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Abstract 
RNA sequencing is a powerful approach to quantify the genome-wide distribution of mRNA 

molecules in a population to gain deeper understanding of cellular functions and phenotypes. 

However, unlike eukaryotic cells, mRNA sequencing of bacterial samples is more challenging due 

to the absence of a poly-A tail that typically enables efficient capture and enrichment of mRNA 

from the abundant rRNA molecules in a cell. Moreover, bacterial cells frequently contain 100-fold 

lower quantities of RNA compared to mammalian cells, which further complicates mRNA 

sequencing from non-cultivable and non-model bacterial species. To overcome these limitations, 

we report EMBR-seq (Enrichment of mRNA by Blocked rRNA), a method that efficiently depletes 

5S, 16S and 23S rRNA using blocking primers to prevent their amplification, resulting in greater 

than 80% of the sequenced RNA molecules from an E. coli culture deriving from mRNA. We 

demonstrate that this increased efficiency provides a deeper view of the transcriptome without 

introducing technical amplification-induced biases. Moreover, compared to recent methods that 

employ a large array of oligonucleotides to deplete rRNA, EMBR-seq uses a single 

oligonucleotide per rRNA, thereby making this new technology significantly more cost-effective, 

especially when applied to varied bacterial species. Finally, compared to existing commercial kits 

for bacterial rRNA depletion, we show that EMBR-seq can be used to successfully quantify the 

transcriptome from more than 500-fold lower starting total RNA. Thus, EMBR-seq provides an 

efficient and cost-effective approach to quantify global gene expression profiles from low input 

bacterial samples.  
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Introduction 
Bacterial species pervade our biosphere and millions of years of evolution have optimized these 

microbes to perform specific biochemical reactions and functions; processes that could potentially 

be adapted to develop a variety of products, such as renewable biofuels, antibiotics, and other 

value-added chemicals [1–5]. Bacterial messenger RNA (mRNA) sequencing provides a 

snapshot of the genome-wide state of a microbial population, and therefore enables fundamental 

understanding of these varied microbial functions and phenotypes [6].  

However, compared to eukaryotes, mRNA sequencing from bacterial samples has been 

more challenging for several reasons. First, unlike in eukaryotes, bacterial mRNA does not 

contain a poly-A tail at the 3’ end that can be used to easily enrich for these molecules during 

reverse transcription [7, 8]. Further, total RNA isolated from bacterial cells typically contains 

greater than 95% ribosomal RNA (rRNA), and therefore cost-effective and high coverage 

sequencing of the transcriptome requires the development of efficient strategies to deplete the 

abundant 5S, 16S and 23S rRNA molecules [9]. Finally, bacterial cells typically contain 

approximately 100-fold lower RNA than mammalian cells, and as the starting amount of total RNA 

when working with rare, non-cultivable, and non-model bacterial species can be limiting, it is a 

challenge to robustly and accurately capture the transcriptome from small quantities of total RNA 

with minimal amplification biases [10].  

Several commercial kits have been developed to deplete bacterial rRNA from total RNA 

samples, including the MICROBExpress Bacterial mRNA Enrichment Kit (Thermo Fisher 

Scientific), the RiboMinus Transcriptome Isolation Kit, bacteria (Thermo Fisher Scientific), and the 

Ribo-Zero rRNA Depletion Kit (Illumina) [11]. These techniques rely on subtractive hybridization 

to deplete rRNA and typically work at a scale of hundreds of nanograms to micrograms of starting 

total RNA. Further, as these commercial kits are only effective on species targeted in the standard 

probe set, it is challenging to extrapolate these methods to diverse bacterial species [9, 11]. While 

this limitation of pre-designed kits have been overcome through the development of workflows to 

generate custom subtractive hybridization probe sets for any species of interest, they still operate 

at microgram quantities of starting material and either require multiple rounds of hybridization or 

a series of oligo optimization steps prior to optimal performance [12, 13]. An alternate approach 

relies on the TerminatorTM 5’-phosphate-dependent exonuclease (TEX) (Lucigen) to specifically 

degrade rRNAs with 5’-monophosphate ends but not mRNAs with 5’-triphosphate ends; however, 

this method typically has lower efficiencies than other existing rRNA depletion strategies [10, 14, 

15]. A more recent method uses complementary single-stranded DNA probes to tile rRNAs that 

are subsequently degraded by RNase H [16]. The commercial NEBNext Bacteria rRNA depletion 
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kit (NEB) employs a similar strategy and can be applied to as low as 10 ng of starting total RNA. 

