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Abstract

Shark Bay, Australia, harbours one of the most extensive and diverse systems of living
microbial mats, that are proposed to be analogs of some of the earliest ecosystems on Earth.
These ecosystems have been shown to possess a substantial abundance of uncultivable
microorganisms. These enigmatic groups - ‘microbial dark matter’ (MDM) - are hypothesised
to play key roles in microbial mats. We reconstructed 115 metagenome-assembled genomes
(MAG:S) affiliated to MDM, spanning 42 phyla within the bacterial and archaeal domains.
We classified bacterial MDM from the PVVC group, FCB group, Microgenomates,
Parcubacteria, and Peregrinibacteria, as well as a high proportion of archaeal MDM under the
TACK, DPANN, Altiarchaeales, and Asgard archaea. The latter includes the first putative
Heimdallarchaeota MAG obtained from any microbial mat system. This study reports novel
microorganisms (Zixibacterial order GN15) putatively taking part in dissimilatory sulfate
reduction in surface hypersaline settings, as well as novel eukaryote signature proteins in the
Asgard archaea. Despite possessing reduced-size genomes, the MDM MAGs are capable of
fermenting and degrading organic carbon, suggesting a role in recycling organic carbon.
Several forms of RuBisCo were identified, allowing putative CO2 incorporation into
nucleotide salvaging pathways, which may act as an alternative carbon and phosphorus
source. High capacity of hydrogen production was found among Shark Bay MDM. Putative
schizorhodopsins were also identified in Parcubacteria, Asgard archaea, DPANN archaea,
and Bathyarchaeota, allowing these members to potentially capture light energy. Diversity-
generating retroelements were prominent in DPANN archaea that likely facilitate the
adaptation to a dynamic, host-dependent lifestyle. In light of our findings, we propose Ho,
ribose and CO/CO: as the main energy currencies of the MDM community in these mat

systems.
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INTRODUCTION

A vast ‘known-unknown’ and even ‘unknown-unknown’, many microorganisms have yet to
be unlocked from a majority of Earth’s ecosystems. These uncultured microbial community
members represent a vast untapped and uncharacterised resource of biological information,
representing the ‘microbial dark matter’ (MDM) of many microbial ecosystems [1, 2].
Despite the majority of these unexplored lineages have reduced genome sizes and minimal
biosynthetic capacity, they were proposed to represent a major uncharacterised portion of

microbial diversity and inhabiting every possible metabolic niche [1-5].

Advances in microbial dark matter research have the potential to alter our understanding of
key tenets of evolutionary principles, such as the current debate over the phylogenetic
position of the Asgard archaea, and the idea that the eukaryotic cell emerged from within the
archaeal domain [6-8]. It is estimated that at least 80% of environmental genomic content
could be considered as ‘genomic dark matter’ [5, 9-11], with the majority found in subsurface
environments [4, 12-15]. There is indeed a risk that many novel and unexpected organisms
and/or their gene products may simply be lost in large datasets. Therefore, this prompted the
desire to uncover unknown genes, functions, and ecological roles of these novel groups in
other microbial ecosystems [16], of particular interest for the present study, hypersaline

microbial mats.

Shark Bay, in Western Australia, harbors one of the most extensive (and diverse) microbial
mat systems in the world that are analogs of some of the earliest ecosystems on Earth.
Hypersalinity, heatwaves, high UV radiation, oligotrophic waters, fluctuating tides, and even

cyclonic events, contribute to the mats being subjected to an extreme environment in Shark
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Bay [17-21]. Indeed recent findings have shown that these mats are subjected to extreme
fluctuations over a diel cycle as tides change [22-24], both at the surrounding
microenvironment level (large changes in temperature, salinity, pH) as well as at the
metabolic level (rapid changes in O and S levels reflective of changing rates of
photosynthesis, respiration, and sulfur metabolisms). Despite recent advances made in our
understanding of Shark Bay mat taxonomic and functional complexity [17, 19, 20, 22-24],
the diversity and ecological role of MDM in these evolutionarily significant systems is
unknown. Amplicon sequencing revealed that MDM comprises over 15% of the bacterial
community and over half of the archaeal population in Shark Bay mats [22, 23]. Although
these results have indicated Shark Bay microbial mats are a huge genetic pool of novel
lineages, their functional role(s), including how they adapt to such an extreme environment

and their putative interactions with other microorganisms, are still unknown.

We hypothesize that microbial dark matter in microbial mats may be key in nutrient cycling,
symbioses, and overall health of these systems under extreme environmental conditions. In
this study we have unravelled in detail the metabolic potential and capacities of this

enigmatic group of novel microorganisms in Shark Bay mats.

