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Abstract 
  
Whether hard sweeps or soft sweeps dominate adaptation has been a matter of much debate. 
Recently, we developed haplotype homozygosity statistics that (i) can detect both hard and soft 
sweeps with similar power and (ii) can classify the detected sweeps as hard or soft. The 
application of our method to population genomic data from a natural population of Drosophila 
melanogaster (DGRP) allowed us to rediscover three known cases of adaptation at the loci Ace, 
Cyp6g1, and CHKov1 known to be driven by soft sweeps, and detected additional candidate loci 
for recent and strong sweeps. Surprisingly, all of the top 50 candidates showed patterns much 
more consistent with soft rather than hard sweeps. Recently, Harris et al. 2018 criticized this 
work, suggesting that all the candidate loci detected by our haplotype statistics, including the 
positive controls, are unlikely to be sweeps at all and instead these haplotype patterns can be 
more easily explained by complex neutral demographic models. They also claim, confusingly, 
that these neutral non-sweeps are likely to be hard instead of soft sweeps. Here, we reanalyze the 
DGRP data using a range of complex admixture demographic models and reconfirm our original 
published results suggesting that the majority of recent and strong sweeps in D. melanogaster are 
first likely to be true sweeps, and second, that they do appear to be soft. Furthermore, we discuss 
ways to take this work forward given that the demographic models employed in such analyses 
are generally necessarily too simple to capture the full demographic complexity, while more 
realistic models are unlikely to be inferred correctly because they require fitting a very large 
number of free parameters.   

  
Introduction 
Pervasive adaptation has been extensively documented in Drosophila melanogaster. Recent 
studies suggest that (i) ~50% of amino acid changing and non-coding substitutions in D. 
melanogaster evolution were adaptive, and (ii) there are abundant signatures of adaptation in the 
population genomic data detectable as reductions of neutral diversity in the regions of higher 
functional divergence and in the patterns of derived allele frequencies (1–11).  
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In three cases -- at the loci CYP6g1, CHKov1, and Ace – we specifically know the causal 
mutations and have functional hypotheses for the causes of adaptation (12–18). Intriguingly, in 
all three cases, there is strong evidence that adaptation was not driven by a single de novo 
adaptive mutation that rose to high frequency, but rather, multiple adaptive mutations. In the case 
of Cyp6g1, adaptive changes leading to resistance to DDT evolved via multiple insertions of 
Accord transposon in the 5’ regulatory region of the locus on different genomic backgrounds, as 
well as a duplication of the entire locus (12, 13). At the CHKov locus, the adaptive change led to 
a higher resistance to organophosphates and viral infections and evolved by a transposon element 
insertion in the protein coding region of CHKov, which then segregated in the ancestral 
populations before rising to high frequency only recently (14, 15). Finally, resistance to 
pesticides such as carbamates and organophosphates evolved via multiple independent point 
mutations at four highly conserved sites in the gene Ace on different genomic backgrounds on 
multiple continents (16–18). Not surprisingly, all three well-understood examples of adaptation 
show signatures of soft sweeps (Figure 1), in which multiple adaptive alleles rise to high 
frequency simultaneously at the same locus (19–21), and suggest that recent and strong 
adaptation is not mutation-limited in D. melanogaster. 
  
These three empirical examples of soft sweeps at Ace, CYP6g1, and, CHKov were all defined 
experimentally and suggested that soft sweeps might be common. However, until recently, it was 
unknown how common soft selective sweeps are in the Drosophila genome. Most scans for 
detecting selective sweeps were specifically designed to detect signatures of unusually low 
diversity or the presence of a single common haplotype expressly associated with hard rather 
than soft selective sweeps (2, 22–29), making it challenging to assess the frequency of soft 
sweeps (30–33).  
 
To address this, we recently introduced novel haplotype homozygosity statistics for the detection 
and differentiation of hard and soft sweeps that are capable of detecting both hard and soft 
sweeps with similar power and then to determine whether detected sweeps are likely to be either 
hard or soft (34). Application of these statistics to the Drosophila Genetic Reference Panel 
(DGRP) (35), composed of 145 whole-genome sequences from a North Carolina D. 
melanogaster population, revealed several putative sweeps with unusually high haplotype 
homozygosity relative to expectations under several neutral demographic scenarios (Figure 2). 
The top 50 empirical outliers, which included the rediscovered positive controls at CYP6G1, 
CHKov1, and Ace, had multiple unusually long haplotypes present at high frequency, consistent 
with soft sweeps (Figure 1). We found that simulations of hard sweeps were unable to produce 
signatures observed in the data, whereas simulations of soft sweeps easily could. Subsequent 
studies found that soft sweeps seem to be common not only in this North American population, 
but also in Sub Saharan populations of D. melanogaster (17, 18, 36). Finally, these haplotype 
homozygosity statistics have been applied to several other organisms including pigs (37, 38), 
dogs (37), cattle (39, 40), soy beans (41), and humans (42) to identify hard and soft sweeps, and 
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have become standard summary statistics in machine learning methods for detecting selection 
(43, 44). 
 
Harris et al. 2018 (45) recently reanalyzed the DGRP data using our statistics and argued that 
that there is scant evidence for abundant recent strong selective sweeps in the North American D. 
melanogaster population. They claim that correct neutral admixture models naturally generate 
detected haplotype signatures in the absence of positive selection and thus most of the detected 
signatures do not correspond to selective sweeps. They also argue that if these sweeps exist,  then 
they would be hard rather than soft sweeps. Here we re-evaluate our analysis using a range of 
demographic models and show that our previous findings stand. We then discuss the reasons for 
the different conclusions from Harris et al. 2018 (45),  implications of these results, and 
directions for future work. 
  
Results 
 
Summary of our previous results in Garud et al. 2015 
 
The increase in frequency of an adaptive allele is expected to also lead to the increase in 
frequency of the linked haplotype (46–48). Such an increase of haplotype frequency is expected 
to elevate levels of haplotype homozygosity (H1) in the vicinity of the selected locus (25, 26, 28, 
29, 49). H1 is defined as 
  
H1 = Σ(pi)2, 
  
where pi is the frequency of the ith most common haplotype. H1 is expected to be elevated for 
both hard and soft selective sweeps, but hard sweeps should still have higher H1 values than soft 
sweeps, given that soft sweeps bring multiple haplotypes to high frequency. 
  
