

## Lung at a Glance: an integrative web toolset of lung ontology, imaging and single cell omics

Yina Du<sup>1</sup>, Weichen Ouyang<sup>1</sup>, Joseph A Kitzmiller<sup>1</sup>, Minzhe Guo<sup>1</sup>, Shuyang Zhao<sup>1</sup>, Jeffrey A Whitsett<sup>1, 3</sup> and Yan Xu<sup>1, 2, 3</sup>

<sup>1</sup>The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.

<sup>2</sup>Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.

<sup>3</sup>Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, 45229, USA.

### Corresponding author

Yan Xu

Divisions of Pulmonary Biology, Perinatal Institute and Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC7029, Cincinnati, OH, USA, 45229-3039; Email: [Yan.Xu@cchmc.org](mailto:Yan.Xu@cchmc.org); Fax: (+01) 513-803-096 Tel: (+01) 513-636-8921

### Author contributions

Y.X., Y.D. and M.G. conceived and designed the web application; Y.D. developed the database and web application of LGEA web portal; W.O. developed the web application of LGEA lung Ontology; Y.D. and W.O. developed “Lung-at-a-glance” toolsets; J.A.K. and J.A.W. designed and developed the web application of Lung Image; M.G., Y.D., S.Y. and Y.X. contributed to

data analysis and interpretation; Y.D., J.A.W. and Y.X. wrote the manuscript. All authors contributed to the manuscript editing and approved the final manuscript.

## **Funding**

This work is supported by US National Institutes of Health (NIH) grants U01HL122642 (LungMAP 1), U01HL148856 (LungMAP 2), U01HL134745, and P30 DK117467.

**Running title:** Web tool for lung data integration & visualization

**Descriptor number:** 3.2, 3.3

**Word count:** 1248

## ABSTRACT

Recent advances in single-cell omics and high-resolution imaging have provided unanticipated data resources for the elucidation of genes underlying the complex biological processes critical for organ formation and function. However, processing and integrating large amounts of single-cell omics and imaging data presents a major challenge for most researchers. There is a critical need for ready-to-use computational tools for data/knowledge integration and visualization. Here we present “Lung-at-a-glance”, an easy-to-use web toolset for visualizing and interoperating complex omics and imaging data, providing an interactive web interface to bridge lung anatomic ontology classifications to lung histology and immunofluorescence confocal images, and cell-type-specific gene expression. “Lung-at-a-glance” contains three interactive components: 1) “Region at a glance”, 2) “Cell at a glance” and 3) “Gene at a glance”. “Lung-at-a-glance” and other newly developed web tools for lung-related data query, integration and visualization are publicly available on LGEA web portal v3 <https://research.cchmc.org/pbge/lunggens/mainportal.html>.

**Keywords:** Pulmonary development; Pulmonary diseases; Web application; LungMAP; LGEA

**Abstract word count:** 145

## INTRODUCTION

LGEA web portal offers user-friendly and comprehensive web-based query functions on extensive bulk, sorted, single-cell transcriptomic and image data from human and mouse lung at different stages of development (1, 2). LGEA web portal has been used by researchers from more than 130 institutes from 52 different countries and has been cited by more than 120 scientific publications. With the continuing support from the LungMAP consortium, we extended the scope of the LGEA web portal database to include proteomics and epigenetic data from lung developmental and lung disease studies. To facilitate utilization and integration of these data resources, we developed “Lung-at-a-glance” to serve as an interactive bridge to connect lung anatomic ontology, histology and lung gene/protein expression data with easy-to-use web interfaces. A number of other newly developed bioinformatics tools for users to query, compare and integrate diverse lung omics datasets are also made available on LGEA new release.

## METHODS

Modern JavaScript-based charting libraries (<https://www.highcharts.com>), CSS framework of Bootstrap (<https://getbootstrap.com>) and W3.CSS (<https://www.w3schools.com/w3css>) are integrated for web design and data visualization. The new features are implemented into the existing LGEA web architecture to improve its stability and modularity, including separation of front-end and back-end, and continuous integration and delivery. Oracle database management system 12c (<https://www.oracle.com/database>) is used for central data storage and maintenance.

UCSC Genome Browser (<https://genome.ucsc.edu>) is embedded into web application to provide an interactive visualization of epigenetic data.

