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Highlights ​: 

● Twelve surface templates for infants in the 0-2 years old range are proposed 

● These templates can be used for EEG source reconstruction using existing toolboxes 

● A relatively modest impact of age differences was found in this age range 

● Correlation analysis confirms increasing source differences with age differences 

● Sources reconstructed with infants versus adult templates significantly differ 
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Abbreviations:​ BEM: boundary element method; CDR: current density reconstruction; EEG: 

electroencephalography; EEG-IP: International Infant EEG Data Integration Platform; FEM: 

finite element method; MPRAGE: magnetization-prepared rapid gradient-echo; NMD: 

Neurodevelopmental MRI Database; MRI: magnetic resonance imaging 

Abstract 

Electroencephalographic (EEG) source reconstruction is a powerful approach that helps to 

unmix scalp signals, mitigates volume conduction issues, and allows anatomical localization of 

brain activity. Algorithms used to estimate cortical sources require an anatomical model of the 

head and the brain, generally reconstructed using magnetic resonance imaging (MRI). When 

such scans are unavailable, a population average can be used for adults, but no average 

surface template is available for cortical source imaging in infants. To address this issue, this 

paper introduces a new series of 12 anatomical models for subjects between zero and 24 

months of age. These templates are built from MRI averages and volumetric boundary element 
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method segmentation of head tissues available as part of the Neurodevelopmental MRI 

Database. Surfaces separating the pia mater, the gray matter, and the white matter were 

estimated using the Infant FreeSurfer pipeline. The surface of the skin as well as the outer and 

inner skull surfaces were extracted using a cube marching algorithm followed by Laplacian 

smoothing and mesh decimation. We post-processed these meshes to correct topological errors 

and ensure watertight meshes. The use of these templates for source reconstruction is 

demonstrated and validated using 100 high-density EEG recordings in 7-month-old infants. 

Hopefully, these templates will support future studies based on EEG source reconstruction and 

functional connectivity in healthy infants as well as in clinical pediatric populations. Particularly, 

they should make EEG-based neuroimaging more feasible in longitudinal neurodevelopmental 

studies where it may not be possible to scan infants at multiple time points.  

Graphical abstract 
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Introduction 

Our ability to study the functional connectivity of the brain during its early years is crucial in 

understanding both neurotypical and abnormal developmental trajectories, such as in the case 

of attention deficit hyperactivity disorder (Konrad and Eickhoff, 2010) or autism (O’Reilly et al., 

2017). However, most EEG studies in infants are performed at the scalp level, which presents 

severe limitations such as the obfuscated relationship between the scalp location of EEG 

activity and the neuronal sources (Nunez and Srinivasan, 2006; Van de Steen et al., 2019), the 

impact of the recording reference (Bringas Vega et al., 2019; Guevara et al., 2005), and the 

confounding effect of volume conduction on EEG power and functional connectivity (Nunez et 

al., 1997; O’Reilly and Elsabbagh, 2020; Van de Steen et al., 2019). Many of these limitations 

can be mitigated by unmixing the scalp activity and estimating its neuronal sources.  

EEG sources can be estimated in surfaces or in volumes, depending on how dipolar sources 

are allowed to be placed in the model of the head. The reconstruction of cortical sources using 

surfaces relies on our understanding of the generative mechanism of EEG to constrain the 

position and the orientation of dipolar sources. The proximity of the cortex to the scalp, the 

creation of a dipolar source between the apical tree and the soma of pyramidal cells following 

postsynaptic depolarization of apical dendrites, and the creation of an open field by the parallel 

alignment of the apical dendrites are a few reasons that led researchers to hypothesize that 

scalp EEG is mainly reflecting highly synchronous postsynaptic currents generated in apical 

trees of cortical pyramidal cells (Baillet et al., 2001). Accordingly, it is a common practice to 

estimate EEG cortical sources by fitting the amplitude of dipoles whose position and orientation 

are constrained by the cortical surface. 
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Alternatively, all dipolar contributions can be postulated to sum linearly in equivalent current 

dipoles (ECD), which position and orientation is generally left free. Such an approach has some 

analytic advantages (e.g., mathematical tractability when used with spherical head models) and 

can be motivated when one or a few specific sources of activity clearly dominates like in the 

context of epileptic activity (Ebersole, 1994) or for localized independent components (Acar et 

al., 2016). By generalizing the ECD approaches to a large number of dipoles and using 

sophisticated finite element models (FEM) of the head, we can also perform current density 

reconstruction (CDR). These volumetric approaches of source estimation position dipoles using 

less a priori constraints than methods using cortical surfaces (e.g., dipoles position may not be 

limited to grey matter or cortical regions, dipole orientation may be free).  

Surface and volume source estimation can also be combined, for example by using 

physiological hypotheses to constrain dipoles within the grey matter of the cortex to be aligned 

with pyramidal cells (i.e., normal to the cortical meshes or using some more sophisticated 

estimation of the orientation of cortical columns (Bonaiuto et al., 2020)) and using volumetric 

sources estimations with free dipole orientation for subcortical regions (Attal and Schwartz, 

2013).  

EEG sources estimation in infants is relatively infrequent in the literature, and most studies that 

used it relied on volumetric approaches such as CDR (Xie and Richards, 2017) or ECD 

(Ortiz-Mantilla et al., 2019). It is more frequent in MEG infant studies (Kao and Zhang, 2019), 

but generally uses oversimplified spherical models to overcome the absence of realistic head 

models (Imada et al., 2006; Kuhl et al., 2014) or uses custom-built subject-specific realistic head 

models that are not reusable by the research community (Ramírez et al., 2017; Travis et al., 

2011), forcing every research team to go through the time- and resource-consuming process of 
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gathering infants MRI and building head models from scratch. The Neurodevelopmental MRI 

Database (NMD; (Richards et al., 2016) contains BEM and FEM realistic volumetric models of 

the head that can be used to perform source estimations using software that can use volumetric 

segmentation directly, such as FieldTrip (Oostenveld et al., 2011). However, resources such as 

FieldTrip , Brainstorm (Tadel et al., 2011), and MNE-Python (Gramfort et al., 2013) which use 1

surface models for cortical source reconstruction rely on external procedures for estimating the 

required cortical surfaces. 