In Garud et al. 2015 (34) we define a similar haplotype homozygosity statistic H12, which 
combines the frequencies of the first and second most common haplotypes into a single 
frequency and is defined as follows: 
  
H12 = (p1+ p2)2 + (!!)!!

!  
Using extensive simulations, we showed that H12 has reasonably similar power to detect hard 
and soft sweeps with a slight bias in favor of hard sweeps (34). 
  
The application of these statistics requires one to define a window size. Longer windows should 
have lower false positive rates for distinguishing selection from neutrality, but simultaneously 
have reduced ability to detect weaker sweeps. In Garud et al. 2015 (34) we used windows of 401 
SNPs in length (~10Kb in Drosophila), and we show that this biases our analysis towards 
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detecting sweeps with selection coefficients (s) >= 0.1%. Note that most of the detected sweeps 
span multiple analysis windows with the peaks ranging from ~11kb to ~870 kb, and with half of 
the peaks over 100kb (Figure 2), suggesting that the identified sweeps were substantially 
stronger on average than s = 0.1%. 
  
We tested a range of neutral models fitting overall polymorphism levels in the data and found 
that these rarely generate elevated values of H12 on such long length scales (34). We specifically 
considered six models of increasing complexity (Figure 3). We included four simple models that 
were fit to site frequency spectrum-based summary statistics measured from short introns in the 
DGRP data: two constant population size models (the standard Ne=106 and Ne=2.2*106 which fit 
the levels of diversity better) and two bottleneck models with varying bottleneck durations and 
sizes. Finally, we included two complex admixture models inferred by Duchen et al. 2013 (50) 
using an approximate Bayesian computation (ABC) approach and data from 242 short intronic 
and intergenic fragments from the X-chromosome. These models were fit to both site frequency 
spectrum-based summary statistics (number of segregating sites, S/bp, and average nucleotide 
diversity, Pi/bp) and LD measured on short length-scales (~500bp) using Kelly’s ZnS. Using 
their ABC method, Duchen et al. 2013 (50) inferred a posterior distribution for each of the 11 
parameters for the admixture models. 
  
Upon revisiting the Duchen et al. 2013 (50) models for the present paper, we found that the 
model implemented in Garud et al. 2015 (34) was a variation of the model published in Duchen 
et al 2013 (50). Instead of an expansion in North America and Europe, we had implemented 
roughly constant population sizes in North America and Europe (Figures 3E and 3F). Despite 
this difference from the published model, all six implemented models fit the autosomal DGRP 
data in terms of S/bp, Pi/bp and decay in short-range LD (Figure 4). Both H12 and long-range 
LD (~10Kb) in simulated models were depressed compared to the observed data (Figures 4C 
and 5). Specifically, the data showed much slower decay of LD on the scale of 10kb and 
substantially larger median haplotype homozygosity (H12). The distribution of H12 in the data 
also had a much longer tail compared to simulations (Figures 5 and S1). Indeed, the observed 
median values of H12 in the data are similar to levels expected only once in the genome under 
these neutral models. We interpreted the elevation of long-range LD and haplotype 
homozygosity in long windows in the data as evidence of positive selection. 
  
The lack of the model fit with the bulk of the H12 values in the data presents a problem for 
identifying selective sweeps with elevated homozygosity. Thus, we elected to be conservative. 
First, we defined a 1-per-genome false discovery rate for each demographic model by 
performing 1.3x10^5 simulations (>10 times the number of analysis windows observed in the 
data) for each model. The FDRs, corresponding to the 10th highest H12 value in the distributions, 
were approximately equal to the median H12 value observed in the data. Several genomic 
regions had ‘peaks’ of elevated H12 values that were especially unlikely to be generated by 
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neutrality. These regions corresponded to our candidate selective sweeps (Figure 2). We then 
focused on the 50 empirical outliers to further characterize as hard or soft. These peaks were 
defined by identifying the window with the highest H12 value and finding all consecutive 
windows in both directions with H12 values exceeding the 1-per-genome FDR. These candidates 
all had maximum H12 at least eleven standard deviations away from the median H12 value in the 
data after fitting a Gaussian distribution to the bulk of the data (Figure S4) (Methods). The top 3 
outliers were the positive controls, Ace, Cyp6g1, CHKov1, confirming that H12 has the ability to 
detect known soft selective sweeps that arose from multiple de novo mutations or standing 
genetic variation. 
  
Can admixture generate elevated haplotype homozygosity? 
  
Harris et al. (45) claim that the admixture model proposed by Duchen et al. 2013 (50) can easily 
generate all the elevated H12 values in the data, suggesting that the selective sweeps identified 
by H12 are false positives. 
  
Given that our original implementation of the admixture model in Garud et al. 2015 (34) 
was a variant of the Duchen et al. 2013 (50) model, we tested Harris et al.’s (45) claim by 
implementing the model specified in their supplement, which also differs from the Duchen et al. 
2013 (50) model (methods). To more broadly consider the Harris et al.’s (45) claim that 
appropriate demographic models can easily generate the distribution of H12 values observed in 
the data, we also tested the Duchen et al. 2013 (50) model both with the mode of the posterior 
distributions of the 11 parameters for the admixture model and by drawing parameters from the 
95 CIs of the posterior distributions, as was done in Harris et al. 2018 (45). Note that Harris et al. 
2018 (45) did not use a joint posterior distribution, leading to the possibility that many of the 
parameter combinations may not correspond to realistic scenarios. We also tested a variant of the 
admixture model proposed by Duchen et al. 2013 (50) that included a bottleneck in the founding 
European population (Figure 3H). Finally, we also tested a new admixture model with migration 
between Africa, Europe, and North America (Figure 3J) recently proposed by Arguello et al 
2019 (51). 
  
