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Abstract (175/250)

Epithelial-to-mesenchymal transition (EMT) is a hallmark of aggressive, mesenchymal-like
high-grade serous ovarian carcinoma (HG-SOC). The SRC kinase is a key driver of cancer-
associated EMT promoting adherens junction (AJ) disassembly by phosphorylation-driven
internalization and degradation of AJ proteins. Here we show, that the IGF2 mRNA binding
protein 1 (IGF2BP1) is up-regulated in mesenchymal-like HG-SOC and promotes SRC
activation by a previously unknown protein-ligand-induced, but RNA-independent mechanism.
IGF2BP1-driven invasive growth of ovarian cancer cells essentially relies on the SRC-
dependent disassembly of AJs. Concomitantly, IGF2BP1 enhances ERK2 expression in a
RNA-binding dependent manner. Together this reveals a post-transcriptional mechanism of
interconnected stimulation of SRC/ERK signaling in ovarian cancer cells. The IGF2BP1-
SRC/ERK2 axis is targetable by the SRC-inhibitor saracatinib and MEK-inhibitor selumetinib.
However, due to IGF2BP1-directed stimulation only combinatorial treatment effectively
overcomes the IGF2BP1-promoted invasive growth in 3D culture conditions as well as
intraperitoneal mouse models. In conclusion, we reveal an unexpected role of IGF2BP1 in
enhancing SRC/MAPK-driven invasive growth of ovarian cancer cells. This provides a rational

for the therapeutic benefit of combinatorial SRC/MEK inhibition in mesenchymal-like HG-SOC.
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Introduction

EOC (epithelial ovarian carcinoma) has the highest death rates among female cancers
and improvement of therapeutic efficacies remains dismal [1]. Although promising initially,
PARP- and SRC-directed therapies suffer from occurring resistances and the lack of

biomarkers required to identify patients benefitting from the respective treatments [2-5].

Unsupervised clustering of patient samples by transcriptome data identified molecular
subtypes of HG-SOCs with distinct characteristics, including an invasive, mesenchymal-like
subtype, observed in approximately 30% of patients [1, 6-8]. EMT, characterized by the loss
of CDH1 (E-cadherin) positive cell-cell contacts termed adherens junctions (AJs), is thought to
underly progression of the mesenchymal-like subtype. The SRC protein kinase is a crucial
activator of AJ disassembly with elevated activity in EOC patients [9, 10]. SRC phosphorylates
AJ components like CTNNB1 (B-Catenin), CDH1 or CDH2 (N-cadherin) resulting in their
internalization and/or degradation [9, 11-13]. In EOC-derived OVCAR-3 cells, SRC promotes
EMT, and this activity is further pronounced by ERK2 [14]. ERK2 activates SRF (serum
response factor) driving the transcription of ECM molecules and integrins [15]. This was
suggested to promote tumor growth, mesenchymal properties and metastasis. Accordingly,
small molecule inhibitors of SRC and ERK1/2-activating MEK, in particular saracatinib and
selumetinib, are tested individually in clinical trials (ClinicalTrials.gov Identifiers:
NCT01196741; NCT00610714; NCT00551070; NCT03162627) [5, 16]. In EOC xenograft
models, their co-application proved beneficial over single drug therapies, since MEK inhibition
re-sensitized saracatinib resistant cells [2, 10]. These findings provide preclinical evidence
suggesting that the combination of SRC and MEK inhibitors is beneficial in the treatment of
ovarian cancer, and highlights the need for identifying biomarkers for selecting patients for

clinical trials [2].

IGF2BP1 is an oncofetal RNA-binding protein (RBP) up-regulated in a variety of solid
tumors [17]. In cancer, IGF2BP1’s main function is the partially m®A-dependent (N©-

methyladenosine) impairment of miRNA-directed mRNA decay [15, 18-23]. This results in
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elevated expression of oncogenic factors like LIN28B, HMGA2, MYC, SRF and ERK2. During
development, the spatially restricted synthesis of ACTB is essentially controlled by the SRC-
directed phosphorylation of IGF2BP1 [24]. SRC associates with IGF2BP1 at a SH3-binding

VP4SS motif conserved in the SRC substrate and cell adhesion protein Paxillin (PXN) [25].

IGF2BP1 is up-regulated in EOC and associated with adverse patient outcome [19, 26].
Its depletion or deletion decreases the spheroid growth, migration, and invasion of ovarian
cancer cells in vitro and reduces tumor growth as well as metastasis in vivo [18, 19, 27]. In
melanoma-derived cell lines, IGF2BP1 enforces mesenchymal tumor cell properties in a LEF1-
dependent manner [28]. However, if and how IGF2BP1 modulates EMT in EOC remained

elusive.

Here we reveal a novel, RNA-independent mechanism of IGF2BP1-dependent SRC
activation. In concert with enhancing ERK2 expression, IGF2BP1 promotes SRC/ERK2-
signaling in EOC-derived cells providing a rational for the therapeutic inhibition of SRC and

MEK in mesenchymal-like HG-SOC.