## RESULTS

### **“Lung-at-a-glance”, a featured toolset in LGEA**

“Lung-at-a-glance” consists of three interactive components: “Region-at-a-glance”, “Cell-at-a-glance”, and “Gene-at-a-glance”; all designed to provide data access with a single-click on the icons located on the top of “Lung-at-a-glance” homepage ([https://research.cchmc.org/pbge/lunggens/tools/lung\\_at\\_a\\_glance.html](https://research.cchmc.org/pbge/lunggens/tools/lung_at_a_glance.html)). The “at-a-glance” toolset is designed to serve as an interactive bridge to connect lung anatomic ontology, histology and immunofluorescence confocal images in Lung Image gallery (<https://research.cchmc.org/lungimage/>) and lung gene expression data in the LGEA web portal. The toolset provides a collection of comprehensive interrelated data and knowledge resources with a user friendly intuitive and interactive web-interface for data analysis, integration and visualization (**Figure 1**). The anatomic ontology for human and mouse lung was developed by NHLBI LungMAP Consortium, Ontology Subcommittee using Web Ontology Language (OWL 2). The ontology contains ~ 300 terms for fetal and postnatal lung structures, tissues, and cells which were identified for each species (3). We converted the abstract version of anatomic ontology terms into searchable, clickable and expandable web tree structures, we further incorporated the ontology tree as an interactive component into LGEA. Investigators can navigate the hierarchical structure of the anatomical tree or use the search box to directly locate regions or cells of interest.

“Region-at-a-glance” allows users to search a specific lung region using the interactive tree navigation or click one of the annotated lung regions, e.g., “Proximal airway”, “Submucosal gland”, “Bronchiole”, “Terminal Bronchiole”, and “Alveoli” on the H&E staining lung image. Users can explore cells within selected regions using interactive mouse-hover features which are embedded in the anatomical ontology tree, images and diagrams (**Figure 1A**). “Cell-at-a-glance” can be activated by clicking the cell name or image on the “Cell-at-a-glance” page or by clicking a cell of interest in selected regional diagrams on the “Region-at-a-glance” page. With the same interactive web page design pattern, “Cell-at-a-glance” offers a collection of information related to the queried cell type including cell definition, cell type specific positive and negative markers, transcription factors, ligand-receptors predicted by our group ([https://github.com/xulab/LGEA\\_Cell\\_Signature](https://github.com/xulab/LGEA_Cell_Signature)), and hyperlinks to all LGEA web portal datasets and immunofluorescence confocal images related to the chosen cell type. Approximately 40 cell types are available for study in the current “Cell-at-a-glance” (**Figure 1B**). “Gene-at-a-glance” allows users to query a gene of interest and obtain its expression patterns (including protein expression levels if available) and statistics in all LGEA datasets in a 2-D heatmap linking developmental times and cell types (**Figure 1C**). Hyperlinks to external knowledge-bases and immunofluorescence confocal images of relevant cell markers are provided in the “Gene-at-a-glance” page (**Figure 1C**). The three components of “Lung-at-a-glance” are interconnected offering users a one-stop bioinformatics-tool for lung research. For example, investigators can start their search at specific anatomic regions, explore a particular cell type within the region, and identify cell specific markers, ligands-receptors and transcription factors expressed in the cell type of interest across lung developmental stages.

## Diverse datasets and web functionality

In addition to “Lung-at-a-glance”, the LGEA new release represents a significant update of the previous version, expanding to ten functional query panels from three panels in the previous version (1, 2). The analytic tools and functionalities of current LGEA web portal are briefly introduced below (**Figure 2**).

- The “LungGENS”, “LungSortedCells”, “LungDTC” supports ‘Query by single gene’, ‘Query by gene list’ and ‘Query by cell type’ function on single-cell, sorted-cell and whole lung developmental time course data collected from mouse lung tissues from embryonic day 16.5 to postnatal day 28 (eight time points) and human lung samples from neonate, infant, child and adult at various ages.
- The “LungDisease” panel allows investigators to search altered gene expression patterns, disease related signatures and lung disease related images including idiopathic pulmonary fibrosis(4), lymphangioleiomyomatosis (5), cystic fibrosis, bronchopulmonary dysplasia (BPD), primary alveolar microlithiasis, asthma, ABCA3 mutations, TBX4 deletion and lung growth disorder.
- The “LungEpigenetics” panel contains ChIP-seq data during mouse lung development downloaded from ENCODE (<https://www.encodeproject.org/>). Developmental stages and specific histone modifications associated with the gene of interest are viewed on the embedded UCSC Genome Browser with selected tracks enabled.
- “LungProteomics” provides protein centered query functions based on proteomic data generated at Pacific Northwest National Laboratory (PNNL) in the LungMAP project. Correlations between protein and mRNA expression profiles, and an overview of

expression levels of the queried protein/gene expression across all data sets in the LGEA database can be visualized.