The Duchen et al. 2013 (50) model and Harris et al. 2018 (45) implementation of the model 
generate S/bp and Pi/bp values that are 2-fold lower than the median values measured from short 
introns in the DGRP data (Figures 4A and 4B). More strikingly, however, H12 is extremely 
elevated compared to values observed in the DGRP data (Figures 5 and S2), e.g the bulk of the 
distribution of values generated in simulations is non-overlapping with the bulk of the 
distribution of values from genome-wide data. This elevation is likely due to the sharp 
bottlenecks specified in the models, especially in the Harris et al. 2018 implementation where the 
bottleneck size is 4 times smaller than reported by Duchen et al. 2013 (50). The elevation is even 
more pronounced when drawing parameters from the 95 CIs. In some cases, H12 almost 
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approaches 1, implying that these models predict essentially no variation in the DGRP in the 
large ~10kb window sizes used for our analysis. Consistent with elevated haplotype 
homozygosity, the Duchen et al. 2013 (50)  models produced elevated pairwise LD compared to 
observations in the data (Figures 4C and 4D). The mismatch between the expected values of all 
the statistics in the Arguello et al. 2019 (51) model and the data is less pronounced compared to 
the Duchen et al. 2013 (50) model, presumably because migration replenishes some of the 
diversity lost during the extreme bottlenecks, but nevertheless there is a significant mismatch. 
  
At first glance, the elevated haplotype homozygosity produced by the Duchen et al. 2013 (50) 
model might suggest that the peaks observed in the DGRP data (Figure 2) could be explained by 
the admixture model. However, the S/bp, Pi/bp, H12, and LD values produced by this admixture 
model deviate significantly from genome-wide summary statistics in the data. In particular, the 
distribution of H12 values in the data has a very specific distribution that the simulations of 
neutrality cannot match (Figures 5 and S1-3). Almost 80% of the analysis windows in the 
DGRP data have H12 values within 2 standard deviations from the median, after fitting a 
Gaussian to the bulk of the distribution (Methods, Figure S4). This is followed by a long tail of 
H12 values that includes the values for the top 50 peaks, which are >= 11 standard deviations 
away from the median, indicating that these peaks are indeed genome-wide outliers (Figure S4). 
By contrast, the bulk of the distribution generated by the Duchen et al. 2013 (50) admixture 
model surpasses the median and bulk of the distribution of H12 values in the data (Figure 5). 
This lack of fit of the admixture model to the data is problematic for the inference of selective 
sweeps: if the tail of the distribution of H12 values from data can be explained by neutrality, then 
the bulk of the distribution should also be explainable by neutrality. These admixture models do 
not recapitulate the distribution observed in the data, and instead produce extremely high levels 
of homozygosity that are incompatible with the data. 
  
One reason for the lack of fit of H12 measured in the data and the simulated admixture model 
could be that Duchen et al. 2013 (50) initially fit the model to the 242 X-chr fragments of 
~500bps using SFS statistics and short-range LD statistics (Kelly ZnS), whereas we analyzed 
autosomal data. Although Duchen et al. 2013 (50) showed that the model extrapolated to 
autosomes by fitting to ~50 intronic and intergenic regions on the 3rd chromosome, the models 
do not fit diversity patterns on short introns, which are putatively the most neutral part of the 
genome (52). Additionally, Duchen et al. 2013 (50) did not require that long-range haplotype 
homozygosity on the scale of ~10kb fit the data, which is the main source of discrepancy 
between the models and the data. 
  
Models that fail to recapitulate the bulk of the diversity statistics from the data are unlikely to 
accurately capture the true demographic history of the population. These models are not 
appropriate for inferring sweeps because they do not set a realistic baseline for the expected 
diversity pattern in a neutral scenario. 
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Inference of new demographic models 
  
In this section, we test whether there are variants of the Duchen et al. 2013 (50) and Arguello et 
al. 2019 (51) admixture models that can achieve a better fit with regard to multiple relevant 
summary statistics in the DGRP data. The models we explore are not intended to be a true 
representation of the demography of the North American population of Drosophila. Instead, our 
goal is to see whether we can find an admixture model that reasonably fits both SFS and LD-
based genome-wide statistics in the data and can also generate tails of elevated H12 values that 
may explain the outlier peaks observed in the data. We do not claim that other models cannot fit 
the data equally well or better. 
  
We tested four classes of variants of the Duchen et al. 2013 (50) and Arguello et al. 2019 (51) 
admixture models (Figure S5). First, we tested models with constant population sizes in North 
America and Europe (Figures 3K and S5A), because the Garud et al. 2015 (34) implementation 
(Figure 3E), which had effectively constant population sizes for these two populations, fit the 
data well in terms of S/bp and Pi/bp. Second, we tested models with varying amounts of growth 
in North America and Europe (Figure S5B). Third, we tested models with varying proportions of 
admixture (Figure S5C), and fourth, we tested models with varying amounts of migration 
between the continents (Figure S5D). For each of these models, we held almost all parameters 
constant at the mode of the posterior distributions inferred by Duchen et al. 2013 (50). The only 
parameters we varied were those relevant to the model being tested (e.g. proportion of 
admixture, amount of migration, or rate of growth). Where applicable, the values of these 
parameters were chosen to span the ranges of the 95CI inferred by Duchen et al. 2013 (50). 
These variable parameters are highlighted in red in Figure S5. In sum, we tested a total of 74 
admixture model variants. Supplemental Figures S6-18 show the distributions of summary 
statistics S, Pi, H12, short-range LD and long-range LD generated by these models. 
  
The majority of the models tested do not fit the data well, whereby the median values of S/bp, 
Pi/bp, and H12 measured in the data lie outside the 25th and 75th quantiles measured from 
simulations (Figures 4, 5, and S1-3). Models that produce extremely high H12 values and low S 
and Pi values generally have small founding population sizes. Models with depressed H12 values 
and elevated S and Pi values have larger founding population sizes. Many models fit some 
summary statistics reasonably well, but no single model fits all five summary statistics. 
  
Only 3 of the 74 models we tested generate distributions overlapping the median genome-wide 
S, Pi, and H12 values (Figures S3 and S8). These models have constant population sizes in 
North America and Europe (Figures 3K and S5A) of magnitudes similar to the one implemented 
in Garud et al. 2015 (34). Specifically, the well-fitting models have large North American 
population sizes (>= 1.11*10^6), and intermediate European population sizes (~0.7*10^6). The 
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distributions of S, Pi, H12, and LD for two of these models are shown in Figure 4 as a 
comparison with all other models considered in this paper so far. 
  
