

1 CRISpy-pop: a web tool for designing CRISPR/Cas9-driven genetic modifications in diverse
2 populations

3
4 Hayley R. Stoneman*†‡§, Russell L. Wrobel*†‡§, Michael Place*†, Michael Graham*‡, David
5 J. Krause*†‡§, Matteo De Chiara**, Gianni Liti**, Joseph Schacherer††‡‡, Robert
6 Landick*§§***, Audrey P. Gasch*†§, Trey K. Sato*‡§, Chris Todd Hittinger*†‡§

7
8 * DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison,
9 WI 53726, USA

10 † Laboratory of Genetics, Center for Genomic Science Innovation, University of Wisconsin-
11 Madison Madison, WI 53726, USA

12 ‡ Wisconsin Energy Institute, University of Wisconsin-Madison Madison, WI 53726, USA

13 § J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison Madison, WI
14 53726, USA

15 ** Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France

16 †† Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France

17 ‡‡ Institut Universitaire de France (IUF), Paris, France

18 §§ Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA

19 *** Department of Bacteriology, University of Wisconsin-Madison, Madison WI 53706, USA

20

21

22 Web tool for genome editing

23

24 Key Words: CRISPR/Cas9; sgRNA; genome editing; population genomics; yeast

25

26 Corresponding author:

27 Chris Todd Hittinger

28 1552 University Avenue

29 Madison, WI 53726

30 cthittinger@wisc.edu

31 **Abstract**

32 CRISPR/Cas9 is a powerful tool for editing genomes, but design decisions are generally
33 made with respect to a single reference genome. With population genomic data becoming
34 available for an increasing number of model organisms, researchers are interested in
35 manipulating multiple strains and lines. CRISPy-pop is a web application that generates and
36 filters guide RNA sequences for CRISPR/Cas9 genome editing for diverse yeast and bacterial
37 strains. The current implementation designs and predicts the activity of guide RNAs against
38 more than 1000 *Saccharomyces cerevisiae* genomes, including 167 strains frequently used in
39 bioenergy research. *Zymomonas mobilis*, an increasingly popular bacterial bioenergy research
40 model, is also supported. CRISPy-pop is available as a web application (<https://CRISPy-pop.galbrc.org/>) with an intuitive graphical user interface. CRISPy-pop also cross-references the
41 human genome to allow users to avoid the selection of sgRNAs with potential biosafety
42 concerns. Additionally, CRISPy-pop predicts the strain coverage of each guide RNA within the
43 supported strain sets, which aids in functional population genetic studies. Finally, we validate
44 how CRISPy-pop can accurately predict the activity of guide RNAs across strains using
45 population genomic data.

46

47 **Introduction**

48 CRISPR/Cas9 has become a widely used genome-editing tool due to its accuracy,
49 precision, and flexibility (Ceasar *et al.* 2016). A primary step in designing a CRISPR/Cas9
50 experiment is the selection of the single guide RNA (sgRNA) target site, which usually occurs
51 twenty nucleotides upstream of a protospacer adjacent motif (PAM) site. This sgRNA is bound
52 by the Cas9 enzyme and used to direct Cas9 to the complementary location within the genome.
53 Once bound to DNA, the Cas9 endonuclease cuts the DNA, leaving a double-strand break in the
54 chromosome. This break can then be repaired using nonhomologous end-joining or homology-
55 directed repair. Modified versions of Cas9 can nick a single DNA strand or bind to DNA
56 sequence motifs without cleaving either DNA strand, while other Cas proteins have different
57 sequence requirements (Makarova and Koonin 2015). Due to the ease of manipulation of sgRNA
58 targets by Cas9, it has been widely used for genome editing, including in yeasts and bacteria
59 used in bioenergy research (Wang *et al.* 2016, Huang *et al.* 2016, and Dong *et al.* 2016, Higgins
60 *et al.* 2018, Kuang *et al.* 2018). For *Zymomona mobilis*, there have been more published
61 successes using Cas12a, which uses a different PAM site than Cas9 (Shen *et al.* 2019).

62 When designing sgRNAs, two main considerations must be made: efficiency and
63 specificity. One tool that addresses the prediction of sgRNA efficiency is sgRNA Scorer 2.0
64 (Chari *et al.* 2017), which generated a model across multiple Cas9 orthologs to predict activity of
65 sgRNAs from their sequence composition. A tool that addresses specificity of sgRNAs is Cas-
66 OFFinder (Bae *et al.* 2014), which is a fast algorithm that searches specific genomes for potential
67 off-target sites. Cui *et al.* 2018 reviewed a panel of twenty representative sgRNA design tools,
68 which vary in their genome specificity, nuclease(s) supported, user input, and methods (or lack
69 thereof) for on-target prediction and off-target scoring. Of the reviewed tools, eight supported the
70 *Saccharomyces cerevisiae* reference genome and allowed for a variety of PAM sites. Of those
71 eight, six provided both on-target prediction and off-target scoring, but none combined the use of
72 sgRNA Scorer 2.0 and Cas-OFFinder into a single tool.

73 Recent advances in high-throughput sequencing have enabled the collection of population
74 genomic data for an increasing number of organisms. Many studies have sequenced whole
75 genomes of traditional and emerging model organisms, including large populations. For

77 example, the 1000 Genomes Project (Auton *et al.* 2015) sequenced human genomes, the 1001
78 Genomes Project (Alonso-Blanco *et al.* 2016) sequenced *Arabidopsis thaliana* genomes, and the
79 1002 Genomes Project (Peter *et al.* 2018) sequenced *S. cerevisiae* genomes. With the increasing
80 availability of population genomic data and the need to determine the functions of
81 polymorphisms, there is a growing need to accommodate variation within species when
82 designing CRISPR/Cas9-driven genetic modifications. Recently, the SNP-CRISPR tool was
83 developed to address genomic variation by targeting single nucleotide polymorphisms (SNPs)
84 (Chen *et al.* 2020). SNP-CRISPR supports several genetic model organisms, including humans,
85 mouse, and *Drosophila melanogaster*, but it is limited to the variants included in user-supplied
86 files, which creates a barrier for less computationally proficient users. To our knowledge, neither
87 this tool, nor any other existing tool, supports *S. cerevisiae* population genomic datasets.

88 Here we developed and describe CRISPy-pop as a python-based (Van Rossum and Drake
89 2009) web application for the design of CRISPR/Cas9 sgRNAs for genetic modifications on
90 populations of strains. CRISPy-pop incorporates popular diverse strain sets of *S. cerevisiae* from
91 recent population genomic studies (Peter *et al.* 2018; Sardi *et al.* 2018) and uses the existing
92 tools sgRNA Scorer 2.0 and Cas-OFFInfer to assess the strain coverages of sgRNAs, predict
93 their activities, and determine their off-target potentials. As a proof of principle, here we use
94 CRISPy-pop to design *ade2* knockout mutants and accurately predict which strains can be
95 targeted by which sgRNAs. CRISPy-pop fills a needed niche in functional and population
96 genomic research.