- “LGEA-ProjectBased” is designed to introduce and share high impact lung related projects from internal and external research groups.
- The LGEA-ToolBox includes a number of new bioinformatics tools, including “signature comparison”, “gene list query”, and “gene list analysis” to facilitate comparison and integration of datasets to meet the ever-increasing needs of the research community. Users can compare different datasets in LGEA database or enter their gene list of interest to compare cell type specific signature genes provided by LGEA.

## DISCUSSION

Recent advances in single-cell omics have provided increasing insights into the pathogenesis of human disease, including those affecting the lung (6-10). The density of omics data relevant to lung biology is increasing exponentially, providing information that, with suitable integrative analysis, may provide important insights into the processes underlying lung function. The LGEA web portal is designed for intuitive and practical interrogation use of comprehensive “omics” data obtained during normal lung morphogenesis and from lung diseases by research investigators with varying computational training. LGEA new release provides improved interactive, graphical web interfaces for search, visualization, and secondary analyses, in which output can be readily interpreted and downloaded. Featured toolset of “Lung-at-a-glance” offers end-to-end web functions to access and search lung anatomic ontology terms, and to explore the corresponding structure and morphology of tissue regions, cells, and marker gene expression

patterns in all datasets in the LGEA database. To our knowledge, this is the first web application connecting anatomic ontology terms to structure and histology images and to single cell expression data. These tools and enriched data resources can be used to enhance hypothesis generation and scientific discovery. The LGEA web portal database will be continually updated with more omics data generated in LungMAP 2 and new query functions will be developed to further enhance data and knowledge interrogation. Data are made available and synchronized at the LungMAP website (<https://www.lungmap.net/>).

## **ACKNOWLEDGEMENTS**

The authors acknowledge the support of Dr. Sara Lin (Program Director) and all members of LungMAP research Consortium.

## DECLARATION OF INTERESTS

The authors declare that there are no conflicts of interest.

## DATA AVAILABILITY

LGEA web portal v3 are freely available for non-commercial use at <http://research.cchmc.org/pbge/lunggens/mainportal.html> and data is readily integrated with omics data and lung image data from other research centers at ‘BREATH’ database and display on the LungMAP website (<https://www.lungmap.net/>).

## REFERENCES

1. Du Y, Guo M, Whitsett JA, Xu Y. 'LungGENS': a web-based tool for mapping single-cell gene expression in the developing lung. *Thorax* 2015; 70: 1092-1094.