Reconstructing neuronal sources requires a few additional types of information to be combined 

with EEG recordings, including 1) a structural model of the head (conductor model); 2) a model 

of source distributions (source space); 3) the position of the EEG sensors on the subjects’ head 

(electrode placement); 4) a method for estimating scalp activity generated by neuronal sources 

(forward modeling); 5) an inversion scheme for estimating the probable neuronal sources 

corresponding to the observed scalp activity (inverse modeling). The first of these components, 

the structural head model, is generally built by post-processing magnetic resonance images 

(MRI) of the participants using specialized software designed for that purpose, such as 

FreeSurfer (Fischl, 2012), CIVET (MacDonald et al., 2000), the Computational Anatomy Toolbox 

(Gaser and Dahnke, 2016), BrainVISA (Rivière et al., 2009), SPM (Mattout et al., 2007), FSL 

(Jenkinson et al., 2012), or BrainSuite (Shattuck and Leahy, 2002). However, the time and 

expense associated with MRI scanning of the participants may be prohibitive or not possible 

with certain groups of participants because of health issues or ethical concerns. To address the 

lack of structural information in EEG analysis, population averages of head and brain structures 

have been proposed and can be used for computing approximate forward models (Fuchs et al., 

1 FieldTrip can use surfaces for its source model, with the surfaces constructed from external tools such 

as iso2mesh (Fang and Boas, 2009), Brain2Mesh (Tran and Fang, 2017), or FreeSurfer (Fischl, 2012).  
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2002; Valdés-Hernández et al., 2009). The objective of the current study is to extend these 

methods to infants by developing a novel set of 12 surface templates that can be used for 

source reconstruction for infants between 0 and 24 months of age. 

Method 

Volumetric dataset 

To build age-specific templates that can be used for EEG source reconstruction using cortical 

surfaces, we used MRI averages available within the infants and preschool segments of the 

NMD version 2 (Richards et al., 2016), available on the NITRC website 

(​https://www.nitrc.org/projects/neurodevdata ​). More specifically, we used the volumetric 

averages and four compartments boundary element method (BEM4) segmentation of head 

tissues contained therein.  

The BEM4 volumes label every non-null voxel from head averages as belonging either to 

the skin, the skull, the cerebrospinal fluid, or the brain. In these segmentations, a minimum 

width of 1 mm was set for the skin compartment, 2 mm for the skull compartment, and 1 mm for 

cerebrospinal fluid compartment. These constraints help to avoid issues with intersecting 

surfaces when building source models. The identification of the brain, the skull, and the scalp on 

individual MRI was based on FSL Brain Extraction Tool (Bartlett and Smith, 1999; Smith, 2002).  

Two sets of averages are provided, depending on whether MRI averaging was performed to 

optimize the head tissues or the brain. BEM classification is provided in the head averaging 

space. Table 1 lists the sample size per gender as well as the age range for the children 

included in every average. In this version of the database and for these age groups, all 

averages are based only on 3T scans using a T1 magnetization-prepared rapid gradient-echo 
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(MPRAGE) sequence. See (Richards, 2013) for more details on individual MRI segmentation 

and (Sanchez et al., 2012) for volume averaging. 

Table 1. Sample size and ages for the different volumetric templates. 

Template Female Male N/A Age (months) 
2 weeks 26 17 0 <= 0.5 
1 month 42 60 0 0.5-1.5 
2 months 40 29 0 2-2.5 
3 months 21 17 0 2.5-4 

4.5 months 29 25 0 4-5.5 
6 months 55 56 0 5.5-7 

7.5 months 33 62 0 7-8.5 
9 months 36 25 0 8.5-10 
12 months 68 101 0 11.5-13 
15 months 41 37 0 14.5-17 
18 months 31 45 0 17.5-20 

2 years 57 76 2 23-26 

 

Software 

Aside from the extraction of brain surfaces relying on the Infant FreeSurfer pipeline (de Macedo 

Rodrigues et al., 2015; Zöllei et al., 2020), most of the data processing and analyses have been 

performed using custom code relying on various Python packages, the principal ones being 

connected-components-3d 1.5.0 (Kemnitz and Silversmith, 2020), Matplotlib 3.1.2 (Hunter, 

2007), MNE-Python 0.20.0 (Gramfort et al., 2014, 2013), NiBabel 3.0.0 (Brett et al., 2019), 

Numpy 1.18.2 (Oliphant, 2006; Walt et al., 2011), Pandas 1.0.3 (McKinney, 2010; The pandas 

development team, 2020), Pillow 7.0.0 (Clark et al., 2020), PyCortex 1.2.0 (Gao et al., 2015), 

PyMeshFix 0.13.3 (Attene, 2010), Scikit-Image 0.16.2 (Walt et al., 2014), Scipy 1.4.1 (Virtanen 

et al., 2020), trimesh 3.5.12 (Dawson-Haggerty et al., 2020), and XArray 0.15.1 (Hoyer and 

Hamman, 2017).  
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Surface extraction 

We first processed the volumetric dataset to extract the brain and head surfaces needed for 

surface cortical source extraction. For brain surfaces, we normalized the intensity of the brain 

volumetric averages (FreeSurfer mri_nu_correct command) and converted them to a standard 

256 X 256 X 256 space with 1-mm-side voxels (FreeSurfer mri_convert --conform command). 

Then, we used the Infant FreeSurfer reconstruction pipeline (infant_recon_all; de Macedo 

Rodrigues et al., 2015; Zöllei et al., 2020) to extract the surfaces separating the pia mater, the 

gray matter, and the white matter. During this process, the Desikan-Killiany (Desikan et al., 

2006) and the Destrieux (Destrieux et al., 2010) cortical parcellations were also computed. We 

skipped the skull stripping step included in the Infant FreeSurfer pipeline since the brain 

averages from the NMD are already skull stipped.  

For the head surfaces, we used the volumetric BEM4 classification from the NMD and ran a 

cube marching algorithm (scikit-image marching_cubes_lewiner function) followed by a 

Laplacian smoothing (trimesh filter_laplacian function) and a mesh decimation (MNE-Python 

decimate_surface function). Surface topological defects such as holes, inverted vertex normals, 

or vertices with fewer than three neighbors were corrected using custom Python code relying on 

external functions (MeshFix.repair from PyMeshFix; repair.fix_normals and 

Trimesh.remove_degenerate_faces from trimesh) and on code snippets borrowed and modified 

from various MNE-Python functions. Final meshes were checked for water tightness using 

trimesh. Further, one BEM volume had artifacts showing as small line segments over the 

background. We corrected these by zeroing any small separated cluster of non-null voxels using 

the connected_components function form connected-components-3d. Examples of the initial 

volumes and extracted surfaces using these two parallel pipelines are illustrated in Figure 1. 
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Figure 1. Surface extraction. On the left side, an example of the three types of volumes 

we used from NMD is shown. From this volumetric dataset, two parallel processes were 

run to extract the brain surfaces and their parcellation (top right; using Infant FreeSurfer) 

as well as the head BEM surfaces (bottom right; using custom Python code).  