While the three well-fitting models generate S, Pi, and H12 values that overlap the median 
values measured from genome-wide data, they cannot generate long tails of elevated H12 values. 
The 1-per-genome FDR values observed in simulations for these models have H12 values that 
are lower than even the 50th ranking peak in the DGRP H12 scan. This suggests that given a 
reasonably well-fitting model, the top 50 H12 peaks observed in the DGRP data are still outliers 
under any of the current models. 
  
Distinguishing hard versus soft sweeps with the H2/H1 statistic 
  
In Garud et al. 2015 (34), we analyzed whether the haplotype patterns observed among the top 
50 peaks are more consistent with hard or soft sweeps. To do so, we introduced a second 
haplotype homozygosity statistic, H2/H1, to distinguish hard from soft sweeps. 
  
H2 is haplotype homozygosity computed excluding the most common haplotype: 
  
H2= (!!)!!

!   
  
H2 is expected to be small for hard sweeps because the main contributing haplotype to 
homozygosity is excluded. However, it is expected to be larger for soft sweeps since there should 
be multiple adaptive haplotypes at high frequency. H2/H1 augments our ability to distinguish 
hard and soft sweeps since it is even smaller for hard sweeps and larger for soft sweeps than H2. 
  
While hard sweeps and neutrality cannot easily generate both high H12 and H2/H1 values, soft 
sweeps can. Hence, the H2/H1 statistic is powerful for discriminating hard and soft sweeps only 
when applied to candidate selective sweeps with H12 values exceeding expectations under 
neutrality. Additionally, H2/H1 is inversely correlated with H12 values (53). Thus, H12 and 
H2/H1 must be jointly applied when H12 is sufficiently high to make inferences about the 
softness of a sweep. 
  
In Garud et al. 2015 (34), we tested whether the H12 and H2/H1 values for the top 50 peaks are 
more consistent with hard versus soft sweeps. Specifically, we categorized sweeps as hard versus 
soft by computing Bayes factors: BF = P(H12obs, H2obs/H1obs | soft 
sweep)/P(H12obs,H2obs/H1obs | hard sweep), whereby H12obs and H2obs/H1obs were 
computed from data, and hard and soft sweeps were simulated by drawing partial frequencies, 
selection strengths, and ages from uniform prior distributions (Methods). By using a Bayesian 
approach, we can then integrate over a wide range of evolutionary scenarios instead of testing a 
single point hypothesis. We found in our application of H2/H1 and H12 to the DGRP data under 
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both constant Ne models and our implementation of the admixture models that the top 50 peaks 
have H12 and H2/H1 values more consistent with soft sweeps than hard sweeps. 
  
We repeated the BF analysis (Methods) with the new admixture models (Figure 3K) inferred in 
this paper and found that the majority of the sweeps are soft and ~3-4 are hard depending on the 
model under consideration (Figure 6). Visual inspection of the haplotype frequency spectra for 
the top 50 peaks confirms that multiple haplotypes are present at high frequency (Figure 7) for 
most peaks. 
  
To make their argument that H2/H1 does not have power to distinguish hard and soft sweeps, 
Harris et al. 2018 (45) assessed whether the top 50 peaks have H2/H1 values consistent with hard 
versus soft sweeps (even though they also claimed that that these peaks are not sweeps to begin 
with).  In their Figure 1D, they conclude that H2/H1 does not have discriminatory power. 
However, the H2/H1 values for the top 50 peaks lie within the bulk of the distribution generated 
by soft sweeps and in the tail of the distribution generated by hard sweeps (see their Figure 1D), 
which appears at odds with their conclusion. Despite their claims that H12 and H2/H1 lack 
discriminatory power, Harris et al. 2018 (45)  also computed Bayes factors (BF) in their Figure 
S1 and showed that after correctly conditioning on matching H12 and H2/H1 values for the top 
50 peaks, the majority of the peaks have values that are consistent with soft sweeps. Thus, Harris 
et al. 2018 (45) obtain the same result as in Garud et al. 2015 (34). 
  
Discussion 
  
Whether hard versus soft sweeps are common is a topic of much debate. While multiple 
empirical studies have revealed evidence for soft sweeps in a wide range of organisms including 
D. melanogaster, P. falciparum (54, 55), viruses (56), humans (42, 57–60), dogs (37), amongst 
others (21), several articles claim that there is unfounded enthusiasm for soft sweeps and that in 
fact, they are not as pervasive as the evidence suggests (45, 61, 62). Specifically, Harris et al. 
2018 (45) suggest that the claim in Garud et al. 2015 (34) that there is abundant evidence for 
many strong and recent soft sweeps in the D. melanogaster populations is not supported after 
appropriate applications of demographic models and generating appropriate null distributions. 
Here we carry out a range of additional analyses and reassert the claims of Garud et al. 2015 
(34). 
  
In Garud et al. 2015 (34), we developed the haplotype homozygosity statistics H12 and H2/H1 to 
systematically detect and differentiate hard and soft sweeps from population genomic data. Our 
application of these statistics to the DGRP data from North Carolina revealed that soft sweeps 
are common in this population. Among the top candidates in our scan were the positive controls 
at Ace, Cyp6g1, and CHKov1. Corroborating our results, we found that approximately half of our 
sweep candidates were also identified with the popular statistic, iHS (28), which was designed to 
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detect partial hard sweeps. Finally, we found that soft sweeps are common in a Zambian 
population as well (17), suggesting that any particular demographic history for a given 
population is not driving the signal of multiple haplotypes at high frequency. Independently, (44) 
found that soft sweeps are prevalent in this same population of Zambia. 
  