2. Du Y, Kitzmiller JA, Sridharan A, Perl AK, Bridges JP, Misra RS, Pryhuber GS, Mariani TJ, Bhattacharya S, Guo M, Potter SS, Dexheimer P, Aronow B, Jobe AH, Whitsett JA, Xu Y. Lung Gene Expression Analysis (LGEA): an integrative web portal for comprehensive gene expression data analysis in lung development. *Thorax* 2017; 72: 481-484.
3. Pan H, Deutsch GH, Wert SE, Ontology S, Consortium NMAoLDP. Comprehensive anatomic ontologies for lung development: A comparison of alveolar formation and maturation within mouse and human lung. *J Biomed Semantics* 2019; 10: 18.
4. Xu Y, Mizuno T, Sridharan A, Du Y, Guo M, Tang J, Wikenheiser-Brokamp KA, Perl AT, Funari VA, Gokey JJ, Stripp BR, Whitsett JA. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. *JCI Insight* 2016; 1: e90558.
5. Guo M, Yu JJ, Perl AK, Wikenheiser-Brokamp KA, Riccetti M, Zhang EY, Sudha P, Adam M, Potter A, Kopras EJ, Giannikou K, Potter SS, Sherman S, Hammes SR, Kwiatkowski DJ, Whitsett JA, McCormack FX, Xu Y. Identification of the lymphangioleiomyomatosis cell and its uterine origin. *bioRxiv* 2019.
6. Goldfarbmuren KC, Jackson ND, Sajuthi SP, Dyjack N, Li KS, Rios CL, Plender EG, Montgomery MT, Everman JL, Bratcher PE, Vladar EK, Seibold MA. Dissecting the cellular specificity of smoking effects and reconstructing lineages in the human airway epithelium. *Nat Commun* 2020; 11: 2485.
7. Reyfman PA, Walter JM, Joshi N, Anekalla KR, McQuattie-Pimentel AC, Chiu S, Fernandez R, Akbarpour M, Chen CI, Ren Z, Verma R, Abdala-Valencia H, Nam K, Chi M, Han S, Gonzalez-Gonzalez FJ, Soberanes S, Watanabe S, Williams KJN, Flozak AS, Nicholson TT, Morgan VK, Winter DR, Hinchcliff M, Hrusch CL, Guzy RD, Bonham CA, Sperling AI, Bag R, Hamanaka RB, Mutlu GM, Yeldandi AV, Marshall SA, Shilatifard A, Amaral LAN, Perlman H, Sznajder JI, Argento AC, Gillespie CT, Dematte J, Jain M, Singer BD, Ridge KM, Lam AP, Bharat A, Bhorade SM, Gottardi CJ, Budinger GRS, Misharin AV. Single-Cell Transcriptomic Analysis of Human Lung Provides Insights into the Pathobiology of Pulmonary Fibrosis. *Am J Respir Crit Care Med* 2019; 199: 1517-1536.
8. Schiller HB, Montoro DT, Simon LM, Rawlins EL, Meyer KB, Strunz M, Vieira Braga FA, Timens W, Koppelman GH, Budinger GRS, Burgess JK, Waghray A, van den Berge M, Theis FJ, Regev A, Kaminski N, Rajagopal J, Teichmann SA, Misharin AV, Nawijn MC. The Human Lung Cell Atlas: A High-Resolution Reference Map of the Human Lung in Health and Disease. *Am J Respir Cell Mol Biol* 2019; 61: 31-41.
9. Vieira Braga FA, Kar G, Berg M, Carpaij OA, Polanski K, Simon LM, Brouwer S, Gomes T, Hesse L, Jiang J, Fasouli ES, Efremova M, Vento-Tormo R, Talavera-Lopez C, Jonker MR, Affleck K, Palit S, Strzelecka PM, Firth HV, Mahbubani KT, Cvejic A, Meyer KB, Saeb-Parsy K, Luinge M, Brandsma CA, Timens W, Angelidis I, Strunz M, Koppelman GH, van Oosterhout AJ, Schiller HB, Theis FJ, van den Berge M, Nawijn MC, Teichmann SA. A cellular census of human lungs identifies novel cell states in health and in asthma. *Nat Med* 2019; 25: 1153-1163.
10. Raredon MSB, Adams TS, Suhail Y, Schupp JC, Poli S, Neumark N, Leiby KL, Greaney AM, Yuan Y, Horien C, Linderman G, Engler AJ, Boffa DJ, Kluger Y, Rosas IO, Levchenko A, Kaminski N, Niklason LE. Single-cell connectomic analysis of adult mammalian lungs. *Sci Adv* 2019; 5: eaaw3851.

## FIGURE LEGENDS

**Figure 1.** “Lung-at-a-glance” consists of three interactive and interconnected components:

“Region at a glance”, “Cell at a glance”, and “Gene at a glance”.

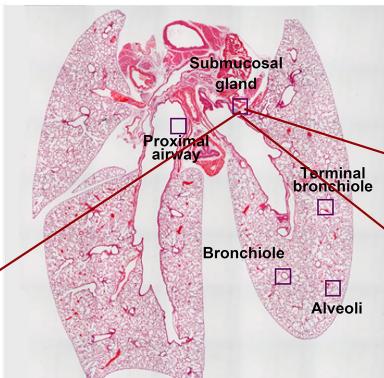
(A) “Region at a glance” allows users to search a specific lung region using the interactive ontology tree navigation or clicking the boxes in the lung image to explore cells reside in the selected region.