 

Head-brain co-registration 

Because the brain and head surfaces were computed from different volumetric averages, they 

were not initially perfectly aligned and needed to be co-registered. We aligned these surfaces 

manually using FreeView (a program from the FreeSurfer software suite) and custom Python 

code. An initial transformation (rotation, translation, scaling) was obtained by overlaying the 

head and the brain averages in FreeView (Figure 2.a). Further fine-tuning of translation and 

scaling was done in Python, using FreeView to visualize intermediate and final results (Figure 

2.b).  
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Figure 2. Co-registration processes.  a) Initial head-brain co-registration by overlaying 

the brain over the head in FreeView, using partial transparency to help visual alignment. 

The brainstem offers very clear landmarks for finding the right rotation angle in the 

lateral view, as can be seen in the two examples of overlaid brains.  b) Validation of 

alignment in FreeView after fine-tuning the scaling and the translation using Python 

code. For the forward model to work, the transform must be such that none of the 

surfaces (shown as color-coded lines: yellow: skin, cyan: outer skull, green: inner skull, 

red: pial surface, blue; grey-white matter border) intersect.  c) Co-registration of sensors 

and head models using MNE-Python. 
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Once the transformation parameters were established (see Table 2), the transformation of the 

head surfaces to the brain space was done using: 

V  V T
brain = A T

head  

with being an affine transform matrix (here rigid body plus scaling only), and  and A V  
head V  

brain

being matrices of size N X 4, where N is the number of vertices in the mesh and each matrix 

row specifies the augmented vertice coordinates as .x  y  z  1][  

The overall transform matrix is composed of elementary transforms as follow:  

TSRMA = MT  

where M is the transform that map the coordinate system from neuroimaging RAS 

(right-anterior-superior) to the mesh vertices in LIA (left-inferior-anterior) coordinate system: 

 

T is the translation matrix: 
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S is the scaling matrix: 

 

R is the rotation matrix, combining the yaw ( ), the pitch ( ), and the roll ( ): 

 

 

Table 2. Head to brain space transformation parameters. 

  𝑡​𝑥  𝑡​𝑦  𝑡​𝑧  𝑠​𝑥  𝑠​𝑦  𝑠​𝑧  𝛾  𝛽  𝛼  
2 weeks  0.0  -3.0  0.0  1.175  1.105  1.090  -7.000  -0.0  0.0  
1 month  0.0  -3.0  0.0  1.200  1.070  1.060  -8.000  -0.0  0.0  
2 months  0.0  -1.0  0.0  1.080  1.080  1.080  -8.000  -0.0  0.0  

3 months  1.0  2.0  0.0  0.921  0.950  0.950  7.500  -0.0  0.0  
4.5 months  0.0  2.0  -1.0  1.100  0.950  1.010  2.000  -0.0  0.0  

6 months  -1.0  -5.0  -1.0  1.010  1.010  1.010  0.000  -0.0  0.0  
7.5 months  -0.5  -4.0  0.0  1.010  1.000  1.010  -3.000  1.0  0.0  
9 months  -0.5  -3.0  -2.0  1.050  1.000  1.020  -5.500  -0.0  1.5  

12 months  1.0  -4.0  2.0  0.990  0.990  0.975  -9.500  -0.0  0.0  
15 months  1.0  -4.0  3.0  0.950  1.000  1.000  -8.000  -0.0  0.0  
18 months  0.0  1.0  3.0  1.020  1.050  1.010  0.000  -0.0  0.0  
24 months  0.0  0.0  0.0  1.010  1.010  1.010  -3.517  -1.0  1.0  
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Sensor co-registration 

To map the scalp activity to neuronal sources, the EEG sensors must be placed over the scalp 

of the forward model. Electrode placement for the 3, 4.5, 6, 7.5, 9, 12, and 24 months time 

points were previously computed as described in (Richards et al., 2015) for the HydroCel GSN 

128 channel sensor net and made available in the NMD. The electrode placement for the 

2-weeks, 1- and 2-months templates were obtained from the 3-month average template 

electrode placement. This was done by registering the normative 10-10 positions from the 

3-month-old average template to every participant of those age in the NMD, using the Coherent 

Point Drift method (Myronenko et al., 2006; Myronenko and Song, 2010), and translating the 3 

months HydroCel GSN points into the participant space. Then the participant MRIs were 

registered to their age-appropriate average template and their electrode positions were 

appropriately translated into the average template space and averaged across participants. The 

averaged electrode positions were further scaled to fit to the head in the averaged MRI volume. 

The same procedure was used to fit the 12-months electrode placement to the 15- and 

18-months time points. These placements being in the head average space, the head-to-brain 

transformation described in the previous section was applied to co-register them to the brain 

average space. The fitted electrode placement is provided with these templates for easy re-use. 

Other nets can be fitted following the same procedure. 

Validation dataset 

To validate the use of the templates for source reconstruction, we used the 100 recordings 

(female=62; male=36; unknown=2) available in the 7-month-old/London segment of the 

International Infant EEG Data Integration Platform (EEG-IP) cohort (van Noordt et al., 2020) . 

These EEGs were recorded using the HydroCel GSN 128 channel sensor net and a 500 Hz 

sampling frequency. They used an event-related paradigm with 1-second epochs starting at the 
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moment when the visual stimulus was changed. The images used as stimuli were presented on 

a computer screen and consisted of a face looking directly at or away from the child, or a 

randomized noise control stimulus. For our analyses, we used the pre-processed recordings 

available in the EEG-IP cohort, in which automatic artifact rejections plus manual quality control 

has been performed using the Lossless pipeline (van Noordt et al., 2020).  

Source estimation 

For comparing estimated sources, aside from our 12 infant templates, we also used the 

standard “fsaverage” from FreeSurfer, an adult template built using spherical surface averaging 

(Fischl et al., 1999) of the Buckner40 cohort which comprises 40 non-demented subjects (21 

women) ranging in age from 18 to 30 and 65 to 93 years of age (FreeSurfer team, 2020a). 