Results

IGF2BP1is a pro-mesenchymal driver up-regulated in the C5 subtype of HG-SOC

Consistent with previous findings, IGF2BP1 expression is associated with adverse
prognosis in EOC tumors [18, 19, 26] (Supplementary Figure 1A,B). Correlation analyses in
three independent transcriptome datasets indicated that IGF2BP1 mRNA expression is
strongly associated with the C5 subtype of HG-SOC (Figure 1A; Supplementary Figure S1C-
F). In agreement, IHC (immunohistochemistry) revealed a higher Remmele score for IGF2BP1
in C5 tumors derived from a local tumor cohort (Figure 1B,C; Supplementary Table T1B). To
identify candidate effector pathways of IGF2BP1 in EOC, the TCGA-provided transcriptome

data set was separated in IGF2BP1 low (< 5 cpm) and high (> 5 cpm) expressing tumors.
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Median IGF2BP1 mRNA expression was more than 25-fold up-regulated in one third of
patients (Figure 1D; Supplementary Table T1A). Gene set enrichment analyses (GSEA) using
the fold change of gene expression identified significant up-regulation of proliferation- and
EMT-associated gene sets in IGF2BP1-high vs. low tumors (Figure 1E; Supplementary Figure
S1G and Tables T1A-3). In agreement with a pro-mesenchymal role of IGF2BP1, the protein
was markedly elevated in a subset of mesenchymal-like EOC-derived cell lines (Figure 1F,G).
These were characterized by high abundance of mesenchymal markers VIM, CDH2 and ZEB1
and low levels of epithelial markers CDH1, KRT8 and EPCAM (Figure 1F,G; Supplementary
Table T4). Immunostaining of CTNNB1 and F-actin labeling confirmed a pronounced
mesenchymal-like morphology of ES-2 cells with diminished CTNNB1-positive cell-cell
contacts when compared to epithelial-like OVCAR-3 cells (Figure 1H, I). To test if IGF2BP1
promotes a mesenchymal-like phenotype in EOC-derived cells, the protein was depleted or
over-expressed in a panel of EOC-derived cells. IGF2BP1 depletion reduced 3D spheroid
growth and invasion in all EOC cell lines tested (Figure 1 J,K; blue boxes). Strikingly, the forced
expression of GFP-fused IGF2BP1 significantly elevated the invasive growth of OVCAR-3 and
ES-2 cells (Figure 1 J,K; red boxes). In sum, this indicated that IGF2BP1 is a marker of the C5

subtype of HG-SOC, promoting invasive growth in EOC-derived cell models.
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Figure 1. IGF2BP1 is associated to the C5 signature and promotes mesenchymal
properties. (A) IGF2BP1 expression was correlated to the C5 signature using indicated data
sets. Pearson correlation coefficients (R) are shown as heat map. (B,C) IHC staining of EOC
samples classified as C5 or none-C5 via NGS based GSEA analyses using IGF2BP1 directed
antibodies (B). IGF2BP1 staining was quantified using the Remmele immune score in none-
C5 (24) and C5 (6) samples (C). (D) IGF2BP1 mRNA expression is shown by violin plots, in
the TCGA-OV-RNA-Seq cohort distinguished in IGF2BP1-high (log RSEM > 5) or -low (log:
RSEM < 5). (E) GSEA plot of the HALLMARK_EMT gene set based on gene ranking by fold
change expression between IGF2BP1-high vs -low samples as in (D). (F) Violin plot of
IGF2BP1 mRNA expression in EOC-derived cells, classified as epithelial-like (E, blue) or
mesenchymal-like (M, red) by the differential mMRNA expression (Cancer Cell Line
Encyclopedia; CCLE expression data) of epithelial (CDH1, KRT8 and/or EPCAM) and
mesenchymal (VIM, ZEB1 and/or CDH2) markers. (G) Western blotting of IGF2BP1 and
indicated epithelial (blue) and mesenchymal (red) markers. VCL (vinculin) served as loading
control. (H,l) Immunostaining of CTNNB1 and F-actin using Phalloidin-TRITC in indicated cell
lines. Dashed boxes depict enlarged regions. Scale bar 25 um. The ratio of CTNNB1
membrane to cytoplasmic localization was determined in 15 cells over three independent
analyses. (J) 3D growth of indicated cell lines upon IGF2BP1 knockdown (blue) or over-
expression (red), as determined by Cell Titer Glo relative to controls and input. Representative
images of ES-2 cells expressing GFP or GFP-IGF2BP1 overlaid with growth detection masks
(red) and input spheroids (light red) are shown. (K) Invasion of pre-formed Matrigel embedded
spheroids of ES-2 cells upon IGF2BP1 knockdown (blue) or over-expression (red) was
monitored in an Incucyte S3. Representative images overlaid with invasion detection masks
(red) or input spheroids (light red) are shown. Box plots in J and K are derived from analyses
of 6-9 spheroids in three independent experiments. Statistical significance was determined by
Student’s T-test or Mann-Whitney rank sum test. *, p < 0.05; ***, p < 0.001.

