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Neural networks have been seldomly leveraged in population genomics due to the 18 

computational burden and challenge of interpretability. Here, we propose GenNet, a novel 19 

open-source deep learning framework for predicting phenotype from genotype. In this 20 

framework, public prior biological knowledge is used to construct interpretable and 21 

memory-efficient neural network architectures. These architectures obtain good predictive 22 

performance for multiple traits and complex diseases, opening the door for neural 23 

networks in population genomics. 24 

 25 

Introduction  26 

Genome-wide association studies (GWAS) have identified numerous genomic loci associated 27 

with complex (polygenic) human traits and diseases.  Recent GWAS studies with increasingly 28 

larger sample sizes are leading to more significant associations between genotypes and 29 
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phenotypes at more and more independent loci. To illustrate, the latest GWAS for body height 30 

based on 700,000 individuals identified more than 3000 near-independent significantly 31 

associated single nucleotide polymorphisms (SNPs)1. This information, used in combination with 32 

annotated biological databases such as: NCBI RefSeq, KEGG, Reactome and GTEx has proven 33 

to be highly valuable for understanding the underlying biological mechanisms of complex 34 

diseases2-6. In this paper, we propose a new framework, GenNet, that integrates these biological 35 

data sources for discovery and interpretability in an end-to-end deep learning framework for 36 

predicting phenotypes. 37 

Deep learning is the state of the art in many domains such as medical image analysis and natural 38 

language processing  because of its flexibility and modeling capabilities7,8.  In many cases, deep 39 

learning yields better performance compared to traditional approaches, since it can model highly 40 

non-linear relations and scales very well with data size. However, this often comes at the cost of 41 

interpretability, since there is a trade-off between complexity and interpretability9,10. 42 

Additionally, when it comes to genotype data, the number of learnable parameters increases 43 

dramatically because of the large input size, making it infeasible to use classical neural networks 44 

in this domain. To overcome previous limitations, we propose a new framework, GenNet, in 45 

which different types of biological information are used to define biologically plausible neural 46 

network architectures, avoiding this trade-off and creating interpretable neural networks for 47 
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predicting complex phenotypes.48 

 49 

Figure 1. Overview of the GenNet Framework.  Neural networks are made by combining layers 50 

made of different sources of prior biological knowledge (i.e. a gene layer from gene annotations, 51 

a pathway layer from KEGG pathway annotations). These sources define the connections and 52 

therefore the architecture, creating interpretable networks in the process. 53 

 54 

Methods 55 

The main concept of the GenNet framework is summarized graphically in Figure 1. In this 56 

framework, prior knowledge is used to create groups of connected nodes to reduce the number of 57 

learnable parameters in comparison to a fully connected neural network. For example, in the first 58 

layer, where biological knowledge in the form of gene annotations, is used to group millions of 59 
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single nucleotide polymorphisms (SNPs) and to connect those SNPs to their corresponding 60 

genes. The resulting layer retains only meaningful connections, significantly reducing the total 61 

number of parameters compared to a classical layer. As a result, these memory-efficient 62 

networks are able to handle the millions of inputs needed for genotype-to-phenotype prediction.  63 

The biological knowledge is thus used to define only meaningful connections, shaping the 64 

architecture of the neural network. Interpretability is inherent to the neural network’s 65 

architecture. For example, a network that connects SNPs-to-genes and genes-to-output. The 66 

learned weights of the connections between layers represent the effect of the SNP on the gene or 67 

the effect of the gene on the output. In the network, all neurons represent thus biological entities 68 

and weights model the effects between these entities, together forming a biologically 69 

interpretable neural network. Each connection in the network is thus based on a biological 70 

annotation and the learned weight for this connection represents the importance of this 71 

annotation for the predicted outcome. 72 

Many types of layers can be created using this principle. These layers can be used like building 73 

blocks to form new network architectures. Apart from gene annotations, our framework provides 74 

layers built from exon annotations, pathway annotations, chromosome annotations and cell and 75 

tissue type expressions. 76 
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77 

Figure 2. A) Non-linear simulation showing the basic principle of the network, thickness of the 78 

connections represents the learned weight (causal, contributing connections in red, control 79 
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connections in grey). This proof of concept can be run online see https://tinyurl.com/y8hh8rul  80 

(or see Supplementary 1.1). B) A secondary set of simulations show the performance of GenNet, 81 

expressed in the area under the curve, for increasing levels of heritability and training set size 82 