RESULTS AND DISCUSSION

Microbial dark matter metagenome-assembled genomes (MAGS). This study describes
for the first time in detail MAGs associated with microbial dark matter in hypersaline
microbial mats. In total, 115 MAGs were found in Shark Bay mat metagenomic data [24],
spanning 42 phyla within the bacterial and archaeal domains (Fig. 1). MAGs that were

classified as part of microbial dark matter in previous literature were chosen in this study [1,
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97  3-6, 12, 13, 25,26]. Genome statistics are provided in Additional file 13: Table S1. Of the
98 115 MAGs, 24 high-quality MAGs were obtained (> 90% completeness, < 5%
99  contamination, encoding at least 18 out of 20 amino acids) and the remaining were of
100  medium quality MAGs (> 50% completeness, < 10% contamination) based on recently
101  established standards [27]. Although one Heimdallarchaeota (Bin_120) and one
102  Lokiarchaeota (Bin_186) MAG had slightly over 10% contamination levels (both with
103  10.75%), they are included in this study due to high completeness (> 85%), as well as this
104  being the first Heimdallarchaeota MAG obtained from any microbial mat system. Of the 91
105  medium quality MAGs, 65 have > 70% completeness. Bacterial MAGs were further
106  classified into the PVC group, FCB group, Microgenomates, Parcubacteria, Peregrinibacteria,
107  and ‘others’ (Fig. 1). Archaeal MAGs were classified into Asgard archaea, TACK, DPANN,
108  and Altiarchaeales. It is still under debate whether Altiarchaeales should be placed within the
109  DPANN superphylum [28-30], so these were placed as a separate group in the current

110  analyses.

111

112  Distribution of novel rhodopsins and eukaryotic signature proteins (ESPs). Rhodopsin
113 genes were identified in Asgard archaea, Parcubacteria, Bathyarchaeota, and DPANN

114  archaeal MAGs. Phylogenetic analysis of the rhodopsins showed affiliation with

115  schizorhodopsins, which was recently found in Asgard archaea in a microoxic niche setting
116 [31] (Additional file 2: Figure S1 and Additional file 14: Table S2). This study expanded the
117  range of phyla encoding schizorhodopsin, which has not been identified in Bathyarchaeota,
118  DPANN archaea, and Parcubacteria previously. The novel rhodopsin may infer light

119  sensitivity in these microbial groups with a recent study indicating Asgard archaeal

120  schizorhodopsins as light-driven H* pumps [32]. Rhodopsins in MDM (Saccharibacteria;

121 Asgard archaea) have only been found in hypersaline environments to date, suggesting the
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122 acquisition of such an evolutionary adaptation of this enigmatic group may be a feature in
123 hypersaline, sunlit surface settings, with the ability to utilize light energy to counter the high

124  cost of osmotic balance maintenance [31, 33, 34].

125

126  Eukaryotic signature proteins (ESPs) were found distributed in the ten Asgard archaeal

127 MAGs (Additional file 1: Supplementary Information and Additional file 3: Figure S2),

128  hinting a close evolutionary relationship between Asgard archaea and eukaryotes [7, 8, 32,
129  35]. ESPs in Shark Bay Asgard archaeal MAGs are putatively involved in cytoskeleton

130  dynamics, information processing, trafficking machinery, signalling systems and N-linked
131 glycosylation [7, 8]. Novel ESPs were identified affiliated with information processing and
132 GTP binding proteins belonging to ARF, RAS, RAB and RAN families in Asgard archaea for
133 the first time, suggesting that this archaeal superphylum possess a diverse range of

134  eukaryotic-like signalling systems (Additional file 3: Figure S2).

135

136  Limited metabolic capacities and putative host-dependent lifestyle. Most of the MDM
137  MAGS harbor incomplete metabolic pathways despite the oligotrophic condition present in
138  Shark Bay (Additional file 1: Supplementary Information), hence are suggested to be host-
139  dependent [29, 36]. We screened the MAGs for diversity-generating retroelements (DGRS),
140  which are fast-evolving proteins enabling host-dependent microorganisms to attach to the
141  hosts’ surface [30, 37-39], and they were identified mostly in Parcubacteria and DPANN

142  archaea (Fig. 1 and Fig. 2). Interestingly, despite having versatile metabolic pathways, DGRs
143 were also identified in Asgard archaeal MAGs in this study, which has not been reported

144  before (Fig. 1, Fig. 2 and Additional file 1: Supplementary Information). This may indicate

145  Asgard archaea once resided in energy-limited environments which relies on symbiotic
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146  relationships [32, 37]. Parcubacteria and DPANN archaeal members lack biosynthetic
147  capabilities and were suggested to have a symbiotic, host-dependent lifestyle, in which DGRs
148  facilitate adaptation to rapidly changing environments, providing them with the tools to

149  exploit symbiotic associations with their host [1, 29, 30, 40].