To ensure low false positive rates, we excluded related individuals and tested for substructure. 
Additionally, we utilized large analysis window sizes of 401 SNPs (corresponding to ~10kb), 
since haplotypes of such length are not expected to be at high frequency by chance. Note that we 
use windows of constant number of SNPs to avoid the issue of H12 co-varying with the number 
of SNPs in the window. Windows defined in terms of the number of SNPs automatically extends 
the physical lengths of the windows in regions of low diversity. Such longer windows should 
then have proportionately higher recombination rates reducing the expected H12, and thus 
reducing the probability of false positives. In practice, we also eliminated regions of low 
recombination (rho <5*10^-7 cM/bp) from the data, as regions of low recombination rate can 
show elevated false-positive rates in haplotype-bases tests of selection (63). By contrast, Harris 
et al. 2018 (45) chose to perform their analyses in 10kb windows, although we note that it is 
unclear how the H12 and H2/H1 values plotted in their Figure 1 were identified -- plausibly they 
correspond to the 50 identified peaks in Garud et al. 2015 (34). It is unclear why the plotted 
values appear to correspond to the values in Garud et al. 2015 (34) despite the application of 
different approaches. It is also unclear whether windows of particularly low nucleotide diversity 
had been eliminated from the Harris et al.’s 2018 (45) scan or whether any scan was performed 
at all. 
  
In Garud et al. 2015 (34), we tested several demographic models and found that while they do 
match Pi and S, they tend to generate values of H12 that are lower than in the data (Figures 4 
and 5). While we remained agnostic to the cause of this inflation of H12 in the data 
(misspecification of demography or pervasive draft or both), we chose to focus on empirical 
outliers as a conservative approach. Our belief was that in general it is not yet possible to ensure 
that any demographic model is correct and thus the focus on empirical distributions is warranted.   
  
Harris et al. 2018 (45) claim that reasonable demographic models fit the data well, but upon 
closer inspection of the models they tested, we find that they do not. Specifically, the Duchen et 
al. 2013 (50) model generates values of S and Pi that are 2-fold lower than the median values in 
the data, and extremely elevated H12 values that approach 1, suggesting that the North Carolina 
population should be almost monomorphic while in fact the DGRP data does not have such 
extreme H12 values. The lack of a well-fitting demographic model is problematic for the 
inference of selective sweeps. In this case, is the model plausible given that such high 
homozygosity is never even observed in the data? If the bulk of H12 values in this model are 
much higher compared to genome-wide levels of H12, then it is impossible to ascertain whether 
localized regions of high homozygosity in the data are significant departures from neutral 
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expectations. Recently, Arguello et al. 2019 (51) inferred a new admixture model for North 
American Drosophila, which includes migration between Africa, Europe, and North America. 
However, this model does not fit H12, S, and Pi in the DGRP data either. 
  
Thus, in the absence of a well-fitting null, we were inspired to look for a more reasonable null 
model to determine if such a model could in fact generate long H12 tails. We tested over 70 
different versions of the admixture models and found that the majority of the tested models did 
not fit the data (Figures S6-18). When the founding population sizes of Europe and North 
America were very small, the models predicted a sharp depression of diversity. When the 
founding population sizes were too large, the models predicted very high diversity unobserved in 
the data. The models that did fit the data reasonably well in terms of S, Pi, and H12 were the 
ones with fixed population sizes in North America and Europe, similar to the one implemented in 
Garud et al. 2015 (34). We emphasize that these inferred models are not intended to be the 
‘correct’ models, especially since LD measured with R^2 still does not match the data. Rather, 
they are useful for ascertaining whether a model that can fit multiple summary statistics in the 
data can also generate a long tail of H12 values. Future work that exhaustively searches the 
parameter space for a model that fits all summary statistics is needed. 
  
The 50 peaks that we identified in Garud et al. 2015 (34) are all in the extreme tails of the new 
models that fit Pi, S, and now the bulk of the H12 distribution. These 50 peaks have H12 values 
that are more than 11 standard deviations away from median H12 value in the data (Figure S4), 
providing additional evidence that these peaks are outliers given a normal distribution that fits 
the bulk of the data quite well.  
  
Detecting selective sweeps is only the first goal. The next goal is to distinguish hard and soft 
sweeps from each other. For this purpose, Garud et al. 2015 (34) developed the statistic H2/H1. 
Harris et al. 2018 (45) claim that H2/H1 cannot distinguish hard and soft sweeps, even though in 
their implementation they found that the observed H2/H1 values are in the tail of the values 
generated by hard sweeps and firmly within the bulk of the distribution generated by soft sweeps. 
  
An additional reason for Harris et al.’s (45) conclusion that H2/H1 does not have sufficient 
power to distinguish hard versus soft sweeps is that they did not correctly condition on both H12 
and H2/H1 in their Figure 1. H2/H1 being high alone is insufficient to determine if a sweep is 
soft because non-sweeps can easily generate high H2/H1 values. When H12 values are high and 
we do have evidence of a sweep, H2/H1 does in fact has high power to distinguish hard and soft 
sweeps from each other (34, 53). Conditioning on the highest H12 value in a peak can also avoid 
confounding issues like soft shoulders (61), in which a hard sweep decays due to recombination 
and mutation events and results in soft sweep-like patterns a short distance away from the sweep 
center. Indeed, the H12 and H2/H1 statistics have become important discriminating statistics for 
several recent machine learning methods that detect and differentiate hard and soft sweeps (36, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.06.20.163261doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.20.163261
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

42, 43). Moreover, Figures 1D and S1 from Harris et al. 2018 (45) show that after conditioning 
on H12 values, the top 50 peaks’ H12 and H2/H1 values are consistent with soft sweeps and not 
hard sweeps, even if they did not state it. 
  
