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Abstract

RNA sequencing is a powerful approach to quantify the genome-wide distribution of mRNA
molecules in a population to gain deeper understanding of cellular functions and phenotypes.
However, unlike eukaryotic cells, MRNA sequencing of bacterial samples is more challenging due
to the absence of a poly-A tail that typically enables efficient capture and enrichment of mRNA
from the abundant rRNA molecules in a cell. Moreover, bacterial cells frequently contain 100-fold
lower quantities of RNA compared to mammalian cells, which further complicates mRNA
sequencing from non-cultivable and non-model bacterial species. To overcome these limitations,
we report EMBR-seq (Enrichment of mMRNA by Blocked rRNA), a method that efficiently depletes
5S, 16S and 23S rRNA using blocking primers to prevent their amplification, resulting in greater
than 80% of the sequenced RNA molecules from an E. coli culture deriving from mRNA. We
demonstrate that this increased efficiency provides a deeper view of the transcriptome without
introducing technical amplification-induced biases. Moreover, compared to recent methods that
employ a large array of oligonucleotides to deplete rRNA, EMBR-seq uses a single
oligonucleotide per rRNA, thereby making this new technology significantly more cost-effective,
especially when applied to varied bacterial species. Finally, compared to existing commercial kits
for bacterial rRNA depletion, we show that EMBR-seq can be used to successfully quantify the
transcriptome from more than 500-fold lower starting total RNA. Thus, EMBR-seq provides an
efficient and cost-effective approach to quantify global gene expression profiles from low input

bacterial samples.


https://doi.org/10.1101/2020.06.19.162412
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.19.162412; this version posted June 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Introduction

Bacterial species pervade our biosphere and millions of years of evolution have optimized these
microbes to perform specific biochemical reactions and functions; processes that could potentially
be adapted to develop a variety of products, such as renewable biofuels, antibiotics, and other
value-added chemicals [1-5]. Bacterial messenger RNA (mRNA) sequencing provides a
snapshot of the genome-wide state of a microbial population, and therefore enables fundamental
understanding of these varied microbial functions and phenotypes [6].

However, compared to eukaryotes, mRNA sequencing from bacterial samples has been
more challenging for several reasons. First, unlike in eukaryotes, bacterial mMRNA does not
contain a poly-A tail at the 3’ end that can be used to easily enrich for these molecules during
reverse transcription [7, 8]. Further, total RNA isolated from bacterial cells typically contains
greater than 95% ribosomal RNA (rRNA), and therefore cost-effective and high coverage
sequencing of the transcriptome requires the development of efficient strategies to deplete the
abundant 5S, 16S and 23S rRNA molecules [9]. Finally, bacterial cells typically contain
approximately 100-fold lower RNA than mammalian cells, and as the starting amount of total RNA
when working with rare, non-cultivable, and non-model bacterial species can be limiting, it is a
challenge to robustly and accurately capture the transcriptome from small quantities of total RNA
with minimal amplification biases [10].

Several commercial kits have been developed to deplete bacterial rRNA from total RNA
samples, including the MICROBExpress Bacterial mRNA Enrichment Kit (Thermo Fisher
Scientific), the RiboMinus Transcriptome Isolation Kit, bacteria (Thermo Fisher Scientific), and the
Ribo-Zero rRNA Depletion Kit (lllumina) [11]. These techniques rely on subtractive hybridization
to deplete rRNA and typically work at a scale of hundreds of nanograms to micrograms of starting
total RNA. Further, as these commercial kits are only effective on species targeted in the standard
probe set, it is challenging to extrapolate these methods to diverse bacterial species [9, 11]. While
this limitation of pre-designed kits have been overcome through the development of workflows to
generate custom subtractive hybridization probe sets for any species of interest, they still operate
at microgram quantities of starting material and either require multiple rounds of hybridization or
a series of oligo optimization steps prior to optimal performance [12, 13]. An alternate approach
relies on the Terminator™ 5’-phosphate-dependent exonuclease (TEX) (Lucigen) to specifically
degrade rRNAs with 5’-monophosphate ends but not mRNAs with 5’-triphosphate ends; however,
this method typically has lower efficiencies than other existing rRNA depletion strategies [10, 14,
15]. A more recent method uses complementary single-stranded DNA probes to tile rRNAs that