(C). In black the theoretical maximum of the AUC versus heritability11.  D) Manhattan plot of the 83 

importance of the genes according to the network for distinguishing between schizophrenia cases 84 

and controls. E) This Manhattan plot is a cross section between the gene layer and the outcome 85 

of the trained network. 86 

 87 

Results 88 

In order to evaluate the network’s performance under a variety of conditions, synthetic data was 89 

created with different levels of heritability, number of training samples and polygenicity (see 90 

Supplementary Materials 1 for results and detailed description). Figure 2A shows the proof of 91 

concept demo that can be run online. Figure 2B and 2C show the main trends in the simulations. 92 

As would be expected, the network performs best for traits with high heritability, high number of 93 

training samples and low polygenicity, and the performance decreases with decreasing 94 

heritability, number of training samples or increase of polygenicity.  95 

Motivated by the proof of concept and the outcomes of the simulations, the framework was 96 

applied to real data from multiple sources, including population-based data from the UK Biobank 97 

study and the Rotterdam study, and a case-controls study on schizophrenia from Sweden12-14. 98 

The analyzed phenotypes vary from traits where high predictive performance can be obtained 99 

from a dozen of variants (eye color) to disorders where thousands of variants only explain a 100 

small portion of the variance (schizophrenia and bipolar disorder)15,16. The genotype data 101 

employed included imputed microarray-based GWAS data (eye color in Rotterdam study) as 102 
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well as whole exome sequencing (WES) data (hair color, male baldness pattern and bipolar 103 

disorder in UK Biobank; schizophrenia in the Swedish study). An overview of the experiments 104 

and results can be found in table 1.   105 

Trait Dataset 

(type) 

Number of 

input 

variants  

Subjects & 

phenotype 

Heritability AUC 

LASSO 

AUC 

GenNet 

GenNet: top 

three most 

important 

genes Class I 

 

Class II 
  

Eye color Rotterdam 

(genotype 
array) 

113,241 

(exonic) inputs 
of 16,628 

genes 

4041 

Blue 

2250 

Other 

0.80-0.98 0.68 0.75 HERC2, OCA2, 

LAMC1 

Hair color UK Biobank 
(exome) 

 6,986,636 
input variants 

of 15,827 

genes 

1648 
Blond 

 

1656 
 Red 

 

0.70-0.97 0.78 0.83 MC1R*, OCA2, 
TC2N 

1672 

Dark 
brown 

 

1664 

 Red 
 

0.70-0.97 0.79 0.88 MC1R*, OCA2, 

ZCCHC4 

4352 
Blond 

4343  
Dark 

Brown 

 

0.70-0.97 
 

0.64 0.75 OCA2, TC2N, 
EXOC2 

Male 

baldness 

UK Biobank 

(exome) 

6,986,636 

Input variants 

of 15,827 
genes. 

 

3454  

No 

balding  
 

3454  

Severe 

balding  

0.60-0.70 0.57 0.57 NGEF, 

NKRD18B, SYNJ2 

Bipolar UK Biobank 
(exome) 

6,986,636 
Input variants 

of 15,827 

genes 

343 
Cases 

 

347 
Controls 

 

0.73-0.93 0.59 0.60 LINC00266-1, 
CSMD1, 

TCERG1L 

Schizophrenia Sweden 

(exome) 

1,288,701 

input variants 

of 21,390 
genes 

4969 

Cases 

 

6245 

Controls  

0.80-0.85 0.65 0.74 ZNF773, PCNT, 

DYSF 

Table 1. Summary of the experiments and results in this study for the simplest network in our 106 

framework that contains the input SNPs, the gene layer and the output layer. Manhattan plots for 107 

gene importance can be found in Supplementary Materials 2,3 & 4. *MC1R was not present in 108 

gene annotations but was identified by linkage disequilibrium. 109 

 110 

In general, the framework’s predictive performance is in line with trends seen in simulations and 111 

literature. Phenotypes with more training samples and phenotypes that require less variants to 112 

obtain good predictive performance, such as eye and hair color, performed best. Nonetheless, a 113 

good predictive performance, area under curve (AUC) of 0.74 in the held-out test set, was 114 
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obtained for schizophrenia, a highly polygenic disorder. All models outperform or match the 115 

baseline LASSO logistic regression model (see Methods). 116 

Inspecting the networks, we found that the OCA2 gene was highlighted as the most important 117 

gene to distinguish between brown and blond hair color. OCA2 is involved in the transport of 118 

tyrosine, a precursor of melanin17. The signal is probably amplified by the nearby HERC2, 119 

previous identified via functional genetic studies as harboring a strong, long-distance enhancer 120 

regulating OCA2 gene expression to cause pigmentation variation17
. OCA2 and HERC are the 121 

two most predictive genes according to the network for predicting blue (iris) eye color. Both 122 

have been earlier identified by hair and eye color GWASes18-20. 123 

In the experiments with schizophrenia as outcome, the network was able to classify cases and 124 

controls with a maximum accuracy of 68.4% (mean of 66.3 ± 1.37 over 10 runs).  We estimate 125 

the theoretical upper limit for classification, including all genetic aspects, to be an accuracy of 126 