Regardless of the exact statistical methodology used or underlying demographic model, it is a 
fact that soft sweeps do occur. In D. melanogaster alone, there are three well-documented 
examples of soft sweeps at Ace, Cyp6g1, and CHKov1 using direct observations of the same 
allele on distinct genomic backgrounds (12–18). More broadly, soft sweeps have been 
abundantly documented using a variety of methods, data sets and organisms (21). Our work here 
is not the final word on the topic as future statistical developments may enable us to better 
quantify rapid adaptation from population genomic data. Note that despite having tested more 
than 70 models, none could fit every summary statistic in the data. Thus, it is important to 
acknowledge that there may not be any purely neutral model that can explain the diversity 
patterns observed in the data. Factors such as linked selection (64), background selection (65–
67), seasonal adaptation (68), local adaptation (69), and variable recombination rates (70) could 
all be contributing to diversity patterns in the data. Thus, a combination of demographic and 
selection forces may be needed to be jointly inferred to be able to fully match diversity patterns 
in the data. Identifying statistics capable of detecting selection that are robust to the 
misspecification of demographic and selective models might be one profitable direction for 
future research given how complex and strong evolutionary forces are known to be. 
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Figure 1: Haplotype frequency spectra at the Cyp6g1, CHKov1, and Ace loci. Recreated from 
Garud and Petrov 2016 (17). Haplotype frequency spectra at the three positive controls in a joint 
dataset, comprised of 300 Raleigh (RA) and Zambian (ZI) strains in 801 SNP windows, centered 
around the sites of the selective sweeps. 801 SNP windows in the joint data set correspond to 
slightly smaller analysis window sizes (<10 kb) in terms of base pairs on average than in the 
Raleigh or Zambian data alone. Each color bar represents a different, unique haplotype, and the 
height of the bar represents the number of chromosomes sharing the haplotype. The grey bars 
represent unique, singleton haplotypes in the sample. On the right side of each of the frequency 
spectra are black and white bars, indicating which strains are from RA and ZI, respectively. At 
all three positive controls, common haplotypes are shared across the two populations. The thin 
black lines shown in the haplotype spectrum for Ace correspond to the presence of three adaptive 
mutations that confer pesticide resistance.  
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Figure 2:  H12 scan of DGRP data. Recreated from Garud et al. 2015 (34). Scan of the four 
autosomes using the H12 statistic. Each point indicates an H12 value computed in a 401 SNP 
window. Grey points indicate regions excluded from the analysis with recombination rates lower 
than 5x10^-7 cM/bp. The orange line represents the 1-per-genome FDR line calculated from 
simulations of a neutral model with constant population size of 10^6. Red points indicate the top 
50 extreme outlier peaks relative to the 1-per-genome FDR line. Three positive controls are 
indicated at Ace, Cyp6g1, and CHKov1. 
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Figure 3: Neutral demographic models. Diversity statistics were measured in simulations of 11 
neutral demographic models: 
(A) A constant Ne = 106 model 
(B) A constant Ne = 2.7x106 model (fit to Watterson’s θW measured in autosomal short introns in 
DGRP data) 
(C) A severe short bottleneck model fit to Pi and S in autosomal short introns in DGRP data 
(D) A shallow long bottleneck model fit to Pi and S in autosomal short introns in DGRP data 
(E) The implemented admixture model in Garud et al. 2015 
(F) The implemented admixture + bottleneck model in Garud et al. 2015 
(G) The admixture model proposed by Duchen et al. 2013 
(H) The admixture + bottleneck model proposed by Duchen et al. 2013 
(I) The implemented admixture model in Harris et al. 2018 
(J) The admixture model proposed by Arguello et al. 2019 
(K) A variant of the Duchen et al. 2013 admixture model where North America, Europe, and 
Africa have fixed population sizes. 
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Figure 4: Distributions of Pi, S, and linkage disequilibrium in data and simulations. 
Distributions of (A) Pi/bp, (B) S/bp, (C) short range LD (R2), and (D) long range LD measured 
in DGRP data and simulated neutral demographic models. Simulations were generated with a 
recombination rate ρ = 5×10–7 cM/bp. Diversity statistics were calculated in DGRP data in 
genomic regions with ρ ≥ 5×10-7 cM/bp. The horizontal dashed lines in (A) and (B) depict the 
median Pi/bp, S/bp, and H12 values measured in DGRP data. For each model, statistics from 
1.3x105 simulations are plotted in (A) and (B). The dashed black lines in (C) and (D) correspond 
to mean LD values computed in DGRP data. LD in simulations was estimated from 1x107 pairs 
of SNPs. 
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Figure 5: H12 distributions in data and simulations. 
Distributions of H12 in 401 SNP windows. Shown are the (A) full distribution and (B) truncated 
y-axis for visual clarity. Simulations were generated with a recombination rate ρ = 5×10–7 cM/bp 
and H12 was calculated in DGRP data in genomic regions with ρ ≥ 5×10-7 cM/bp. The 
horizontal dashed line indicates the median H12 value in DGRP data and the horizontal red line 
indicates the lowest H12 value for the top 50 peaks. H12 values from 1.3x105 simulations for 
each model are plotted. The distribution of genome-wide H12 values measured in DGRP data is 
shown in black. Overlaid in red points are the H12 values corresponding to the top 50 empirical 
outliers in the DGRP scan.  
 

 
Figure 6: Range of H12 and H2/H1 values expected for hard and soft sweeps under two 
admixture models.  Bayes factors (BFs) were calculated for a grid of H12 and H2/H1 values to 
demonstrate the range of H12 and H2/H1 values expected under hard versus soft sweeps. Panels 
A and B show results for variations of the admixture model proposed by Duchen et al. 2013, 
where Africa, North America, and Europe have constant population sizes. In (A), the population 
sizes for North America and Europe were held constant at 1,110,000 and 700,000 individuals, 
respectively. In (B), the population sizes for North America and Europe were held fixed at 
15,984,500 and 700,000 individuals, respectively. BFs were calculated by computing the ratio of 
the number of soft sweep versus hard sweep simulations that were within a Euclidean distance of 
10% of a given pair of H12 and H2/H1 values. Red portions of the grid represent H12 and 
H2/H1 values that are more easily generated by hard sweeps, while grey portions represent 
regions of space more easily generated under soft sweeps. Each panel presents the results from 
105 hard and soft sweep simulations, respectively. Hard sweeps were generated with θA = 0.01 
and soft sweeps were generated with θA = 10. A recombination rate of ρ = 5×10–7 cM/bp was 
used for all simulations. The H12 and H2/H1 values for the top 50 empirical outliers in the 
DGRP scan are overlaid in yellow. 
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Figure 7: Haplotype frequency spectra for the top 10 peaks in the DGRP data. Haplotype 
frequency spectra for the top 10 peaks in the DGRP scan. For each peak, the frequency spectrum 
corresponding to the analysis window with the highest H12 value is plotted. 
  
