

1 **Gnotobiotic rainbow trout (*Oncorhynchus mykiss*) model reveals endogenous**  
2 **bacteria that protect against *Flavobacterium columnare* infection**

3

4 David PÉREZ-PASCUAL<sup>1\*</sup>, Sol VENDRELL-FERNÁNDEZ<sup>1</sup>, Bianca AUDRAIN<sup>1</sup>, Joaquín  
5 BERNAL-BAYARD<sup>1,5</sup>, Rafael PATIÑO-NAVARRETE<sup>2</sup>, Vincent PETIT<sup>3</sup>, Dimitri  
6 RIGAUDEAU<sup>4</sup>, Jean-Marc GHIGO<sup>1\*</sup>

7

8 <sup>1</sup> *Unité de Génétique des Biofilms, Institut Pasteur, UMR CNRS2001, Paris, France*

9 <sup>2</sup> *Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP University*  
10 *Paris Sud, Paris, France*

11 <sup>3</sup> *AQUALANDE, Gué de Bern, 40410 Pissos, France*

12 <sup>4</sup> *Unité Infectiologie Expérimentale Rongeurs et Poissons, INRAE, Université Paris-Saclay,*  
13 *78350 Jouy-en-Josas, France,*

14 <sup>5</sup> Present address: *Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado*  
15 *1095, 41080 Sevilla, Spain*

16 **\*Co-Corresponding authors:** Jean-Marc Ghigo (jmghigo@pasteur.fr), David Pérez-Pascual  
17 (david.perezpascual@pasteur.fr)

18

19 **Keywords:** Rainbow trout; germ-free; infection; *Flavobacterium columnare* ;, probiotic ;  
20 colonization resistance.

21

22 **Short Title:** Colonization resistance and probiosis in gnotobiotic rainbow trout

23

24

25 **ABSTRACT**

26

27

28 The health and environmental risks associated with antibiotic use in aquaculture have promoted

29 bacterial probiotics as an alternative approach to control fish infections in vulnerable larval and

30 juvenile stages. However, evidence-based identification of probiotics is often hindered by the

31 complexity of bacteria-host interactions and host variability in microbiologically uncontrolled

32 conditions. While these difficulties can be partially resolved using gnotobiotic models

33 harboring no or reduced microbiota, most host-microbe interaction studies are carried out in

34 animal models with little relevance for fish farming. Here we studied host-microbiota-pathogen

35 interactions in a germ-free and gnotobiotic model of rainbow trout (*Oncorhynchus mykiss*), one

36 of the most widely cultured salmonids. We demonstrated that germ-free larvae raised in sterile

37 conditions displayed no significant difference in growth after 35 days compared to

38 conventionally-raised larvae, but were extremely sensitive to infection by *Flavobacterium*

39 *columnare*, a common freshwater fish pathogen causing major economic losses worldwide.

40 Furthermore, re-conventionalization with 11 culturable species from the conventional trout

41 microbiota conferred resistance to *F. columnare* infection. Using mono-re-conventionalized

42 germ-free trout, we identified that this protection is determined by a commensal

43 *Flavobacterium* strain displaying antibacterial activity against *F. columnare*. Finally, we

44 demonstrated that use of gnotobiotic trout is a suitable approach for the systematic identification

45 of both endogenous and exogenous probiotic bacterial strains that may protect teleostean hosts

46 against *F. columnare* and other pathogens. This study establishes a novel and ecologically-

47 relevant gnotobiotic model that will improve the sustainability and health of aquaculture.

48

49

50 **INTRODUCTION**

51  
52        As wild fish stock harvests have reached biologically unsustainable limits, aquaculture has  
53        grown to provide over half of all fish consumed worldwide [1]. However, intensive aquaculture  
54        facilities are prone to disease outbreaks and the high mortality rate in immunologically  
55        immature juveniles, in which vaccination is unpractical, constitutes a primary bottleneck for  
56        fish production [2-4]. These recurrent complications prompt the prophylactic or therapeutic use  
57        of antibiotics and chemical disinfectants to prevent fish diseases [5, 6] but may lead to final  
58        consumer safety risks, environmental pollution and spread of antibiotic resistance [7]. In this  
59        context, the use of bacterial probiotics to improve fish health and protect disease-susceptible  
60        juveniles is an economic and ecological sensible alternative to antibiotic treatments [8, 9].

61        Probiotics are live microorganisms conferring health benefits on the host via promotion of  
62        growth, immuno-stimulation or direct inhibition of pathogenic microorganisms [10, 11]. The  
63        native host microbiota plays a protective role against pathogenic microorganisms by a process  
64        known as colonization resistance [12, 13]. In fish, the endogenous microbial community,  
65        whether residing in gastrointestinal tract or in the fish mucus, was early considered as a source  
66        of protective bacteria [14-18]. However, selection of probiotic bacteria is often empirical or  
67        hampered by the poor reproducibility of *in vivo* challenges, frequently performed in relatively  
68        uncontrolled conditions with high inter-individual microbial compositions [15, 19].

69        To improve evidence-based identification of fish probiotics and their efficacy in disease  
70        prevention, the use of germ-free (GF) or fully controlled gnotobiotic hosts is a promising  
71        strategy [20, 21]. In addition to laboratory fish models such as zebrafish (*Danio rerio*) [22-24],  
72        several fish species have been successfully reared under sterile conditions to test probiotic-  
73        based protection against pathogenic bacteria, including Atlantic cod (*Gadus morhua*) [25],  
74        Atlantic halibut (*Hippoglossus hippoglossus*) [26], European sea bass (*Dicentrarchus labrax*)  
75        [19] and turbot (*Scophthalmus maximus*) [27] (for a review, see [28]).

76 Salmonids, especially rainbow trout (*Oncorhynchus mykiss*) and Atlantic salmon (*Salmo salar*),  
77 are economically important species, whose production in intensive farming is associated with  
78 increased susceptibility to diseases caused by viruses, bacteria and parasites [29]. Here we  
79 studied the probiotic potential of endogenous members of the rainbow trout microbiota to  
80 protect against infection by *Flavobacterium columnare*, a fresh-water fish pathogen causing  
81 major losses in aquaculture of fish such as Channel catfish, Nile tilapia and salmonids [30]. We  
82 developed a new protocol to rear GF trout larvae and showed that GF larvae were extremely  
83 sensitive to infection by *F. columnare*. We then identified two bacterial species originating  
84 either from the trout microbiota (a commensal *Flavobacterium* sp.) or the zebrafish microbiota  
85 (*Chryseobacterium massiliae*) that fully restored protection against *F. columnare* infection. Our  
86 *in vivo* approach opens perspectives for the rational and high throughput identification of  
87 probiotic bacteria protecting rainbow trout and other fish against columnaris disease. It also  
88 provides a new model for the study of host-pathogen interactions and colonization resistance in  
89 a relevant teleostean fish model.

90  
91

92 **RESULTS**

93

94 **Germ-free trout show normal development and growth compared to conventional**

95 **larvae.**

96 To produce microbiologically controlled rainbow trout and investigate the potential protection

97 conferred by endogenous or exogenous bacteria against incoming pathogens, we produced (GF)

98 trout larvae by sterilizing the chorion of fertilized eggs with a cocktail of antibiotics and

99 antifungals, 0.005 % bleach and a iodophor disinfection solution. GF eggs were then kept at

100 16°C under sterile conditions and both conventional (Conv) and treated eggs hatched

101 spontaneously 5 to 7 days after reception, indicating that the sterilization protocol did not affect

102 the viability of the eggs. However, hatching efficiency was  $72 \pm 5.54\%$  for sterilized eggs

103 versus  $48.6 \pm 6.2\%$  for non-treated, Conv eggs, possibly due to higher susceptibility of Conv

104 eggs to opportunistic infections from the endogenous microbiota. Once hatched, all larvae were

105 transferred into vented-cap cell culture flasks containing fresh sterile water without antibiotics

106 renewed every 48 hours (h). GF and Conv fish relied on their vitellus reserves until day 20 days

107 post-hatching (dph) after which they were fed with sterilized fish food powder every 48 h (Fig.

108 1). Sterility tests were performed at 24 h, 7 days and 21 days post-sterilization treatment and

109 before each water change until the end of the experiment (35 dph) (Supporting Fig. S1). To test

110 the physiological consequences of raising GF larvae, we compared the growth of Conv and GF

111 larvae reared from the same batch of fertilized eggs and observed no significant difference in

112 standard body length ( $2.51 \pm 0.24$  cm vs.  $2.58 \pm 0.21$  cm) or weight ( $1.17 \pm 0.20$  g vs.  $1.17 \pm$

113 0.10 g) at 35 dph for Conv and GF, respectively (Supporting Fig. S2). To compare Conv and

114 GF trout anatomy, we developed an approach combining iDISCO solvent-based method to

115 generate transparent fish tissue and lightsheet 3D imaging of the whole body. This analysis did

116 not reveal any anatomical differences at 21 dph, even regarding organs in direct contact with

117 fish microbiota such as gills (Fig. 2D and 2I) and intestine (Fig. 2C and 2H; Supporting Fig.  
118 S3). No difference was seen on other organs potentially influenced by gut-microbiota such as  
119 the brain (Fig. 2A and 2F), spleen (Fig. 2B and 2G) and head kidney (Fig. 2E and 2J) [31].  
120 These results suggested that the natural microbiota had no major macroscopic impact on fish  
121 growth, development or anatomy at this stage of rainbow trout development in our rearing  
122 conditions.

123

124 **Identification of susceptibility to fish pathogens in germ-free but not conventional trout  
125 larvae.**

126 To identify bacterial pathogens able to infect GF rainbow trout larvae by the natural infection  
127 route, we exposed the 24 dph larvae for 24 h to  $10^7$  colony forming units (CFU)/ml of several  
128 trout bacterial pathogens, including *Flavobacterium psychrophilum* strain THCO2-90, *F.*  
129 *columnare* strain Fc7, *Lactococcus garvieae* JIP 28/99, *Vibrio anguillarum* strain 1669 and  
130 *Yersinia ruckeri* strain JIP 27/88 [32]. Larvae were then washed with sterile water, renewing  
131 90% of the infection water three times and kept at 16°C under sterile conditions. Among all  
132 tested pathogens, only *F. columnare* strain Fc7 led to high and reproducible mortality of GF  
133 trout larvae within 48 h post-exposure (Fig. 3). In contrast, Conv larvae reared from non-  
134 sterilized eggs survived *F. columnare* strain Fc7 infection under tested conditions (Fig. 4A).  
135 Histological analysis performed at 25 dph (24 h post infection) on GF and Conv larvae did not  
136 show any sign of intestinal damage (Supporting Fig.S4).

137

138 **Conventional rainbow trout microbiota protects against *F. columnare* infection.**

139 Considering the high sensitivity of GF but not Conv trout larvae to infection by *F. columnare*  
140 Fc7, we hypothesized that resistance to infection could be provided by some components of the  
141 Conv larvae microbiota. To test this, we exposed GF rainbow trout larvae to water from Conv  
142 larvae flasks at 21 dph. Re-conventionalized (Re-Conv) rainbow trout larvae survived as well

143 as Conv larvae to *F. columnare* Fc7 infection, whereas those maintained in sterile conditions  
144 died within the first 48h after infection (Fig. 4B). These results suggested that microbiota  
145 associated with Conv rainbow trout provide protection against *F. columnare* Fc7 infection. To  
146 identify culturable species potentially involved in this protection, we plated bacteria recovered  
147 from 3 whole Conv rainbow trout larvae at 35 dph on various agar media. 16S rRNA-based  
148 analysis of each isolated morphotype led to the identification of 11 different bacterial strains  
149 corresponding to 9 different species that were isolated and stored individually (Table 1).

150

151 **Table 1. The 11 strains isolated from Conv rainbow trout larvae**

| Bacterial strains isolated from trout microbiota |
|--------------------------------------------------|
| <i>Aeromonas rivipollensis</i> 1                 |
| <i>Pseudomonas helmanticensis</i>                |
| <i>Aeromonas rivipollensis</i> 2                 |
| <i>Pseudomonas baetica</i>                       |
| <i>Aeromonas hydrophila</i>                      |
| <i>Flavobacterium plurextorum</i> 1              |
| <i>Acinetobacter</i> sp.                         |
| <i>Flavobacterium plurextorum</i> 2              |
| <i>Delftia acidovorans</i>                       |
| <i>Flavobacterium</i> sp. strain 4466            |
| <i>Pseudomonas</i> sp.                           |

152

153 We then re-conventionalized GF rainbow trout larvae at 22 dph with an equiratio mix of all 11  
154 identified bacterial strains (hereafter called Mix11), each at a concentration of  $5.10^5$  CFU/ml.  
155 After exposure to *F. columnare* strain Fc7, these Re-Conv<sup>Mix11</sup> larvae survived as well as Conv  
156 fish (Fig. 4C), demonstrating that the Mix11 isolated from the rainbow trout microbiota  
157 recapitulates full protection against *F. columnare* infection observed in Conv larvae.

158

159 **Resistance to *F. columnare* infection is conferred by one member of the trout**

160 **microbiota.**

161 To determine whether some individual members of the protective Mix11 could play key roles  
162 in infection resistance, we mono-re-conventionalized 22 dph GF trout by each of the 11 isolated  
163 bacterial strains at  $5.10^5$  CFU/ml followed by challenge with *F. columnare* Fc7. We found that  
164 only *Flavobacterium* sp. strain 4466 restored Conv-level protection, whereas the other 10  
165 strains displayed no protection, whether added individually (Fig. 5A) or as a mix (Mix10 in  
166 Fig. 5B). Interestingly, although cell-free spent supernatant of *Flavobacterium* sp. strain 4466  
167 showed no inhibitory activity against *F. columnare* Fc7 in an overlay assay (Supporting Fig.  
168 S5A), *Flavobacterium* sp. strain 4466 colony growth inhibited the growth of *F. columnare* Fc7  
169 (Supporting Fig. S5B) and of all tested *F. columnare* strains (Supporting Fig. S5C), suggesting  
170 a potential contact dependent inhibition. Consistently, we identified a cluster of 12 genes in the  
171 *Flavobacterium* sp. strain 4466 genome (*tssB*, *tssC*, *tssD*, *tssE*, *tssF*, *tssG*, *tssH*, *tssI*, *tssK*, *tssN*,  
172 *tssP* and *tssQ*) characteristic of type 6 secretion system (T6SS), T6SS<sup>iii</sup>, a contact-dependent  
173 antagonistic system only present in phylum *Bacteroidetes* [33]. To improve the taxonomic  
174 identification of the protective *Flavobacterium* isolated from the trout larvae microbiota, we  
175 performed whole genome sequencing followed by Average Nucleotide Identity (ANI) analysis.  
176 We determined that despite similarity with *Flavobacterium spartansii* (94.65 %) and  
177 *Flavobacterium tructae* (94.62 %), these values are lower than the 95 % ANI needed to identify  
178 two organisms as the same species [34]. Furthermore, full-length 16S rRNA and *recA* genes  
179 comparisons also showed high similarity with *F. spartansii* and *F. tructae*, however, the  
180 obtained values were also below the 99 % similarity threshold required to consider that two  
181 organisms belong to the same species (Supporting Table S1). Similarly, a maximum likelihood  
182 based phylogenetic tree (Supporting Fig.S6) generated from sequences of 15 bacterial strains  
183 from the *Flavobacterium* genus revealed that the sequence of *Flavobacterium* sp. strain 4466

184 clustered with sequences of *F. spartansii* and *F. tructae*, but did not allow the identification of  
185 *Flavobacterium* sp. strain 4466 at species level.

