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Neural networks have been seldomly leveraged in population genomics due to the
computational burden and challenge of interpretability. Here, we propose GenNet, a novel
open-source deep learning framework for predicting phenotype from genotype. In this
framework, public prior biological knowledge is used to construct interpretable and
memory-efficient neural network architectures. These architectures obtain good predictive
performance for multiple traits and complex diseases, opening the door for neural

networks in population genomics.

Introduction
Genome-wide association studies (GWAS) have identified numerous genomic loci associated
with complex (polygenic) human traits and diseases. Recent GWAS studies with increasingly

larger sample sizes are leading to more significant associations between genotypes and
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phenotypes at more and more independent loci. To illustrate, the latest GWAS for body height
based on 700,000 individuals identified more than 3000 near-independent significantly
associated single nucleotide polymorphisms (SNPs)®. This information, used in combination with
annotated biological databases such as: NCBI RefSeq, KEGG, Reactome and GTEX has proven
to be highly valuable for understanding the underlying biological mechanisms of complex
diseases?®. In this paper, we propose a new framework, GenNet, that integrates these biological
data sources for discovery and interpretability in an end-to-end deep learning framework for
predicting phenotypes.

Deep learning is the state of the art in many domains such as medical image analysis and natural
language processing because of its flexibility and modeling capabilities”®. In many cases, deep
learning yields better performance compared to traditional approaches, since it can model highly
non-linear relations and scales very well with data size. However, this often comes at the cost of
interpretability, since there is a trade-off between complexity and interpretability®°.
Additionally, when it comes to genotype data, the number of learnable parameters increases
dramatically because of the large input size, making it infeasible to use classical neural networks
in this domain. To overcome previous limitations, we propose a new framework, GenNet, in
which different types of biological information are used to define biologically plausible neural

network architectures, avoiding this trade-off and creating interpretable neural networks for
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predicting complex phenotypes.
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Figure 1. Overview of the GenNet Framework. Neural networks are made by combining layers
made of different sources of prior biological knowledge (i.e. a gene layer from gene annotations,
a pathway layer from KEGG pathway annotations). These sources define the connections and

therefore the architecture, creating interpretable networks in the process.

Methods

The main concept of the GenNet framework is summarized graphically in Figure 1. In this
framework, prior knowledge is used to create groups of connected nodes to reduce the number of
learnable parameters in comparison to a fully connected neural network. For example, in the first

layer, where biological knowledge in the form of gene annotations, is used to group millions of
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single nucleotide polymorphisms (SNPs) and to connect those SNPs to their corresponding
genes. The resulting layer retains only meaningful connections, significantly reducing the total
number of parameters compared to a classical layer. As a result, these memory-efficient
networks are able to handle the millions of inputs needed for genotype-to-phenotype prediction.
The biological knowledge is thus used to define only meaningful connections, shaping the
architecture of the neural network. Interpretability is inherent to the neural network’s
architecture. For example, a network that connects SNPs-to-genes and genes-to-output. The
learned weights of the connections between layers represent the effect of the SNP on the gene or
the effect of the gene on the output. In the network, all neurons represent thus biological entities
and weights model the effects between these entities, together forming a biologically
interpretable neural network. Each connection in the network is thus based on a biological
annotation and the learned weight for this connection represents the importance of this
annotation for the predicted outcome.

Many types of layers can be created using this principle. These layers can be used like building
blocks to form new network architectures. Apart from gene annotations, our framework provides
layers built from exon annotations, pathway annotations, chromosome annotations and cell and

tissue type expressions.
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78  Figure 2. A) Non-linear simulation showing the basic principle of the network, thickness of the

79 connections represents the learned weight (causal, contributing connections in red, control
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80  connections in grey). This proof of concept can be run online see https://tinyurl.com/y8hh8rul