are subsequently degraded by RNase H [16]. The commercial NEBNext Bacteria rRNA depletion
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kit (NEB) employs a similar strategy and can be applied to as low as 10 ng of starting total RNA.
Similarly, another approach uses a pool of tiled single-guide RNAs to direct Cas9 mediated
cleavage of rRNA-derived cDNA to deplete rRNA while another approach uses targeted reverse
transcription primers designed to avoid capturing rRNAs [17, 18]. However, all these methods
require a large array of probes that can be expensive to synthesize and potentially need to be
redesigned for distant bacterial species [16—18].

Therefore, in this work we have developed EMBR-seq (Enrichment of mRNA by Blocked
rRNA), a new technology that overcomes the limitations of sequencing mMRNA from bacterial
samples by: (1) Using 5S, 16S and 23S rRNA blocking primers and poly-A tailing to specifically
deplete rRNA and enrich mRNA during downstream amplification; (2) Using a single blocking
primer for each of the three abundant rRNA molecules, thereby enabling rapid adaptation to
different bacterial species and significantly reducing the cost per sample; and (3) Using a linear
amplification strategy to amplify mRNA from as low as 20 picograms of total RNA with minimal
amplification biases. We applied EMBR-seq to a model E. coli system to demonstrate efficient
mMRNA enrichment and sequencing with increased sensitivity in gene detection. Further, we show
that our method accurately captures the genome-wide gene expression profiles with minimal
technical biases. Thus, EMBR-seq is an efficient and cost-effective approach to sequence mRNA

from low-input bacterial samples.

Results

EMBR-seq uses blocking primers to deplete rRNA

To overcome the limitations described above, we developed EMBR-seq, a new technique to
efficiently deplete rRNA from total RNA, thereby enabling cost-effective sequencing of mRNA
from bacterial cells. To minimize rRNA-derived molecules in the final sequencing library, we first
incubated the total RNA with rRNA blocking primers, designed specifically to bind the 3’ end of
58, 16S and 23S rRNA, followed by poly-adenylation with E. coli poly-A polymerase (Fig. 1 and
Methods). To deplete rRNA, EMBR-seq only requires primers at the 3’ end of rRNA, unlike recent
methods that tile oligonucleotides along the entire length of rRNA molecules, thereby significantly
reducing costs and making our approach more easily translatable to other bacterial species. The
blocking primers generate double-stranded RNA-DNA hybrid molecules at the 3’ end of rRNAs,
which reduces subsequent poly-adenylation and downstream amplification of rRNA molecules,
as the poly-A polymerase preferentially adds adenines to single-stranded RNA [19]. Thereafter,
the reaction mixture is reverse transcribed following the addition of a poly-T primer. This primer

has an overhang containing a sample-specific barcode to enable rapid multiplexing and reduction
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in library preparation costs, the 5’ lllumina adapter, and a T7 promoter [20]. After second strand
synthesis, cDNA molecules are amplified by in vitro transcription (IVT). However, as only cDNA
molecules deriving from a poly-adenylated RNA have a T7 promoter, our technique further
amplifies mRNA-derived molecules for sequencing whereas rRNA-derived molecules are
excluded from IVT amplification. The amplified RNA from IVT is then used to prepare lllumina

sequencing libraries, as described previously (Fig. 1 and Methods) [20-22].

EMBR-seq efficiently depletes rRNA to sequence bacterial mMRNA

We applied EMBR-seq to total RNA isolated from the exponential growth phase of E. coli strain
K12 (MG1655). Starting from 100 ng of total RNA, we were able to successfully make lllumina
libraries that were sequenced and mapped to the E. coli transcriptome. While total RNA from E.
coli has previously been reported to consist of 95% rRNA [9], our control samples with no blocking
primers had approximately 64% rRNA, consistent with previous observations that mRNA
molecules are preferentially poly-adenylated compared to rRNA even in the absence of any
blocking primers (Fig. 2a) [23]. Importantly, compared to the control samples, we observed a
significant increase in rRNA depletion efficiency (from 64% to 16%), with 84% of the mapped
reads corresponding to mRNA in samples treated with blocking primers (Fig. 2a). These results
demonstrate that EMBR-seq achieves a level of mRNA enrichment that is better or comparable
to recent bacterial rRNA depletion reports [11-13, 15-18].

