

1 **Whole genome doubling confers unique genetic vulnerabilities on tumor cells**
2

3 Ryan J. Quinton¹, Amanda DiDomizio¹, Marc A. Vittoria¹, Carlos J. Ticas¹, Sheena Patel¹,
4 Yusuke Koga², Kristýna Kotýnková¹, Jasmine Vakhshoorzadeh¹, Nicole Hermance³, Taruho S.
5 Kuroda⁴, Neha Parulekar², Alison M. Taylor^{5,6,7}, Amity L. Manning³, Joshua D. Campbell^{2,6},
6 Neil J. Ganem^{1,2}

7
8 ¹Department of Pharmacology & Experimental Therapeutics, Boston University School of
9 Medicine, Boston, MA, USA.

10 ²Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
11

12 ³Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA.
13

14 ⁴Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate
15 School of Medicine, Mie, Japan.
16

17 ⁵Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
18

19 .
20 ⁶Cancer Program, Broad Institute, Cambridge, MA, USA.
21

22 ⁷Department of Pathology and Cell Biology, Columbia University Medical Center, Member,
23 Herbert Irving Comprehensive Cancer Center, New York, NY, USA.
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38 **Correspondence to: Neil J. Ganem**
39 **e-mail: nganem@bu.edu**

40
41 Neil J. Ganem
42 The Cancer Center
43 Boston University School of Medicine
44 72 E. Concord St. K-712C
45 Boston, MA 02118
46 Phone: (617) 358-4678

47 **Summary**

48 **Whole genome doubling (WGD) occurs early in tumorigenesis and generates genetically**
49 **unstable tetraploid cells that fuel tumor development. Cells that undergo WGD (WGD⁺)**
50 **must adapt to accommodate their abnormal tetraploid state; however, the nature of these**
51 **adaptations, and whether they confer vulnerabilities that can subsequently be exploited**
52 **therapeutically, is unclear. Using sequencing data from ~10,000 primary human cancer**
53 **samples and essentiality data from ~600 cancer cell lines, we show that WGD gives rise to**
54 **common genetic traits that are accompanied by unique vulnerabilities. We reveal that**
55 **WGD⁺ cells are more dependent on spindle assembly checkpoint signaling, DNA**
56 **replication factors, and proteasome function than WGD⁻ cells. We also identify *KIF18A*,**
57 **which encodes for a mitotic kinesin, as being specifically required for the viability of**
58 **WGD⁺ cells. While loss of *KIF18A* is largely dispensable for accurate chromosome**
59 **segregation during mitosis in WGD⁻ cells, its loss induces dramatic mitotic errors in**
60 **WGD⁺ cells, ultimately impairing cell viability. Collectively, our results reveal new**
61 **strategies to specifically target WGD⁺ cancer cells while sparing the normal, non-**
62 **transformed WGD⁻ cells that comprise human tissue.**

63 The vast majority of human cells are diploid and numerous cell cycle controls exist to help
64 ensure that this state is maintained across successive cell divisions¹. Despite these controls,
65 errors can occur that result in a whole genome doubling (WGD), in which a natively diploid cell
66 transitions to a tetraploid state¹⁻³. It has been demonstrated that cells that have experienced a
67 WGD event (hereafter WGD⁺) are oncogenic and can facilitate tumorigenesis^{4,5}. WGD promotes
68 tumorigenesis in at least two ways: first, proliferating WGD⁺ cells are genomically unstable and
69 rapidly accumulate both numerical and structural chromosomal abnormalities⁵, and second,
70 WGD⁺ cells are better able to buffer against the negative effects of deleterious mutations and
71 ongoing chromosome instability⁶⁻¹⁰. Such traits enable nascent WGD⁺ tumor cells to proliferate
72 in the presence of otherwise lethal genomic alterations while simultaneously sampling increased
73 genetic permutations, ultimately enabling phenotypic leaps that give rise to tumors^{8,11}. WGD also
74 carries important clinical implications, with recent reports showing its correlation with advanced
75 metastatic disease and a worse overall prognosis^{12,13}.

76

77 Given the oncogenic potential associated with WGD, tumor suppression mechanisms exist to limit
78 the proliferation of these unstable cells. WGD⁺ cells activate both the p53 and Hippo tumor
79 suppressor pathways and are prone to apoptosis, senescence, and immune clearance¹⁴⁻¹⁶. WGD also
80 gives rise to numerous abnormalities in cellular physiology that impair fitness^{6,14,17}. Therefore, in
81 order to promote tumorigenesis, WGD⁺ cells must adapt to overcome these barriers^{5,14,18,19}. Thus,
82 while WGD confers traits that favor tumorigenesis, it also imposes adaptive requirements upon
83 cells that could give rise to unique vulnerabilities^{20,21}. Identifying and exploiting these
84 vulnerabilities represents an exciting therapeutic avenue, particularly because WGD is broadly
85 shared across multiple tumor types and is a distinguishing characteristic of many tumors^{12,22}.

86 **Identifying genetic alterations enriched in WGD⁺ tumors**

87 To understand the genetic differences between WGD⁺ and WGD⁻ tumors, we first obtained
88 WGD status calls made by the ABSOLUTE algorithm on ~10,000 primary tumor samples
89 spanning 32 distinct tumor types from The Cancer Genome Atlas (TCGA). This allowed us to
90 separate tumor samples by whether they had (WGD⁺) or had not (WGD⁻) undergone a WGD
91 event²³. Consistent with previous estimates, we found that ~36% of tumors experienced at least
92 one WGD during their evolution^{12,24}. We also observed a significant range in the occurrence of
93 WGD between different tumor subtypes, implying that specific genetic, physiological, and/or
94 microenvironmental cues can favor or repress WGD-driven tumorigenesis (Fig. 1a).

95

96 Having differentiated WGD⁺ and WGD⁻ tumors, we sought to assess the mutational burden of
97 each cohort in a pan-cancer analysis. We compared the ploidy-corrected mutational burden
98 between WGD⁺ and WGD⁻ tumors and found them to be slightly higher in WGD⁺ tumors
99 (Extended Data Fig. 1a). We also observed that tumors with microsatellite instability (MSI) or
100 mutations in DNA polymerase ε (*POLE*), which have a very high mutational burden, tend not to
101 experience WGD events, which has been shown in other cohorts^{10,12,25,26}. Indeed, only 12/178
102 tumors we identified as MSI-high/*POLE*-mutated in the TCGA database were WGD⁺ (Extended
103 Data Fig. 1b). Examination within each tumor subtype demonstrated more clearly that WGD⁺
104 tumors tend to have a higher total mutational burden{Bielski, 2018, Genome doubling shapes the
105 evolution and prognosis of advanced cancers}. However, when we examined the ploidy-
106 corrected mutational burden within each tumor subtype, we found that tissue-specific pressures
107 may differentially affect the acquisition of mutations in WGD⁻ and WGD⁺ tumors (Extended
108 Data Fig. 1c-d). Notably, there were several tumor subtypes where the WGD⁻ tumors had a

109 higher ploidy-corrected mutational burden than the WGD⁺ tumors within that subtype. This
110 tended to occur in subtypes with a high mutational load, characteristic of tumor types prone to
111 MSI or exposure to exogenous mutagens²⁷. Conversely, in subtypes with a lower mutational
112 burden, it was the WGD⁺ tumors within that subtype with the higher ploidy-corrected mutational
113 burden (Fig. 1b). This supports a recent report that predicts highly mutated tumors, which
114 experience fewer somatic copy number alterations (SCNAs), encounter selection pressures that
115 disfavor WGD, while tumor types with a lower mutational burden and increased SCNAs will
116 favor WGD due to its capacity to buffer against deleterious mutations in genomic regions of loss
117 of heterozygosity¹⁰.

118

119 We next explored the mutational landscape of WGD⁺ tumors, where we observed a significant
120 enrichment of mutations in *TP53* and *PPR21A* (Fig. 1c), consistent with findings from
121 advanced cancer patients and a smaller cohort of TCGA samples^{12,24}. The positive selection for
122 these mutations is clear: p53 represents a major barrier to the proliferation of WGD⁺ cells, and
123 thus inactivating mutations in *TP53* are favored in WGD⁺ cancers. Mutations in *PPR21A*
124 promote centrosome clustering, an important adaptation for preventing multipolar cell division
125 and cell death in WGD⁺ cells with supernumerary centrosomes^{6,28}. We also identified mutations
126 that are negatively enriched in WGD⁺ tumors, implying that these mutations are either less
127 important for, or perhaps incompatible with, driving tumorigenesis in the context of WGD (Fig.
128 1c).

129

130 To assess changes in the microenvironment of WGD tumors, we applied the ABSOLUTE
131 algorithm to infer the purity (*i.e.* the fraction of non-tumor cells) of TCGA tumor samples²³. We

132 found that WGD correlates with decreased purity and increased non-immune stromal infiltration
133 (Extended Data Fig. 2a-b). We also assessed the correlation of WGD with TCGA estimates of
134 tumor-infiltrating leukocytes (TILs) and found a negative correlation between WGD and TILs
135 (Fig. 1d)^{29,30}. When we performed gene expression analysis to identify genes differentially
136 expressed in WGD⁺ tumors relative to WGD⁻ tumors, we found that the most negatively enriched
137 gene sets in WGD⁺ tumors were inflammatory processes, further corroborating our finding that
138 these tumors present with diminished host immune response similar to highly aneuploid tumors
139 (Fig. 1e)^{31,32}. We further identified that WGD⁺ tumors tend to overexpress genes important for
140 cellular proliferation, mitotic spindle formation, and DNA repair (Fig. 1e, Supplementary Table
141 1). Collectively, our data demonstrate key genetic and phenotypic differences between WGD⁺
142 and WGD⁻ tumors, support the prognostic and therapeutic significance of WGD, and hint at
143 potential adaptations and vulnerabilities that may inexorably arise following a WGD event.

144

145 **WGD confers unique genetic vulnerabilities on tumors**

146 We examined whether WGD confers unique genetic dependencies on tumor cells by applying the
147 ABSOLUTE algorithm to cancer cell lines from Project Achilles, which is a comprehensive
148 catalog quantifying the essentiality of ~20,000 genes across ~600 cell lines following both
149 CRISPR and RNAi-mediated gene depletion (Supplementary Table 2)³³⁻³⁵. After classifying the
150 cell lines as either WGD⁺ or WGD⁻, we used Project Achilles data to score genes based upon
151 their enrichment for essentiality in WGD⁺ cell lines relative to WGD⁻ cell lines (so-called ploidy-
152 specific lethal (PSL) genes²¹) (Fig. 2a-b, Extended Data Fig. 2c, Supplementary Tables 3 and 4,
153 *see methods for scoring details*). We mapped these PSL genes against the gene expression
154 signature of WGD⁺ tumors and found several PSL genes to be significantly overexpressed,

155 reinforcing their importance in the progression of WGD⁺ tumors (Fig. 2b-c).

156

157 To validate these PSL genes, we first generated three isogenically matched diploid (WGD⁻ or
158 2N) and tetraploid (WGD⁺ or 4N) cell lines as previously described (Extended Data Fig. 2d-
159 g)^{6,36}. These lines included the non-transformed epithelial cell lines RPE-1 and MCF10A, as well
160 as the colon cancer cell line HCT116. Importantly, the development of these lines enabled us to
161 directly compare cellular dependencies in cells differing only by WGD status.

162

163 We first validated *BUB1B* and *MAD2L1*, the two strongest PSL gene hits from our analysis.
164 These genes encode proteins that are essential to the function of the spindle assembly checkpoint
165 (SAC), which delays anaphase onset until all chromosomes have attached to the mitotic spindle,
166 thus promoting the faithful partitioning of genomic content into two daughter cells during
167 mitosis³⁷. It has been demonstrated that increasing chromosome number prolongs the time
168 needed to achieve full chromosome attachment and alignment³⁸, suggesting that premature
169 anaphase induced by disruption of the SAC should give rise to chromosome segregation errors at
170 elevated rates in tetraploid cells³⁸. Using live-cell imaging, we found that tetraploid cells indeed
171 require more time to attach and align chromosomes relative to diploids in all three cell lines
172 tested (Extended Data Fig. 3a). Consequently, we found that inhibition of the SAC using the
173 small molecule inhibitor AZ3146, which inhibits the MPS1 kinase and abrogates the SAC in a
174 manner similar to MAD2 or BUBR1 depletion, leads to a significant increase in chromosome
175 segregation defects and micronuclei formation in tetraploid cells relative to diploids (Extended
176 Data Fig. 3b). Micronuclei and chromosome segregation errors impair cell fitness, and
177 concordantly, population doubling assays confirmed that tetraploid cells are significantly more

178 sensitive to SAC inhibition than diploids (Fig. 2d). These data corroborate previous studies and
179 served to validate our PSL analysis methodology^{39,40}.

180
181 The identification of several genes involved in DNA replication as PSL hits suggests that WGD⁺
182 cells may also be more vulnerable to challenges to DNA replication than WGD⁻ cells. We first
183 validated that reductions in the levels of RRM1 and RAD51 (two PSL genes known to mitigate
184 the DNA damage associated with replication stress) preferentially impair the viability of
185 tetraploid cells (Extended Data Fig. 3c-f). As an orthogonal approach, we also treated isogenic
186 diploid and tetraploid cells with hydroxyurea or gemcitabine, which inhibit ribonucleotide
187 reductase (RRM1) activity and induce replication stress. We observed that tetraploid cell lines
188 show an increased sensitivity to these inhibitors relative to diploids (Extended Data Fig. 4a-b).
189 We also confirmed this result in a panel of ten breast cancer cell lines (five WGD⁺ and five
190 WGD⁻) (Fig. 2e-g,i, Extended Data Fig. 4d-e). These data reveal that WGD⁺ tumor cells are
191 more dependent on specific DNA replication factors relative to WGD⁻ tumor cells, perhaps as a
192 means to compensate for increased replication stress induced by tetraploidy^{41,42}. These results are
193 particularly significant in therapeutic contexts as gemcitabine and other inhibitors of
194 ribonucleotide reductase represent the standard of care for treatment regimens across multiple
195 cancer subtypes, and biomarkers that can predict sensitivity to gemcitabine hold real prognostic
196 value⁴³.

197
198 We also identified several PSL genes that encode for regulators of the proteasome, suggesting
199 that WGD confers vulnerability to disruptions in protein stability/turnover. Indeed, we found that
200 WGD⁺ cells are more sensitive to the proteasome inhibitor MG132 than WGD⁻ cells (Fig. 2h-i,

201 Extended Data Fig. 4c). This dependency can likely be attributed to the highly aneuploid nature
202 of WGD⁺ cells, as aneuploidy has previously been shown to induce proteotoxic stress ⁴⁴.
203 Supporting this view, we found that tetraploid RPE-1 cells, which maintain an euploid number of
204 chromosomes (92) (Extended Data Fig. 2g), were the only cell line not more sensitive to MG132
205 relative to diploids (Extended Data Fig. 4c).

206

207 **WGD confers dependence on KIF18A**

208 Our analysis identified the gene *KIF18A*, which encodes for a mitotic kinesin protein, as a
209 significant PSL hit (Fig. 2b). *KIF18A* functions to suppress chromosomal oscillations at the
210 metaphase plate by regulating microtubule dynamics to facilitate proper alignment and
211 distribution of chromosomes during mitosis⁴⁵⁻⁴⁸. Importantly, in contrast to the aforementioned
212 genes that regulate essential cellular processes such as SAC function, DNA replication, and
213 proteasome activity, *KIF18A* is a non-essential gene in normal diploid cells, as attested by the
214 fact that transgenic *KIF18A* knockout mice survive to adulthood^{49,50}. Further, *KIF18A* is
215 commonly overexpressed in WGD⁺ tumors (Fig. 2c). Its high PSL score and preferential gene
216 expression in WGD⁺ tumors, combined with its dispensability in normal diploid cells, make
217 *KIF18A* an exciting new candidate for therapeutic exploration.

218

219 We first validated *KIF18A* as a PSL gene by confirming that depletion of *KIF18A* significantly
220 impairs the viability of tetraploid but not diploid cells (Fig. 3a, Extended Data Fig. 5a). To
221 understand the mechanism underlying this reduction in viability, we used live-cell imaging to
222 monitor mitotic progression following *KIF18A* depletion in our three isogenic diploid and
223 tetraploid cell models. This analysis revealed that *KIF18A* knockdown has profoundly

224 differential effects on the fidelity of mitosis in tetraploid cells relative to diploid cells. We
225 observed that depletion of KIF18A had no effect on mitotic duration in diploid cells. By contrast,
226 depletion of KIF18A led to significantly prolonged mitoses in tetraploid cells (Fig. 3b). We also
227 observed that while diploid cells lacking KIF18A exhibited subtle defects in chromosome
228 misalignment at anaphase onset, chromosome segregation proceeded relatively normally with no
229 significant increase in the generation of micronuclei following mitosis (Fig. 3b,g). By contrast,
230 tetraploid cells depleted of KIF18A exhibited significant increases in chromosome misalignment,
231 anaphase lagging chromosomes, and micronuclei formation (Fig. 3b,g Extended Data Fig. 5b,f,
232 Extended Data Fig. 6a, Supplementary Movies 1-4).