(B) “Cell at a glance” offers a collection of information of queried cell type, including cell definition, cell type specific positive and negative markers, transcription factors, ligand-receptors, and hyperlinks which are mapped to the chosen cell type in all datasets in LGEA web portal and immunofluorescence confocal images of the chosen cell type.

(C) “Gene at a glance” allows users to query a gene of interest to obtain associated gene information including hyperlinks to external knowledge base, to expression patterns in LGEA datasets, and to immunofluorescence confocal images. A two-dimensional heatmap by developmental times and cell types was used to summarize expression patterns and statistics of queried gene in all datasets available in LGEA databases.

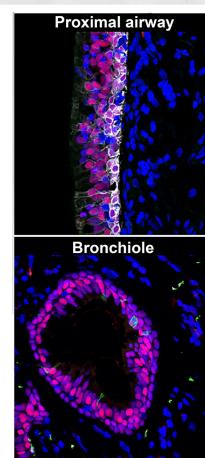
**Figure 2.** LGEA web portal home page.

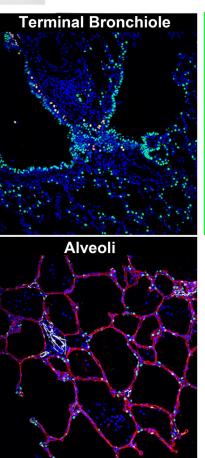
The new release of LGEA web portal provides query and analytic tools including “LungGENS”, “LungSortedCells”, “LungDTC”, “LungDiseases”, “LungEpigenetics”, “LungImage”, “LungProteomics”, “LungOntology”, “LGEA-ProjectBased” and “LGEA-ToolBox”. Newly developed feature toolset “Lung-at-a-glance” is highlighted on top of the home page.

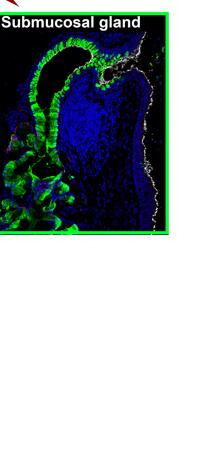

**A**

## Region at a glance

Search: Submucosal gland Clear


Anatomical Ontology for Mouse Lung Maturation


- ↳ respiratory tract
- ↳ lower respiratory tract
- ↳ bronchus
- ↳ lung
- ↳ trachea
- ↳ trachea bifurcation
- ↳ trachea lumen
- ↳ tracheal wall
- ↳ tracheal adventitia
- ↳ tracheal mucosa
- ↳ tracheal submucosa
- ↳ submucosal gland
- ↳ submucosal gland epithelium
- ↳ basement membrane
- ↳ submucosal gland epithelial cell
- ↳ mucus cell (also known as goblet cell)
- ↳ myoepithelial cell
- ↳ serous cell
- ↳ submucosal gland duct epithelium
- ↳ basement membrane
- ↳ submucosal gland duct epithelial cell
- ↳ basal cell
- ↳ chemosensory cell
- ↳ ciliated cell
- ↳ collecting duct cell
- ↳ connective tissue cell
- ↳ extracellular matrix
- ↳ tracheal cartilaginous ring
- ↳ respiratory autonomic nervous system
- ↳ respiratory immune system
- ↳ respiratory system blood vessel




**Submucosal gland diagram**













**Ciliated Cell (subtype of Airway epithelial Cell)**

Mouse  Human

**Definition**

A columnar epithelial cell with microscopic hair-like processes, i.e., motile cilia, that extend from the apical cell surface. These cells are found in the epithelia of the conducting airways (trachea, bronchi, and bronchioles), where they sweep mucus, dirt, dust, bacteria and other pathogens up and out of the lung, bronchi, and trachea. [Wikipedia]

**Cell signatures (Prediction method at GitHub)**

**Positive signatures:**  
1700016K19Rik Ccdc153 1700009P17Rik Foxj1 Fam183b Ccdc113 Tmem212 Rspf1 Dynlrb 2 Enkr Fhad1 Riadi Spag17 Nme5 Meig1