We also tested modified blocking primers with a 3’ phosphorylation, designed to prevent
Superscript 1l from reverse transcribing rRNA molecules. As expected, we observed rRNA
depletion in these samples as well (from 64% to 22%), with 78% of the mapped reads
corresponding to mRNA (Fig. 2a). However, compared to the unmodified blocking primers, these
phosphorylated blocking primers were slightly less efficient at rRNA depletion (Fig. 2a). As the 3’
phosphorylated primers prevent polymerase extension, we hypothesize that the reduced rRNA
depletion efficiency arises from the small fraction of rRNA molecules that get poly-adenylated,
primed by the poly-T primers, and copied through the short 30 bp RNA-DNA hybrid due to the
strand-displacement activity of the reverse transcriptase. Therefore, given the reduced efficiency
and higher costs of the 3’ phosphorylated blocking primers, all further experiments were
performed with unmodified blocking primers.

As an alternate strategy, we also incorporated TEX treatment in EMBR-seq as it has
previously been shown to specifically degrade rRNAs with 5’-monophosphate ends but not
mRNAs that have 5’-triphosphate ends [10, 14, 15]. While we again observed rRNA depletion and

a corresponding enrichment of mMRNA compared to control samples, the effects were less
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pronounced with a less than 2-fold rRNA depletion, consistent with previous reports (Fig. S1) [14,
15]. We hypothesize that this reduced efficiency arises from RNA degradation that might occur
during the incubation at 37°C for 1 hour or the additional cleanup step that is necessary prior to
treatment with the poly-A polymerase. As a result, we find that blocking primers alone provide the
most significant rRNA depletion and mRNA enrichment, and therefore all further experiments

were performed without TEX treatment.

EMBR-seq is a cost-effective bacterial mMRNA sequencing technology

In designing the steps of EMBR-seq, we wanted to develop a method that is both easily applied
and cost-effective. Due to its simplicity, the cost per rRNA depletion reaction in EMBR-seq is
~$0.40, which is at least an order of magnitude lower than other recent rRNA depletion methods
and commercial kits [11-13, 15-18] (Fig. S2a and Supplementary Table 1). The total cost of
EMBR-seq, starting from total bacterial RNA to the final lllumina library, was estimated to be ~$36
per sample. However, the total cost per sample decreases as more samples are multiplexed in
the same lllumina library. For example, when 96 samples are multiplexed, the cost per sample
drops to ~$20, primarily due to the pooling of samples after second-strand synthesis that then
requires only a single IVT and lllumina library preparation reaction downstream (Fig. S2b). Thus,

EMBR-seq is a simple and cost-effective approach to sequence mRNA from total bacterial RNA.

EMBR-seq provides a detailed view of the transcriptome without introducing technical
biases

Next, we systematically compared the gene expression profiles obtained from control and rRNA
depleted samples to investigate if the use of blocking primers provides a deeper view of the
transcriptome without introducing technical artifacts. First, after downsampling sequencing reads
to the same depth, we detected 3628 genes in the control samples, while in the mRNA enriched
samples we detected 3852 genes, with 99% of the genes in the control samples also detected in
the mRNA enriched samples (Fig. 2b,c). Moreover, at different levels of downsampling, we
detected more genes using EMBR-seq compared to the control samples (Fig. S3). This suggests
that we can measure the genome-wide gene expression landscape in a more cost-effective way
using EMBR-seq. Further, the number of genes detected above different expression thresholds
was consistently higher for the mRNA enriched samples compared to the control samples (Fig.
2b). This shows that EMBR-seq is able to detect more genes at different gene expression levels,
spanning over three orders of magnitude. Finally, we observed that gene expression between the

control and mRNA enriched samples were highly correlated (Pearson r = 0.97) revealing that the
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blocking primers do not introduce technical biases in the quantification of gene expression (Fig.
2d). Collectively, these results demonstrate that our new cost-effective method is able to

accurately capture the transcriptome of bacterial cells.