150

151 It is hypothesised that MDM may take advantage of the lack of virus defence systems

152 observed here (CRISPR, BREX, DISARM and DNA phosphorothioation; Additional file 1:
153 Supplementary Information and Additional file 15: Table S3), despite the high abundance of
154  viruses and virus defence systems identified in Shark Bay in previous studies [24, 41]. Given
155  the limited metabolic capacities and host-dependent lifestyle, these organisms may serve as
156  ‘viral decoys’ to alleviate the load on the host’s viral defence system, and benefits from the
157  viral DNA as a pentose and phosphorus source [42]. Another advantage is to avoid

158  autoimmunity, in which the virus defence systems may attack the host [42, 43]. Furthermore,
159  maintaining such systems is energetically costly [44]. It is proposed that the synergy between
160  the lack of viral defence systems and the presence of DGRs facilitate rapid screening and
161  acquisition of biological functions for survival in these mat systems, allowing MDM with

162  limited metabolic pathways to adapt to a dynamic and extreme environment.

163

164  Sulfur, nitrogen, and carbon cycling in Shark Bay MDM. Despite having reduced

165  metabolic capacity, various genes within sulfur, nitrogen, and carbon cycles were found
166  distributed among the Shark Bay microbial dark matter community. All Zixibacteria and
167  Zixibacteria order GN15 (previously classified as candidatus phylum GN15) genomes
168  harbour dissimilatory (bi)sulfite reductase (dsrAB) and adenylylsulfate reductase (aprAB)

169  genes affiliated with dissimilatory sulfate reduction [45, 46] (Additional file 4: Figure S3 and
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170  Additional file 15: Table S3). MAGs of unclassified bacterium BMS3Bbin04 (FCB Group)
171 also harbour dsrAB, while Coatesbacteria encode for an aprA gene, suggesting these bacteria
172 may play a role in the sulfur cycle. To confirm their role(s) in the sulfur cycle, dsrAB genes
173 were analysed against the dsrAB database [47]. The genes were classified as a reductive

174  bacterial type, confirming their likely function as dissimilatory (bi)sulfite reductase

175  (Additional file 5: Figure S4). The dsrAB genes clustered with uncultured lineages in

176  estuarine environments and interestingly, one arctic dsrAB lineage, suggesting a specific

177  lineage in Shark Bay (Additional file 5: Figure S4). Furthermore, dsrC genes were found co-
178  localised on the same contigs in the dsrAB encoding MAGs (Additional file 15: Table S3),
179  which is an essential physiological partner to dsrAB in sulfite reduction [46]. This suggests
180  Zixibacteria (and order GN15) potentially partake in dissimilatory sulfate reduction not only
181  in deep subsurface [46, 48, 49], but also in surface hypersaline environments. Genes dsrEFH
182  were also identified in 40 MAGs in the present study, expanding the lineages taking part in
183  sulfur cycling (Additional file 1: Supplementary Information). Previous studies in these mat
184  systems have indicated a putative surface anoxic niche with high rates of sulfur cycling [22,

185  24], and potentially microbial dark matter could be contributing to this phenomenon.

186

187  Only a limited number of genes involved in nitrogen cycling were identified in MDM (Fig. 1,
188  Fig. 3 and Additional file 15: Table S3). Genes encoding nitrite reductase were found in all
189  Asgard archaea MAGs except Heimdallarchaeota (Fig. 2 and Additional file 15: Table S3).
190  The co-occurrence of CO dehydrogenase and nitrite reductase suggests that Asgard archaea
191  may potentially couple CO oxidation to nitrite reduction [50], allowing them to derive energy

192  from an oligotrophic environment (Fig. 2, Fig. 4 and Additional file 15: Table S3).

