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Highlights:
e Twelve surface templates for infants in the 0-2 years old range are proposed
e These templates can be used for EEG source reconstruction using existing toolboxes
e A relatively modest impact of age differences was found in this age range
e Correlation analysis confirms increasing source differences with age differences

e Sources reconstructed with infants versus adult templates significantly differ
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Abstract

Electroencephalographic (EEG) source reconstruction is a powerful approach that helps to
unmix scalp signals, mitigates volume conduction issues, and allows anatomical localization of
brain activity. Algorithms used to estimate cortical sources require an anatomical model of the
head and the brain, generally reconstructed using magnetic resonance imaging (MRI). When
such scans are unavailable, a population average can be used for adults, but no average
surface template is available for cortical source imaging in infants. To address this issue, this
paper introduces a new series of 12 anatomical models for subjects between zero and 24

months of age. These templates are built from MRI averages and volumetric boundary element


https://doi.org/10.1101/2020.06.20.162131
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.20.162131; this version posted June 22, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

method segmentation of head tissues available as part of the Neurodevelopmental MRI
Database. Surfaces separating the pia mater, the gray matter, and the white matter were
estimated using the Infant FreeSurfer pipeline. The surface of the skin as well as the outer and
inner skull surfaces were extracted using a cube marching algorithm followed by Laplacian
smoothing and mesh decimation. We post-processed these meshes to correct topological errors
and ensure watertight meshes. The use of these templates for source reconstruction is
demonstrated and validated using 100 high-density EEG recordings in 7-month-old infants.
Hopefully, these templates will support future studies based on EEG source reconstruction and
functional connectivity in healthy infants as well as in clinical pediatric populations. Particularly,
they should make EEG-based neuroimaging more feasible in longitudinal neurodevelopmental

studies where it may not be possible to scan infants at multiple time points.
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Introduction

Our ability to study the functional connectivity of the brain during its early years is crucial in
understanding both neurotypical and abnormal developmental trajectories, such as in the case
of attention deficit hyperactivity disorder (Konrad and Eickhoff, 2010) or autism (O'Reilly et al.,
2017). However, most EEG studies in infants are performed at the scalp level, which presents
severe limitations such as the obfuscated relationship between the scalp location of EEG
activity and the neuronal sources (Nunez and Srinivasan, 2006; Van de Steen et al., 2019), the
impact of the recording reference (Bringas Vega et al., 2019; Guevara et al., 2005), and the
confounding effect of volume conduction on EEG power and functional connectivity (Nunez et
al., 1997; O’Reilly and Elsabbagh, 2020; Van de Steen et al., 2019). Many of these limitations

can be mitigated by unmixing the scalp activity and estimating its neuronal sources.

EEG sources can be estimated in surfaces or in volumes, depending on how dipolar sources
are allowed to be placed in the model of the head. The reconstruction of cortical sources using
surfaces relies on our understanding of the generative mechanism of EEG to constrain the
position and the orientation of dipolar sources. The proximity of the cortex to the scalp, the
creation of a dipolar source between the apical tree and the soma of pyramidal cells following
postsynaptic depolarization of apical dendrites, and the creation of an open field by the parallel
alignment of the apical dendrites are a few reasons that led researchers to hypothesize that
scalp EEG is mainly reflecting highly synchronous postsynaptic currents generated in apical
trees of cortical pyramidal cells (Baillet et al., 2001). Accordingly, it is a common practice to
estimate EEG cortical sources by fitting the amplitude of dipoles whose position and orientation

are constrained by the cortical surface.
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Alternatively, all dipolar contributions can be postulated to sum linearly in equivalent current
dipoles (ECD), which position and orientation is generally left free. Such an approach has some
analytic advantages (e.g., mathematical tractability when used with spherical head models) and
can be motivated when one or a few specific sources of activity clearly dominates like in the
context of epileptic activity (Ebersole, 1994) or for localized independent components (Acar et
al., 2016). By generalizing the ECD approaches to a large number of dipoles and using
sophisticated finite element models (FEM) of the head, we can also perform current density
reconstruction (CDR). These volumetric approaches of source estimation position dipoles using
less a priori constraints than methods using cortical surfaces (e.g., dipoles position may not be

limited to grey matter or cortical regions, dipole orientation may be free).

