. 2013 (50) models for the present paper, we found that the
model implemented in Garud et al. 2015 (34) was a variation of the model published in Duchen
et al 2013 (50). Instead of an expansion in North America and Europe, we had implemented
roughly constant population sizes in North America and Europe (Figures 3E and 3F). Despite
this difference from the published model, all six implemented models fit the autosomal DGRP
data in terms of S/bp, Pi/bp and decay in short-range LD (Figure 4). Both H12 and long-range
LD (~10Kb) in simulated models were depressed compared to the observed data (Figures 4C
and 5). Specifically, the data showed much slower decay of LD on the scale of 10kb and
substantially larger median haplotype homozygosity (H12). The distribution of H12 in the data
also had a much longer tail compared to simulations (Figures 5 and S1). Indeed, the observed
median values of H12 in the data are similar to levels expected only once in the genome under
these neutral models. We interpreted the elevation of long-range LD and haplotype
homozygosity in long windows in the data as evidence of positive selection.

The lack of the model fit with the bulk of the H12 values in the data presents a problem for
identifying selective sweeps with elevated homozygosity. Thus, we elected to be conservative.
First, we defined a 1-per-genome false discovery rate for each demographic model by
performing 1.3x10”5 simulations (>10 times the number of analysis windows observed in the
data) for each model. The FDRs, corresponding to the 10™ highest H12 value in the distributions,
were approximately equal to the median H12 value observed in the data. Several genomic
regions had ‘peaks’ of elevated H12 values that were especially unlikely to be generated by
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neutrality. These regions corresponded to our candidate selective sweeps (Figure 2). We then
focused on the 50 empirical outliers to further characterize as hard or soft. These peaks were
defined by identifying the window with the highest H12 value and finding all consecutive
windows in both directions with H12 values exceeding the 1-per-genome FDR. These candidates
all had maximum H12 at least eleven standard deviations away from the median H12 value in the
data after fitting a Gaussian distribution to the bulk of the data (Figure S4) (Methods). The top 3
outliers were the positive controls, Ace, Cyp6gl, CHKovl, confirming that H12 has the ability to
detect known soft selective sweeps that arose from multiple de novo mutations or standing
genetic variation.

Can admixture generate elevated haplotype homozygosity?

Harris et al. (45) claim that the admixture model proposed by Duchen et al. 2013 (50) can easily
generate all the elevated H12 values in the data, suggesting that the selective sweeps identified
by H12 are false positives.

Given that our original implementation of the admixture model in Garud et al. 2015 (34)

was a variant of the Duchen et al. 2013 (50) model, we tested Harris et al.’s (45) claim by
implementing the model specified in their supplement, which also differs from the Duchen et al.
2013 (50) model (methods). To more broadly consider the Harris et al.’s (45) claim that
appropriate demographic models can easily generate the distribution of H12 values observed in
the data, we also tested the Duchen et al. 2013 (50) model both with the mode of the posterior
distributions of the 11 parameters for the admixture model and by drawing parameters from the
95 Cls of the posterior distributions, as was done in Harris et al. 2018 (45). Note that Harris et al.
2018 (45) did not use a joint posterior distribution, leading to the possibility that many of the
parameter combinations may not correspond to realistic scenarios. We also tested a variant of the
admixture model proposed by Duchen et al. 2013 (50) that included a bottleneck in the founding
European population (Figure 3H). Finally, we also tested a new admixture model with migration
between Africa, Europe, and North America (Figure 3J) recently proposed by Arguello et al
2019 (51).

The Duchen et al. 2013 (50) model and Harris et al. 2018 (45) implementation of the model
generate S/bp and Pi/bp values that are 2-fold lower than the median values measured from short
introns in the DGRP data (Figures 4A and 4B). More strikingly, however, H12 is extremely
elevated compared to values observed in the DGRP data (Figures 5 and S2), e.g the bulk of the
distribution of values generated in simulations is non-overlapping with the bulk of the
distribution of values from genome-wide data. This elevation is likely due to the sharp
bottlenecks specified in the models, especially in the Harris et al. 2018 implementation where the
bottleneck size is 4 times smaller than reported by Duchen et al. 2013 (50). The elevation is even
more pronounced when drawing parameters from the 95 Cls. In some cases, H12 almost
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approaches 1, implying that these models predict essentially no variation in the DGRP in the
large ~10kb window sizes used for our analysis. Consistent with elevated haplotype
homozygosity, the Duchen et al. 2013 (50) models produced elevated pairwise LD compared to
observations in the data (Figures 4C and 4D). The mismatch between the expected values of all
the statistics in the Arguello et al. 2019 (57) model and the data is less pronounced compared to
the Duchen et al. 2013 (50) model, presumably because migration replenishes some of the
diversity lost during the extreme bottlenecks, but nevertheless there is a significant mismatch.