97

98 Materials and Methods

99

100 *CRISPy-pop pipeline*

101 The CRISPy-pop bioinformatic pipeline supports three modes of operation: targeting a
102 gene, offsite target search, and targeting a custom sequence (**Figure 1**). We made use of open-
103 source bioinformatic tools to generate sgRNA designs. The resulting sgRNA sequences are then
104 scored and ranked based on predicted efficiency of the sgRNAs. Offsite target interactions are
105 reported for each sgRNA across two complete strain sets of *S. cerevisiae*. These results are
106 displayed to the user in a convenient and intuitive graphical user interface (GUI). The user can
107 sort, search, save, and export the results in a more efficient way than would be possible using
108 command line tools alone. CRISPy-pop also contains a genome viewer for visualization of each
109 sgRNA within the target gene, facilitating design choices for the desired genome edits. CRISPy-
110 pop supports a 167-strain set of *S. cerevisiae*, including 165 recently published genomes (Sardi *et*
111 *al.* 2018), the S288C reference genome (Engel *et al.* 2014), and the GLBRCY22-3 bioenergy
112 chassis (McIlwain *et al.* 2016); as well as a 1011-strain set of *S. cerevisiae* from the 1002 Yeast
113 Genomes Project (Peter *et al.* 2018). CRISPy-pop's population genetic tool reports the numbers
114 and identities of strains with perfect matches to each sgRNA. CRISPy-pop also contains a
115 biosafety feature, which performs a local BLAST search (Altschul *et al.* 1990) of the human
116 genome for perfect matches to each sgRNA sequence.

117

118 Targeting a gene in a specific strain

119 A mode was designed within CRISPy-pop to give the user the ability to target a gene by
120 name in a specific strain. When the user selects this option, a streamlined search is performed to
121 generate sgRNA sequences as follows. Gene coordinates are extracted from the appropriate GFF
122 file. Using the reference genome FASTA, the gene sequence is extracted using samtools (Li *et*

123 *al.* 2009). CRISpy-pop uses VCF files from its internal set of strains. These VCF files each
124 contain variant calls for each strain relative to the S288C reference genome. These variants are
125 then used to make substitutions in the S288C genome sequence to produce sequence files for
126 each strain. This sequence is used as input to sgRNA Scorer 2.0 (Chari *et al.* 2017) in FASTA
127 format with the appropriate PAM sequence and orientation (5' or 3') and the desired sequence
128 length, which outputs a list of sgRNA sequences and their predicted activity scores. Cas-
129 OFFinder (Bae *et al.* 2014) is then used to query all strains for offsite interactions, allowing zero
130 mismatches. The results are output in a user-friendly, graphical format. The results include a
131 genome viewer, which shows the relative position of each sgRNA for the gene. In a table format,
132 for each sgRNA, CRISpy-pop reports the sgRNA sequence, PAM site, activity score, GC%,
133 chromosome, position, strand, position in the gene, mismatches, off-site matches, human genome
134 hits, and strain coverage. Specific information can be obtained for any individual sgRNA by
135 clicking on the desired entry in the table. For each sgRNA, an individual result report can be
136 viewed, containing identities of strains predicted to be targeted, the alignment with the target,
137 and the sgRNA details and statistics.

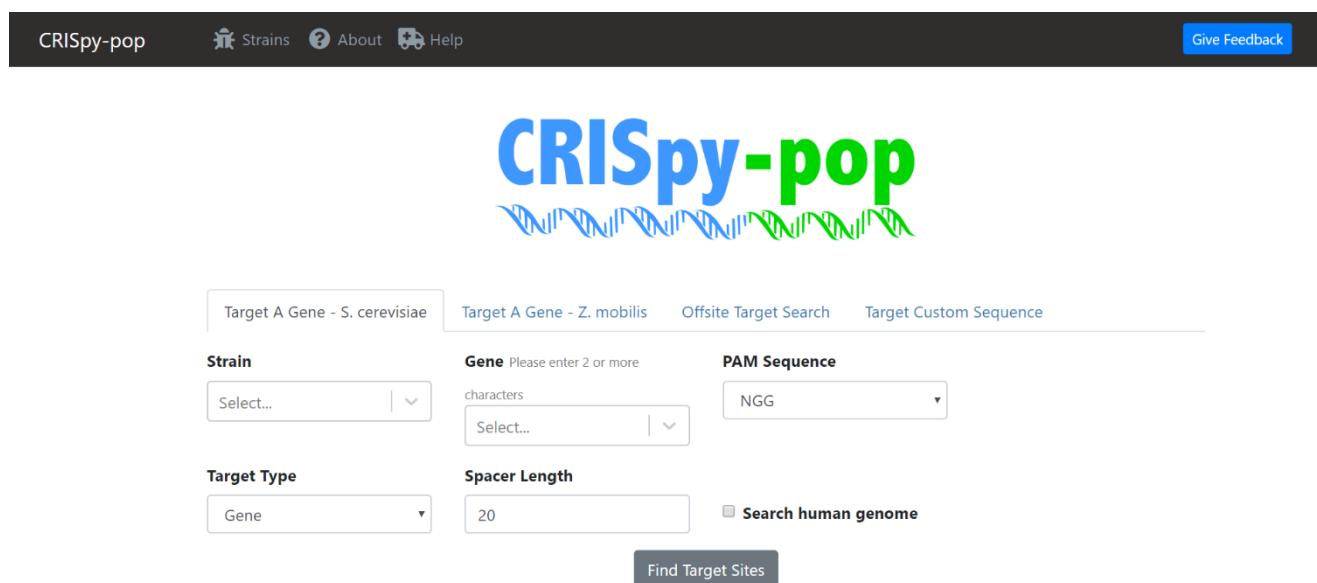
138

139 *Offsite target search*

140 For the offsite target search mode, a user provides a previously designed sgRNA
141 sequence and selects the reference genome to be searched. Upon each search, CRISpy-pop
142 employs Cas-OFFinder to provide a list of the specified reference genome's offsite targets for the
143 user specified sgRNA. If no offsite targets exist, CRISpy-pop outputs that none were found.

144

145 *Target a custom sequence*


146 This mode allows the user to target a custom sequence, such as a gene that they may have
147 previously engineered into a strain. When this feature is used, a custom DNA sequence is entered
148 by the user. Once this sequence is entered, CRISpy-pop uses sgRNA Scorer 2.0 to find and score
149 all potential sgRNAs within that sequence. Optionally, several supported reference genomes can
150 be searched for offsite target matches, again using Cas-OFFinder. Currently supported genomes
151 include *S. cerevisiae* S288C, *S. cerevisiae* GLBRCY22-3, *Saccharomyces paradoxus*,
152 *Kluyveromyces lactis*, and *Zymomonas mobilis* ZM4. This tool outputs the same results as the
153 gene target search.