Event-related EEG sources were computed using MNE-Python. The same parameters were 

used for source estimation using the 12 infant templates and the adult fsaverage template. We 

used the dSPM inverse operator and set the regularization parameters lambda2 to 1.  Other 

parameters were left to their default value, as set by MNE-Python. The covariance matrix was 

estimated using the ​method=“auto”​ in the ​mne.compute_covariance​ function, which uses four 

different estimators (the Ledoit-Wolf estimator (Ledoit and Wolf, 2004) with cross validation for 

optimizing alpha, diagonal regularization, sample covariance, and factor analysis with low-rank 

(Barber, 2012)) and chooses the optimal solution base on log-likelihood estimation and 

cross-validation (Engemann and Gramfort, 2015). 

Data and code availability 

The code for building the templates and for reproducing the validation analyses is available on 

GitHub (​https://github.com/christian-oreilly/infant_template_paper​). The volumetric averages 

and the final surface templates are available from the NMD 
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(​https://jerlab.sc.edu/projects/neurodevelopmental-mri-database/​) and can be downloaded 

through the NeuroImaging Tools & Resources Collaboratory 

(​https://www.nitrc.org/projects/neurodevdata ​). These templates are further being integrated to 

MNE-Python and Brainstorm for easier use.  

Results 

Templates and source reconstruction 

We built surface-based structural templates at 12 time points between 2 weeks and 2 years of 

age (Figure 3). These templates have been tested using Brainstorm and MNE-Python and can 

successfully be used to reconstruct sources at these different ages (Figure 4). 
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Figure 3. Twelve templates from 2 weeks to 2 years old comprising the surfaces for the 

scalp, the outer and inner surface of the skull, as well as surfaces separating the 

meninges, the grey matter, and the white matter (using non-decimated meshes and 

Blender rendering). 
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Figure 4. Example of source reconstruction using the 12-month template and showing 

the average source power over the 1-second epoch for the “noise” stimulus. The left 

panel shows inflated hemispheres, as provided by MNE-Python while the right panel 

shows the same source activity over the flattened cortical surfaces, using PyCortex.  

Validation 

We validated the templates by testing the hypothesis that EEG sources should be more 

correlated when estimated from templates of similar age than from templates of very different 

ages. Thus, we computed correlations between the time-series of event-related EEG sources 

for pairs of templates and averaged across stimulus conditions, subjects, and brain regions. 

Heat maps in Figure 5.a,b show high average correlations between infant templates within the 

0-2 years age range. However, there is a general tendency for values close to the diagonal to 

be smaller than those far from the diagonal, confirming that differences in estimated sources 

increases with template age differences. Further, the correlation with the sources computed 

using fsaverage is relatively low, confirming the large differences in source estimations when 

using an adult template for analyzing infants data.  
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Figure 5. a) Average correlations between the source time-series computed from different 

templates, b) excluding the fsaverage template and adjusting the scale to emphasize the 

pattern of variation within the infant templates. c) Average time-series correlations as a 

function of the log-transformed age difference between templates. d-f) Similar as for 

panels a-c, but correlating across brain regions instead of time. g) Average time-series 

correlation computed separately for every region and averaged by reference template. h) 

Cortical representation showing average time-series correlation (mean values per 

column of panel g) lower than 0.6 colored in red or green, depending on whether they 

show or not the typical correlation decrease with increasing age differences. i) Value of 

the meta-correlation (i.e., correlations between age difference and the time-series 

correlations) with respect to the template age. j) Scatter plot of the average time-series 

correlation and meta-correlations for the different brain regions, color-coded as in panel 

h. All p-values are for one-tail tests. 

The increasing difference between estimated sources with increasing template age difference is 

clearly demonstrated by linearly regressing the correlations plotted in Figure 5.a,b by the 

absolute differences between the logarithm of the template ages (R​2​=0.512, p-value=7.3e-12, 

N=66; Figure 5.c). Similar observations can be made by correlating sources across brain 

regions rather than across time-series (R​2​=0.477, p-value=6.9e-11, N=66; Figure 5, d-f). We 

further observed that the correlation of time-series between templates is generally very high 

across regions but is lower and more variable in some cases (Figure 5.g), particularly around 

the motor and somatosensory areas (Figure 5.h).  

We refer to the correlations between the age difference and the time-series correlations as 

“meta-correlations”. They are computed by using the correlations associated with a given 
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reference template (e.g., selecting a given column of the correlation matrix shown in Figure 5.b) 

and regressing these values against the age difference as shown in Figure 5.c. Such 

meta-correlations were computed across templates and regions (Figure 6.a) and then averaged 

across regions. Resulting averages were plotted against the age of the reference template 

(Figure 5.i). We observe meta-correlations with higher amplitudes as age increases, probably 

due to various factors complicating accurate modeling at younger age (e.g., less clear 

distinction between white and grey matter on infants MRI; normalization of non-fully gyrified 

brains using standards tools based on adult gyrification). The region and the template age 

together account for around 35% of the total variance of the meta-correlations (Table 6). 

Table 6. Analysis of variance (ANOVA) for the linear model describing the variation of 

meta-correlations as a function of the age difference (continuous factor), the sample size 

(continuous factor), and the brain region (categorical factor). R ​2​=0.35; adjusted R ​2​=0.29. 

 Sum sq. df F PR(>F) 

region 18.78 79 1.90 9.64E-06 

age 38.57 1 308.46 2.40E-59 

Residual 108.91 871 —- —- 

 

For most regions, both the time-series correlations and corresponding meta-correlations with 

age differences are elevated but a small group of regions shows significantly lower (i.e., < 0.6) 

time-series correlations and a subgroup of these regions with lower correlations also shows 

meta-correlations with an inverse sign (Figure 5.j).  
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Figure 6.a shows that meta-correlations for various brain regions differ for the younger (up to 

about 5 months) and the older reference templates. The differences are even clearer when the 

correlation matrix between rows of the Figure 6.a are computed (Figure 6.b). Aside from 

showing a strong relationship with age difference (rho=-0.75; p-value=1.9e-13; Figure 6.c), it 

clearly shows the two aforementioned clusters (Figure 6.b) separating younger and older 

templates around 5 months of age. 

 

Figure 6. Meta-correlations correlating age differences with time-series correlations. a) 

Meta-correlations with respect to template ages and brain regions. b) Matrix of the 

correlation coefficients between rows of the matrix displayed in panel a. c) Values of the 
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matrix from panel b plotted against age differences. Correlation coefficients and 

corresponding p-values (one-tail) are shown in the upper right corner of the graph.  