  
Methods 
  
Simulations of neutrality and selection 
  
Neutral simulations were generated with the coalescent simulator MS (71), and selection 
simulations were generated with MSMS (72). All samples consisted of 145 chromosomes to 
match the sample depth of the DGRP data analyzed in Garud et al. 2015 (34). Simulations were 
generated with a neutral mutation rate of 10–9 events/bp/gen (73) and a recombination rate of 
5*10^-7 cM/bp. 
  
To simulate hard and soft selective sweeps, we varied the adaptive mutation rate, θA = 
4*Ne*mu_A. Hard sweeps were simulated with θA = 0.01, and soft sweeps were simulated with 
θA =10, as in Garud et al. 2015. The adaptive mutation was placed in the center of the 
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chromosome. We assumed co-dominance, where a homozygous individual bearing two copies of 
the advantageous allele has twice the fitness advantage of a heterozygote. 
  
To obtain a minimum of 401 SNPs for computing H12, we simulated chromosomes of length 
100,000 bps for neutrality, and 350,000 bps for selection. 
  
Model implementations 
For full details and code for model implementations, please refer to the github for this paper 
(https://github.com/ngarud/Harris_etal_response.git). Specifically, 
documentation_Jensen_response_publication.doc provides a README of the 
commands run for this paper. The script generate_MS_commands.py generates MS 
commands for all the models previously publishd. The scripts 
admixture_parameters_mode_varyGrowth.py, 
admixture_parameters_mode_diffProps.py and 
admixture_parameters_mode_fixedPopSize_MS.py generate commands for the 
new models tested in this paper. 
  
The model specified in the Harris et al. supplement was coded as follows: the founding 
population sizes of North America and Europe were scaled by 4 *African ancestral Ne 
(EuroNe_anc = 10 log_Ne_Eur_bn / (4 * Ne_anc), AmerNe_anc = 10 log_Ne_Ame_bn / (4 * Ne_anc)), 
whereas the present day population sizes were scaled by African ancestral Ne only 
(scaledNeEuro = Ne_Eur / Ne_anc, scaledNeAmerica = Ne_Ame / Ne_anc), resulting in a 
bottleneck size that was 4 times smaller than reported by Duchen et al. 2013 (50) (Figure 3I). 
  
Computation of summary statistics, S, Pi, H12, and LD 
  
S and Pi were computed from putatively neutral SNPs in short introns of the DGRP data, as 
described in Garud et al. 2015 (34) We used the program DaDi (74) to project the DGRP data 
down to 130 chromosomes to account for missing data. S and Pi was computed from simulations 
using custom python scripts. 
  
H12 was computed from DGRP data and simulations as described in Garud et al. 2015 (34) 
using custom python scripts. LD was computed using the R^2 statistic using the same approach 
as described in Garud et al. 2015 (34) using custom python scripts. 10^7 R^2 values were 
averaged over to generate a smooth curve. 
  
Fit of a Gaussian to the distribution of H12 values 
  
We fit a Gaussian distribution to the bulk of the distribution of H12 values by estimating the 
standard deviation (SD) of data within a 34.1% range of the median on either side. We ensured 
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that data within +/-1 SD of the fitted normal was normally distributed based on a QQ plot 
(Figure S4). Since the distribution of H12 values measured from data has a long tail, we 
computed the number of standard deviations away from the median that the H12 value for the 
smallest peak was. 
  
Computation of Bayes Factors 
  
We computed Bayes factors as described in Garud et al. 2015 (34) for two admixture models 
with constant population sizes in Europe and North America (Figure 3K). We approximated BFs 
using an approximate Bayesian computation approach that integrates out nuisance parameters 
partial frequency (PF), selection strength (s), and age of a sweep. We stated the hard and soft 
sweep scenarios as point hypotheses in terms of adaptive mutation rates (θA). Specifically, BF = 
P(H12obs, H2obs/H1obs | soft sweep)/P(H12obs,H2obs/H1obs | hard sweep), whereby H12obs 
and H2obs/H1obs were computed from data, and hard and soft sweeps were simulated from a 
range of evolutionary scenarios.  
  
In MSMS, when simulating selection with time-variant demographic models like the admixture 
model, it is only possible to condition on the time of onset of selection since the simulation runs 
forward in time. Thus, we assumed a uniform prior distribution of the start time of selection, 
~U[0, time of admixture]. The selection coefficient and partial frequency of the sweeps were 
drawn from uniform priors ranging from 0 to 1. 
  