186

187 **Endogenous *Flavobacterium* sp. strain 4466 protects germ-free zebrafish larvae against**  
188 ***F. columnare* infection.**

189 *F. columnare* infects a wide range of wild and cultured freshwater fish species [30] and we  
190 previously established that GF zebrafish larvae are highly sensitive to *F. columnare* infection  
191 [35]. To test whether the protective *Flavobacterium* sp. isolated from the Conv rainbow trout  
192 microbiome could also protect zebrafish, we re-conventionalized GF zebrafish larvae with  
193 *Flavobacterium* sp. 48 hours before exposure to four virulent *F. columnare* strains (Fc7, ALG-  
194 00-530, IA-S-4, and Ms-Fc-4) belonging to genomovars I and II, and isolated from different  
195 geographical origins and host fish species. Whereas all tested *F. columnare* strains were highly  
196 virulent and killed GF zebrafish larvae within 48 hours, the non-pathogenic *Flavobacterium* sp.  
197 strain 4466 conferred protection to all pathogenic *F. columnare* strains except strain Ms-Fc-4  
198 (Figure 6). Therefore, the *Flavobacterium* sp. strain identified from trout Mix11 is a putative  
199 probiotic useful beyond trout to zebrafish and potentially other fish impacted by columnaris  
200 disease.

201

202 **Use of germ-free trout model to validate exogenous probiotics protecting against *F.***  
203 ***columnare* infection.**

204 To determine whether our GF trout model could be used as a controlled gnotobiotic approach  
205 to screen for trout probiotics, we pre-exposed 22 dph GF rainbow trout larvae to  
206 *Chryseobacterium massiliae*, a bacterium that does not belong to trout microbiota but was  
207 previously shown to protect larval stage and adult zebrafish from infection by *F. columnare*  
208 [35]. After 48 h of bath in a *C. massiliae* suspension at  $10^5$  CFU/ml, we infected trout larvae  
209 with *F. columnare* strains Fc7, ALG-00-530, IA-S-4 and Ms-Fc-4 and observed that *C.*

210 *massiliae* protected against all tested *F. columnare* pathogens (Figure 7). These results showed  
211 that the GF rainbow trout model enables the evaluation of bacterial species, endogenous to trout  
212 or not, with probiotic potential against highly virulent *F. columnare* strains.

213

214 **DISCUSSION**

215 Although the use of probiotics is a promising approach to improve fish growth and reduce  
216 disease outbreaks while limiting chemical and antibiotic treatments [17, 36, 37], rational and  
217 evidence-based procedures for the identification of protective bacteria are limited. Here, we  
218 established a controlled and robust model to study trout resistance to infection by bacterial  
219 pathogens and to identify trout probiotics in microbiologically controlled conditions using GF  
220 and gnotobiotic rainbow trout.

221 Our gnotobiotic protocol is based on the survival of rainbow trout eggs to chemical sterilization  
222 eliminating the microbial community associated to the egg surface. Similarly to gnotobiotic  
223 protocols used for zebrafish [24, 38], cod [25] and stickleback (*Gasterosteus aculeatus*) [39],  
224 our approach produced larvae that were GF up to 35 dph at 16°C without continued exposure  
225 to antibiotics, therefore avoiding possible effects of prolonged antibiotic exposure on fish  
226 development [40]. Similarly to GF stickleback larvae at 14 dph [39], we observed no  
227 development or growth differences between GF and Conv trout larvae at 21 dph. In contrast,  
228 GF sea bass (*D. labrax* L.) larvae grew faster and had a more developed gut compared to  
229 conventionally raised larvae [41]. These discrepancies could come from the fact that, in our  
230 study and in the GF stickleback study, anatomical analyses were performed before first-feeding,  
231 whereas the GF sea bass were already fed when examined [41]. Indeed, trout larvae initially  
232 acquire nutrients by absorbing their endogenous yolk until the intestinal track is open from the  
233 mouth to the vent. We therefore cannot rule out that at later stages of development, when fish  
234 begin to rely on external feeding, differences between GF and Conv fish may occur, especially  
235 in the structure and size of organs or in body weight. However, the hurdles associated with  
236 long-term fish husbandry while keeping effective sterility control, *de facto* limits our approach  
237 to relatively short-term experiments on larvae with limited feeding time and low complexity  
238 microbiota.

239 While GF conditions cannot be compared to those prevailing in the wild or used in fish farming  
240 [25], our results showed that GF rainbow trout larvae are highly susceptible to *F. columnare*,  
241 the causative agent of columnaris disease affecting many aquaculture fish species [30, 42].  
242 Interestingly, our GF rainbow trout larvae model also revealed the protective activity of *C.*  
243 *massiliae*, a potential probiotic bacterium isolated from Conv zebrafish [35], against various *F.*  
244 *columnare* strains from different fish host and geographical origins. These results demonstrate  
245 that GF rainbow trout is a robust animal model for the study of *F. columnare* pathogenicity and  
246 support *C. massiliae* as a potential probiotic to prevent columnaris diseases in teleost fish other  
247 than its original host.  
248 Furthermore, we demonstrated that the relatively simple culturable bacteria isolated from  
249 microbiota harbored by Conv trout larvae effectively protect against *F. columnare*.  
250 Interestingly, different studies have demonstrated that highly diverse gut communities are more  
251 likely to protect the host from pathogens [43, 44]. This constitutes the base for the paradoxical  
252 negative health effect associated with the massive utilization of antibiotics in aquaculture: the  
253 reduction in microbial diversity facilitates colonization by opportunistic pathogens [45]. While  
254 this advocates for practices leading to enrichment of fish microbial communities to minimize  
255 pathogenic invasions in aquaculture [16], our results demonstrate that resistance to a bacterial  
256 pathogen can also be achieved by a single bacterial strain in a low complexity microbiota.  
257 Moreover, previous studies of resistance to infection provided by controlled bacterial consortia  
258 in gnotobiotic hosts often relied on community composition, rather than individual members of  
259 the microbiota [46-49]. We showed that the observed protection in larvae is mainly due to the  
260 presence of *Flavobacterium* sp. strain 4466. We cannot exclude, however, that at later  
261 developmental stages, the presence of other bacterial species may be needed for more efficient  
262 implantation or stability of protective members in the trout microbiota.

263 The molecular basis of *F. columnare* pathogenicity is poorly understood, but was recently  
264 shown to rely on the secretion of largely uncharacterized virulence factors and toxins by the  
265 *Flavobacterium* type IX secretion system (T9SS) [50]. The high genetic variability of *F.*  
266 *columnare* and its broad host range constitute an important limitation for the identification of  
267 effective probiotics against this widespread pathogen. Several probiotic candidates isolated  
268 from the host provided partial protection against *F. columnare* infection in other conventional  
269 fish species such as walleye (*Sander vitreous*) and brook char (*Salvelinus fontinalis*) [51, 52].  
270 However, high variability in protection provided by probiotic strains against *F. columnare* was  
271 observed depending on the fish batch used, indicating a resistance directly dependent on the  
272 fish host genetics [51] or immunological status. Here we reduced this variability using GF and  
273 gnotobiotic trout larvae and demonstrated the ability of *Flavobacterium* sp. strain 4466 isolated  
274 from Conv trout larvae microbiota to protect against *F. columnare* infection. Furthermore, this  
275 bacterium, but not its supernatant, inhibits *F. columnare* growth *in vitro*, which suggests a direct  
276 interaction between *Flavobacterium* sp. strain 4466 and *F. columnare*. Intriguingly,  
277 *Flavobacterium* sp. strain 4466 encodes a complete subtype T6SS<sup>iii</sup>, a molecular mechanism  
278 that delivers antimicrobial effector proteins upon contact with target cells and is unique to the  
279 phylum *Bacteroidetes* [53]. The members of *Flavobacterium* genus are ubiquitous inhabitants  
280 of freshwater and marine fish microbiota and both commensal and pathogenic *Flavobacterium*  
281 often share the same ecological niche [54-56]. Whether the *Flavobacterium* sp. strain 4466  
282 T6SS<sup>iii</sup> contact-dependent killing system contributes to colonization resistance by inhibiting *F.*  
283 *columnare* Fc7 growth is currently under investigation. We cannot, however, exclude other  
284 mechanisms such as competition for nutrients or pathogen exclusion upon direct competition  
285 for adhesion to host tissues. This process has been suggested for infected zebrafish with  
286 efficient colonization of highly adhesive probiotic strains and enhanced life expectancy [24, 57,  
287 58].

288 For the past 30 years, the fish farming industry has dedicated considerable efforts to identify  
289 probiotic microorganisms for rainbow trout, including Gram-positive and Gram-negative  
290 bacteria and yeast [59]. However, the high interindividual and seasonal variability of trout  
291 microbiota [60, 61] and the random or time-limited colonization ability of exogenous  
292 microorganism rarely enables consistent probiotic efficacy. Despite some studies of rainbow  
293 trout proposing different endogenous bacterial strains as probiotic candidates, few have  
294 demonstrated protective properties against pathogenic bacteria *in vivo* [62-65]. Short-residing  
295 probiotics may limit unintended consequences to the microbial community and host system,  
296 but the use of endogenous residents may stably modulate the community and protect the fish  
297 against reoccurring disease outbreaks over longer timescales [66, 67]. The probiotic efficacy of  
298 *Flavobacterium* sp. strain 4466 against different strains of *F. columnare* from different fish  
299 hosts and geographical origins, suggests that it could be used as a broad probiotic to prevent  
300 infections.

301  
302 In conclusion, we showed that germ-free and gnotobiotic trout larvae are an effective  
303 experimental tool to study microbiota-determined sensitivity to major salmonid freshwater  
304 pathogens, enabling the validation of endogenous and exogenous potential probiotic strains.  
305 This approach will also be instrumental in studying the molecular basis of probiosis against fish  
306 pathogens as well as host-pathogen mechanisms, ultimately contributing to the mitigation of  
307 rainbow trout diseases in aquaculture.

308

309 **MATERIAL AND METHODS**

310

311 ***Ethics statement.*** All animal experiments described in the present study were conducted at the  
312 Institut Pasteur according to European Union guidelines for handling of laboratory animals  
313 ([http://ec.europa.eu/environment/chemicals/lab\\_animals/home\\_en.htm](http://ec.europa.eu/environment/chemicals/lab_animals/home_en.htm)) and were approved by  
314 the Institut Pasteur institutional Animal Health and Care Committees under permit # dap200024

315

316 ***Handling of rainbow trout larvae***

317 Rainbow trout (AQUALANDE breeding line) “eyed” eggs of 210 to 230 degree-days (21-23  
318 days after fertilization at 10°C) (dd) were obtained from Aqualande Group trout facility in  
319 Pissos, France. Upon arrival, the eggs were progressively acclimatized to 16°C before  
320 manipulation. All procedures were performed under a laminar microbiological cabinet and with  
321 single-use disposable plastic ware. Eggs were kept in 145 x 20 mm Petri dishes with 75 mL  
322 autoclaved dechlorinated water until hatching. After hatching, fish were transferred and kept in  
323 250 mL vented cap culture flasks in 100 mL sterile water at 16°C. Fish were fed starting 21  
324 days post-hatching with gamma-ray sterilized fish food powder every 48 h, 30 minutes before  
325 water renewal of half the volume of water to avoid waste ( $\text{NH}_4^+$ ,  $\text{NO}_2^-$ ,  $\text{NO}_3^-$ ) accumulation and  
326 oxygen limitation.

327

328 ***Sterilization and raising of germ-free rainbow trout***

329 The eyed rainbow trout eggs received at 210 dd were transferred to sterile Petri dishes (140 mm  
330 diameter, 150 eggs/dish) and washed twice with a sterile methylene blue solution (0.05 mg/ml).  
331 The eggs, kept in 75 ml of methylene blue solution, were then exposed to a previously described  
332 antibiotic cocktail [24] (750  $\mu\text{l}$  penicillin G (10,000 U/ml), streptomycin (10 mg/ml); 300  $\mu\text{l}$  of  
333 filtered kanamycin sulfate (100 mg/ml) and 75  $\mu\text{l}$  of the antifungal drug amphotericin B solution  
334 (250  $\mu\text{g/ml}$ )) for 24 hours by gentle agitation at 16°C. Eggs were then washed 3 times with

335 fresh sterile water and treated with bleach (0.005 %) for 15 minutes. Following 3 washes with  
336 sterile water, eggs were treated for 10 minutes with 10 ppm Romeiod (COFA, France), a  
337 iodophor disinfection solution. Finally, eggs were washed 3 times and kept in a class II hood at  
338 16°C in 75 ml of sterile water supplemented with the previously mentioned antibiotic cocktail  
339 until hatching spontaneously 5 to 7 days following the disinfection process. Once hatched, fish  
340 were immediately transferred to 75 cm<sup>3</sup> vented cap culture flasks containing 100 ml of fresh  
341 sterile water without antibiotics (12 larvae/flask). The hatching percentage was determined by  
342 comparing the number of hatched larvae in Petri dish relative to the total number of eggs.