IGF2BP1 promotes the disassembly of adherens junctions

How aberrant IGF2BP1 expression modulates cell morphology was investigated in
epithelial-like OVCAR-3 and mesenchymal-like ES-2 cells. IGF2BP1 over-expression in
OVCAR-3 enhanced the formation of lamellipodia and led to partial disassembly of cell
colonies (Figure 2A, arrow heads). IGF2BP1 depletion in ES-2 cells reduced spindle-like
morphologies in favor of a compact, flattened shape and enhanced the formation of colonies,
as previously observed [28]. This implied IGF2BP1-dependent regulation of cell-cell contacts,
in particular the modulation of AJ integrity, analyzed further by CDH1 and CTNNB1
immunostaining. IGF2BP1 overexpression in OVCAR-3 cells converted mature AJs to
premature, zipper-like AJs (Figure 2B). Quantification of AJ/cytoplasm fluorescence intensities

confirmed decreased AJ localization of CDH1 and CTNNB1, suggesting enhanced
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internalization and/or decay due to IGF2BP1 overexpression.

In ES-2 cells, the depletion of IGF2BP1 induced severe morphological changes
reminiscent of a partial mesenchymal-to-epithelial (MET) transition (Figure 2A and D). This
was indicated by markedly increased CDH2 and CTNNB1 AJ-recruitment, although CDH1
expression was not restored (Figure 2D). Furthermore, IGF2BP1 knockdown enforced
reorganization of the intermediate as well as microfilament system and induced the formation
of premature AJs (Supplementary Figure S2A-C). These even showed increased recruitment
of the AJ-stabilizing factor CTNND1 (3-Catenin) (Supplementary Figure S2B; [29]). MET-like
transition, indicated by enriched AJ-localization of CDH2 and CTNNB1 was conserved in a
panel of EOC-derived cells and cell lines of other origin depleted for IGF2BP1 (Supplementary
Figure S2D,E). The deletion of IGF2BP1 in ES-2 cells led to drastic MET-like morphological
changes culminating in the formation of mature AJs (Supplementary Figure S3A). On the
contrary, IGF2BP1 overexpression further reduced the AJ-localization of CTNNB1 and CDH2
in ES-2 and COV-318 cells (Supplementary Figure S3B,C). This re-localization was essentially

abolished by depleting exogenous IGF2BP1 in ES-2 (Supplementary Figure S3B).

How IGF2BP1 influences the expression of AJ proteins, was analyzed further by
monitoring MRNA and protein abundance by mRNA-sequencing and quantitative MS analyses
upon IGF2BP1 depletion in ES-2 cells (Figure 2C; Supplementary Table T5). This was
associated with up-regulation of AJ proteins CDH2, CDH5, CTNNAL and CTNNBL1. Together
these observations supported the notion that IGF2BP1 up-regulation is a driver of AJ

disassembly and EMT in EOC cells.
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Figure 2. IGF2BP1 promotes AJ disassembly. (A) Phase contrast images of OVCAR-3 and
ES-2 cells upon GFP or GFP-IGF2BP1 (G-I1) over-expression and IGF2BP1 (sil1) or control
depletion (siC). Arrowheads indicate colony-detaching cells. (B) Immunostaining of IGF2BP1
over-expressing or control OVCAR-3 cells with indicated antibodies. Over-expression is
pseudo-colored in blue. Dashed boxes depict enlarged region shown in middle panels. The
localization of CDH2 and CTNNB1 was assessed by immunostaining. The
membrane/cytoplasmic ratio of fluorescence intensities is shown by box plots (right panels).
(C) Log: fold change of protein expression (quantitative proteomics) upon IGF2BP1 depletion
in ES-2 cells plotted over the respective log: fold changes in RNA abundance (NGS). Selected
AJ proteins are indicated in red, IGF2BP1 is highlighted in blue. (D) ES-2 cells with transient
IGF2BP1 depletion were analyzed as in (B). Scale bars 25 um. 15 cells per condition were
analyzed in three independent experiments. Statistical significance was tested by student’s T-
test. ***, p < 0.001.

IGF2BP1 regulates SRC activity

IGF2BP1 is a key regulator of mRNA turnover in cancer cells, suggested to control
CTNNB1 mRNA turnover in breast cancer cells [15, 19, 20, 30]. However, with the exception
of CDH5, steady state mMRNA levels or mRNA turnover of AJ components including CTNNB1
remained unchanged upon IGF2BP1 depletion (Figure 2C; Supplementary Figure S4A).
Moreover, the activity of CDH2- and CTNNB1-3'UTR luciferase reporters remained unaffected
by IGF2BP1 knockdown (Supplementary Figure S4B). This largely excluded 3'UTR-dependent
regulation by IGF2BP1, as previously reported for ACTB and MAPK4 mRNAs [24, 27]. Instead,
our findings implied that elevated AJ formation upon IGF2BP1 depletion, involves altered
turnover of AJ proteins [29, 31]. In agreement, the decay of CDH2 and CTNNBL1 proteins was

significantly reduced by IGF2BP1 knockdown (Figure 3A,B).