154

155 *Human hits search*

156 CRISpy-pop performs a BLASTn database search of the human genome version hg38
157 (Schneider *et al.* 2017) for exact matches to each sgRNA as the query. If any perfect matches to
158 the sgRNA are found, the output reports "Yes" under human hits.

159

Figure 1. Screenshot of the CRISPy-pop homepage (<https://CRISPy-pop.glbrc.org/>). There are options to search a gene in *S. cerevisiae* and *Z. mobilis*, as well as an offsite and custom target search. There are options to select specific strains, the desired PAM site, and the sgRNA length. Users may select the following PAM sites: NGG, NNGRRT, TTTV, NNNNGATT, or NNAGAAW. Additionally, there is an option to search the human genome for perfect matches. CRISPy-pop features a user-friendly, web-based GUI.

160

161 *Strain coverage function*

162 This function uses the population genomic data described above to determine which
163 strains are predicted to be targeted by each sgRNA. The strain coverage function searches the
164 selected strain set for perfect matches to the sgRNA sequence and reports the number and
165 identities of the strains covered.

166

167 *ADE2 sgRNA selection*

168 To validate CRISPy-pop's functionality, we used it to find sgRNAs to target the gene
169 *ADE2* using a spacer length 20 and a PAM site of NGG. The 167-strain set (165 isolates, S288C
170 and GLBRCY22-3) was searched for strain coverage. Two sgRNAs were selected with high
171 strain coverage, and two were selected with low strain coverage, the latter of which were
172 selected to have the exact same strain identities covered. The sgRNAs were chosen to balance
173 the need for high activity scores, target more 5' positions within the gene, and have no offsite
174 matches.

175

176

177

178

Table 1. Table of the oligonucleotides used. These include the bridge primers for adding the sgRNA sequences to the pKOPIS + sgRNA plasmid, the primers for PCR SOEing to clone the donor DNA, and the primers for PCR and Sanger sequencing.

179

NAME	SEQUENCE
ADE2 Bridge L1	cgggtggcgaatgggactttACAGTTGGTATATTAGGAGGtttttagagctagaaatagc
ADE2 Bridge L2	cgggtggcgaatgggactttAACAGTTGGTATATTAGGAGGtttttagagctagaaatagc
ADE2 Bridge H1	cgggtggcgaatgggactttACTTGCGATACGATGGAAGGtttttagagctagaaatagc
ADE2 Bridge H2	cgggtggcgaatgggactttACGGAGTCCGGAACCTCTAGCtttttagagctagaaatagc
ADE2 5' KO For	gatgtccacgacgtctCAAATGACTCTTGTGCATGG
ADE2 5' KO Rev	GTATATCAATAAACTTATATAACTTGATTGTTGTCCGATTTTC
ADE2 3' KO For	GAAAATCGGACAAAACAATCAAGTTATATAAGTTATTGATATAC
ADE2 3' KO Rev	cggtgtcggtgtcgtagGTATAATAAGTGTATGTATG
ADE2 Conf For	ACCAACATAACACTGACATC
ADE2 Conf Rev	TATATGAACGTATCGAACAC
pKOPIS sgRNA For	AACGCGAGCTGCGCACATAC
pKOPIS sgRNA Rev	GCGACAGTCACATCATGCC
pKOPIS sgRNA Seq For	CACCTATATCTGCGTGTG
pKOPIS sgRNA Seq Rev	GCACGTCAAGACTGTCAAGG

180

181 *Plasmid and donor DNA synthesis*

182 An empty sgRNA expression cassette, which contained the *SNR52* promoter, HDV
183 ribozyme linked to a cloning site for sgRNA construct, and the *SNR52-1* terminator (Kuang *et al.*
184 2018), was first cloned into the pKOPIS plasmid (Kuang *et al.* 2018) using the NEBuilder HiFi
185 DNA Assembly Master Mix (NEB #E2621) (Hsieh 2018). pKOPIS contains a *kanMX* selectable
186 marker and encodes a Cas9 protein driven by the constitutive *RNR2* promoter. This empty
187 pKOPIS + sgRNA plasmid (pHRW68) was linearized using a restriction enzyme digest with
188 *NotI*.

189 Four different 60-nucleotide (nt), single-stranded bridging primers were designed, each
190 containing one of the selected sgRNA sequences flanked by 20-nt homology regions with the
191 pKOPIS plasmid (**Table 1**). The NEBuilder HiFi DNA Assembly Master Mix (Hsieh 2018) was
192 then used to clone the sgRNA sequences into the pKOPIS+ sgRNA plasmid, using the linearized
193 plasmid and the bridge primers. This mixture was then used to transform *Escherichia coli* cells.
194 The plasmids with the inserted sgRNAs were each isolated using the ZR Plasmid Miniprep
195 Classic kit (Zymo Research). We confirmed correct sgRNA sequence insertion by performing
196 BigDye™ (Applied Biosystems) Sanger-sequencing reactions with the pKOPIS sgRNA Seq
197 primers.

198 The donor DNA was constructed using PCR splicing by overlap extension (SOEing)
199 (Horton *et al.* 2013). All but the first 100 and last 100 base pairs of the gene were designed to be
200 deleted from *ADE2*. A 40-nt primer was designed to amplify the 5' forward portion of the gene
201 and the homology region. A 40-nt primer was designed to amplify the 5' reverse portion of the
202 gene with 20-nt from the first 100 base pairs (bp) of the gene and 20-nt from the last 100 bp. The
203 complement of this primer was then designed to amplify the 3' forward portion of the gene.
204 Finally, a 40-nt primer was designed for the 3' reverse portion of the gene, which contained the

205 last 20-nt of the gene and the homology region. Additionally, ADE2 Conf FOR and ADE2 Conf
206 REV primers (**Table 1**) were used to confirm deletion of *ADE2* by PCR and sequencing.

207 The 3' and 5' sections of the donor DNA were first amplified individually using gradient
208 PCR with annealing temperatures from 50°C – 70°C and Phusion® High-Fidelity DNA
209 Polymerase (New England Biolabs). The two individual sections were then joined into the
210 complete donor DNA fragment using the same gradient PCR protocol. The final product was
211 purified using the Qiagen QIAquick PCR Purification Kit according to the manufacturer's
212 directions. (Qiagen).