343 *Sterility:* Sterility was monitored by culture-based and 16S rRNA PCR-based tests at 24 h, 7-  
344 and 21-day post-treatment. After feeding started, 50 µl of GF fish flask water was sampled  
345 before each water change as well as one larva every week to perform culture-based and 16S  
346 rRNA-based PCR sterility tests. 50 µl of rearing water from each flask was plated on LB, YPD  
347 and TYES agar plates, all incubated at 16°C under aerobic conditions. Fish larvae were also  
348 checked for bacterial contamination every week using the following methods. Randomly  
349 chosen fish were sacrificed by an overdose of filtered tricaine methane sulfonate solution  
350 (tricaine, Sigma, 300 mg/L). Whole fish were mechanically disrupted in Lysing Matrix tubes  
351 containing 1 ml of sterile water and 425-600 µm glass beads (Sigma). Samples were  
352 homogenized at 6.0 m s<sup>-1</sup> for 45 s on a FastPrep Cell Disrupter (BIO101/FP120 QBioGene) and  
353 serial dilutions of the homogenized solution were plated on LB, YPD and TYES agars. When  
354 water samples or fish homogenates showed any bacterial CFU on the different culture media  
355 used, the corresponding animals (or flasks) were removed from the experiment. The absence of  
356 any contamination in the fish larvae was further confirmed by PCR as follows. Total bacterial  
357 DNA was extracted from fish homogenate sample using QIAamp DNA Microbiome Kit  
358 (Qiagen) following manufacturer instructions. All reagents used were molecular grade and  
359 supplied by Sigma-Aldrich (UK). To detect the presence of microbial DNA, universal specific

360 primers for the chromosomal 16S rRNA (27F: 5'-AGAGTTGATCCTGGCTCAG-3'; 1492R  
361 5'-GGTTACCTTGTACGACTT-3') were used for the PCR [68].

362

363 ***Bacterial strains and growth conditions***

364 *F. columnare* strains Fc7 [69], Ms-Fc-4 [70] and IA-S-4 [71] (genomovar I), ALG-00-530 [72]  
365 (genomovar II), and *Chryseobacterium massiliae* [35] were grown in tryptone yeast extract  
366 salts (TYES) broth [0.4% (w/v) tryptone, 0.04% yeast extract, 0.05% (w/v) MgSO<sub>4</sub> 7H<sub>2</sub>O,  
367 0.02% (w/v), CaCl<sub>2</sub> 2H<sub>2</sub>O, 0.05% (w/v) D-glucose, pH 7.2] at 150 rpm and 18°C. *F.*  
368 *psychrophilum* strains THCO2-90 was grown in TYES broth at 150 rpm and 18°C. *Yersinia*  
369 *ruckeri* strain JIP 27/88 was grown in Luria-Bertani (LB) medium at 150 rpm and 28°C. *V.*  
370 *anguillarum* strain 1669 was grown in tryptic soy broth (TSB) at 150 rpm and 28°C. *L. garvieveae*  
371 JIP 28/99 was grown in brain heart infusion (BHI) broth at 150 rpm and 28°C. When required,  
372 15 g/L of agar was added to the broth media to obtain the corresponding solid media. Stock  
373 cultures were preserved at -80°C in the respective broth media supplemented with 15%  
374 (vol/vol) glycerol.

375

376 ***Fish infection challenge***

377 Pathogenic bacteria were grown in suitable media at different temperatures until advanced  
378 stationary phase. Then, each culture was pelleted (10.000 rpm for 5 min) and washed once in  
379 sterile water. Bacteria were resuspended in sterile water and added to culture flasks at a final  
380 concentration of 10<sup>7</sup> CFU/ml. After 24 hours of incubation with pathogenic bacteria at 16°C,  
381 fish were washed three times by water renewal. Bacterial concentrations were confirmed at the  
382 beginning and at the end of the immersion challenge by plating serial dilutions of water samples  
383 on specific medium for each pathogen. Ten to twelve larvae were used per condition and

384 experiment and each experiment was repeated at least twice. Virulence was evaluated by daily  
385 monitoring of fish mortality up to 10 days post-infection.

386

387 ***Characterization of culturable conventional rainbow trout microbiota***

388 To identify the species constituting the cultivable microbiota of Conv trout larvae, 3 individuals  
389 were sacrificed with an overdose of tricaine at 35 dph, homogenized following the protocol  
390 described above and serial dilutions of the homogenates were plated on TYES, LB, R2A and  
391 TS agars. The plates were incubated a 16°C for 48 to 72 hours. All morphologically distinct  
392 colonies (based on form, size, color, texture, elevation and margin) were then isolated and  
393 conserved at -80°C in respective broth medium supplemented with 15 % (vol/vol) glycerol.

394 In order to identify individual morphotypes, individual colonies were picked for each  
395 morphotype from each agar plates, vortexed in 200 µl DNA-free water and boiled for 20 min  
396 at 90°C. Five µl of this bacterial suspension was used as template for colony PCR to amplify  
397 the 16S rRNA gene with the universal primer pair 27f and 1492R. 16S rRNA gene PCR  
398 products were verified on 1% agarose gels, purified with the QIAquick® PCR purification kit  
399 and two PCR products for each morphotype were sent for sequencing (Eurofins, Ebersberg,  
400 Germany). Individual 16S rRNA- gene sequences were compared with those available in the  
401 EzBioCloud database [73]. A whole genome-based bacterial species identification was  
402 performed for *Flavobacterium* sp. strain 4466 with the TrueBac ID system (v1.92,  
403 DB:20190603) (<https://www.truebacid.com/>) [74]. Species-level identification was performed  
404 based on the algorithmic cut-off set at 95% ANI or when the 16S rRNA gene sequence  
405 similarity was >99%.

406

407 ***Whole genome sequencing.***

408 Chromosomal DNA of *Flavobacterium* sp. strain 4466 isolated from rainbow trout larvae  
409 microbiota was extracted using the DNeasy Blood & Tissue kit (QIAGEN) including RNase  
410 treatment. DNA quality and quantity was assessed on a NanoDrop ND-1000 spectrophotometer  
411 (Thermo Scientific). DNA sequencing libraries were made using the Nextera DNA Library  
412 Preparation Kit (Illumina Inc.) and library quality was checked using the High Sensitivity DNA  
413 LabChip Kit on the Bioanalyzer 2100 (Agilent Technologies). Sequencing clusters were  
414 generated using the MiSeq reagents kit v2 500 cycles (Illumina Inc.) according to  
415 manufacturer's instructions. DNA was sequenced at the Mutualized Platform for Microbiology  
416 at Institut Pasteur by bidirectional sequencing, producing 2 x 150 bp paired-end (PE) reads.  
417 Reads were quality filtered, trimmed and adapters removed with fastq-mcf [75] and genomes  
418 assembled using SPAdes 3.9.0 [76].

419  
420 ***Phylogenomic analysis.***  
421 The proteomes for the 15 closest *Flavobacterium* strains identified by the ANI analysis were  
422 retrieved from the NCBI RefSeq database. These sequences together with the *Flavobacterium*  
423 sp. strain UGB 4466 proteome were analyzed with Phylophlan (version 0.43, march 2020) [77].  
424 This method uses the 400 most conserved proteins across the proteins and builds a Maximum  
425 likelihood phylogenetic tree using RAxML (version 8.2.8) [78]. Maximum likelihood tree was  
426 bootstrapped with 1000 replicates.

427  
428 ***Germ free rainbow trout microbial re-conventionalization***  
429 Each isolated bacterial species was grown for 24 hours in suitable medium at 150 rpm and  
430 20°C. Bacteria were then pelleted, washed twice in sterile water and diluted to a final  
431 concentration of  $5.10^7$  CFU/ml. At 22 dph, GF rainbow trout were mono-re-conventionalized  
432 by adding 1 ml of each bacterial suspension per flask ( $5.10^5$  CFU/ml, final concentration). In

433 the case of fish re-conventionalization with bacterial consortia, individual bacterial strains were  
434 washed, then mixed in the same aqueous suspension, each at a concentration of  $5.10^7$  CFU/ml.  
435 The mixed bacterial suspension was then added to the flask containing GF rainbow trout as  
436 previously described. In all cases, fish re-conventionalization was performed for 48 h and the  
437 infection challenge with *F. columnare* was carried out immediately after water renewal.

438

439 ***Histological examination***

440 Histological sections were used to compare microscopical lesions between GF and Conv fish  
441 following infection with *F. columnare*. Sacrificed animals were fixed for 24 hours in Trump  
442 fixative (4 % methanol-free formaldehyde, 1 % glutaraldehyde in 0.1 M PBS, pH 7.2) [79].  
443 Whole fixed animals were washed 3 times for 30 min and 12 hours in 0.1 M of phosphate  
444 buffer, and post-fixed for 2 hours with 2 % osmium tetroxide (Electron Microscopy Science,  
445 Hatfield, PA, USA) in 0.15 M of phosphate buffer. After washing in 0.1 M of phosphate buffer  
446 for  $2 \times 10$  min and  $2 \times 10$  min in distilled water, samples were dehydrated in a graded series  
447 of ethanol solutions (50 % ethanol in water  $\times 10$  min; 70 % ethanol  $3 \times 15$  min; 90 % ethanol  $3$   
448  $\times 20$  min; and 100% ethanol  $3 \times 20$  min). Final dehydration was performed by 100 % propylene  
449 oxide (PrOx, ThermoFisher GmbH, Kandel, Germany)  $3 \times 20$  min. Then, samples were  
450 incubated in PrOx/EPON epoxy resin (Sigma-Aldrich, St Louis, MO, USA) mixture in a 3:1  
451 ratio for two hours with closed caps, 16 hours with open caps, and in 100% EPON for 24 hours  
452 at room temperature. Samples were replaced in new 100% EPON and incubated at 37°C for 48  
453 hours and at 60°C for 48 hours for polymerization. Semi-thin sections (thickness 1  $\mu$ m) and  
454 ultra-thin sections (thickness 70 nm) were cut with a “Leica Ultracut UCT” ultramicrotome  
455 (Leica Microsystems GmbH, Wien, Austria).

456 Semi-thin sections were stained with toluidine blue solution for 1 min at 60°C, washed with  
457 distilled water for 5 seconds, ethanol 100 % for 10 seconds and distilled water again for 20

458 seconds, dried at 60°C and embedded in Epon resin which was allowed to polymerize for 48  
459 hours at 60°C. Light microscopy images of semi-thin EPON sections were prepared with Nikon  
460 Eclipse 80i microscope connected with Nikon DS-Vi1 camera driven by NIS-ELEMENTS  
461 D4.4 (Nikon) software.

462

463 ***Whole fish clearing and 3D imaging***

464 For a 3D imaging of cleared whole fish, fish were fixed with 4 % formaldehyde in phosphate-  
465 buffered saline (PBS) overnight at 4°C. Fixed samples were rinsed with PBS. To render tissue  
466 transparent, fish were first depigmented by pretreatment in SSC 0.5X twice during 1 hour at  
467 room temperature followed by an incubation in saline sodium citrate (SSC) 0.5X + KOH 0.5 %  
468 + H<sub>2</sub>O<sub>2</sub> 3 % during 2 hours at room temperature. Depigmentation was stopped by incubation in  
469 PBS twice for 15 minutes. Fish were then post-fixed with 2 % formaldehyde in PBS for 2 hours  
470 at room temperature and then rinsed twice with PBS for 30 min. Depigmented fish were cleared  
471 with the iDISCO+ protocol [80]. Briefly, samples were progressively dehydrated in ascending  
472 methanol series (20, 40, 60 and 80 % in H<sub>2</sub>O, then twice in 100 % methanol) during 1 hour for  
473 each step. The dehydrated samples were bleached by incubation in methanol + 5 % H<sub>2</sub>O<sub>2</sub> at  
474 4°C overnight, followed by incubation in methanol 100 % twice for 1 hour. They were then  
475 successively incubated in 67 % dichloromethane + 33 % methanol for 3 hours, in  
476 dichloromethane 100 % for 1 hour and finally in dibenzylether until fish became completely  
477 transparent. Whole sample acquisition was performed on a light-sheet ultramicroscope  
478 (LaVision Biotec, Bielefeld, Germany) with a 2X objective using a 0.63X zoom factor.  
479 Autofluorescence was acquired by illuminating both sides of the sample with a 488 nm laser.  
480 Z-stacks were acquired with a 2 μm z-step.

481

482 ***Statistical methods***

483 Statistical analyses were performed using unpaired, non-parametric Mann-Whitney test for  
484 average survival analysis and the log rank (Mantel-Cox) test for Kaplan-Meier survival curves.  
485 Analyses were performed using Prism v8.2 (GraphPad Software). A cut-off of p-value of 5 %  
486 was used for all tests. \*  $p < 0.05$ ; \*\*  $p < 0.01$ ; \*\*\*  $p < 0.001$ , \*\*\*\*  $p < 0.0001$ .

487

488

489

490 **ACKNOWLEDGEMENTS**

491  
492 We thank Rebecca Stevick, Jean-Pierre Levraud, Pierre Boudinot, Eric Duchaud, Mark  
493 McBride and Christophe Beloin for critical reading of the manuscript. We thank Laurent  
494 Debruyne and Jérémie Vieuille from the Pissos Aqualande Trout breeding station. We are  
495 grateful to Jean-François Bernardet and Mark McBride for kindly providing us some of  
496 pathogenic microorganisms used in this study. We thank Rustem Uzkebov for his help in  
497 histology analyses performed in the context of a service provided by the IBiSA Microscopy  
498 facility, Tours University, France. iDISCO imaging was established and performed by  
499 Christelle Langevin and Maxence Fretaud (INRAE EMERG'IN IERP phenotyping platform)  
500 and light-sheet images were acquired at the Institut de la Vision.

501

502 **FUNDING**

503

504 This work was supported by the Institut Pasteur, the French Government's *Investissement*  
505 *d'Avenir* program: Laboratoire d'Excellence 'Integrative Biology of Emerging Infectious  
506 Diseases' (grant n°. ANR-10-LABX-62-IBEID to J.M.G.), the *Fondation pour la Recherche*  
507 *Médicale* (grant n°. DEQ20180339185 to J.M.G.). In addition, D.P.-P. was the recipient of an  
508 Institut Carnot Pasteur MS post-doctoral fellowship. S.V.-F. was supported by an ERASMUS  
509 scholarship and J.B.-B. was the recipient of a long-term post-doctoral fellowship from the  
510 Federation of European Biochemical Societies (FEBS).

511

512 **COMPETING FINANCIAL INTERESTS**

513 The authors of this manuscript have the following competing interests: a provisional patent  
514 application has been filed: "*bacterial strains for use as probiotics, compositions thereof,*  
515 *deposited strains and method to identify probiotic bacterial strains*" by J.-M.G, D.P.-P. and  
516 J.B.-B. The other authors declare no conflict of interest in relation to the submitted work.

517

518 **DATA AVAILABILITY STATEMENT**

519 The genome of *Flavobacterium* sp. 4466 was deposited at European Nucleotide Archive  
520 (ENA) databank under the accession n° ERS4574862.