Similarly, another approach uses a pool of tiled single-guide RNAs to direct Cas9 mediated 

cleavage of rRNA-derived cDNA to deplete rRNA while another approach uses targeted reverse 

transcription primers designed to avoid capturing rRNAs [17, 18]. However, all these methods 

require a large array of probes that can be expensive to synthesize and potentially need to be 

redesigned for distant bacterial species [16–18].  

Therefore, in this work we have developed EMBR-seq (Enrichment of mRNA by Blocked 

rRNA), a new technology that overcomes the limitations of sequencing mRNA from bacterial 

samples by: (1) Using 5S, 16S and 23S rRNA blocking primers and poly-A tailing to specifically 

deplete rRNA and enrich mRNA during downstream amplification; (2) Using a single blocking 

primer for each of the three abundant rRNA molecules, thereby enabling rapid adaptation to 

different bacterial species and significantly reducing the cost per sample; and (3) Using a linear 

amplification strategy to amplify mRNA from as low as 20 picograms of total RNA with minimal 

amplification biases. We applied EMBR-seq to a model E. coli system to demonstrate efficient 

mRNA enrichment and sequencing with increased sensitivity in gene detection. Further, we show 

that our method accurately captures the genome-wide gene expression profiles with minimal 

technical biases. Thus, EMBR-seq is an efficient and cost-effective approach to sequence mRNA 

from low-input bacterial samples. 

 

Results 
EMBR-seq uses blocking primers to deplete rRNA 

To overcome the limitations described above, we developed EMBR-seq, a new technique to 

efficiently deplete rRNA from total RNA, thereby enabling cost-effective sequencing of mRNA 

from bacterial cells. To minimize rRNA-derived molecules in the final sequencing library, we first 

incubated the total RNA with rRNA blocking primers, designed specifically to bind the 3’ end of 

5S, 16S and 23S rRNA, followed by poly-adenylation with E. coli poly-A polymerase (Fig. 1 and 

Methods). To deplete rRNA, EMBR-seq only requires primers at the 3’ end of rRNA, unlike recent 

methods that tile oligonucleotides along the entire length of rRNA molecules, thereby significantly 

reducing costs and making our approach more easily translatable to other bacterial species. The 

blocking primers generate double-stranded RNA-DNA hybrid molecules at the 3’ end of rRNAs, 

which reduces subsequent poly-adenylation and downstream amplification of rRNA molecules, 

as the poly-A polymerase preferentially adds adenines to single-stranded RNA [19]. Thereafter, 

the reaction mixture is reverse transcribed following the addition of a poly-T primer. This primer 

has an overhang containing a sample-specific barcode to enable rapid multiplexing and reduction 
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in library preparation costs, the 5’ Illumina adapter, and a T7 promoter [20]. After second strand 

synthesis, cDNA molecules are amplified by in vitro transcription (IVT). However, as only cDNA 

molecules deriving from a poly-adenylated RNA have a T7 promoter, our technique further 

amplifies mRNA-derived molecules for sequencing whereas rRNA-derived molecules are 

excluded from IVT amplification. The amplified RNA from IVT is then used to prepare Illumina 

sequencing libraries, as described previously (Fig. 1 and Methods) [20–22]. 

 

EMBR-seq efficiently depletes rRNA to sequence bacterial mRNA  

We applied EMBR-seq to total RNA isolated from the exponential growth phase of E. coli strain 

K12 (MG1655). Starting from 100 ng of total RNA, we were able to successfully make Illumina 

libraries that were sequenced and mapped to the E. coli transcriptome. While total RNA from E. 

coli has previously been reported to consist of 95% rRNA [9], our control samples with no blocking 

primers had approximately 64% rRNA, consistent with previous observations that mRNA 

molecules are preferentially poly-adenylated compared to rRNA even in the absence of any 

blocking primers (Fig. 2a) [23]. Importantly, compared to the control samples, we observed a 

significant increase in rRNA depletion efficiency (from 64% to 16%), with 84% of the mapped 

reads corresponding to mRNA in samples treated with blocking primers (Fig. 2a). These results 

demonstrate that EMBR-seq achieves a level of mRNA enrichment that is better or comparable 

to recent bacterial rRNA depletion reports [11–13, 15–18]. 