At first glance, the elevated haplotype homozygosity produced by the Duchen et al. 2013 (50)
model might suggest that the peaks observed in the DGRP data (Figure 2) could be explained by
the admixture model. However, the S/bp, Pi/bp, H12, and LD values produced by this admixture
model deviate significantly from genome-wide summary statistics in the data. In particular, the
distribution of H12 values in the data has a very specific distribution that the simulations of
neutrality cannot match (Figures 5 and S1-3). Almost 80% of the analysis windows in the
DGRP data have H12 values within 2 standard deviations from the median, after fitting a
Gaussian to the bulk of the distribution (Methods, Figure S4). This is followed by a long tail of
H12 values that includes the values for the top 50 peaks, which are >= 11 standard deviations
away from the median, indicating that these peaks are indeed genome-wide outliers (Figure S4).
By contrast, the bulk of the distribution generated by the Duchen et al. 2013 (50) admixture
model surpasses the median and bulk of the distribution of H12 values in the data (Figure 5).
This lack of fit of the admixture model to the data is problematic for the inference of selective
sweeps: if the tail of the distribution of H12 values from data can be explained by neutrality, then
the bulk of the distribution should also be explainable by neutrality. These admixture models do
not recapitulate the distribution observed in the data, and instead produce extremely high levels
of homozygosity that are incompatible with the data.

One reason for the lack of fit of H12 measured in the data and the simulated admixture model
could be that Duchen et al. 2013 (50) initially fit the model to the 242 X-chr fragments of
~500bps using SFS statistics and short-range LD statistics (Kelly ZnS), whereas we analyzed
autosomal data. Although Duchen et al. 2013 (50) showed that the model extrapolated to
autosomes by fitting to ~50 intronic and intergenic regions on the 3™ chromosome, the models
do not fit diversity patterns on short introns, which are putatively the most neutral part of the
genome (52). Additionally, Duchen et al. 2013 (50) did not require that long-range haplotype
homozygosity on the scale of ~10kb fit the data, which is the main source of discrepancy
between the models and the data.

Models that fail to recapitulate the bulk of the diversity statistics from the data are unlikely to
accurately capture the true demographic history of the population. These models are not
appropriate for inferring sweeps because they do not set a realistic baseline for the expected
diversity pattern in a neutral scenario.
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Inference of new demographic models

In this section, we test whether there are variants of the Duchen et al. 2013 (50) and Arguello et
al. 2019 (57) admixture models that can achieve a better fit with regard to multiple relevant
summary statistics in the DGRP data. The models we explore are not intended to be a true
representation of the demography of the North American population of Drosophila. Instead, our
goal is to see whether we can find an admixture model that reasonably fits both SFS and LD-
based genome-wide statistics in the data and can also generate tails of elevated H12 values that
may explain the outlier peaks observed in the data. We do not claim that other models cannot fit
the data equally well or better.

We tested four classes of variants of the Duchen et al. 2013 (50) and Arguello et al. 2019 (57)
admixture models (Figure S5). First, we tested models with constant population sizes in North
America and Europe (Figures 3K and S5A), because the Garud et al. 2015 (34) implementation
(Figure 3E), which had effectively constant population sizes for these two populations, fit the
data well in terms of S/bp and Pi/bp. Second, we tested models with varying amounts of growth
in North America and Europe (Figure S5B). Third, we tested models with varying proportions of
admixture (Figure S5C), and fourth, we tested models with varying amounts of migration
between the continents (Figure S5D). For each of these models, we held almost all parameters
constant at the mode of the posterior distributions inferred by Duchen et al. 2013 (50). The only
parameters we varied were those relevant to the model being tested (e.g. proportion of
admixture, amount of migration, or rate of growth). Where applicable, the values of these
parameters were chosen to span the ranges of the 95CI inferred by Duchen et al. 2013 (50).
These variable parameters are highlighted in red in Figure S5. In sum, we tested a total of 74
admixture model variants. Supplemental Figures S6-18 show the distributions of summary
statistics S, Pi, H12, short-range LD and long-range LD generated by these models.

The majority of the models tested do not fit the data well, whereby the median values of S/bp,
Pi/bp, and H12 measured in the data lie outside the 25" and 75™ quantiles measured from
simulations (Figures 4, 5, and S1-3). Models that produce extremely high H12 values and low S
and Pi values generally have small founding population sizes. Models with depressed H12 values
and elevated S and Pi values have larger founding population sizes. Many models fit some
summary statistics reasonably well, but no single model fits all five summary statistics.

Only 3 of the 74 models we tested generate distributions overlapping the median genome-wide
S, Pi, and H12 values (Figures S3 and S8). These models have constant population sizes in
North America and Europe (Figures 3K and S5A) of magnitudes similar to the one implemented
in Garud et al. 2015 (34). Specifically, the well-fitting models have large North American
population sizes (>= 1.11*1076), and intermediate European population sizes (~0.7*1076). The
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distributions of S, Pi, H12, and LD for two of these models are shown in Figure 4 as a
comparison with all other models considered in this paper so far.