Surface and volume source estimation can also be combined, for example by using
physiological hypotheses to constrain dipoles within the grey matter of the cortex to be aligned
with pyramidal cells (i.e., normal to the cortical meshes or using some more sophisticated
estimation of the orientation of cortical columns (Bonaiuto et al., 2020)) and using volumetric
sources estimations with free dipole orientation for subcortical regions (Attal and Schwartz,

2013).

EEG sources estimation in infants is relatively infrequent in the literature, and most studies that
used it relied on volumetric approaches such as CDR (Xie and Richards, 2017) or ECD
(Ortiz-Mantilla et al., 2019). It is more frequent in MEG infant studies (Kao and Zhang, 2019),
but generally uses oversimplified spherical models to overcome the absence of realistic head
models (Imada et al., 2006; Kuhl et al., 2014) or uses custom-built subject-specific realistic head
models that are not reusable by the research community (Ramirez et al., 2017; Travis et al.,

2011), forcing every research team to go through the time- and resource-consuming process of
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gathering infants MRI and building head models from scratch. The Neurodevelopmental MRI
Database (NMD; (Richards et al., 2016) contains BEM and FEM realistic volumetric models of
the head that can be used to perform source estimations using software that can use volumetric
segmentation directly, such as FieldTrip (Oostenveld et al., 2011). However, resources such as
FieldTrip', Brainstorm (Tadel et al., 2011), and MNE-Python (Gramfort et al., 2013) which use
surface models for cortical source reconstruction rely on external procedures for estimating the

required cortical surfaces.

Reconstructing neuronal sources requires a few additional types of information to be combined
with EEG recordings, including 1) a structural model of the head (conductor model); 2) a model
of source distributions (source space); 3) the position of the EEG sensors on the subjects’ head
(electrode placement); 4) a method for estimating scalp activity generated by neuronal sources
(forward modeling); 5) an inversion scheme for estimating the probable neuronal sources
corresponding to the observed scalp activity (inverse modeling). The first of these components,
the structural head model, is generally built by post-processing magnetic resonance images
(MRI) of the participants using specialized software designed for that purpose, such as
FreeSurfer (Fischl, 2012), CIVET (MacDonald et al., 2000), the Computational Anatomy Toolbox
(Gaser and Dahnke, 2016), BrainVISA (Riviére et al., 2009), SPM (Mattout et al., 2007), FSL
(Jenkinson et al., 2012), or BrainSuite (Shattuck and Leahy, 2002). However, the time and
expense associated with MRI scanning of the participants may be prohibitive or not possible
with certain groups of participants because of health issues or ethical concerns. To address the
lack of structural information in EEG analysis, population averages of head and brain structures

have been proposed and can be used for computing approximate forward models (Fuchs et al.,

' FieldTrip can use surfaces for its source model, with the surfaces constructed from external tools such

as iso2mesh (Fang and Boas, 2009), Brain2Mesh (Tran and Fang, 2017), or FreeSurfer (Fischl, 2012).
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2002; Valdés-Hernandez et al., 2009). The objective of the current study is to extend these
methods to infants by developing a novel set of 12 surface templates that can be used for

source reconstruction for infants between 0 and 24 months of age.

Method

Volumetric dataset
To build age-specific templates that can be used for EEG source reconstruction using cortical
surfaces, we used MRI averages available within the infants and preschool segments of the

NMD version 2 (Richards et al., 2016), available on the NITRC website

(https://www.nitrc.org/projects/neurodevdata). More specifically, we used the volumetric
averages and four compartments boundary element method (BEM4) segmentation of head

tissues contained therein.

The BEM4 volumes label every non-null voxel from head averages as belonging either to
the skin, the skull, the cerebrospinal fluid, or the brain. In these segmentations, a minimum
width of 1 mm was set for the skin compartment, 2 mm for the skull compartment, and 1 mm for
cerebrospinal fluid compartment. These constraints help to avoid issues with intersecting
surfaces when building source models. The identification of the brain, the skull, and the scalp on

individual MRI was based on FSL Brain Extraction Tool (Bartlett and Smith, 1999; Smith, 2002).