The phosphorylation of some AJ proteins, e.g. CDH2, by SRC kinase promotes AJ
disassembly and subsequently protein decay [9, 11-13]. Consistently, AJ localization and total
abundance of CTNNB1 and CDH2 were elevated upon treatment of ES-2 cells with the SRCi
PP2 (Figure 3C,D; Supplementary Figure S4C). In view of IGF2BP1’s association with the SH3
domain of SRC [24], it appeared tempting to speculate that IGF2BP1 influences SRC activity.
Western blotting revealed that SRC activity, indicated by phosphorylation at tyrosine 419

(Y419) in the kinase domain, was substantially reduced upon IGF2BP1 depletion in all EOC-
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derived cell lines tested (Figure 3E; Supplementary Figure S4D). Conversely, increased
Y419-SRC phosphorylation was observed upon the over-expression of IGF2BP1 in
OVCAR-3 cells (Figure 3F). SRC expression remained essentially unchanged by aberrant
IGF2BP1 expression. In sum, these findings suggested that IGF2BP1-directed activation

of SRC promotes AJ disassembly in EOC-derived cells.
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Figure 3. IGF2BP1 destabilizes AJs in a SRC-dependent manner. (A,B) Turnover of
indicated proteins was determined by blocking protein synthesis with Emetine (100uM) by
Western blotting upon IGF2BP1 (sil1l) and control (siC) knockdown. GAPDH and VCL served
as loading controls to determine protein abundance relative to input levels. (C,D)
Immunostainings of ES-2 cells treated with PP2 (1uM) or DMSO for 48h using indicated
antibodies (C). Dashed box indicates enlargement. Scale bars 25 um. The AJ/cytoplasmic ratio
of CDH2 and CTNNBL1 is shown by box plots (D). (E,F) Western blot analyses of indicated
proteins in ES-2 cells upon IGF2BP1 depletion (E) and OVCAR-3 cells (F) with GFP or GFP-
IGF2BP1 (G-I1) over-expression. SRC activity, indicated by Y419 phosphorylation, was
normalized to SRC expression, as depicted under the lanes. VCL served as loading control.
Error bars show SD determined in three independent experiments. Statistical significance was
tested by Student’s T-test. *, p < 0.05; ***, p < 0.001.

IGF2BP1 promotes SRC activation via a SH3-ligand-binding mechanism

Previous studies identified IGF2BP1 as a SRC substrate and suggested association of
the kinase’s SH3 domain at a VP4SS motif in IGF2BP1 [24]. This putative SRC-binding site is
highly conserved among IGF2BP1 orthologues and identical to the SRC-docking site of the
adhesion molecule Paxillin (Figure 4A) [24, 25, 32]. SRC activity is repressed by an
intramolecular interaction (closed conformation) [33]. Activation, indicated by an open
conformation enabling auto-phosphorylation at pY419 in the kinase domain, is controlled by
various means including ligand-binding induced mechanisms [34]. The latter were described
for some SRC substrates including Paxillin and the RNA-binding proteins hnRNPK and SAM68
[32, 35, 36]. To test if IGF2BP1 promotes SRC activity via its VPSS maoitif, increasing amounts
of GFP-tagged proteins were expressed in ES-2 cells and SRC activity was monitored by
Western blotting for pY419-SRC (Figure 4B,C). This revealed dose-dependent up-regulation
of pY419-SRC by wild type (WT) and RNA-binding deficient (KH) IGF2BP1 (Figure 4B,C) [19,
37]. In contrast, SRC activity remained unchanged upon deletion of the VPSS motif in
IGF2BP1 (ASH3). Although less efficient, SRC-activity was also enhanced by over-expression
of the GFP-fused VP4SS peptide (SH3maotif). In sum, this unraveled that IGF2BP1 promoted
SRC activity in a dose-dependent manner by a ligand-binding induced, but RNA-binding

independent mechanism.
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Figure 4. IGF2BP1 promotes SRC activation via its SH3-binding VP4SS motif. (A)
Schematic representation of VP4SS conservation among IGF2BP1 orthologs and human
paxillin. The domain organization of IGF2BP1 is shown in the upper panel (RRM, RNA
recognition motif; KH, hnRNPK homology domain). (B) Representative Western blot
analyses of indicated proteins in ES-2 cells transiently expressing GFP alone (lane 1) a
mixture of GFP and indicated GFP-fused proteins (lane 2) or only GFP-fused proteins.
WT, GFP-IGF2BP1WT; DSH3, GFP-IGF2BP1DSH3; SH3motif, GFP-VP4SS; KH, GFP-
IGF2BP1KHmut. VCL served as loading control. (C) Quantification of Western blots
shown in (B). Error bars indicate SD determined in three independent experiments.
Statistical significance was tested by Student’s T-test. *, p < 0.05; **, p < 0.01.
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The IGF2BP1-SRC axis enhances EMT and invasive growth of EOC-derived cells

The physiological relevance of IGF2BP1-dependent control of SRC activity was
analyzed by monitoring AJ integrity using immunostaining (Figure 5A,B). IGF2BP1 over-
expression in OVCAR-3 or re-expression in IGF2BP1-deleted ES-2 cells impaired the AJ
localization of CTNNB1, CDH1 or CDH2 compared to GFP controls. Similar to wild type
IGF2BP1, the RNA-binding deficient (KH) protein substantially impaired AJ assembly. In
contrast, AJ localization of the respective proteins was essentially unchanged by over- or re-

expression of IGF2BP1 lacking the VP4+SS motif (ASH3).