While the three well-fitting models generate S, Pi, and H12 values that overlap the median
values measured from genome-wide data, they cannot generate long tails of elevated H12 values.
The 1-per-genome FDR values observed in simulations for these models have H12 values that
are lower than even the 50" ranking peak in the DGRP H12 scan. This suggests that given a
reasonably well-fitting model, the top 50 H12 peaks observed in the DGRP data are still outliers
under any of the current models.

Distinguishing hard versus soft sweeps with the H2/H1 statistic

In Garud et al. 2015 (34), we analyzed whether the haplotype patterns observed among the top
50 peaks are more consistent with hard or soft sweeps. To do so, we introduced a second
haplotype homozygosity statistic, H2/H1, to distinguish hard from soft sweeps.

H2 is haplotype homozygosity computed excluding the most common haplotype:
H2=32(p:)?

H2 is expected to be small for hard sweeps because the main contributing haplotype to
homozygosity is excluded. However, it is expected to be larger for soft sweeps since there should
be multiple adaptive haplotypes at high frequency. H2/H1 augments our ability to distinguish
hard and soft sweeps since it is even smaller for hard sweeps and larger for soft sweeps than H2.

While hard sweeps and neutrality cannot easily generate both high H12 and H2/H1 values, soft
sweeps can. Hence, the H2/H1 statistic is powerful for discriminating hard and soft sweeps only
when applied to candidate selective sweeps with H12 values exceeding expectations under
neutrality. Additionally, H2/H1 is inversely correlated with H12 values (53). Thus, H12 and
H2/H1 must be jointly applied when H12 is sufficiently high to make inferences about the
softness of a sweep.

In Garud et al. 2015 (34), we tested whether the H12 and H2/H1 values for the top 50 peaks are
more consistent with hard versus soft sweeps. Specifically, we categorized sweeps as hard versus
soft by computing Bayes factors: BF = P(H12o0bs, H2obs/H1obs | soft
sweep)/P(H120bs,H20bs/H10bs | hard sweep), whereby H120bs and H2obs/H1obs were
computed from data, and hard and soft sweeps were simulated by drawing partial frequencies,
selection strengths, and ages from uniform prior distributions (Methods). By using a Bayesian
approach, we can then integrate over a wide range of evolutionary scenarios instead of testing a
single point hypothesis. We found in our application of H2/H1 and H12 to the DGRP data under
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both constant Ne models and our implementation of the admixture models that the top 50 peaks
have H12 and H2/H1 values more consistent with soft sweeps than hard sweeps.

We repeated the BF analysis (Methods) with the new admixture models (Figure 3K) inferred in
this paper and found that the majority of the sweeps are soft and ~3-4 are hard depending on the
model under consideration (Figure 6). Visual inspection of the haplotype frequency spectra for

the top 50 peaks confirms that multiple haplotypes are present at high frequency (Figure 7) for

most peaks.

To make their argument that H2/H1 does not have power to distinguish hard and soft sweeps,
Harris et al. 2018 (45) assessed whether the top 50 peaks have H2/H1 values consistent with hard
versus soft sweeps (even though they also claimed that that these peaks are not sweeps to begin
with). In their Figure 1D, they conclude that H2/H1 does not have discriminatory power.
However, the H2/H1 values for the top 50 peaks lie within the bulk of the distribution generated
by soft sweeps and in the tail of the distribution generated by hard sweeps (see their Figure 1D),
which appears at odds with their conclusion. Despite their claims that H12 and H2/H1 lack
discriminatory power, Harris et al. 2018 (45) also computed Bayes factors (BF) in their Figure
S1 and showed that after correctly conditioning on matching H12 and H2/H1 values for the top
50 peaks, the majority of the peaks have values that are consistent with soft sweeps. Thus, Harris
et al. 2018 (45) obtain the same result as in Garud et al. 2015 (34).

Discussion

Whether hard versus soft sweeps are common is a topic of much debate. While multiple
empirical studies have revealed evidence for soft sweeps in a wide range of organisms including
D. melanogaster, P. falciparum (54, 55), viruses (56), humans (42, 57—-60), dogs (37), amongst
others (21), several articles claim that there is unfounded enthusiasm for soft sweeps and that in
fact, they are not as pervasive as the evidence suggests (43, 61, 62). Specifically, Harris et al.
2018 (45) suggest that the claim in Garud et al. 2015 (34) that there is abundant evidence for
many strong and recent soft sweeps in the D. melanogaster populations is not supported after
appropriate applications of demographic models and generating appropriate null distributions.
Here we carry out a range of additional analyses and reassert the claims of Garud et al. 2015
(34).