213

214 *Transformation and knockout screening*

215 All transformations were performed with pKOPIS plasmids containing each of the four
216 sgRNAs or the empty vector as a negative control using the standard lithium acetate protocol
217 optimized for *S. cerevisiae* (Gietz *et al.* 1995). In each reaction, 0.75 µg of sgRNA and 2 µg
218 donor DNA were used. The transformations were grown in liquid YPD for three to five hours at
219 30° on a tissue culture rotator. They were then plated on three YPD + G418 (200µg/L) plates,
220 with 100µl, 200µL, and 300µL of transformation per plate. Successful transformants grew on
221 YPD + G418 plates, while successful *ade2* knockouts also turned pink. The total number of
222 colonies on each YPD + G418 plate was counted, as well as the number of pink colonies. The
223 number of pink colonies was divided by the total number of successful transformants to calculate
224 the efficiency of *ade2* deletion. Two pink colonies were chosen from each transformation of each
225 strain, their *ADE2* genes were amplified by PCR, and their products were sequenced using
226 Sanger sequencing to confirm that the knockouts had occurred using the donor DNA and
227 homology-directed repair.

228

229 *Statistical analysis*

230 For the two strains targeted by all four sgRNAs (K1 and S288C), we used Mstat
231 (<https://mcardle.oncology.wisc.edu/mstat/>) to calculate Kendall's Tau, performing a one-sided
232 test for a correlation between the activity scores and the efficiencies.

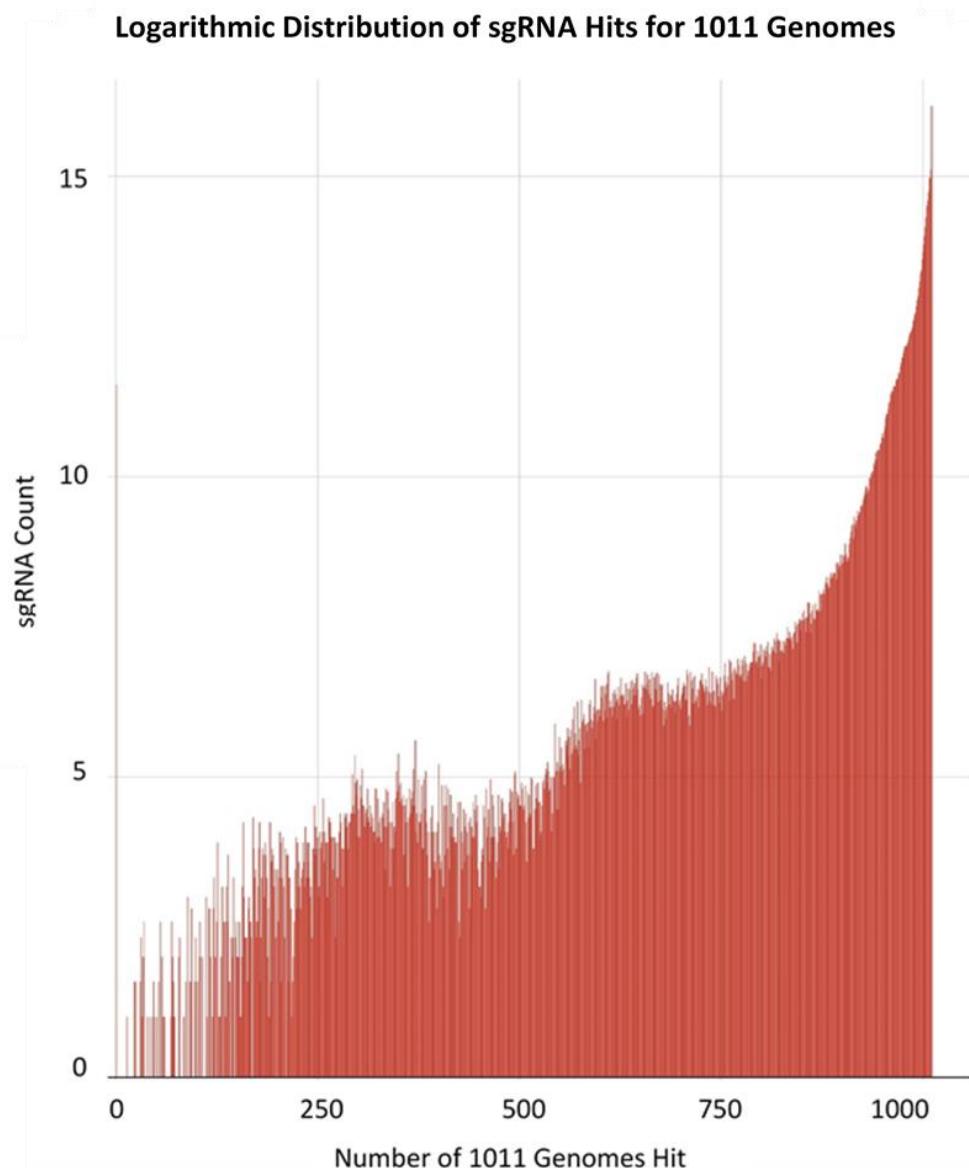
233

234 *Data availability*

235 CRISPy-pop is available online for non-commercial use at <https://CRISPy-pop.glbrc.org/>.
236 The source code for the pipeline is available at: <https://github.com/GLBRC/CRISPy-pop/>. All
237 new data generated is contained within this manuscript.

238

239 **Results and Discussion**


240

241 *Population-level variation in sgRNA target sites*

242 *S. cerevisiae* is a useful genetic model system and bioengineering chassis due to its well-
243 studied genome and ease of genetic manipulation. With growing population genomic datasets,
244 functional investigations with CRISPR/Cas9 tools can now be extended beyond traditional
245 laboratory strains, but variation in sgRNA target sites can still limit portability. To explore
246 variation within the 1011-strain set, we calculated the total number of genomes that could be
247 targeted by each sgRNA (**Figure 2**). The total number of sgRNAs designed was 658,304. Only
248 73,495 of the sgRNAs have perfect matches in all 1011 genomes, while 584,809 sgRNAs are
249 predicted to target some other fraction of the genomes. Thus, randomly picking a sgRNA
250 designed against the S288C reference genome would be unlikely to target all strains of potential

251 interest. CRISpy-pop allows users to sort and filter by the number of strains targeted in a given
252 gene, which aids design decisions to maximize sgRNA portability and facilitates population-
253 level studies.