Two sets of averages are provided, depending on whether MRI averaging was performed to
optimize the head tissues or the brain. BEM classification is provided in the head averaging
space. Table 1 lists the sample size per gender as well as the age range for the children
included in every average. In this version of the database and for these age groups, all

averages are based only on 3T scans using a T1 magnetization-prepared rapid gradient-echo
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(MPRAGE) sequence. See (Richards, 2013) for more details on individual MRI segmentation

and (Sanchez et al., 2012) for volume averaging.

Table 1. Sample size and ages for the different volumetric templates.

Template Female[Male | N/A | Age (months)
2 weeks 26 17 0 <=0.5
1 month 42 60 0 0.5-1.5
2 months 40 29 0 2-2.5
3 months 21 17 0 2.5-4

4.5 months 29 25 0 4-5.5
6 months 55 56 0 5.5-7

7.5 months 33 62 0 7-8.5
9 months 36 25 0 8.5-10

12 months 68 101 0 11.5-13

15 months 41 37 0 14.5-17

18 months 31 45 0 17.5-20
2 years 57 76 2 23-26

Software

Aside from the extraction of brain surfaces relying on the Infant FreeSurfer pipeline (de Macedo
Rodrigues et al., 2015; Zéllei et al., 2020), most of the data processing and analyses have been
performed using custom code relying on various Python packages, the principal ones being
connected-components-3d 1.5.0 (Kemnitz and Silversmith, 2020), Matplotlib 3.1.2 (Hunter,
2007), MNE-Python 0.20.0 (Gramfort et al., 2014, 2013), NiBabel 3.0.0 (Brett et al., 2019),
Numpy 1.18.2 (Oliphant, 2006; Walt et al., 2011), Pandas 1.0.3 (McKinney, 2010; The pandas
development team, 2020), Pillow 7.0.0 (Clark et al., 2020), PyCortex 1.2.0 (Gao et al., 2015),
PyMeshFix 0.13.3 (Attene, 2010), Scikit-Image 0.16.2 (Walt et al., 2014), Scipy 1.4.1 (Virtanen
et al., 2020), trimesh 3.5.12 (Dawson-Haggerty et al., 2020), and XArray 0.15.1 (Hoyer and

Hamman, 2017).
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Surface extraction

We first processed the volumetric dataset to extract the brain and head surfaces needed for
surface cortical source extraction. For brain surfaces, we normalized the intensity of the brain
volumetric averages (FreeSurfer mri_nu_correct command) and converted them to a standard
256 X 256 X 256 space with 1-mm-side voxels (FreeSurfer mri_convert --conform command).
Then, we used the Infant FreeSurfer reconstruction pipeline (infant_recon_all; de Macedo
Rodrigues et al., 2015; Zdllei et al., 2020) to extract the surfaces separating the pia mater, the
gray matter, and the white matter. During this process, the Desikan-Killiany (Desikan et al.,
2006) and the Destrieux (Destrieux et al., 2010) cortical parcellations were also computed. We
skipped the skull stripping step included in the Infant FreeSurfer pipeline since the brain

averages from the NMD are already skull stipped.

For the head surfaces, we used the volumetric BEM4 classification from the NMD and ran a
cube marching algorithm (scikit-image marching_cubes_lewiner function) followed by a
Laplacian smoothing (trimesh filter_laplacian function) and a mesh decimation (MNE-Python
decimate_surface function). Surface topological defects such as holes, inverted vertex normals,
or vertices with fewer than three neighbors were corrected using custom Python code relying on
external functions (MeshFix.repair from PyMeshFix; repair.fix_normals and
Trimesh.remove_degenerate_faces from trimesh) and on code snippets borrowed and modified
from various MNE-Python functions. Final meshes were checked for water tightness using
trimesh. Further, one BEM volume had artifacts showing as small line segments over the
background. We corrected these by zeroing any small separated cluster of non-null voxels using
the connected_components function form connected-components-3d. Examples of the initial

volumes and extracted surfaces using these two parallel pipelines are illustrated in Figure 1.
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Figure 1. Surface extraction. On the left side, an example of the three types of volumes
we used from NMD is shown. From this volumetric dataset, two parallel processes were
run to extract the brain surfaces and their parcellation (top right; using Infant FreeSurfer)

as well as the head BEM surfaces (bottom right; using custom Python code).