In Garud et al. 2015 (34), we developed the haplotype homozygosity statistics H12 and H2/H1 to
systematically detect and differentiate hard and soft sweeps from population genomic data. Our
application of these statistics to the DGRP data from North Carolina revealed that soft sweeps
are common in this population. Among the top candidates in our scan were the positive controls
at Ace, Cyp6gl, and CHKovlI. Corroborating our results, we found that approximately half of our
sweep candidates were also identified with the popular statistic, iHS (28), which was designed to
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detect partial hard sweeps. Finally, we found that soft sweeps are common in a Zambian
population as well (/7), suggesting that any particular demographic history for a given
population is not driving the signal of multiple haplotypes at high frequency. Independently, (44)
found that soft sweeps are prevalent in this same population of Zambia.

To ensure low false positive rates, we excluded related individuals and tested for substructure.
Additionally, we utilized large analysis window sizes of 401 SNPs (corresponding to ~10kb),
since haplotypes of such length are not expected to be at high frequency by chance. Note that we
use windows of constant number of SNPs to avoid the issue of H12 co-varying with the number
of SNPs in the window. Windows defined in terms of the number of SNPs automatically extends
the physical lengths of the windows in regions of low diversity. Such longer windows should
then have proportionately higher recombination rates reducing the expected H12, and thus
reducing the probability of false positives. In practice, we also eliminated regions of low
recombination (rho <5*10"-7 cM/bp) from the data, as regions of low recombination rate can
show elevated false-positive rates in haplotype-bases tests of selection (63). By contrast, Harris
et al. 2018 (45) chose to perform their analyses in 10kb windows, although we note that it is
unclear how the H12 and H2/H1 values plotted in their Figure 1 were identified -- plausibly they
correspond to the 50 identified peaks in Garud et al. 2015 (34). It is unclear why the plotted
values appear to correspond to the values in Garud et al. 2015 (34) despite the application of
different approaches. It is also unclear whether windows of particularly low nucleotide diversity
had been eliminated from the Harris et al.’s 2018 (45) scan or whether any scan was performed
at all.

In Garud et al. 2015 (34), we tested several demographic models and found that while they do
match Pi and S, they tend to generate values of H12 that are lower than in the data (Figures 4
and 5). While we remained agnostic to the cause of this inflation of H12 in the data
(misspecification of demography or pervasive draft or both), we chose to focus on empirical
outliers as a conservative approach. Our belief was that in general it is not yet possible to ensure
that any demographic model is correct and thus the focus on empirical distributions is warranted.

Harris et al. 2018 (45) claim that reasonable demographic models fit the data well, but upon
closer inspection of the models they tested, we find that they do not. Specifically, the Duchen et
al. 2013 (50) model generates values of S and Pi that are 2-fold lower than the median values in
the data, and extremely elevated H12 values that approach 1, suggesting that the North Carolina
population should be almost monomorphic while in fact the DGRP data does not have such
extreme H12 values. The lack of a well-fitting demographic model is problematic for the
inference of selective sweeps. In this case, is the model plausible given that such high
homozygosity is never even observed in the data? If the bulk of H12 values in this model are
much higher compared to genome-wide levels of H12, then it is impossible to ascertain whether
localized regions of high homozygosity in the data are significant departures from neutral

10


https://doi.org/10.1101/2020.06.20.163261
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.20.163261; this version posted June 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

expectations. Recently, Arguello et al. 2019 (57) inferred a new admixture model for North
American Drosophila, which includes migration between Africa, Europe, and North America.
However, this model does not fit H12, S, and Pi in the DGRP data cither.

Thus, in the absence of a well-fitting null, we were inspired to look for a more reasonable null
model to determine if such a model could in fact generate long H12 tails. We tested over 70
different versions of the admixture models and found that the majority of the tested models did
not fit the data (Figures S6-18). When the founding population sizes of Europe and North
America were very small, the models predicted a sharp depression of diversity. When the
founding population sizes were too large, the models predicted very high diversity unobserved in
the data. The models that did fit the data reasonably well in terms of S, Pi, and H12 were the
ones with fixed population sizes in North America and Europe, similar to the one implemented in
Garud et al. 2015 (34). We emphasize that these inferred models are not intended to be the
‘correct’ models, especially since LD measured with R”2 still does not match the data. Rather,
they are useful for ascertaining whether a model that can fit multiple summary statistics in the
data can also generate a long tail of H12 values. Future work that exhaustively searches the
parameter space for a model that fits all summary statistics is needed.

The 50 peaks that we identified in Garud et al. 2015 (34) are all in the extreme tails of the new
models that fit Pi, S, and now the bulk of the H12 distribution. These 50 peaks have H12 values
that are more than 11 standard deviations away from median H12 value in the data (Figure S4),
providing additional evidence that these peaks are outliers given a normal distribution that fits
the bulk of the data quite well.

Detecting selective sweeps is only the first goal. The next goal is to distinguish hard and soft
sweeps from each other. For this purpose, Garud et al. 2015 (34) developed the statistic H2/H1.
Harris et al. 2018 (45) claim that H2/H1 cannot distinguish hard and soft sweeps, even though in
their implementation they found that the observed H2/H1 values are in the tail of the values
generated by hard sweeps and firmly within the bulk of the distribution generated by soft sweeps.