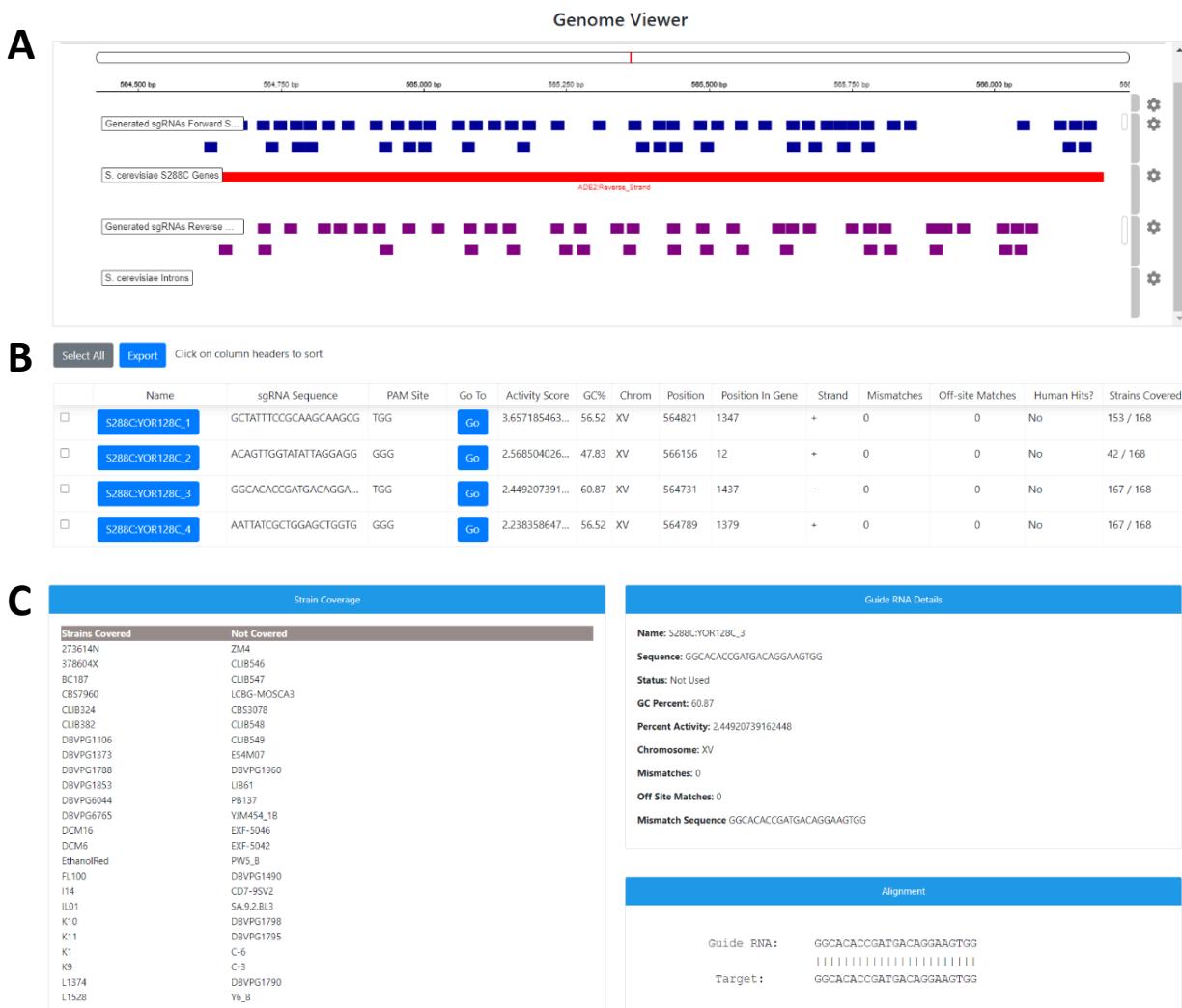
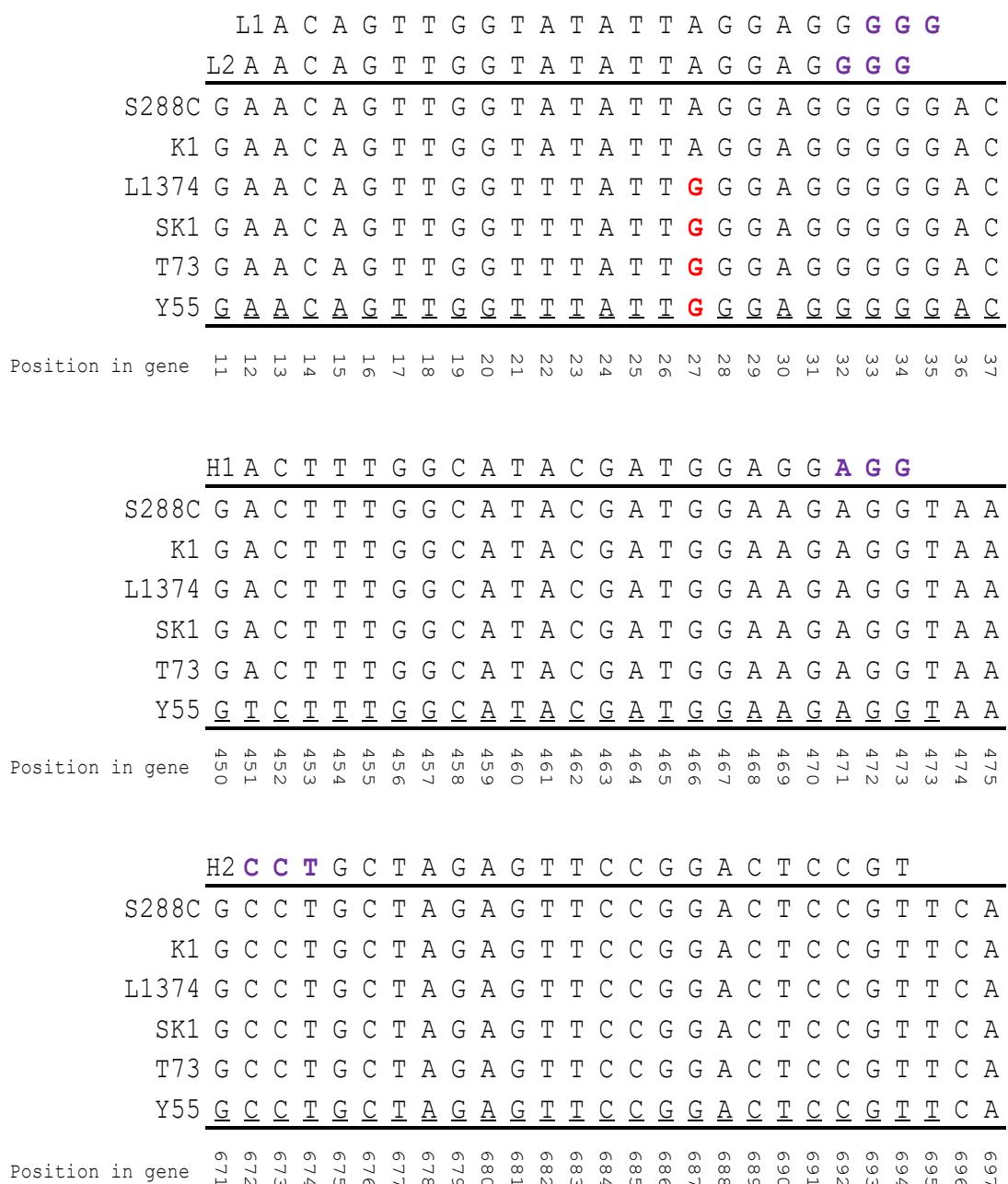

254

Figure 2. A histogram showing the number of sgRNAs, on a \log_2 scale, that target each number of the 1011-strain set. Only 73,495 sgRNAs are predicted to target all 1011 genomes, while the remaining 584,809 sgRNAs target only a fraction of the genomes.