Head-brain co-registration

Because the brain and head surfaces were computed from different volumetric averages, they
were not initially perfectly aligned and needed to be co-registered. We aligned these surfaces
manually using FreeView (a program from the FreeSurfer software suite) and custom Python
code. An initial transformation (rotation, translation, scaling) was obtained by overlaying the
head and the brain averages in FreeView (Figure 2.a). Further fine-tuning of translation and
scaling was done in Python, using FreeView to visualize intermediate and final results (Figure

2.b).
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Figure 2. Co-registration processes. a) Initial head-brain co-registration by overlaying
the brain over the head in FreeView, using partial transparency to help visual alignment.
The brainstem offers very clear landmarks for finding the right rotation angle in the
lateral view, as can be seen in the two examples of overlaid brains. b) Validation of
alignment in FreeView after fine-tuning the scaling and the translation using Python
code. For the forward model to work, the transform must be such that none of the
surfaces (shown as color-coded lines: yellow: skin, cyan: outer skull, green: inner skull,
red: pial surface, blue; grey-white matter border) intersect. c) Co-registration of sensors

and head models using MNE-Python.
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Once the transformation parameters were established (see Table 2), the transformation of the
head surfaces to the brain space was done using:

V brain = AV head
with 4 being an affine transform matrix (here rigid body plus scaling only), and V., and V...
being matrices of size N X 4, where N is the number of vertices in the mesh and each matrix

row specifies the augmented vertice coordinates as [x y z 1].

The overall transform matrix is composed of elementary transforms as follow:
A=M"TSRM
where M is the transform that map the coordinate system from neuroimaging RAS

(right-anterior-superior) to the mesh vertices in LIA (left-inferior-anterior) coordinate system:

10 0 0
A |00 —10
01 0 0
00 0 1

T is the translation matrix:

100 t
010 ¢t

0 0 1 ¢

000 1]
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S is the scaling matrix:

s 00 0
G_ |0 s 00
0 0 s, 0
0 0 0 1]

cosaa —sina 0 0 cosp 0 sinB O [1 O 0 0

o

sinae cosa 0 0 0 1 0 0| |0 cosy —siny

R =R, (a)Ry(B)Rs(7) =

ew]

0 0 1 0f |—sinB 0 cosB 0| |0 siny cosy

o o0 o001 0 0 0 I1Iy10 O 0 1

Table 2. Head to brain space transformation parameters.

r |« : 5, s, s, y | a

2 weeks 0.0 -3.0 0.0 1.175 1.105 1.090 -7.000 -0.0 0.0
1 month 0.0 -3.0 0.0 1.200 1.070 1.060 -8.000 -0.0 0.0
2 months 0.0 -1.0 0.0 1.080 1.080 1.080 -8.000 -0.0 0.0
3 months 1.0 2.0 0.0 0.921 0.950 0.950 7.500 -0.0 0.0
4.5 months 0.0 2.0 -1.0 1.100 0.950 1.010 2.000 -0.0 0.0
6 months -1.0 -5.0 -1.0 1.010 1.010 1.010 0.000 -0.0 0.0
7.5 months -0.5 -4.0 0.0 1.010 1.000 1.010 -3.000 1.0 0.0
9 months -0.5 -3.0 -2.0 1.050 1.000 1.020 -5.500 -0.0 1.5
12 months 1.0 -4.0 2.0 0.990 0.990 0.975 -9.500 -0.0 0.0
15 months 1.0 -4.0 3.0 0.950 1.000 1.000 -8.000 -0.0 0.0
18 months 0.0 1.0 3.0 1.020 1.050 1.010 0.000 -0.0 0.0
24 months 0.0 0.0 0.0 1.010 1.010 1.010 -3.517 -1.0 1.0
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Sensor co-registration