EMBR-seq allows mRNA sequencing from low input total RNA

In many practical applications involving non-model and non-cultivable bacterial species, the
starting amount of total RNA available for RNA sequencing can be limiting. Therefore, we
evaluated if we can successfully deplete rRNA and quantify gene expression from lower amounts
of input material. We applied EMBR-seq to 20, 2, 0.2 and 0.02 ng of starting total RNA isolated
from the exponential growth phase of E. coli strain K12. These starting quantities of total RNA
were chosen as they are typically below the sensitivity and detection limit of commercial kits and
previously reported methods [11, 17]. As before, we observed a greater than 3-fold depletion of
rRNA across the range of input starting material, including at the lowest starting amount of 0.02
ng total RNA, with greater than 77% of the reads in the sequencing library deriving from mRNA
molecules (Fig. 3a). Similarly, we observed that the total number of genes detected is higher than
that in the control samples and is unaffected by the starting input amount of total RNA, except at
the lower starting amounts of 0.2 ng and 0.02 ng total RNA (Fig. 3b). Finally, we also observed
that gene expression was highly correlated between different amounts of starting total RNA (Fig.
3c and Fig. S4). These experiments conclusively demonstrate that we can successfully apply

EMRB-seq to quantify gene expression from total RNA starting as low as 20 pg.

Discussion

We have developed a new technology, EMBR-seq, to efficiently deplete rRNA from total RNA,
thereby enabling a deeper view of the genome-wide distribution of mMRNA in bacterial samples.
Sequencing bacterial mMRNA poses several challenges; for example, the inability to easily enrich
mRNA that typically makes up less than 5% of total RNA and the limiting starting amounts of total
RNA that may be available when working with non-cultivable bacterial samples [7-9]. Through
the use of a single blocking primer per rRNA species, EMBR-seq efficiently minimizes the
downstream amplification of rRNA molecules, thereby enabling a 4-fold depletion of rRNA in the
final sequencing library (Fig.1 and 2a). As demonstrated in this work, the design of blocking
primers at the 3’ end of rRNA molecules efficiently depletes rRNA from high quality total RNA
samples; however, certain practical applications can produce degraded and fragmented RNA in
which rRNA molecules will be less effectively depleted. We hypothesize that a straightforward

strategy to overcome this challenge in EMBR-seq in the future is to design additional blocking
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primers, potentially 3-5 primers per rRNA species, that span the transcript length to minimize
amplification of degraded rRNA molecules.

Starting with total RNA from E. coli, we show that efficient depletion of rRNA by EMBR-
seq provides higher coverage of the transcriptome at the same sequencing depth (Fig. 2b and
Fig. S3). For example, compared to the control samples, the number of unique genes detected
increases from 3628 to 3852 in EMBR-seq (Fig. 2b). In particular, EMBR-seq improves detection
of lowly expressed genes below 500 RPM (Fig. 2b). Further, EMBR-seq provides a more in-depth
view of the transcriptional landscape without introducing technical artifacts. We find that 99% of
the genes detected in the control group are also detected by EMBR-seq, and that gene expression
levels between the two groups are highly correlated (Fig. 2c,d).

As EMBR-seq uses a single blocking primer per rRNA species, it is likely easily adaptable
to other microbial species. Recent approaches that employ a large array of probes also achieve
a high efficiency of rRNA degradation; however, the need to generate such a large pool of
molecules makes it more challenging to extrapolate these methods to evolutionarily distant
bacterial species compared to EMBR-seq [16—18]. In addition, the use of just one primer per rRNA
species combined with the high level of sample multiplexing reduces cost significantly compared
to other methods, enabling cost-effective and high-throughput processing of hundreds of samples
simultaneously (Fig. S2). Finally, beyond rRNA, the approach used in EMBR-seq can potentially
also be used to target other high abundance transcripts in total RNA.