233
234 It has been demonstrated that the nuclear membranes surrounding micronuclei are prone to
235 rupture, thereby exposing the chromosomal contents harbored within the micronuclei to the
236 cytosolic environment⁵¹. This defect induces both catastrophic DNA damage to the exposed
237 chromosomes as well as stimulation of the cGAS-STING pathway⁵²⁻⁵⁴. Indeed, we found that
238 micronuclei in cells depleted of KIF18A showed both γ -H2AX and cGAS labeling (Extended
239 Data Fig. 5d). Of note, we observed that a greater fraction of micronuclei in tetraploid cells are
240 cGAS⁺ compared to diploid cells, and a greater fraction of micronuclei arising in tetraploid cells
241 depleted of KIF18A are cGAS⁺ compared to micronuclei induced by SAC impairment (Extended
242 Data Fig. 5d). These data indicate that tetraploid cells depleted of KIF18A give rise to
243 micronuclei that are particularly fragile and prone to rupture, a characteristic that likely
244 contributes to the observed differential effect on viability.

245
246 We speculated that the mitotic delays and aberrant chromosome segregation defects observed

247 following KIF18A loss may be induced by changes in spindle morphology in tetraploid cells. To
248 accommodate their doubled chromosome content, tetraploid cells assemble larger mitotic
249 spindles⁶. Indeed, we found that spindles in tetraploid cells were on average ~17% longer than in
250 diploids (Fig. 3c). Depletion of KIF18A led to an additional increase in spindle length, and this
251 effect was significantly more dramatic in tetraploid cells relative to diploids (Fig. 3c).

252

253 We also measured the magnitude of chromosome oscillations immediately prior to anaphase
254 onset in diploid and tetraploid cells by assessing the widest oscillating chromosomes in each
255 poleward direction, as well as the overall chromosome alignment efficiency by measuring the
256 total two-dimensional area occupied by the entire body of chromosomes (Fig. 3d). These
257 analyses revealed that the magnitude of chromosomal oscillations is significantly greater in
258 tetraploid cells relative to diploid cells following KIF18A depletion (Fig. 3e-f). One consequence
259 of hyper-oscillating chromosomes in tetraploid cells depleted of KIF18A is that they have a
260 propensity to lose their attachment to the mitotic spindle and activate the spindle assembly
261 checkpoint, thus explaining the mitotic delays we observed (Extended Data Fig. 6b)^{55,56}. A
262 second consequence is that severely misaligned chromosomes must traverse a significantly
263 greater distance during anaphase in tetraploid cells compared to diploid cells, thus explaining the
264 observed increase in lagging chromosomes and micronuclei.

265

266 Numerous studies have indicated that aneuploidy and micronuclei induced by lagging
267 chromosomes can impair cell proliferation, in part through activation of the p53 pathway¹⁷. We
268 therefore used long-term live-cell imaging to track the fates of isogenic diploid and tetraploid
269 cells depleted of KIF18A. Our analysis revealed that while the majority of diploid cells depleted

270 of KIF18A undergo normal cell cycle progression, isogenic tetraploid cells depleted of KIF18A
271 are prone to interphase cell cycle arrest following abnormal mitosis, concomitant with p53
272 pathway activation (Fig 3h and Extended Data Fig. 5e). Thus, our data reveal that loss of
273 KIF18A in WGD⁺ cells predisposes cells to lagging chromosomes, micronuclei formation,
274 micronuclei rupture, and proliferative arrest. Supporting this mechanism, we found that cellular
275 proliferation is required for the loss of KIF18A to drive our observed viability defects (Extended
276 Data Fig. 5c).

277

278 We sought to also validate the ploidy-specific lethality of KIF18A across our panel of breast
279 cancer cell lines. Supporting our pan-cancer gene expression analysis (Fig. 2c), we found that
280 KIF18A protein levels are typically elevated in WGD⁺ cells (Fig. 4a, Extended Data Fig. 7a).
281 Knockdown of KIF18A from all ten breast cancer cell lines (Extended Data Fig. 7b) confirmed
282 that WGD⁺ breast cell lines experience a significantly greater reduction in viability relative to
283 WGD⁻ cell lines (Fig. 4b, Extended Data Fig. 7c-e, Supplementary Movies 5-6). Live-cell
284 imaging revealed that WGD⁺ breast cancer cells exhibited increased spindle lengths and
285 chromosome hyper-oscillations relative to WGD⁻ breast cancer cells after loss of KIF18A (Fig.
286 4d-e, Extended Data Fig. 7f), thus promoting chromosome detachment, spindle assembly
287 checkpoint activation, and prolonged mitosis (Fig. 4c, Extended Fig. 6c). Notably, we observed
288 that a large fraction of WGD⁺ cells were never able to satisfy the spindle assembly checkpoint
289 and exhibited a dramatically prolonged mitotic arrest before ultimately undergoing mitotic cell
290 death (Fig. 4c). WGD⁺ cells depleted of KIF18A that were able to achieve anaphase exhibited
291 significant increases in both anaphase lagging chromosomes and micronuclei relative to the
292 WGD⁻ cell lines, similar to what was observed in the isogenic tetraploid models (Fig. 4c,

293 Extended Fig. 7g). However, in contrast to the p53-proficient isogenic tetraploid cells, WGD⁺
294 breast cancer cell lines depleted of KIF18A were not prone to cell cycle arrest following
295 abnormal mitosis, likely due to the fact that all WGD⁺ lines have impaired p53 function (Fig. 4f).
296 Instead, a fraction of these cells die in interphase after experiencing catastrophic mitoses
297 resulting in micronuclei formation, while the majority of these WGD⁺ cells initiate a second
298 round of mitosis without KIF18A, where they are just as likely or more prone to mitotic cell
299 death (Fig. 4g).

300
301 Collectively, these data reveal that loss of KIF18A specifically impairs mitotic fidelity and cell
302 viability in WGD⁺ cancer cells (Fig. 4f), highlighting KIF18A as an attractive new therapeutic
303 target whose inhibition may enable the specific targeting of WGD⁺ tumors while sparing the
304 normal diploid cells that comprise human tissue. Supporting this view, it has been demonstrated
305 that *KIF18A* knockout mice are protected from colitis-associated colorectal tumors and that
306 depletion of KIF18A from the WGD⁺ breast cancer cell line MDA-MB-231 impairs tumor
307 growth *in vivo*^{57,58}.

308
309 An important consideration is that WGD⁺ cancer cells exhibit numerous characteristics that
310 distinguish them from WGD⁻ cells in addition to simply having extra chromosomes and larger
311 spindles: WGD⁺ cells frequently possess supernumerary centrosomes, are chromosomally
312 unstable, and have inactivating mutations in *TP53*^{6,14}. However, we favor a model in which the
313 dependency of WGD⁺ cells on KIF18A is due predominantly to the extra chromosomes, as we
314 observe viability defects in tetraploid RPE-1 cells despite the fact that they possess a euploid
315 complement of chromosomes, are chromosomally stable, and have functional p53 signaling.

316 Nevertheless, we do note that some WGD⁻ cancer lines show sensitivity to KIF18A depletion,
317 suggesting that other defects may exist that predispose to KIF18A sensitivity. Indeed, Marquis et
318 al., (unpublished) propose that altered spindle microtubule dynamics in chromosomally unstable
319 cancer cells may also induce KIF18A sensitivity.

320

321 Herein, we have comprehensively catalogued specific genomic characteristics unique to WGD⁺
322 tumors and demonstrated that WGD confers specific, exploitable vulnerabilities on tumor cells.

323 It should be noted that highly aneuploid cancer cells (*e.g.* possessing \geq triploid number of
324 chromosomes) almost exclusively arise from WGD⁺ cells that have lost chromosomes over many
325 cell divisions (Fig. 1a)^{21,22}. By contrast, WGD⁻ tumors, which are also typically aneuploid but
326 maintain a chromosome number in the near-diploid range, do not exhibit the same level of
327 dependencies. This suggests that aneuploidy *per se* is insufficient to drive the dependencies we
328 observe, but rather it is the overall increase in chromosome number that is critical.

329

330 Our combined computational and *in vitro* approaches have further characterized the genetic
331 landscape of WGD⁺ tumors and generated a list of ploidy-specific lethal (PSL) genes that
332 highlight the vulnerabilities that can arise with a WGD event. We have also identified a new
333 therapeutic target in KIF18A, which holds the potential of broad applicability with minimal
334 toxicity. Collectively, this work serves to underscore the importance and untapped potential of
335 exploring and targeting WGD in human tumors.

336 **Acknowledgements**

337 The results published here are in part based upon data generated by the TCGA Research
338 Network: <https://www.cancer.gov/tcga>. We would like to thank Janice Weinberg for statistical
339 advice, Jason Stumpff for technical advice, reagents, and sharing unpublished data, David
340 Pellman for sharing reagents, and Scott Carter for sharing ABSOLUTE data for cell lines in the
341 CCLE. R.J.Q. is supported by a Canadian Institutes of Health Research Doctoral Foreign Study
342 Award. N.J.G. is a member of the Shamim and Ashraf Dahod Breast Cancer Research
343 Laboratories and is supported by NIH grants CA154531 and GM117150, the Karin Grunbaum
344 Foundation, the Smith Family Awards Program, the Melanoma Research Alliance, and the
345 Searle Scholars Program. This work was also supported in part by a pilot grant from the ACS
346 and the Boston University Clinical and Translational Science Institute Bioinformatics Group,
347 who are supported by a grant from the NIH/NCATS (1UL1TR001430).

348

349

350 **Author Contributions**

351 RQ and NG designed the experiments and wrote the manuscript. RQ performed the cell
352 biological assays and imaging analysis. AD, CT, and SP assisted RQ with the cell biological
353 assays. KK and MV performed imaging analysis. TK generated the isogenic diploid and
354 tetraploid HCT-116 cells. JV generated cell lines. NH and AM performed animal studies. AT,
355 YK, NP, MM, and JC performed the computational analyses. All authors edited the manuscript.

356

357 **Declaration of Interests**

358 The authors declare no competing interests.

360 **Supplementary Tables**

361 **Supplementary Table 1**

362 Pan-cancer gene expression analysis with GSEA and gene expression analysis for each tumor
363 subtype for WGD⁺ tumors in the TCGA.

364

365 **Supplementary Table 2**

366 ABSOLUTE algorithm applied to cancer cell lines indicating purity, ploidy, and number of
367 whole genome doublings.

368

369 **Supplementary Table 3**

370 Gene essentiality data for ~600 cancer cell lines from the Cancer Cell Line Encyclopedia
371 showing genes enriched for essentiality in WGD⁺ cell lines.

372

373 **Supplementary Table 4**

374 List of ploidy-specific lethal genes ranked by their PSL score.

375

376 **Supplementary Movies**

377 **Supplementary Movie 1**

378 Live-cell imaging of diploid (2N) MCF10A H2B-GFP cells following transfection with control
379 siRNA (5 frames/second; hour:minute; scale bar 10μm).

380

381 **Supplementary Movie 2**

382 Live-cell imaging of diploid (2N) MCF10A H2B-GFP cells following transfection with KIF18A
383 siRNA (5 frames/second; hour:minute; scale bar 10 μ m).

384

385 **Supplementary Movie 3**

386 Live-cell imaging of tetraploid (4N) MCF10A H2B-GFP cells following transfection with
387 control siRNA (5 frames/second; hour:minute; scale bar 10 μ m).

388

389 **Supplementary Movie 4**

390 Live-cell imaging of tetraploid (4N) MCF10A H2B-GFP cells following transfection with
391 KIF18A siRNA (5 frames/second; hour:minute; scale bar 10 μ m).

392

393 **Supplementary Movie 5**

394 Live-cell imaging of the HCC1806 H2B-GFP breast cancer cell line following transfection with
395 control siRNA (40 frames/second; hour:minute; scale bar 100 μ m).

396

397 **Supplementary Movie 6**

398 Live-cell imaging of the HCC1806 H2B-GFP breast cancer cell line following transfection with
399 KIF18A siRNA (40 frames/second; hour:minute; scale bar 100 μ m).

400

401

402

403 **Methods**

404 **WGD/Purity/Ploidy Calls**

405 TCGA samples were previously analyzed using the ABSOLUTE algorithm⁴. ABSOLUTE takes
406 copy number and mutation data to estimate sample purity, ploidy, and number of whole genome
407 doublings. ABSOLUTE calls for TCGA samples are available in ref⁵. Briefly, the algorithm
408 infers from sequencing data what fraction of a tumor sample is composed of tumor cells vs non-
409 tumor cells (purity) as well as the ploidy of a tumor sample by analyzing copy number ratios
410 across the entire genome. WGD status is inferred based on the ploidy distribution within a tumor
411 type, the homologous copy number information across the genome, and the presence of
412 duplicated mutations.

413

414 **Ploidy-Corrected Mutational Burden**

415 To compare the ploidy-corrected mutational burden of WGD⁺ and WGD⁻ TCGA samples, we
416 divided the non-synonymous mutations per Mb (log10 transformed)¹ of each sample by their
417 ploidy as defined by ABSOLUTE. We performed a linear regression using the lm function in R
418 version 3.2.3. The formula was:

419

420 Mutational burden ~ WGD + Tumor Type + MSI/POLE Status

421

422 We applied the Wilcoxon rank-sum test to analyze the total mutational burden and ploidy-
423 corrected mutational burden between WGD⁺ and WGD⁻ samples within each subtype.

424

425 **Mutations in WGD⁺ Tumors**

426 To identify gene mutational frequencies associated with WGD status, we applied logistic
427 regression to 631 driver genes that were found to be significantly recurrently mutated in one or
428 more tumor types by MutSig2CV². The formula for the logistic regression model was:

429

430 Mutation status ~ WGD + Mutation Burden + Tumor Type

431

432 where Mutation Burden was the number of non-synonymous mutations per Mb (log10
433 transformed)¹ and WGD status was defined by ABSOLUTE calls retrieved from

434 <http://api.gdc.cancer.gov/data/4f277128-f793-4354-a13d-30cc7fe9f6b5>. The maf file from
435 TCGA PanCanAtlas MC3³ project was used to derive the mutation status for each gene in each

436 tumor retrieved from <https://api.gdc.cancer.gov/data/1c8cfe5f-e52d-41ba-94da-f15ea1337efc>.

437 This file was filtered to only include variants with "PASS", "wga", or "native_wga_mix" in the
438 "FILTER" column. Variants with "Frame_Shift_Del", "Frame_Shift_Ins", "In_Frame_Del",

439 "In_Frame_Ins", "Missense_Mutation", "Nonsense_Mutation", "Nonstop_Mutation",

440 "Translation_Start_Site", "Splice_Site", "De_novo_Start_InFrame",

441 "De_novo_Start_OutOfFrame", "Stop_Codon_Del", "Stop_Codon_Ins", "Start_Codon_Del", or

442 "Start_Codon_Ins" in the "Variant_Classification" column were considered non-synonymous. An

443 FDR correction was applied to the p-values for the WGD term to control for multiple hypothesis

444 testing.

445

446 **Leukocyte infiltrate and stromal calls**

447 Estimates of leukocyte fraction in the TCGA samples were generated using a mixture model of

448 DNA methylation in pure leukocytes versus normal tissue. More details and all calls can be

449 found in ref⁶. Stromal calls were made by subtracting leukocyte fraction from ABSOLUTE
450 purity estimates described above. Spearman correlation coefficients were calculated after
451 removing MSI/POLE mutant samples from the dataset and using the spearmanr function using
452 cor.test in R (method = “spearman”), which was run using R version 3.2.3.

453

454 **Gene Expression Analysis**

455 Expression and copy number data of TCGA samples were obtained from the PanCanAtlas
456 project (<https://gdc.cancer.gov/about-data/publications/pancanatlas>). RNA-seqV2 data was used
457 for expression analysis (<http://api.gdc.cancer.gov/data/3586c0da-64d0-4b74-a449-5ff4d9136611>). Expression values were log2-transformed after adding a pseudo-count of 1.
458 Copy number ratios were obtained for each gene by running GISTIC2.0 on the PanCan
459 segmentation file (<http://api.gdc.cancer.gov/data/00a32f7a-c85f-4f86-850d-be53973cbc4d>).
460 Analysis was limited to primary tumors across all cancer types. P-values for WGD were
461 corrected for multiple hypothesis testing with the Benjamini-Hochberg False Discovery Rate
462 (FDR).

464

465 To identify gene expression profiles associated with WGD status, we applied the following linear
466 model to each gene within each tumor type:

467

468 Expression ~ WGD + Purity + CN_Local

469

470 where Purity is the ABSOLUTE-estimated purity for each tumor and CN_Local is the log2 copy
471 number ratio for that gene in each tumor estimated by GISTIC2.0 [ref: 21527027].

472 Note that the CN_Local variable was different for each gene (as each gene has a different copy
473 number profile) while the WGD and Purity variables were the same for all genes. The Benjamini
474 Hochberg method was used to correct p-values from the WGD term for multiple hypothesis
475 testing. Genes were considered significantly associated with WGD status if they had an FDR q-
476 value less than 0.05. Genes up-regulated in more than 10 tumor types were analyzed with hypeR
477 [ref: 31498385] using the MSigDB Hallmark gene sets to identify biological categories enriched
478 among these genes. Similarly, genes down-regulated in more than 10 tumor types were also
479 analyzed with hypeR in the same fashion. To generate a volcano plot across tumor types, the
480 coefficient for WGD was averaged and the FDR-corrected q-values were combined using the
481 Fisher's method.