521

522 **AUTHOR CONTRIBUTIONS:**

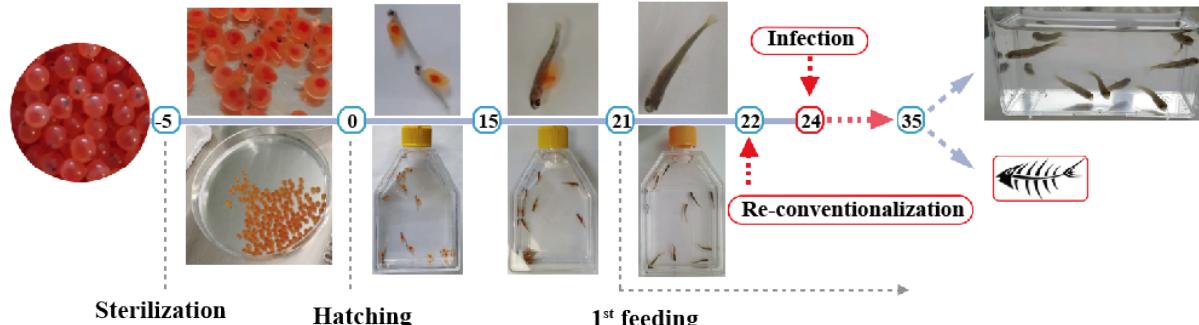
523 D.P.-P. and J.-M.G. designed the experiments. J.B.-B., D.R. and J.-M.G. contributed to the  
524 initial experiments. D.P.P., S.V.-F and B.A. performed the experiments. D.P.-P. and R.P.N  
525 performed genomic analysis. D.P.-P. and J.-M.G. analyzed the data and wrote the paper.  
526

527 **REFERENCES**

- 528
- 529 1. FAO. The state of World Fisheries and Aquaculture. Rome: Food and Agriculture Organization of the  
530 United Nations, 2016 2016. Report No.
- 531 2. Vadstein O, Bergh Ø, Gatesoupe F-J, Galindo-Villegas J, Mulero V, Picchietti S, et al. Microbiology  
532 and immunology of fish larvae. *Reviews in Aquaculture*. 2013;5(s1):S1-S25. doi: 10.1111/j.1753-  
533 5131.2012.01082.x.
- 534 3. Embregts CW, Forlenza M. Oral vaccination of fish: Lessons from humans and veterinary species. *Dev  
535 Comp Immunol*. 2016;64:118-37. Epub 2016/03/29. doi: 10.1016/j.dci.2016.03.024. PubMed PMID: 27018298.
- 536 4. Perez-Sanchez T, Mora-Sanchez B, Balcazar JL. Biological Approaches for Disease Control in  
537 Aquaculture: Advantages, Limitations and Challenges. *Trends Microbiol*. 2018;26(11):896-903. Epub  
538 2018/05/29. doi: 10.1016/j.tim.2018.05.002. PubMed PMID: 29801773.
- 539 5. Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dölz H, Millanao A, et al. Antimicrobial use in  
540 aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health.  
541 *Environmental Microbiology*. 2013;15(7):1917-42. doi: 10.1111/1462-2920.12134.
- 542 6. Santos L, Ramos F. Antimicrobial resistance in aquaculture: Current knowledge and alternatives to  
543 tackle the problem. *International Journal of Antimicrobial Agents*. 2018;52(2):135-43. doi:  
544 <https://doi.org/10.1016/j.ijantimicag.2018.03.010>.
- 545 7. Brandt KK, Amezquita A, Backhaus T, Boxall A, Coors A, Heberer T, et al. Ecotoxicological  
546 assessment of antibiotics: A call for improved consideration of microorganisms. *Environ Int*. 2015;85:189-205.  
547 doi: 10.1016/j.envint.2015.09.013. PubMed PMID: 26411644.
- 548 8. Defoirdt T, Sorgeloos P, Bossier P. Alternatives to antibiotics for the control of bacterial disease in  
549 aquaculture. *Curr Opin Microbiol*. 2011;14(3):251-8. doi: 10.1016/j.mib.2011.03.004. PubMed PMID:  
550 21489864.
- 551 9. Verschueren L, Rombaut G, Sorgeloos P, Verstraete W. Probiotic Bacteria as Biological Control Agents  
552 in Aquaculture. *Microbiology and Molecular Biology Reviews*. 2000;64(4):655-71. doi:  
553 10.1128/mmbr.64.4.655-671.2000.
- 554 10. Tinh NT, Dierckens K, Sorgeloos P, Bossier P. A review of the functionality of probiotics in the  
555 larviculture food chain. *Mar Biotechnol (NY)*. 2008;10(1):1-12. doi: 10.1007/s10126-007-9054-9. PubMed  
556 PMID: 18040740.
- 557 11. Martínez Cruz P, Ibáñez AL, Monroy Hermosillo OA, Ramírez Saad HC. Use of probiotics in  
558 aquaculture. *ISRN microbiology*. 2012;2012:916845-. doi: 10.5402/2012/916845. PubMed PMID: 23762761.
- 559 12. Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. *Nature  
560 Reviews Immunology*. 2013;13:790. doi: 10.1038/nri3535.
- 561 13. Stecher B, Hardt W-D. Mechanisms controlling pathogen colonization of the gut. *Current Opinion in  
562 Microbiology*. 2011;14(1):82-91. doi: <https://doi.org/10.1016/j.mib.2010.10.003>.
- 563 14. de Bruijn I, Liu Y, Raaijmakers JM, Wiegertjes GF. Exploring fish microbial communities to mitigate  
564 emerging diseases in aquaculture. *FEMS Microbiology Ecology*. 2017;94(1). doi: 10.1093/femsec/fix161.
- 565 15. Gomez-Gil B, Roque A, Turnbull JF. The use and selection of probiotic bacteria for use in the culture  
566 of larval aquatic organisms. *Aquaculture*. 2000;191(1):259-70. doi: [https://doi.org/10.1016/S0044-8486\(00\)00431-2](https://doi.org/10.1016/S0044-8486(00)00431-2).
- 567 16. Xiong JB, Nie L, Chen J. Current understanding on the roles of gut microbiota in fish disease and  
568 immunity. *Zool Res*. 2019;40(2):70-6. doi: 10.24272/j.issn.2095-8137.2018.069. PubMed PMID: 29976843;  
569 PubMed Central PMCID: PMC6378566.
- 570 17. Hai NV. The use of probiotics in aquaculture. *Journal of Applied Microbiology*. 2015;119(4):917-35.  
571 doi: 10.1111/jam.12886.
- 572 18. Lazado CC, Caipang CMA. Mucosal immunity and probiotics in fish. *Fish & Shellfish Immunology*.  
573 2014;39(1):78-89. doi: <https://doi.org/10.1016/j.fsi.2014.04.015>.
- 574 19. Dierckens K, Rekecki A, Laureau S, Sorgeloos P, Boon N, Van den Broeck W, et al. Development of a  
575 bacterial challenge test for gnotobiotic sea bass (*Dicentrarchus labrax*) larvae. *Environmental Microbiology*.  
576 2009;11(2):526-33. doi: 10.1111/j.1462-2920.2008.01794.x.
- 577 20. Fiebiger U, Bereswill S, Heimesaat MM. Dissecting the Interplay Between Intestinal Microbiota and  
578 Host Immunity in Health and Disease: Lessons Learned from Germfree and Gnotobiotic Animal Models. *Eur J  
579 Microbiol Immunol (Bp)*. 2016;6(4):253-71. doi: 10.1556/1886.2016.00036. PubMed PMID: 27980855;  
580 PubMed Central PMCID: PMC5146645.
- 581 21. Yi P, Li L. The germfree murine animal: An important animal model for research on the relationship  
582 between gut microbiota and the host. *Veterinary Microbiology*. 2012;157(1):1-7. doi:  
583 <https://doi.org/10.1016/j.vetmic.2011.10.024>.
- 584 22. Caruffo M, Navarrete NC, Salgado OA, Faundez NB, Gajardo MC, Feijoo CG, et al. Protective Yeasts  
585 Control *V. anguillarum* Pathogenicity and Modulate the Innate Immune Response of Challenged Zebrafish
- 586

- 587 (Danio rerio) Larvae. *Front Cell Infect Microbiol*. 2016;6:127. doi: 10.3389/fcimb.2016.00127. PubMed PMID: 27790411; PubMed Central PMCID: PMC5063852.
- 588 23. Qin C, Zhang Z, Wang Y, Li S, Ran C, Hu J, et al. EPSP of *L. casei* BL23 Protected against the  
589 Infection Caused by *Aeromonas veronii* via Enhancement of Immune Response in Zebrafish. *Frontiers in*  
590 *Microbiology*. 2017;8(2406). doi: 10.3389/fmicb.2017.02406.
- 591 24. Rendueles O, Ferrieres L, Fretaud M, Begaud E, Herbolomel P, Levraud JP, et al. A new zebrafish model  
592 of oro-intestinal pathogen colonization reveals a key role for adhesion in protection by probiotic bacteria. *PLoS*  
593 *Pathog*. 2012;8(7):e1002815. doi: 10.1371/journal.ppat.1002815. PubMed PMID: 22911651; PubMed Central  
594 PMCID: PMC3406073.
- 595 25. Forberg T, Arukwe A, Vadstein O. A protocol and cultivation system for gnotobiotic Atlantic cod  
596 larvae (*Gadus morhua* L.) as a tool to study host microbe interactions. *Aquaculture*. 2011;315(3):222-7. doi:  
597 <https://doi.org/10.1016/j.aquaculture.2011.02.047>.
- 598 26. Verner-Jeffreys DW, Shields RJ, Birkbeck TH. Bacterial influences on Atlantic halibut *Hippoglossus*  
599 *hippoglossus* yolk-sac larval survival and start-feed response. *Dis Aquat Organ*. 2003;56(2):105-13. doi:  
600 10.3354/dao056105. PubMed PMID: 14598986.
- 601 27. Munro PD, Barbour A, Birkbeck TH. Comparison of the Growth and Survival of Larval Turbot in the  
602 Absence of Culturable Bacteria with Those in the Presence of *Vibrio anguillarum*, *Vibrio alginolyticus*, or a  
603 Marine *Aeromonas* sp. *Applied and Environmental Microbiology*. 1995;61(12):4425-8.
- 604 28. Vestrum R.I., Luef B., Forberg T., Bakke I., O. V. Emerging Issues in Fish Larvae Research. In: M. Y,  
605 editor.: Springer; 2018.
- 606 29. Quesada SP, Paschoal JAR, Reyes FGR. Considerations on the Aquaculture Development and on the  
607 Use of Veterinary Drugs: Special Issue for Fluoroquinolones—A Review. *Journal of Food Science*.  
608 2013;78(9):R1321-R33. doi: 10.1111/1750-3841.12222.
- 609 30. Declercq AM, Haesebrouck F, Van den Broeck W, Bossier P, Decostere A. Columnaris disease in fish:  
610 a review with emphasis on bacterium-host interactions. *Veterinary Research*. 2013;44(1):27. doi: 10.1186/1297-  
611 9716-44-27.
- 612 31. Butt RL, Volkoff H. Gut Microbiota and Energy Homeostasis in Fish. *Frontiers in endocrinology*.  
613 2019;10:9-. doi: 10.3389/fendo.2019.00009. PubMed PMID: 30733706.
- 614 32. Austin B, Austin DA. Bacterial fish pathogens : disease of farmed and wild fish. 4th ed. Dordrecht  
615 Chichester: Springer ;  
616 Published in association with Praxis Pub.; 2007. xxvi, 552 p. p.
- 617 33. Russell Alistair B, Wexler Aaron G, Harding Brittany N, Whitney John C, Bohn Alan J, Goo Young A,  
618 et al. A Type VI Secretion-Related Pathway in *Bacteroidetes* Mediates Interbacterial Antagonism. *Cell Host &*  
619 *Microbe*. 2014;16(2):227-36. doi: <https://doi.org/10.1016/j.chom.2014.07.007>.
- 620 34. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes.  
621 *Proceedings of the National Academy of Sciences of the United States of America*. 2005;102(7):2567-72. doi:  
622 10.1073/pnas.0409727102.
- 623 35. Stressmann FA, Bernal-Bayard J, Pérez-Pascual D, Audrain B, O. R, Briolat V., et al. Mining zebrafish  
624 microbiota reveals key community-level resistance against fish pathogen infection. *BioRxiv* (preprint). [posted  
625 2020 Apr 24]: . doi: <https://www.biorxiv.org/content/10.1101/2020.04.23.058222v1>.
- 626 36. Banerjee G, Ray AK. The advancement of probiotics research and its application in fish farming  
627 industries. *Research in Veterinary Science*. 2017;115:66-77. doi: <https://doi.org/10.1016/j.rvsc.2017.01.016>.
- 628 37. Hoseinifar SH, Sun Y-Z, Wang A, Zhou Z. Probiotics as Means of Diseases Control in Aquaculture, a  
629 Review of Current Knowledge and Future Perspectives. *Frontiers in Microbiology*. 2018;9(2429). doi:  
630 10.3389/fmicb.2018.02429.
- 631 38. Rawls JF, Samuel BS, Gordon JI. Gnotobiotic zebrafish reveal evolutionarily conserved responses to  
632 the gut microbiota. *Proceedings of the National Academy of Sciences of the United States of America*.  
633 2004;101(13):4596-601. doi: 10.1073/pnas.0400706101.
- 634 39. Milligan-Myhre K, Small CM, Mitte EK, Agarwal M, Currey M, Cresko WA, et al. Innate immune  
635 responses to gut microbiota differ between oceanic and freshwater threespine stickleback populations. *Disease*  
636 *Models & Mechanisms*. 2016;9(2):187-98. doi: 10.1242/dmm.021881.
- 637 40. Forberg T, Milligan-Myhre K. Chapter 6 - Gnotobiotic Fish as Models to Study Host-Microbe  
638 Interactions. In: Schoeb TR, Eaton KA, editors. *Gnotobiotics*: Academic Press; 2017. p. 369-83.
- 639 41. Rekecki A, Dierckens K, Laureau S, Boon N, Bossier P, Van den Broeck W. Effect of germ-free  
640 rearing environment on gut development of larval sea bass (*Dicentrarchus labrax* L.). *Aquaculture*.  
641 2009;293(1):8-15. doi: <https://doi.org/10.1016/j.aquaculture.2009.04.001>.
- 642 42. Olivares-Fuster O, Baker JL, Terhune JS, Shoemaker CA, Klesius PH, Arias CR. Host-specific  
643 association between *Flavobacterium columnare* genomovars and fish species. *Systematic and Applied*  
644 *Microbiology*. 2007;30(8):624-33. doi: <https://doi.org/10.1016/j.syapm.2007.07.003>.
- 645