We also demonstrated that EMBR-seq enables mRNA sequencing of low input RNA
samples below the detection limit of commercial kits (Fig. 3a). Bacterial populations frequently
contain diverse species, and even isogenic systems have been shown to display substantial cell-
to-cell heterogeneity in gene expression that can give rise to dramatic cellular phenotypes [24—
29]. Therefore, scaling down bacterial mMRNA sequencing techniques to a single-cell level will
enable quantification of this variability and provide a better understanding of how transcriptomic
heterogeneity regulates cellular function [30, 31]. Over the last few years, a limited number of
approaches have been developed to sequence the transcriptome of single bacterial cells. Early
proof-of-concept methods were low throughput techniques that sequenced less than 10 single
cells and generally suffered from significant technical noise [10, 32, 33]. More recently, Blattman
et al. employed combinatorial barcoding to circumvent single cell isolation, enabling high
throughput single-cell sequencing of bacterial cells [34]. However, this method did not deplete
rRNA, resulting in low mRNA detection efficiencies of ~0.5-2% (or ~40 mRNA per E. coli cell). In
another study, Kuchina et al. combined rRNA depletion with combinatorial barcoding to achieve

~5-10% mRNA detection efficiencies in B. subtilis [14]. These initial efforts suggest that improved
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methods could significantly advance single-cell mRNA sequencing in bacteria. EMBR-seq can
successfully sequence mRNA from as low as 20 pg of total RNA; therefore, we anticipate that by
coupling our rRNA depletion strategy with recent combinatorial barcoding techniques, we will be

able to extend EMBR-seq to a single-cell resolution in the future [14, 34].
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Methods

Bacterial strains and culture conditions

Escherichia coli MG1655 (ATCC: 700926) overnight cultures were inoculated into fresh LB
medium at 1:50 and grown at 37°C with shaking (150 rpm). Upon reaching the exponential growth
phase, the culture was centrifuged at 3000 g for 10 min. The media was removed and the pellet
was resuspended in PBS to a concentration of 107 cells per pL. The cells were stored on ice and

total RNA extraction was performed immediately.

RNA extraction

Trizol (Thermo Fisher Scientific, Cat. # 15596018) RNA extraction was performed following the
manufacturer’s protocol. Briefly, 102 cells were added to 750 uL Trizol, mixed, and then combined
with 150 pL chloroform. After centrifugation, the clear aqueous layer was recovered and
precipitated with 375 uL of isopropanol and 0.67 pL of GlycoBlue (Thermo Fisher Scientific, Cat.
# AM9515). The pellet was washed twice with 75% ethanol and after the final centrifugation, the

resulting pellet was resuspended in RNase-free water.

EMBR-seq

Poly adenylation. 100 ng of total RNA in 2 yL was combined with 3 uL poly(A) mix, comprised
of 1 pL 5x first strand buffer [250 mM Tris-HCI (pH 8.3), 375 mM KCI, 15 mM MgClz, comes with
Superscript Il reverse transcriptase, Invitrogen Cat. # 18064-014], 1 pL blocking primer mix (50
MM) (see Primers), 0.8 pL nuclease-free water, 0.1 yL 10 mM ATP, and 0.1 pyL E. coli poly(A)
polymerase (New England Biolabs, Cat. # M0276S). The mixture was incubated at 37°C for 10
min. In the control group, no blocking primers were added and 1.8 uL of nuclease-free water was
added instead. The blocking primer mix was prepared by mixing equal volumes of 50 uM blocking
primers specific to 5S, 16S, and 23S rRNA.

Reverse transcription. The polyadenylation product was mixed with 0.5 yL 10 mM dNTPs (New
England Biolabs, Cat. # N0447L), 1 uL reverse transcription primers (25 ng/uL, see Primers), and
1.3 pL blocking primer mix (50 uM), and heated to 65°C for 5 min, 58°C for 1 min, and then
quenched on ice. In the control samples, the blocking primers were again replaced with nuclease-
free water. Next, 3.2 yL RT mix, consisting of 1.2 uL 5x first strand buffer, 1 yL 0.1 M DTT, 0.5
ML RNaseOUT (Thermo Fisher Scientific, Cat. #10777019), and 0.5 yL Superscript Il reverse
transcriptase was added to the solution, followed by 1 h incubation at 42°C. The temperature was