193
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194  To infer the capacity of carbohydrate degradation in microbial mat microbial dark matter, we
195  analysed MAGs for carbohydrate-active enzymes (CAZy). Asgard archaea and MAGs

196  affiliated within the FCB group have the broadest cassette of glycoside hydrolase (GH)

197  genes, (hemicellulose, amylase, animal and plant polysaccharides), indicating a highly

198  flexible metabolic capacity for carbon acquisition (Fig. 3, Additional file 1: Supplementary
199  Information and Additional file 6: Figure S5). On the other hand, Parcubacteria,

200 Microgenomates, Peregrinibacteria, and DPANN archaea encode a lower range of GH

201  enzymes, suggesting these members could scavenge readily degraded carbohydrates through
202 their potential symbiotic hosts or partners. Most of the microorganisms identified in this

203  study are likely capable of fermenting various carbon sources into formate, acetate, lactate,
204  and ethanol (Fig. 3, Fig. 4 and Additional file 15: Table S3). This finding suggests that most
205 MDM MAGs undergo anoxic carbon transformation, corroborating with previous studies [13,
206 14, 40, 51-53].

207

208  Genes encoding anaerobic carbon monoxide dehydrogenase (cooSF) and acetyl-CoA

209  synthase (cdhDE, acsB) were identified in FCB group MAGs (Modulibacteria, KSB1,

210  Fibrobacteres) (Additional file 4: Figure S3), Asgard archaea (Heimdall-, Loki-,

211 Thorarchaeota) (Fig. 4) and Bathyarchaeota (Additional file 7: Figure S6) MAGs, indicating
212 their putative ability to fix and reduce CO: to acetyl-CoA through the Wood-Ljundahl (WL)
213 pathway (Fig. 2 and Additional file 15: Table S3). Generally, microorganisms can either use
214  tetrahydrofolate (THF) or tetrahydromethanopterin (THMPT) as C; carriers in the WL

215  pathway [54, 55]. Usually, bacteria utilise the THF-WL pathway while THMPT-WL

216  pathways are mostly found in archaea [54-57]. One Lokiarchaeota MAG (Bin_186) harbours
217  acomplete anaerobic H>-dependent THMPT-WL pathway, inferring the ability to fix CO>

218  and H: into acetate [58] (Fig. 4 and Additional file 15: Table S3). All other Asgard archaea in
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219  the Shark Bay mats contained most genes for both WL pathways, though incomplete

220 genomes may account for the absence of these genes (Additional file 15: Table S3).

221

222 The presence of the Wood-Ljungdahl pathway is suggested to be a result of energy limitation
223  since it is energetically inexpensive compared to other carbon fixation pathways [45, 58, 59].
224  Up to a quarter of the MAGs in the present study encode for CO dehydrogenase, allowing
225  CO to be putatively utilised [60, 61]. Given the high UV radiation the Shark Bay mats are
226 exposed to, CO may be produced through photo-degradation and subsequently oxidised as an

227  alternative carbon source for energy conservation [24, 62, 63].

228

229  Furthermore, based on the observed genomic repertoires, Asgard archaea in these mats are
230  putatively heterotrophic acetogens, encode for a complete beta-oxidation pathway and may
231  take part in the carbon fixing 4-hydroxybutyrate pathway (Additional file 1: Supplementary
232 Information). The MDM community has scattered genes in other carbon metabolisms but
233 encode peptidases, putatively facilitating scavenging organic carbon in their oligotrophic

234 environment (Additional file 1: Supplementary Information).

235

236  Nucleotide salvaging and putative CO2 assimilation. Surprisingly, despite the reduced-
237  sized genomes, 32 MAGs encode for ribulose biphosphate carboxylase (RuBisCo) (Fig. 2,
238  Additional file 15: Table S3 and Additional file 16: Table S4). Given not all types of ribulose
239  biphosphate carboxylase undergo carbon fixation, a phylogenetic tree was constructed to

240  examine the variety of RuBisCo in these mat metagenomes. The MDM MAGs appear to

241  harbour bacterial and archaeal type I11, type Illa, type Il1b, type llic, and type IV RuBisCo

242 (Fig. 5). Furthermore, all MAGs have incomplete CBB (Calvin-Benson-Bassham) cycle

10
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243  (Additional file 15: Table S3). This suggests that these microorganisms are involved in the
244  AMP nucleotide salvaging pathway, while MAGs harbouring type IV RuBisCo are involved
245  in methionine salvage pathways [64, 65]. Interestingly, 22 out of the 32 MAGs with RuBisCo
246  also encode both AMP phosphorylase (deoA) and R15P isomerase (e2b2) (Additional file 15:
247  Table S3), indicating the potential ability to incorporate CO: into nucleotide salvaging

248  pathways[52, 65-67]. One Lokiarchaeota MAG (Bin_186) encodes for a type I11a RuBisCo,
249  which is known to fix CO2 through the reductive hexulose-phosphate (RHP) cycle [65, 66].
250  Although it potentially lacks the ability to fix CO2 due to the absence of homologs to genes
251  encoding phosphoribulokinase, this MAG encodes for a fused bifunctional enzyme 3-

252  hexulose-6-phosphate synthase/formaldehyde-activating enzyme (fae-hps) allowing for the
253  potential production of methylene-HsMPT, which may play a role in replenishing the C;

254 carriers in the THMPT-WL pathway [66].