482

483 **Ploidy-specific lethal (PSL) score analysis**

484 Thresholded Analysis

485 Genes were assigned a binary classification (essential or non-essential) based on cutoffs
486 established by Project Achilles. In the database, a score of -1 is assigned to a gene when its
487 depletion in a given cell line results in a viability defect equal to the depletion of a curated list of
488 gold standard common-essential genes^{7,8}. Based on this scoring system, we defined any gene
489 with a score ≤ -1 for a given cell line as essential. We then compared the fraction of cell lines in
490 the WGD⁻ and WGD⁺ groups where a gene was essential. When a gene was essential in a
491 significantly greater fraction of WGD⁺ cell lines than WGD⁻ cell lines (Fisher's exact test, $p <$
492 0.1) in a specific tumor subtype, it was considered a "hit" in this analysis (Extended Data Fig.
493 3a).

494 Non-thresholded analysis

495 Within each tumor type, the median essentiality scores for each gene in the WGD⁻ and WGD⁺
496 cell lines were identified. When a gene showed a statistically significant enrichment in its median
497 essentiality score in the WGD⁺ compared to the WGD⁻ cell lines (Wilcoxon test, $p < 0.05$), and
498 also had an essentiality score of ≤ -0.5 in the WGD⁺ cell lines, it was considered at “hit” in this
499 analysis (Extended Data Fig. 3a).

500 **Final PSL score**

501 We employed the thresholded analysis with the Fisher’s exact test and non-thresholded analysis
502 with the Wilcoxon rank-sum in each individual tumor type (n=12) as well as in a combined pan-
503 cancer analysis. These analyses were also performed separately for the CRISPR and RNAi
504 datasets. Only genes that had measurable data in 95% of total cell lines were analyzed. The final
505 PSL score for each gene was the total number of instances a gene was found to be a hit across all
506 analyses (Fig. 2b, Supplementary Table 3,4). As a result, some hits may have come entirely from
507 either the CRISPR or RNAi datasets, such as KIF18A which was only found to be enriched for
508 essentiality in the CRISPR dataset, likely due to insufficient knockdown in the RNAi dataset.

509

510 **Cell Culture**

511 All breast cancer cell lines were purchased from ATCC and used at early passage numbers.
512 Isogenic tetraploid cell lines were generated as described⁶. hTERT-RPE-1 were cultured in
513 DME/F12 (HyClone) supplemented with 10% FBS (ThermoFisher) with 50 IU/mL penicillin
514 and 50 μ g/mL streptomycin (ThermoFisher). HCT116, CAMA-1, MDA-MB-415, MDA-MB-
515 134-VI, MDA-MB-157, Hs578T, MDA-MB-231, MDA-MB-361 cells were cultured in high
516 glucose DMEM (Gibco) supplemented with 10% FBS with 50 IU/mL penicillin and 50 μ g/mL
517 streptomycin. ZR-75-30 and HCC1806 cells were cultured in RPMI (Gibco) supplemented with

518 10% FBS with 50 UIU/mL penicillin and 50 µg/mL streptomycin. MCF10A cells were cultured
519 in DME/F12 (HyClone) supplemented with 5% horse serum (ThermoFisher), 20ng/mL EGF
520 (ThermoFisher), 500ng/mL hydrocortisone (ThermoFisher), 100ng/mL cholera toxin (Sigma),
521 10ug/ml insulin (ThermoFisher), with 50 UIU/mL penicillin and 50 µg/mL streptomycin.

522

523 **siRNA Transfections**

524 siRNA transfections using Lipofectamine RNAiMAX (Invitrogen) were performed according to
525 the manufacturer's instructions. The final concentration of KIF18A of CTRL siRNA in the
526 medium was 10 nM, excepting MCF10A KIF18A siRNA transfections, which were performed at
527 a final concentration of 1nM, and RRM1/RAD51 siRNA transfections, which were performed at
528 a final concentration of 50 pM with CTRL siRNA adjusted accordingly.

529

530 **siRNA Sequences**

531 Non-targeting control (CTRL) (Dharmacon) 5'-UGGUUUACAUGUCGACUAA-3'
532 KIF18A (Silencer Select s37882 – Ambion)⁸ 5'-UCUCGAUUCUGGAACAAAGCAG-3'
533 RAD51 (Silencer Select s11735 – Ambion) 5'-UGAUUAGUGAUUACCACUGCT-3'
534 RRM1 (On-Target plus SMARTpool – Dharmacon)

535 5'-UAUGAGGGCUCUCCAGUUA-3'

536 5'-UGAGAGAGGUGCUUCAUU-3'

537 5'-UGGAAGACCUCUAUAACUA-3'

538 5'-CUACUAAGCACCCUGACUA-3'

539

540 **Inducible shRNA**

541 We infected cells with a SMARTvector Inducible Lentiviral shRNA (Horizon) targeting KIF18A
542 and selected cells with puromycin (Santa Cruz Biotechnology) at 2 μ g/mL. Cells were induced
543 with doxycycline (Sigma) at 1 μ g/mL for 7 days and viability was assessed.

544

545 shRNA sequence: 5' -CGATGACACACATATAAACACT-3'

546

547 **Inducible CRISPR-Cas9**

548 We infected cells with pCW-Cas9 plasmid (Addgene #50661) and selected cells with puromycin
549 at 2 μ g/mL. To improve knockout efficiency, cells were then infected with 2 distinct KIF18A
550 sgRNA plasmids. Each sgRNA sequence was cloned into its own lenti-sgRNA-blast plasmid
551 (Addgene #104993) and these plasmids were co-packaged into lentivirus and used to infect cells,
552 which were then selected with blasticidin (Sigma) at 5 μ g/mL. The sequences for both KIF18A
553 targeting sgRNAs are available in ref¹⁰:

554

555 **Cell Viability Experiments**

556 All cell viability assays were done using CellTiter-Glo (Promega) and performed according to
557 the manufacturer's instructions.

558

559 **Drug Treatments**

560 AZ3146 (Tocris) was used at a concentration of 1 μ M in HCT116 cells, 2 μ M in MCF10A cells,
561 and 4 μ M in RPE-1 cells. These concentrations were experimentally determined to be the
562 minimum concentration required to inhibit the SAC in each respective cell line.

563

564 MG132 (Selleck Chemicals) was used at indicated concentrations.

565

566 **Antibodies**

567 Rabbit polyclonal anti-KIF18A (Bethyl Cat # A301-080A)

568 Rabbit monoclonal anti-RRM1 (Cell Signaling Technology Cat # 8637)

569 Rabbit polyclonal anti-RAD51 (Santa Cruz Biotechnology Cat # sc-8349)

570 Rabbit monoclonal anti-cGAS (Cell Signaling Technology Cat # 15102)

571 Mouse monoclonal anti-phospho-histone H2A.X (Ser 139) (Sigma-Aldrich Cat # 05-636-I)

572 Mouse monoclonal anti-p53 (Santa Cruz Biotechnology Cat # sc-126)

573 Rabbit monoclonal anti-p21 (Cell Signaling Technology Cat # 2947)

574 Rabbit monoclonal anti-Cas9 (Active Motif Cat # 61978)

575 Rabbit monoclonal anti-GAPDH (Cell Signaling Technology Cat # 2118)

576 Mouse monoclonal anti-Vinculin (Abcam Cat # ab18058)

577 Mouse monoclonal anti-Tubulin (clone DM1A) (Sigma-Aldrich Cat # 05-829)

578 Rabbit polyclonal anti-Pericentrin (Abcam Cat # ab4448)

579

580 **Population Doubling Assay**

581 10,000 cells were seeded in a 10cm dish with AZ3146 at indicated concentrations. Fresh drug

582 was added every 3 days. After 8 days cells were counted, and population doublings were

583 calculated using the formula $PD = \frac{\log [(N_{final})/(N_{initial})]}{\log(2)}$.

584

585 **Live-Cell Imaging**

586 Stably expressing H2B-GFP cells were grown on glass-bottom 12-well tissue culture dishes

587 (Cellvis) and treated with drugs or transfected with siRNAs of interest. At 24 hours post-
588 treatment, imaging was performed on a Nikon TE2000-E2 inverted microscope equipped with
589 the Nikon Perfect Focus system. The microscope was enclosed within a temperature and
590 atmosphere-controlled environment at 37 °C and 5% humidified CO₂. Fluorescent images were
591 captured every 3 minutes with a 20X 0.5 NA Plan Fluor objective at multiple points for 72 hours.
592 Captured images were analyzed for mitotic defects using NIS elements software.

593

594 **Chromosome Alignment Measurement**

595 Live cell imaging was used to track H2B-GFP expressing cells to the frame immediately
596 preceding anaphase and the distance from the metaphase plate to the widest oscillating
597 chromosomes in each poleward direction was measured manually. We also measured the total
598 chromosomal distribution immediately prior to anaphase by recording the area of automatically
599 generated regions of interest (ROIs) based on fluorescence intensity using NIS elements
600 software.

601

602 **Cell Fate Analysis**

603 Live cell imaging was used to track cells treated with control siRNA to obtain the average cell
604 cycle time for each cell line, and cells treated with siKIF18A were called as “arrested/delayed” if
605 they spent greater than 3 standard deviations above the mean cell cycle time of control cells in
606 interphase.

607

608 **Immunofluorescence Microscopy**

609 Cells were plated on glass cover slips and then washed in microtubule stabilizing buffer

610 (MTSB) (4M Glycerol, 100mM PIPES, pH 6.9, 1mM EGTA, 5mM MgCl₂) for 1 min, extracted
611 in MTSB-0.5% Triton for 2 min, and washed again in MTSB for 2 min. Cells were then fixed in
612 1% EM grade glutaraldehyde for 10 min. Glutaraldehyde was quenched by washing twice in
613 NaBH₄ in water for 12 min each. Cells were then blocked for 30 min in TBS-BSA (10 mM Tris,
614 pH 7.5, 150 mM NaCl, 5% BSA, 0.2% sodium azide), and incubated with primary antibodies
615 diluted in TBS-BSA for 60 min in a humidified chamber. Primary antibodies were visualized
616 using species-specific fluorescent secondary antibodies (Molecular Probes) and DNA was
617 detected with 2.5 µg/ml Hoechst. Confocal immunofluorescence images were collected at 405,
618 488, and 561 nm on a Nikon Ti-E inverted microscope with C2+ laser scanning head. A series of
619 0.5 µm optical sections were acquired using a 60x objective lens. Images presented in figures are
620 maximum intensity projections of entire z-stacks.

621

622 **Spindle Length**

623 Spindles were measured using immunofluorescence microscopy. Cells were stained for
624 tubulin/centrosomes and spindle length was assessed by measuring the distance from centrosome
625 to centrosome of cells in metaphase using NIS elements software.

626

627 **Western Blotting**

628 Cells were rinsed with ice-cold 1X PBS (Boston Bioproducts) and lysed immediately with cell
629 lysis buffer (2% w/v SDS, 10% Glycerol, 60 mM Tris-HCl) supplemented with 1X HALT
630 protease and phosphatase dual inhibitor cocktail (ThermoFisher). Cell lysates were then
631 sonicated for 15 seconds at 20 kHz and Sample Buffer (Boston Bioproducts) was added to a final
632 concentration of 1X, after which protein samples were incubated at 95°C for 5 minutes.

633

634 Cell lysates were resolved via SDS-PAGE (Resolving/Separating gel: 7.5% acrylamide, 375 mM
635 Tris-HCl (pH 8.8), 0.1% SDS, 0.25% ammonium persulfate, 0.15% tetramethylethylenediamine;
636 Stacking gel: 4% acrylamide, 125 mM Tris-HCl (pH 6.8), 0.1% SDS, 0.5% ammonium
637 persulfate, 0.3% tetramethylethylenediamine) in SDS-PAGE running buffer (25 mM Tris-HCl,
638 192 mM Glycine, 0.1% SDS). Samples were passed through the stacking gel layer at 130 V for
639 15 minutes, followed by resolution of samples at 230 V for 25 minutes. Samples were transferred
640 to 0.45 μ m Immobilon PVDF membranes (EMD Millipore) using a wet-tank transfer system
641 (Bio-Rad) in Towbin transfer buffer (25 mM Tris-HCl, 192 mM Glycine, 10% methanol) for 16
642 hours at 30 mA at 4°C. Following transfer, membranes were blocked in TBS-0.5% Tween-20 (10
643 mM Tris-HCl, 150 mM NaCl, 0.5% Tween-20) containing 5% non-fat dried milk (NFDM) for 1
644 hour, and then incubated with primary antibodies diluted in 1% NFDM TBS-0.5% Tween-20
645 solution. Membranes were rinsed in TBS-0.5% Tween-20 solution following primary and
646 secondary antibody incubations for 30 minutes with vigorous shaking. Primary antibodies were
647 detected using horseradish peroxidase-conjugated species-specific secondary antibodies (1:5000,
648 Cell Signaling Technology) and Clarity ECL blotting substrate (Bio-Rad) or Clarity Max ECL
649 blotting substrate (Bio-Rad). Imaging of blots were performed using the ChemiDoc XRS+
650 imaging system (Bio-Rad), and quantitative densitometry was performed using the Bio-Rad
651 ImageLab software.

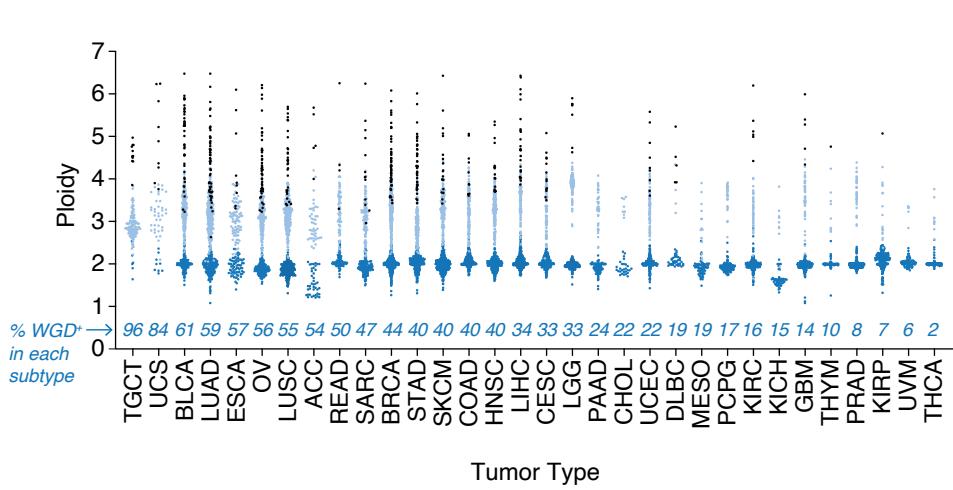
652

653 **Methods References**

654 1 Knijnenburg, T. A. *et al.* Genomic and Molecular Landscape of DNA Damage Repair
655 Deficiency across The Cancer Genome Atlas. *Cell Reports* **23**, 239-254.e236,
656 doi:<https://doi.org/10.1016/j.celrep.2018.03.076> (2018).

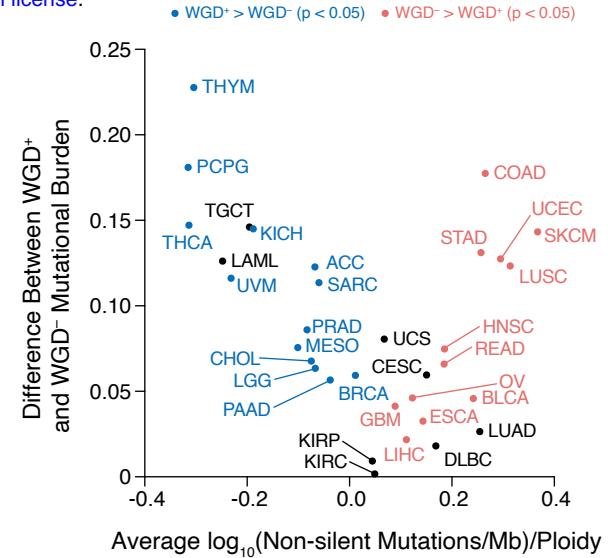
- 657 2 Bailey, M. H. et al. Comprehensive Characterization of Cancer Driver Genes and
658 Mutations. *Cell* **173**, 371-385.e318, doi:10.1016/j.cell.2018.02.060 (2018).
- 659 3 Ellrott, K. et al. Scalable Open Science Approach for Mutation Calling of Tumor Exomes
660 Using Multiple Genomic Pipelines. *Cell Systems* **6**, 271-281.e277,
661 doi:10.1016/j.cels.2018.03.002 (2018).
- 662 4 Carter, S. L. et al. Absolute quantification of somatic DNA alterations in human cancer.
663 *Nature Biotechnology* **30**, 413, doi:10.1038/nbt.2203 (2015).
- 664 5 Taylor, A. M. et al. Genomic and Functional Approaches to Understanding Cancer
665 Aneuploidy. *Cancer Cell* **33**, 676-689.e673, doi:10.1016/j.ccr.2018.03.007 (2018).
- 666 6 Thorsson, V. et al. The Immune Landscape of Cancer. *Immunity* **48**, 812-830.e814,
667 doi:<https://doi.org/10.1016/j.jimmuni.2018.03.023> (2018).
- 668 7 McFarland, J. M. et al. Improved estimation of cancer dependencies from large-scale
669 RNAi screens using model-based normalization and data integration. *Nature
670 Communications* **9**, 4610, doi:10.1038/s41467-018-06916-5 (2018).
- 671 8 Meyers, R. M. et al. Computational correction of copy number effect improves
672 specificity of CRISPR–Cas9 essentiality screens in cancer cells. *Nature Genetics* **49**,
673 1779, doi:10.1038/ng.3984
- 674 9 Fonseca, C. L. et al. Mitotic chromosome alignment ensures mitotic fidelity by
675 promoting interchromosomal compaction during anaphase. *The Journal of Cell Biology*
676 **218**, 1148, doi:10.1083/jcb.201807228 (2019).
- 677 10 Janssen, L. M. E. et al. Loss of Kif18A Results in Spindle Assembly Checkpoint
678 Activation at Microtubule-Attached Kinetochores. *Current Biology* **28**, 2685-2696.e2684,
679 doi:10.1016/j.cub.2018.06.026 (2018).