However, only wild type IGF2BP1 substantially promoted both, 3D spheroid growth and
invasion of ES-2 cells (Figure 5C,D). In contrast, invasive growth was only modestly elevated
by ASH3 and KH mutant proteins. To investigate the role of IGF2BP1-dependent SRC-
activation in invasive growth, the kinase was inhibited by PP2 in ES-2 cells overexpressing
IGF2BP1 (Supplementary Figure S4E). This essentially abolished IGF2BP1-directed invasion.
Collectively, these findings indicated a pivotal role of IGF2BP1-directed SRC activation in AJ
integrity and invasive growth of EOC-derived cells. However, full potential in promoting
invasive growth requires both, the RNA-independent activation of SRC and presumably the

RNA-dependent regulation of mRNA fate by IGF2BP1.
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Figure 5. IGF2BP1 promotes AJ disassembly VP,SS-dependent. (A,B)
Immunostaining of CTNNB1 and CDH2 or CDH1 uppn the over-expression of GFP or
indicated IGF2BP1 proteins (pseudo-colored in blue) in IGF2BP1-deleted ES-2 (A) or
parental OVCAR-3 cells (B) were performed and apalyzed as in Figure 1H,l. Dashed
boxes indicate enlargements. Scale bars 25 um. (C/D) Spheroid growth (C) or invasion
(D) of ES-2 cells stably expressing GFP or indicated IGF2BP1 proteins were performed
and analyzed as in Figure 1J,K. Statistical significance was tested by Student’s T-test or
Mann-Whitney rank sum test. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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Combined SRCI/MEKI effectively impairs IGF2BP1-driven invasive growth

The SRC inhibitor saracatinib showed anti-tumor activity in HG-SOC preclinical studies
[38]. However, activation of the MAPK pathway is associated with resistance to saracatinib.
MEK inhibition by selumetinib proved effective in re-sensitizing saracatinib resistant cells [2].
Co-activation of SRC and MAPK was reported in HG-SOC patients and combined SRCI/MEKi
impaired tumor growth in vivo more effectively than monotherapies [10]. We recently
demonstrated that IGF2BP1 promotes ERK2 (MAPK1) and SRF expression by impairing
miRNA-directed repression [15, 19]. Consequently, SRF-dependent MAPK signaling was
reduced upon IGF2BP1 depletion [15]. Analyses in a panel of EOC-derived cells confirmed,
IGF2BP1 is a conserved enhancer of ERK2 expression and MAPK signaling (Supplementary

Figure S5A-C).

Currently, no clinically evaluated IGF2BP1 inhibitor is available. The small molecule
inhibitor BTYNB impairs tumor cell growth and IGF2BP1-RNA binding in vitro [39]. However,
it appeared unlikely to inhibit the RNA-binding independent control of SRC activity by IGF2BP1.
Hence, we analyzed if saracatinib and/or selumetinib impair IGF2BP1-directed control of

invasive growth.

To this end, we determined the ECso concentrations for both inhibitors in the 3D growth
and invasion of ES-2 cells over-expressing GFP or GFP-IGF2BP1. Irrespective of IGF2BP1
over-expression, selumetinib repressed 3D growth and saracatinib invasion at nearly equal
potency (Supplementary Figure S5D,E). Conversely, IGF2BP1 over-expression induced a
60% higher tolerance towards saracatinib under 3D growth conditions and four-fold higher
invasion upon selumetinib treatment (Figure 6A,B). In support of this, EOC-derived cell lines
were sensitized to growth inhibition by saracatinib (Sa; approximated ECso concentration of
3uM) upon IGF2BP1 depletion and became more resistant by IGF2BP1 over-expression
(Figure 6C). The inhibition of invasion by selumetinib (Se; approximated Imax concentration of

3uM) was elevated by IGF2BP1 depletion and decreased by its overexpression (Figure 6D).

To address if both inhibitors act in a synergistic or additive manner, combinatorial
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treatment was performed using a 2D growth drug matrix analysis (Supplementary Figure S6A,
B). This revealed additivity, indicated by synergy scores in-between -10 and 10, determined
by three independent synergy models [40]. The maximal additive concentrations for IGF2BP1-
expressing were approximately 6uM for both inhibitors. According to HSA model assumptions
[40], the potential benefit of additive inhibition in 3D growth and invasion was analyzed at 3uM
per drug in combined and 6uM in mono-treatments. Western blotting confirmed inhibition of

both kinases by the respective inhibitors at these concentrations (Supplementary Figure S6C).

