

1 Running head: The *Magnolia* genome

2

3 **The genome assembly and annotation of *Magnolia biondii* Pamp., a**
4 **phylogenetically, economically, and medicinally important ornamental tree**
5 **species**

6 Shanshan Dong^{1,†}, Min Liu^{2,†}, Yang Liu^{1,2}, Fei Chen³, Ting Yang², Lu Chen¹, Xingtan
7 Zhang⁴, Xing Guo², Dongming Fang², Linzhou Li², Tian Deng¹, Zhangxiu Yao¹,
8 Xiaoan Lang¹, Yiqing Gong¹, Ernest Wu⁵, Yaling Wang⁶, Yamei Shen⁷, Xun Gong⁸,
9 Huan Liu^{2,9,*}, Shouzhou Zhang^{1,*}

10

11 ¹Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden,
12 Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, China

13 ²State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083,
14 China

15 ³Nanjing Forestry University, Nanjing 210037, China

16 ⁴Fujian Agriculture and Forestry University, Fuzhou 350000, China

17 ⁵University of British Columbia, Vancouver, Canada.

18 ⁶Xi'an Botanical Garden, Xi'an 710061, China

19 ⁷Zhejiang Agriculture and Forestry University, Hangzhou 311300, China

20 ⁸Kunming Botanical Garden, Chinese Academy of Sciences, Kunming 650201, China

21 ⁹Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark

22 *Correspondence. Shouzhou Zhang (shouzhouz@126.com) or Huan Liu
23 (liuhuan@genomics.cn).

24 [†]These authors contributed equally to this work and should be considered co-first
25 authors: Shanshan Dong, Min Liu.

26 **Abstract**

27 *Magnolia biondii* Pamp. (Magnoliaceae, magnoliids) is a phylogenetically,
28 economically, and medicinally important ornamental tree species widely grown and
29 cultivated in the north-temperate regions of China. Contributing a genome sequence
30 for *M. biondii* will help resolve phylogenetic uncertainty of magnoliids and further
31 understand individual trait evolution in *Magnolia*. We assembled a chromosome-level
32 reference genome of *M. biondii* using ~67, ~175, and ~154 Gb of raw DNA
33 sequences generated by Pacific Biosciences Single-molecule Real-time sequencing,
34 10X genomics Chromium, and Hi-C scaffolding strategies, respectively. The final
35 genome assembly was 2.22 Gb with a contig N50 of 269.11 Kb and a BUSCO
36 complete gene ratio of 91.90%. About 89.17% of the genome length was organized to
37 19 chromosomes, resulting in a scaffold N50 of 92.86 Mb. The genome contained
38 48,319 protein-coding genes, accounting for 22.97% of the genome length, in contrast
39 to 66.48% of the genome length for the repetitive elements. We confirmed a
40 Magnoliaceae specific WGD event that might have probably occurred shortly after
41 the split of Magnoliaceae and Annonaceae. Functional enrichment of the *Magnolia*
42 specific and expanded gene families highlighted genes involved in biosynthesis of
43 secondary metabolites, plant-pathogen interaction, and response to stimulus, which
44 may improve ecological fitness and biological adaptability of the lineage.
45 Phylogenomic analyses recovered a sister relationship of magnoliids and
46 Chloranthaceae, which are sister to a clade comprising monocots and eudicots. The
47 genome sequence of *M. biondii* could empower trait improvement, germplasm
48 conservation, and evolutionary studies on rapid radiation of early angiosperms.
49 **Keywords:** *Magnolia biondii*; PacBio sequencing; 10X Genomics Chromium; Hi-C
50 scaffolding; Genome assembly; Whole genome replication (WGD);

51 **Introduction**

52 The family Magnoliaceae Juss., with over 300 species¹ worldwide, comprises two
53 genera, *Liriodendron* L. with only two species, and *Magnolia* L. with the rest of them².
54 About 80% of all extant Magnoliaceae species are distributed in the temperate and
55 tropical regions of Southeast Asia, and the remainder in Americas, from temperate
56 southeast North America through Central America to Brazil³, forming disjunct
57 distribution patterns⁴.

58 *Magnolia* lies within magnoliids, one of the earliest assemblages of angiosperms,
59 and occupies a pivotal position in the phylogeny of angiosperms⁵. After early
60 divergences of angiosperms (Amborellales, Austrobaileyales, and Nymphaeales), the
61 rapid radiation of five lineages of mesangiosperms (magnoliids, Chloranthaceae,
62 *Ceratoplyllum*, monocots, and eudicots) occurred within a very short time frame of <
63 5 MYA⁶, leading to unresolved/controversial phylogenetic relationships among some
64 lineages of mesangiosperms⁵. To date, of the 323 genome sequences available for
65 angiosperm species⁷, mostly of plants of agronomic value, only five genomes are
66 available for magnoliids, including black pepper⁸, avocado⁹, soursop¹⁰, stout camphor
67 tree¹¹, and *Liriodendron chinense*¹². Phylogenomic analyses based on these genome
68 data have led to controversial taxonomic placements of magnoliids. Specifically,
69 magnoliids are resolved as the sister to eudicots with relatively strong support¹¹,
70 which is consistent with the result of the phylotranscriptomic analysis of the 92
71 streptophytes¹³ and of 20 representative angiosperms¹⁴. Alternatively, magnoliids are
72 resolved as the sister to eudicots and monocots with weak support^{8-10,12}, which is
73 congruent with large-scale plastome phylogenomic analysis of land plants,
74 Viridiplantae, and angiosperms¹⁵⁻¹⁷. As phylogenetic inferences rely heavily on the
75 sampling of lineages and genes, as well as analytical methods⁵, this controversial

76 taxonomic placements of magnoliids relative to monocots and eudicots need to be
77 further examined with more genome data from magnoliids.

78 *Magnolia* species are usually cross-pollinated with precocious pistils, resulting in
79 a very short pollination period. Many species of the genus have relatively low rates of
80 pollen and seed germination¹⁸ as well as low production of fruits and seeds, which
81 leads to difficult natural population regeneration in the wild¹⁹⁻²¹. Exacerbated by
82 native habitat loss due to logging and agriculture, about 48% of all *Magnolia* species
83 are threatened in the wild¹. Conservation of the germplasm resources of *Magnolia*,
84 has many economical and ecological values. Most of the *Magnolia* species are
85 excellent ornamental tree species²² due to their gorgeous flowers with sweet
86 fragrances and erect tree shape with graceful foliage, such as *M. denudata*, *M.*
87 *liliiflora* and *M. grandiflora*. *Magnolia* species also contain a rich array of terpenoids
88 in their flowers²³, and have considerable varieties of phenolic compounds in their
89 bark²⁴. Many *Magnolia* species, such as *M. officinalis*, *M. biondii*, *M. denudata*, and
90 *M. sprengeri* have been cultivated for medicinal and cosmetic purposes²⁵. However,
91 the lack of a high-quality reference genome assembly in *Magnolia* hampers current
92 conservation and utilization efforts. The genome sequences of *Magnolia*, could
93 greatly aid molecular breeding, germplasm conservation, and scientific research of the
94 genus.

95 One *Magnolia* species that is cultivated for ornamental, pharmaceutical, and
96 timber purposes is *Magnolia biondii* Pamp. (Magnoliaceae, magnoliids). *M. biondii* is
97 a deciduous tree species widely grown and cultivated in the north-temperate regions
98 of China. Its flowers are showy and fragrant and can be used to extract essential oils.
99 The chemical extracts of the flower buds are used for local stimulation and anesthesia,
100 anti-inflammatory, antimicrobial, analgesic, blood pressure-decreasing, and

101 anti-allergic effects²⁵. Modern phytochemical studies have characterized the chemical
102 constituents of the volatile oil²⁶, lignans²⁷, and alkaloids²⁸ from different parts of the *M.*
103 *biondii* plant. The volatile oils contain a rich array of terpenoids, among which, the
104 main ingredients are 1,8-cineole, β -pinene, α -terpineol, and camphor²⁵. These
105 terpenoids are synthesized by the terpene synthase (TPS) that belongs to the TPS gene
106 family. In this study, we sequenced and assembled the reference genome of *M. biondii*
107 using the Pacbio long reads, 10X Genomics Chromium, and Hi-C scaffolding
108 strategies. The ~2.22 Gb genome sequence of *M. biondii* represented the largest
109 genome assembled to date in the early-diverging magnoliids. This genome will
110 support future studies on floral evolution and biosynthesis of the primary and
111 secondary metabolites unique to the species, and will be an essential resource for
112 understanding rapid changes that took place at the backbone phylogeny of the
113 angiosperms. Finally, it could further genome-assisted improvement for cultivation
114 and conservation efforts of *Magnolia*.