72% (supplementary methods 5). The model obtains an area under the receiver operating curve 127 

of 0.74 (ranging 0.72-0.74) in the held-out test set, thereby considerably outperforming the 128 

LASSO logistic regression baseline (AUC of 0.64). The GenNet AUC compares favorably to 129 

polygenic risk scoring  for schizophrenia, which have AUC values on the order of 0.70 (ranging 130 

0.49-0.85)15 . This is noteworthy since in this study the schizophrenia predictions are based on 131 

whole exome sequencing data as opposed to GWAS arrays spanning the whole genome.132 

133 

 134 

Discussion 135 

Here, we present a novel framework to train interpretable neural networks for phenotype 136 

prediction from genotype. The proposed neural networks have connections defined by prior 137 

biological knowledge only, reducing the number of connections and therefore the number of 138 
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trainable parameters.  Consequently, the networks are interpretable and overcome computational 139 

limitations. All experiments were run on a single GPU (Nvidia GeForce GTX 1080) and 140 

converged within 48 hours. Simulations show the network’s performance when varying the 141 

degree of heritability, polygenicity and sample size. The suggested sample size, heritability and 142 

polygenicity are conservative. When applying the framework to UK Biobank, Rotterdam study 143 

and Swedish Schizophrenia WES data, good predictive performance was achieved with smaller 144 

sample sizes and higher number of inputs than suggested by the simulations. In these 145 

experiments, widely different phenotypes are predicted with generally good performance based 146 

exclusively on WES SNPs. 147 

For traits with a known etiology, well-replicated genes such as HERC2 and OCA2 for eye color 148 

and OCA2 and TCN2 for hair color were found to be important by the network18-21.  For 149 

schizophrenia, a disorder with an unclear etiology, the network identified previously 150 

unimplicated genes, including ZNF773 and PCNT. However, it is important to note that the 151 

importance captured by the network bears more similarity to effect size rather than statistical 152 

significance. 153 

In general, these experiments indicate that neural networks in our framework can overcome 154 

computational limitations while still obtaining good predictive performance, opening the door for 155 

genetic risk prediction by neural networks. Aside from computational benefits, the architecture 156 

offers interpretability, alleviating one the most important shortcomings of neural networks. In 157 

this study, WES data and exonic variants from microarrays have been used, however the 158 

principles in the GenNet framework can be leveraged to handle diverse types of input, including 159 

genotype, gene expression and methylation data or combinations thereof) 160 

  161 
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  162 

In conclusion, we developed a freely-available framework, which can be used to build 163 

interpretable neural networks for genotype data by incorporating prior biological knowledge. We 164 

have demonstrated the effectiveness of this novel framework across multiple datasets and for 165 

multiple phenotypes. Given that each network node is interpretable, we anticipate this approach 166 

to have wide applicability for uncovering novel insights into the genetic architecture of complex 167 

traits and diseases.  168 

 169 

GenNet is an open-source framework, providing code and tutorials  170 

(https://github.com/arnovanhilten/GenNet/). This includes tutorials for applying the networks as 171 

well as creating new layers and networks from prior knowledge.  172 

 173 

  174 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2020. ; https://doi.org/10.1101/2020.06.19.159152doi: bioRxiv preprint 

https://github.com/arnovanhilten/GenNet/
https://doi.org/10.1101/2020.06.19.159152
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