However, even at 6 M single saracatinib treatment remained substantially less efficient
than selumetinib or combined treatment in 3D growth analyses (Figure 6E,F; Supplementary
Figure S6D). The same was observed for selumetinib in 3D invasion studies (Figure 6G, H;
Supplementary Figure S6E). Thus, only combined treatment was effective in inhibiting both,

3D growth and invasion irrespective of IGF2BP1 overexpression.

Invasive growth in the peritoneum is a major complication in the progression of ovarian
cancer. If combined treatment also impairs invasive growth in vivo was analyzed by
intraperitoneal (IP) injection of iRFP-labeled (near-infrared red fluorescent protein) ES-2 cells
expressing GFP or GFP-IGF2BPL1. Cells were pre-treated with both inhibitors (3 uM each),
and DMSO for 48h and injected in the presence of both inhibitors at the same concentrations.
Tumor growth was monitored by total iRFP signal in the peritoneum two weeks post injection
of viable tumor cells (Figure 61,J). IGF2BP1 over-expression led to higher tumor burden in
DMSO treated controls, supporting the growth- and invasion-enhancing role of IGF2BP1
observed in cellulo and previously reported [19]. Irrespective of IGF2BP1 expression, tumor

growth was essentially abolished by combined treatment.

Together these observations indicated that combined treatment with selumetinib and
saracatinib effectively impairs the IGF2BP1-dependent enhancement of invasive growth in

EOC-derived cells in vitro and in vivo.
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Figure 6. IGF2BP1 promoted invasive growth is abolished by combined SRCi/MEKIi
treatment. (A-H) Spheroid growth (A,C,E,F) or invasion (B,D,G,H) of GFP (controls) or
IGF2BP1 over-expressing ES-2 cells was monitored and analyzed as in Figure (1J,K). All
treatments at indicated concentrations were performed on pre-formed (24h) spheroids for
indicated time and concentrations. Error bars indicate SE (A,B). (1,J) iRFP-labelled GFP or
IGF2BP1 over-expressing ES-2 cells pre-treated with saracatinib (3uM) and selumetinib (3uM)
or DMSO for 48h, were IP injected into nude mice with compounds at indicated concentrations.
Tumor growth of five mice per conditions (I) was monitored and quantified (J) by infra-red
imaging of the abdominal region 2 weeks post injection. Statistical significance was tested by
Student’s T-test or Mann-Whitney rank sum test. *, p < 0.05; **, p < 0.01; *** p < 0.001.

Discussion

Enhanced expression of IGF2BP1 is associated with a mesenchymal/proliferative-like
gene signature observed in approximately 30% of serous ovarian cancers [6-8]. This identifies
IGF2BP1 as a novel marker of the mesenchymal-like C5 subtype of HG-SOCs [6]. In EOC-
derived cells, IGF2BP1 promotes invasive growth by stimulating SRC/ERK-signaling. The
protein enhances ERK2 abundance by stabilizing the respective mRNA, as previously reported
[19]. In contrast, SRC-activation by IGF2BP1 is RNA-independent and solely relies on the
conserved SRC/SH3-binding motif of IGF2BP1. This suggests that IGF2BP1 promotes SRC
kinase activation by a ligand-binding-induced mechanism prior unknown for IGF2BP1. This is
highly important for perspective drug-design approaches currently addressing IGF2BP1’s RNA
binding activity only [39]. However, full potential of IGF2BP1 enhanced invasive growth

requires both, protein-dependent activation of SRC and RNA-binding associated regulation.

The activation of SRC is crucial for the pro-invasive role of IGF2BP1, since it promotes
EMT by inducing the disassembly of AJs. This is abolished by ablating SRC activity using
pharmacological inhibitors. This reveals a fundamental novel role of IGF2BP1, the
interconnection of deregulated gene expression and cancer cell signaling. Consistent with this
dual function promoting ERK/SRC signaling, the combined inhibition of MAPK- and SRC-
signaling by selumetinib and saracatinib proves substantially more effective than

monotherapies. This was validated IGF2BP1-dependent for the impairment of 3D growth and
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invasion in cellulo and the peritoneal spread of tumor cells in experimental mouse tumor
models. In support of this, previous studies report a substantial therapeutic benefit of combined
inhibition of MAPK/SRC signaling in EOC tumor models [2, 10]. Thus, our findings suggest
IGF2BP1 as a novel marker for EOC therapy. Considering the major problem of invasive
growth associated with ovarian cancer spread in the abdominal cavity, the further investigation
of IGF2BP1-driven cancer progression, in particular its roles in the mesenchymal subtype of
HG-SOCs, appears mandatory. Along these lines, the direct targeting of IGF2BP1-dependent
functions, for instance by impairing its RNA-binding by small molecules like BTYNB need to

be evaluated.