115

116 **Materials and Methods**

117 **Plant materials, DNA extractions, and sequencing**

118 Fresh leaves and flower materials from three development stages were collected
119 from a 21-year old *M. biondii* tree (a cultivated variety) planted in the Xi'an Botanical
120 Garden, Xi'an, China. The specimen (voucher number: Zhang 201801M) has been
121 deposited in the Herbarium of Fairy Lake Botanical Garden, Shenzhen, China. Total
122 genomic DNA was extracted from fresh young leaves of *M. biondii* using modified
123 cetyltrimethylammonium bromide (CTAB) method²⁹. The quality and quantity of the
124 DNA samples were evaluated using a NanoDropTM One UV-Vis spectrophotometer
125 (Thermo Fisher Scientific, USA) and a Qubit[®] 3.0 Fluorometer (Thermo Fisher

126 Scientific, USA). Three different approaches were used in genomic DNA sequencing
127 at BGI-Shenzhen (BGI Co. Ltd., Shenzhen, China) (**Supplementary Table S1**). First,
128 high molecular weight genomic DNA was prepared for 10X Genomics libraries with
129 insert sizes of 350–500 bp according to the manufacturer’s protocol (Chromium
130 Genome Chip Kit v1, PN-120229, 10X Genomics, Pleasanton, USA). The barcoded
131 library was sequenced on a BGISEQ-500 platform to generate 150-bp read pairs.
132 Duplicated reads, reads with $\geq 20\%$ low-quality bases or with $\geq 5\%$ ambiguous bases
133 (“N”) were filtered using SOAPnuke v.1.5.6³⁰ with the parameters “-l 10 -q 0.1 -n
134 0.01 -Q 2 -d --misMatch 1 --matchRatio 0.4 -t 30,20,30,20”. Second, single-molecule
135 real-time (SMRT) Pacific Biosciences (PacBio) libraries were constructed using the
136 PacBio 20-kb protocol (<https://www.pacb.com/>) and sequenced on a PacBio RS-II
137 instrument. Third, a Hi-C library was generated using DpnII restriction enzyme
138 following in situ ligation protocols³¹. The DpnII-digested chromatin was end-labeled
139 with biotin-14-dATP (Thermo Fisher Scientific, Waltham, MA, USA) and used for in
140 situ DNA ligation. The DNA was extracted, purified, and then sheared using Covaris
141 S2 (Covaris, Woburn, MA, USA). After A-tailing, pull-down, and adapter ligation, the
142 DNA library was sequenced on a BGISEQ-500 to generate 100-bp read pairs.
143

144 **RNA extraction and sequencing**

145 Young leaves (LEAF), opening flowers (FLOWER), and flower buds (BUDA and
146 BUDB) from two developmental stages (pre-meiosis and post-meiosis) were collected
147 from the same individual tree planted in Xi’an Botanical Garden. Total RNAs were
148 extracted using E.Z.N.A.® Total RNA Kit I (Omega Bio-Tek) and then quality
149 controlled using a NanoDrop™ One UV-Vis spectrophotometer (Thermo Fisher
150 Scientific, USA) and a Qubit® 3.0 Fluorometer (Thermo Fisher Scientific, USA). All

151 RNA samples with integrity values close to 10 were selected for cDNA library
152 construction and next generation sequencing. The cDNA library was prepared using
153 the TruSeq RNA Sample Preparation kit v2 (Illumina, San Diego, CA, USA) and
154 paired-end (150 bp) sequenced on a HiSeq 2000 platform (Illumina Inc, CA, USA) at
155 Majorbio (Majorbio Co. Ltd., Shanghai, China). The newly generated raw sequence
156 reads were trimmed and filtered for adaptors, low quality reads, undersized inserts,
157 and duplicated reads using Trimmomatic v. 0.38³².

158

159 **Genome size estimation**

160 We used 17 k-mer counts³³ of high-quality reads from small insert libraries of
161 10X genomics to evaluate the genome size and the level of heterozygosity. First,
162 K-mer frequency distribution analyses were performed following Chang *et al.*³⁴ to
163 count the occurrence of k-mers based on the clean paired-end 10X genomics data.
164 Then, GCE³⁵ was used to estimate the general characteristics of the genome,
165 including total genome size, repeat proportions, and level of heterozygosity
166 (**Supplementary Table S2**).

167

168 ***De novo* genome assembly and chromosome construction**

169 *De novo* assembly was performed with five different genome assemblers, Canu v.
170 0.1³⁶, Miniasm v. 0.3³⁷, Wtdbg v. 1.1.006 (<https://github.com/ruanjue/wtdbg>), Flye v.
171 2.3.3³⁸, and SMARTdenovo 1.0.0 (<https://github.com/ruanjue/smartdenovo>)
172 with/without priori Canu correction with default parameters. Based on the size of the
173 assembled genome, the total number of assembled contigs, the length of contig N50,
174 maximum length of the contigs, and also the completeness of the genome assembly as
175 assessed by using Benchmarking Universal Single-Copy Orthologs (BUSCO)

176 analysis³⁹ (1,375 single copy orthologs of the Embryophyta odb10 database) with the
177 BLAST e-value cutoff of 1e-5, genome assembly from Miniasm assembler was
178 selected for further polishing and scaffolding (**Supplementary Table S3**). The
179 consensus sequences of the assembly were further improved using all the PacBio
180 reads for three rounds of iterative error correction using software Racon v. 1.2.1⁴⁰
181 with the default parameters and the resultant consensus sequences were further
182 polished using Pilon v. 1.22⁴¹ (parameters: --fix bases, amb --vcf --threads 32) with
183 one round of error correction using all the clean paired-end 10X genomics reads. Hi-C
184 reads were quality-controlled (**Supplementary Table S2**) and mapped to the contig
185 assembly of *M. biondii* using Juicer⁴² with default parameters. Then a candidate
186 chromosome-length assembly was generated automatically using the 3D-DNA
187 pipeline⁴³ (parameters: -m haploid -s 4 -c 19 -j 15) to correct mis-joins, order, orient,
188 and organize contigs from the draft chromosome assembly. Manual check and
189 refinement of the draft assembly was carried out in Juicebox Assembly Tools⁴⁴ (**Table**
190 **1**).

191

192 **Genome evaluation**

193 The completeness of the genome assembly of *M. biondii* was evaluated with
194 DNA and RNA mapping results, transcript unigene mapping results, and BUSCO
195 analysis³⁹. First, all the paired-end reads from 10X genomics and Hi-C were mapped
196 against the final assembly of *M. biondii* using BWA-MEM v. 0.7.10⁴⁵. The RNA-seq
197 reads from four different tissues were also mapped back to the genome assembly
198 using TopHat v. 2.1.0⁴⁶. Second, unigenes were generated from the transcript data of
199 *M. biondii* using Bridger software⁴⁷ with the parameters “–kmer length 25 – min kmer
200 coverage 2” and then aligned to the scaffold assembly using Basic Local Alignment

201 Search Tool (BLAST)- like alignment tool BLAT⁴⁸. Third, BUSCO analysis³⁹ of the
202 final scaffold assembly were also performed to evaluate the genome completeness of
203 the reference genome of *M. biondii*.

204

205 **Repeat annotation**

206 Transposable elements (TEs) were identified by a combination of
207 homology-based and *de novo* approaches. Briefly, the genome assembly was aligned
208 to a known repeats database Repbase v. 21.01⁴⁹ using RepeatMasker v. 4.0.5⁵⁰ and
209 Repeat-ProteinMask⁵⁰ at both the DNA and protein level for homology-based TE
210 characterization. In the *de novo* approach, RepeatModeler 2.0⁵¹ and LTR Finder v.
211 1.0.6⁵² were used to build a *de novo* repeat library using the *M. biondii* assembly. TEs
212 in the genome were then identified and annotated by RepeatMasker v. 4.0.5⁵⁰. Tandem
213 repeats were annotated in the genome using TRF v. 4.04⁵³ (**Supplementary Table**
214 **S4**).

215

216 **Gene prediction**

217 Protein-coding genes were predicted by using the MAKER-P pipeline v. 2.31⁵⁴
218 based on *de novo* prediction, homology search, and transcriptome evidences. For *de*
219 *novo* gene prediction, GeneMark-ES v. 4.32⁵⁵ was firstly used for self-training with
220 the default parameters. Secondly, the alternative spliced transcripts, obtained by a
221 genome-guided approach by using Trinity with the parameters “--full_cleanup
222 --jaccard_clip --no_version_check --genome_guided_max_intron 100000
223 --min_contig_length 200” were mapped to the genome by using PASA v. 2.3.3 with
224 default parameters. Then the complete gene models were selected and used for
225 training Augustus⁵⁶, and SNAP⁵⁷. They were used to predict coding genes on the

226 repeat-masked *M. biondii* genome. For homologous comparison, protein sequences
227 from *Arabidopsis thaliana*, *Oryza sativa*, *Amborella trichopoda*, and two related
228 species (*C. kanehirae* and *L. chinense*) were provided as protein evidences.

229 For RNA evidence, a completely *de novo* approach was chosen. The clean
230 RNA-seq reads were then assembled into inchworm contigs using Trinity v. 2.0.6⁵⁸
231 with the parameters “--min_contig_length 100 --min_kmer_cov 2 --inchworm_cpu 10
232 --bfly_opts “-V 5 --edge-thr=0.05 --stderr” --group_pairs_distance 200
233 --no_run_chrysalis ” and then provided to MAKER-P as expressed sequence tag
234 evidence. After two rounds of MAKER-P, a consensus gene set was obtained. tRNAs
235 were identified using tRNAscan-SE v. 1.3.1⁵⁹. snRNA and miRNA were detected by
236 searching the reference sequence against the Rfam database⁶⁰ using BLAST⁶¹. rRNAs
237 were detected by aligning with BLASTN⁶¹ against known plant rRNA sequences⁶²
238 (**Supplementary Table S5**). We also mapped the gene density, GC content, *Gypsy*
239 density, and *Copia* density on the individual chromosomes using Circos tool
240 (<http://www.circos.ca>) (**Fig. 1**).