81  (or see Supplementary 1.1). B) A secondary set of simulations show the performance of GenNet,
82  expressed in the area under the curve, for increasing levels of heritability and training set size
83 (C). In black the theoretical maximum of the AUC versus heritability'!. D) Manhattan plot of the
84  importance of the genes according to the network for distinguishing between schizophrenia cases
85  and controls. E) This Manhattan plot is a cross section between the gene layer and the outcome
g6  of the trained network.
87
88  Results
89  In order to evaluate the network’s performance under a variety of conditions, synthetic data was
90  created with different levels of heritability, number of training samples and polygenicity (see
o1  Supplementary Materials 1 for results and detailed description). Figure 2A shows the proof of
92 concept demo that can be run online. Figure 2B and 2C show the main trends in the simulations.
93 As would be expected, the network performs best for traits with high heritability, high number of
94  training samples and low polygenicity, and the performance decreases with decreasing
95 heritability, number of training samples or increase of polygenicity.
96  Motivated by the proof of concept and the outcomes of the simulations, the framework was
o7  applied to real data from multiple sources, including population-based data from the UK Biobank
98  study and the Rotterdam study, and a case-controls study on schizophrenia from Sweden?14,
99  The analyzed phenotypes vary from traits where high predictive performance can be obtained

100  from a dozen of variants (eye color) to disorders where thousands of variants only explain a

101 small portion of the variance (schizophrenia and bipolar disorder)!>®. The genotype data

102 employed included imputed microarray-based GWAS data (eye color in Rotterdam study) as
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103 well as whole exome sequencing (WES) data (hair color, male baldness pattern and bipolar
104  disorder in UK Biobank; schizophrenia in the Swedish study). An overview of the experiments
105 and results can be found in table 1.
Trait Dataset Number of Subjects & Heritability AUC AUC GenNet: top
(type) input phenotype LASSO  GenNet three most
variants important
Class | Class Il genes
Eye color Rotterdam 113,241 4041 2250 0.80-0.98 0.68 0.75 HERC2, OCA2,
(genotype (exonic) inputs  Blue Other LAMC1
array) of 16,628
genes
Hair color UK Biobank 6,986,636 1648 1656 0.70-0.97 0.78 0.83 MC1R", OCA2,
(exome) input variants Blond Red TC2N
of 15,827
genes
1672 1664 0.70-0.97 0.79 0.88 MC1R", OCA2,
Dark Red ZCCHC4
brown
4352 4343 0.70-0.97 0.64 0.75 OCAZ2, TC2N,
Blond Dark EXOC2
Brown
Male UK Biobank 6,986,636 3454 3454 0.60-0.70 0.57 0.57 NGEF,
baldness (exome) Input variants No Severe NKRD18B, SYNJ2
of 15,827 balding balding
genes.
Bipolar UK Biobank 6,986,636 343 347 0.73-0.93 0.59 0.60 LINC00266-1,
(exome) Input variants Cases Controls CSMD1,
of 15,827 TCERGI1L
genes
Schizophrenia  Sweden 1,288,701 4969 6245 0.80-0.85 0.65 0.74 ZNF773, PCNT,
(exome) input variants Cases Controls DYSF
of 21,390
genes
106  Table 1. Summary of the experiments and results in this study for the simplest network in our

available under aCC-BY-NC-ND 4.0 International license.
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107 framework that contains the input SNPs, the gene layer and the output layer. Manhattan plots for
108  gene importance can be found in Supplementary Materials 2,3 & 4. *MC1R was not present in
109  gene annotations but was identified by linkage disequilibrium.

110

111 In general, the framework’s predictive performance is in line with trends seen in simulations and
112 literature. Phenotypes with more training samples and phenotypes that require less variants to

113 obtain good predictive performance, such as eye and hair color, performed best. Nonetheless, a

114  good predictive performance, area under curve (AUC) of 0.74 in the held-out test set, was
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115  obtained for schizophrenia, a highly polygenic disorder. All models outperform or match the
116  baseline LASSO logistic regression model (see Methods).