Discussion  

A reliable estimation of EEG cortical sources requires the use of individualized or, when not 

available, population-averaged structural templates of the head. Standard automated 

approaches developed for building such templates from adult MRI scans do not provide 

satisfactory results in the pediatric population due to a lower contrast between white and grey 

matter (Phan et al., 2018; Schumann et al., 2010). Further, most automated pipelines rely on 

co-registering individual MRI against a population average, which may cause significant errors 

when using an adult average for co-registering younger populations. With some manual 

intervention to guide or correct white matter and grey matter classification, FreeSurfer can 

provide satisfactory results in children who are five years or older (Schumann et al., 2010) but 

not younger (FreeSurfer team, 2020b). For that reason, an Infant version of the FreeSurfer 

pipeline has recently been developed that covers the 0-2 years age range (Zöllei et al., 2020). 

To accelerate progress in EEG neurodevelopmental studies, we used this pipeline to develop 

12 new templates for infants in this age range. These templates can be used for source 

reconstruction with software relying on surfaces of the brain and the head for their forward 

models. For approaches relying on volume models (e.g., to estimate volumetric current density) 

instead of surfaces, volume BEM and FEM models are already available in the NMD, which will 

allow comparing and benchmarking these different approaches for infants in the future.  

The age difference within the 0-2 years range resulted in relatively mild differences in estimated 

EEG sources, suggesting that the reference templates are fairly accurate. Improvements in 

accuracy of source estimates may nevertheless be useful for some of the regions that showed 
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lower and more variable correlations between templates (Figure 5.g). In the absence of 

quantitative resources that can be queried across age and brain regions for maturity index, it 

would be difficult to establish whether these lower correlations are due to faster maturational 

changes in these regions within the age range covered by these templates. We nevertheless 

note that most of these regions are around the motor and somatosensory areas, which are 

known to develop at a fast rate in the first few months following birth (Ganzetti et al., 2014), 

whereas the correlations are reliably high in frontal associative regions (Figure 5.h), which are 

known to develop later in life (Sowell et al., 1999). Some of these regions with lower correlations 

also show meta-correlation with an inverse sign (i.e., time-series correlation increasing with age 

mismatch; Figure 5.k), an observation that is unexpected and that is occurring either due to 

randomness or to an unknown cause. 

In future, increased surface template accuracy may be achievable by using a surface-based 

registration directly rather than extracting surfaces from a volume-based average (Ghosh et al., 

2010). This method might result in reference templates for infants with inflated cortexes and flat 

cortical maps closer to results obtained from adults. It is unclear, however, if such improvements 

would translate into a significant improvement regarding EEG source estimation since the gain 

obtained by increasing the template accuracy may be insignificant compared to the difference 

between the population average template versus the brain of each individual participant. It 

would also be interesting to investigate the extent to which the use of different templates would 

affect source imaging in studies using magnetoencephalography (MEG) instead of EEG, given 

that these two modalities measure fundamentally related but complementary components of the 

electro-magnetic fields produced by cerebral activity (Hämäläinen et al., 1993; Sharon et al., 

2007).  
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Up to recently, no open-access population average surface models were available to perform 

cortical source reconstruction in infants. By releasing the 12 infant templates described in this 

paper, we are making source reconstruction based on cortical surfaces accessible for situations 

where individual MRI are not available and population averages are required, addressing a clear 

need in the EEG and MEG community. We are currently working at integrating these templates 

directly within MNE-Python and Brainstorm to allow researchers to easily benefit from them. 

This resource will undoubtedly come particularly handy for cross-sectional and longitudinal 

studies of typical and atypical neurodevelopment.  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.20.162131doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.20.162131
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgments 

This research is supported by the Azrieli Centre for Autism Research (ACAR) and 

NIH-R01NS104585 (EL; PI: M. Hamalainen). The computational infrastructure was provided by 

Calul Quebec (www.calculquebec.ca) and Compute Canada (www.computecanada.ca). 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.20.162131doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.20.162131
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 

Acar, Z.A., Ortiz-Mantilla, S., Benasich, A., Makeig, S., 2016. High-resolution EEG source 

imaging of one-year-old children. Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 

IEEE Eng. Med. Biol. Soc. Annu. Conf. 2016, 117–120. 

https://doi.org/10.1109/EMBC.2016.7590654 

Attal, Y., Schwartz, D., 2013. Assessment of Subcortical Source Localization Using Deep Brain 

Activity Imaging Model with Minimum Norm Operators: A MEG Study. PLOS ONE 8, 

e59856. https://doi.org/10.1371/journal.pone.0059856 

Attene, M., 2010. A lightweight approach to repairing digitized polygon meshes. Vis. Comput. 

26, 1393–1406. https://doi.org/10.1007/s00371-010-0416-3 

Baillet, S., Mosher, J.C., Leahy, R.M., 2001. Electromagnetic brain mapping. IEEE Signal 

Process. Mag. 18, 14–30. https://doi.org/10.1109/79.962275 

Barber, D., 2012. Bayesian Reasoning and Machine Learning, Bayesian Reasoning and 

Machine Learning. Cambridge University Press. 

Bartlett, E.L., Smith, P.H., 1999. Anatomic, intrinsic, and synaptic properties of dorsal and 

ventral division neurons in rat medial geniculate body. J. Neurophysiol. 81, 1999–2016. 

Bonaiuto, J.J., Afdideh, F., Ferez, M., Wagstyl, K., Mattout, J., Bonnefond, M., Barnes, G.R., 

Bestmann, S., 2020. Estimates of cortical column orientation improve MEG source 

inversion. NeuroImage 216, 116862. https://doi.org/10.1016/j.neuroimage.2020.116862 

Brett, M., Markiewicz, C.J., Hanke, M., Côté, M.-A., Cipollini, B., McCarthy, P., Cheng, C.P., 

Halchenko, Y.O., Cottaar, M., Ghosh, S., Larson, E., Wassermann, D., Gerhard, S., Lee, 

G.R., Wang, H.-T., Kastman, E., Rokem, A., Madison, C., Morency, F.C., Moloney, B., 

Goncalves, M., Riddell, C., Burns, C., Millman, J., Gramfort, A., Leppäkangas, J., 

Markello, R., van den Bosch, J.J.F., Vincent, R.D., Braun, H., Subramaniam, K., 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.20.162131doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.20.162131
http://creativecommons.org/licenses/by-nc-nd/4.0/


Jarecka, D., Gorgolewski, K.J., Raamana, P.R., Nichols, B.N., Baker, E.M., Hayashi, S., 

Pinsard, B., Haselgrove, C., Hymers, M., Esteban, O., Koudoro, S., Oosterhof, N.N., 