255

256  One interesting finding is that Heimdallarchaeota (Bin_120) contains RuBisCo at the basal
257  position (Fig. 5), suggesting it may possess RuBisCo as an early-evolved form. The

258  widespread distribution of RuBisCo among MDM in Shark Bay mats implies the use of

259  ribose to substitute upper glycolysis, as some of the key genes in this pathway are missing
260  [52] (Additional file 1: Supplementary Information). Other than feeding ribose (and

261  putatively CO) as augmented carbon sources into the central carbon metabolism, these non-
262  autotrophic RuBisCo may putatively free phosphate groups from nucleotides to supplement
263  the extremely limited phosphorus in Shark Bay found in previous studies [24, 68]. In this
264  study the genomes harbouring RuBisCo were identified across 14 MDM phyla, suggesting
265  that ribose may be a prominent currency among microbial dark matter in hypersaline

266 microbial mats (Fig. 4, Fig. 5, Additional file 7-11: Figure S6-S10).

11
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267

268  High capacity for hydrogen production among Shark Bay MDM. A total of 267

269  hydrogenases were detected in 81 out of 115 MDM MAGs, implying prominent hydrogen
270  metabolism in MDM even with minimal genomes (Fig. 4, Additional file 4: Figure S3,

271 Additional file 7-11: Figure S6-10 and Additional file 15: Table S3). A total of 16 types of
272 hydrogenases were identified against the HydDB database [69], including 10 [NiFe] and 6
273  [FeFe] classes (Fig. 2, Additional file 15: Table S3 and Additional file 1: Supplementary
274  Information). Most of the hydrogenases identified are putatively involved in H> uptake

275  (Group 1), H2 consumption/production, fermentative H>-evolving, and Ha sensing (Group 3,

276 4 and [FeFe]) (Fig. 2).

277

278  Almost half of the Shark Bay MAGs harbour hydrogenases associated with H, production,
279  and of particular significance, Parcubacteria and Woesearchaeota only encode H: producing
280  hydrogenases ([NiFe]-3b and [FeFe] Group A), which are fermentative in nature [70] (Fig. 2,
281  Fig. 4 and Additional file 15: Table S3). Hz production is potentially an important energy
282 currency in these mats as hydrogenotrophic methanogenesis was found to be the prominent
283  mode of methane production [23]. Furthermore, a global survey suggests that

284  Woesearchaeota form consortiums with hydrogenotrophic methanogens by providing Hz in
285  exchange of nutrients [71]. It is suggested that these MAGs (especially among Parcubacteria
286  and Woesearchaeota) support and complement H>/CO. methanogenesis in Shark Bay

287  microbial mats.

288

289  One-third of the MAGs (43 out of 115) encodes for 3b and 3c hydrogenases, which play

290  essential roles as electron donors and Hz production during hydrogenogenic fermentation and

12
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291  Wolfe cycle of methanogenesis [72, 73]. Of particular interest, the presence of the WL

292 pathway along with hydrogenase group 3b and 3c in Asgard archaea suggests this group are
293  putatively lithoautotrophs that use H: as electron donors [58, 74]. With a range of CAZy
294  enzymes distributed among Shark Bay MDM (Additional file 6: Figure S5), these

295  microorganisms likely participate in anoxic carbon transformations and hydrogen turnover
296  [12, 14, 40, 75-77]. Therefore, MDM in these systems may act as a ‘recycler’ in the mats to
297  recycle organic carbon from dead cells, employing hydrogenogenic or hydrogenotrophic

298  metabolisms.