then raised to 70°C for 10 min to heat inactivate Superscript Il.
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Second strand synthesis. 49 L of the second strand mix, containing 33.5 uL water, 12 pL 5x
second strand buffer [100 mM Tris-HCI (pH 6.9), 23 mM MgCl,, 450 mM KCI , 0.75 mM B-NAD,
50 mM (NHa)2 SO, Invitrogen, Cat. # 10812-014], 1.2 yL 10 mM dNTPs, 0.4 pL E. coli ligase
(Invitrogen, Cat. # 18052-019), 1.5 uL DNA polymerase | (Invitrogen, Cat. # 18010-025), and 0.4
uL RNase H (Invitrogen, Cat. # 18021-071), was added to the product from the previous step.
The mixture was incubated at 16°C for 2 h. cDNA was purified with 1x AMPure XP DNA beads
(Beckman Coulter, Cat. # A63881) and eluted in 24pL nuclease-free water that was subsequently
concentrated to 6.4 L.

In vitro transcription. The concentrated solution was mixed with 9.6 puL of Ambion in vitro
transcription mix (1.6 uL of each ribonucleotide, 1.6 uL 10x T7 reaction buffer, 1.6 uL T7 enzyme
mix, MEGAscript T7 Transcription Kit, Thermo Fisher Scientific, Cat. # AMB13345) and incubated
at 37°C for 13 h. Next, the aRNA was treated with 6 uL EXO-SAP (ExoSAP-IT™ PCR Product
Cleanup Reagent, Thermo Fisher Scientific, Cat. # 78200.200.UL) at 37°C for 15 min followed by
fragmentation with 5.5 pyL fragmentation buffer (200 mM Tris-acetate (pH 8.1), 500 mM KOAc,
150 mM MgOAc) at 94°C for 3 min. The reaction was then quenched with 2.75 L stop buffer (0.5
M EDTA) on ice. The fragmented aRNA was size selected with 0.8x AMPure RNA beads
(RNACIlean XP Kit, Beckman Coulter, Cat. # A63987) and eluted in 15 pL nuclease-free water.

Thereafter, lllumina libraries were prepared as described previously [20].

EMBR-seq with TEX digestion

To test the Terminator™ 5’-phosphate-dependent exonuclease (Lucigen, Cat. # TER5120), 100
ng of total RNA in 2 yL was combined with 18 yL TEX mix, comprised of 14.5 pL nuclease free
water, 2 yL Terminator 10x buffer A, 0.5 yL RNAseOUT, and 1 uL TEX. The solution was
incubated at 30°C for 1 h and quenched with 1 uL of 100 mM EDTA. The product was purified
with 1x AMPure RNA beads and eluted in 10 yL nuclease-free water and concentrated to 2 L.
This TEX digested total RNA was then used as starting RNA in the EMBR-seq protocol described

above.

Bioinformatic analysis

Paired-end sequencing of the EMBR-seq libraries was performed on an lllumina NextSeq 500.
All sequencing data has been deposited to Gene Expression Omnibus under the accession
number GSE149666. In the sequencing libraries, the left mate contains information about the
sample barcode (see Primers). The right mate is mapped to the bacterial transcriptome. Prior to

mapping, only reads containing valid sample barcodes were retained. Subsequently, the reads
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were mapped to the reference transcriptome (E. coli K-12 substr. MG1655 cds ASM584v2) using

Burrows-Wheeler Aligner (BWA) with default parameters.

Primers

Reverse transcription primers are shown below with the 6-nucleotide sample barcodes underlined
[20]:
GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNN(NNNNNN)TTT
[TTTTTTTTTTTITITTITTITTITITV

The following five barcodes were used in this study:
AGACTC
AGCTTC
CATGAG
CAGATC
TCACAG

Blocking primers:

5S 5-ATGCCTGGCAGTTCCCTACTCTCGCATGGG-3’

16S 5-TAAGGAGGTGATCCAACCGCAGGTTCCCCT-3

23S 5-AAGGTTAAGCCTCACGGTTCATTAGTACCG-3’

In the case of the 3’ phosphorylated primers, all blocking primers have a 3’ phosphorylation

modification.