To map the scalp activity to neuronal sources, the EEG sensors must be placed over the scalp
of the forward model. Electrode placement for the 3, 4.5, 6, 7.5, 9, 12, and 24 months time
points were previously computed as described in (Richards et al., 2015) for the HydroCel GSN
128 channel sensor net and made available in the NMD. The electrode placement for the
2-weeks, 1- and 2-months templates were obtained from the 3-month average template
electrode placement. This was done by registering the normative 10-10 positions from the
3-month-old average template to every participant of those age in the NMD, using the Coherent
Point Drift method (Myronenko et al., 2006; Myronenko and Song, 2010), and translating the 3
months HydroCel GSN points into the participant space. Then the participant MRIs were
registered to their age-appropriate average template and their electrode positions were
appropriately translated into the average template space and averaged across participants. The
averaged electrode positions were further scaled to fit to the head in the averaged MRI volume.
The same procedure was used to fit the 12-months electrode placement to the 15- and
18-months time points. These placements being in the head average space, the head-to-brain
transformation described in the previous section was applied to co-register them to the brain
average space. The fitted electrode placement is provided with these templates for easy re-use.

Other nets can be fitted following the same procedure.

Validation dataset

To validate the use of the templates for source reconstruction, we used the 100 recordings
(female=62; male=36; unknown=2) available in the 7-month-old/London segment of the
International Infant EEG Data Integration Platform (EEG-IP) cohort (van Noordt et al., 2020) .
These EEGs were recorded using the HydroCel GSN 128 channel sensor net and a 500 Hz

sampling frequency. They used an event-related paradigm with 1-second epochs starting at the
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moment when the visual stimulus was changed. The images used as stimuli were presented on
a computer screen and consisted of a face looking directly at or away from the child, or a
randomized noise control stimulus. For our analyses, we used the pre-processed recordings
available in the EEG-IP cohort, in which automatic artifact rejections plus manual quality control

has been performed using the Lossless pipeline (van Noordt et al., 2020).

Source estimation

For comparing estimated sources, aside from our 12 infant templates, we also used the
standard “fsaverage” from FreeSurfer, an adult template built using spherical surface averaging
(Fischl et al., 1999) of the Buckner40 cohort which comprises 40 non-demented subjects (21
women) ranging in age from 18 to 30 and 65 to 93 years of age (FreeSurfer team, 2020a).
Event-related EEG sources were computed using MNE-Python. The same parameters were
used for source estimation using the 12 infant templates and the adult fsaverage template. We
used the dSPM inverse operator and set the regularization parameters lambda2 to 1. Other
parameters were left to their default value, as set by MNE-Python. The covariance matrix was
estimated using the method="auto” in the mne.compute_covariance function, which uses four
different estimators (the Ledoit-Wolf estimator (Ledoit and Wolf, 2004) with cross validation for
optimizing alpha, diagonal regularization, sample covariance, and factor analysis with low-rank
(Barber, 2012)) and chooses the optimal solution base on log-likelihood estimation and

cross-validation (Engemann and Gramfort, 2015).

Data and code availability
The code for building the templates and for reproducing the validation analyses is available on

GitHub (https://github.com/christian-oreilly/infant_template _paper). The volumetric averages

and the final surface templates are available from the NMD
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(https://jerlab.sc.edu/projects/neurodevelopmental-mri-database/) and can be downloaded

through the Neurolmaging Tools & Resources Collaboratory

(https://www.nitrc.org/projects/neurodevdata). These templates are further being integrated to

MNE-Python and Brainstorm for easier use.

Results

Templates and source reconstruction
We built surface-based structural templates at 12 time points between 2 weeks and 2 years of
age (Figure 3). These templates have been tested using Brainstorm and MNE-Python and can

successfully be used to reconstruct sources at these different ages (Figure 4).
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2 weeks 1 month 2 month 3 months
4.5 months 6 months 7.5 months 9 months
12 months 15 months 18 months 24 months

Figure 3. Twelve templates from 2 weeks to 2 years old comprising the surfaces for the
scalp, the outer and inner surface of the skull, as well as surfaces separating the
meninges, the grey matter, and the white matter (using non-decimated meshes and

Blender rendering).
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Figure 4. Example of source reconstruction using the 12-month template and showing
the average source power over the 1-second epoch for the “noise” stimulus. The left
panel shows inflated hemispheres, as provided by MNE-Python while the right panel

shows the same source activity over the flattened cortical surfaces, using PyCortex.