299

300 Energy Currencies of MDM. As described in an earlier study [24], it is likely that the WL-
301  pathway is the main mode of carbon fixation in these mats, and the surface phototrophic

302  consortia produce the energy and organic carbon for the rest of the microbial community [22,
303  78]. Various adaptation strategies to the hypersalinity, limited phosphorus, and high copper
304  concentration were described [24] (Additional file 1: Supplementary Information). However,
305  given the oligotrophic nature of Shark Bay waters [79], MDM in these mats that lacks the
306 metabolic capacity may utilise alternative carbon sources to augment nutrient intake. First, it
307 s proposed that due to the high UV irradiation in Shark Bay, photo-degradation of surface
308  organic matter may provide CO as an alternative carbon source [62, 63]. Secondly, the

309  widespread hydrogenases among MDM may contribute to the hydrogen turnover in exchange
310  of nutrients as high rates of hydrogenotrophic methanogenesis were measured and detected in
311  these mats[23]. Thirdly, RuBisCo found in the MDM MAG:S is proposed to fix CO>

312  alongside nucleotide salvaging, which is subsequently fed into glycolysis, maximising energy
313 vyield [52, 66, 80, 81]. It is therefore proposed in an ecological context, MDM occupies

314  metabolic niches in Shark Bay microbial mats where ribose, Hz, CO and CO; are prominent

315  currencies to augment energy income.
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316

317  Conclusions. This is the first study to reconstruct and describe in detail high-quality genomes
318  affiliated with microbial dark matter in microbial mats. This study reports the novel

319  uncultured bacterial phyla Zixibacteria (including order GN15) and an unidentified bacterium
320 (Bin_338) as likely participants in dissimilatory sulfate reduction in surface hypersaline

321  settings, as well as diversity generating retroelements and novel ESPs identified in Asgard
322 archaea. It is suggested that Asgard archaea are not only organoheterotrophs, but also

323 putatively lithoautotrophs that have more versatile metabolic capacities than the other groups
324  of MDM, possessing both THMPT- and THF-WL pathways, RuBisCo and schizorhodopsin.
325  For the other MDM groups, although possessing minimal genomes and the lack of complete
326  biosynthetic pathways, they are potentially capable of degrading and fermenting organic

327  carbon and are suggested to play a role in Hz and carbon transformation in microbial mats.
328  Various forms of RuBisCo were encoded, allowing putative CO> incorporation into

329 nucleotide salvaging pathways, acting as an alternative carbon and phosphorus source.

330  Despite possessing minimal genomes, DGRs were prominent in Parcubacteria and DPANN
331 archaea to likely adapt to a dynamic, host-dependent environment. Under the oligotrophic
332 environment in Shark Bay, MDM needs to exploit every opportunity for energy generation,
333  such as harbouring scattered genes of various nutrient cycles to fill in metabolic gaps or

334  function in “filling the niches” and as is the case for some other ecological systems [12, 30,
335  82] (Additional file 1: Supplementary Information). On the other hand, MDM in Shark Bay
336 may be shaping the mat environment through their various metabolic capacities in a process
337  called niche construction, modifying their own and each other’s niches and functional roles in
338  the ecosystem [16, 83, 84]. It has in fact been recently suggested that early ecosystems such
339  as microbial mats were not nutrient starved but rather limited by electron donor/acceptor

340 availability [85], thus the ability for these ecosystems to maximize energy yielding capacities
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341 isevolutionary advantageous. A conceptual ecological model of MDM in Shark Bay mats is
342 shown in Fig. 6, proposing the MDM serves to fill in the metabolic gaps. Ribose, CO2/CO,
343  and H; are suggested to be prominent currencies among MDM in these mats and were

344  potentially a widespread phenomenon on early Earth [40, 86].

345

346 MATERIALS AND METHODS

347  Sampling and metagenomic sequencing. Microbial mat sampling from Shark Bay was
348  performed in a previous study [22], and DNA extraction and sequencing of total community
349  DNA are described previously [24]. Metagenomes were analysed from smooth mats in the
350  present study. The Fastq sequencing data files obtained from the Illumina NextSeq platform
351  detailed by Wong and colleagues [24] were used in the present study for detailed analysis of

352  microbial dark matter.

353

354  Assembly, binning and phylogenetic analyses. Low-quality bases (per base sequence

355 quality < 28) from each sequencing file were trimmed and examined using Trimmomatic

356  (version 0.36) and FastQC (version 0.11.6) respectively [87, 88]. All sequencing files from
357 the ten layers of smooth mats were co-assembled as described [89] (minimum kmer 27, with
358 incremental kmer set as 10) using Megahit version 1.1.1 [90]. Subsequently, all contigs with
359 length less than 2000 bp were removed to avoid ambiguous contig annotation of shorter

360  contigs. This step is to avoid misinterpretation of novel annotated contigs. An alignment