255

256


Figure 3. Sample output from CRISPy-pop searched for the gene *ADE2* in S288C genome with NGG PAM sequence, spacer length of 20, and cross-referencing the human genome to ensure no perfect matches exist for selected sgRNAs. A, genome viewer output by CRISPy-pop, showing the relative position of each sgRNA within the target gene. B, portion of the sgRNA table of results with each data point for each output sgRNA sequence. C, detailed results for an individual sgRNA, including identities of targeted and non-targeted strains.

257

258 *sgRNA selection using CRISPy-pop*

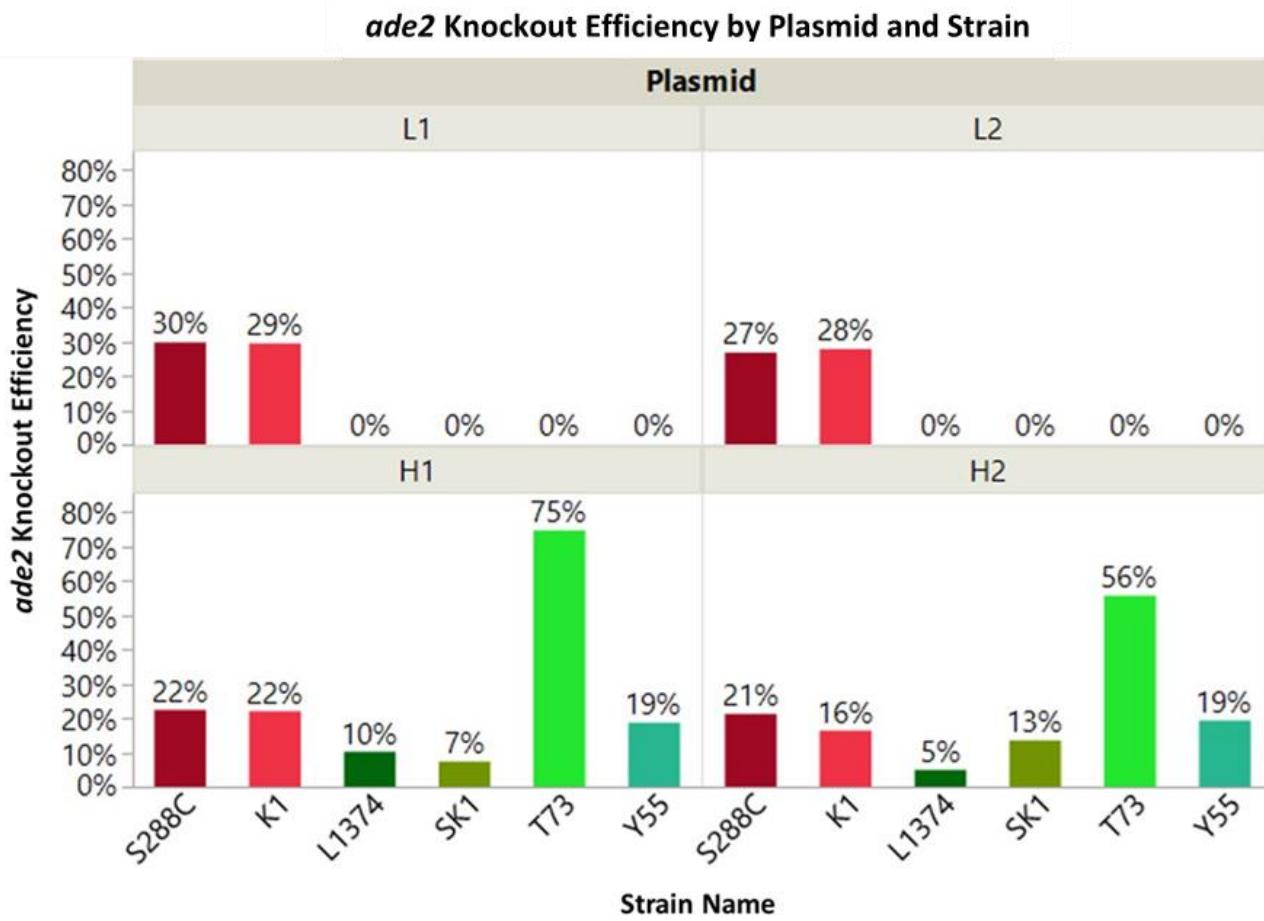
259 To validate the strain coverage function of CRISPy-pop, we designed multiple sgRNAs
 260 targeting the gene *ADE2* with varying predicted strain coverage to create *ade2* knockout mutants
 261 in the Sardi *et al.* strain set (**Figure 3**). This strain set was chosen because we had access to the
 262 strains, but the 1011-strain population genomic data dataset (Peter *et al.* 2018) was also searched
 263 to compare relative strain coverage predictions for selected sgRNAs. Specifically, we selected
 264 two sgRNAs predicted to target all 167 strains (high-coverage sgRNAs) and two sgRNAs
 265 predicted to target only 42 of the 167 strains (low-coverage sgRNAs). The two high-coverage

266 sgRNAs, H1 and H2, had activity scores of 1.341 and 0.426, respectively. The two low-coverage
267 sgRNAs, L1 and L2, had activity scores of 2.569 and 2.050, respectively. None of the sgRNAs
268 selected had any offsite matches or human hits. To determine whether the high-coverage guides
269 also had high strain coverage within the previously published 1011-strain population genomic
270 dataset we reran the search with the same criteria on this dataset. H1 and H2 were also predicted
271 to cut the vast majority of the 1011-strain set, targeting 905 and 910 genomes, respectively.

Figure 4. Portions of the *ADE2* gene from each strain aligned with the four sgRNAs. The PAM sites are included in purple. The *ADE2* gene sequence from each strain was extracted and aligned to each other and the four sgRNA sequences (H1, H2, L1, L2). The single nucleotide polymorphism highlighted in red at position 27 is predicted to prevent the two low-coverage sgRNAs (L1 and L2) from targeting *ADE2*. Note that sgRNA H2 targets the opposite strand, so its reverse complement is shown in this figure.

272

273


274

275

276 *Yeast strain selection and transformations*

277 We examined the strain coverage summary details from the CRISPy-pop search output
278 for each sgRNA (**Figure 3C**) and selected six strains to test its predictive performance (**Figure**
279 **4**). Two strains (K1, S288C) were selected because they were predicted to be targeted by all four
280 sgRNAs. These positive controls verified the functionality of all four sgRNAs and donor DNA
281 constructs. The other four selected strains (L1374, SK1, T73, Y55) were predicted to be targeted
282 by the high-coverage sgRNAs (H1 and H2) but not by the low-coverage sgRNAs (L1 and L2).
283 S288C is haploid, while the other five strains are diploid.