Online Methods 175 

Sweden Schizophrenia 176 

Sweden-Schizophrenia Population-Based Case-Control Exome Sequencing study (dbGaP 177 

phs000473.v2.p2), is a case control study with 4969 cases and 6245 controls14. All individuals 178 

aged 18-65, have parents born in Sweden and provided written informed consent. Cases were at 179 

least 2 times hospitalized with schizophrenia discharge diagnosis and do not have a hospital 180 

register diagnosis consistent with a medical or other psychiatric disorder that mitigates the 181 

schizophrenia diagnosis. Cases do not have a relationship closer than 2nd degree relative with 182 

any other case. Controls do not have any relation to either case or control and all controls have 183 

never been hospitalized with a discharge diagnosis of schizophrenia. 184 

The .bim, .bam and .bed files were converted using HASE22 to .h5 format, a format that allows 185 

fast and parallel data reading. After conversion, the data is transposed and SNPs without any 186 

variance are removed (~1.2 million SNPs remain). The data is split in a training, validation and 187 

test set (ratio of 60/20/20), while preserving the ratio cases and controls.  All SNPs with standard 188 

deviation greater than zero are used as input to the network after z-score normalization (based on 189 

the mean and standard deviation of the training set).  190 

 191 

UK Biobank 192 

We applied the framework to multiple phenotypes in the UK Biobank using the first release of 193 

the WES data, providing whole exome sequencing for 50,000 UK Biobank participants23. 194 

Phenotypes are self-reported (touchscreen questions UK Biobank Assessment Centre). Similar to 195 

the Sweden cohort all variants without variance were removed, data was converted to 196 

hierarchical data format (.h5), and transposed. For every phenotype an equal number of cases 197 
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and controls were sampled. The resulting dataset is split in a train, validation and a test set (ratio 198 

of 60/20/20). Related cases, and cases with related controls, (kinship > 0.0625) are all in the 199 

training set. This is done under the assumption that related cases and controls could ease training, 200 

the shared genetic information could steer the network towards the discriminatory features. The 201 

validation and test sets contain only unrelated cases and controls within and between sets. 202 

Unrelated controls are randomly sampled and added to gain an even distribution between cases 203 

and controls in all sets. Misaligned SNPs and sex chromosomes were masked in the first layer 204 

and therefore not included in the study. 205 

 206 

Rotterdam Study 207 

The Rotterdam study is a prospective cohort study, in the first cohort 6291 participants were 208 

genotyped using the Illumina 550K and 550K duo arrays. Samples with low call rate (<97.5%), 209 

with excess autosomal heterozygosity (>0.336) or with sex-mismatch were excluded, as were 210 

outliers identified by the identity-by-state clustering analysis (outliers were defined as being >3 211 

standard deviation (SD) from population mean or having identity-by-state probabilities >97%). 212 

For imputation the Markov Chain Haplotyping (MACH) package version 1.0 software (Imputed 213 

to plus strand of NCBI build 37, 1000 Genomes phase I version 3) and minimac version 2012.8.6 214 

were used (call rate >98%, MAF >0.001 and Hardy–Weinberg equilibrium P-value > 10−6).  215 

From here on processing steps are identical as described for Sweden Schizophrenia obtaining 216 

113,241 exonic variants.  217 

Eyes were examined by an ophthalmological medical researcher and eye (iris) color was 218 

categorized into three categories; blue, intermediate and brown using standard images and based 219 

on the predominant color and pigmentation 24.  220 
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 221 

Prior Knowledge 222 

All SNPs were annotated using Annovar25. A sparse connectivity matrix is generated connecting 223 

the SNPs to their corresponding genes. The intron-exon annotations of Annovar were used as a 224 

proxy to create the connectivity matrices between SNPs, exons and genes. The pathway masks 225 

were built by using GeneSCF26 and the KEGG database3. GTEx tissue-expression masks were 226 

made using the fully processed, filtered and normalized gene expression matrices for each tissue 227 

directly obtainable from the GTEx website5 and from derived t-score statistics27. Single cell 228 

expression masks are available made using data from FUMA28. Expression masks are continuous 229 

and various thresholds can be used to create connectivity matrices, the threshold should be 230 

chosen with care to ensure unique nodes and thus interpretability.  231 

All available networks in the framework are trait independent but trait specific neural networks 232 

can be created with more specific prior knowledge (e.g. brain cell expression to select genes in 233 

the network for predicting neurological disorders). The GenNet framework is quite flexible, any 234 

information that groups data uniquely can be used to create layers.  235 

 236 

Neural Network Architecture 237 

In the GenNet framework, layers are available built from biological knowledge such as; exon 238 

annotations, gene annotations, pathway annotations, cell expression and tissue expression. 239 