117 Inspecting the networks, we found that the OCA2 gene was highlighted as the most important
118 gene to distinguish between brown and blond hair color. OCAZ2 is involved in the transport of
119 tyrosine, a precursor of melanin®’. The signal is probably amplified by the nearby HERC2,

120  previous identified via functional genetic studies as harboring a strong, long-distance enhancer
121 regulating OCA2 gene expression to cause pigmentation variation'’. OCA2 and HERC are the
122 two most predictive genes according to the network for predicting blue (iris) eye color. Both
123 have been earlier identified by hair and eye color GWASes®-%,

124 In the experiments with schizophrenia as outcome, the network was able to classify cases and
125  controls with a maximum accuracy of 68.4% (mean of 66.3 + 1.37 over 10 runs). We estimate
126  the theoretical upper limit for classification, including all genetic aspects, to be an accuracy of
127 72% (supplementary methods 5). The model obtains an area under the receiver operating curve
128 of 0.74 (ranging 0.72-0.74) in the held-out test set, thereby considerably outperforming the

129  LASSO logistic regression baseline (AUC of 0.64). The GenNet AUC compares favorably to
130  polygenic risk scoring for schizophrenia, which have AUC values on the order of 0.70 (ranging
131 0.49-0.85)% . This is noteworthy since in this study the schizophrenia predictions are based on
132 whole exome sequencing data as opposed to GWAS arrays spanning the whole genome.

133

134

135 Discussion
136 Here, we present a novel framework to train interpretable neural networks for phenotype
137 prediction from genotype. The proposed neural networks have connections defined by prior

138 biological knowledge only, reducing the number of connections and therefore the number of
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139  trainable parameters. Consequently, the networks are interpretable and overcome computational
140  limitations. All experiments were run on a single GPU (Nvidia GeForce GTX 1080) and

141 converged within 48 hours. Simulations show the network’s performance when varying the

142 degree of heritability, polygenicity and sample size. The suggested sample size, heritability and
143 polygenicity are conservative. When applying the framework to UK Biobank, Rotterdam study
144  and Swedish Schizophrenia WES data, good predictive performance was achieved with smaller
145  sample sizes and higher number of inputs than suggested by the simulations. In these

146 experiments, widely different phenotypes are predicted with generally good performance based
147 exclusively on WES SNPs.

148 For traits with a known etiology, well-replicated genes such as HERC2 and OCA2 for eye color
149 and OCA2 and TCN2 for hair color were found to be important by the network*-?, For

150  schizophrenia, a disorder with an unclear etiology, the network identified previously

151 unimplicated genes, including ZNF773 and PCNT. However, it is important to note that the

152 importance captured by the network bears more similarity to effect size rather than statistical
153  significance.

154 In general, these experiments indicate that neural networks in our framework can overcome

155  computational limitations while still obtaining good predictive performance, opening the door for
156 genetic risk prediction by neural networks. Aside from computational benefits, the architecture
157 offers interpretability, alleviating one the most important shortcomings of neural networks. In
158 this study, WES data and exonic variants from microarrays have been used, however the

159  principles in the GenNet framework can be leveraged to handle diverse types of input, including
160  genotype, gene expression and methylation data or combinations thereof)

161
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In conclusion, we developed a freely-available framework, which can be used to build
interpretable neural networks for genotype data by incorporating prior biological knowledge. We
have demonstrated the effectiveness of this novel framework across multiple datasets and for
multiple phenotypes. Given that each network node is interpretable, we anticipate this approach
to have wide applicability for uncovering novel insights into the genetic architecture of complex

traits and diseases.

GenNet is an open-source framework, providing code and tutorials

(https://github.com/arnovanhilten/GenNet/). This includes tutorials for applying the networks as

well as creating new layers and networks from prior knowledge.

10
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175 Online Methods

176  Sweden Schizophrenia

177 Sweden-Schizophrenia Population-Based Case-Control Exome Sequencing study (dbGaP

178 phs000473.v2.p2), is a case control study with 4969 cases and 6245 controls'*. All individuals
179  aged 18-65, have parents born in Sweden and provided written informed consent. Cases were at
180 least 2 times hospitalized with schizophrenia discharge diagnosis and do not have a hospital

181  register diagnosis consistent with a medical or other psychiatric disorder that mitigates the

182  schizophrenia diagnosis. Cases do not have a relationship closer than 2nd degree relative with
183  any other case. Controls do not have any relation to either case or control and all controls have
184  never been hospitalized with a discharge diagnosis of schizophrenia.