**Negative signatures:**  
Rbpj1 Aqp5 Slc39a8 Etv5 Spink5

**Transcription factors:**  
Foxj1 Myb Tcea3 Gt3 Ddx5 Chd4

**Surface markers:**  
Tmem107 Cd24a Hsp90aa1 Ccdc108 Cldn3 Hspa2

**Ligands:**  
Cyp2s1 Hsp90aa1 Tnn Anxa1 Hdc Ptges3

**Receptors:**  
Tspan1 Igfbp5 Sdc4 Pgrmc1 Il18r1 Ddr1

**Query signatures of LGEA datasets**

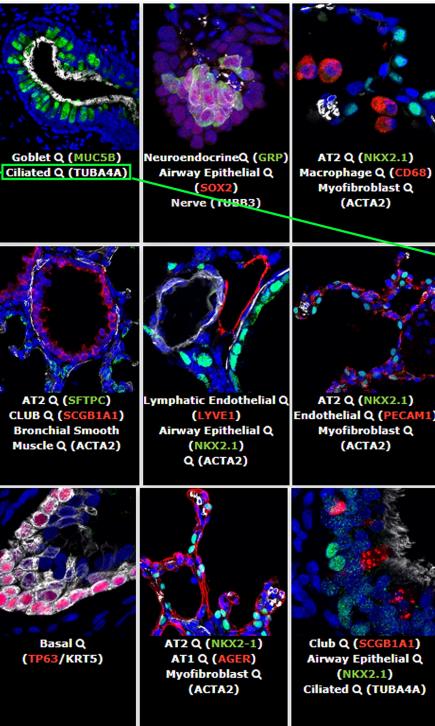
**LungGENS**  
E18.5 PND3 Dropseq-PND1 Dropseq-PND3

**LGEAExternalData**  
CFTR-expressing ionocytes(Rajagopal)-Fluidigm C1 CFTR-expressing ionocytes(Rajagopal)-Dropseq E18.5 distal lung epithelium(Krasnow)

**Query images by marker**

**Query by time**  
E16.5 E18.5 PN1 PN3 PN7 PN10 PN14 PN28

**Query by marker**  
Nkx2-1 Sox2 Tuba4a


**Anatomical ontology in tree view****B**

## Cell at a glance

Search: Ciliated Clear

Cell Ontology for Mouse Lung Maturation

- ↳ celltype
- ↳ connective tissue cell
- ↳ endothelial cell
- ↳ epithelial cell
- ↳ alveolar epithelial cell
- ↳ bronchial epithelial cell
- ↳ ciliated cell
- ↳ club cell
- ↳ immature club cell
- ↳ unclassified epithelial cell
- ↳ ciliated cell precursor
- ↳ proliferative epithelial cell
- ↳ tracheal epithelial cell
- ↳ basal cell
- ↳ chemosensory cell
- ↳ ciliated cell
- ↳ club cell
- ↳ immature club cell
- ↳ mucus cell (also known as goblet cell)
- ↳ neuroendocrine cell
- ↳ serous cell
- ↳ unclassified epithelial cell
- ↳ ciliated cell precursor
- ↳ intermediate airway progenitor cell
- ↳ proliferative epithelial cell
- ↳ bronchial epithelial cell
- ↳ pre-alveolar epithelial cell
- ↳ submucosal gland duct epithelial cell
- ↳ submucosal gland epithelial cell
- ↳ immune cell
- ↳ interstitial cell
- ↳ glial cell
- ↳ autonomic neuron
- ↳ proliferative cell
- ↳ blood cell
- ↳ isolated lung cell types



**Ciliated Cell (subtype of Airway epithelial Cell)**

Mouse  Human

**Definition**

A columnar epithelial cell with microscopic hair-like processes, i.e., motile cilia, that extend from the apical cell surface. These cells are found in the epithelia of the conducting airways (trachea, bronchi, and bronchioles), where they sweep mucus, dirt, dust, bacteria and other pathogens up and out of the lung, bronchi, and trachea. [Wikipedia]

**Cell signatures (Prediction method at GitHub)**

**Positive signatures:**  
1700016K19Rik Ccdc153 1700009P17Rik Foxj1 Fam183b Ccdc113 Tmem212 Rspf1 Dynlrb 2 Enkr Fhad1 Riadi Spag17 Nme5 Meig1