361  algorithm, BWA-MEM (version 0.7.7), was used to map reads back to the assembled contigs
362  [91]. SAMtools version 1.3.1 was used to convert SAM files to binary format BAM files [92].
363 MetaBAT2 (Version 2.12.1), MaxBin2 (Version 2.2.3) and CONCOCT (Version 1.0.0) were

364  applied for metagenomic binning [93-95]. Subsequently, DAS Tool was used to refine and
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365  filter lower quality MAGs generated from the three binning programs [96]. CheckM was
366 employed to examine the quality (completeness and contamination level of MAGs), and

367 MAGs statistics were obtained through QUAST and tRNAScan-SE [97-99]. MAGs with at
368 least medium quality (>50% completeness, <10% contamination) were selected in this study
369  [27]. Subsequently, the taxonomy of MAGs was determined with GtDb-tk [100], in which
370  only MAGs classified as microbial dark matter in previous literatures were chosen [1, 3-6,

371 12,13, 25, 26].

372

373  Maximum-likelihood-based phylogenetic trees based on 16 concatenated ribosomal proteins
374  (rpL2, 3, 4,5, 6,14, 15, 16, 18, 22, 24 and rpS3, 8, 10, 17, 19) were constructed as described
375 in Hug et al (2013) [101]. Only MAGs with at least 8 ribosomal proteins were included in the
376  analysis. Bin_245 (Bathyarchaeota) was not included in the phylogenetic tree (Fig. 1) as it
377  has less than 8 ribosomal proteins. Phylosift version 1.0.1 was used to extract ribosomal

378  proteins from the genomes [102]. Subsequently, ribosomal protein sequences were aligned
379  using MAFFT version 7.310 [103]. BMGE was then used to remove gaps in the alignment
380  with BLOSUMS30 matrix and gap rate cut-off of 50% [104]. The resulting protein alignments
381  were concatenated as described in Hug et al (2013) [101]. The concatenated ribosomal

382  proteins were then used to construct a phylogenetic tree using 1Q-TREE version 1.6.1 with a

383 total of 1000 bootstrap replicates, which the output file was visualised with iTOL [105, 106].

384

385  Functional annotation. Nucleotide contigs of metagenome-assembled genomes were
386 translated to amino acid sequences by employing Prodigal version 2.6.3[107]. Functional
387  annotation was carried out using GhostKoala to assign amino acid contigs to MAGs against

388 the KEGG database [108]. InterProScan version 5.25-64.0 was employed to annotate protein
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389  domains of MAGs to PFAM and TIGRfam databases, with cutoff value <1e°[109]. Contigs
390  were annotated against the CAZy database to identify carbohydrate-active enzymes in the
391  MAGs[75]. DGRScan was used to identify diversity-generating retroelements (DGR) among
392  the MAGs[110]. Hydrogenase sequences derived from KEGG and PFAM databases were
393  extracted and annotated against HydDB to further classify hydrogenases [69]. ESP and

394  rhodopsin sequences were submitted to HHPred [111] to confirm their identity.
395

396  Phylogenetic analysis of RuBisCo, Rhodopsin and dsrAB. To determine the type of
397 RuBisCo identified in MAGs presented in this study, RuBisCo sequences were downloaded

398  from NCBI and ggkBase [52] (http://ggkbase.berkeley.edu). Reference sequences of

399  RuBisCo and rhodopsins are listed in Additional file 16: Table S4 and Additional file 14:
400 Table S2. Reference sequences of dissimilatory sulfate reduction dsrAB were obtained from
401  the dsrAB reference database [47]. RuBisCo, rhodopsin, and dsrAB sequences were aligned
402  with MAFFT version 7.310 [103], with gaps subsequently removed by UGENE [112]. 1Q-
403  TREE version 1.6.1 was employed to construct a phylogenetic tree with a total of 1000

404  bootstrap replicates and visualised with iTOL [105, 106]. To further confirm the identity of
405  RuBisCo and rhodopsins, the sequences were annotated against the HHpred [111] and the

406  BLAST database [113].

407
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719  Figures

720  Figure 1. Phylogenetic tree of novel MAGs of the MDM in Shark Bay microbial mats.
721 Maximum likelihood phylogenetic tree of up to 16 concatenated ribosomal proteins (rpL2, 3,
722 4,5,6, 14, 15, 16, 18, 22, 24 and rpS3, 8, 10, 17, 19) was constructed. Bin_245

723  (Bathyarchaeota) is not included in the tree as it has less than 8 ribosomal proteins. MAGs
724 assigned to different groups are highlighted in different colors on the outer circular stripe.
725  Circles represent genes for various nutrient cycles present in the MAGs (detailed in