241

242 **Functional annotation of protein-coding genes**

243 Functional annotation of protein-coding genes was performed by searching the
244 predicted amino acid sequences of *M. biondii* against the public databases based on
245 sequence identity and domain conservation. Protein-coding genes were previously
246 searched against the following protein sequence databases, including the Kyoto
247 Encyclopedia of Genes and Genomes (KEGG)⁶³, the National Center for
248 Biotechnology Information (NCBI) non-redundant (NR) and the Clusters of
249 Orthologous Groups (COGs) databases⁶⁴, SwissProt⁶⁵, and TrEMBL⁶⁵, for best
250 matches using BLASTP with an e-value cutoff of 1e-5. Then, InterProScan 5.0⁶⁶ was

251 used to characterize protein domains and motifs based on Pfam⁶⁷, SMART⁶⁸,
252 PANTHER⁶⁹, PRINTS⁷⁰, and ProDom⁷¹ (**Supplementary Table S6**).

253

254 **Gene family construction**

255 Protein and nucleotide sequences from *M. biondii* and six other angiosperms
256 plants (*Amborella trichopoda*, *Arabidopsis thaliana*, *Cinnamomum Kanehirae*,
257 *Liriodendron chinense*, *Vitis vinifera*) were used to construct gene families using
258 OrthoFinder⁷² (<https://github.com/davidemms/OrthoFinder>) based on an all-versus-all
259 BLASTP alignment with an e-value cutoff of 1e-5. Potential gene pathways were
260 obtained via gene mapping against the KEGG databases, and Gene Ontology (GO)
261 terms were extracted from the corresponding InterProScan or Pfam results (**Fig. 2**).

262

263 **Phylogenomic reconstruction and gene family evolution**

264 To understand the relationships of the *M. biondii* gene families with those of
265 other plants and the phylogenetic placements of magnoliids among angiosperms, we
266 performed a phylogenetic comparison of genes among different species along a
267 20-seed plant phylogeny reconstructed with a concatenated amino acid dataset
268 derived from 109 single-copy nuclear genes. Putative orthologous genes were
269 constructed from 18 angiosperms (including two eudicots, two monocots, two
270 Chloranthaceae species, eight magnoliid species, two *Illicium* species, *A. trichopoda*,
271 *Nymphaea* sp.) and the gymnosperm outgroup *Picea abies* (**Supplementary Table S7**)
272 using OrthoFinder⁷² and compared with protein genes from the genome assembly of
273 *M. biondii*. The total of one-to-one orthologous gene sets were identified and
274 extracted for alignment using Mafft v. 5.0⁷³, further trimmed using Gblocks 0.91b⁷⁴,
275 and concatenated in Geneious 10.0.2 (www.geneious.com). The concatenated amino

276 acid dataset from 109 single copy nuclear genes (each with >85% of taxon
277 occurrences) was analyzed using PartitionFinder⁷⁵ with an initial partitioning strategy
278 by each gene for optimal data partitioning scheme and associated substitution models,
279 resulting in 18 partitions. The concatenated amino acid dataset was then analyzed
280 using the maximum likelihood (ML) method with RAxML-VI-HPC v. 2.2.0⁷⁶ to
281 determine the best reasonable tree. Non-parametric bootstrap analyses were
282 implemented by PROTGAMMALG approximation for 500 pseudoreplicates (**Fig. 3**).
283

283 The best maximum likelihood tree was used as a starting tree to estimate species
284 divergence time using MCMC Tree as implemented in PAML v. 4⁷⁷. Two node
285 calibrations were defined from the Timetree web service (<http://www.timetree.org/>),
286 including the split between *Liriodendron* and *Magnolia* (34–77 MYA) and the split
287 between angiosperms and gymnosperms (168–194 MYA). The orthologous gene
288 clusters inferred from the OrthoFinder⁷² analysis and phylogenetic tree topology
289 constructed using RAxML-VI-HPC v. 2.2.0⁷⁶ were taken into CAFE v. 4.2⁷⁸ to
290 indicate whether significant expansion or contraction occurred in each gene family
291 across species.

292

293 **Analyses of genome synteny and whole-genome duplication (WGD)**

294 To investigate the source of the large number of predicted protein genes (48,319)
295 in *M. biondii*, the whole genome duplication (WGD) events were analyzed by making
296 use of the high-quality genome of *M. biondii*. As the grape genome have one
297 well-established whole-genome triplication, and the co-familial *L. chinense* have one
298 reported whole genome duplication event¹², the protein-coding genes (of CDS and the
299 translated protein sequences, respectively) of *M. biondii* with that of itself, *L.*
300 *chinense*, and the grape were used to perform synteny searches with

301 MCscanX⁷⁹(python version), with at least five gene pairs required per syntenic block.
302 The resultant dot plots were examined to predict the paleoploidy level of *M. biondii* in
303 comparison to the other angiosperm genomes by counting the syntenic depth in each
304 genomic region (**Supplementary Fig. S3, S4**). The synonymous substitution rate (Ks)
305 distribution for paralogues found in collinear regions (anchor pairs) of *M. biondii* and
306 *L. chinense*, was analyzed with WGD suite⁸⁰ with default parameters (**Fig. 4**).
307

308 **Identification of TPS genes and Expression analysis**

309 We selected two species (*A. trichopoda*, *A. thaliana*) to perform comparative TPS
310 gene family analysis with *M. biondii*. Previously annotated TPS genes of two species
311 were retrieved from the data deposition of Chaw *et al.*¹¹. Two Pfam domains:
312 PF03936 and PF01397, were used as queries to search against the *M. biondii*
313 proteome using HMMER v. 3.0 with an e-value cut-off of 1e⁻⁵⁸². Protein sequences
314 with lengths below 200 amino acids were removed from subsequent phylogenetic
315 analysis. Putative protein sequences of TPS genes were aligned using MAFFT v. 5⁷³
316 and manually adjusted using MEGA v. 4⁸³. The phylogenetic tree was constructed
317 using IQ-TREE⁸⁴ with 1,000 bootstrap replicates (**Fig. 5**).
318

319 **Data access**

320 The genome assembly, annotations, and other supporting data are available at
321 dryad database under the DOI: <https://doi.org/10.5061/dryad.s4mw6m947>. The raw
322 sequence data have been deposited in the China National GeneBank DataBase
323 (CNGBdb) under the Accession No. of CNP0000884 .
324

325 **Results**

326 **Sequencing summary**

327 DNA sequencing generated 33-fold PacBio single-molecule long reads (a total of
328 66.78 Gb with an average length of 10.32 kb), 80-fold 10X genomics paired-end short
329 reads (175.45 Gb) and Hi-C data (~153.78 Gb). Transcriptome sequencing generated
330 4.62, 4.60, 4.67, and 4.73 Gb raw data for young leaves, opening flowers, and flower
331 buds from two developmental stages (pre-meiosis and post-meiosis), respectively
332 (**Supplementary Table S1**).

333

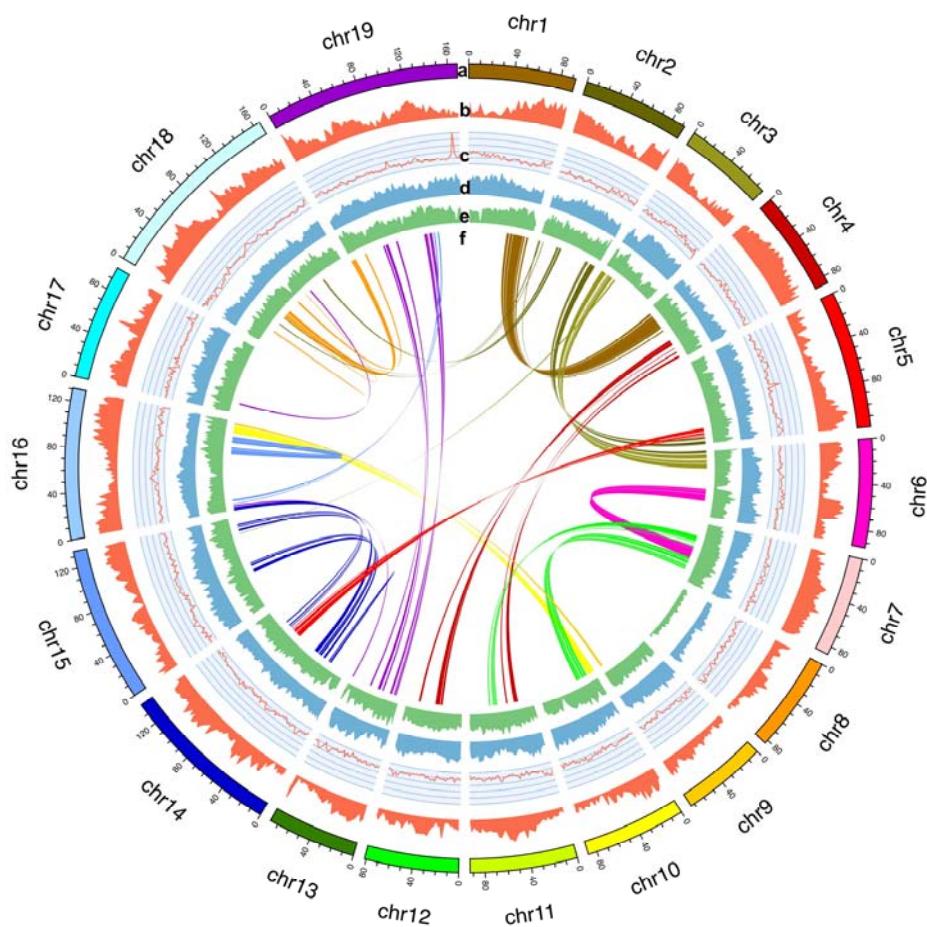
334 **Determination of genome size and heterozygosity**

335 K-mer frequency distribution analyses suggested a k-mer peak at a depth of 48,
336 and an estimated genome size of 2.17 Gb (**Supplementary Fig. S1a, Table S2**).
337 GCE³⁵ analysis resulted in a k-mer peak at a depth of 29, and a calculated genome
338 size of 2.24 Gb, an estimated heterozygosity of 0.73%, and a repeat content of 61.83%
339 (**Supplementary Fig. S1b, Table S2**). The estimated genome size of *M. biondii* is the
340 largest among all the sequenced genomes of magnoliids.