Validation

We validated the templates by testing the hypothesis that EEG sources should be more
correlated when estimated from templates of similar age than from templates of very different
ages. Thus, we computed correlations between the time-series of event-related EEG sources
for pairs of templates and averaged across stimulus conditions, subjects, and brain regions.
Heat maps in Figure 5.a,b show high average correlations between infant templates within the
0-2 years age range. However, there is a general tendency for values close to the diagonal to
be smaller than those far from the diagonal, confirming that differences in estimated sources
increases with template age differences. Further, the correlation with the sources computed
using fsaverage is relatively low, confirming the large differences in source estimations when

using an adult template for analyzing infants data.
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Figure 5. a) Average correlations between the source time-series computed from different
templates, b) excluding the fsaverage template and adjusting the scale to emphasize the
pattern of variation within the infant templates. c) Average time-series correlations as a
function of the log-transformed age difference between templates. d-f) Similar as for
panels a-c, but correlating across brain regions instead of time. g) Average time-series
correlation computed separately for every region and averaged by reference template. h)
Cortical representation showing average time-series correlation (mean values per
column of panel g) lower than 0.6 colored in red or green, depending on whether they
show or not the typical correlation decrease with increasing age differences. i) Value of
the meta-correlation (i.e., correlations between age difference and the time-series
correlations) with respect to the template age. j) Scatter plot of the average time-series
correlation and meta-correlations for the different brain regions, color-coded as in panel

h. All p-values are for one-tail tests.

The increasing difference between estimated sources with increasing template age difference is
clearly demonstrated by linearly regressing the correlations plotted in Figure 5.a,b by the
absolute differences between the logarithm of the template ages (R?=0.512, p-value=7.3e-12,
N=66; Figure 5.c). Similar observations can be made by correlating sources across brain
regions rather than across time-series (R?=0.477, p-value=6.9e-11, N=66; Figure 5, d-f). We
further observed that the correlation of time-series between templates is generally very high
across regions but is lower and more variable in some cases (Figure 5.g), particularly around

the motor and somatosensory areas (Figure 5.h).

We refer to the correlations between the age difference and the time-series correlations as

“meta-correlations”. They are computed by using the correlations associated with a given
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reference template (e.g., selecting a given column of the correlation matrix shown in Figure 5.b)
and regressing these values against the age difference as shown in Figure 5.c. Such
meta-correlations were computed across templates and regions (Figure 6.a) and then averaged
across regions. Resulting averages were plotted against the age of the reference template
(Figure 5.i). We observe meta-correlations with higher amplitudes as age increases, probably
due to various factors complicating accurate modeling at younger age (e.g., less clear
distinction between white and grey matter on infants MRI; normalization of non-fully gyrified
brains using standards tools based on adult gyrification). The region and the template age

together account for around 35% of the total variance of the meta-correlations (Table 6).

Table 6. Analysis of variance (ANOVA) for the linear model describing the variation of
meta-correlations as a function of the age difference (continuous factor), the sample size

(continuous factor), and the brain region (categorical factor). R?>=0.35; adjusted R?=0.29.

Sum sq. df F PR(>F)
region 18.78 79 1.90 9.64E-06
age 38.57 1 308.46 2.40E-59
Residual 108.91 871 — —

For most regions, both the time-series correlations and corresponding meta-correlations with
age differences are elevated but a small group of regions shows significantly lower (i.e., < 0.6)
time-series correlations and a subgroup of these regions with lower correlations also shows

meta-correlations with an inverse sign (Figure 5.)).
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Figure 6.a shows that meta-correlations for various brain regions differ for the younger (up to

about 5 months) and the older reference templates. The differences are even clearer when the

correlation matrix between rows of the Figure 6.a are computed (Figure 6.b). Aside from

showing a strong relationship with age difference (rho=-0.75; p-value=1.9e-13; Figure 6.c), it

clearly shows the two aforementioned clusters (Figure 6.b) separating younger and older

templates around 5 months of age.
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Figure 6. Meta-correlations correlating age differences with time-series correlations. a)