- 646 43. De Schryver P, Vadstein O. Ecological theory as a foundation to control pathogenic invasion in  
647 aquaculture. *The Isme Journal*. 2014;8:2360. doi: 10.1038/ismej.2014.84.
- 648 44. Zhu J, Dai W, Qiu Q, Dong C, Zhang J, Xiong J. Contrasting Ecological Processes and Functional  
649 Compositions Between Intestinal Bacterial Community in Healthy and Diseased Shrimp. *Microbial Ecology*.  
650 2016;72(4):975-85. doi: 10.1007/s00248-016-0831-8.
- 651 45. He S, Wang Q, Li S, Ran C, Guo X, Zhang Z, et al. Antibiotic growth promoter olaquindox increases  
652 pathogen susceptibility in fish by inducing gut microbiota dysbiosis. *Science China Life Sciences*.  
653 2017;60(11):1260-70. doi: 10.1007/s11427-016-9072-6.
- 654 46. Brugiroux S, Beutler M, Pfann C, Garzetti D, Ruscheweyh HJ, Ring D, et al. Genome-guided design of  
655 a defined mouse microbiota that confers colonization resistance against *Salmonella enterica* serovar  
656 *Typhimurium*. *Nat Microbiol*. 2016;2:16215. Epub 2016/11/22. doi: 10.1038/nmicrobiol.2016.215. PubMed  
657 PMID: 27869789.
- 658 47. Kim YG, Sakamoto K, Seo SU, Pickard JM, Gilliland MG, 3rd, Pudlo NA, et al. Neonatal acquisition  
659 of *Clostridia* species protects against colonization by bacterial pathogens. *Science*. 2017;356(6335):315-9. Epub  
660 2017/04/22. doi: 10.1126/science.aag2029. PubMed PMID: 28428425; PubMed Central PMCID:  
661 PMCPMC6082366.
- 662 48. Little AEF, Robinson CJ, Peterson SB, Raffa KF, Handelsman J. Rules of Engagement: Interspecies  
663 Interactions that Regulate Microbial Communities. *Annual Review of Microbiology*. 2008;62(1):375-401. doi:  
664 10.1146/annurev.micro.030608.101423. PubMed PMID: 18544040.
- 665 49. Stecher B, Chaffron S, Kappeli R, Hapfelmeier S, Freedrich S, Weber TC, et al. Like will to like:  
666 abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and  
667 commensal bacteria. *PLoS Pathog*. 2010;6(1):e1000711. Epub 2010/01/12. doi: 10.1371/journal.ppat.1000711.  
668 PubMed PMID: 20062525; PubMed Central PMCID: PMCPMC2796170.
- 669 50. Li N, Zhu Y, LaFrentz BR, Evenhuis JP, Hunnicutt DW, Conrad RA, et al. The Type IX Secretion  
670 System Is Required for Virulence of the Fish Pathogen *Flavobacterium columnare*. *Appl Environ Microbiol*.  
671 2017;83(23). doi: 10.1128/AEM.01769-17. PubMed PMID: 28939608; PubMed Central PMCID:  
672 PMCPMC5691404.
- 673 51. Boutin S, Bernatchez L, Audet C, Derôme N. Antagonistic effect of indigenous skin bacteria of brook  
674 charr (*Salvelinus fontinalis*) against *Flavobacterium columnare* and *F. psychrophilum*. *Veterinary Microbiology*.  
675 2012;155(2):355-61. doi: <https://doi.org/10.1016/j.vetmic.2011.09.002>.
- 676 52. Seghouani H, Garcia-Rangel C-E, Füller J, Gauthier J, Derome N. Walleye Autochthonous Bacteria as  
677 Promising Probiotic Candidates against *Flavobacterium columnare*. *Frontiers in Microbiology*. 2017;8(1349).  
678 doi: 10.3389/fmicb.2017.01349.
- 679 53. Chatzidaki-Livanis M, Geva-Zatorsky N, Comstock LE. *Bacteroides fragilis* type VI secretion systems  
680 use novel effector and immunity proteins to antagonize human gut *Bacteroidales* species. *Proceedings of the  
681 National Academy of Sciences*. 2016;113(13):3627. doi: 10.1073/pnas.1522510113.
- 682 54. Bernardet J-F, Bowman JP. The Genus *Flavobacterium*. In: Dworkin M, Falkow S, Rosenberg E,  
683 Schleifer K-H, Stackebrandt E, editors. *The Prokaryotes: Volume 7: Proteobacteria: Delta, Epsilon Subclass*.  
684 New York, NY: Springer New York; 2006. p. 481-531.
- 685 55. Loch TP, Faisal M. Emerging flavobacterial infections in fish: A review. *Journal of Advanced  
686 Research*. 2015;6(3):283-300. doi: <https://doi.org/10.1016/j.jare.2014.10.009>.
- 687 56. Lowrey L, Woodhams DC, Tacchi L, Salinas I. Topographical Mapping of the Rainbow Trout  
688 (*Oncorhynchus mykiss*) Microbiome Reveals a Diverse Bacterial Community with Antifungal Properties in the  
689 Skin. *Appl Environ Microbiol*. 2015;81(19):6915-25. Epub 2015/07/26. doi: 10.1128/AEM.01826-15. PubMed  
690 PMID: 26209676; PubMed Central PMCID: PMCPMC4561705.
- 691 57. Boirivant M, Strober W. The mechanism of action of probiotics. *Curr Opin Gastroenterol*.  
692 2007;23(6):679-92. doi: 10.1097/MOG.0b013e3282f0cffc. PubMed PMID: 17906447.
- 693 58. Wang C, Chuprom J, Wang Y, Fu L. Beneficial bacteria for aquaculture: nutrition, bacteriostasis and  
694 immunoregulation. *J Appl Microbiol*. 2019. Epub 2019/07/16. doi: 10.1111/jam.14383. PubMed PMID:  
695 31306569.
- 696 59. Pérez-Sánchez T, Ruiz-Zarzuela I, de Blas I, Balcázar JL. Probiotics in aquaculture: a current  
697 assessment. *Reviews in Aquaculture*. 2014;6(3):133-46. doi: 10.1111/raq.12033.
- 698 60. Huber I, Spanggaard B, Appel KF, Rossen L, Nielsen T, Gram L. Phylogenetic analysis and in situ  
699 identification of the intestinal microbial community of rainbow trout (*Oncorhynchus mykiss*, Walbaum). *Journal  
700 of Applied Microbiology*. 2004;96(1):117-32. doi: 10.1046/j.1365-2672.2003.02109.x.
- 701 61. Huyben D, Sun L, Moccia R, Kiessling A, Dicksved J, Lundh T. Dietary live yeast and increased water  
702 temperature influence the gut microbiota of rainbow trout. *Journal of Applied Microbiology*. 2018;124(6):1377-  
703 92. doi: 10.1111/jam.13738.

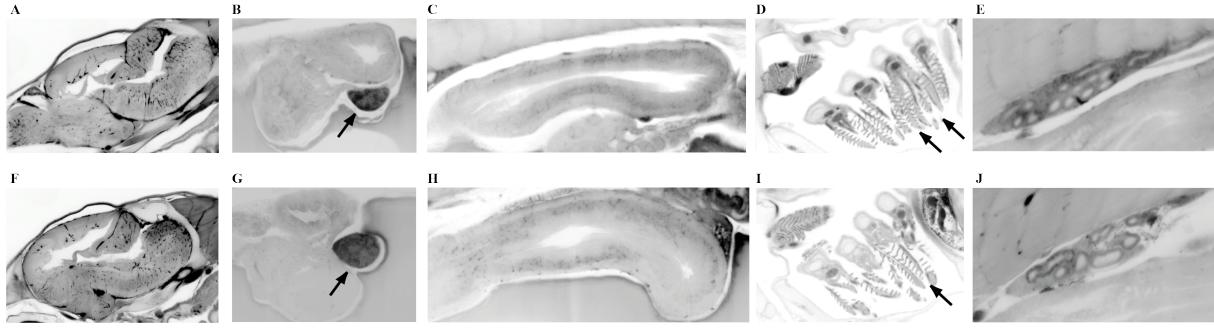

- 704 62. Araújo C, Muñoz-Atienza E, Nahuelquín Y, Poeta P, Igrejas G, Hernández PE, et al. Inhibition of fish  
705 pathogens by the microbiota from rainbow trout (*Oncorhynchus mykiss*, Walbaum) and rearing environment.  
706 *Anaerobe*. 2015;32:7-14. doi: <https://doi.org/10.1016/j.anaerobe.2014.11.001>.
- 707 63. Brunt J, Austin B. Use of a probiotic to control lactococcosis and streptococcosis in rainbow trout,  
708 *Oncorhynchus mykiss* (Walbaum). *Journal of Fish Diseases*. 2005;28(12):693-701. doi: 10.1111/j.1365-  
709 2761.2005.00672.x.
- 710 64. Mohammadian T, Nasirpour M, Tabandeh MR, Heidary AA, Ghanei-Motlagh R, Hosseini SS.  
711 Administrations of autochthonous probiotics altered juvenile rainbow trout *Oncorhynchus mykiss* health status,  
712 growth performance and resistance to *Lactococcus garvieae*, an experimental infection. *Fish & Shellfish  
713 Immunology*. 2019;86:269-79. doi: <https://doi.org/10.1016/j.fsi.2018.11.052>.
- 714 65. Pérez-Sánchez T, Balcázar JL, García Y, Halaihel N, Vendrell D, de Blas I, et al. Identification and  
715 characterization of lactic acid bacteria isolated from rainbow trout, *Oncorhynchus mykiss* (Walbaum), with  
716 inhibitory activity against *Lactococcus garvieae*. *Journal of Fish Diseases*. 2011;34(7):499-507. doi:  
717 10.1111/j.1365-2761.2011.01260.x.
- 718 66. Lemon KP, Armitage GC, Relman DA, Fischbach MA. Microbiota-targeted therapies: an ecological  
719 perspective. *Sci Transl Med*. 2012;4(137):137rv5. doi: 10.1126/scitranslmed.3004183. PubMed PMID:  
720 22674555; PubMed Central PMCID: PMCPMC5725196.
- 721 67. Newaj-Fyzul A, Al-Harbi AH, Austin B. Review: Developments in the use of probiotics for disease  
722 control in aquaculture. *Aquaculture*. 2014;431:1-11. doi: <https://doi.org/10.1016/j.aquaculture.2013.08.026>.
- 723 68. Vergin KL, Urbach E, Stein JL, DeLong EF, Lanoil BD, Giovannoni SJ. Screening of a fosmid library  
724 of marine environmental genomic DNA fragments reveals four clones related to members of the order  
725 *Planctomycetales*. *Appl Environ Microbiol*. 1998;64(8):3075-8. Epub 1998/08/04. PubMed PMID: 9687477;  
726 PubMed Central PMCID: PMCPMC106819.
- 727 69. Michel C, Messiaen S, Bernardet J-F. Muscle infections in imported neon tetra, *Paracheirodon innesi*  
728 Myers: limited occurrence of microsporidia and predominance of severe forms of columnaris disease caused by  
729 an Asian genomovar of *Flavobacterium columnare*. *Journal of Fish Diseases*. 2002;25(5):253-63. doi:  
730 10.1046/j.1365-2761.2002.00364.x.
- 731 70. Evenhuis JP, Mohammed H, LaPatra SE, Welch TJ, Arias CR. Virulence and molecular variation of  
732 *Flavobacterium columnare* affecting rainbow trout in Idaho, USA. *Aquaculture*. 2016;464:106-10. doi:  
733 <https://doi.org/10.1016/j.aquaculture.2016.06.017>.
- 734 71. LaFrentz BR, García JC, Waldbieser GC, Evenhuis JP, Loch TP, Liles MR, et al. Identification of Four  
735 Distinct Phylogenetic Groups in *Flavobacterium columnare* With Fish Host Associations. *Frontiers in  
736 microbiology*. 2018;9:452-. doi: 10.3389/fmicb.2018.00452. PubMed PMID: 29593693.
- 737 72. Olivares-Fuster O, Bullard SA, McElwain A, Llosa MJ, Arias CR. Adhesion dynamics of  
738 *Flavobacterium columnare* to channel catfish *Ictalurus punctatus* and zebrafish *Danio rerio* after immersion  
739 challenge. *Diseases of aquatic organisms*. 2011;96(3):221-7. doi: 10.3354/dao02371. PubMed PMID: 22132500.
- 740 73. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, et al. Introducing EzBioCloud: a taxonomically  
741 united database of 16S rRNA gene sequences and whole-genome assemblies. *International Journal of Systematic  
742 and Evolutionary Microbiology*. 2017;67(5):1613-7. doi: doi:10.1099/ijsem.0.001755.
- 743 74. Sung-Min H, Chang Ki K, Juhye R, Jung-Hyun B, Seung-Jo Y, Seon-Bin C, et al. Application of the  
744 Whole Genome-Based Bacterial Identification System, TrueBac ID, Using Clinical Isolates That Were Not  
745 Identified With Three Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry  
746 (MALDI-TOF MS) Systems. *Ann Lab Med*. 2019;39(6):530-6. Epub 2019/11/01. doi:  
747 10.3343/alm.2019.39.6.530.
- 748 75. Aronesty E. Command-line tools for processing biological sequencing data. ea-utils [Internet]. 2011.  
749 Available from: <https://github.com/ExpressionAnalysis/ea-utils>.
- 750 76. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome  
751 assembly algorithm and its applications to single-cell sequencing. *Journal of computational biology : a journal of  
752 computational molecular cell biology*. 2012;19(5):455-77. Epub 2012/04/18. doi: 10.1089/cmb.2012.0021.  
753 PubMed PMID: 22506599; PubMed Central PMCID: PMCPMC3342519.
- 754 77. Segata N, Bornigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved  
755 phylogenetic and taxonomic placement of microbes. *Nature communications*. 2013;4:2304. Epub 2013/08/15.  
756 doi: 10.1038/ncomms3304. PubMed PMID: 23942190; PubMed Central PMCID: PMCPMC3760377.
- 757 78. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large  
758 phylogenies. *Bioinformatics (Oxford, England)*. 2014;30(9):1312-3. Epub 2014/01/24. doi:  
759 10.1093/bioinformatics/btu033. PubMed PMID: 24451623; PubMed Central PMCID: PMCPMC3998144.
- 760 79. McDowell EM, Trump BF. Histologic fixatives suitable for diagnostic light and electron microscopy.  
761 *Arch Pathol Lab Med*. 1976;100(8):405-14. Epub 1976/08/01. PubMed PMID: 60092.