185  The .bim, .bam and .bed files were converted using HASE?? to .h5 format, a format that allows
186  fast and parallel data reading. After conversion, the data is transposed and SNPs without any

187  variance are removed (~1.2 million SNPs remain). The data is split in a training, validation and
188  test set (ratio of 60/20/20), while preserving the ratio cases and controls. All SNPs with standard
189  deviation greater than zero are used as input to the network after z-score normalization (based on
190 the mean and standard deviation of the training set).

191

192 UK Biobank

193  We applied the framework to multiple phenotypes in the UK Biobank using the first release of
194  the WES data, providing whole exome sequencing for 50,000 UK Biobank participants?:.

195  Phenotypes are self-reported (touchscreen questions UK Biobank Assessment Centre). Similar to
196  the Sweden cohort all variants without variance were removed, data was converted to

197 hierarchical data format (.h5), and transposed. For every phenotype an equal number of cases

11
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198 and controls were sampled. The resulting dataset is split in a train, validation and a test set (ratio
199  of 60/20/20). Related cases, and cases with related controls, (kinship > 0.0625) are all in the

200 training set. This is done under the assumption that related cases and controls could ease training,
201 the shared genetic information could steer the network towards the discriminatory features. The
202  validation and test sets contain only unrelated cases and controls within and between sets.

203 Unrelated controls are randomly sampled and added to gain an even distribution between cases
204  and controls in all sets. Misaligned SNPs and sex chromosomes were masked in the first layer
205  and therefore not included in the study.

206

207  Rotterdam Study

208  The Rotterdam study is a prospective cohort study, in the first cohort 6291 participants were

209  genotyped using the lllumina 550K and 550K duo arrays. Samples with low call rate (<97.5%),
210  with excess autosomal heterozygosity (>0.336) or with sex-mismatch were excluded, as were
211 outliers identified by the identity-by-state clustering analysis (outliers were defined as being >3
212 standard deviation (SD) from population mean or having identity-by-state probabilities >97%).
213 For imputation the Markov Chain Haplotyping (MACH) package version 1.0 software (Imputed
214  to plus strand of NCBI build 37, 1000 Genomes phase | version 3) and minimac version 2012.8.6
215 were used (call rate >98%, MAF >0.001 and Hardy—Weinberg equilibrium P-value > 107).

216  From here on processing steps are identical as described for Sweden Schizophrenia obtaining
217 113,241 exonic variants.

218  Eyes were examined by an ophthalmological medical researcher and eye (iris) color was

219  categorized into three categories; blue, intermediate and brown using standard images and based

220  on the predominant color and pigmentation 24,

12
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221
222 Prior Knowledge

223 All SNPs were annotated using Annovar®®. A sparse connectivity matrix is generated connecting
224  the SNPs to their corresponding genes. The intron-exon annotations of Annovar were used as a
225  proxy to create the connectivity matrices between SNPs, exons and genes. The pathway masks
226 were built by using GeneSCF?® and the KEGG database®. GTEX tissue-expression masks were
227 made using the fully processed, filtered and normalized gene expression matrices for each tissue
228  directly obtainable from the GTEx website® and from derived t-score statistics?’. Single cell

229  expression masks are available made using data from FUMAZ?®, Expression masks are continuous
230 and various thresholds can be used to create connectivity matrices, the threshold should be

231 chosen with care to ensure unique nodes and thus interpretability.

232 All available networks in the framework are trait independent but trait specific neural networks
233 can be created with more specific prior knowledge (e.g. brain cell expression to select genes in
234 the network for predicting neurological disorders). The GenNet framework is quite flexible, any
235  information that groups data uniquely can be used to create layers.

236

237 Neural Network Architecture

238 In the GenNet framework, layers are available built from biological knowledge such as; exon
239  annotations, gene annotations, pathway annotations, cell expression and tissue expression.