 We also tested modified blocking primers with a 3’ phosphorylation, designed to prevent 

Superscript II from reverse transcribing rRNA molecules. As expected, we observed rRNA 

depletion in these samples as well (from 64% to 22%), with 78% of the mapped reads 

corresponding to mRNA (Fig. 2a). However, compared to the unmodified blocking primers, these 

phosphorylated blocking primers were slightly less efficient at rRNA depletion (Fig. 2a). As the 3’ 

phosphorylated primers prevent polymerase extension, we hypothesize that the reduced rRNA 

depletion efficiency arises from the small fraction of rRNA molecules that get poly-adenylated, 

primed by the poly-T primers, and copied through the short 30 bp RNA-DNA hybrid due to the 

strand-displacement activity of the reverse transcriptase. Therefore, given the reduced efficiency 

and higher costs of the 3’ phosphorylated blocking primers, all further experiments were 

performed with unmodified blocking primers. 

 As an alternate strategy, we also incorporated TEX treatment in EMBR-seq as it has 

previously been shown to specifically degrade rRNAs with 5’-monophosphate ends but not 

mRNAs that have 5’-triphosphate ends [10, 14, 15]. While we again observed rRNA depletion and 

a corresponding enrichment of mRNA compared to control samples, the effects were less 
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pronounced with a less than 2-fold rRNA depletion, consistent with previous reports (Fig. S1) [14, 

15]. We hypothesize that this reduced efficiency arises from RNA degradation that might occur 

during the incubation at 37oC for 1 hour or the additional cleanup step that is necessary prior to 

treatment with the poly-A polymerase. As a result, we find that blocking primers alone provide the 

most significant rRNA depletion and mRNA enrichment, and therefore all further experiments 

were performed without TEX treatment. 

 

EMBR-seq is a cost-effective bacterial mRNA sequencing technology  

In designing the steps of EMBR-seq, we wanted to develop a method that is both easily applied 

and cost-effective. Due to its simplicity, the cost per rRNA depletion reaction in EMBR-seq is 

~$0.40, which is at least an order of magnitude lower than other recent rRNA depletion methods 

and commercial kits [11–13, 15–18] (Fig. S2a and Supplementary Table 1). The total cost of 

EMBR-seq, starting from total bacterial RNA to the final Illumina library, was estimated to be ~$36 

per sample. However, the total cost per sample decreases as more samples are multiplexed in 

the same Illumina library. For example, when 96 samples are multiplexed, the cost per sample 

drops to ~$20, primarily due to the pooling of samples after second-strand synthesis that then 

requires only a single IVT and Illumina library preparation reaction downstream (Fig. S2b). Thus, 

EMBR-seq is a simple and cost-effective approach to sequence mRNA from total bacterial RNA.  

 

EMBR-seq provides a detailed view of the transcriptome without introducing technical 

biases 

Next, we systematically compared the gene expression profiles obtained from control and rRNA 

depleted samples to investigate if the use of blocking primers provides a deeper view of the 

transcriptome without introducing technical artifacts. First, after downsampling sequencing reads 

to the same depth, we detected 3628 genes in the control samples, while in the mRNA enriched 

samples we detected 3852 genes, with 99% of the genes in the control samples also detected in 

the mRNA enriched samples (Fig. 2b,c). Moreover, at different levels of downsampling, we 

detected more genes using EMBR-seq compared to the control samples (Fig. S3). This suggests 

that we can measure the genome-wide gene expression landscape in a more cost-effective way 

using EMBR-seq. Further, the number of genes detected above different expression thresholds 

was consistently higher for the mRNA enriched samples compared to the control samples (Fig. 