**Negative signatures:**  
Rbpj1 Aqp5 Slc39a8 Etv5 Spink5

**Transcription factors:**  
Foxj1 Myb Tcea3 Gt3 Ddx5 Chd4

**Surface markers:**  
Tmem107 Cd24a Hsp90aa1 Ccdc108 Cldn3 Hspa2

**Ligands:**  
Cyp2s1 Hsp90aa1 Tnn Anxa1 Hdc Ptges3

**Receptors:**  
Tspan1 Igfbp5 Sdc4 Pgrmc1 Il18r1 Ddr1

**Query signatures of LGEA datasets**

**LungGENS**  
E18.5 PND3 Dropseq-PND1 Dropseq-PND3

**LGEAExternalData**  
CFTR-expressing ionocytes(Rajagopal)-Fluidigm C1 CFTR-expressing ionocytes(Rajagopal)-Dropseq E18.5 distal lung epithelium(Krasnow)

**Query images by marker**

**Query by time**  
E16.5 E18.5 PN1 PN3 PN7 PN10 PN14 PN28

**Query by marker**  
Nkx2-1 Sox2 Tuba4a

**Cell ontology in tree view****C**

## Gene at a glance

**Gene information**

**Human info**

Gene symbol: FOXJ1  
Gene ID: 15223  
Full Name: forkhead box J1  
Chromosome: 11  
Gene type: protein-coding

**Links external resources**

LungMAP NCBI GeneCard MGI Ensembl The Human Protein Atlas HGNC UCSC UniProt OMIM

**Links to LGEA datasets**

Query for in datasets below:  
LungGENS E18.5 PND3 Dropseq-PND1 Dropseq-PND3  
LungSortedCells Human 20months Human Neo-to-Adult Mouse npgfa+FB  
Mouse E16.5 Mouse E18.5 Mouse PND1 Mouse PND7 Mouse PND14 Mouse PND28  
LungDTC Mouse RNA-Seq (E16-PND28) Monkey RNA-Seq (G410-GA150)  
LungEpigenome Human iPSC scRNA-seq Human AT2 iPSC RNA-seq  
LungEpigenome E16.5 iPSC RNA-seq  
LungProteomics Human sorted 20mos Mouse E16.5 PND28  
LungExternal Human iPSC-derived lung proximal progenitors (Kotton) SCGB3A2+ airway epithelium: time course microarray (Kotton) SCGB3A2+ airway epithelium: single cell profiling (Kotton) SCGB3A2+ airway epithelium: single cell array vs alveolar surfaces (Kotton) Distinct mesenchymal lineages in mouse adult lung (Moriarty) CFTR-expressing ionocytes C1 (Rajagopal) CFTR-expressing ionocytes C1 (Rajagopal)

**Links to Lung Image**

Query by species: *Mouse* *CS7BL6* Human Monkey  
Query by development:  
Mouse: *Mouse* E16.5 *Mouse* E18.5 *Mouse* PND1 *Mouse* PND3 *Mouse* PND7 *Mouse* PND10 *Mouse* PND14 *Mouse* PND28  
Human: 1 day 6 day 4 months 9 months 11 months 13 months 14 months 20 months 2 years 3 years 4 years 8 years Adult 23 years  
Monkey: *Fetal* *Monkey* GD105 *Fetal* *Monkey* GD130 *Fetal* *Monkey* GD160

| Drop-Seq | Epithelial cells |         | Endothelial cells |          | Mesenchymal cells |         |
|----------|------------------|---------|-------------------|----------|-------------------|---------|
|          | Digital Ep.      | At1 Ep. | At1 Endo          | At1 Endo | At1 Lympho        | At1 Mes |
| Mouse    | E16.5            | E18.5   | PN1               | PN3      | PN7               | PN10    |
|          | PN1              | PN3     | PN7               | PN10     | PN14              | PN28    |
|          | PN1              | PN3     | PN7               | PN10     | PN14              | PN28    |
| Human    | 24YRS            |         |                   |          |                   |         |

Rajagopal Lab: A revised airway epithelial hierarchy includes CFTR-expressing ionocytes [PubMed]

| Drop-Seq | Ciliated | Club/Clara | Basal | Goblet | Neuroendocrine |
|----------|----------|------------|-------|--------|----------------|
| C1       | High     | Low        | Low   | Low    | Low            |

Sampled heatmaps of queried result.