Materials and methods

Patient samples and IHC

Human HG-SOC samples, collected from patients undergoing surgery, were prepared
by the pathologist and immediately frozen (liquid nitrogen). HE staining confirmed tumor
content of each sample. The study, including IHC and NGS analyses, was approved by the
Ethics Committee of the Medical Faculty/Martin Luther University Halle/Wittenberg and written
informed consent. IHC staining of FFPE samples was performed as previously described [41],
using a Tris/EDTA buffer (pH 9) for antigen retrieval, a commercial IGF2BP1-directed antibody
(MBL, Woburn, MA,; ; Cat#. RNO0O1M; RRID: AB_1953026; dilution 1:100), DAB Enhancer
(Dako/Agilent, Santa Clara, CA; Cat# S1961) for detection, and counterstaining by hemalm.
IGF2BP1 staining was determined blinded by two pathologists using the immunoreactive
score as described [42]: 0 — absent; 1-4 —weak; 5-8 — moderate; 9-12 — strong expression.
A summary of samples, IGF2BP1 expression values and Remmele scores is provided as

Supplementary Table T1B.
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Animal Handling and Ethics Approvals

Immunodeficient athymic nude mice (FOXN21nu/nu) were obtained from Charles River
(Wilmington, MA). Animals were handled according to the guidelines of the Martin Luther
University based on ARRIVE guidelines. Permission was granted by the County Administration
Office for Animal Care Saxony-Anhalt. iRFP-labelled IGF2BP1 over-expressing or GFP control
ES-2 cells (7.5 x 10* living cells determined by Trypan Blue counting) pre-treated with 3uM
saracatinib and 3uM selumetinib or DMSO for 48h were injected intraperitoneal (IP) into six-
week old female nude mice (five mice per condition) together with these inhibitors at the same
concentration. Tumor growth of isofluran-anaesthetized mice was monitored weekly by near-
infrared imaging using a Pearl imager (LI-COR, Lincoln, NE) and quantified using the Image
Studio software (LI-COR). Mice were sacrificed after 2 weeks, as IGF2BP1 over-expressing

tumors reached termination criteria.

NGS and quantitative proteomics

NGS analyses of patient samples and cells were performed as previously described
[19]. Total RNA-Seq data were deposited at NCBI GEO: (GSE147980) for EOC cohort or
(GSE109605) for IGF2BP1 depletion in ES-2 cells. Quantitative proteomics were performed
as described before [43]. In brief, TMT labeling of trypsin-digested proteins was performed
according to the manufacturer’s instructions (TMT-10plex kit, Thermo Fisher, Waltham, MA).
Equal volumes of all samples were mixed, concentrated in a vacuum concentrator and acidified
with TFA for LC/MS/MS analysis. Samples were separated by nano-HPLC (Ultimate RSLC
3000, Thermo Fisher) using reversed phase C18 columns and 420-min gradients. The eluate
was directly introduced into an Orbitrap Fusion Tribrid mass spectrometer (Thermo Fisher)
equipped with nano-ESI source. Samples were analyzed using a collision-induced dissociation
(combined ion trap-CID/high resolution-HCD) MS/MS strategy for peptide identification and
reporter ion quantification. MS/MS data were searched against the NCBI database (version

140412, taxonomy homo sapiens, 89,649 entries) using the Proteome Discoverer (version 2.0,
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Thermo Fisher). Quantification was performed based on the reporter ion ratios derived from

high-resolution MS/MS spectra. Proteomics data are shown as Supplementary Table T5.

Public data, GSEA and databases

TCGA-OV-RNA-Seq data of the ovarian cancer cohort were obtained from GDC portal
(https://portal.gdc.cancer.gov/). NGS data of ovarian cancer cell lines were downloaded from

CCLE (Cancer Cell Line Encyclopedia) (https://portals.broadinstitute.org/ccle). Gene set

enrichment analyses (GSEA; Supplementary Table T3) were performed as described before
using the fold change expression of all genes between IGF2BP1 high and low expressing
tumors (Supplementary Table T2) for gene ranking (18). Kaplan Meier plots for progression

free survival (A) or overall survival (B) were generated with www.kmplot.com (3) using the

microarray based cohorts for ovarian cancer including the Australian data set by Tothill et al.
(4). Synergy between saracatinb and  selumetinib was tested using

https://synergyfinder.fimm.fi/ based on a drug matrix screen for various combinations and

concentrations according to the online instructions (5).

Cell lines, culture conditions and transfections

Ovarian cancer cell lines (Supplementary Table T6) and HEK293T cells for production
of lentiviral particles were cultured in DMEM (Thermo Fisher) supplemented with 10% fetal
bovine serum (FBS; Biochrom/Merck, Schaffhausen, Switzerland) at 37°C and 5% CO.. The
most frequently used ES-2 cell line was authenticated by Eurofins Genomics using
AmpFISTR® Identifiler® Plus PCR Amplification Kit (Thermo Fisher) for STR profiling.
Mycoplasma testing was routinely performed every two months by PCR and DAPI staining.
Reverse transfections of plasmids (Supplementary Table T8) or siRNA pools (15 nM;

Supplementary Table T7) were carried out using Lipofectamine 2000 or Lipofectamine
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RNAiMax (Thermo Fisher), respectively, according to the manufacturer’s instructions. Lenti-
viral particles were produced as previously described [28].