762 80. Renier N, Wu Z, Simon David J, Yang J, Ariel P, Tessier-Lavigne M. iDISCO: A Simple, Rapid  
763 Method to Immunolabel Large Tissue Samples for Volume Imaging. *Cell*. 2014;159(4):896-910. doi:  
764 <https://doi.org/10.1016/j.cell.2014.10.010>.  
765

766 **FIGURES**

767

**A**



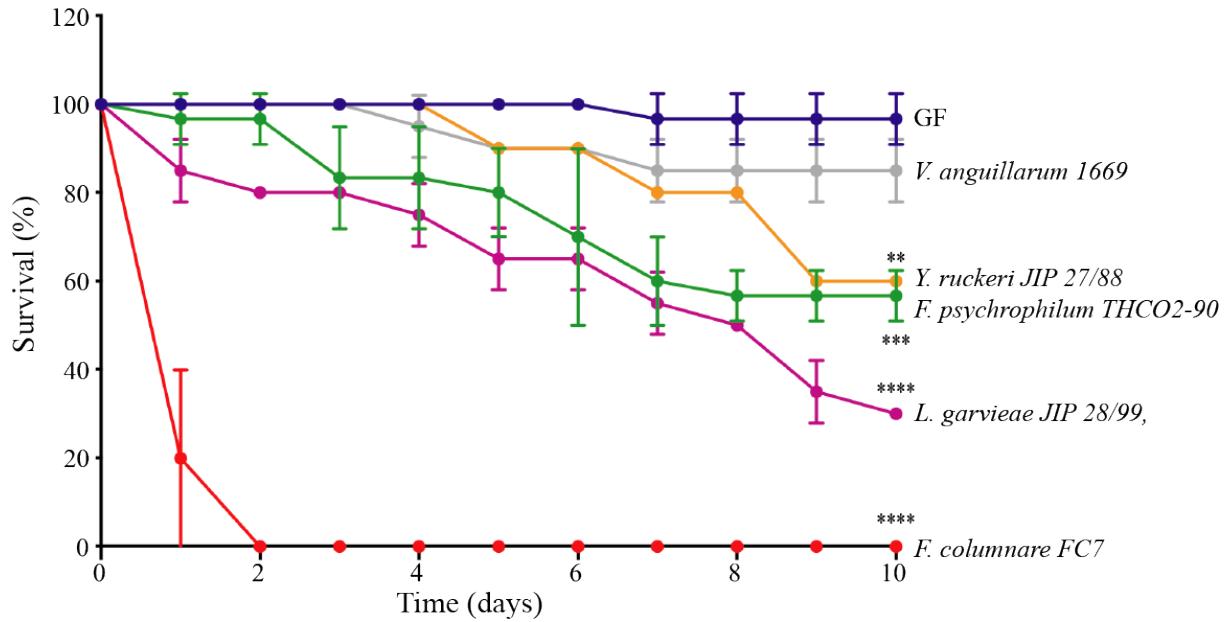

768

769

770

771 **Figure 1. Protocol used in this study to raise and infect or re-conventionalize germ-free**  
772 **(GF) trout larvae.** Eyed eggs were sterilized 5 days before hatching (-5 dph) and kept in sterile,  
773 autoclaved mineral water at 16°C in Petri dishes until hatching. Once hatched, rainbow trout  
774 larvae were transferred into vented cap cell culture flasks for the duration of the experiment.  
775 Larvae were fed every 2 days with sterile powder food from 21 dph until the end of the  
776 experiment; water was renewed 30 minutes after feeding. To test the protective effect of  
777 potential probiotic strains, larvae were re-conventionalized by one or several commensal  
778 bacteria diluted in water at 22 dph. Pathogenic bacteria were added to the water at 24 dph for  
779 24 h and then larvae were washed with fresh sterile water. Survival after infection was  
780 monitored twice per day.




781  
782

783 **Figure 2. Anatomical comparison of Conventional (Conv) and GF rainbow trout larvae.**  
784 3D deep imaging of whole trout body corresponding to autofluorescence signal acquired by  
785 lightsheet microscopy after novel fish clearing processing. Selected optical sections of 21 dph  
786 were presented for Conv (A, B, C D and E) and GF (F, G, H, I and J) rainbow trout larvae.  
787 Brain (A and F), spleen (black arrow in B and G), gut (C and H) (see also supplementary figure  
788 S3), gills (black arrows in D and I), and head kidney (E and J). Images representative of two  
789 different fish per condition.

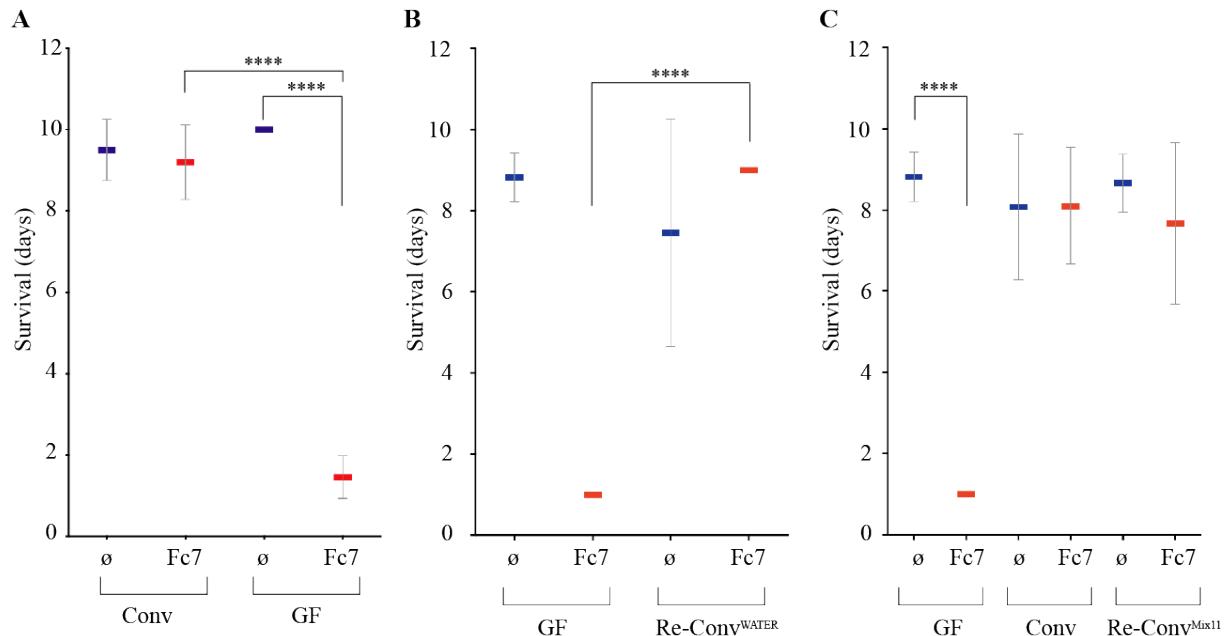
790

791

792



793


794

795 **Figure 3. Survival of GF and Conv rainbow trout larvae infected with different fish**  
796 **pathogens.** Kaplan-Meier graph of GF larvae survival after bath exposure to *F. psychrophilum*  
797 strain THCO2-90, *F. columnare* strain Fc7, *L. garvieae* strain JIP 28/99, *V. anguillarum* strain  
798 1669 and *Y. ruckeri* strain JIP 27/88. Mean and SD plot representing average survival  
799 percentage of fish for 10 days after exposition to different pathogenic microorganisms. For each  
800 condition n = 10 larvae. All surviving fish were euthanized at day 10 post-infection. Asterisks  
801 indicate significant difference from non-infected population (\*\*p<0.01; \*\*\*p<0.001;  
802 \*\*\*\*p<0.0001).

803

804

805

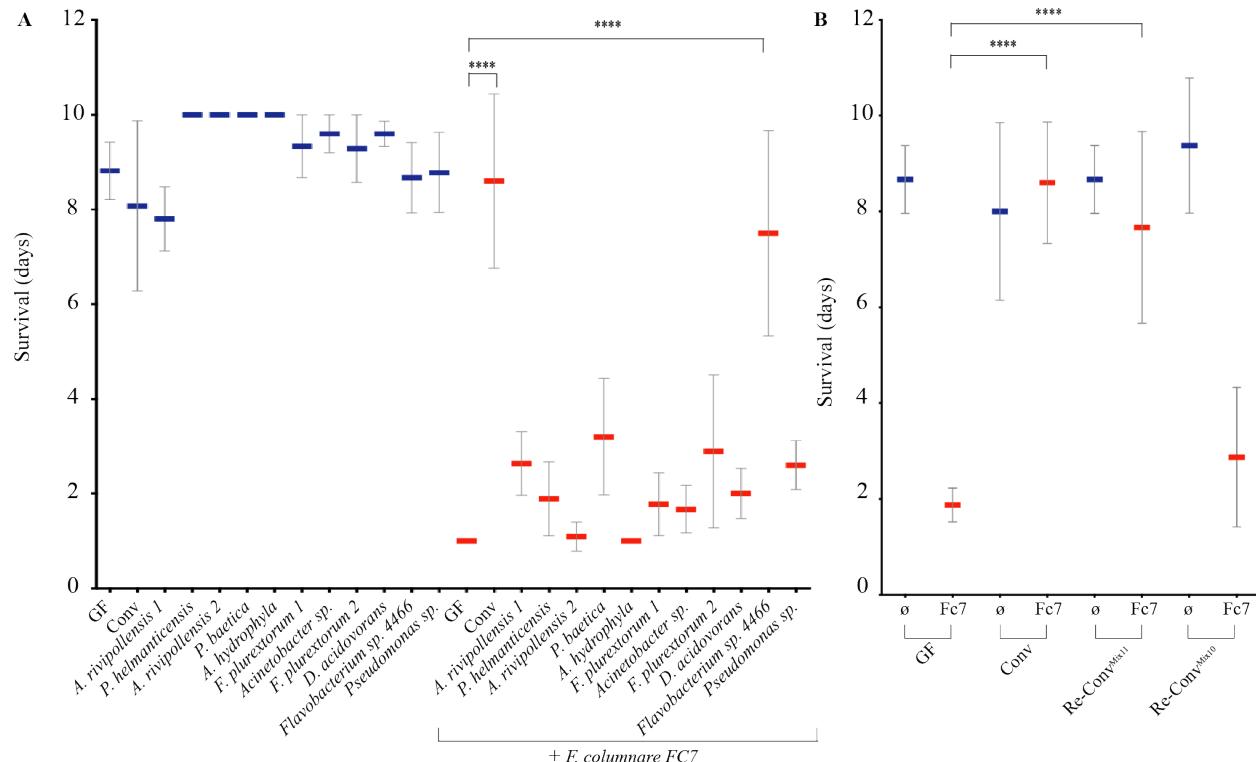


806

807

808

**Figure 4. Survival of re-conventionalized trout larvae against *F. columnare* Fc7 infection.**


**A:** *F. columnare* strain Fc7 kills GF but not Conv rainbow trout. Mean and SD plot representing average day post-infection at which infected fish die. For each condition n = 10 larvae. All surviving fish were euthanized at day 10 post-infection. Asterisks indicate significant difference from non-infected population (\*\*\*\*p<0.0001). **B:** GF trout larvae exposed to water used to raise Conv fish at 21 dph show similar survival rates to *F. columnare* infection compared to Conv trout larvae. **C:** The 11 strains identified from Conv fish microbiota were added to rainbow trout larvae at 22 dph, followed by *F. columnare* infection at 24 dph. This bacterial mixture protected re-conventionalized larvae from infection. For each condition n = 10 larvae. All surviving fish were euthanized at day 10 after infection (\*\*\*\*p<0.0001).

818

819

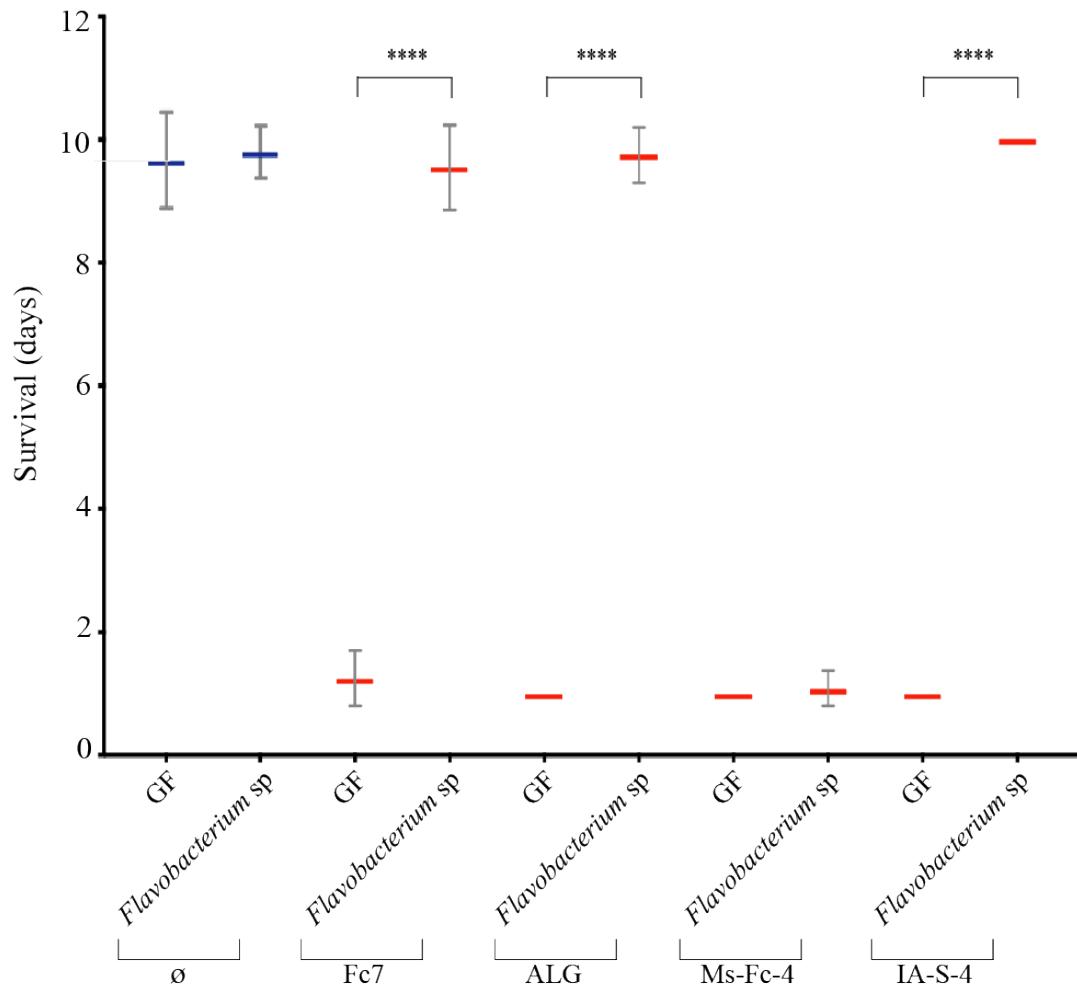
820

821



822

823


**Figure 5. Protection of GF trout larvae against *F. columnare* infection by individual species isolated from the Conv rainbow trout microbiota.**