Meta-correlations with respect to template ages and brain regions. b) Matrix of the

correlation coefficients between rows of the matrix displayed in panel a. ¢) Values of the
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matrix from panel b plotted against age differences. Correlation coefficients and

corresponding p-values (one-tail) are shown in the upper right corner of the graph.

Discussion

A reliable estimation of EEG cortical sources requires the use of individualized or, when not
available, population-averaged structural templates of the head. Standard automated
approaches developed for building such templates from adult MRI scans do not provide
satisfactory results in the pediatric population due to a lower contrast between white and grey
matter (Phan et al., 2018; Schumann et al., 2010). Further, most automated pipelines rely on
co-registering individual MRI against a population average, which may cause significant errors
when using an adult average for co-registering younger populations. With some manual
intervention to guide or correct white matter and grey matter classification, FreeSurfer can
provide satisfactory results in children who are five years or older (Schumann et al., 2010) but
not younger (FreeSurfer team, 2020b). For that reason, an Infant version of the FreeSurfer
pipeline has recently been developed that covers the 0-2 years age range (Zollei et al., 2020).
To accelerate progress in EEG neurodevelopmental studies, we used this pipeline to develop
12 new templates for infants in this age range. These templates can be used for source
reconstruction with software relying on surfaces of the brain and the head for their forward
models. For approaches relying on volume models (e.g., to estimate volumetric current density)
instead of surfaces, volume BEM and FEM models are already available in the NMD, which will

allow comparing and benchmarking these different approaches for infants in the future.

The age difference within the 0-2 years range resulted in relatively mild differences in estimated
EEG sources, suggesting that the reference templates are fairly accurate. Improvements in

accuracy of source estimates may nevertheless be useful for some of the regions that showed
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lower and more variable correlations between templates (Figure 5.g). In the absence of
quantitative resources that can be queried across age and brain regions for maturity index, it
would be difficult to establish whether these lower correlations are due to faster maturational
changes in these regions within the age range covered by these templates. We nevertheless
note that most of these regions are around the motor and somatosensory areas, which are
known to develop at a fast rate in the first few months following birth (Ganzetti et al., 2014),
whereas the correlations are reliably high in frontal associative regions (Figure 5.h), which are
known to develop later in life (Sowell et al., 1999). Some of these regions with lower correlations
also show meta-correlation with an inverse sign (i.e., time-series correlation increasing with age
mismatch; Figure 5.k), an observation that is unexpected and that is occurring either due to

randomness or to an unknown cause.

In future, increased surface template accuracy may be achievable by using a surface-based
registration directly rather than extracting surfaces from a volume-based average (Ghosh et al.,
2010). This method might result in reference templates for infants with inflated cortexes and flat
cortical maps closer to results obtained from adults. It is unclear, however, if such improvements
would translate into a significant improvement regarding EEG source estimation since the gain
obtained by increasing the template accuracy may be insignificant compared to the difference
between the population average template versus the brain of each individual participant. It
would also be interesting to investigate the extent to which the use of different templates would
affect source imaging in studies using magnetoencephalography (MEG) instead of EEG, given
that these two modalities measure fundamentally related but complementary components of the
electro-magnetic fields produced by cerebral activity (Hamalainen et al., 1993; Sharon et al.,

2007).
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Up to recently, no open-access population average surface models were available to perform
cortical source reconstruction in infants. By releasing the 12 infant templates described in this
paper, we are making source reconstruction based on cortical surfaces accessible for situations
where individual MRI are not available and population averages are required, addressing a clear
need in the EEG and MEG community. We are currently working at integrating these templates
directly within MNE-Python and Brainstorm to allow researchers to easily benefit from them.
This resource will undoubtedly come particularly handy for cross-sectional and longitudinal

studies of typical and atypical neurodevelopment.
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