726  Additional file 15: Table S3).

727

728  Figure 2. Color-coded table indicating major functional genes identified in Shark Bay
729  mat novel microbiome MAGs. X-axis indicates specific genes likely involved in either

730  nutrient cycling or environmental adaptation and y-axis indicates the specific microbial dark
731 matter MAGs. Key: Grey indicates the partial pathways identified in carbon, sulfur and

732 nitrogen cycles; white indicates the genes and associated pathways are absent. Color panel on
733 the left represents different groups of MDM MAGs according to Figure 1. ASR, assimilatory
734  sulfate reduction; DSR, dissimilatory sulfate reduction; SOX, sulfur oxidation; DNRA,

735  dissimilatory nitrate reduction; ANR, assimilatory nitrate reduction; rTCA, reverse

736 tricarboxylic cycle; WL pathway, Wood-Ljungdahl pathway; Inorg P, inorganic phosphorus;
737 Alkal Phos, alkaline phosphatase; copAB/cusAB, copper efflux systems; opu, osmoprotectant
738  transport system; pro, glycine betaine/proline transport system; bet, choline/glycine/proline
739  betaine transport protein; uvr, exinuclease; cph, cyanophycin; gitBD/gInAE, ammonium

740  assimilation; mtr, tetrahydromethanopterin S-methyltransferase; hdr, heterodisulfide

741  reductase; mttB, trimethylamine-corrinoid protein co-methyltransferase; DGR, diversity-

742 generating retroelements.
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743 Figure 3. Putative involvement of Shark Bay MDM MAGs in carbon, sulfur, nitrogen
744 and arsenic metabolisms. CAZy enzymes with different colored arrows representing

745  various groups of glycoside hydrolase corresponding to Additional file 6: Figure S5.

746 Numbers indicate the quantity and percentage of MAGs encoding for the nitrogen/sulfur

747  cycles and metabolic pathways.

748

749  Figure 4. Metabolic potential of Asgard archaea, DPANN archaea, Parcubacteria and
750  Microgenomates in the Shark Bay systems. A metabolic map summarising the genomic
751  potential and metabolic capacities of MAGs affiliated with: A. Asgard archaea MAGs B.

752  DPANN archaea MAGs C. Parcubacteria MAGs D. Microgenomates MAGs. Numbers

753  represent specific genes in given pathways and the corresponding genes are listed in

754  Additional file 15: Table S3. Different colors in the square boxes represent different numbers
755  of MAGs encoding the genes, while white square boxes indicate the absence of the genes.
756  TCA, tricarboxylic acid cycle; THF, tetrahydrofolate; THMPT, tetrahydromethanopterin; WL
757  pathway, Wood-Ljungdahl pathway; PAPS, 3’-phosphoadenylyl sulfate; APS, Adenylyl

758  sulfate.

759

760  Figure 5. Unrooted maximume-likelihood phylogenetic tree of RuBisCo genes in Shark
761  Bay MDM MAGs. Maximum-likelihood phylogenetic tree constructed with RuBisCo gene
762  found in the MDM MAGs with 1000 bootstrap replications. Archaeal and bacterial type IlI,
763  type ll1a[66, 67], type I11b[46], type lllc [46] and type IV RuBisCo-like protein [64] were
764  identified. Circular dots of different colors represent bootstrap values. RuBisCo sequences in

765  this study and reference sequences are listed in Additional file 16: Table S4.

766
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767  Figure 6. Proposed ecological model of Shark Bay mats (modified from Wong et al.,
768  2018[24], incorporating MDM). Green rectangular boxes indicate metabolic pathways,
769  yellow rectangular boxes indicate putative pathway and orange rectangular boxes represent
770  putative functional roles of MDM in these mats. Dark green ovals represent microorganisms
771 and their corresponding functions [24] while orange ovals represent microbial dark matter.
772 Red boxes encircle CO2/CO, H2 and ribose that are proposed as main energy currencies of
773 Shark Bay MDM. Dashed arrows indicate putative metabolic exchange/microbial

774  interactions. Dashed box includes genes involved in environmental adaptation. Chloro,

775  Chloroflexi; Gemma, Gemmatimonadetes; HM, hydrogenotrophic methanogens; N/C

776  storage, nitrogen/carbon storage; WL pathway, Wood-Ljungdahl pathway; 3HP/4HB

777  pathway, 3-hydroxypropionate/4-hydroxybutyrate pathway; EPS, extracellular polymeric

778  substance; DGR, diversity-generating retroelements.
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