An additional reason for Harris et al.’s (45) conclusion that H2/H1 does not have sufficient
power to distinguish hard versus soft sweeps is that they did not correctly condition on both H12
and H2/H1 in their Figure 1. H2/H1 being high alone is insufficient to determine if a sweep is
soft because non-sweeps can easily generate high H2/H1 values. When H12 values are high and
we do have evidence of a sweep, H2/H1 does in fact has high power to distinguish hard and soft
sweeps from each other (34, 53). Conditioning on the highest H12 value in a peak can also avoid
confounding issues like soft shoulders (67), in which a hard sweep decays due to recombination
and mutation events and results in soft sweep-like patterns a short distance away from the sweep
center. Indeed, the H12 and H2/H1 statistics have become important discriminating statistics for
several recent machine learning methods that detect and differentiate hard and soft sweeps (36,
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42, 43). Moreover, Figures 1D and S1 from Harris ef al. 2018 (45) show that after conditioning
on H12 values, the top 50 peaks’ H12 and H2/H1 values are consistent with soft sweeps and not
hard sweeps, even if they did not state it.

Regardless of the exact statistical methodology used or underlying demographic model, it is a
fact that soft sweeps do occur. In D. melanogaster alone, there are three well-documented
examples of soft sweeps at Ace, Cyp6gl, and CHKovI using direct observations of the same
allele on distinct genomic backgrounds (/2—18). More broadly, soft sweeps have been
abundantly documented using a variety of methods, data sets and organisms (27). Our work here
is not the final word on the topic as future statistical developments may enable us to better
quantify rapid adaptation from population genomic data. Note that despite having tested more
than 70 models, none could fit every summary statistic in the data. Thus, it is important to
acknowledge that there may not be any purely neutral model that can explain the diversity
patterns observed in the data. Factors such as linked selection (64), background selection (65—
67), seasonal adaptation (68), local adaptation (69), and variable recombination rates (70) could
all be contributing to diversity patterns in the data. Thus, a combination of demographic and
selection forces may be needed to be jointly inferred to be able to fully match diversity patterns
in the data. Identifying statistics capable of detecting selection that are robust to the
misspecification of demographic and selective models might be one profitable direction for
future research given how complex and strong evolutionary forces are known to be.
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Figure 1: Haplotype frequency spectra at the Cyp6gl, CHKovl, and Ace loci. Recreated from
Garud and Petrov 2016 (/7). Haplotype frequency spectra at the three positive controls in a joint
dataset, comprised of 300 Raleigh (RA) and Zambian (ZI) strains in 801 SNP windows, centered
around the sites of the selective sweeps. 801 SNP windows in the joint data set correspond to
slightly smaller analysis window sizes (<10 kb) in terms of base pairs on average than in the
Raleigh or Zambian data alone. Each color bar represents a different, unique haplotype, and the
height of the bar represents the number of chromosomes sharing the haplotype. The grey bars
represent unique, singleton haplotypes in the sample. On the right side of each of the frequency
spectra are black and white bars, indicating which strains are from RA and ZI, respectively. At
all three positive controls, common haplotypes are shared across the two populations. The thin
black lines shown in the haplotype spectrum for Ace correspond to the presence of three adaptive
mutations that confer pesticide resistance.
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Figure 2: H12 scan of DGRP data. Recreated from Garud et al. 2015 (34). Scan of the four
autosomes using the H12 statistic. Each point indicates an H12 value computed in a 401 SNP
window. Grey points indicate regions excluded from the analysis with recombination rates lower
than 5x10"-7 cM/bp. The orange line represents the 1-per-genome FDR line calculated from
simulations of a neutral model with constant population size of 10"6. Red points indicate the top
50 extreme outlier peaks relative to the 1-per-genome FDR line. Three positive controls are
indicated at Ace, Cyp6gl, and CHKov1.
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Figure 3: Neutral demographic models. Diversity statistics were measured in simulations of 11
neutral demographic models:

(A) A constant N, = 10° model

(B) A constant N, = 2.7x10° model (fit to Watterson’s 6w measured in autosomal short introns in
DGRP data)

(C) A severe short bottleneck model fit to Pi and S in autosomal short introns in DGRP data

(D) A shallow long bottleneck model fit to Pi and S in autosomal short introns in DGRP data

(E) The implemented admixture model in Garud et al. 2015

(F) The implemented admixture + bottleneck model in Garud et al. 2015

(G) The admixture model proposed by Duchen et al. 2013

(H) The admixture + bottleneck model proposed by Duchen et al. 2013

(I) The implemented admixture model in Harris ef al. 2018

(J) The admixture model proposed by Arguello et al. 2019

(K) A variant of the Duchen et al. 2013 admixture model where North America, Europe, and
Africa have fixed population sizes.
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Figure 4: Distributions of Pi, S, and linkage disequilibrium in data and simulations.
Distributions of (A) Pi/bp, (B) S/bp, (C) short range LD (R?), and (D) long range LD measured
in DGRP data and simulated neutral demographic models. Simulations were generated with a
recombination rate p = 5x10°’ ¢cM/bp. Diversity statistics were calculated in DGRP data in
genomic regions with p = 5x107 ¢cM/bp. The horizontal dashed lines in (A) and (B) depict the
median Pi/bp, S/bp, and H12 values measured in DGRP data. For each model, statistics from
1.3x10° simulations are plotted in (A) and (B). The dashed black lines in (C) and (D) correspond
to mean LD values computed in DGRP data. LD in simulations was estimated from 1x10 pairs
of SNPs.
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Figure 5: H12 distributions in data and simulations.