Information from these resources are used to define only meaningful connections, shaping an 240 

interpretable and lightweight neural network, allowing evaluation of millions of input variants 241 

together. These networks bear similarities to the first generation of neural networks and recently 242 

interest for these networks has rekindled for biological applications29-32, In neural networks the 243 
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dimensionality of the data is reduced, resulting in a loss of information every layer. Networks 244 

with the GenNet architecture aim to reduce this loss by using prior biological knowledge to 245 

create layers in the network, compressing the network in a biologically sensible way. These 246 

sources are used to define connections between nodes/neurons in the network (see 247 

implementation). The network itself will learn how important the connections are for the 248 

prediction of the outcome. Thus, giving additional information for the sources used to define the 249 

network. For example, in most networks, gene annotations are used to group SNPs. During 250 

training the network will figure out which gene is important and which SNPs in the gene are 251 

important for predicting the outcome.  252 

 253 

Interpretation 254 

Interpretation of the network is straightforward due to the simplicity of the concept, the higher 255 

the weight is the more important it is for the network.  A network built by gene annotations can 256 

be seen as ~20 000 (number of genes) parallel regressions followed by a single logistic 257 

regression. The learned weights in these regressions are similar to the coefficients in logistic 258 

regression. Especially the last node, a single neuron with a sigmoid activation,  𝑃 =259 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(∑ 𝑥𝑖𝑤𝑖  +  𝐵𝑛
𝑖=0 ) is similar to logistic regression 𝑌 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(∑ 𝑥𝑖𝛽𝑖  +  𝐵𝑛

𝑖=0 ). 260 

To compare coefficients (𝛽) the inputs are normalized in logistic regression. In the neural 261 

network this is achieved by batch normalization (without center and scaling), normalizing the 262 

weights (𝑤) after every activation. Since batch normalization is a batch-wise approximation the 263 

learned weights can be multiplied with the standard deviation of the activations for a more 264 

accurate estimate, resulting in the importance measure.  We noticed it might be beneficial to add 265 

an L1 penalty on the weights in the last dense layer, as used in LASSO logistic regression. This 266 
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regularizer constraints the search space which might lead to a better generalization and reduced 267 

noise in the signal for easier interpretation.  268 

 269 

Implementation 270 

Technically, the computational performance of the implemented Keras/Tensorfow33,34 layer 271 

should be on par or an improvement over similar layers. It is implemented using sparse matrix 272 

multiplication, making it faster than the slice-wise locallyconnected1D layer and more memory 273 

efficient than dense matrix multiplication. The layer is friendly to use, with only one extra input 274 

compared to a normal dense layer. This extra input, the sparse connectivity matrix, is made with 275 

prior knowledge and describes how neurons are connected between layers.  276 

The networks behave similar to normal fully connected artificial neural networks but is pruned 277 

by removing irrelevant connection (𝑂𝑢𝑡 =  𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(∑ 𝑥𝑖𝑤𝑖  +  𝑏)𝑛
𝑖=0  ) With w as a sparse 278 

matrix with learnable weights, initialized with a sparse connectivity matrix defining connections. 279 

The networks are optimized using the ADAM or Adadelta optimizers 35,36, using weighted binary 280 

cross entropy with weights depending on the imbalance of the classes, and are all trained on a 281 

single GPU. 282 

 283 

Baseline 284 

As a baseline method, LASSO logistic regression was implemented in Tensorflow by using a 285 

dense layer of a single neuron with a sigmoid activation function and L1 regularization on 286 

weights. 287 

 288 

Upper Bound 289 
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Population characteristics can be used to calculate the upper bound of performance for a 290 

classifier for any trait. This can be done by creating a confusion matrix. The accuracy between 291 

true and false positives for a perfect classifier, based solely on genetic inputs, is given by the 292 

concordance rate between monozygotic twins. It is impossible to predict better based solely on 293 

genetic code than the rate a trait occurs in people with virtually the same genetic code.  The 294 

chance of misclassifying a control should be better than the prevalence, which is often close to 295 

zero for most diseases. Creating a confusion matrix can give insights in the upper bound for 296 

accuracy, sensitivity and specificity in the dataset. An example for schizophrenia in our dataset 297 

can be found in Supplementary 5.  298 

 299 

Code Availability 300 

The code, tutorials and trained networks can be found on github.com/arnovanhilten/GenNet/ in 301 

the form of Jupyter notebooks. The code has been made with an emphasis on easy to use, with 302 

comments and tutorials.  303 

 304 

Data Availability 305 

Code to run and generate data for the simulations are publicly available on GitHub. The genetic 306 

and phenotypic UK Biobank data are available upon application to the UK Biobank 307 

(https://www.ukbiobank.ac.uk/). Access to the Sweden-Schizophrenia Exome Sequencing study 308 

can be requested on DBGaP (https://www.ncbi.nlm.nih.gov/gap/)  (dbGaP phs000473.v2.p2). 309 

 310 
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