Amirbekian, B., Nimmo-Smith, I., Nguyen, L., Reddigari, S., St-Jean, S., Panfilov, E., 

Garyfallidis, E., Varoquaux, G., Kaczmarzyk, J., Legarreta, J.H., Hahn, K.S., Hinds, O.P., 

Fauber, B., Poline, J.-B., Stutters, J., Jordan, K., Cieslak, M., Moreno, M.E., Haenel, V., 

Schwartz, Y., Thirion, B., Papadopoulos Orfanos, D., Pérez-García, F., Solovey, I., 

Gonzalez, I., Palasubramaniam, J., Lecher, J., Leinweber, K., Raktivan, K., Fischer, P., 

Gervais, P., Gadde, S., Ballinger, T., Roos, T., Reddam, V.R., freec84, 2019. 

nipy/nibabel: 3.0.0. Zenodo. https://doi.org/10.5281/zenodo.3583002 

Bringas Vega, M.L., Nunez, P., Riera, J., Zhang, R., Valdes-Sosa, P.A., 2019. Editorial: 

Through a Glass, Darkly: The Influence of the EEG Reference on Inference About Brain 

Function and Disorders. Front. Neurosci. 13. https://doi.org/10.3389/fnins.2019.01341 

Clark, Lundh, al., 2020. Pillow. 

Dawson-Haggerty et al., 2020. trimesh. 

de Macedo Rodrigues, K., Ben-Avi, E., Sliva, D.D., Choe, M.-S., Drottar, M., Wang, R., Fischl, 

B., Grant, P.E., Zöllei, L., 2015. A FreeSurfer-compliant consistent manual segmentation 

of infant brains spanning the 0-2 year age range. Front. Hum. Neurosci. 9, 21. 

https://doi.org/10.3389/fnhum.2015.00021 

Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., 

Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J., 2006. An automated 

labeling system for subdividing the human cerebral cortex on MRI scans into gyral based 

regions of interest. NeuroImage 31, 968–980. 

https://doi.org/10.1016/j.neuroimage.2006.01.021 

Destrieux, C., Fischl, B., Dale, A., Halgren, E., 2010. Automatic parcellation of human cortical 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.20.162131doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.20.162131
http://creativecommons.org/licenses/by-nc-nd/4.0/


gyri and sulci using standard anatomical nomenclature. NeuroImage 53, 1–15. 

https://doi.org/10.1016/j.neuroimage.2010.06.010 

Ebersole, J.S., 1994. Non-invasive localization of the epileptogenic focus by EEG dipole 

modeling. Acta Neurol. Scand. Suppl. 152, 20–28. 

https://doi.org/10.1111/j.1600-0404.1994.tb05179.x 

Engemann, D.A., Gramfort, A., 2015. Automated model selection in covariance estimation and 

spatial whitening of MEG and EEG signals. NeuroImage 108, 328–342. 

https://doi.org/10.1016/j.neuroimage.2014.12.040 

Fischl, B., 2012. FreeSurfer. NeuroImage 62, 774–781. 

https://doi.org/10.1016/j.neuroimage.2012.01.021 

Fischl, B.R., Sereno, M.I., Tootell, R.B.H., Dale, A.M., 1999. High-resolution intersubject 

averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 

https://doi.org/10.1002/(sici)1097-0193(1999)8:4<272::aid-hbm10>3.0.co;2-4 

FreeSurfer team, 2020a. Buckner40Adni60Testing - Free Surfer Wiki [WWW Document]. URL 

https://surfer.nmr.mgh.harvard.edu/fswiki/Buckner40Adni60Testing (accessed 5.6.20). 

FreeSurfer team, 2020b. FsTutorial/QuestionAnswers - Free Surfer Wiki [WWW Document]. 

URL https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/QuestionAnswers (accessed 

5.3.20). 

Fuchs, M., Kastner, J., Wagner, M., Hawes, S., Ebersole, J.S., 2002. A standardized boundary 

element method volume conductor model. Clin. Neurophysiol. Off. J. Int. Fed. Clin. 

Neurophysiol. 113, 702–712. https://doi.org/10.1016/s1388-2457(02)00030-5 

Ganzetti, M., Wenderoth, N., Mantini, D., 2014. Whole brain myelin mapping using T1- and 

T2-weighted MR imaging data. Front. Hum. Neurosci. 8. 

https://doi.org/10.3389/fnhum.2014.00671 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.20.162131doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.20.162131
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gao, J.S., Huth, A.G., Lescroart, M.D., Gallant, J.L., 2015. Pycortex: an interactive surface 

visualizer for fMRI. Front. Neuroinformatics 9, 23. 

https://doi.org/10.3389/fninf.2015.00023 

Gaser, C., Dahnke, R., 2016. CAT-A Computational Anatomy Toolbox for the Analysis of 

Structural MRI Data. Presented at the 22nd Annual Meeting of the Organization fo 

Human Brain Mapping, Geneva, Switzerland. 

Ghosh, S.S., Kakunoori, S., Augustinack, J., Nieto-Castanon, A., Kovelman, I., Gaab, N., 

Christodoulou, J.A., Triantafyllou, C., Gabrieli, J.D.E., Fischl, B., 2010. Evaluating the 

Validity of Volume-Based and Surface-Based Brain Image Registration for 

Developmental Cognitive Neuroscience Studies in Children 4-to-11 Years of Age. 

NeuroImage 53, 85–93. https://doi.org/10.1016/j.neuroimage.2010.05.075 

Gramfort, A., Luessi, M., Larson, E., Engemann, D.A., Strohmeier, D., Brodbeck, C., Goj, R., 

Jas, M., Brooks, T., Parkkonen, L., Hämäläinen, M., 2013. MEG and EEG data analysis 

with MNE-Python. Front. Neurosci. 7. https://doi.org/10.3389/fnins.2013.00267 

Gramfort, A., Luessi, M., Larson, E., Engemann, D.A., Strohmeier, D., Brodbeck, C., Parkkonen, 

L., Hämäläinen, M.S., 2014. MNE software for processing MEG and EEG data. 

NeuroImage 86, 446–460. https://doi.org/10.1016/j.neuroimage.2013.10.027 

Guevara, R., Velazquez, J.L.P., Nenadovic, V., Wennberg, R., Senjanovic, G., Dominguez, 

L.G., 2005. Phase synchronization measurements using electroencephalographic 

recordings: what can we really say about neuronal synchrony? Neuroinformatics 3, 

301–314. https://doi.org/10.1385/NI:3:4:301 

Hämäläinen, M., Hari, R., Ilmoniemi, R.J., Knuutila, J., Lounasmaa, O.V., 1993. 