341

342 **Genome assembly and quality assessment**

343 The selected primary assembly from Miniasm v. 0.3³⁷ has a genome size of 2.20
344 Gb across 15,713 contigs, with a contig N50 of 267.11 Kb. After three rounds of error
345 correction with Pacbio long reads and one round of correction with 10X genomics
346 reads, we arrived at a draft contig assembly size of 2.22 Gb spanning 15,628 contigs
347 with a contig N50 of 269.11 Kb (**Table 1**). About 89.17% of the contig length was
348 organized to the 19 chromosomes (1.98 Gb), with ambiguous Ns accumulated to
349 7,365,981 bp (accounting for 0.33% of the genome length). About 9,455 contigs (0.24
350 Gb) were unplaced (**Supplementary Fig. S2**). The raw scaffold assembly was further


351 improved with Pacbio long reads and 10X genomics short reads, resulting in an
352 assembled genome size of 2.23 Gb represented by 9,510 scaffolds with a scaffold N50
353 of 92.86 Mb (**Table 1**). Our assembled genome size of *M. biondii* is very much
354 approximate to the estimated genome size of K-mer analysis (**Supplementary Table**
355 **S2**).

356 **Table 1.** Final genome assembly based on the assembled contigs from Miniasm.

	PacBio Assembly (polished)	Hi-C Assembly
Total scaffold length (Gb)	2.232	
Number of scaffolds	9510	
Scaffold N50 (Mb)	92.86	
Scaffold N90 (Mb)	19.29	
Max scaffold len(Mb)	168.50	
Total Contig length (Gb)	2.22	
Number of contigs	15,615	
Contig N50 (Kb)	269.114	
Contig N90 (Kb)	60.09	
Max contig len(Kb)	2,134.98	
Complete BUSCOs	91.90%	88.50%
Complete and single-copy BUSCOs	87.00%	85.20%
Complete and duplicated BUSCOs	4.90%	3.30%
Fragmented BUSCOs	3.00%	4.40%

357 For genome quality assessment, First, all the paired-end reads from 10X
358 genomics and Hi-C were mapped against the final assembly of *M. biondii*, resulting in
359 98.40% and 92.50% of the total mapped reads, respectively. Sequencing coverage of
360 10X genomics reads and Hi-C reads showed that more than 98.04% and 86.00% of
361 the genome bases had a sequencing depth of >10×, respectively. The RNA-seq reads

362 from four different tissues were also mapped back to the genome assembly using
363 TopHat v. 2.1.0⁴⁶, resulting in 93.3%, 94.4%, 92.9%, and 93.7% of the total mapped
364 RNA-seq reads for leaves, opening flowers, flower buds of pre-meiosis and
365 post-meiosis, respectively. Second, unigenes generated from the transcript data of *M.*
366 *biondii* were aligned to the scaffold assembly. The result indicated that the assemblies
367 covered about 86.88% of the expressed unigenes. Third, BUSCO analysis³⁹ of the
368 final scaffold assembly showed that 88.50% (85.20% complete and single-copy genes
369 and 3.30% complete and duplicated genes) and 4.40% of the expected 1,375
370 conserved embryophytic genes were identified as complete and fragmented genes,
371 respectively. These DNA/RNA reads and transcriptome unigene mapping studies, and
372 BUSCO analysis suggested an acceptable genome completeness of the reference
373 genome of *M. biondii*.

374

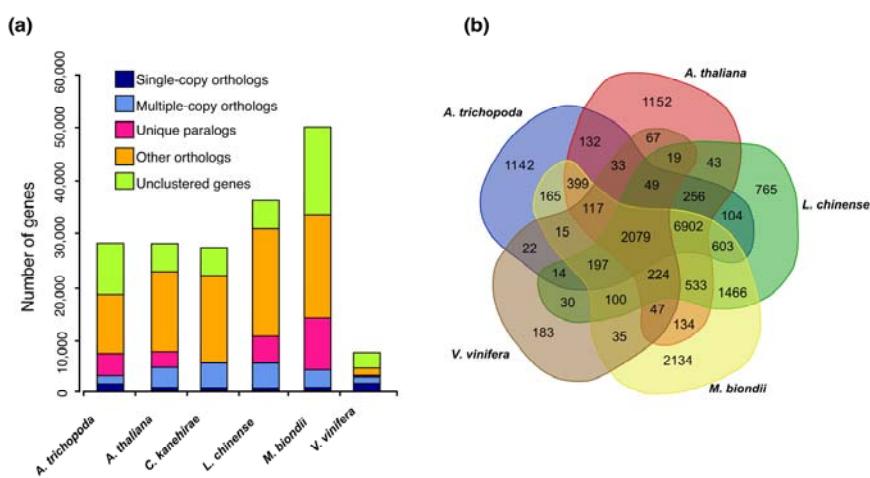
375 **Fig. 1.** Reference genome assembly of nineteen chromosomes. **a.** Assembled
376 chromosomes, **b.** Gene density, **c.** GC content, **d.** *Gypsy* density, **e.** *Copia* density, and
377 **f.** Chromosome synteny (from outside to inside).

378

379 **Repeat annotation**

380 We identified 1,478,819,185 bp (66.48% of the genome length) bases of
381 repetitive sequences in the genome assemblies of *M. biondii*. LTR elements were the
382 predominant repeat type, accounting for 58.06% of the genome length
383 (**Supplementary Table S4**). For the two LTR superfamilies, *Copia* and *Gypsy*
384 elements accumulated to 659,463,750 and 727,531,048 bp, corresponding to 45.26%

385 and 50.66% of the total LTR repeat length, respectively. The density of *Gypsy*
386 elements scaled negatively with the density of genes whereas *Copia* elements
387 distributed more evenly across the genome and showed no obvious patterns or
388 correlations with the distribution of genes (**Fig. 1**). DNA transposons, satellites,
389 simple repeats and other repeats accumulated to 130,503,028, 5,540,573, 17,626,796,
390 and 7,240,517 bp, accounting for 5.86%, 0.24%, 0.79%, and 0.32% of the genome
391 length, respectively.


392

393 **Gene annotation and functional annotation**

394 The assembled genome of *M. biondii* contained 48,319 protein-coding genes, 109
395 miRNAs, 904 tRNAs, 1,918 rRNAs, and 7,426 snRNAs (**Supplementary Table S5**).
396 The protein-coding genes in *M. biondii* had an average gene length of 10,576 bp, an
397 average coding DNA sequence (CDS) length of 950 bp, and an average exon number
398 per gene of 4.4. Various gene structure parameters were compared to those of the five
399 selected species, including *A. trichopoda*, *A. thaliana*, *C. kanehirae*, *L. chinense*, and
400 *Oryza sativa*. *M. biondii* had the highest predicted gene numbers and the largest
401 average intron length (~2,797 bp) among these species (**Supplementary Table S5**),
402 which appears to be in agreement with the relatively larger genome size of *M. biondii*.
403 However, the relatively small median gene length (3,390 bp) and intron length (532
404 bp) in *M. biondii* suggested that some genes with exceptionally long introns have
405 significantly increased the average gene length.

406 Functional annotation of protein-coding genes assigned potential functions to
407 39,405 protein-coding genes out of the total of 48,319 genes in the *M. biondii* genome
408 (81.55 %) (**Supplementary Table S6**). Among ~18.5% of the predicted genes without
409 predicted functional annotations, some may stem from errors in genome assembly and

410 annotations, while others might be potential candidates for novel functions.

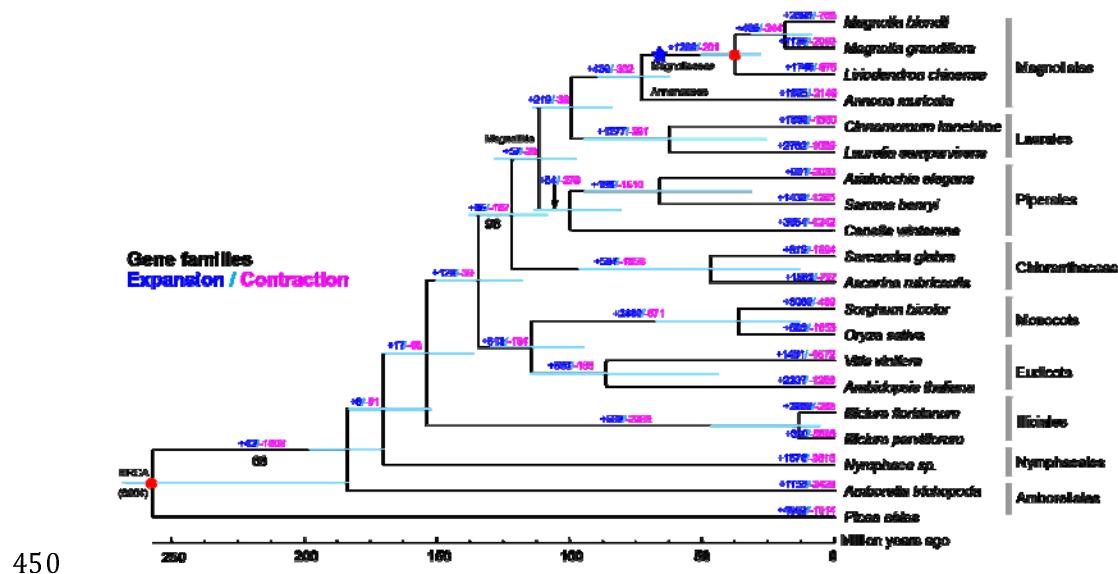
411

412 **Fig. 2.** Comparative analysis of the *M. biondii* genome. (a) The number of genes in
413 various plant species, showing the high gene number of *M. biondii* compared to a
414 model (*Arabidopsis thaliana*) and other species (including *Amborella trichopoda*,
415 *Cinnamomum kanehirae*, *Liriodendron chinense*, and *Vitis vinifera*). (b) Venn
416 diagram showing overlaps of gene families between *M. biondii*, *L. chinense*, *A.*
417 *trichopoda*, *A. thaliana*, and *V. vinifera*.