2b). This shows that EMBR-seq is able to detect more genes at different gene expression levels, 

spanning over three orders of magnitude. Finally, we observed that gene expression between the 

control and mRNA enriched samples were highly correlated (Pearson r = 0.97) revealing that the 
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blocking primers do not introduce technical biases in the quantification of gene expression (Fig. 

2d). Collectively, these results demonstrate that our new cost-effective method is able to 

accurately capture the transcriptome of bacterial cells. 

 

EMBR-seq allows mRNA sequencing from low input total RNA 

In many practical applications involving non-model and non-cultivable bacterial species, the 

starting amount of total RNA available for RNA sequencing can be limiting. Therefore, we 

evaluated if we can successfully deplete rRNA and quantify gene expression from lower amounts 

of input material. We applied EMBR-seq to 20, 2, 0.2 and 0.02 ng of starting total RNA isolated 

from the exponential growth phase of E. coli strain K12. These starting quantities of total RNA 

were chosen as they are typically below the sensitivity and detection limit of commercial kits and 

previously reported methods [11, 17]. As before, we observed a greater than 3-fold depletion of 

rRNA across the range of input starting material, including at the lowest starting amount of 0.02 

ng total RNA, with greater than 77% of the reads in the sequencing library deriving from mRNA 

molecules (Fig. 3a). Similarly, we observed that the total number of genes detected is higher than 

that in the control samples and is unaffected by the starting input amount of total RNA, except at 

the lower starting amounts of 0.2 ng and 0.02 ng total RNA (Fig. 3b). Finally, we also observed 

that gene expression was highly correlated between different amounts of starting total RNA (Fig. 

3c and Fig. S4). These experiments conclusively demonstrate that we can successfully apply 

EMRB-seq to quantify gene expression from total RNA starting as low as 20 pg. 

 

Discussion 
We have developed a new technology, EMBR-seq, to efficiently deplete rRNA from total RNA, 

thereby enabling a deeper view of the genome-wide distribution of mRNA in bacterial samples. 

Sequencing bacterial mRNA poses several challenges; for example, the inability to easily enrich 

mRNA that typically makes up less than 5% of total RNA and the limiting starting amounts of total 

RNA that may be available when working with non-cultivable bacterial samples [7–9]. Through 

the use of a single blocking primer per rRNA species, EMBR-seq efficiently minimizes the 

downstream amplification of rRNA molecules, thereby enabling a 4-fold depletion of rRNA in the 

final sequencing library (Fig.1 and 2a). As demonstrated in this work, the design of blocking 

primers at the 3’ end of rRNA molecules efficiently depletes rRNA from high quality total RNA 

samples; however, certain practical applications can produce degraded and fragmented RNA in 

which rRNA molecules will be less effectively depleted. We hypothesize that a straightforward 

strategy to overcome this challenge in EMBR-seq in the future is to design additional blocking 
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primers, potentially 3-5 primers per rRNA species, that span the transcript length to minimize 

amplification of degraded rRNA molecules.  

Starting with total RNA from E. coli, we show that efficient depletion of rRNA by EMBR-

seq provides higher coverage of the transcriptome at the same sequencing depth (Fig. 2b and 

Fig. S3). For example, compared to the control samples, the number of unique genes detected 

increases from 3628 to 3852 in EMBR-seq (Fig. 2b). In particular, EMBR-seq improves detection 

of lowly expressed genes below 500 RPM (Fig. 2b). Further, EMBR-seq provides a more in-depth 

view of the transcriptional landscape without introducing technical artifacts. We find that 99% of 

the genes detected in the control group are also detected by EMBR-seq, and that gene expression 

levels between the two groups are highly correlated (Fig. 2c,d).  

As EMBR-seq uses a single blocking primer per rRNA species, it is likely easily adaptable 

to other microbial species. Recent approaches that employ a large array of probes also achieve 

a high efficiency of rRNA degradation; however, the need to generate such a large pool of 

molecules makes it more challenging to extrapolate these methods to evolutionarily distant 

bacterial species compared to EMBR-seq [16–18]. In addition, the use of just one primer per rRNA 

species combined with the high level of sample multiplexing reduces cost significantly compared 

to other methods, enabling cost-effective and high-throughput processing of hundreds of samples 

simultaneously (Fig. S2). Finally, beyond rRNA, the approach used in EMBR-seq can potentially 

also be used to target other high abundance transcripts in total RNA. 