680 **References**

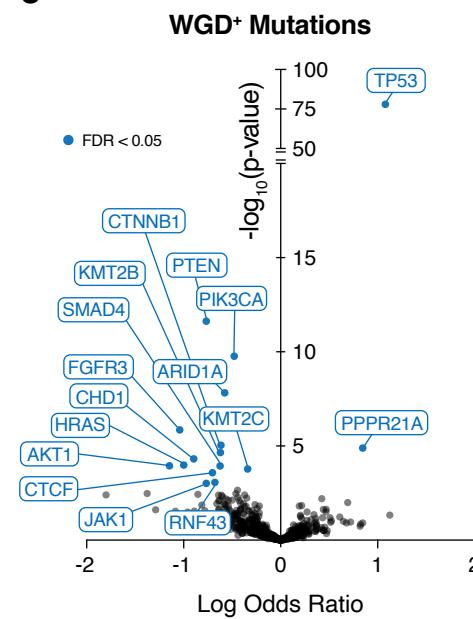

- 681
- 682
- 683 1 Lens, S. M. A. & Medema, R. H. Cytokinesis defects and cancer. *Nature Reviews Cancer*
684 **19**, 32-45, doi:10.1038/s41568-018-0084-6 (2019).
- 685 2 Ganem, N. J., Storchova, Z. & Pellman, D. Tetraploidy, aneuploidy and cancer. *Current*
686 *Opinion in Genetics & Development* **17**, 157-162,
687 doi:<https://doi.org/10.1016/j.gde.2007.02.011> (2007).
- 688 3 Davoli, T. & Lange, T. d. The Causes and Consequences of Polyploidy in Normal
689 Development and Cancer. *Annual Review of Cell and Developmental Biology* **27**, 585-
690 610, doi:10.1146/annurev-cellbio-092910-154234 (2011).
- 691 4 Davoli, T. & de Lange, T. Telomere-driven tetraploidization occurs in human cells
692 undergoing crisis and promotes transformation of mouse cells. *Cancer Cell* **21**, 765-776,
693 doi:10.1016/j.ccr.2012.03.044 (2012).
- 694 5 Fujiwara, T. *et al.* Cytokinesis failure generating tetraploids promotes tumorigenesis in
695 p53-null cells. *Nature* **437**, 1043, doi:10.1038/nature04217
<https://www.nature.com/articles/nature04217#supplementary-information> (2005).
- 696 6 Ganem, N. J., Godinho, S. A. & Pellman, D. A mechanism linking extra centrosomes to
697 chromosomal instability. *Nature* **460**, 278, doi:10.1038/nature08136
<https://www.nature.com/articles/nature08136#supplementary-information> (2009).
- 698 7 Silkworth, W. T., Nardi, I. K., Scholl, L. M. & Cimini, D. Multipolar Spindle Pole
699 Coalescence Is a Major Source of Kinetochore Mis-Attachment and Chromosome Mis-
700 Segregation in Cancer Cells. *PLOS ONE* **4**, e6564, doi:10.1371/journal.pone.0006564
701 (2009).
- 702 8 Thompson, D. A., Desai, M. M. & Murray, A. W. Ploidy Controls the Success of Mutators
703 and Nature of Mutations during Budding Yeast Evolution. *Current Biology* **16**, 1581-
704 1590, doi:<https://doi.org/10.1016/j.cub.2006.06.070> (2006).
- 705 9 Dewhurst, S. M. *et al.* Tolerance of Whole-Genome Doubling Propagates Chromosomal
706 Instability and Accelerates Cancer Genome Evolution. *Cancer Discovery* **4**, 175,
707 doi:10.1158/2159-8290.CD-13-0285 (2014).
- 708 10 López, S. *et al.* Interplay between whole-genome doubling and the accumulation of
709 deleterious alterations in cancer evolution. *Nature Genetics* **52**, 283-293,
710 doi:10.1038/s41588-020-0584-7 (2020).
- 711 11 Selmecki, A. M. *et al.* Polyploidy can drive rapid adaptation in yeast. *Nature* **519**, 349-
712 352, doi:10.1038/nature14187 (2015).
- 713 12 Bielski, C. M. *et al.* Genome doubling shapes the evolution and prognosis of advanced
714 cancers. *Nature Genetics*, doi:10.1038/s41588-018-0165-1 (2018).
- 715 13 Priestley, P. *et al.* Pan-cancer whole-genome analyses of metastatic solid tumours.
716 *Nature* **575**, 210-216, doi:10.1038/s41586-019-1689-y (2019).
- 717 14 Ganem, Neil J. *et al.* Cytokinesis Failure Triggers Hippo Tumor Suppressor Pathway
718 Activation. *Cell* **158**, 833-848, doi:<https://doi.org/10.1016/j.cell.2014.06.029> (2014).
- 719 15 Senovilla, L. *et al.* An Immunosurveillance Mechanism Controls Cancer Cell Ploidy.
720 *Science* **337**, 1678, doi:10.1126/science.1224922 (2012).
- 721
- 722

- 723 16 Andreassen, P. R., Lohez, O. D., Lacroix, F. B. & Margolis, R. L. Tetraploid State Induces
724 p53-dependent Arrest of Nontransformed Mammalian Cells in G1. *Molecular Biology of*
725 *the Cell* **12**, 1315-1328, doi:10.1091/mbc.12.5.1315 (2001).
- 726 17 Ben-David, U. & Amon, A. Context is everything: aneuploidy in cancer. *Nature Reviews*
727 *Genetics*, doi:10.1038/s41576-019-0171-x (2019).
- 728 18 Potapova, T. A., Seidel, C. W., Box, A. C., Rancati, G. & Li, R. Transcriptome analysis of
729 tetraploid cells identifies cyclin D2 as a facilitator of adaptation to genome doubling in
730 the presence of p53. *Molecular Biology of the Cell* **27**, 3065-3084, doi:10.1091/mbc.e16-
731 05-0268 (2016).
- 732 19 Crockford, A. *et al.* Cyclin D mediates tolerance of genome-doubling in cancers with
733 functional p53. *Annals of Oncology* **28**, 149-156, doi:10.1093/annonc/mdw612 (2016).
- 734 20 Storchová, Z. *et al.* Genome-wide genetic analysis of polyploidy in yeast. *Nature* **443**,
735 541-547, doi:10.1038/nature05178 (2006).
- 736 21 Lin, H. *et al.* Polyploids require Bik1 for kinetochore-microtubule attachment. *The*
737 *Journal of cell biology* **155**, 1173-1184, doi:10.1083/jcb.200108119 (2001).
- 738 22 Coward, J. & Harding, A. Size Does Matter: Why Polyploid Tumor Cells are Critical Drug
739 Targets in the War on Cancer. *Frontiers in Oncology* **4**, doi:10.3389/fonc.2014.00123
740 (2014).
- 741 23 Carter, S. L. *et al.* Absolute quantification of somatic DNA alterations in human cancer.
742 *Nature Biotechnology* **30**, 413, doi:10.1038/nbt.2203
<https://www.nature.com/articles/nbt.2203#supplementary-information> (2012).
- 743 24 Zack, T. I. *et al.* Pan-cancer patterns of somatic copy number alteration. *Nature Genetics*
744 **45**, 1134, doi:10.1038/ng.2760
<https://www.nature.com/articles/ng.2760#supplementary-information> (2013).
- 745 25 Shlien, A. *et al.* Combined hereditary and somatic mutations of replication error repair
746 genes result in rapid onset of ultra-hypermutated cancers. *Nature Genetics* **47**, 257-262,
747 doi:10.1038/ng.3202 (2015).
- 748 26 Ciriello, G. *et al.* Emerging landscape of oncogenic signatures across human cancers.
749 *Nature Genetics* **45**, 1127-1133, doi:10.1038/ng.2762 (2013).
- 750 27 Chalmers, Z. R. *et al.* Analysis of 100,000 human cancer genomes reveals the landscape
751 of tumor mutational burden. *Genome Medicine* **9**, 34, doi:10.1186/s13073-017-0424-2
752 (2017).
- 753 28 Antao, N. V., Marcet-Ortega, M., Cifani, P., Kentsis, A. & Foley, E. A. A Cancer-Associated
754 Missense Mutation in PP2A-A α Increases Centrosome Clustering during Mitosis. *iScience*
755 **19**, 74-82, doi:<https://doi.org/10.1016/j.isci.2019.07.018> (2019).
- 756 29 Thorsson, V. *et al.* The Immune Landscape of Cancer. *Immunity* **48**, 812-830.e814,
757 doi:<https://doi.org/10.1016/j.immuni.2018.03.023> (2018).
- 758 30 Aran, D., Hu, Z. & Butte, A. J. xCell: digitally portraying the tissue cellular heterogeneity
759 landscape. *Genome Biology* **18**, 220, doi:10.1186/s13059-017-1349-1 (2017).
- 760 31 Taylor, A. M. *et al.* Genomic and Functional Approaches to Understanding Cancer
761 Aneuploidy. *Cancer Cell* **33**, 676-689.e673, doi:10.1016/j.ccr.2018.03.007 (2018).
- 762 32 Davoli, T., Uno, H., Wooten, E. C. & Elledge, S. J. Tumor aneuploidy correlates with
763 markers of immune evasion and with reduced response to immunotherapy. *Science* **355**,
764 doi:10.1126/science.aaf8399 (2017).
- 765
- 766

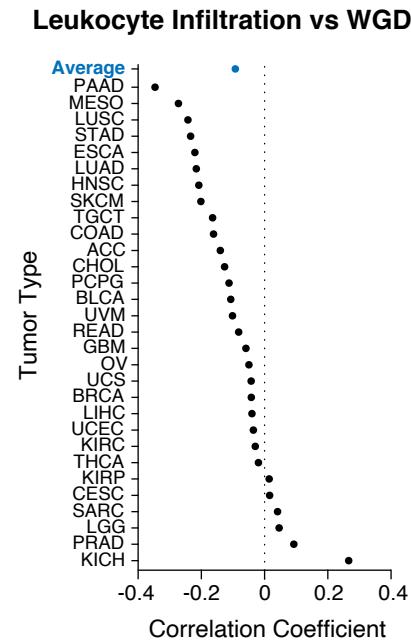
- 767 33 McFarland, J. M. *et al.* Improved estimation of cancer dependencies from large-scale
768 RNAi screens using model-based normalization and data integration. *Nature
769 Communications* **9**, 4610, doi:10.1038/s41467-018-06916-5 (2018).
- 770 34 Meyers, R. M. *et al.* Computational correction of copy number effect improves
771 specificity of CRISPR–Cas9 essentiality screens in cancer cells. *Nature Genetics* **49**, 1779,
772 doi:10.1038/ng.3984
773 <https://www.nature.com/articles/ng.3984#supplementary-information> (2017).
- 774 35 Broad, D. *DepMap Achilles 18Q3 Public.* (2018).
- 775 36 Godinho, S. A. *et al.* Oncogene-like induction of cellular invasion from centrosome
776 amplification. *Nature* **510**, 167-171, doi:10.1038/nature13277 (2014).
- 777 37 Musacchio, A. The Molecular Biology of Spindle Assembly Checkpoint Signaling
778 Dynamics. *Current Biology* **25**, R1002-R1018,
779 doi:<https://doi.org/10.1016/j.cub.2015.08.051> (2015).
- 780 38 Yang, Z., Lončarek, J., Khodjakov, A. & Rieder, C. L. Extra centrosomes and/or
781 chromosomes prolong mitosis in human cells. *Nature Cell Biology* **10**, 748-751,
782 doi:10.1038/ncb1738 (2008).
- 783 39 Mohamed Jemaa, G. M., Gwendaline Lledo, Delphine Lissa, Christelle Reynes, Nathalie
784 Morin, Frederic Chibon, Antonella Sistigu, Maria Castedo, Ilio Vitale, Guido Kroemer,
785 Ariane Abrieu. Whole-genome duplication increases tumor cell sensitivity to MPS1
786 inhibition. *Oncotarget*, 885-901 (2016).
- 787 40 Vitale, I. *et al.* Inhibition of Chk1 Kills Tetraploid Tumor Cells through a p53-Dependent
788 Pathway. *PLOS ONE* **2**, e1337, doi:10.1371/journal.pone.0001337 (2007).
- 789 41 Wangsa, D. *et al.* Near-tetraploid cancer cells show chromosome instability triggered by
790 replication stress and exhibit enhanced invasiveness. *The FASEB Journal* **32**, 3502-3517,
791 doi:10.1096/fj.201700247RR (2018).
- 792 42 Zheng, L. *et al.* Polyploid cells rewire DNA damage response networks to overcome
793 replication stress-induced barriers for tumour progression. *Nature Communications* **3**,
794 815, doi:10.1038/ncomms1825 (2012).
- 795 43 Jordheim, L. P., Sèvre, P., Trédan, O. & Dumontet, C. The ribonucleotide reductase large
796 subunit (RRM1) as a predictive factor in patients with cancer. *The Lancet Oncology* **12**,
797 693-702, doi:[https://doi.org/10.1016/S1470-2045\(10\)70244-8](https://doi.org/10.1016/S1470-2045(10)70244-8) (2011).
- 798 44 Santaguida, S. & Amon, A. Short- and long-term effects of chromosome mis-segregation
799 and aneuploidy. *Nature Reviews Molecular Cell Biology* **16**, 473-485,
800 doi:10.1038/nrm4025 (2015).
- 801 45 Stumpff, J., von Dassow, G., Wagenbach, M., Asbury, C. & Wordeman, L. The Kinesin-8
802 Motor Kif18A Suppresses Kinetochore Movements to Control Mitotic Chromosome
803 Alignment. *Developmental Cell* **14**, 252-262,
804 doi:<https://doi.org/10.1016/j.devcel.2007.11.014> (2008).
- 805 46 Stumpff, J., Wagenbach, M., Franck, A., Asbury, C. L. & Wordeman, L. Kif18A and
806 chromokinesins confine centromere movements via microtubule growth suppression
807 and spatial control of kinetochore tension. *Developmental cell* **22**, 1017-1029,
808 doi:10.1016/j.devcel.2012.02.013 (2012).