Distributions of H12 in 401 SNP windows. Shown are the (A) full distribution and (B) truncated
y-axis for visual clarity. Simulations were generated with a recombination rate p = 5x1077 ¢cM/bp
and H12 was calculated in DGRP data in genomic regions with p = 5x107 ¢cM/bp. The
horizontal dashed line indicates the median H12 value in DGRP data and the horizontal red line
indicates the lowest H12 value for the top 50 peaks. H12 values from 1.3x10° simulations for
each model are plotted. The distribution of genome-wide H12 values measured in DGRP data is
shown in black. Overlaid in red points are the H12 values corresponding to the top 50 empirical
outliers in the DGRP scan.
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Figure 6: Range of H12 and H2/H1 values expected for hard and soft sweeps under two
admixture models. Bayes factors (BFs) were calculated for a grid of H12 and H2/H1 values to
demonstrate the range of H12 and H2/H1 values expected under hard versus soft sweeps. Panels
A and B show results for variations of the admixture model proposed by Duchen et al. 2013,
where Africa, North America, and Europe have constant population sizes. In (A), the population
sizes for North America and Europe were held constant at 1,110,000 and 700,000 individuals,
respectively. In (B), the population sizes for North America and Europe were held fixed at
15,984,500 and 700,000 individuals, respectively. BFs were calculated by computing the ratio of
the number of soft sweep versus hard sweep simulations that were within a Euclidean distance of
10% of a given pair of H12 and H2/H1 values. Red portions of the grid represent H12 and
H2/H1 values that are more easily generated by hard sweeps, while grey portions represent
regions of space more easily generated under soft sweeps. Each panel presents the results from
10° hard and soft sweep simulations, respectively. Hard sweeps were generated with 6, = 0.01
and soft sweeps were generated with 6, = 10. A recombination rate of p = 5x10~" cM/bp was
used for all simulations. The H12 and H2/H1 values for the top 50 empirical outliers in the
DGRP scan are overlaid in yellow.
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Figure 7: Haplotype frequency spectra for the top 10 peaks in the DGRP data. Haplotype
frequency spectra for the top 10 peaks in the DGRP scan. For each peak, the frequency spectrum
corresponding to the analysis window with the highest H12 value is plotted.

Methods
Simulations of neutrality and selection

Neutral simulations were generated with the coalescent simulator MS (77), and selection
simulations were generated with MSMS (72). All samples consisted of 145 chromosomes to
match the sample depth of the DGRP data analyzed in Garud et al. 2015 (34). Simulations were
generated with a neutral mutation rate of 10~ events/bp/gen (73) and a recombination rate of
5*107-7 cM/bp.

To simulate hard and soft selective sweeps, we varied the adaptive mutation rate, O =

4*Ne*mu_A. Hard sweeps were simulated with 8, = 0.01, and soft sweeps were simulated with
Ox =10, as in Garud et al. 2015. The adaptive mutation was placed in the center of the
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chromosome. We assumed co-dominance, where a homozygous individual bearing two copies of
the advantageous allele has twice the fitness advantage of a heterozygote.

To obtain a minimum of 401 SNPs for computing H12, we simulated chromosomes of length
100,000 bps for neutrality, and 350,000 bps for selection.

Model implementations

For full details and code for model implementations, please refer to the github for this paper
(https://github.com/ngarud/Harris_etal response.git). Specifically,

documentation Jensen response publication.doc provides a README of the
commands run for this paper. The script generate MS commands.py generates MS
commands for all the models previously publishd. The scripts

admixture parameters mode varyGrowth.py,

admixture parameters mode diffProps.py and

admixture parameters mode fixedPopSize MS.py generate commands for the
new models tested in this paper.

The model specified in the Harris et al. supplement was coded as follows: the founding
population sizes of North America and Europe were scaled by 4 *African ancestral Ne
(EuroNe_anc = 10 "&-N-Fu-bn /(4 % Ne anc), AmerNe_anc = 10 '°&-N-Ame-b /(4 % Ne _anc)),
whereas the present day population sizes were scaled by African ancestral Ne only
(scaledNeEuro = Ne Eur/Ne anc, scaledNeAmerica = Ne Ame / Ne anc), resulting in a
bottleneck size that was 4 times smaller than reported by Duchen et al. 2013 (50) (Figure 3I).