We also demonstrated that EMBR-seq enables mRNA sequencing of low input RNA 

samples below the detection limit of commercial kits (Fig. 3a). Bacterial populations frequently 

contain diverse species, and even isogenic systems have been shown to display substantial cell-

to-cell heterogeneity in gene expression that can give rise to dramatic cellular phenotypes [24–

29]. Therefore, scaling down bacterial mRNA sequencing techniques to a single-cell level will 

enable quantification of this variability and provide a better understanding of how transcriptomic 

heterogeneity regulates cellular function [30, 31]. Over the last few years, a limited number of 

approaches have been developed to sequence the transcriptome of single bacterial cells. Early 

proof-of-concept methods were low throughput techniques that sequenced less than 10 single 

cells and generally suffered from significant technical noise [10, 32, 33]. More recently, Blattman 

et al. employed combinatorial barcoding to circumvent single cell isolation, enabling high 

throughput single-cell sequencing of bacterial cells [34]. However, this method did not deplete 

rRNA, resulting in low mRNA detection efficiencies of ~0.5-2% (or ~40 mRNA per E. coli cell). In 

another study, Kuchina et al. combined rRNA depletion with combinatorial barcoding to achieve 

~5-10% mRNA detection efficiencies in B. subtilis [14]. These initial efforts suggest that improved 
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methods could significantly advance single-cell mRNA sequencing in bacteria. EMBR-seq can 

successfully sequence mRNA from as low as 20 pg of total RNA; therefore, we anticipate that by 

coupling our rRNA depletion strategy with recent combinatorial barcoding techniques, we will be 

able to extend EMBR-seq to a single-cell resolution in the future [14, 34].   
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Methods 
Bacterial strains and culture conditions  

Escherichia coli MG1655 (ATCC: 700926) overnight cultures were inoculated into fresh LB 

medium at 1:50 and grown at 37°C with shaking (150 rpm). Upon reaching the exponential growth 

phase, the culture was centrifuged at 3000 g for 10 min. The media was removed and the pellet 

was resuspended in PBS to a concentration of 107 cells per µL. The cells were stored on ice and 

total RNA extraction was performed immediately. 

 

RNA extraction 

Trizol (Thermo Fisher Scientific, Cat. # 15596018) RNA extraction was performed following the 

manufacturer’s protocol. Briefly, 108 cells were added to 750 µL Trizol, mixed, and then combined 

with 150 µL chloroform. After centrifugation, the clear aqueous layer was recovered and 

precipitated with 375 µL of isopropanol and 0.67 µL of GlycoBlue (Thermo Fisher Scientific, Cat. 

# AM9515). The pellet was washed twice with 75% ethanol and after the final centrifugation, the 

resulting pellet was resuspended in RNase-free water.   

 

EMBR-seq 

Poly adenylation. 100 ng of total RNA in 2 µL was combined with 3 µL poly(A) mix, comprised 

of 1 µL 5x first strand buffer [250 mM Tris-HCl (pH 8.3), 375 mM KCl, 15 mM MgCl2, comes with 

Superscript II reverse transcriptase, Invitrogen Cat. # 18064-014], 1 µL blocking primer mix (50 

µM) (see Primers), 0.8 µL nuclease-free water, 0.1 µL 10 mM ATP, and 0.1 µL E. coli poly(A) 

polymerase (New England Biolabs, Cat. # M0276S). The mixture was incubated at 37°C for 10 

min. In the control group, no blocking primers were added and 1.8 µL of nuclease-free water was 

added instead. The blocking primer mix was prepared by mixing equal volumes of 50 µM blocking 

primers specific to 5S, 16S, and 23S rRNA. 