- 809 47 Fonseca, C. L. *et al.* Mitotic chromosome alignment ensures mitotic fidelity by
810 promoting interchromosomal compaction during anaphase. *The Journal of Cell Biology*
811 **218**, 1148, doi:10.1083/jcb.201807228 (2019).
- 812 48 Mayr, M. I. *et al.* The Human Kinesin Kif18A Is a Motile Microtubule Depolymerase
813 Essential for Chromosome Congression. *Current Biology* **17**, 488-498,
814 doi:10.1016/j.cub.2007.02.036 (2007).
- 815 49 Czechanski, A. *et al.* Kif18a is specifically required for mitotic progression during germ
816 line development. *Developmental Biology* **402**, 253-262,
817 doi:<https://doi.org/10.1016/j.ydbio.2015.03.011> (2015).
- 818 50 Reinholdt, L. G., Munroe, R. J., Kamdar, S. & Schimenti, J. C. The mouse gcd2 mutation
819 causes primordial germ cell depletion. *Mechanisms of Development* **123**, 559-569,
820 doi:<https://doi.org/10.1016/j.mod.2006.05.003> (2006).
- 821 51 Hatch, Emily M., Fischer, Andrew H., Deerinck, Thomas J. & Hetzer, Martin W.
822 Catastrophic Nuclear Envelope Collapse in Cancer Cell Micronuclei. *Cell* **154**, 47-60,
823 doi:10.1016/j.cell.2013.06.007 (2013).
- 824 52 Mackenzie, K. J. *et al.* cGAS surveillance of micronuclei links genome instability to innate
825 immunity. *Nature* **548**, 461-465, doi:10.1038/nature23449 (2017).
- 826 53 Harding, S. M. *et al.* Mitotic progression following DNA damage enables pattern
827 recognition within micronuclei. *Nature* **548**, 466-470, doi:10.1038/nature23470 (2017).
- 828 54 Zhang, C.-Z. *et al.* Chromothripsis from DNA damage in micronuclei. *Nature* **522**, 179,
829 doi:10.1038/nature14493
<https://www.nature.com/articles/nature14493#supplementary-information> (2015).
- 830 55 Janssen, L. M. E. *et al.* Loss of Kif18A Results in Spindle Assembly Checkpoint Activation
831 at Microtubule-Attached Kinetochores. *Current Biology* **28**, 2685-2696.e2684,
832 doi:10.1016/j.cub.2018.06.026 (2018).
- 833 56 Edzuka, T. & Goshima, G. Drosophila kinesin-8 stabilizes the kinetochore-microtubule
834 interaction. *The Journal of Cell Biology* **218**, 474-488, doi:10.1083/jcb.201807077 (2018).
- 835 57 Zhu, H. *et al.* Targeted deletion of Kif18a protects from colitis-associated colorectal
836 (CAC) tumors in mice through impairing Akt phosphorylation. *Biochemical and*
837 *Biophysical Research Communications* **438**, 97-102,
838 doi:<https://doi.org/10.1016/j.bbrc.2013.07.032> (2013).
- 839 58 Zhang, C. *et al.* Kif18A is involved in human breast carcinogenesis. *Carcinogenesis* **31**,
840 1676-1684, doi:10.1093/carcin/bgq134 (2010).
- 841
842

a



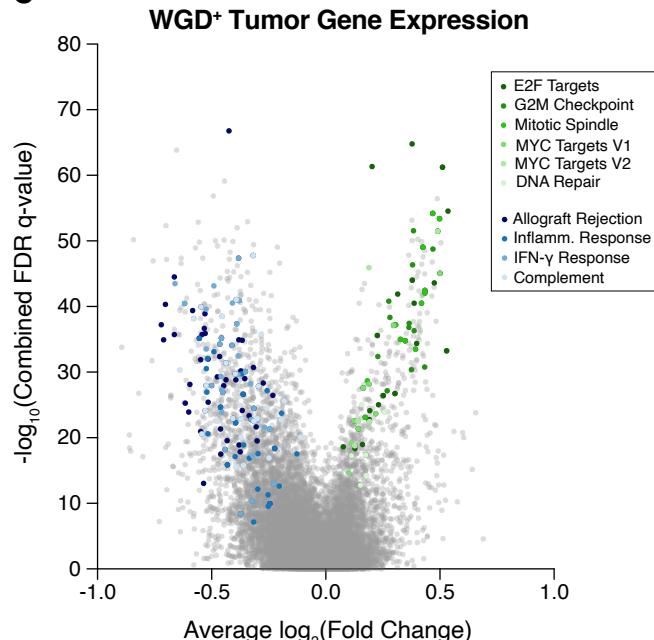
b

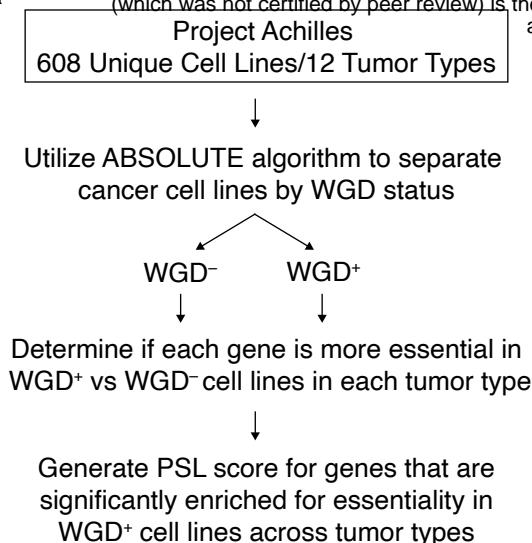

Ploidy-Corrected Mutational Burden

c

d

e



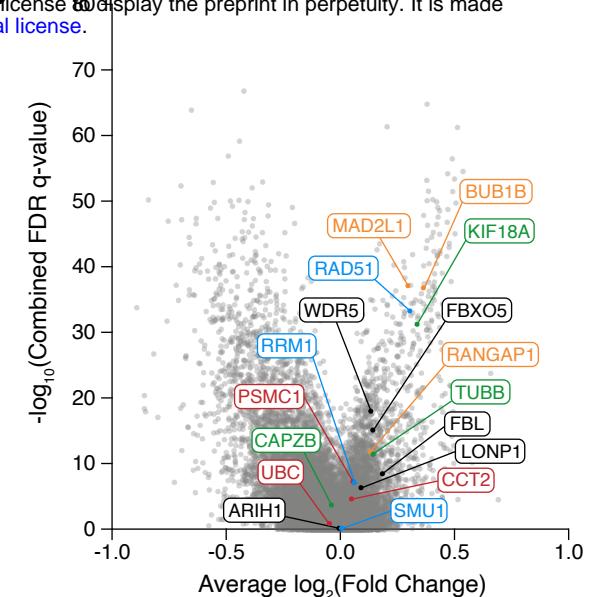

Figure 1. Genetic analysis of WGD⁺ tumors.

(a) Quantification of WGD status and total ploidy of 9,700 primary human tumor samples from the TCGA using ABSOLUTE. (b) Average ploidy-corrected mutational burden in indicated subtypes plotted against the difference in the ploidy-corrected mutational burden between WGD⁺ and WGD⁻ tumors within each subtype (Wilcoxon rank-sum test). (c) Enrichment of mutations in WGD⁺ tumors (logistic regression). (d) Correlation of leukocyte infiltration and WGD (Pearson's correlation). (e) Gene expression fold changes in WGD⁺ tumors relative to WGD⁻ tumors plotted against combined FDR values across all tumor types with select hits from most significantly enriched gene sets highlighted. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$.

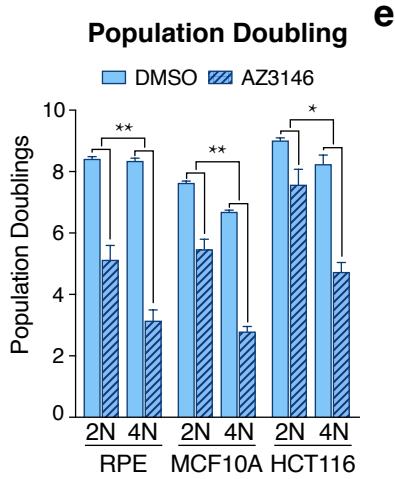
TCGA Study Abbreviations: **ACC**-Adrenocortical carcinoma; **BLCA**-Bladder Urothelial Carcinoma; **ESCA**-Esophageal carcinoma; **BRCA**-Breast invasive carcinoma; **CESC**-Cervical squamous cell carcinoma and endocervical adenocarcinoma; **CHOL**-Cholangiocarcinoma; **COAD**-Colon adenocarcinoma; **DLBC**-Lymphoid Neoplasm Diffuse Large B-cell Lymphoma; **GBM**-Glioblastoma multiforme; **HNSC**-Head and Neck squamous cell carcinoma; **KICH**-Kidney Chromophobe; **KIRC**-Kidney renal clear cell carcinoma; **KIRP**-Kidney renal papillary cell carcinoma; **LGG**-Brain Lower Grade Glioma; **LIHC**-Liver hepatocellular carcinoma; **LUAD**-Lung adenocarcinoma; **LUSC**-Lung squamous cell carcinoma; **MESO**-Mesothelioma; **OV**-Ovarian serous cystadenocarcinoma; **PAAD**-Pancreatic adenocarcinoma; **PCPG**-Pheochromocytoma and Paraganglioma; **PRAD**-Prostate adenocarcinoma; **READ**-Rectum adenocarcinoma; **SARC**-Sarcoma; **SKCM**-Skin Cutaneous Melanoma; **STAD**-Stomach adenocarcinoma; **TGCT**-Testicular Germ Cell Tumors; **THYM**-Thymoma; **THCA**-Thyroid carcinoma; **UCS**-Uterine Carcinosarcoma; **UCEC**-Uterine Corpus Endometrial Carcinoma; **UVM**-Uveal Melanoma

Figure 1

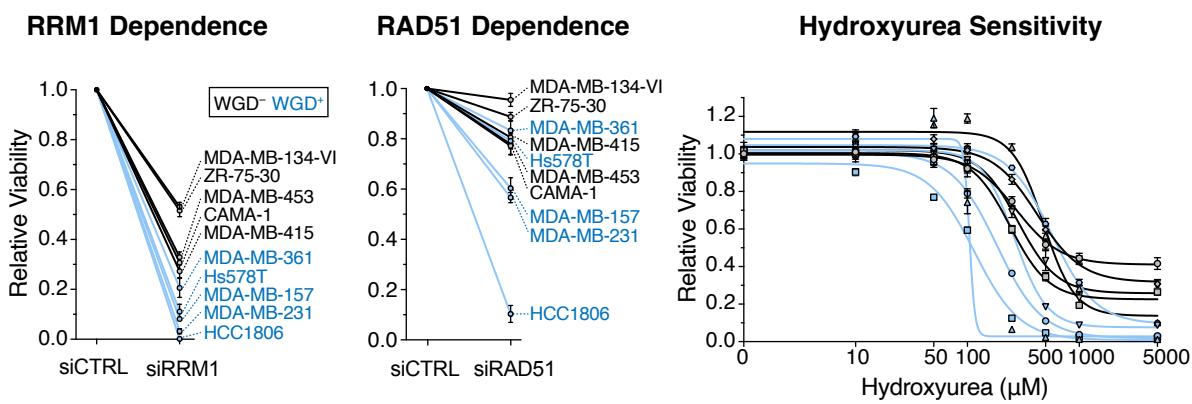
a

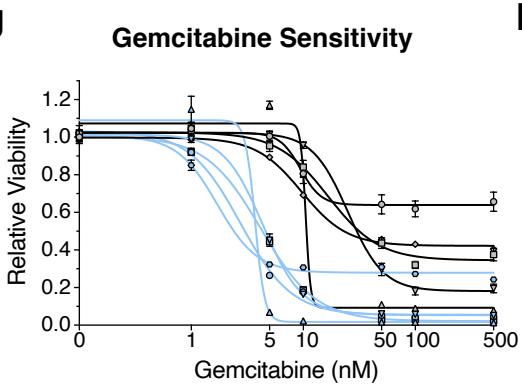


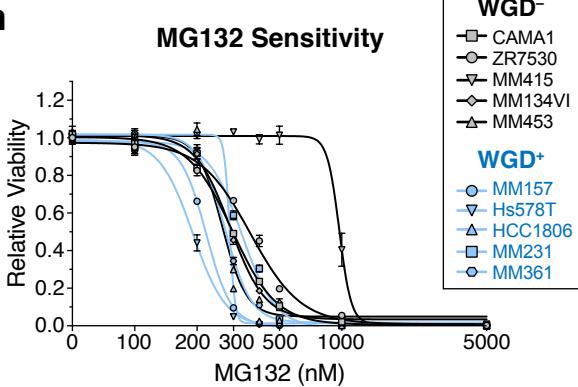
b

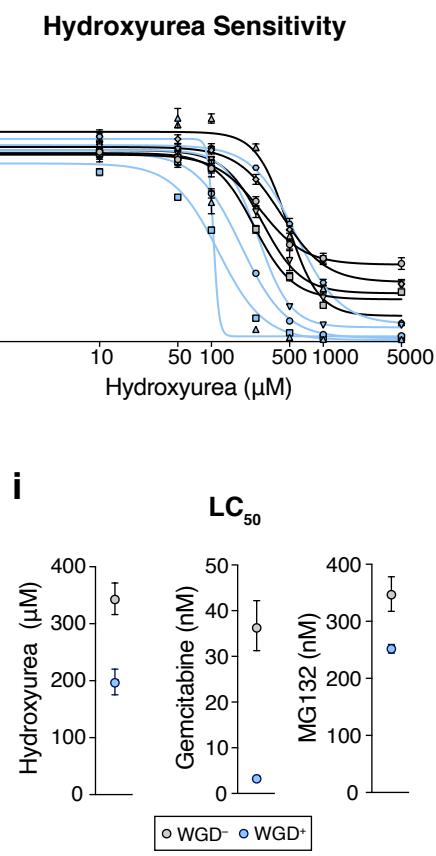

GENE	PSL	GENE	PSL
BUB1B	13	BUB3	5
MAD2L1	9	CDC23	5
UBC	8	DHDDS	5
CCT2	7	HNRNPM	5
ARIH1	6	MCM6	5
CAPZB	6	NHP2L1	5
FBL	6	NUP98	5
FBXO5	6	PLRG1	5
KIF18A	6	PRPF38A	5
LONP1	6	PSMA4	5
PSMC1	6	PSMB5	5
RANGAP1	6	PSMC3	5
SMU1	6	RAN	5
TUBB	6	TONSL	5
WDR5	6	SEC13	5
RAD51	5	RRM1	4

SAC Replication Proteasome
Mitosis/Spindle Assembly


c

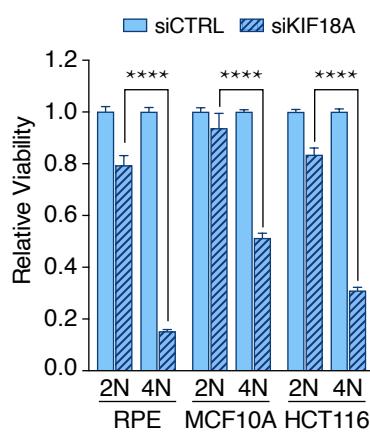

d


e


g

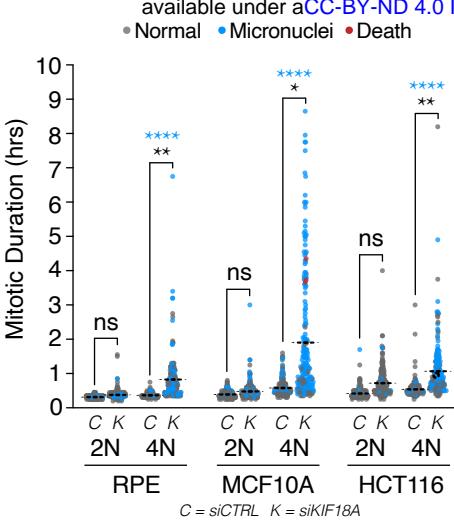
h

f

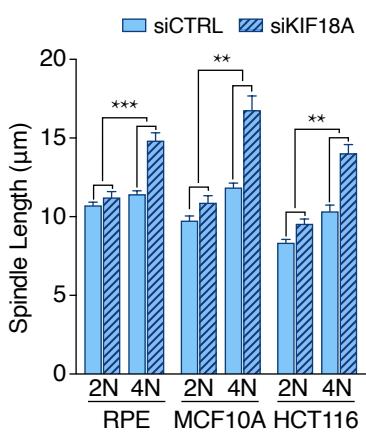

Figure 2. Identification and validation of PSL genes

(a) Workflow used to identify gene essentiality in WGD+ cancer cells from Project Achilles data (see methods). (b) Top hits from PSL analysis; text color indicates genes associated with indicated pathways. (c) Gene expression fold changes in WGD+ tumors relative to WGD- tumors plotted against combined FDR values across all tumor types with select PSL genes highlighted. (d) Population doublings after 8 days of AZ3146 treatment (two-way ANOVA with interaction; graph shows mean +/- SEM). (e) Relative viability of indicated cell lines 7 days after treatment with indicated siRNA (graph shows mean +/- SEM). (f-h) Dose-response curves for 5 WGD- (black) and 5 WGD+ (blue) breast cancer cell lines 7 days after indicated drug treatment at the indicated concentrations (nonlinear regression with variable slope; graph shows mean +/- SEM at each dose). (i) Composite LC₅₀ for 5 WGD- and 5 WGD+ breast cancer cell lines for indicated drug treatments (nonlinear regression; graphs show LC₅₀ +/- 95% CI). * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001