Computation of summary statistics, S, Pi, H12, and LD

S and Pi were computed from putatively neutral SNPs in short introns of the DGRP data, as
described in Garud et al. 2015 (34) We used the program DaDi (74) to project the DGRP data
down to 130 chromosomes to account for missing data. S and Pi was computed from simulations
using custom python scripts.

H12 was computed from DGRP data and simulations as described in Garud et al. 2015 (34)
using custom python scripts. LD was computed using the R”*2 statistic using the same approach
as described in Garud et al. 2015 (34) using custom python scripts. 10*7 R*2 values were
averaged over to generate a smooth curve.

Fit of a Gaussian to the distribution of H12 values

We fit a Gaussian distribution to the bulk of the distribution of H12 values by estimating the

standard deviation (SD) of data within a 34.1% range of the median on either side. We ensured
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that data within +/-1 SD of the fitted normal was normally distributed based on a QQ plot
(Figure S4). Since the distribution of H12 values measured from data has a long tail, we
computed the number of standard deviations away from the median that the H12 value for the
smallest peak was.

Computation of Bayes Factors

We computed Bayes factors as described in Garud et al. 2015 (34) for two admixture models
with constant population sizes in Europe and North America (Figure 3K). We approximated BFs
using an approximate Bayesian computation approach that integrates out nuisance parameters
partial frequency (PF), selection strength (s), and age of a sweep. We stated the hard and soft
sweep scenarios as point hypotheses in terms of adaptive mutation rates (64). Specifically, BF =
P(H120bs, H2obs/H1obs | soft sweep)/P(H120bs,H2obs/H1obs | hard sweep), whereby H12obs
and H2obs/H1o0bs were computed from data, and hard and soft sweeps were simulated from a
range of evolutionary scenarios.

In MSMS, when simulating selection with time-variant demographic models like the admixture
model, it is only possible to condition on the time of onset of selection since the simulation runs
forward in time. Thus, we assumed a uniform prior distribution of the start time of selection,
~UJ0, time of admixture]. The selection coefficient and partial frequency of the sweeps were
drawn from uniform priors ranging from 0 to 1.

Code and data is available for this paper at this URL:
https://github.com/ngarud/Harris_etal response.git
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Figure S1: H12 values in DGRP data and in simulations of neutral demographic scenarios
tested in Garud et al. 2015 (34). The DGRP H12 values are compared with H12 values
computed in a range of simulated neutral demographic models from Garud et al. 2015. The
models tested are as follows: (A) a constant N, = 10° model, (B) a constant N, = 2.7x10° model,
(C) a severe short bottleneck model, (D) a shallow long bottleneck model, (E) the implemented
admixture model in Garud et al. 2015, and (F) the implemented admixture + bottleneck model in
Garud et al. 2015. The number of analysis windows generated for the simulated models
(n=69,113) equals the number of analysis windows for the DGRP data, after excluding regions
of low recombination rates. The red points indicate the H12 values for the top 50 peaks in the
DGRP data.
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Figure S2: H12 values in DGRP data compared to values measured in simulations of
neutral demographic scenarios from Duchen et al. (50), Harris et al. (45), and Arguello et al
(57). The DGRP H12 values are compared with H12 values computed in a range of simulated
neutral demographic models from Duchen et al. (50), Harris et al. (45), and Arguello et al. (57).
The models tested are as follows: (A) The admixture model proposed by Duchen et al. 2013
(50), simulated with parameter values corresponding to the mode of the posterior. (B) The
admixture + bottleneck model proposed by Duchen et al. 2013 (50), simulated with parameter
values corresponding to the mode of the posterior. (C) The admixture model proposed by
Duchen et al. 2013 (50), simulated with parameter values drawn from the posterior distribution.
(D) The implemented admixture model in Harris et al. 2018 (45), simulated with parameter
values drawn from the posterior distribution. (E) The admixture model proposed by Arguello et
al. 2019 (51). The number of analysis windows generated for the simulated models (n=69,113)
equals the number of analysis windows for the DGRP data, after excluding regions of low
recombination rates. The red points indicate the H12 values for the top 50 peaks in the DGRP
data.
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Figure S3: H12 values in DGRP data compared to values measured in simulations of
neutral demographic scenarios inferred from this paper. The DGRP H12 values are
compared with H12 values computed in two simulated neutral demographic models inferred to
fit the DGRP (Figures 3J and K) (A) A variant of the Duchen ez al. 2013 (50) admixture model
where North America, Europe, and Africa have fixed population sizes. North American
population size = 1.11x1076, European population size = .7x10"6, and African population size
held constant at the value inferred in Duchen et al. 2013 (50). (B) A variant of the Duchen et al.
2013 (50) admixture model where North America, Europe, and Africa have fixed population
sizes. North American population size = 1.6x10"6, European population size = .7x10"6, and
African population size held constant at the value inferred in Duchen et al. 2013 (50). The
number of analysis windows generated for the simulated models (n=69,113) equals the number
of analysis windows for the DGRP data, after excluding regions of low recombination rates. The
red points indicate the H12 values for the top 50 peaks in the DGRP data.The
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Figure S4: H12 values in the bulk of the DGRP data compared to a fitted Gaussian. (A)
Quantile-quantile plot of H12 values within +/-1 SD of the median value in the DGRP data are
compared with a random sample from the fitted Gaussian. The Gaussian was simulated with the
mean equalling the median value of H12 in the DGRP data, and the standard deviation estimated
from points within 1 standard deviation around the median (Methods). (B) Comparison of
distribution of H12 values in DGRP data with that of a simulated Gaussian with a mean and
standard deviation from (A). The vertical blue line indicates 11 standard deviations away from
the mean of the simulated Gaussian distribution. The red points indicate the H12 values for the
top 50 peaks in the DGRP data.
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Figure S5: Variants of Duchen et al. 2013 (50) admixture models tested in this paper.