418

419 **Gene family construction**

420 Among a total of 15,150 gene families identified in the genome of *M. biondii*,
421 10,783 genes and 1,983 gene families were found specific to *M. biondii* (Fig. 2a). The
422 Venn diagram in Fig. 2b shows that 2,079 gene families were shared by the five
423 species, *M. biondii*, *L. chinense*, *A. trichopoda*, *A. thaliana*, and *V. vinifera*. Specific
424 gene families were also detected in these five species. A total of 11,057 genes and
425 2,134 gene families were found to be specific to *M. biondii*.

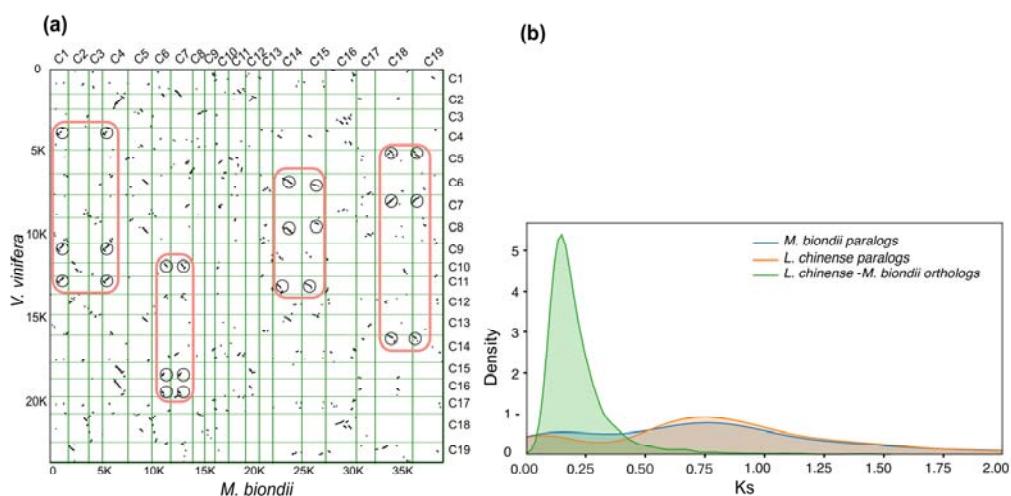

426 A KEGG pathway analysis of the *M. biondii* specific gene families revealed
427 marked enrichment in genes involved in nucleotide metabolism, plant-pathogen
428 interaction, and biosynthesis of alkaloid, ubiquinone, terpenoid-quinone,
429 phenylpropanoid, and other secondary metabolites (**Supplementary Table S8**), which
430 is consistent with the biological features of *M. biondii* with rich arrays of terpenoids,
431 phenolics, and alkaloids. Using Gene Ontology (GO) analysis, the *M. biondii* specific
432 gene families are enriched in binding, nucleic acid binding, organic cyclic compound
433 binding, heterocyclic compound binding, and hydrolase activity (**Supplementary**
434 **Table S9**). The specific presence of these genes associated with biosynthesis of
435 secondary metabolites and plant-pathogen interaction in *M. biondii* genome assembly
436 might play important roles in plant pathogen-resistance mechanisms⁸ by stimulating
437 beneficial interactions with other organisms¹¹.

438

439 **Phylogenomic reconstruction**

440 Our phylogenetic analyses based on 109 orthologous nuclear single-copy genes
441 and 19 angiosperms plus one gymnosperm outgroup recovered a robust topology and
442 supported the sister relationship of magnoliids and Chloranthaceae (BPP=96), which
443 together formed a sister group relationship (BPP=100) with a clade comprising
444 monocots and eudicots. The phylogenetic tree (**Fig. 3**) indicates that the orders of
445 Magnoliales and Laurales have a close genetic relationship, with a divergence time of
446 ~99.3 MYA (84.4–115.5 MYA). The estimated divergence time of Magnoliaceae and
447 Annonaceae in the Magnoliales clade is ~72.8 MYA (56.5–91.5 MYA), while the split
448 of *Liriodendron* and *Magnolia* is estimated at ~37.6 MYA (31.3–50.2 MYA).

449


450 **Fig. 3.** Phylogenetic tree and number of gene families displaying expansions and
451 contractions among 20 plant species. Estimated divergence time confidence intervals
452 are shown at each internal node as teal bars. Calibrated nodes are indicated by red
453 dots. The Magnoliaceae specific WGD is indicated with blue stars. All the branches
454 are maximally supported by maximum likelihood analysis unless otherwise indicated
455 below the branches.

457

458 **Gene family evolution**

459 The orthologous gene clusters inferred from the OrthoFinder⁷² analysis and
460 phylogenetic tree topology constructed using RAxML-VI-HPC v. 2.2.0⁷⁶ were taken
461 into CAFE v. 4.2⁷⁸ to indicate whether significant expansion or contraction occurred
462 in each gene family across species (Fig. 3). Among a total of 15,683 gene families
463 detected in the *M. biondii* genome, 2,395 were significantly expanded ($P < 0.05$) and
464 765 contracted ($P < 0.005$). A KEGG pathway analysis of these expanded gene families
465 revealed marked enrichment in genes involved in metabolic pathways, biosynthesis of
466 secondary metabolites, plant hormone signal transduction, ABC transporters and etc.
467 (Supplementary Table S10). Using Gene Ontology (GO) analysis, the *M. biondii*

468 expanded gene families are enriched in ion binding, transferase activity, metabolic
469 process, cellular process, oxidoreductase activity, localization, response to stimulus,
470 and etc. (**Supplementary Table S11**). The expansion of these genes especially those
471 associated with biosynthesis of secondary metabolites, plant hormone signal
472 transduction and response to stimulus might possibly contribute to the ecological
473 fitness and biological adaptability of the species.

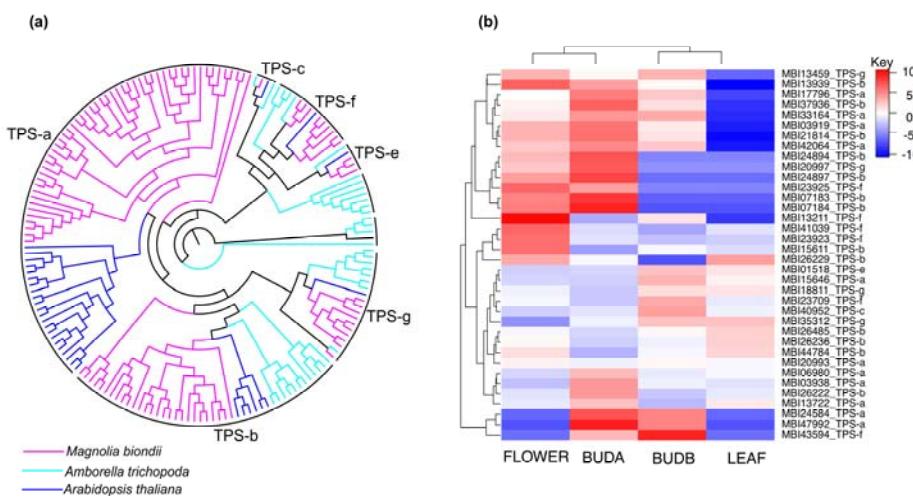
474
475 **Fig. 4.** Evidences for whole-genome duplication events in *M. biondii*. **(a)** Comparison
476 of *M. biondii* and grape genomes. Dot plots of orthologues show a 2–3 chromosomal
477 relationship between the *M. biondii* genome and grape genome. **(b)** Synonymous
478 substitution rate (Ks) distributions for paralogues found in collinear regions (anchor
479 pairs) of *M. biondii* and *Liriodendron chinense*, and for orthologues between *M.*
480 *biondii* and *L. chinense*, respectively.

481

482 **Analyses of genome synteny and whole-genome duplication (WGD)**

483 A total of 1,715 colinear gene pairs on 144 colinear blocks were inferred within
484 the *M. biondii* genome (**Supplementary Fig. S4a**). There were 13,630 co-linear gene
485 pairs from 393 colinear blocks detected between *M. biondii* and *L. chinense*

486 (Supplementary Fig. S4b), and 9,923 co-linear gene pairs from 915 co-linear blocks
487 detected between *M. biondii* and *V. vinifera* (Fig. 4a). Dot plots of longer syntetic
488 blocks between *M. biondii* and *L. chinense* revealed a nearly 1:1 orthology ratio,
489 indicating a similar evolutionary history of *M. biondii* to *L. chinense*. *Magnolia* may
490 probably have also experienced a WGD event as *Liriodendron*¹² after the most recent
491 common ancestor (MRCA) of angiosperms. And that, the nearly 2:3 orthology ratio
492 between *M. biondii* and grape confirmed this WGD event in the lineage leading to
493 *Magnolia* (Supplementary Fig. S4b).