240  Information from these resources are used to define only meaningful connections, shaping an
241 interpretable and lightweight neural network, allowing evaluation of millions of input variants
242  together. These networks bear similarities to the first generation of neural networks and recently

243 interest for these networks has rekindled for biological applications?®2?, In neural networks the

13
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244 dimensionality of the data is reduced, resulting in a loss of information every layer. Networks
245  with the GenNet architecture aim to reduce this loss by using prior biological knowledge to

246  create layers in the network, compressing the network in a biologically sensible way. These

247  sources are used to define connections between nodes/neurons in the network (see

248 implementation). The network itself will learn how important the connections are for the

249  prediction of the outcome. Thus, giving additional information for the sources used to define the
250  network. For example, in most networks, gene annotations are used to group SNPs. During

251 training the network will figure out which gene is important and which SNPs in the gene are
252 important for predicting the outcome.

253

254  Interpretation

255  Interpretation of the network is straightforward due to the simplicity of the concept, the higher
256 the weight is the more important it is for the network. A network built by gene annotations can
257 be seen as ~20 000 (number of genes) parallel regressions followed by a single logistic

258  regression. The learned weights in these regressions are similar to the coefficients in logistic
259  regression. Especially the last node, a single neuron with a sigmoid activation, P =

260  Sigmoid(QlL,x;w; + B) issimilar to logistic regression Y = Sigmoid Q.. x;$; + B).

261 To compare coefficients (B) the inputs are normalized in logistic regression. In the neural

262 network this is achieved by batch normalization (without center and scaling), normalizing the
263  weights (w) after every activation. Since batch normalization is a batch-wise approximation the
264  learned weights can be multiplied with the standard deviation of the activations for a more

265  accurate estimate, resulting in the importance measure. We noticed it might be beneficial to add

266 an L1 penalty on the weights in the last dense layer, as used in LASSO logistic regression. This

14
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267  regularizer constraints the search space which might lead to a better generalization and reduced
268  noise in the signal for easier interpretation.

269

270 Implementation

271 Technically, the computational performance of the implemented Keras/Tensorfow333 layer

272 should be on par or an improvement over similar layers. It is implemented using sparse matrix
273 multiplication, making it faster than the slice-wise locallyconnected1D layer and more memory
274 efficient than dense matrix multiplication. The layer is friendly to use, with only one extra input
275 compared to a normal dense layer. This extra input, the sparse connectivity matrix, is made with
276 prior knowledge and describes how neurons are connected between layers.

277 The networks behave similar to normal fully connected artificial neural networks but is pruned
278 by removing irrelevant connection (Out = Activation(Qj=,x;w; + b)) With w as a sparse
279 matrix with learnable weights, initialized with a sparse connectivity matrix defining connections.
280  The networks are optimized using the ADAM or Adadelta optimizers %, using weighted binary
281  cross entropy with weights depending on the imbalance of the classes, and are all trained on a
282  single GPU.

283

284  Baseline

285  As a baseline method, LASSO logistic regression was implemented in Tensorflow by using a
286  dense layer of a single neuron with a sigmoid activation function and L1 regularization on

287  weights.

288

289  Upper Bound
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290  Population characteristics can be used to calculate the upper bound of performance for a

291  classifier for any trait. This can be done by creating a confusion matrix. The accuracy between
292  true and false positives for a perfect classifier, based solely on genetic inputs, is given by the
293  concordance rate between monozygotic twins. It is impossible to predict better based solely on
294  genetic code than the rate a trait occurs in people with virtually the same genetic code. The
295  chance of misclassifying a control should be better than the prevalence, which is often close to
296  zero for most diseases. Creating a confusion matrix can give insights in the upper bound for
297  accuracy, sensitivity and specificity in the dataset. An example for schizophrenia in our dataset
298  can be found in Supplementary 5.

299

300 Code Availability

301  The code, tutorials and trained networks can be found on github.com/arnovanhilten/GenNet/ in

302  the form of Jupyter notebooks. The code has been made with an emphasis on easy to use, with
303  comments and tutorials.

304

305  Data Availability

306  Code to run and generate data for the simulations are publicly available on GitHub. The genetic
307  and phenotypic UK Biobank data are available upon application to the UK Biobank

308  (https://www.ukbiobank.ac.uk/). Access to the Sweden-Schizophrenia Exome Sequencing study

309  can be requested on DBGaP (https://www.ncbi.nlm.nih.gov/gap/) (dbGaP phs000473.v2.p2).

310
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