We computed Pi, S, and H12 in variants of the admixture model proposed by Duchen et al. 2013
(50). The admixture models include: (A) constant population sizes for North America and
Europe, (B) different growth rates for North America and Europe, (C) different proportions of
admixture, (D) different migration rates. In all cases, the 11 parameters originally inferred by
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Duchen et al. 2013 (50) were kept constant at the mode of the parameters’ posterior distributions,
unless highlighted in red. The parameters highlighted in red were varied.
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Figures S6-S10: Pi, S, H12, and linkage disequilibrium measured in simulated admixture
models with fixed population sizes in North America and Europe. Summary statistics S, Pi,
H12, and LD were measured in admixture models with constant population sizes in Europe and
North America (Figure S5A). In Figures S6 through S10, the European population size was held
constant at the values 16,982, 67,608, 700,000, 2,000,000, and 9,550,000, respectively. Along
the x-axis of each figure, the North American population sizes were held constant at the values
2,500, 61,659, 1,110,000, 15,984,500, and 28,800,000. These population sizes span the ranges of
the 95 CI for the posterior distributions of the European and North American population sizes in
Duchen et al. 2013. All other parameters in the admixture model were held constant at the mode
of the posterior distribution inferred by Duchen et al. 2013 (50). Each boxplot is comprised of
3,000 simulations.
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Figures S11-S16: Pi, S, H12, and linkage disequilibrium measured in simulated admixture
models with differing growth rates in North America and Europe. Summary statistics S, P1,
H12, and LD were measured in admixture models with varying growth rates in Europe and North
America (Figure S5B). In Figures S11 through S13, the starting population size for Europe was
16,982, and ending population sizes were 700,000, 2,000,000, and 9,550,000, respectively. In
Figures S14 through S16, the starting population size for Europe was 67,608, and ending
population sizes were 700,000, 2,000,000, and 9,550,000, respectively. Along the x-axis of each
figure, the North American starting population sizes were either 2,500 or 61,659, and ending
population sizes were either 1,110,000, 15,984,500, or 28,800,000. These population sizes span
the ranges of the 95 CI for the posterior distributions of the European and North American
population sizes in Duchen et al. 2013 (50). All other parameters in the admixture model were
held constant at the mode of the posterior distribution inferred by Duchen et al. 2013. Each
boxplot is comprised of 3,000 simulations.
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Figure S17: Pi, S, H12, and linkage disequilibrium measured in simulated admixture
models with differing admixture proportions. Summary statistics S, Pi, H12, and LD were
measured in admixture models with varying admixture proportions between Europe and North
America (Figure S5C). Admixture proportions varied from 0 to 0.9. All other parameters in the
admixture model were held constant at the mode of the posterior distribution inferred by Duchen
et al. 2013 (50). Each boxplot is comprised of 3,000 simulations.
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Figure S18: Pi, S, H12, and linkage disequilibrium measured in simulated admixture
models with differing migration rates. Summary statistics S, Pi, H12, and LD were measured
in admixture models with varying amounts of migration between Europe and North America
(Figure S5D). Migration rates varied from 0 to 0.75. All other parameters in the admixture model
were held constant at the mode of the posterior distribution inferred by Duchen et al. 2013 (50).
Each boxplot is comprised of 3,000 simulations.
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H12: 0.08 0.7 0.07 007 007 007 006 006 006 006 006 006 006 006 0.05 005 005 005 005 0.05
H2/H1:029 042 022 065 053 026 039 051 05 046 058 051 042 058 038 054 041 034 054 044

H12: 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 0.05 0.05
H2/H1:0.29 055 027 044 061 051 039 047 029 055 056 069 026 06 047 057 059 052 061 046

Figure S19: Haplotype frequency spectra for the 11™-50"™ peaks. Same as Figure 7, except
plotted are haplotype frequency spectra for the (A)11"-30™ and the (B) 31*—50" peaks in the
DGRP scan.
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