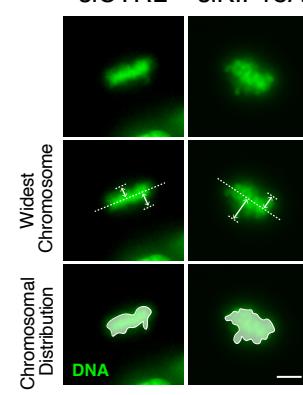
Figure 2


a

Cell Viability

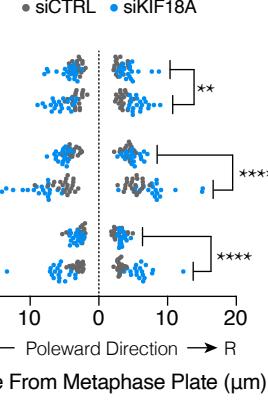

b

Mitotic Fate

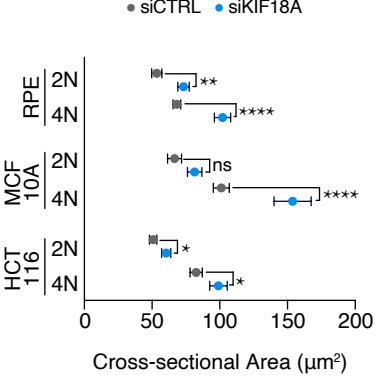


c

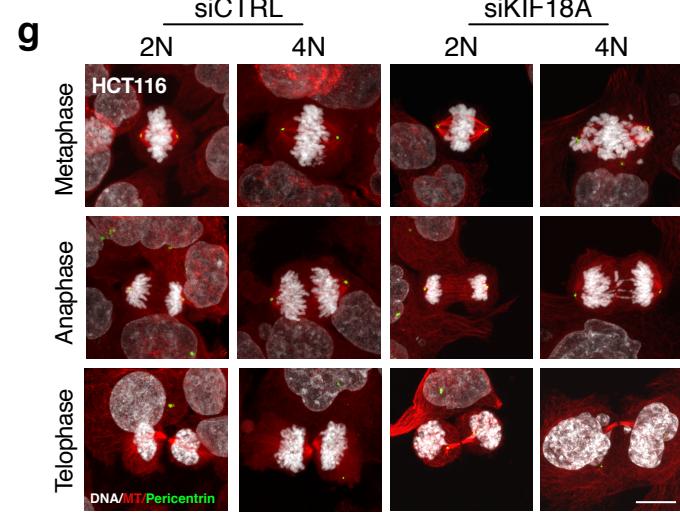
Spindle Length



d


e

Widest Chromosome

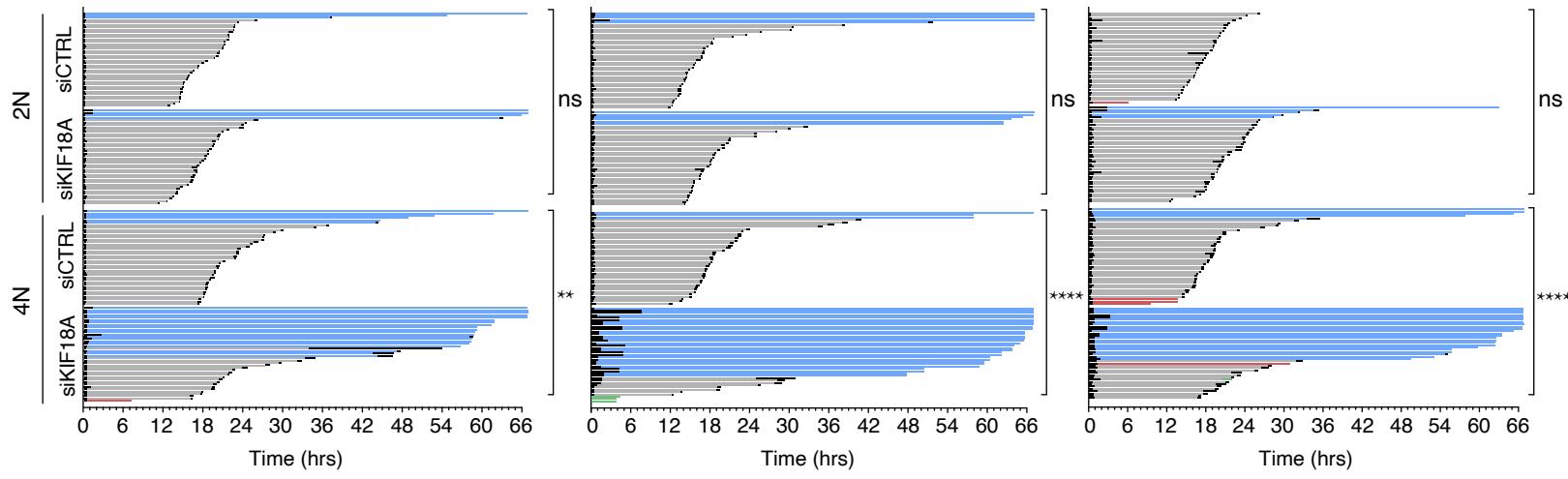


f

Chromosomal Distribution

g

Cell Fate Analysis


Legend: Mitosis (black), Interphase (grey), Arrest/Delay (blue), Death in Interphase (red), Death in Mitosis (green).

h

RPE

MCF10A

HCT116

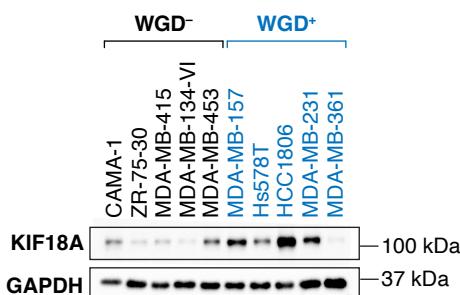


Figure 3. KIF18A depletion impairs the mitotic fidelity of WGD⁺ cells

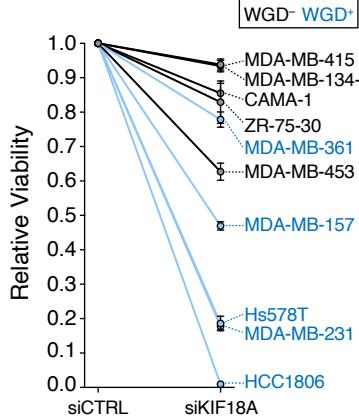
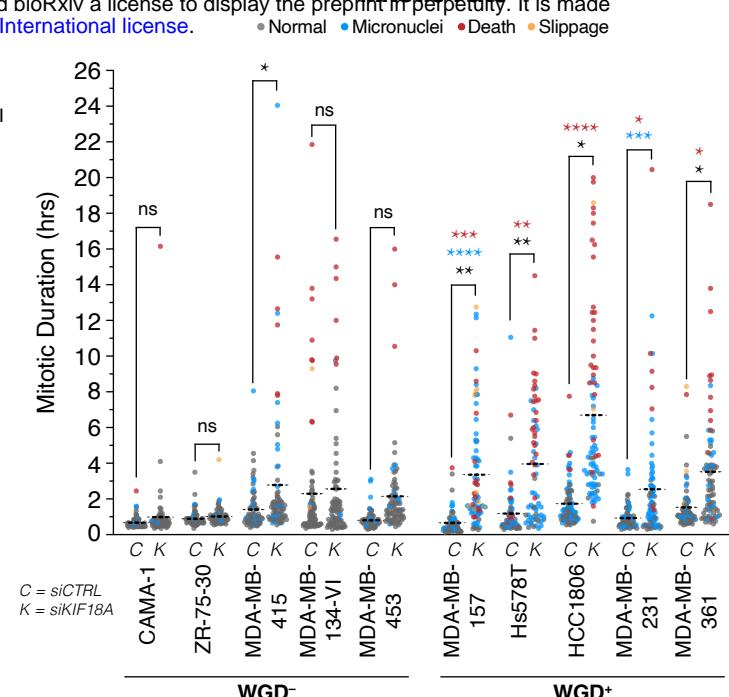
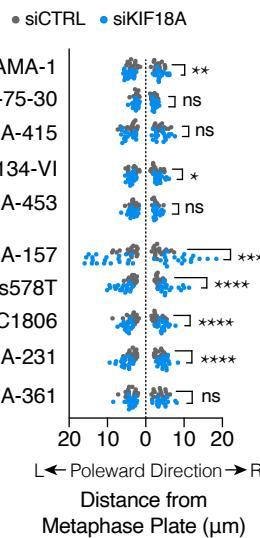

(a) Relative viability of indicated cell lines 8 days after transfection with the indicated siRNAs (each condition normalized to respective control; Student's unpaired t-test; graph shows mean +/- SEM). **(b)** Mitotic duration and fate after treatment with indicated siRNA (n = 200 cells per condition; black stars indicate p-value for Student's t-test comparing mean mitotic duration; blue stars indicate p-value for Fisher's exact test comparing the fraction of mitoses that give rise to micronuclei; dotted line represents mean mitotic duration). **(c)** Measurement of spindle length (centrosome-to-centrosome) after transfection with indicated siRNA (n = 20 cells per condition; two-way ANOVA with interaction; graph shows mean +/- SEM; scale bar 10 μm). **(d)** Image demonstrating how we measured chromosome oscillations immediately prior to anaphase by assessing the widest oscillating chromosomes in each poleward direction and the cross-sectional area of all the chromosomes. **(e)** Widest oscillating chromosome in each poleward direction immediately prior to anaphase (n = 20 cells per condition; two-way ANOVA with interaction). **(f)** Two-dimensional cross-sectional area of the entire body of chromosomes immediately prior to anaphase (n = 20 cells per condition; Student's unpaired t-test; graph shows mean +/- SEM). **(g)** Representative confocal images showing phases of mitosis in indicated cell lines 48 hours after transfection with indicated siRNA (scale bar 10 μm). **(h)** Cell fates of indicated cell lines tracked for 3 days beginning 18 hours after transfection with indicated siRNA (n = 40 cells per condition; Fisher's exact test comparing fraction of cells arresting/delaying in interphase relative to control group). * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001

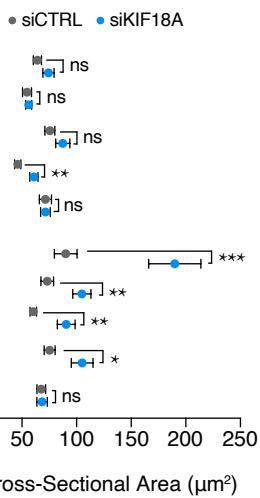
Figure 3


a

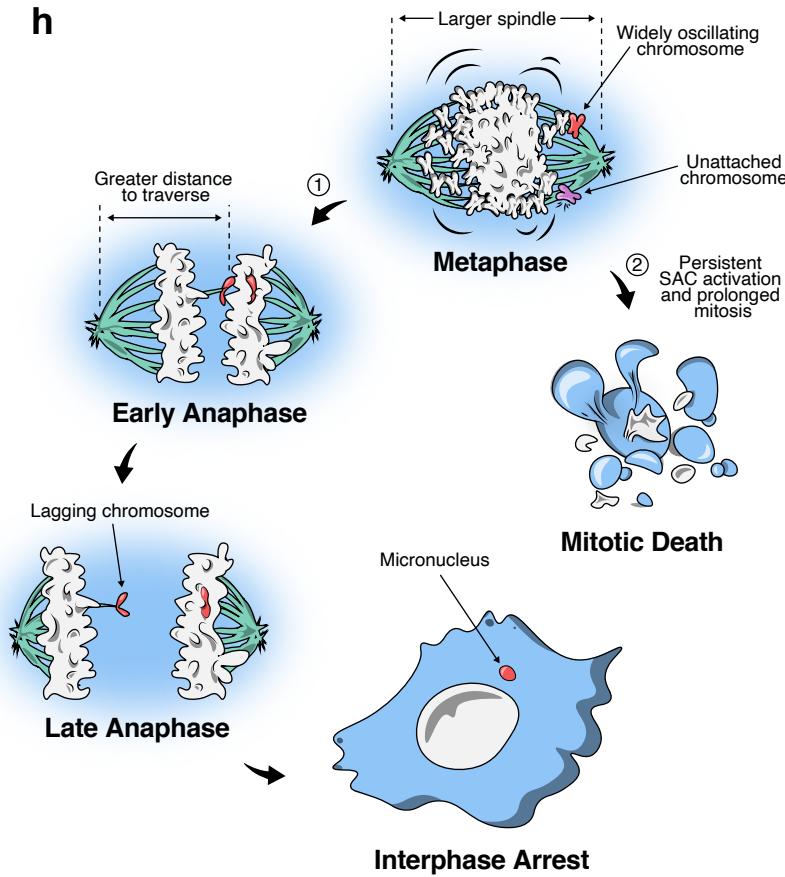
Cell Viability



Mitotic Fate

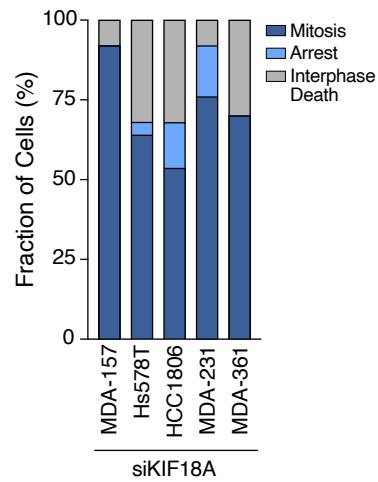

d

Widest Chromosome

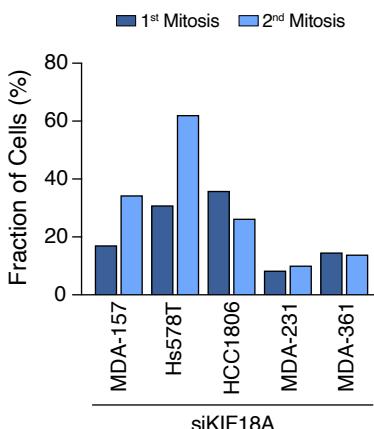


e

Chromosomal Distribution



h


f

WGD⁺ Cell Fate

g

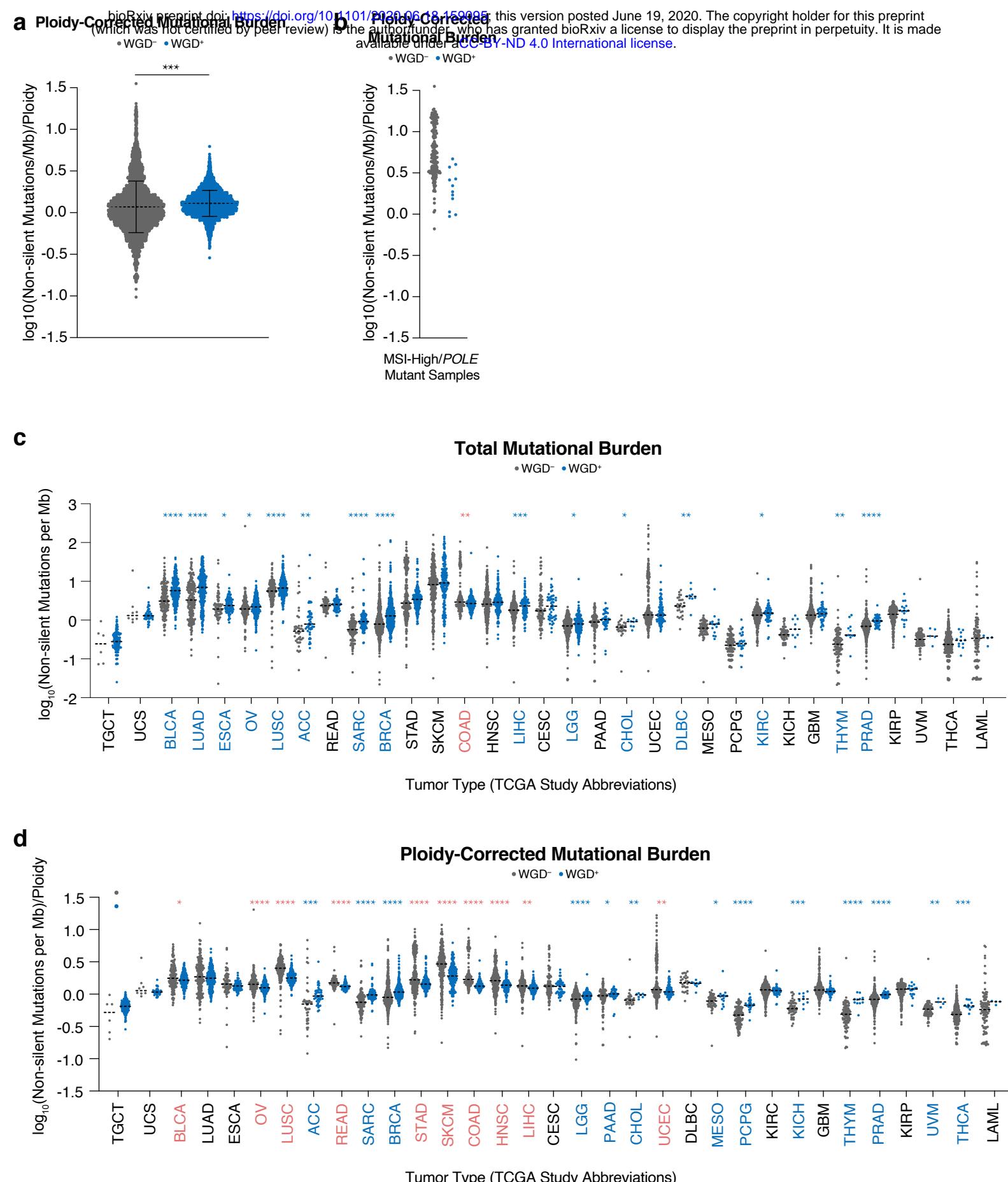
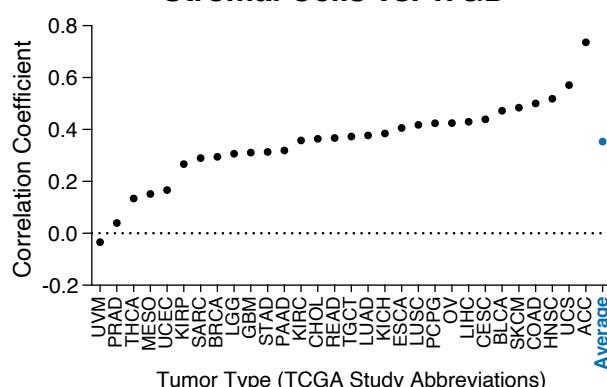