Reverse transcription. The polyadenylation product was mixed with 0.5 µL 10 mM dNTPs (New 

England Biolabs, Cat. # N0447L), 1 µL reverse transcription primers (25 ng/µL, see Primers), and 

1.3 µL blocking primer mix (50 µM), and heated to 65°C for 5 min, 58°C for 1 min, and then 

quenched on ice. In the control samples, the blocking primers were again replaced with nuclease-

free water. Next, 3.2 µL RT mix, consisting of 1.2 µL 5x first strand buffer, 1 µL 0.1 M DTT, 0.5 

µL RNaseOUT (Thermo Fisher Scientific, Cat. #10777019), and 0.5 µL Superscript II reverse 

transcriptase was added to the solution, followed by 1 h incubation at 42°C. The temperature was 

then raised to 70°C for 10 min to heat inactivate Superscript II.  
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Second strand synthesis. 49 µL of the second strand mix, containing 33.5 µL water, 12 µL 5x 

second strand buffer [100 mM Tris-HCl (pH 6.9), 23 mM MgCl2, 450 mM KCl , 0.75 mM β-NAD, 

50 mM (NH4)2 SO4, Invitrogen, Cat. # 10812-014], 1.2 µL 10 mM dNTPs, 0.4 µL E. coli ligase 

(Invitrogen, Cat. # 18052-019), 1.5 µL DNA polymerase I (Invitrogen, Cat. # 18010-025), and 0.4 

µL RNase H (Invitrogen, Cat. # 18021-071), was added to the product from the previous step. 

The mixture was incubated at 16°C for 2 h. cDNA was purified with 1x AMPure XP DNA beads 

(Beckman Coulter, Cat. # A63881) and eluted in 24µL nuclease-free water that was subsequently 

concentrated to 6.4 µL.  

In vitro transcription. The concentrated solution was mixed with 9.6 µL of Ambion in vitro 

transcription mix (1.6 µL of each ribonucleotide, 1.6 µL 10x T7 reaction buffer, 1.6 µL T7 enzyme 

mix, MEGAscript T7 Transcription Kit, Thermo Fisher Scientific, Cat. # AMB13345) and incubated 

at 37°C for 13 h. Next, the aRNA was treated with 6 µL EXO-SAP (ExoSAP-ITTM PCR Product 

Cleanup Reagent, Thermo Fisher Scientific, Cat. # 78200.200.UL) at 37°C for 15 min followed by 

fragmentation with 5.5 µL fragmentation buffer (200 mM Tris-acetate (pH 8.1), 500 mM KOAc, 

150 mM MgOAc) at 94°C for 3 min. The reaction was then quenched with 2.75 µL stop buffer (0.5 

M EDTA) on ice. The fragmented aRNA was size selected with 0.8x AMPure RNA beads 

(RNAClean XP Kit, Beckman Coulter, Cat. # A63987) and eluted in 15 µL nuclease-free water. 

Thereafter, Illumina libraries were prepared as described previously [20]. 

 

EMBR-seq with TEX digestion 

To test the TerminatorTM 5’-phosphate-dependent exonuclease (Lucigen, Cat. # TER5120), 100 

ng of total RNA in 2 µL was combined with 18 µL TEX mix, comprised of 14.5 µL nuclease free 

water, 2 µL Terminator 10x buffer A, 0.5 µL RNAseOUT, and 1 µL TEX. The solution was 

incubated at 30°C for 1 h and quenched with 1 µL of 100 mM EDTA. The product was purified 

with 1x AMPure RNA beads and eluted in 10 µL nuclease-free water and concentrated to 2 µL. 

This TEX digested total RNA was then used as starting RNA in the EMBR-seq protocol described 

above.  

 

Bioinformatic analysis 

Paired-end sequencing of the EMBR-seq libraries was performed on an Illumina NextSeq 500. 

All sequencing data has been deposited to Gene Expression Omnibus under the accession 

number GSE149666. In the sequencing libraries, the left mate contains information about the 

sample barcode (see Primers). The right mate is mapped to the bacterial transcriptome. Prior to 

mapping, only reads containing valid sample barcodes were retained. Subsequently, the reads 
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were mapped to the reference transcriptome (E. coli K-12 substr. MG1655 cds ASM584v2) using 

Burrows-Wheeler Aligner (BWA) with default parameters.  