The following inhibitors were added in indicated concentrations and time: Saracatinib
(Selleckchem, Housten, TX; Cat#S1006), Selumetinib (Selleckchem; Cat#S1008) and PP2
(Sigma Aldrich, St. Louis, MO; Cat#P0042). Protein turnover was analyzed by addition of
Emetine (100 uM, Sigma Aldrich, Cat# E2375) and RNA decay by addition of Actinomycin D
(5uM, Sigma Aldrich, Cat# A9415) for indicated time points 72h post siRNA transfections.
Protein and mRNA abundances were analyzed by Western blotting or RT-gPCR as described
in the Supplementary Information. For antibodies and primers see Supplementary Table T7

and T8.

Immunostainings

Immunostainings were essentially performed as previously described (1,2). Primary
and secondary antibodies are summarized in Supplementary Table T7. Images were acquired
on Leica SP5X or SP8X confocal microscopes equipped with a white light laser and HyD
detectors using a 63x Oil objective and standardized settings for sequential image acquisition
at the Core Facility Imaging, University of Halle. Bright field images were taken using a Nikon
TE-2000-E microscope with 20x magnification and phase contrast. Representative images are
shown. The localization of CTNNB1, CDH1 and CDH2 at the site of adherents junctions was
guantified with respect to the cytoplasm for 14-15 cells from three independent experiments

using imageJ as depicted as box plot.

3D spheroid growth and invasion assays

For spheroid growth or invasion assays, 1x10° cells in 50 pL growth medium were
seeded into round bottom ultra-low attachment plates (Corning, Corning, NY; Cat#7007),
centrifuged for 5 min at 300 g and grown for 24h to induce spheroid formation. For all cell lines

except ES-2 and SK-OV-3, Cultrex® 10X Spheroid Formation ECM (Trevigen, Gaithersburg,
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MD; Cat# 3500-096-01) was added before centrifugation. For ES-2 and SK-OV-3 the addition
of SFE was tested before the experiments with no improvement on 3D growth or invasion. For
invasion assays, 50 pL Matrigel (Corning, Cat# 354234) was added to preformed spheroids.
Growth medium (100 uL) supplemented with indicated inhibitors where stated was added
before 3D growth or invasion were monitored using an Incucyte S3 (Sartorius, Goéttingen,
Germany) device for indicated time. Image analyses were performed using the Incucyte
software for spheroid segmentation (indicated as mask overlays in the respective figures).
Growth or invasion areas excluding the spheroid body are normalized to spheroid inputs.
Representative images are shown. Quantifications represent in total 6-9 spheroids from three

independent experiments shown as box plots.

Antibodies, Western blotting and qRT-PCR

For Western blotting, cells were harvested by a rubber policeman to minimize
degradation of trans-membrane proteins. Total protein was extracted in TLB-buffer [50 mM
Tris pH 7.4, 50 mM NaCl, 1 % SDS, 2 mM MgCl.] followed by DNA digestion using Benzonase
(Merck). Equal amounts of total protein was loaded on NUPAGE Bis-Tris (4-12%) gels (Thermo
Fisher), blotted onto nitrocellulose membrane (Amersham Bioscience) using the Mini Gel Tank
Blotting system (Thermo Fisher) and analyzed using the Odyssey infrared scanner (LI-COR)
as previously described (26). Primary and secondary antibodies are summarized in

Supplementary Table T7.

Total RNA extracted using Trizol (Thermo Fisher) served as template for cDNA
synthesis by random priming using M-MLV reverse transcription system (Promega, Madison,
WI). gPCR was performed based on SYBRgreen | technology using the ORA gPCR Green
ROX L Mix (HighQu, Kraichtal, Germany) on a LightCycler 480 Il 384 format system (Roche,
Basel, Switzerland). For all primer pairs an annealing temperature of 60°C in a 3-step protocol

was used. Relative changes of RNA abundance were determined by the AACt method using
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RPLPO and GAPDH for normalization, as previously described (17). For primers see

Supplementary Table T8.

Plasmids, cloning and luciferase reporter assays

Plasmid generation including the respective templates, vectors, restriction sites and
oligonucleotide sequences and cloning strategies are summarized in Supplementary Table T8.
All PCR (polymerase chain reaction) amplified inserts were sequenced before subcloning in
the respective vectors. ES-2 cells transfected with siRNAs (24h) were splitted for re-
transfection of pmir-Glo luciferase plasmids (Supplementary Table T7) for additional 48h.
Luciferase reporter analyses were performed essentially as previously described (17).
Reporters containing a minimal vector-encoded 3'UTR (MCS) served as normalization

controls.

Statistical analyses

All cell culture experiments were performed in biological triplicates unless otherwise
stated. Western blot quantifications are shown as mean + SD. Whisker caps of box plots depict
the 51/95™ percentile and all outliers are shown. Spheroid growth and invasion curves are
shown as mean + SE. Statistical significance was tested by Student’s T-test (two-tailed) or
Mann-Whitney Rank-Sum test after data distribution was checked by Shapiro-Wilk normality

test using Sigma Plot.
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