284

Figure 5. CRISPy-pop generated sgRNAs that target *ADE2* in a strain-specific manner. Results of the transformation of each strain with each sgRNA is shown. The two strains in red (S288C and SK1) were each predicted to be targeted by all four sgRNAs. Only these two strains both had non-zero %*ade2* knockouts (KOs) using all four sgRNAs. The four remaining strains were predicted to be targeted by only the high-coverage sgRNAs (H1 and H2), but not the low-coverage sgRNAs (L1 and L2). These four strains only had non-zero %*ade2* knockouts using the high-coverage sgRNAs. These results align with the strain coverage predictions made by CRISPy-pop. The predicted activity scores were H2<H1<L2<L1, which are also consistent with the observed efficiencies.

285

286

287 *Validation of sgRNA predictions made using CRISPy-pop*

288 We transformed all six strains with CRISPR/Cas9 vectors expressing all four sgRNAs.
289 We then counted the number of pink colonies, which are putative *ade2* knockouts due to deletion
290 of *ADE2* causing the accumulation of aminoimidazole ribonucleotide (Silver and Eaton 1969),
291 and we divided that number by the total number of transformants (G418-resistant) to calculate
292 efficiencies (**Figure 5**). The strains that were predicted to be targeted by all four sgRNAs were
293 transformed first to ensure that all four sgRNAs were capable of producing *ade2* knockouts. All
294 four sgRNAs successfully targeted the two predicted strains (K1 and S288C). We verified that
295 homology-directed repair using the donor DNA - and not NHEJ - had occurred by Sanger-
296 sequencing the *ADE2* PCR product. Once it was confirmed that all four sgRNAs could produce
297 *ade2* knockouts using the donor DNA, the remaining strains were transformed with all four
298 sgRNAs and donor DNA. As predicted, the low-coverage sgRNAs did not target the four strains
299 (L1374, SK1, T73, and Y55) predicted to only be cut by the high-coverage sgRNAs, but the
300 high-coverage sgRNAs all resulted in *ade2* knockout mutants.

301 Efficiencies varied widely by strain, likely due to differences in ploidy and the relative
302 activities of homology-directed repair. For the strains able to be cut by all four sgRNAs (K1 and
303 S288C), the sgRNA activity scores predicted by CRISPy-pop correlated with their relative
304 efficiencies ($H_2 < H_1 < L_2 < L_1$, Kendall's Tau = 0.85, $p = 0.00101$). These results validate the
305 accuracy of the strain coverage and activity score predictions made by CRISPy-pop.

306

307 *Conclusions*

308 In summary, CRISPy-pop is a powerful and flexible design tool for planning and
309 executing CRISPR/Cas9-driven genetic modifications on individual strains or large panels of
310 strains. CRISPy-pop can continue be expanded to support new genomes as more data become
311 available. The ability to target different PAM sites allows potential to use or screen for other Cas
312 systems. It correctly predicts which strains can be targeted by which sgRNAs, as well as the
313 activities of sgRNAs. Offsite targets, including a biosafety feature that scans for potential human
314 genome binding, can be easily avoided with CRISPy-pop. This unique combination of features
315 and its user-friendly web interface make CRISPy-pop ideal for designing experiments in diverse
316 populations used for genetic engineering.

317

318

319 **Acknowledgments**

320 We thank Kevin S. Myers for beta testing and feedback, Maria Sardi for providing datasets, and
321 the University of Wisconsin Biotechnology Center DNA Sequencing Facility for providing
322 Sanger-sequencing facilities and services. This material is based upon work supported in part by
323 the Great Lakes Bioenergy Research Center, U.S. Department of Energy, Office of Science,
324 Office of Biological and Environmental Research under Award Number DE-SC0018409; the
325 National Science Foundation under Grant No. DEB-1442148; USDA National Institute of Food
326 and Agriculture (Hatch Project 1020204). C.T.H. is a Pew Scholar in the Biomedical Sciences
327 and a H. I. Romnes Faculty Fellow, supported by the Pew Charitable Trusts and Office of the
328 Vice Chancellor for Research and Graduate Education with funding from the Wisconsin Alumni
329 Research Foundation, respectively.

330
331

332 **References**

- 333
- 334 Alonso-Blanco C, Andrade J, Becker C *et al.* 1001 Genomes Project Consortium. (2016). 1,135
335 Genomes Reveal the Global Pattern of Polymorphism in *Arabidopsis thaliana*. *Cell* 166(2): 481-
336 491. <https://doi.org/10.1016/j.cell.2016.05.063>.
- 337
- 338 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. (1990). Basic local alignment search
339 tool. *Journal of Molecular Biology* 215(3): 403-410. [http://doi.org/10.1016/S0022-
340 2836\(05\)80360-2](http://doi.org/10.1016/S0022-2836(05)80360-2).
- 341
- 342 Auton A, Abecasis G, Altshuler D. *et al.* 1000 Genomes Project Consortium. (2015). A global
343 reference for human genetic variation. *Nature* 526: 68-74. <https://doi.org/10.1038/nature15393>.
- 344
- 345 Bae S., Park J. & Kim J.-S. (2014). Cas-OFFinder: A fast and versatile algorithm that searches
346 for potential off-target sites of Cas9 RNA-guided endonucleases. *Bioinformatics* 30, 1473-1475.
347 <https://doi.org/10.1093/bioinformatics/btu048>.
- 348
- 349 Ceasar SA, Rajan V, Prykhozhij S, Berman JN, Ignacimuthu S. (2016). Insert, remove or
350 replace: A highly advanced genome editing system using CRISPR/Cas9. *Biochimica et
351 Biophysica Acta (BBA) – Molecular Cell Research* 1863(9).
352 <https://doi.org/10.1016/j.bbamcr.2016.06.009>.
- 353
- 354 Chari R, Yeo N, Chavez A, Church GM. (2017). sgRNA Scorer 2.0 – a species independent
355 model to predict CRISPR/Cas9 activity. *ACS Synthetic Biology* 6(5): 902-904.
356 <https://doi.org/10.1021/acssynbio.6b00343>.
- 357
- 358 Chen C, Rodiger J, Chung V, Viswanatha R, Mohr SE, Hu Y, Perrimon N. (2020). SNP-
359 CRISPR: A Web Tool for SNP-Specific Genome Editing. *G3: GENES, GENOMES,
360 GENETICS* 10(2): 489-494. <https://doi.org/10.1534/g3.119.400904>.
- 361
- 362 Cui Y, Xu J, Chen M, Liao X, Peng S. (2018). Review of CRISPR/Cas9 sgRNA Design Tools.
363 *Interdisciplinary Sciences: Computational Life Sciences* 10: 455-465.
364 <https://doi.org/10.1007/s12539-018-0298-z>.
- 365
- 366 Dong G, He M, Feng H. (2016). Functional Characterization of CRISPR-Cas System in the
367 Ethanologenic Bacterium *Zymomonas mobilis* ZM4. *Advances in Microbiology* 6(3): 178-189.
368 <https://doi.org/10.4236/aim.2016.63018>.
- 369
- 370 Engel SR, Dietrich FS, Fisk DG, Binkley G, Balakrishnan R, Costanzo MC, Dwight SS, Hitz
371 BC, Karra K, Nash RS, Weng S, Wong ED, Lloyd P, Skrzypek MS, Miyasato SR, Simison M,
372 Cherry JM. (2014). The Reference Genome Sequence of *Saccharomyces cerevisiae*: Then and
373 Now. *G3: GENES, GENOMES, GENETICS* 4(3): 389-398.
374 <https://doi.org/10.1534/g3.113.008995>.
- 375
- 376
- 377