494 The Ks distribution for *M. biondii* paralogues revealed a main peak at around
495 0.75 Ks (~124 Ma) units, which appears to coincide with the Ks peak of *L. chinense*
496 in our observation (Fig. 4b), indicating that the two lineages might have experienced
497 a shared WGD in their common ancestor or two independent WGDs at a similar time.
498 The one-vs-one ortholog comparisons between *Liriodendron* and *Magnolia* suggested
499 the divergence of the two lineages at around 0.18 Ks units, which largely postdates
500 the potential WGD peak of 0.75 Ks units observed in either species, indicating that
501 this WGD event should be shared at least by the two genera of Magnoliaceae.

502

503 **TPS genes**

504 The volatile oils isolated from the flower buds of *M. biondii* constitute primarily
505 terpenoid compounds that are catalyzed by TPS enzymes. We identified a total of 102
506 putative TPS genes in the genome assembly of *M. biondii*, which is comparable to
507 that of the *C. kanehirae* with 101 genes¹¹. To determine the classification of TPS
508 proteins in *M. biondii*, we constructed a phylogenetic tree using all the TPS protein
509 sequences from *M. biondii*, *A. thaliana* and *A. trichopoda*. These TPS genes found in
510 *M. biondii* can be assigned to six subfamilies, TPS-a (52 genes), TPS-b (27 genes),

511 TPS-c (1 gene), TPS-e (3 genes), TPS-g (3 genes), and TPS-f (9 genes) (**Fig. 5a**). We
512 compared the expression profiles of TPS genes in the young leaves and flowers from
513 three different developmental stages (**Fig. 5b**), and identified a total of 36 TPS genes
514 (including 11, 13, 1, 1, 6, and 4 genes for the subfamilies of TPS-a, TPS-b, TPS-c,
515 TPS-e, TPS-f, and TPS-g, respectively) substantially expressed, among which, 33
516 TPS genes (including both 10 genes for TPS-a and TPS-b subfamilies) exhibited
517 higher transcript abundance in flowers, compared to leaves (**Fig. 5b**), suggesting that
518 these genes may be involved in a variety of terpenoid metabolic processes during
519 flower growth and development in *M. biondii*.

520
521 **Fig. 5.** TPS (terpene synthase) gene family in *M. biondii*. **(a)** The phylogenetic tree of
522 TPS genes from *Amborella trichopoda*, *Arabidopsis thaliana*, and *M. biondii*. **(b)**
523 Heatmap showing differential expression of TPS genes in the transcriptome data from
524 young leaves (LEAF), opening flowers (FLOWER), flower buds of pre-meiosis
525 (BUDA), and flower buds of post-meiosis (BUDB).

526 Discussion

527 The genome of *M. biondii* is relatively large and complex as K-mer frequency
528 analysis suggested an estimated genome size of 2.24 Gb, with an estimated

529 heterozygosity of 0.73%, and a repeat content of 61.83%. Our DNA sequencing
530 generated about 33-fold PacBio long reads data, which resulted in an assembly of
531 2.23 Gb spanning 15,628 contigs with a contig N50 of 269.11 Kb. The small contig
532 N50 length might imply fragmentary and incomplete genome assembly, which might
533 affect the quality and precision of the Hi-C assembly. Indeed, when these contigs
534 were organized to chromosomes using Hi-C data, about 6,899 contigs adding up to
535 1.00 Gb were disrupted by the Hi-C scaffolding processes, contributing to 0.18 Gb
536 genome sequences discarded. After manual correction of the Hi-C map in Juicer box,
537 the final scaffold assembly has still 6,911 contigs disrupted, 2,358 genes disturbed,
538 and 0.24 Gb of genome sequences unplaced. BUSCO assessments show decreased
539 percentages of complete BUSCOs and increased percentages of fragmented BUSCOs
540 for the scaffold assembly than that of the contig assembly (**Table 1**). Therefore, we
541 used the HiC assembly for chromosome collinearity analysis and the contig assembly
542 for the rest of comparative analyses. The exceptionally large protein gene set
543 predicted for *M. biondii* genome might be attributed to gene fragmentation problems
544 induced by poor genome assembly and high content of transposable elements, as
545 evidenced by dramatically short average/median CDS length of *M. biondii* compared
546 with that of the co-familial *L. chinense* (Supplementary Table S5).

547 The chromosome-scale reference genome of *M. biondii* provided information on
548 the gene contents, repetitive elements, and genome structure of the DNA in the 19
549 chromosomes. Our genome data offered valuable genetic resources for molecular and
550 applied research on *M. biondii* as well as paved the way for studies on evolution and
551 comparative genomics of *Magnolia* and the related species. Phylogenomic analyses of
552 109 single-copy orthologues from 20 representative seed plant genomes with a good
553 representation of magnoliids (three out of four orders) strongly support the sister

554 relationship of magnoliids and Chloranthaceae, which together form a sister group
555 relationship with a clade comprising monocots and eudicots. This placement is
556 congruent with the plastid topology^{15,16} and the multi-locus phylogenetic studies of
557 angiosperms⁶, but in contrast to the placement of the sister group relationship of
558 magnoliids with eudicots recovered by the phylogenomic analysis of angiosperms
559 (with *Cinnamomum kanehirae* as the only representative for magnoliids)¹¹,
560 phylotranscriptomic analysis of the 92 streptophytes¹³ and of 20 representative
561 angiosperms¹⁴. Multiple factors underlies the robust angiosperm phylogeny recovered
562 in our study: (a) we use less homoplasious amino acid data rather than nucleotide
563 sequences (especially those of the 3rd codon positions) that are more prone to
564 substitution saturation; (b) we use an optimal partitioning strategy with carefully
565 selected substitution models, which is usually neglected for large concatenated
566 datasets in phylogenomic analyses; (c) we have a relatively good taxa sampling that
567 included representatives from all the eight major angiosperm lineages but
568 Ceratophyllales that has no genome resources available. Future phylogenomic studies
569 with an improved and more balanced lineage sampling and a thorough gene sampling
570 as well as comprehensive analytical methods would provide more convincing
571 evidences on the divergence order of early mesangiosperms.

572 The current assembly of the *M. biondii* genome informed our understanding of
573 the timing of the WGD event in Magnoliaceae. Our genome syntenic and Ks
574 distribution analyses suggested a shared WGD event by *Magnolia* and *Liriodendron*.
575 As the timing of this WGD is around ~116 MYA estimated by Chen *et al.*¹² and ~124
576 MYA in our study, this WGD appears to be shared even by the two sister families of
577 Magnoliaceae and Annonaceae as the two lineages diverged at around 95–113 MYA
578 (mean, 104 MYA) according to Timetree web service (www.timetree.org) and

579 56.5–91.5 MYA (mean, ~72.8 MYA) in our dating analysis. However, the soursop
580 (*Annona muricata*, Annonaceae) genome has only a small ambiguous Ks peak
581 (possibly indicating a small-scale duplication event rather than WGD¹⁰) detected at
582 around 1.3–1.5 Ks units, which is even older than the divergence of Magnoliales and
583 Laurales at around 1.0–1.1 Ks units, thus rejecting the possibility of a Magnoliaceae
584 and Annonaceae shared WGD¹⁰. As the estimated divergence of *Liriodendron* and
585 *Magnolia/Annona* occurred at around 0.18 and 0.6–0.7 Ks units (near the Ks peak of
586 0.75 in our study)¹⁰, respectively, this Magnoliaceae specific WGD might have
587 possibly happened shortly after the split of Magnoliaceae and Annonaceae. Further,
588 cytological evidences also support this Magnoliaceae specific WGD event.
589 Annonaceae have a basic chromosome number of n=7, which is reported to be the
590 original chromosome number for Magnoliales⁸⁵, whereas the base number of
591 Magnoliaceae is n=19, suggesting probable paleopolyploidy origin of Magnoliaceae.
592 It is also worth noting that WGD events do not necessarily generate more species
593 diversity in Magnoliales as the putatively WGD-depauperate Annonaceae with some
594 2,100 species is the largest family in Magnoliales in contrast to Magnoliaceae with a
595 confirmed lineage specific WGD event whereas holding only ~300 members.

596 As a medicinal plant, the major effective component of the flower buds of *M.*
597 *biondii* is the volatile oils constituted by a rich array of terpenoids, mainly
598 sesquiterpenoids and monoterpenoids⁸⁶. TPS genes of subfamily TPS-a and TPS-b are
599 mainly responsible for the biosynthesis of sesquiterpenoids and monoterpenoids in
600 mesangiosperms, respectively. Gene tree topologies for three angiosperm TPS
601 proteins and comparison of TPS subfamily members with that of the other
602 angiosperms¹¹ revealed expansion of TPS genes in *M. biondii*, especially TPS-a and
603 TPS-b subfamilies. Expression profiles of TPS genes in different tissues identified 33

604 TPS genes, primarily of TPS-a and TPS-b subfamilies, substantially expressed in
605 flowers, compared to leaves. The expansions and significant expressions of these TPS
606 genes in the subfamilies TPS-a and TPS-b in *M. biondii* is in concert with the high
607 accumulation of sesquiterpenoids and monoterpenoids in the volatile oils extracted
608 from the flower buds of *M. biondii*⁸⁶.