# LGEA Web Portal

Lung Gene Expression Analysis Web Portal



LGEA LungMAP phase 2

LungGENS

LungMAP

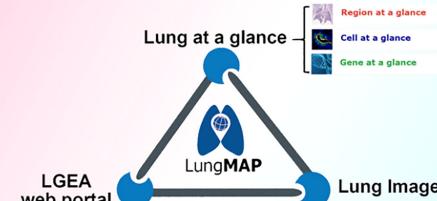
Lung Image

Collaboration

News

## News and updates

### Introduction of LungMAP -- Dr.Jeffrey Whitsett


11-4-2019: Dr. whitsett and Dr. Wert's manuscript : "Comprehensive Anatomic Ontologies for Lung Development: A Comparison of Alveolar Formation and Maturation within Mouse and Human Lung" has been published online. <PubMed>

7-9-2019: Check out our recent publication: Integration of Transcriptomic and Proteomic Data Identifies Biological Functions in Cell Populations From Human Infant Lung.

4-23-2019: New analyses of mouse sorted cells at PND1 and PND 14 are available in LungSortedCell Panel.

3-18-2019: ATS Webinar on the LungMAP PART 1 & PART 2.

## News panel



## New feature release: Lung at a glance

# 10 functional query panels

- 1 LungGENS
- 2 LungSortedCells
- 3 LungDTC
- 4 LungDisease
- 5 LungEpigenetics
- 6 LungImage
- 7 LungProteomics
- 8 LGEA-ToolBox
- 9 LGEA-ProjectBased
- 10 LungOntology

## Lung at a glance

**1 LungGENS**

- Mouse scRNA-seq
  - Mouse Fluidigm C1
    - (E16.5, E18.5, P1, P3, P7, P10, P14, P28)
  - Mouse Drop-seq
    - (E16.5, E18.5, P1, P3, P7, P10, P14, P28)
  - Human scRNA-seq
    - Human Drop-seq
      - >
    - Human 10x Genomics
      - >

**2 LungSortedCells**

- Human
  - Major cell types (Immune, Endothelial, Mesenchymal and Epithelial Cells)
  - Airway (Basal, Bron-Epi/SMG)
- Mouse
  - Major cell types (Immune, Endothelial, Mesenchymal and Epithelial Cells)
  - Airway (Basal, Bron-Epi/SMG)
- LungSortedCells-query
  - Query by gene list

**3 LungDTC**

- MicroArray
  - LDProfiles
  - MGI: developmental time course
- RNA-seq
  - Mouse Lung
    - (E16, E18, P1, P3, P7, P14 and P28)
  - Rhesus Macaque Lung
    - (GA105, GA130, GA150)

**4 LungDisease**

- scRNA-seq Analysis
  - Human IPF
    - (540 normal and disease cells)
  - Sorted RNA-seq
    - Human IPF
      - Human AT2 cells
  - LungImage-disease
    - LungImage

**5 LungEpigenetics**

- ENCODE
  - Mouse histone PTM chip-seq data
- CCHMC / LungMAP
  - TBA

**6 LungImage**

- Confocal Imaging
  - Mouse C57BL6 lung
    - (E16.5, E18.5, P1, P3, P7, P10...)
  - Human Lung
    - (Postnatal and Adult)
- H&E Staining
  - Human Lung
    - (Postnatal and Adult)
- Query by gene
  - Marker list

**7 LungProteomics**

- Mouse Lung
  - Mouse E16.5, E18.5, P7, P28
- Human Lung
  - Human sorted 20 months
- LungMAP site
  - TBA

**8 LGEA-ToolBox**

- Database query tool
  - Signatures comparison
  - Gene at a glance
  - Gene list query
  - Gene list analysis
  - Lung at a glance
- Research tools
  - SINCERA
  - SLICE
  - Other resource

**9 LGEA-ProjectBased**

- CCHMC
  - Lung at birth
  - Integration of human protein and mRNA
  - GR signaling in lung maturation
- External
  - Kotton's Lab
    - >
  - Krasnow's Lab
    - >
  - Morrisey's Lab
    - >
  - Rajagopal's Lab
    - >

**10 LungOntology**

- Mouse
  - Anatomy
    - >
  - Cell type
    - >
- Human
  - Anatomy
    - >
  - Cell type
    - >