- 378 Gietz RD, Schiestl RH, Willems AR, Woods RA. (1995). Studies on the transformation of intact
379 yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11(4).
380 <https://doi.org/10.1002/yea.320110408>.
- 381
- 382 Higgins DA, Young MKM, Tremaine M, Sardi M, Fletcher JM, Agnew M, Liu L, Dickinson Q,
383 Peris D, Wrobel RL, Hittinger CT, Gasch AP, Singer SW, Simmons BA, Landick R, Thelen MP,
384 Sato TK. 2018. Natural Variation in the Multidrug Efflux Pump SGE1 Underlies Ionic Liquid
385 Tolerance in Yeast. Genetics 210(1): 219-234. <https://doi.org/10.1534/genetics.118.301161>.
- 386
- 387 Horton RM, Cai Z, Ho SN, Pease LR. Gene Splicing by Overlap Extension: Tailer-Made Genes
388 Using the Polymerase Chain Reaction. (2013). Biotechniques 54(3).
389 <https://doi.org/10.2144/000114017>.
- 390
- 391 Hsieh Peichung. Bridging dsDNA with a ssDNA Oligo and NEBuilder® HiFi Assembly to
392 create an sgRNA-Cas9 Expression Vector. (2018). New England Biolabs Inc.
393 https://www.neb.com/-/media/nebus/files/application-notes/bridging_dsdna_with_ssdna_oligo_and_nebuilder_hifi_dna_assembly_to_create_sgRNA-cas-9_expression_vector_an.pdf?la=en&rev=e8d96021187447e188161a0b48ee9800
- 396
- 397 Huang H, Chai C, Li N, Rowe P, Minton N, Yang S, Weihong J, Gu Y. CRISPR/Cas9-Based
398 Efficient Genome Editing in *Clostridium ljungdahlii*, an Autotrophic Gas-Fermenting Bacterium.
399 (2016). ACS Synthetic Biology 5(12): 1355-1361. <https://doi.org/10.1021/acssynbio.6b00044>.
- 400
- 401 Kuang MC, Kominek J, Alexander WG, Cheng JF, Wrobel RL, Hittinger CT. (2018). Repeated
402 Cis-Regulatory Tuning of a Metabolic Bottleneck Gene during Evolution. Mol Biol Evol 35(8):
403 1968-1981. <https://doi.org/10.1093/molbev/msy102>.
- 404
- 405 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J. (2009). The Sequence Alignment/Map
406 format and SAMtools. Bioinformatics (Oxford, England) 25(16): 2078-9.
407 <https://doi.org/10.1093/bioinformatics/btp352>.
- 408
- 409 Makarova KS and Koonin EV. (2015). Annotation and Classification of CRISPR-Cas Systems.
410 Methods in molecular biology 1311: 47-75. https://doi.org/10.1007/978-1-4939-2687-9_4.
- 411
- 412 McIlwain SJ, Peris D, Sardi M, Moskvin OV, Zhan F, Myers KS, Riley NM, Buzzell A,
413 Parreira LS, Ong IM, Landick R, Coon JJ, Gasch AP, Sato TK, Hittinger CT. (2016). Genome
414 Sequence and Analysis of a Stress-Tolerant, Wild-Derived Strain of *Saccharomyces cerevisiae*
415 Used in Biofuels Research. G3: GENES, GENOMES, GENETICS 6(6): 1757-1766.
416 <https://doi.org/10.1534/g3.116.029389>.
- 417
- 418 Peter J, De Chiara M, Friedrich A, Y, JX, Pflieger D, Bergström A, Sigwalt A, Barre B, Freel K,
419 Llored A, Cruaud C, Labadie K, Aury JM, Istace B, Lebrigand K, Barbry P, Engelen S,
420 Lemainque A, Wincker P, Liti G, Schacherer J. (2018). Genome evolution across 1,011
421 *Saccharomyces cerevisiae* isolates. Nature 559: 339-344. <https://doi.org/10.1038/s41586-018-0030-5>.
- 423

- 424 Sardi M, Paithane V, Place M, Robinson E, Hose J, Wohlbach DJ, Gasch AP. Genome-wide
425 association across *Saccharomyces cerevisiae* strains reveals substantial variation in underlying
426 gene requirements for toxin tolerance. PLOS Genetics 14(2): e1007217. (2018).
427 <https://doi.org/10.1371/journal.pgen.1007217>.
- 428
- 429 Schneider VA, Graves-Lindsay T, Howe K *et al.* (2017). Evaluation of GRCh38 and de novo
430 haploid genome assemblies demonstrates the enduring quality of the reference assembly.
431 Genome Research 27: 849-864. <https://doi.org/10.1101/gr.213611.116>.
- 432
- 433 Shen W, Zhang J, Geng B, Qiu M, Hu M, Yang Q, Bao W, Xiao Y, Zheng Y, Peng W, Zhang G,
434 Ma L, Yang S. (2019). Establishment and application of a CRISPR-Cas12a assisted genome-
435 editing system in *Zymomonas mobilis*. Microbial Cell Factories 18(1): 162.
436 <https://doi.org/10.1186/s12934-019-1219-5>.
- 437
- 438 Silver JM and Eaton NR. (1969). Functional blocks of the ad1 and ad2 mutants of
439 *Saccharomyces cerevisiae*. Biochemical and Biophysical Research 34(3): 301-305.
440 [https://doi.org/10.1016/0006-291X\(69\)90831-6](https://doi.org/10.1016/0006-291X(69)90831-6).
- 441
- 442 Van Rossum G and Drake FL. (2009). Python 3 References Manual. Scotts Valley CA:
443 CreateSpace. <https://www.python.org>.
- 444
- 445 Wang Y, Zhang ZT, Seo SO, Lynn P, Lu T, Jin YS, Blaschek HP. (2016). Bacterial Genome
446 Editing with CRISPR-Cas9: Deletion, Integration, Single Nucleotide Modification, and
447 Desirable “Clean” Mutant Selection in *Clostridium beijerinckii* as an Example. ACS Synthetic
448 Biology 5(7): 721-732. <https://doi.org/10.1021/acssynbio.6b00060>.
- 449
- 450