824

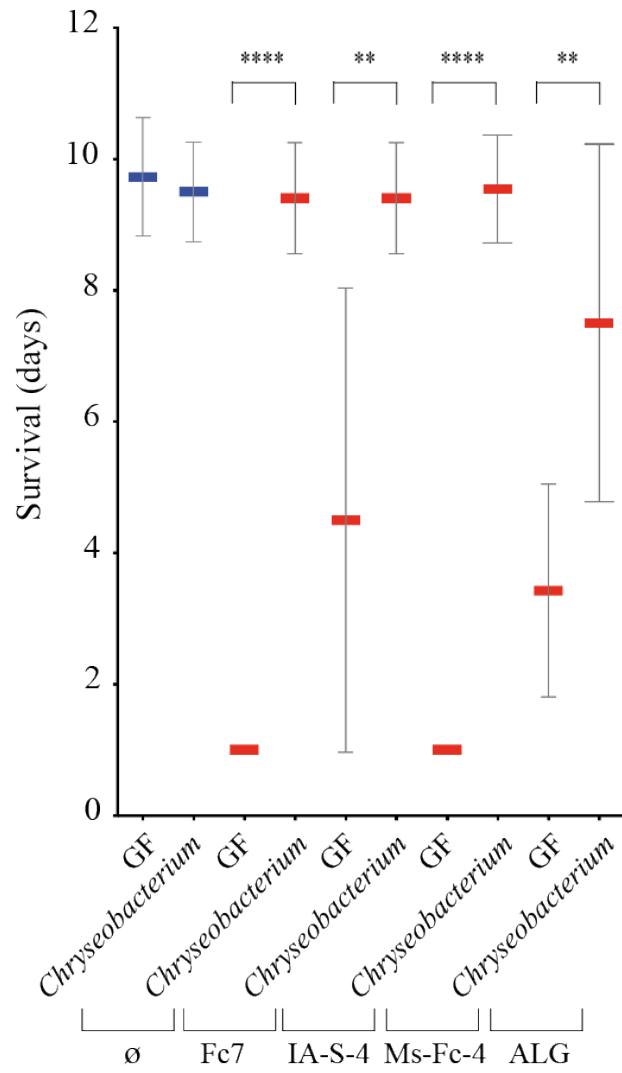
825 A: The 11 species isolated from Conv fish microbiota (Table 1) were added individually to  
826 rainbow trout larvae at 22 dph, followed by *F. columnare* Fc7 infection at 24 dph. From the 11  
827 different strains, only *Flavobacterium* sp. strain 4466 protected re-conventionalized larvae from  
828 infection. B: Mix11, Mix10 (mix of all identified strain with the exception of *Flavobacterium*  
829 sp. strain 4466), were added to rainbow trout larvae at 22 dph, followed by *F. columnare*  
830 infection at 24 dph. Mix11 protected re-conventionalized larvae from infection, whereas Mix10  
831 did not. For each condition n = 10 larvae. All surviving fish were euthanized at day 10 after  
832 infection (\*\*\*\*p<0.0001).

833

834



835


836

837

**Figure 6. *Flavobacterium* sp. strain 4466 provides full protection to gnotobiotic zebrafish larvae against infection by three strains of *F. columnare*.** Survival of GF zebrafish larvae exposed to *Flavobacterium* sp. strain 4466 48 h before infection with *F. columnare* strains Fc7, IA-S-4, Ms-Fc-4 and ALG-00-530. All *F. columnare* strains rapidly killed GF fish, whereas only strain Ms-Fc-4 rapidly killed fish that had been re-conventionalized with *Flavobacterium* sp strain 4466. Mean and SD plot representing average day post-infection at which infected fish died. For each condition n = 10 larvae. All surviving fish were euthanized at day 10. Asterisks indicate significant difference from non-infected population (\*\*\*\*p<0.0001).

845

846



847  
848  
849 **Figure 7. *C. massiliae* provides protection against *F. columnare* infection.** GF larvae  
850 survival exposed to *C. massiliae* 48 h before infection with *F. columnare* strains Fc7, IA-S-4,  
851 Ms-Fc-4 and ALG-00-530. Mean and SD plot representing average day post-infection at which  
852 infected fish die. For each condition n = 10 larvae. All surviving fish were euthanized at day  
853 10. Asterisks indicate significant difference from non-infected population (\*\*\*\*p<0.0001;  
854 \*\*p<0.01).  
855  
856

857 **SUPPORTING INFORMATION**

858

859

860 **SUPPORTING TABLES**

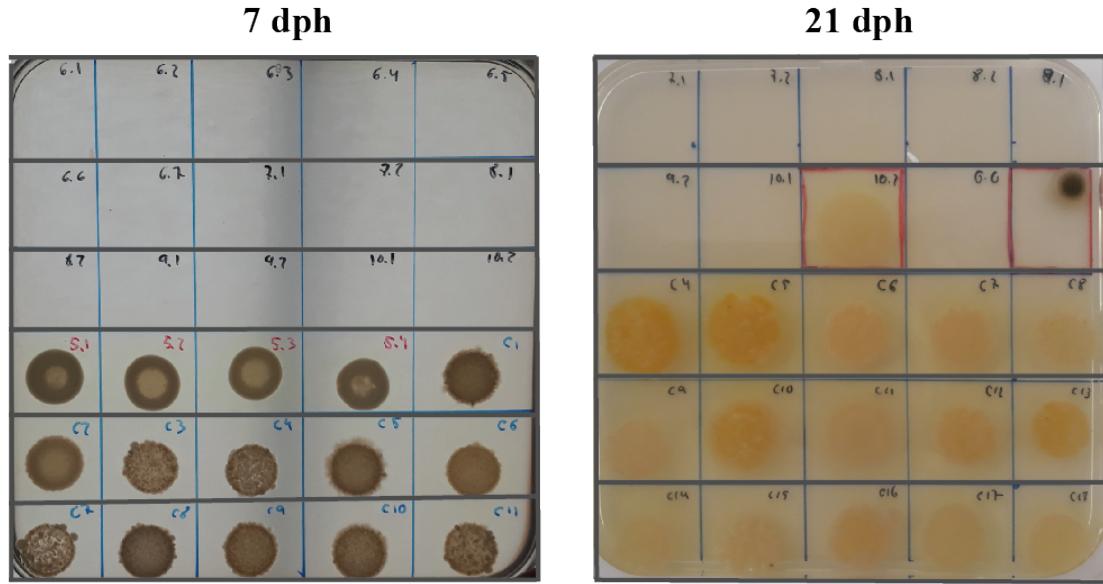
861

862 **Supporting Table S1. *Flavobacterium* sp. strain 4466 taxonomic identification based on**  
863 **genomic similarities.** The identification was based on whole genome Average Nucleotide  
864 Identity (ANI), and percentage of similarity with 16S rRNA and *recA* genes. Whole genome-  
865 based bacterial species identification was performed by the TrueBac ID system.

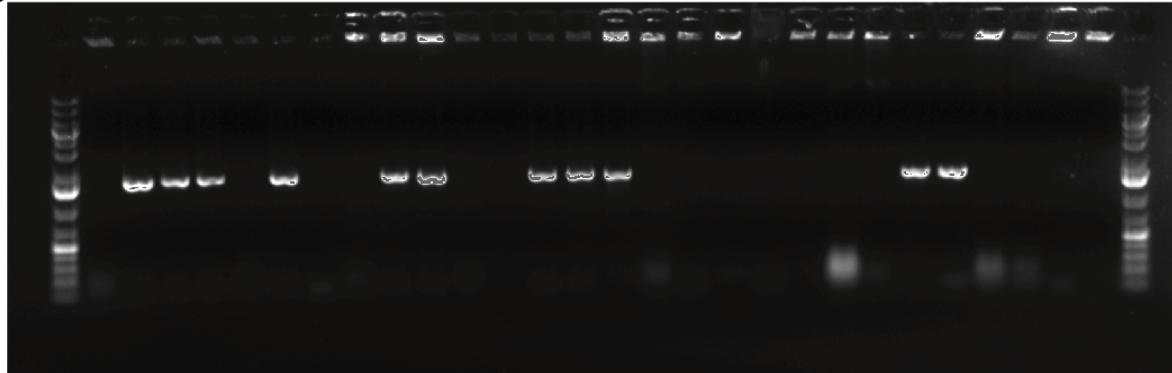
866

| Taxon                            | ANI (%) | ANI coverage (%) | 16S rRNA (%) | <i>recA</i> (%) |
|----------------------------------|---------|------------------|--------------|-----------------|
| <i>Flavobacterium spartansii</i> | 94,65   | 82,4             | 97,80        | 98,51           |
| <i>Flavobacterium tructae</i>    | 94,62   | 83,9             | 97,80        | 98,11           |
| <i>Flavobacterium chilense</i>   | 85,26   | 39,8             | 97,27        | 89,48           |

867


Supporting Table S2. *Flavobacterium* species genomes retrieved from public databases.

| Species                 | Assembly        | Host                                    | BioSample    | FTP                                                                                                                                                                                                                                               |
|-------------------------|-----------------|-----------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>F. tructae</i>       | GCF_002217475.1 | <i>Oncorhynchus mykiss</i>              | SAMN06049067 | <a href="https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/002/217/475/GCF_002217475.1_ASM221747v1/">https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/002/217/475/GCF_002217475.1_ASM221747v1/</a>                                                         |
| <i>F. spartasani</i>    | GCF_002217445.1 | <i>Oncorhynchus tshawytscha</i>         | SAMN06049056 | <a href="https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/002/217/445/GCF_002217445.1_ASM221744v1/">https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/002/217/445/GCF_002217445.1_ASM221744v1/</a>                                                         |
| <i>F. chilense</i>      | GCF_001602525.1 | Environment (Loyalsock Creek, USA)      | SAMN04506025 | <a href="https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/602/525/GCF_001602525.1_ASM160252v1/">https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/602/525/GCF_001602525.1_ASM160252v1/</a>                                                         |
| <i>F. plurextorum</i>   | GCF_002217395.1 | <i>Oncorhynchus mykiss</i>              | SAMN06049068 | <a href="https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/002/217/395/GCF_002217395.1_ASM221739v1/">https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/002/217/395/GCF_002217395.1_ASM221739v1/</a>                                                         |
| <i>F. oncorhynchi</i>   | GCF_002217355.1 | <i>Oncorhynchus mykiss</i>              | SAMN06049060 | <a href="https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/002/217/355/GCF_002217355.1_ASM221735v1/">https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/002/217/355/GCF_002217355.1_ASM221735v1/</a>                                                         |
| <i>F. denitrificans</i> | GCF_000425445.1 | <i>Aporrectodea caliginosa</i>          | SAMN02441540 | <a href="https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/425/445/GCF_000425445.1_ASM42544v1/">https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/425/445/GCF_000425445.1_ASM42544v1/</a>                                                           |
| <i>F. cutihirudines</i> | GCF_003385895.1 | <i>Hirudo verbana</i>                   | SAMN05444268 | <a href="https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/003/385/895/GCF_003385895.1_ASM338589v1/">https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/003/385/895/GCF_003385895.1_ASM338589v1/</a>                                                         |
| <i>F. aurantiacus</i>   | GCF_000016645.1 | NA                                      | SAMN02598357 | <a href="https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/016/645/GCF_000016645.1_ASM1664v1/">https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/016/645/GCF_000016645.1_ASM1664v1/</a>                                                             |
| <i>F. hibernum</i>      | GCF_000832125.1 | Environment (freshwater Antarctic lake) | SAMN02934118 | <a href="https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/832/125/GCF_000832125.1_ASM83212v1/">https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/832/125/GCF_000832125.1_ASM83212v1/</a>                                                           |
| <i>F. piscis</i>        | GCF_001686925.1 | NA                                      | SAMN04570197 | <a href="https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/686/925/GCF_001686925.1_ASM168692v1/">https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/686/925/GCF_001686925.1_ASM168692v1/</a>                                                         |
| <i>F. frigidimar</i>    | GCA_900129595.1 | Environmental (Antarctic seawater)      | SAMN05444481 | <a href="https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/900/129/595/GCA_900129595.1_IMG-taxon_2695420960_annotated_assembly/">https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/900/129/595/GCA_900129595.1_IMG-taxon_2695420960_annotated_assembly/</a> |
| <i>F. araucanum</i>     | GCF_002222055.1 | <i>Salmo salar</i>                      | SAMN06049049 | <a href="https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/002/222/055/GCF_002222055.1_ASM222205v1/">https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/002/222/055/GCF_002222055.1_ASM222205v1/</a>                                                         |
| <i>F. sp. Leaf82</i>    | GCF_001422725.1 | <i>Arabidopsis thaliana</i>             | SAMN04151618 | <a href="https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/422/725/GCF_001422725.1_Leaf82/">https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/422/725/GCF_001422725.1_Leaf82/</a>                                                                   |
| <i>F. sp. LM4</i>       | GCF_002017935.1 | Environmental (Lake Michigan, USA)      | SAMN06263772 | <a href="https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/002/017/935/GCF_002017935.1_ASM201793v1/">https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/002/017/935/GCF_002017935.1_ASM201793v1/</a>                                                         |
| <i>F. pectinovorum</i>  | GCF_900142715.1 | NA                                      | SAMN05444387 | <a href="https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/900/142/715/GCF_900142715.1_IMG-taxon_2698536748_annotated_assembly/">https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/900/142/715/GCF_900142715.1_IMG-taxon_2698536748_annotated_assembly/</a> |
| <i>F. sp. GV028</i>     | GCF_003386855.1 | NA                                      | SAMN08778959 | <a href="https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/003/386/855/GCF_003386855.1_ASM338685v1/">https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/003/386/855/GCF_003386855.1_ASM338685v1/</a>                                                         |