Magnetoencephalography---theory, instrumentation, and applications to noninvasive 

studies of the working human brain. Rev. Mod. Phys. 65, 413–497. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.20.162131doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.20.162131
http://creativecommons.org/licenses/by-nc-nd/4.0/


https://doi.org/10.1103/RevModPhys.65.413 

Hoyer, S., Hamman, J., 2017. xarray: N-D labeled Arrays and Datasets in Python. J. Open Res. 

Softw. 5, 10. https://doi.org/10.5334/jors.148 

Hunter, J.D., 2007. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 9, 90–95. 

https://doi.org/10.1109/MCSE.2007.55 

Imada, T., Zhang, Y., Cheour, M., Taulu, S., Ahonen, A., Kuhl, P.K., 2006. Infant speech 

perception activates Broca’s area: a developmental magnetoencephalography study. 

Neuroreport 17, 957–962. https://doi.org/10.1097/01.wnr.0000223387.51704.89 

Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith, S.M., 2012. FSL. 

NeuroImage 62, 782–790. https://doi.org/10.1016/j.neuroimage.2011.09.015 

Kao, C., Zhang, Y., 2019. Magnetic Source Imaging and Infant MEG: Current Trends and 

Technical Advances. Brain Sci. 9. https://doi.org/10.3390/brainsci9080181 

Kemnitz, N., Silversmith, W., 2020. connected-components-3d. 

Konrad, K., Eickhoff, S.B., 2010. Is the ADHD brain wired differently? A review on structural and 

functional connectivity in attention deficit hyperactivity disorder. Hum. Brain Mapp. 31, 

904–916. https://doi.org/10.1002/hbm.21058 

Kuhl, P.K., Ramírez, R.R., Bosseler, A., Lin, J.-F.L., Imada, T., 2014. Infants’ brain responses to 

speech suggest analysis by synthesis. Proc. Natl. Acad. Sci. U. S. A. 111, 11238–11245. 

https://doi.org/10.1073/pnas.1410963111 

Ledoit, O., Wolf, M., 2004. A well-conditioned estimator for large-dimensional covariance 

matrices. J. Multivar. Anal. 88, 365–411. 

https://doi.org/10.1016/S0047-259X(03)00096-4 

MacDonald, D., Kabani, N., Avis, D., Evans, A.C., 2000. Automated 3-D extraction of inner and 

outer surfaces of cerebral cortex from MRI. NeuroImage 12, 340–356. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.20.162131doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.20.162131
http://creativecommons.org/licenses/by-nc-nd/4.0/


https://doi.org/10.1006/nimg.1999.0534 

Mattout, J., Henson, R.N., Friston, K.J., 2007. Canonical Source Reconstruction for MEG. 

Comput. Intell. Neurosci. 2007, e67613. https://doi.org/10.1155/2007/67613 

McKinney, W., 2010. Data Structures for Statistical Computing in Python, in: Walt, S. van der, 

Millman, J. (Eds.), Proceedings of the 9th Python in Science Conference. pp. 56–61. 

https://doi.org/10.25080/Majora-92bf1922-00a 

Myronenko, A., Song, X., 2010. Point Set Registration: Coherent Point Drift. IEEE Trans. 

Pattern Anal. Mach. Intell. 32, 2262–2275. https://doi.org/10.1109/TPAMI.2010.46 

Myronenko, A., Song, X., Carreira-Perpiñán, M., 2006. Non-rigid point set registration: Coherent 

Point Drift, NIPS. 

Nunez, P.L., Srinivasan, R., 2006. Electric Fields of the Brain: The neurophysics of EEG, 2nd 

ed. ed, Electric Fields of the Brain. Oxford University Press, Oxford ; New York. 

Nunez, P.L., Srinivasan, R., Westdorp, A.F., Wijesinghe, R.S., Tucker, D.M., Silberstein, R.B., 

Cadusch, P.J., 1997. EEG coherency. I: Statistics, reference electrode, volume 

conduction, Laplacians, cortical imaging, and interpretation at multiple scales. 

Electroencephalogr. Clin. Neurophysiol. 103, 499–515. 

https://doi.org/10.1016/s0013-4694(97)00066-7 

Oliphant, T.E., 2006. A Guide to NumPy. Trelgol Publishing. 

Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.-M., 2011. FieldTrip: Open source software for 

advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. 

Neurosci. 2011, 156869. https://doi.org/10.1155/2011/156869 

O’Reilly, C., Elsabbagh, M., 2020. Intracranial recordings reveal ubiquitous in-phase and 

in-antiphase functional connectivity between homologous brain regions in humans. 

bioRxiv 2020.06.19.162065. https://doi.org/10.1101/2020.06.19.162065 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.20.162131doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.20.162131
http://creativecommons.org/licenses/by-nc-nd/4.0/


O’Reilly, C., Lewis, J.D., Elsabbagh, M., 2017. Is functional brain connectivity atypical in autism? 

A systematic review of EEG and MEG studies. PLOS ONE 12, e0175870. 

https://doi.org/10.1371/journal.pone.0175870 

Ortiz-Mantilla, S., Realpe-Bonilla, T., Benasich, A.A., 2019. Early Interactive Acoustic 

Experience with Non-speech Generalizes to Speech and Confers a Syllabic Processing 

Advantage at 9 Months. Cereb. Cortex 29, 1789–1801. 

https://doi.org/10.1093/cercor/bhz001 

Phan, T.V., Smeets, D., Talcott, J.B., Vandermosten, M., 2018. Processing of structural 

neuroimaging data in young children: Bridging the gap between current practice and 

state-of-the-art methods. Dev. Cogn. Neurosci., Methodological Challenges in 

Developmental Neuroimaging: Contemporary Approaches and Solutions 33, 206–223. 

https://doi.org/10.1016/j.dcn.2017.08.009 

Qianqian Fang, Boas, D.A., 2009. Tetrahedral mesh generation from volumetric binary and 

grayscale images, in: 2009 IEEE International Symposium on Biomedical Imaging: From 

Nano to Macro. Presented at the 2009 IEEE International Symposium on Biomedical 

Imaging: From Nano to Macro, pp. 1142–1145. 

https://doi.org/10.1109/ISBI.2009.5193259 

Ramírez, N.F., Ramírez, R.R., Clarke, M., Taulu, S., Kuhl, P.K., 2017. Speech discrimination in 

11-month-old bilingual and monolingual infants: a magnetoencephalography study. Dev. 