609

610 Conclusion

611 We constructed a reference genome of *M. biondii* by combining 10X Genomics
612 Chromium, single-molecule real-time sequencing (SMRT), and Hi-C scaffolding
613 strategies. The ~2.22 Gb genome assembly of *M. biondii*, with a heterozygosity of
614 0.73% and a repeat ratio of 66.48%, represented the largest genome among six
615 sequenced genomes of magnoliids. We predicted a total of 48,319 protein genes from
616 the genome assembly of *M. biondii*, 81.55% of which were functionally annotated.
617 Phylogenomic reconstruction strongly supported the sister relationship of magnoliids
618 and Chloranthaceae, which together formed a sister relationship with a clade
619 comprising monocots and eudicots. Our new genome information should further
620 enhance the knowledge on the molecular basis of genetic diversity and individual
621 traits in *Magnolia*, as well as the molecular breeding and early radiations of
622 angiosperms.

623

624 Acknowledgements

625 This work was supported the National Key R&D Program of China (No.
626 2019YFC1711000), the National Natural Science Foundation (No. 31600171), the
627 Shenzhen Urban Management Bureau Fund (No. 201520), and the Shenzhen
628 Municipal Government of China (No. JCYJ20170817145512467). This work is part

629 of the 10KP project. We sincerely thank the support provided by China National
630 GeneBank.

631

632 **Authors' contributions**

633 S.Z. and H.L. designed and coordinated the whole project. M.L., S.D., S.Z. and H.L.
634 together led and performed the whole project. M.L., S.D., and F.C. performed the
635 analyses of genome evolution, gene family analyses. S.D., M.L., H.L., S.Z., Y.L.,
636 X.G., and E.W. participated in the manuscript writing and revision. All authors read
637 and approved the final manuscript.

638

639 **Author details**

640 ¹Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden,
641 Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, China. ²State Key
642 Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China.
643 ³Nanjing Forestry University, Nanjing 210037, China. ⁴Fujian Agriculture and
644 Forestry University, Fuzhou 350000, China. ⁵University of British Columbia,
645 Vancouver, Canada. ⁶Xi'an Botanical Garden, Xi'an 710061, China. ⁷Zhejiang
646 Agriculture and Forestry University, Hangzhou 311300, China. ⁸Kunming Botanical
647 Garden, Chinese Academy of Sciences, Kunming 650201, China.

648

649 **Conflict of interest**

650 The authors declare that they have no conflict of interest.

651

652 **Supplementary Information**

653 Supplementary Information accompanies this paper at XXX.

655 **References**

656 1 Rivers, M., Beech, E., Murphy, L. & Oldfield, S. The red list of
657 Magnoliaceae-revised and extended. (2016).

658 2 Figlar, R. B. & Nooteboom, H. P. Notes on Magnoliaceae IV. *Blumea* **49**,
659 87–100 (2004).

660 3 Kim, S. & Suh, Y. Phylogeny of Magnoliaceae based on ten chloroplast DNA
661 regions. *J Plant Biol* **56**, 290–305 (2013).

662 4 Azuma, H., García-Franco, J. G., Rico-Gray, V. & Thien, L. B. Molecular
663 phylogeny of the Magnoliaceae: the biogeography of tropical and temperate
664 disjunctions. *Am J Bot* **88**, 2275–2285 (2001).

665 5 Soltis, D. E. & Soltis, P. S. Nuclear genomes of two magnoliids. *Nat Plants* **5**,
666 6–7 (2019).

667 6 Soltis, D., Bell, C., Kim, S. & Soltis, P. S. Origin and early evolution of
668 angiosperms. *Ann New York Acad Sci* **1133**, 3 (2008).

669 7 Kersey, P. J. Plant genome sequences: past, present, future. *Curr Opin Plant
670 Biol* **48**, 1–8 (2019).

671 8 Hu, L. *et al.* The chromosome-scale reference genome of black pepper
672 provides insight into piperine biosynthesis. *Nat Commun* **10**, 4702 (2019).

673 9 Rendón-Anaya, M. *et al.* The avocado genome informs deep angiosperm
674 phylogeny, highlights introgressive hybridization, and reveals pathogen
675 influenced gene space adaptation. *Proc Natl Acad Sci U S A* **116**,
676 17081–17089 (2019).

677 10 Strijk, J. S. *et al.* The soursop genome and comparative genomics of basal
678 angiosperms provide new insights on evolutionary incongruence. *bioRxiv*
679 **639153** (2019).

680 11 Chaw, S. M. *et al.* Stout camphor tree genome fills gaps in understanding of
681 flowering plant genome evolution. *Nat Plants* **5**, 63–73 (2019).

682 12 Chen, J. *et al.* *Liriodendron* genome sheds light on angiosperm phylogeny and
683 species–pair differentiation. *Nat Plants* **5**, 18–25 (2018).

684 13 Wickett, N. J. *et al.* Phylogenomic analysis of the origin and early
685 diversification of land plants. *Proc Natl Acad Sci U S A* **111**, 4859–4868
686 (2014).

687 14 Zeng, L. *et al.* Resolution of deep angiosperm phylogeny using conserved
688 nuclear genes and estimates of early divergence times. *Nat Commun* **5**, 4956
689 (2014).

690 15 Gitzendanner, M. A., Soltis, P. S., Wong, G. K.-S., Ruhfel, B. R. & Soltis, D. E.
691 Plastid phylogenomic analysis of green plants: a billion years of evolutionary
692 history. *Am J Bot* **105**, 291–301 (2018).

693 16 Ruhfel, B. R., Gitzendanner, M. A., Soltis, P. S., Soltis, D. E. & Burleigh, J. G.
694 From algae to angiosperms–inferring the phylogeny of green plants
695 (Viridiplantae) from 360 plastid genomes. *BMC Evol Biol* **14**, 23 (2014).

696 17 Li, H. T. *et al.* Origin of angiosperms and the puzzle of the Jurassic gap.
697 *Nature Plants* **5**, 461–470 (2019).

698 18 Wang, Y. L. & Zhang, S. Z. Studies on the microsporogenesis and
699 development of the male gametophyte of *Magnolia championii* Benth. *J
700 Wuhan Bot Res* **26**, 547–553 (2008).

701 19 Hirayama, K., Ishida, K. & Tomaru, N. Effects of pollen shortage and
702 self-pollination on seed production of an endangered tree, *Magnolia stellata*.
703 *Ann Bot* **95**, 1009–1015 (2005).

704 20 Yang, X., Yang, Z. L., Wang, J., Tan, G. Y. & He, Z. S. Floral syndrome and

705 breeding system of endangered species *Magnolia officinalis* subsp. *biloba*.
706 *Chinese J Ecol* **3** (2012).

707 21 Wang, X. *et al.* Development of EST-SSR markers and their application in an
708 analysis of the genetic diversity of the endangered species *Magnolia*
709 *sinostellata*. *Mol Genet Genomics* **294**, 135–147 (2019).

710 22 Jiang, W., Cao, J., Li, G. & Weng, M. Development of new ornamental tree
711 species of *Magnolia* family in China and its application in landscaping. *Acta*
712 *Agriculturae Shanghai* **21**, 68–73 (2005).

713 23 Zhao, L. The terpenoid biosynthesis pathway in *Magnolia* and their
714 significance for taxonomy in the genus. *Guiaia* **4**, 7 (2005).

715 24 Ho, K. Y., Tsai, C. C., Chen, C. P., Huang, J. S. & Lin, C. C. Antimicrobial
716 activity of honokiol and magnolol isolated from *Magnolia officinalis*.
717 *Phytother Res* **15**, 139–141 (2001).

718 25 China Pharmacopoeia Committee, Pharmacopoeia of the People's Republic of
719 China, The first Division of 2000 English Edition, China Chemical Industry
720 Press, Beijing 143 (2000).

721 26 Qu, L., Qi, Y., Fan, G. & Wu, Y. Determination of the volatile oil of *Magnolia*
722 *biondii* pamp by GC–MS combined with chemometric techniques.
723 *Chromatographia* **70(5–6)** (2009).

724 27 Zhao, W., Zhou, T., Fan, G., Chai, Y. & Wu, Y. Isolation and purification of
725 lignans from *Magnolia biondii* pamp by isocratic reversed-phase
726 two-dimensional liquid chromatography following microwave-assisted
727 extraction. *J Sep Sci* **30**, 2370–2381 (2015).

728 28 Chen, Y., Gao, B. C., Qiao, L. & Han, G. Q. Study on the hydrophilic
729 components of *Magnolia biondii* pamp.. *Acta Pharmaceutica Sinica* **07**

730 (1994).

731 29 Porebski, S., Bailey, L. G. & Bernard, R. B. Modification of a CTAB DNA
732 extraction protocol for plants containing high polysaccharide and polyphenol
733 components. *Plant Mol Biol Reporter* **15**, 8–15 (1997).

734 30 Chen, Y. *et al.* SOAPnuke: a MapReduce acceleration-supported software for
735 integrated quality control and preprocessing of high-throughput sequencing
736 data. *Gigascience* **7**, gix120 (2017).

737 31 Belaghzal, H., Dekker, J. & Gibcus, J. H. Hi-C 2.0: an optimized Hi-C
738 procedure for high-resolution genome-wide mapping of chromosome
739 conformation. *Methods* **123**, 56–65 (2017).