Mitotic Death

Figure 4. WGD confers dependence on KIF18A in a panel of breast cancer cell lines

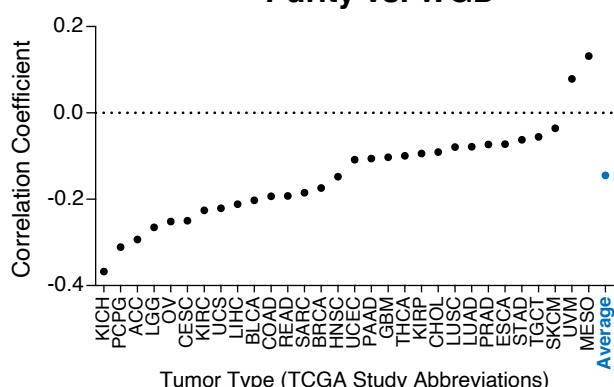
(a) Western blot showing endogenous KIF18A levels in indicated cell lines. (b) Relative viability of cell lines 8 days after transfection with the indicated siRNAs. (c) Mitotic duration and fate following transfection with indicated siRNA (dotted line represents mean mitotic duration; black stars indicate p-values for Student's unpaired t-test comparing mean mitotic duration; blue stars indicate p-values for Fisher's exact test comparing fraction of mitoses that give rise to micronuclei; red stars indicate p-values for Fisher's exact test comparing fraction of cell that die in mitosis; n = 80 cells per condition). (d) Widest oscillating chromosome in each poleward direction immediately prior to anaphase (n = 20 cells per condition; Student's unpaired t-test). (e) Two-dimensional cross-sectional area of the entire body of chromosomes immediately prior to anaphase (n = 20 cells per condition; Student's unpaired t-test; graph shows mean +/- SEM). (f) The fraction of cells in each cell line that undergo indicated fates after completing a mitosis deficient of KIF18A that resulted in micronuclei formation (n = 25 cells per condition). (g) The fraction of cells in each cell line that experience mitotic death in their first and second mitoses following KIF18A depletion (n = 25 cells per condition). (h) Depletion of KIF18A impairs WGD⁺ cell viability through two mechanisms: 1 - larger spindles and wider oscillations increase the distance some chromosomes must traverse in anaphase leading to lagging chromosomes, micronuclei formation, and cellular arrest. 2 - widely oscillating chromosomes fail to properly attach to microtubules, thus activating the spindle assembly checkpoint and leading to prolonged mitosis and death. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001

Figure 4

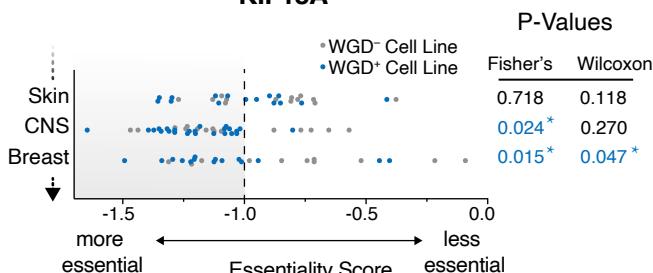


Extended Data Figure 1

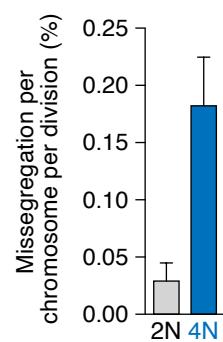
(a) Ploidy-corrected mutational burden in WGD⁺ and WGD⁻ samples in the TCGA (multi-variable linear regression; dotted line shows mean +/- SD). **(b)** Ploidy-corrected mutational burden of WGD⁺ and WGD⁻ samples in the TCGA with MSI/POLE mutations. **(c)** Total mutational burden in indicated TCGA samples (dotted lines show median; Wilcoxon rank-sum test: green stars indicate higher burden in WGD⁻ samples and blue stars indicate higher burden in WGD⁺ samples). **(d)** Ploidy-corrected mutational burden in indicated TCGA samples (dotted lines show median; Wilcoxon rank-sum test: red stars indicate higher burden in WGD⁻ samples and blue stars indicate higher burden in WGD⁺ samples). * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001


a

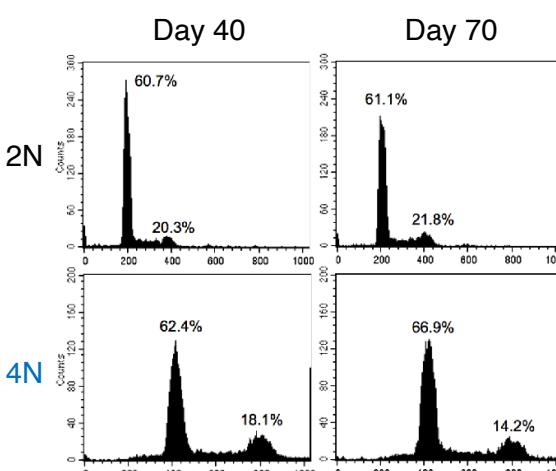
Stromal Cells vs. WGD


b

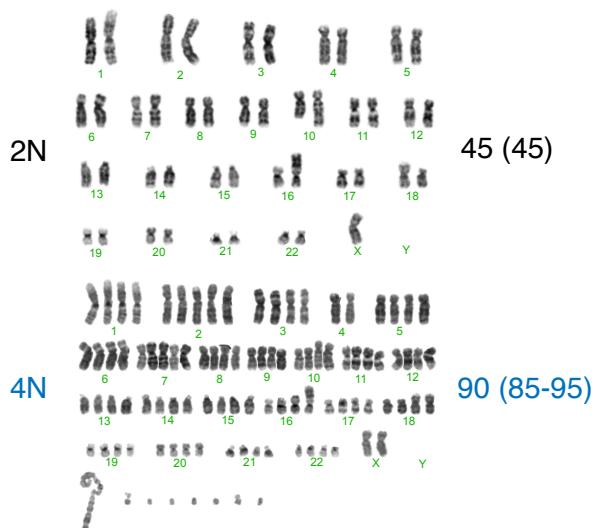
Purity vs. WGD


c

KIF18A


d

HCT116
Chromosome Misseggregation Rate

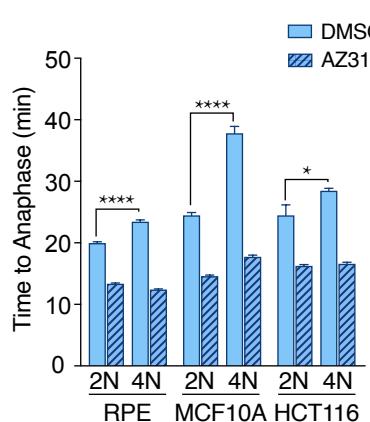

e

HCT116 FACS Profile

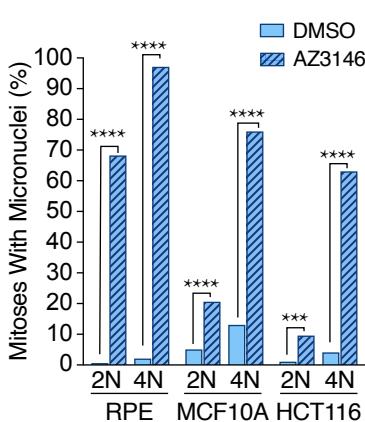
f

HCT116 Karyotype

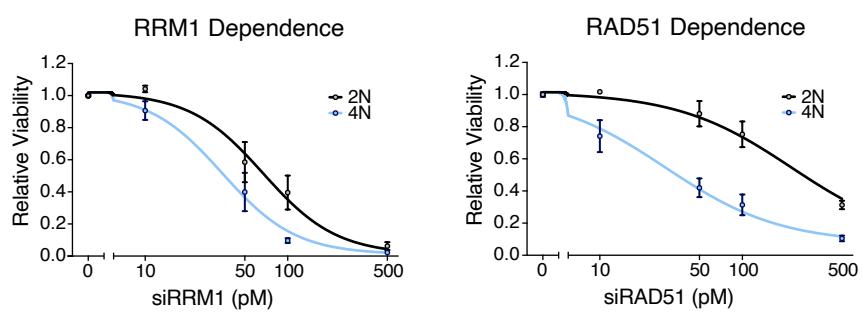
g

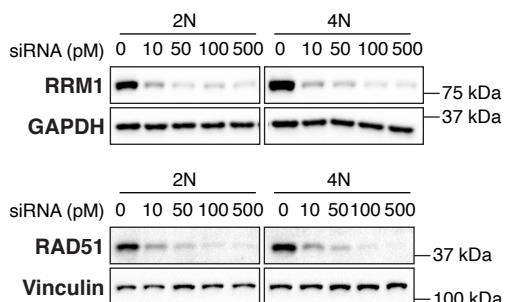

	RPE		MCF10A	
Cell Line	2N	4N	2N	4N
Misseggregation Rate	~0.02	~0.02	N/A	N/A
FACS Profile	Stable	Stable	Stable	Stable
Modal Chromosome No. (Range)	46 (45-47)	92 (91-92)	47 (40-48)	94 (79-107)
Reference	<i>Ganem et al., Nature 2009</i>		<i>Godinho et al., Nature 2014</i>	

Extended Data Figure 2

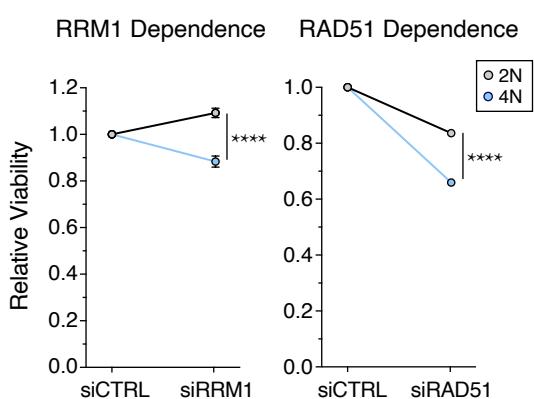

(a) Correlation of stromal cell fraction and WGD (Pearson's correlation). **(b)** Correlation of purity and WGD (Pearson's correlation). **(c)** Illustration of our ploidy-specific lethal (PSL) analysis using gene essentiality scores for KIF18A across cell lines in three tumor types in the Project Achilles CRISPR dataset. Starred p-values in blue represent instances where the cutoff for enrichment in WGD+ cell lines was met in either our thresholded (Fisher's exact) or non-thresholded (Wilcoxon) analyses (see methods). **(d)** HCT116 chromosome misseggregation rate (graph shows mean +/- SD). **(e)** DNA FACS profile of diploid and tetraploid HCT116 cells at 40 and 70 days of culture. **(f)** Karyotype of diploid and tetraploid HCT-116 cells with modal chromosome number and range (n = 20 karyotypes analyzed per condition). **(g)** Previously published data demonstrating the stability of isogenic diploid and tetraploid RPE and MCF10A cell lines.