Sci. 20, e12427. https://doi.org/10.1111/desc.12427 

Richards, J.E., 2013. Cortical sources of ERP in prosaccade and antisaccade eye movements 

using realistic source models. Front. Syst. Neurosci. 7. 

https://doi.org/10.3389/fnsys.2013.00027 

Richards, J.E., Boswell, C., Stevens, M., Vendemia, J.M.C., 2015. Evaluating methods for 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.20.162131doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.20.162131
http://creativecommons.org/licenses/by-nc-nd/4.0/


constructing average high-density electrode positions. Brain Topogr. 28, 70–86. 

https://doi.org/10.1007/s10548-014-0400-8 

Richards, J.E., Sanchez, C., Phillips-Meek, M., Xie, W., 2016. A database of age-appropriate 

average MRI templates. NeuroImage 124, 1254–1259. 

https://doi.org/10.1016/j.neuroimage.2015.04.055 

Rivière, D., Geffroy, D., Denghien, I., Souedet, N., Cointepas, Y., 2009. BrainVISA: an 

extensible software environment for sharing multimodal neuroimaging data and 

processing tools, in: Proc. 15th HBM. 

Sanchez, C.E., Richards, J.E., Almli, C.R., 2012. Neurodevelopmental MRI brain templates for 

children from 2 weeks to 4 years of age. Dev. Psychobiol. 54, 77–91. 

https://doi.org/10.1002/dev.20579 

Schumann, C.M., Bloss, C.S., Barnes, C.C., Wideman, G.M., Carper, R.A., Akshoomoff, N., 

Pierce, K., Hagler, D., Schork, N., Lord, C., Courchesne, E., 2010. Longitudinal Magnetic 

Resonance Imaging Study of Cortical Development through Early Childhood in Autism. 

J. Neurosci. 30, 4419–4427. https://doi.org/10.1523/JNEUROSCI.5714-09.2010 

Sharon, D., Hämäläinen, M.S., Tootell, R.B.H., Halgren, E., Belliveau, J.W., 2007. The 

advantage of combining MEG and EEG: comparison to fMRI in focally stimulated visual 

cortex. NeuroImage 36, 1225–1235. https://doi.org/10.1016/j.neuroimage.2007.03.066 

Shattuck, D.W., Leahy, R.M., 2002. BrainSuite: an automated cortical surface identification tool. 

Med. Image Anal. 6, 129–142. https://doi.org/10.1016/s1361-8415(02)00054-3 

Smith, S.M., 2002. Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143–155. 

https://doi.org/10.1002/hbm.10062 

Sowell, E.R., Thompson, P.M., Holmes, C.J., Jernigan, T.L., Toga, A.W., 1999. In vivo evidence 

for post-adolescent brain maturation in frontal and striatal regions. Nat. Neurosci. 2, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.20.162131doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.20.162131
http://creativecommons.org/licenses/by-nc-nd/4.0/


859–861. https://doi.org/10.1038/13154 

Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D., Leahy, R.M., 2011. Brainstorm: a user-friendly 

application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 879716. 

https://doi.org/10.1155/2011/879716 

The pandas development team, 2020. pandas-dev/pandas: Pandas. Zenodo. 

https://doi.org/10.5281/zenodo.3509134 

Tran, A.P., Fang, Q., 2017. Fast and high-quality tetrahedral mesh generation from 

neuroanatomical scans. ArXiv170808954 Phys. 

Travis, K.E., Leonard, M.K., Brown, T.T., Hagler, D.J., Curran, M., Dale, A.M., Elman, J.L., 

Halgren, E., 2011. Spatiotemporal Neural Dynamics of Word Understanding in 12- to 

18-Month-Old-Infants. Cereb. Cortex N. Y. NY 21, 1832–1839. 

https://doi.org/10.1093/cercor/bhq259 

Valdés-Hernández, P.A., von Ellenrieder, N., Ojeda-Gonzalez, A., Kochen, S., Alemán-Gómez, 

Y., Muravchik, C., Valdés-Sosa, P.A., 2009. Approximate average head models for EEG 

source imaging. J. Neurosci. Methods 185, 125–132. 

https://doi.org/10.1016/j.jneumeth.2009.09.005 

Van de Steen, F., Faes, L., Karahan, E., Songsiri, J., Valdes-Sosa, P.A., Marinazzo, D., 2019. 

Critical Comments on EEG Sensor Space Dynamical Connectivity Analysis. Brain 

Topogr. 32, 643–654. https://doi.org/10.1007/s10548-016-0538-7 

van Noordt, S., Desjardins, J.A., Huberty, S., Abou-Abbas, L., Webb, S.J., Levin, A.R., 

Segalowitz, S.J., Evans, A.C., Elsabbagh, M., 2020. EEG-IP: an international infant EEG 

data integration platform for the study of risk and resilience in autism and related 

conditions. Mol. Med. 26. https://doi.org/10.1186/s10020-020-00149-3 

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.20.162131doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.20.162131
http://creativecommons.org/licenses/by-nc-nd/4.0/


E., Peterson, P., Weckesser, W., Bright, J., Walt, S.J. van der, Brett, M., Wilson, J., 

Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., 

Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., 

Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., 

Mulbregt, P. van, 2020. SciPy 1.0: fundamental algorithms for scientific computing in 

Python. Nat. Methods 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2 

Walt, S. van der, Colbert, S.C., Varoquaux, G., 2011. The NumPy Array: A Structure for Efficient 

Numerical Computation. Comput. Sci. Eng. 13, 22–30. 

https://doi.org/10.1109/MCSE.2011.37 

Walt, S. van der, Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., 

Gouillart, E., Yu, T., 2014. scikit-image: image processing in Python. PeerJ 2, e453. 

https://doi.org/10.7717/peerj.453 

Xie, W., Richards, J.E., 2017. The Relation between Infant Covert Orienting, Sustained 

Attention and Brain Activity. Brain Topogr. 30, 198–219. 

https://doi.org/10.1007/s10548-016-0505-3 

Zöllei, L., Iglesias, J.E., Ou, Y., Grant, P.E., Fischl, B., 2020. Infant FreeSurfer: An automated 

segmentation and surface extraction pipeline for T1-weighted neuroimaging data of 

infants 0–2 years. NeuroImage 218, 116946. 

https://doi.org/10.1016/j.neuroimage.2020.116946 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.20.162131doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.20.162131
http://creativecommons.org/licenses/by-nc-nd/4.0/