Code and data is available for this paper at this URL: 
https://github.com/ngarud/Harris_etal_response.git 
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Figure S1: H12 values in DGRP data and in simulations of neutral demographic scenarios 
tested in Garud et al. 2015 (34). The DGRP H12 values are compared with H12 values 
computed in a range of simulated neutral demographic models from Garud et al. 2015. The 
models tested are as follows: (A) a constant Ne = 106 model, (B) a constant Ne = 2.7x106 model, 
(C) a severe short bottleneck model, (D) a shallow long bottleneck model, (E) the implemented 
admixture model in Garud et al. 2015, and (F) the implemented admixture + bottleneck model in 
Garud et al. 2015. The number of analysis windows generated for the simulated models 
(n=69,113) equals the number of analysis windows for the DGRP data, after excluding regions 
of low recombination rates. The red points indicate the H12 values for the top 50 peaks in the 
DGRP data. 
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Figure S2:  H12 values in DGRP data compared to values measured in simulations of 
neutral demographic scenarios from Duchen et al. (50), Harris et al. (45), and Arguello et al 
(51). The DGRP H12 values are compared with H12 values computed in a range of simulated 
neutral demographic models from Duchen et al. (50), Harris et al. (45), and Arguello et al. (51). 
The models tested are as follows: (A) The admixture model proposed by Duchen et al. 2013 
(50), simulated with parameter values corresponding to the mode of the posterior. (B) The 
admixture + bottleneck model proposed by Duchen et al. 2013 (50), simulated with parameter 
values corresponding to the mode of the posterior. (C) The admixture model proposed by 
Duchen et al. 2013 (50), simulated with parameter values drawn from the posterior distribution. 
(D) The implemented admixture model in Harris et al. 2018 (45), simulated with parameter 
values drawn from the posterior distribution. (E) The admixture model proposed by Arguello et 
al. 2019 (51). The number of analysis windows generated for the simulated models (n=69,113) 
equals the number of analysis windows for the DGRP data, after excluding regions of low 
recombination rates. The red points indicate the H12 values for the top 50 peaks in the DGRP 
data. 
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Figure S3: H12 values in DGRP data compared to values measured in simulations of 
neutral demographic scenarios inferred from this paper.  The DGRP H12 values are 
compared with H12 values computed in two simulated neutral demographic models inferred to 
fit the DGRP (Figures 3J and K) (A) A variant of the Duchen et al. 2013 (50) admixture model 
where North America, Europe, and Africa have fixed population sizes. North American 
population size = 1.11x10^6, European population size = .7x10^6, and African population size 
held constant at the value inferred in Duchen et al. 2013 (50). (B) A variant of the Duchen et al. 
2013 (50) admixture model where North America, Europe, and Africa have fixed population 
sizes. North American population size = 1.6x10^6, European population size = .7x10^6, and 
African population size held constant at the value inferred in Duchen et al. 2013 (50). The 
number of analysis windows generated for the simulated models (n=69,113) equals the number 
of analysis windows for the DGRP data, after excluding regions of low recombination rates. The 
red points indicate the H12 values for the top 50 peaks in the DGRP data.The 
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Figure S4: H12 values in the bulk of the DGRP data compared to a fitted Gaussian. (A) 
Quantile-quantile plot of H12 values within +/-1 SD of the median value in the DGRP data are 
compared with a random sample from the fitted Gaussian. The Gaussian was simulated with the 
mean equalling the median value of H12 in the DGRP data, and the standard deviation estimated 
from points within 1 standard deviation around the median (Methods). (B) Comparison of 
distribution of H12 values in DGRP data with that of a simulated Gaussian with a mean and 
standard deviation from (A). The vertical blue line indicates 11 standard deviations away from 
the mean of the simulated Gaussian distribution. The red points indicate the H12 values for the 
top 50 peaks in the DGRP data.  
 

 
Figure S5: Variants of Duchen et al. 2013 (50) admixture models tested in this paper.  
We computed Pi, S, and H12 in variants of the admixture model proposed by Duchen et al. 2013 
(50). The admixture models include: (A) constant population sizes for North America and 
Europe, (B) different growth rates for North America and Europe, (C) different proportions of 
admixture, (D) different migration rates. In all cases, the 11 parameters originally inferred by 
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Duchen et al. 2013 (50) were kept constant at the mode of the parameters’ posterior distributions, 
unless highlighted in red. The parameters highlighted in red were varied. 
 

 
Figure S6 (see caption below) 
 

 
Figure S7 (see caption below) 
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Figure S8 (see caption below) 
 
 

 
Figure S9 (see caption below) 
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Figure S10 (see caption below) 
 
 
Figures S6-S10: Pi, S, H12, and linkage disequilibrium measured in simulated admixture 
models with fixed population sizes in North America and Europe. Summary statistics S, Pi, 
H12, and LD were measured in admixture models with constant population sizes in Europe and 
North America (Figure S5A). In Figures S6 through S10, the European population size was held 
constant at the values 16,982, 67,608, 700,000, 2,000,000, and 9,550,000, respectively. Along 
the x-axis of each figure, the North American population sizes were held constant at the values 
2,500, 61,659, 1,110,000, 15,984,500, and 28,800,000. These population sizes span the ranges of 
the 95 CI for the posterior distributions of the European and North American population sizes in 
Duchen et al. 2013. All other parameters in the admixture model were held constant at the mode 
of the posterior distribution inferred by Duchen et al. 2013 (50). Each boxplot is comprised of 
3,000 simulations. 
 

  
Figure S11 (see caption below) 
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Figure S12 (see caption below) 
 
 

 
Figure S13 (see caption below) 
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Figure S14 (see caption below) 
 
 

 
Figure S15 (see caption below) 
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Figure S16 (see caption below) 
 
 
Figures S11-S16: Pi, S, H12, and linkage disequilibrium measured in simulated admixture 
models with differing growth rates in North America and Europe. Summary statistics S, Pi, 
H12, and LD were measured in admixture models with varying growth rates in Europe and North 
America (Figure S5B). In Figures S11 through S13, the starting population size for Europe was 
16,982, and ending population sizes were 700,000, 2,000,000, and 9,550,000, respectively. In 
Figures S14 through S16, the starting population size for Europe was 67,608, and ending 
population sizes were 700,000, 2,000,000, and 9,550,000, respectively. Along the x-axis of each 
figure, the North American starting population sizes were either 2,500 or 61,659, and ending 
population sizes were  either 1,110,000, 15,984,500, or 28,800,000. These population sizes span 
the ranges of the 95 CI for the posterior distributions of the European and North American 
population sizes in Duchen et al. 2013 (50). All other parameters in the admixture model were 
held constant at the mode of the posterior distribution inferred by Duchen et al. 2013. Each 
boxplot is comprised of 3,000 simulations. 
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Figure S17: Pi, S, H12, and linkage disequilibrium measured in simulated admixture 
models with differing admixture proportions. Summary statistics S, Pi, H12, and LD were 
measured in admixture models with varying admixture proportions between Europe and North 
America (Figure S5C). Admixture proportions varied from 0 to 0.9. All other parameters in the 
admixture model were held constant at the mode of the posterior distribution inferred by Duchen 
et al. 2013 (50). Each boxplot is comprised of 3,000 simulations. 
  

 
Figure S18: Pi, S, H12, and linkage disequilibrium measured in simulated admixture 
models with differing migration rates. Summary statistics S, Pi, H12, and LD were measured 
in admixture models with varying amounts of migration between Europe and North America 
(Figure S5D). Migration rates varied from 0 to 0.75. All other parameters in the admixture model 
were held constant at the mode of the posterior distribution inferred by Duchen et al. 2013 (50). 
Each boxplot is comprised of 3,000 simulations. 
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Figure S19: Haplotype frequency spectra for the  11th-50th peaks. Same as Figure 7, except 
plotted are haplotype frequency spectra for the (A)11th-30th and the (B) 31st—50th peaks in the 
DGRP scan. 
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