 

Primers 

Reverse transcription primers are shown below with the 6-nucleotide sample barcodes underlined 

[20]: 

GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNN(NNNNNN)TTT

TTTTTTTTTTTTTTTTTTTTTV  

The following five barcodes were used in this study: 

AGACTC 

AGCTTC 

CATGAG 

CAGATC 

TCACAG 

 

Blocking primers:  

5S 5’-ATGCCTGGCAGTTCCCTACTCTCGCATGGG-3’ 

16S 5’-TAAGGAGGTGATCCAACCGCAGGTTCCCCT-3’ 

23S  5’-AAGGTTAAGCCTCACGGTTCATTAGTACCG-3’ 

In the case of the 3’ phosphorylated primers, all blocking primers have a 3’ phosphorylation 

modification.   
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Figures 

 

Figure 1: Schematic of EMBR-Seq. After performing an optional TerminatorTM 5’-phosphate-

dependent exonuclease digestion, poly(A) polymerase and rRNA blocking primers (purple) are 

added to total bacterial RNA (mRNA in red and rRNA in gray). Blocking primers specifically bind 

to the 3’ end of 5S, 16S, and 23S rRNAs, resulting in the preferential addition of a poly-A tail to 

mRNA molecules. Next, reverse transcription is performed using (i) a poly-T primer, which has an 

overhang containing a sample-specific barcode (blue), 5’ Illumina adapter (yellow), and T7 

promoter (green), and (ii) rRNA blocking primers to convert poly-adenylated RNA and rRNA 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2020. ; https://doi.org/10.1101/2020.06.19.162412doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.19.162412
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

molecules, respectively, to cDNA. The cDNA molecules are then amplified by in vitro transcription, 

and the amplified RNA is used to prepare Illumina libraries. As the rRNA-derived cDNA does not 

contain a T7 promoter, these molecules are not amplified during in vitro transcription, resulting in 

rRNA depletion.   
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Figure 2: Blocking primers in EMBR-seq deplete rRNA and provide a deeper view of the 

transcriptome without introducing technical biases. (a) In the presence of blocking primers, 

a 4-fold rRNA depletion and more than 2-fold mRNA enrichment is achieved compared to control 

samples. With the introduction of blocking primers in EMBR-seq, mRNAs account for more than 

80% of the mapped reads, which is a greater than 16-fold increase compared to total RNA in E. 

coli cells. The 3’ phosphorylated blocking primers display similar but slightly lesser mRNA 

enrichment (" ≥ 2 replicates for all conditions). (b) Comparison between EMBR-seq and control 

samples in the number of genes detected above different expression thresholds (" = 3 for both 

conditions). For the EMBR-seq group, error bars are of the same scale as the size of the data 

points (c) Venn diagram shows that more than 99% of the genes detected in the control samples 

were also detected when using blocking primers in EMBR-seq. 99.2 % of all detected genes were 

found in the EMBR-seq samples and 96.2% in the control samples. The number of genes detected 

were calculated by combining data obtained from three control samples and three EMBR-seq 
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processed samples. (d) Gene transcript counts with and without blocking primers are highly 

correlated (Pearson ' = 0.97) suggesting that EMBR-seq does not introduce technical artifacts in 

quantifying gene expression (n = 3 for both datasets). These experiments were performed starting 

with 100 ng total RNA from E. coli. Error bars in panels (a) and (b) represent standard deviations. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2020. ; https://doi.org/10.1101/2020.06.19.162412doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.19.162412
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2020. ; https://doi.org/10.1101/2020.06.19.162412doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.19.162412
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

Figure 3: EMBR-seq can quantify the transcriptome from low input total RNA. (a) Similar 

levels of rRNA depletion and mRNA enrichment are observed when the starting amount of total 

RNA is decreased from 100 ng to 0.02 ng (" ≥ 2, except at 0.02 ng where " = 1). The control 

represents average data of control samples made from different input levels of total RNA. The 

100 ng data is reproduced from Figure 2a. (b) Compared to the control samples, more genes are 

detected when starting with at least 2 ng input total RNA. Fewer genes are detected when starting 

total RNA decreases to 0.02 ng. (c) Gene transcript counts are highly correlated (Pearson ' =
0.98) between 100 ng and 20 ng input total RNA in EMBR-seq. Datasets from lower starting total 

RNA are also well correlated to the 100 ng samples (Fig. S4).  
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