11
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Figure 1: Schematic of EMBR-Seq. After performing an optional Terminator™ 5’-phosphate-
dependent exonuclease digestion, poly(A) polymerase and rRNA blocking primers (purple) are
added to total bacterial RNA (mRNA in red and rRNA in gray). Blocking primers specifically bind
to the 3’ end of 5S, 16S, and 23S rRNAs, resulting in the preferential addition of a poly-A tail to
MRNA molecules. Next, reverse transcription is performed using (i) a poly-T primer, which has an
overhang containing a sample-specific barcode (blue), 5’ lllumina adapter (yellow), and T7

promoter (green), and (ii) rRNA blocking primers to convert poly-adenylated RNA and rRNA
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molecules, respectively, to cDNA. The cDNA molecules are then amplified by in vitro transcription,
and the amplified RNA is used to prepare lllumina libraries. As the rRNA-derived cDNA does not
contain a T7 promoter, these molecules are not amplified during in vitro transcription, resulting in
rRNA depletion.
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Figure 2: Blocking primers in EMBR-seq deplete rRNA and provide a deeper view of the
transcriptome without introducing technical biases. (a) In the presence of blocking primers,
a 4-fold rRNA depletion and more than 2-fold mRNA enrichment is achieved compared to control
samples. With the introduction of blocking primers in EMBR-seq, mRNAs account for more than
80% of the mapped reads, which is a greater than 16-fold increase compared to total RNA in E.
coli cells. The 3’ phosphorylated blocking primers display similar but slightly lesser mRNA
enrichment (n > 2 replicates for all conditions). (b) Comparison between EMBR-seq and control
samples in the number of genes detected above different expression thresholds (n = 3 for both
conditions). For the EMBR-seq group, error bars are of the same scale as the size of the data
points (¢) Venn diagram shows that more than 99% of the genes detected in the control samples
were also detected when using blocking primers in EMBR-seq. 99.2 % of all detected genes were
found in the EMBR-seq samples and 96.2% in the control samples. The number of genes detected

were calculated by combining data obtained from three control samples and three EMBR-seq
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processed samples. (d) Gene transcript counts with and without blocking primers are highly
correlated (Pearson r = 0.97) suggesting that EMBR-seq does not introduce technical artifacts in
quantifying gene expression (n = 3 for both datasets). These experiments were performed starting

with 100 ng total RNA from E. coli. Error bars in panels (a) and (b) represent standard deviations.

19


https://doi.org/10.1101/2020.06.19.162412
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.19.162412; this version posted June 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Q
—_
o
o

1

available under aCC-BY-NC-ND 4.0 International license.

[C_IrRNA
I mRNA
2]
T 80F
o
(o))
c
'© 60
c
©
>S5
(o8
3 aof
c
©
o
o 20F
o
0
Control 100 ng 20 ng 2ng 0.2 ng 0.02 ng

b 4000

w
o
o
o

Number of genes
N
o
o
o

1000

()

RPM (log ,,): 20 ng total RNA
w

Control 100ng 20ng 2ng 0.2ng 0.02ng

r=098 /

1 2 3 4 5 6
RPM (log,,): 100 ng total RNA

20


https://doi.org/10.1101/2020.06.19.162412
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.19.162412; this version posted June 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 3: EMBR-seq can quantify the transcriptome from low input total RNA. (a) Similar
levels of rRNA depletion and mRNA enrichment are observed when the starting amount of total
RNA is decreased from 100 ng to 0.02 ng (n > 2, except at 0.02 ng where n = 1). The control
represents average data of control samples made from different input levels of total RNA. The
100 ng data is reproduced from Figure 2a. (b) Compared to the control samples, more genes are
detected when starting with at least 2 ng input total RNA. Fewer genes are detected when starting
total RNA decreases to 0.02 ng. (¢) Gene transcript counts are highly correlated (Pearson r =
0.98) between 100 ng and 20 ng input total RNA in EMBR-seq. Datasets from lower starting total
RNA are also well correlated to the 100 ng samples (Fig. S4).
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