873 **SUPPORTING FIGURES**

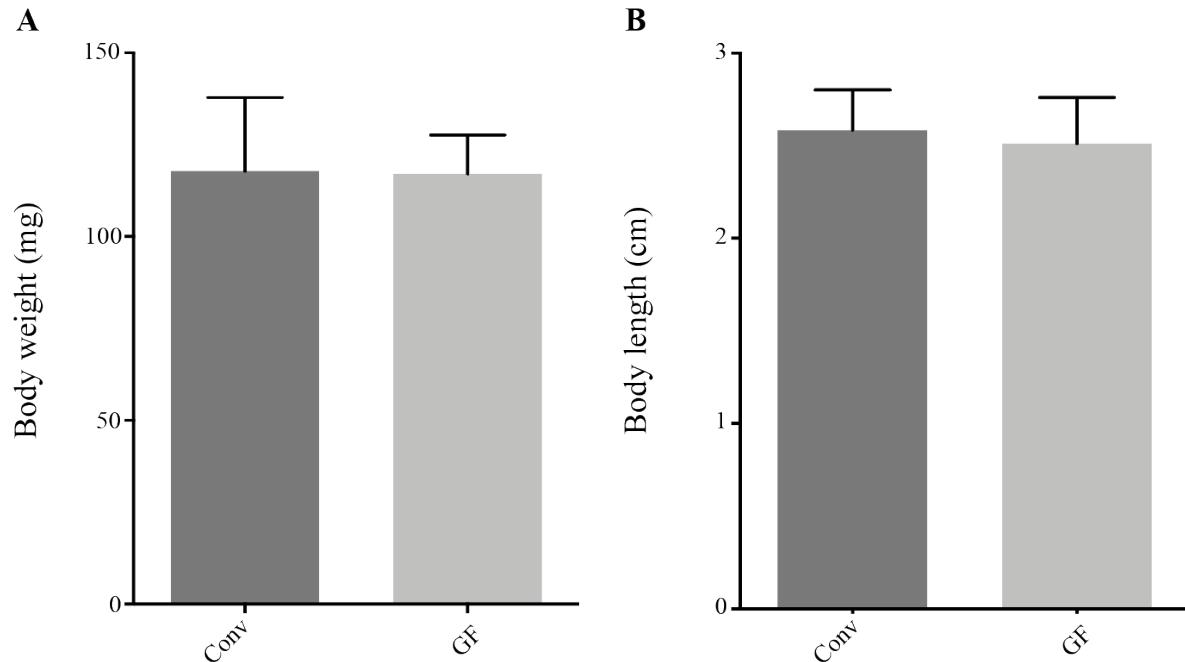
874

**A**



875 **B** 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

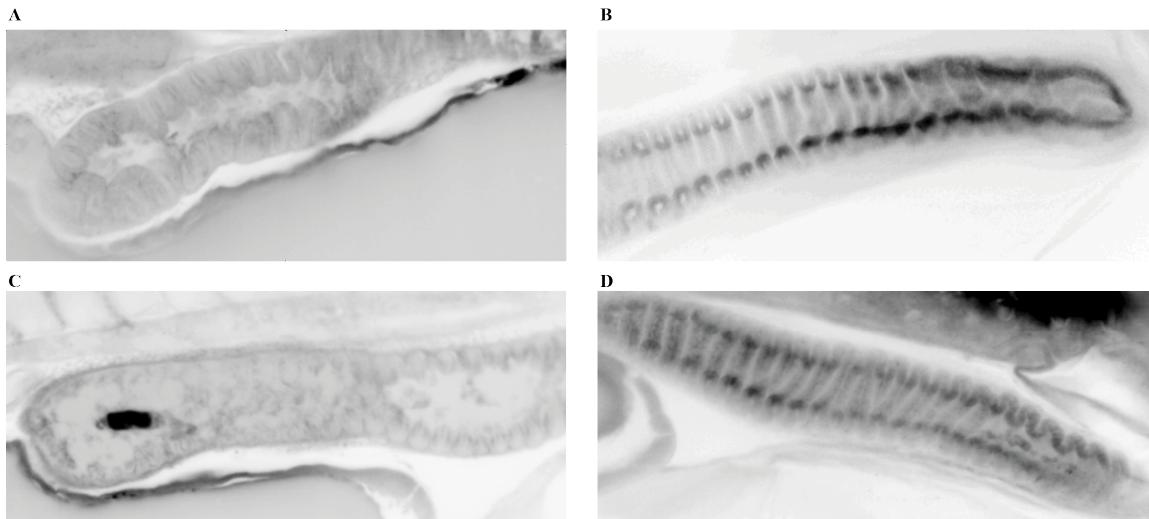



876

877

878 **Supporting Figure S1. Sterility test of rainbow trout larvae raised under GF and Conv**  
879 **conditions.** A: Culture-based sterility test of 50  $\mu$ l samples of rearing water of GF and conventionally reared rainbow trout larvae at 7 and 21 dph. When water samples or fish  
880 homogenates showed bacterial CFU on any of the different culture media used, the  
881 corresponding animals (or flasks) were considered as non-sterile and removed from the  
882 experiment. B: PCR sterility test of total DNA extracted from 21 dph GF and conventionally  
883 reared rainbow trout larvae and used as a template for amplification of bacterial 16S rRNA  
884 gene. Lanes 1 and 30: molecular weight ladder; lane 2: non-template control; lanes 3-5: PCR  
885 products from Conv rainbow trout from three different flasks; lanes 6-29: PCR products from  
886 GF rainbow trout larvae from 23 different flasks. When water samples or fish homogenates  
887 showed a PCR amplification product, the corresponding animals (or flasks) were removed from  
888 the experiment.

889

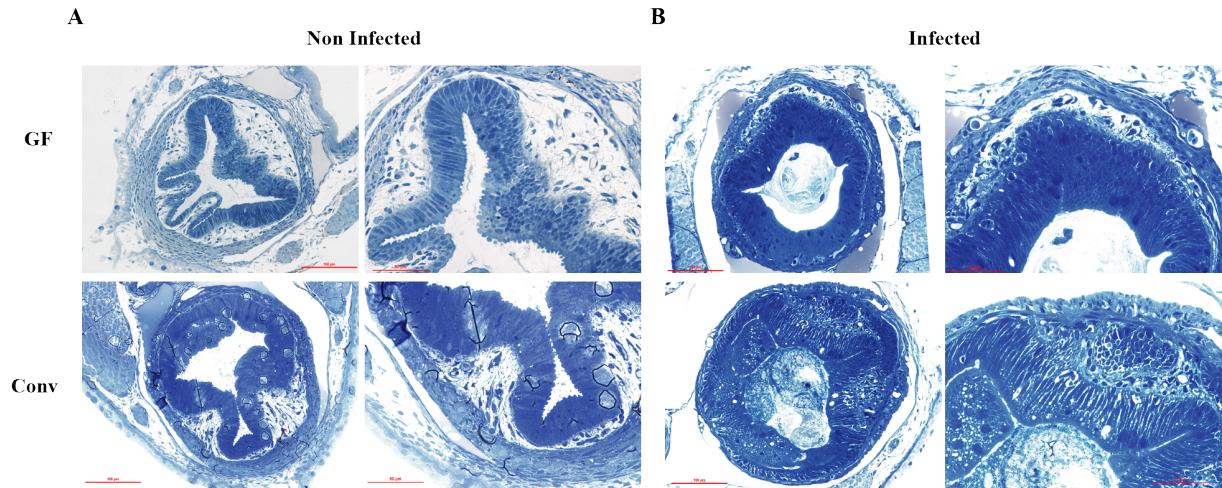

890



891  
892  
893  
894  
895  
896

**Supporting Figure S2. Growth performance of rainbow trout larvae raised under GF and Conv conditions.** Conv and GF fish body size (A) and body weight (B) were measured at 35 dph (n= 5).

897



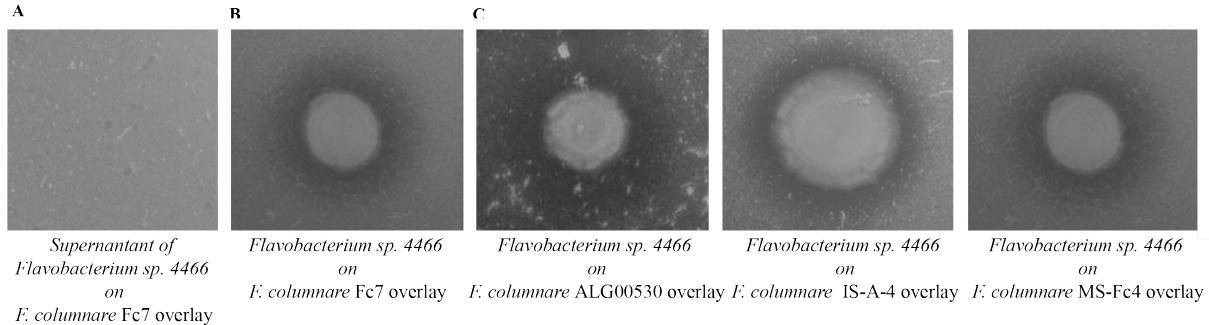

898  
899

900 **Supporting Figure S3. Anatomical comparison of the gut of Conv and GF rainbow trout**  
901 **larvae.** 3D deep imaging of whole trout body corresponding to autofluorescence signal  
902 acquired by lightsheet microscopy after novel fish clearing processing. Selected optical sections  
903 of 21 dph gut were presented for Conv (A and B) and GF (C and D) rainbow trout larvae. Mid-  
904 gut (A and C), and posterior gut (B and D). Images representative of two different fish per  
905 condition.

906

907



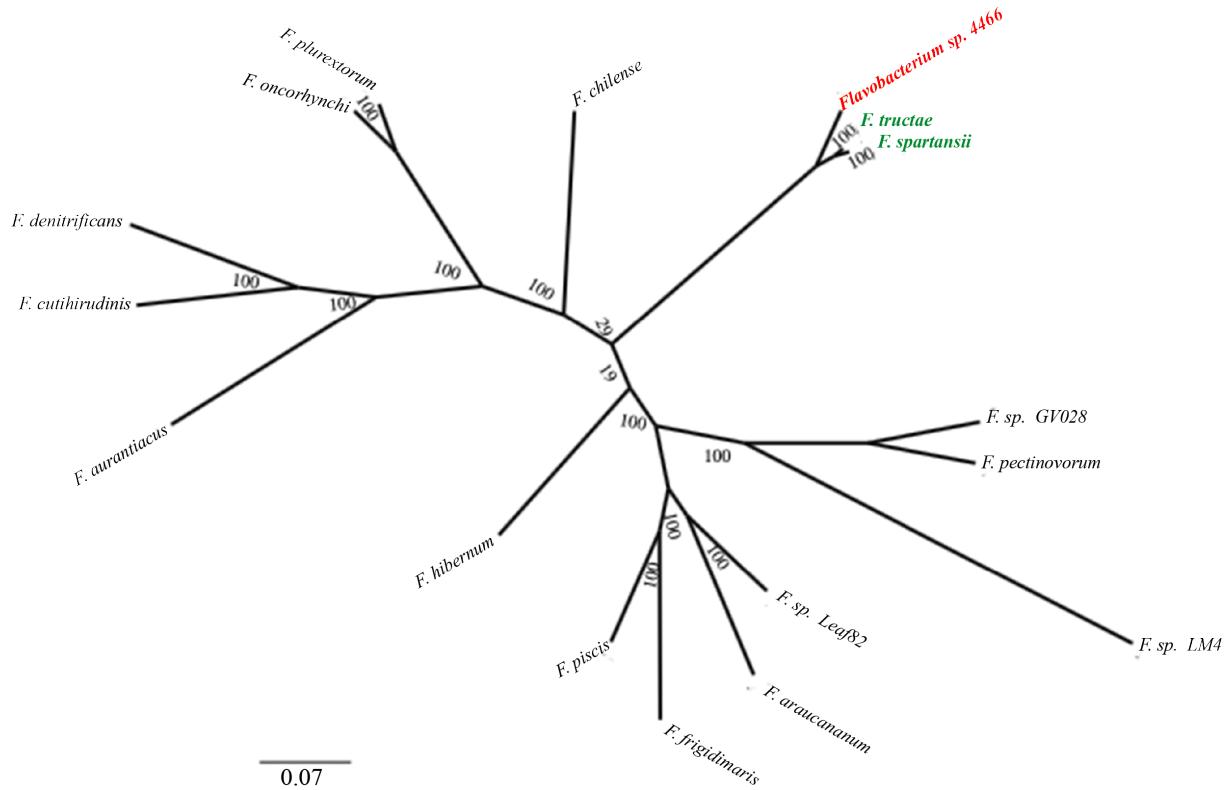

908

909

910 **Supporting Figure S4. Histological comparison of the gut of infected and non-infected**  
911 **Conv and GF rainbow trout larvae.** A: Representative images of intestines of non-infected  
912 larvae. B: Representative images of intestines of infected larvae exposed to *F. columnare* strain  
913 Fc7. Fish were fixed for histology analysis at 1 day post-infection (dpi). Toluidine blue staining  
914 of Epon-embedded zebrafish larvae for light microscopy.

915

916




917  
918

919 **Supporting Figure S5. *In vitro* growth-inhibition activity of *Flavobacterium* sp. strain 4466**  
920 **against different virulent *F. columnare* strains. A:** lack of *F. columnare* Fc7 growth-  
921 inhibition after adding 5  $\mu$ l of *Flavobacterium* sp. culture supernatant. **B:** Halo of *F. columnare*  
922 FC7 growth inhibition surrounding *Flavobacterium* sp. colony on a *F. columnare* strain Fc7  
923 overlay. **C:** Halo of growth inhibition of *F. columnare* ALG-00-530, IA-S-4, and Ms-Fc-4. The  
924 agar overlay technique was performed by spreading *F. columnare* bacterial suspension on soft-  
925 agar solution over TYES agar, and then spotting 5  $\mu$ l of an overnight culture of *Flavobacterium*  
926 sp. strain 4466. Incubation was performed at 28°C for 24 h.

927  
928

929



930

931

932 **Supporting Figure S6. Phylogenetic tree illustrating the relationship between**  
933 ***Flavobacterium* sp. strain 4466 and the closest 15 *Flavobacterium* species based on ANI**  
934 **analysis.** The tree was constructed with RAxML (version 8.2.8) by using the 400 most  
935 conserved proteins across the proteomes of each strain. Bootstrap support values are indicated  
936 in the nodes.

937