Extended Data Figure 2

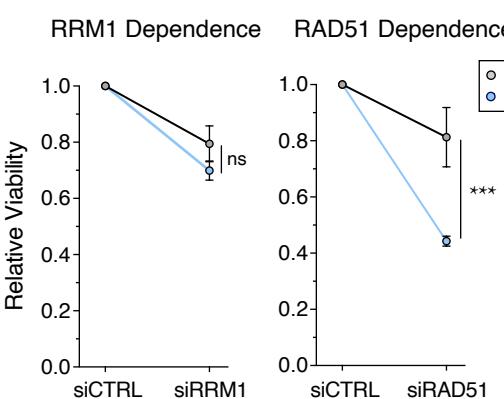

a


b

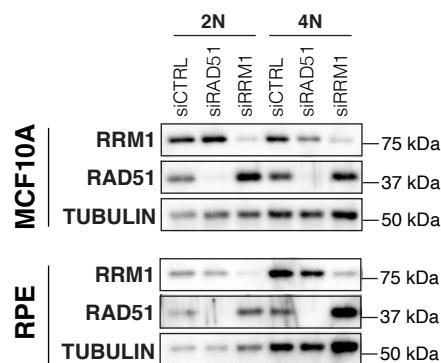
c



HCT116

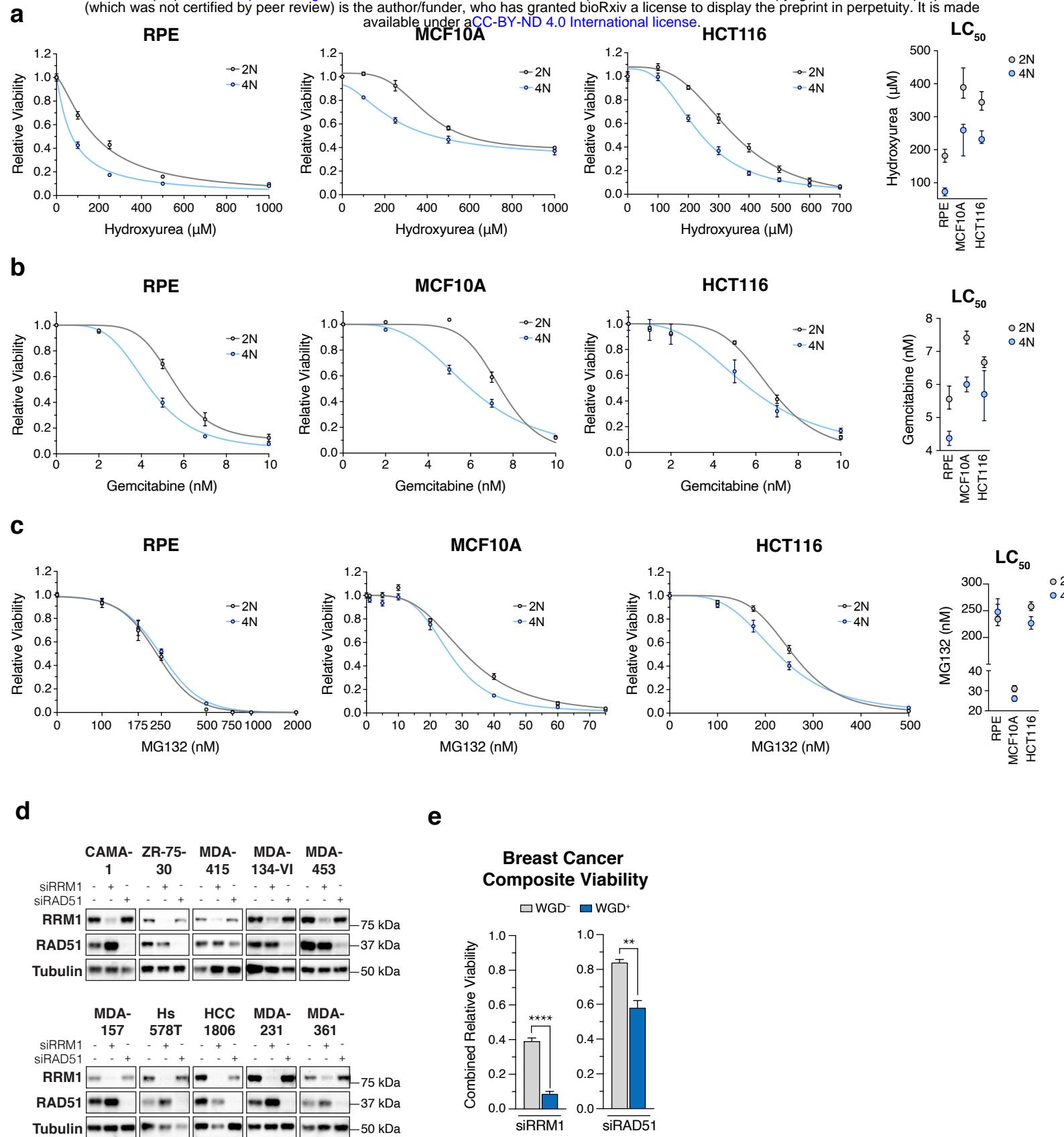

d

MCF10A

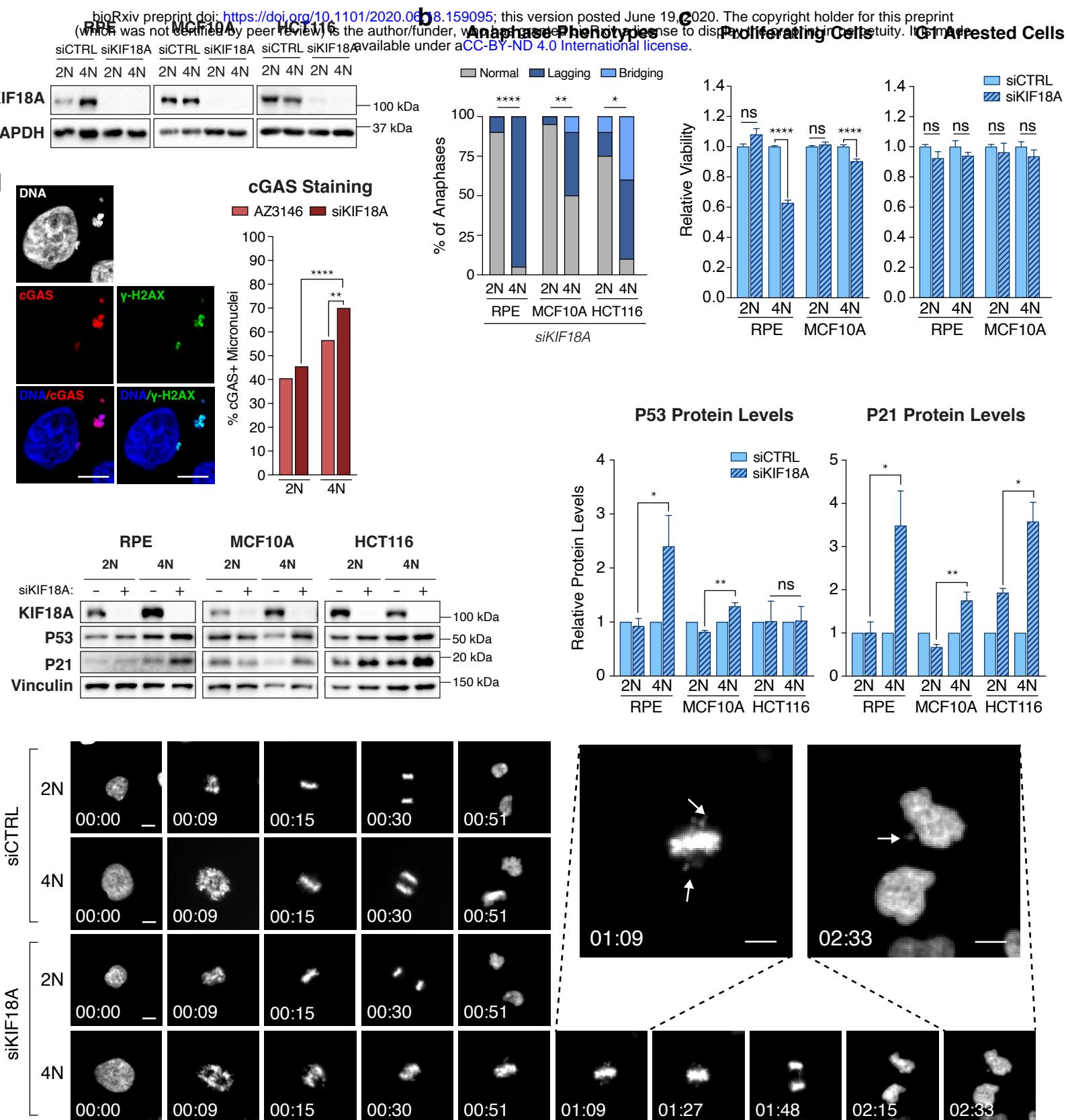


e

RPE

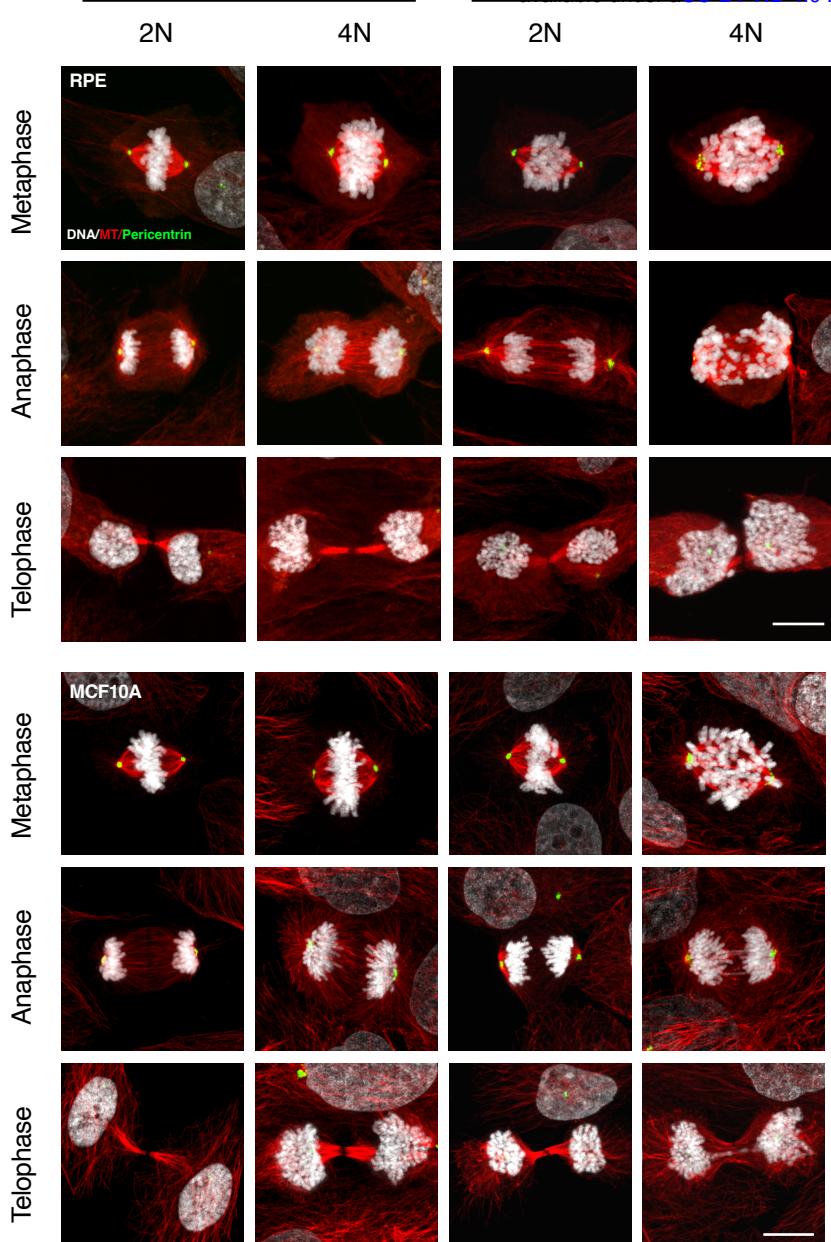

f

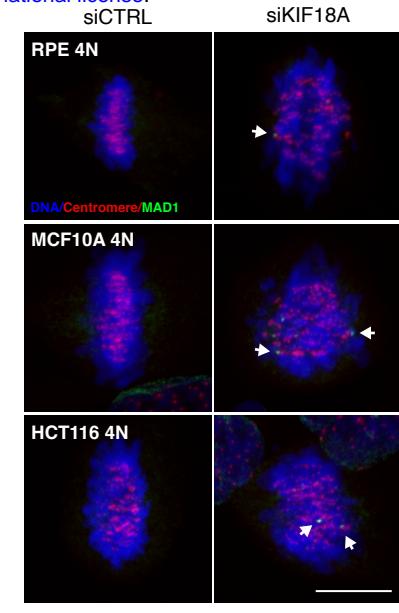
Extended Data Figure 3


(a) Mitotic duration of indicated cells following indicated treatments ($n = 200$ cells; Student's unpaired t-test; graph shows mean \pm SEM). **(b)** The fraction of mitoses that generate micronuclei following indicated treatments ($n = 200$ cells; Student's unpaired t-test). **(c)** Relative viability of 2N and 4N HCT116 cells 7 days after treatment with indicated siRNA at indicated concentrations with Western blot showing protein knockdown 48 hours after treatment with siRNA (graph shows mean \pm SEM at each dose). **(d)** Relative viability of 2N and 4N MCF10A cells 7 days after treatment with indicated siRNA at 50 pM concentration (Student's unpaired one-tailed t-test; graph shows mean \pm SEM). **(e)** Relative viability of 2N and 4N RPE cells 5 days after treatment with indicated siRNA at 50 pM concentration (Student's unpaired one-tailed t-test; graph shows mean \pm SEM). **(f)** Western blot showing knockdown of indicated proteins 48 hours after treatment with indicated siRNA.

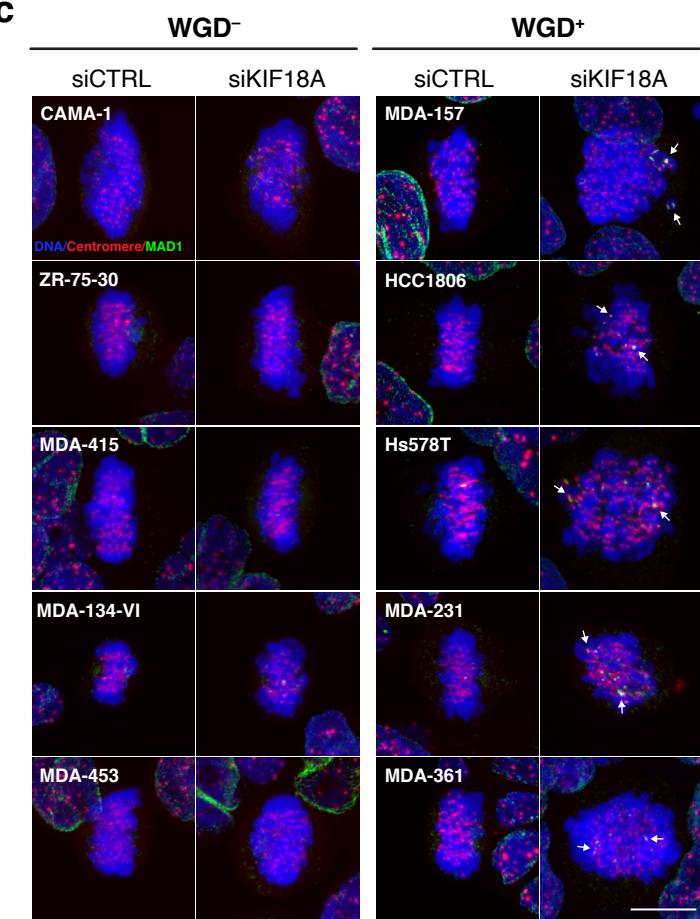
Extended Data Figure 3

Extended Data Figure 4

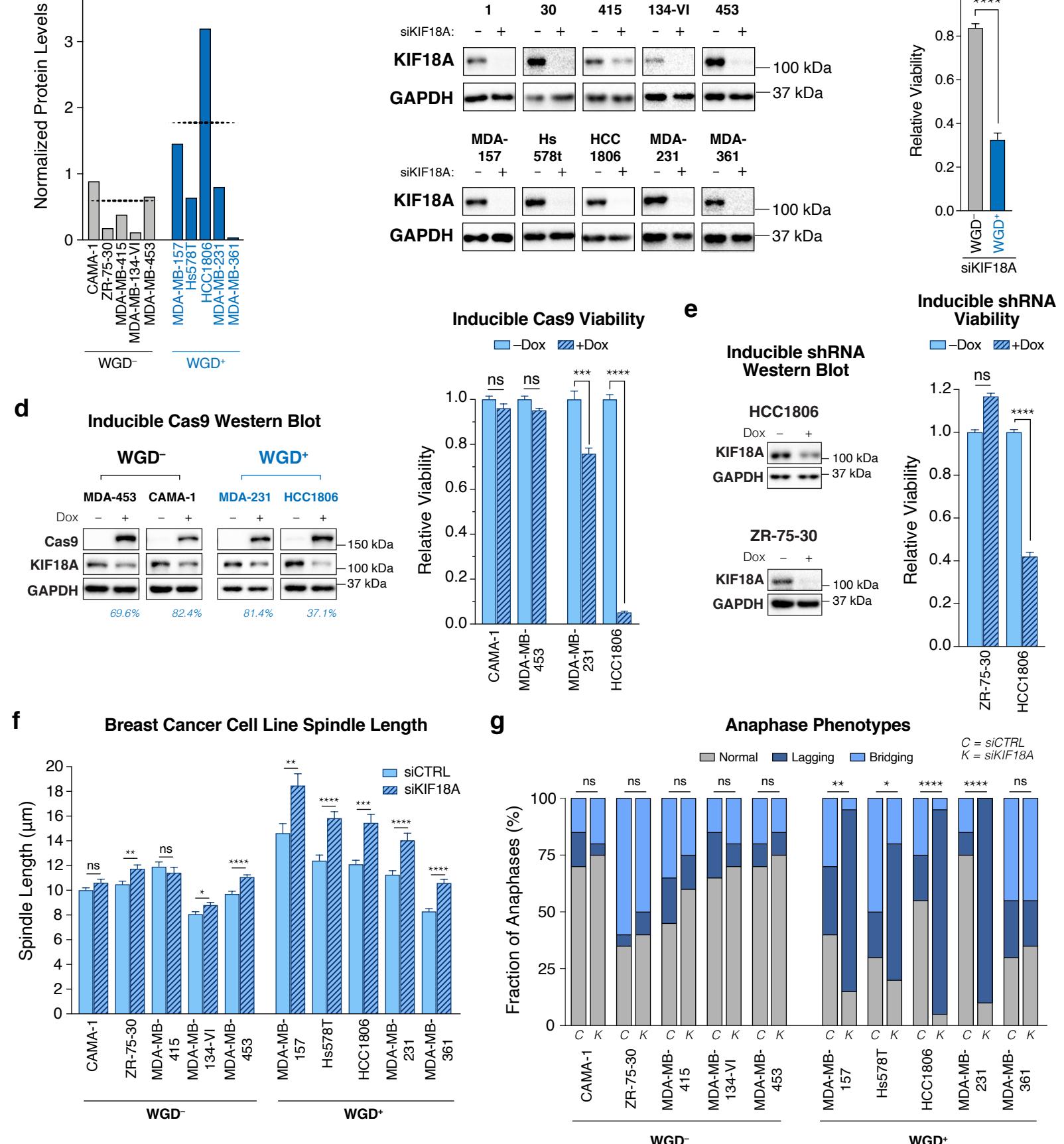

(a-c) Dose-response to indicated treatment after 7 days in indicated cell lines with accompanying LC50 (nonlinear regression with variable slope; graph shows mean +/- 95% CI). **(d)** Western blot showing knockdown of indicated proteins in breast cancer cell lines 48 hours after treatment with indicated siRNA. **(e)** Composite viability score of WGD⁺ and WGD⁻ breast cancer cell lines 7 days after treatment with indicated siRNA (Student's unpaired t-test; graph shows mean +/- SEM). * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001


Extended Data Figure 5

(a) Western blot showing KIF18A levels following transfection with the indicated siRNAs in the indicated cell lines. **(b)** Anaphase phenotypes following depletion of KIF18A (n = 20 cells per condition; stars indicate p-value for Fisher's exact test comparing the fraction of anaphases with lagging chromosomes). **(c)** Relative viability of indicated cell lines 4 days after transfection with the indicated siRNA (Student's unpaired t-test; graph shows mean +/- SEM). **(d)** Representative image of a 4N MCF10A cell 4 days after transfection with siKIF18A and stained for cGAS. Graph shows the fraction of micronuclei in 2N and 4N MCF10A cells with indicated treatment that stained positive for cGAS (n = 200 micronuclei per condition; Fisher's exact test; scale bar 10 μ m). **(e)** Representative Western blot of indicated protein levels after treatment with indicated siRNA and accompanying graphs showing relative protein levels normalized to loading control (Student's unpaired one-tailed t-test; graph shows means +/- SEM). **(f)** Representative still images from 2N and 4N MCF10A cells progressing through mitosis after transfection with the indicated siRNAs. H2B-GFP labeled chromosomes are shown in white. Arrows in enlarged images show oscillating chromosomes during metaphase and the generation of a micronucleus (hrs: min; scale bar 10 μ m). * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001


a

b


c

Extended Data Figure 6

(a) Representative confocal images showing phases of mitosis in indicated cell lines 48 hours after transfection with indicated siRNA (scale bar 10 μ m).
 (b-c) Representative confocal images of indicated cell lines 48 hours after transfection with indicated siRNA. Arrows highlight MAD1 positive kinetochores in misaligned chromosomes (scale bar 10 μ m).

Extended Data Figure 6

Extended Data Figure 7

(a) Normalized KIF18A protein levels in indicated cell lines (dotted line represents mean). **(b)** Western blot showing KIF18A levels 48 hours after transfection with indicated siRNA. **(c)** Average viability of WGD+ and WGD- breast cancer cell lines 7 days after transfection with indicated siRNA (Student's unpaired t-test). **(d)** Relative viability 7 days after induction of Cas9 in cells with sgRNA targeting KIF18A with Western blot showing protein depletion 72 hours after induction (blue numbers represent the percent of protein remaining relative to controls; graph shows mean +/- SEM; Student's unpaired t-test). **(e)** Relative viability 7 days after induction of shRNA targeting KIF18A with Western blot showing protein depletion 120 hours after induction (graph shows mean +/- SEM; Student's unpaired one-tailed t-test). **(f)** Measurement of spindle length (centrosome-to-centrosome) after transfection with indicated siRNA (n = 20 cells per condition; Student's unpaired t-test; graph shows mean +/- SEM). **(g)** Anaphase phenotypes following depletion of KIF18A (n = 20 cells per condition; stars indicate p-value for Fisher's exact test comparing the fraction of anaphases with lagging chromosomes). * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001