740 32 Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for
741 Illumina sequence data. *Bioinformatics* **30**, 2114–2120 (2014).

742 33 Moscone, E. A. *et al.* Analysis of nuclear DNA content in *Capsicum*
743 (Solanaceae) by flow cytometry and Feulgen densitometry. *Ann Bot* **92**, 21–29
744 (2003).

745 34 Chang, Y. *et al.* The draft genomes of five agriculturally important African
746 orphan crops. *Gigascience* **8**, 1–16 (2019).

747 35 Liu, B. *et al.* Estimation of genomic characteristics by analyzing k-mer
748 frequency in *de novo* genome projects. *arXiv preprint* **1308.2012** (2013).

749 36 Koren, S. *et al.* Canu: scalable and accurate long-read assembly via adaptive\\r,
750 k\\r, -mer weighting and repeat separation. *Genome Res* **27**, 722 (2017).

751 37 Li, H. Minimap and miniasm: fast mapping and *de novo* assembly for noisy
752 long sequences. *Bioinformatics* **32**, 2103–2110 (2016).

753 38 Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long,
754 error-prone reads using repeat graphs. *Nat Biotechnol* **37**, 540 (2019).

755 39 Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov,
756 E. M. BUSCO: assessing genome assembly and annotation completeness with
757 single-copy orthologs. *Bioinformatics* **31**, 3210–3212 (2015).

758 40 Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. in *London calling conference*
759 (2016).

760 41 Walker, B. J. *et al.* Pilon: an integrated tool for comprehensive microbial
761 variant detection and genome assembly improvement. *Plos One* **9**, e112963
762 (2014).

763 42 Durand, N. C. *et al.* Juicer provides a one-click system for analyzing
764 loop-resolution Hi-C experiments. *Cell systems* **3**, 95–98 (2016).

765 43 Dudchenko, O. *et al.* *De novo* assembly of the *Aedes aegypti* genome using
766 Hi-C yields chromosome-length scaffolds. *Science* **356**, 92–95 (2017).

767 44 Dudchenko, O. *et al.* The Juicebox Assembly Tools module facilitates *de novo*
768 assembly of mammalian genomes with chromosome-length scaffolds for
769 under \$1000. *bioRxiv preprint* **254797** (2018).

770 45 Li, H. Aligning sequence reads, clone sequences and assembly contigs with
771 BWA-MEM. *arXiv*: 1303.3997. (2013).

772 46 Kim, D. *et al.* Tophat2: accurate alignment of transcriptomes in the presence
773 of insertions, deletions and gene fusions. *Genome Biol Evol* **14**, R36 (2013).

774 47 Chang, Z. *et al.* Bridger: a new framework for *de novo* transcriptome assembly
775 using RNA-seq data. *Genome Biol* **16**, 30 (2015).

776 48 Kent, W. J. BLAT—the BLAST-like alignment tool. *Genome Res* **12**, 656–664
777 (2002).

778 49 Jerzy, J. Repbase update: a database and an electronic journal of repetitive
779 elements. *Trends Genet* **16**, 418–420 (2000).

780 50 Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive
781 elements in genomic sequences. *Curr Protoc Bioinformatics* **25**, 4–10 (2009).

782 51 Hubley, R. & Smit, A. RepeatModeler.
783 <http://www.repeatmasker.org/RepeatModeler/> (2019).

784 52 Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of
785 full-length LTR retrotransposons. *Nucleic Acids Res* **35**, W265–W268 (2007).

786 53 Benson, G. Tandem repeats finder: a program to analyze DNA sequences.
787 *Nucleic Acids Res* **1999**, 2 (1999).

788 54 Campbell, M. S., Holt, C., Moore, B. & Yandell, M. Genome annotation and
789 curation using MAKER and MAKER-P. *Curr Prot Bioinformatics* **48**, 4–11
790 (2014).

791 55 Lomsadze, A., Ter-Hovhannisyan, V., Chernoff, Y. & Borodovsky, M. Gene
792 identification in novel eukaryotic genomes by self-training algorithm. *Nucleic
793 Acids Res.* **33**, 6494–6506 (2005).

794 56 Stanke, M., Schöffmann, O., Morgenstern, B. & Waack, S. Gene prediction in
795 eukaryotes with a generalized hidden Markov model that uses hints from
796 external sources. *BMC Bioinformatics* **7**, 62 (2006).

797 57 Johnson, A. D. *et al.* SNAP: a web-based tool for identification and annotation
798 of proxy SNPs using HapMap. *Bioinformatics* **24**, 2938–2939 (2008).

799 58 Haas, B. J. *et al.* De novo transcript sequence reconstruction from RNA-seq
800 using the Trinity platform for reference generation and analysis. *Nat Protoc* **8**,
801 1494 (2013).

802 59 Lowe, T. M. & Chan, P. P. tRNAscan-SE On-line: integrating search and
803 context for analysis of transfer RNA genes. *Nucleic Acids Res* **gkw413** (2016).

804 60 Kalvari, I. *et al.* Rfam 13.0: shifting to a genome-centric resource for

805 61 non-coding RNA families. *Nucleic Acids Res* **46**, D335–D342 (2017).

806 61 Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local
807 alignment search tool. *J Mol Biol* **215**, 403–410 (1990).

808 62 Vitales, D., D'Ambrosio, U., Gálvez, F., Kovařík, A. & Garcia, S. Third
809 release of the plant rDNA database with updated content and information on
810 telomere composition and sequenced plant genomes. *Plant Syst Evol* **303**,
811 1115–1121 (2017).

812 63 Aoki, K. F. & Kanehisa, M. Using the KEGG database resource. *Curr Protoc
813 Bioinformatics* **11**, 1–12 (2005).

814 64 Tatusov, R. L., Koonin, E. V. & Lipman, D. J. A genomic perspective on
815 protein families. *Science* **278**, 631–637 (1997).

816 65 Boeckmann, B. *et al.* The SWISS-PROT protein knowledgebase and its
817 supplement TrEMBL in 2003. *Nucleic Acids Res* **31**, 365–370 (2003).

818 66 Jones, P. *et al.* InterProScan 5: genome-scale protein function classification.
819 *Bioinformatics* **30**, 1236–1240 (2014).

820 67 Finn, R. D. *et al.* The Pfam protein families database. *Nucleic Acids Res* **36**,
821 D281–D288 (2007).

822 68 Letunic, I., Doerks, T. & Bork, P. SMART 6: recent updates and new
823 developments. *Nucleic Acids Res* **37**, D229–D232 (2009).

824 69 Mi, H., Muruganujan, A., Casagrande, J. T. & Thomas, P. D. Large-scale gene
825 function analysis with the PANTHER classification system. *Nat Protoc* **8**,
826 1551 (2013).

827 70 Attwood, T. K. *et al.* PRINTS and its automatic supplement, prePRINTS.
828 *Nucleic Acids Res* **31**, 400–402 (2003).

829 71 Corpet, F., Servant, F., Gouzy, J. & Kahn, D. ProDom and ProDom-CG: tools

830 for protein domain analysis and whole genome comparisons. *Nucleic Acids*
831 *Res* **28**, 267–269 (2000).

832 72 Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for
833 comparative genomics. *bioRxiv preprint* **466201** (2019).

834 73 Katoh, K., Kuma, K., Toh, H. & Miyata, T. MAFFT version 5: improvement
835 in accuracy of multiple sequence alignment. *Nucleic Acids Res* **33**, 511–518
836 (2005).

837 74 Talavera, G. & Castresana, J. Improvement of phylogenies after removing
838 divergent and ambiguously aligned blocks from protein sequence alignments.
839 *Syst Biol* **56**, 564–577 (2007).

840 75 Lanfear, R., Calcott, B., Ho, S. Y. & Guindon, S. PartitionFinder: combined
841 selection of partitioning schemes and substitution models for phylogenetic
842 analyses. *Mol Biol Evol* **29**, 1695–1701 (2012).

843 76 Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic
844 analyses with thousands of taxa and mixed models. *Bioinformatics* **22**,
845 2688–2690 (2006).

846 77 Yang, Z. PAML4: phylogenetic analysis by maximum likelihood. *Mol Biol*
847 *Evol* **24**, 1586–1591 (2007).

848 78 De Bie, T., Cristianini, N., Demuth, J. P. & Hahn, M. W. Cafe: a computational
849 tool for the study of gene family evolution. *Bioinformatics* **22**, 1269–1271
850 (2006).

851 79 Wang, Y. *et al.* MCScanX: a toolkit for detection and evolutionary analysis of
852 gene synteny and collinearity. *Nucleic Acids Res* **40**, e49–e49 (2012).

853 80 Zwaenepoel, A. & Van de Peer, Y. WGD - simple command line tools for the
854 analysis of ancient whole genome duplications. *Bioinformatics* **bty915** (2018).

855 81 Tang, H. *et al.* Unraveling ancient hexaploidy through multiply-aligned
856 angiosperm gene maps. *Genome Res* **18**, 1944–1954 (2008).

857 82 Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive
858 sequence similarity searching. *Nucleic Acids Res* **39**, 29–37 (2011).

859 83 Tamura, K. MEGA6: molecular evolutionary genetics analysis version 6.0.
860 *Mol Biol Evol* **30**, 2725–2729 (2013).

861 84 Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a
862 fast and effective stochastic algorithm for estimating maximum-likelihood
863 phylogenies. *Mol Biol Evol* **32**, 268–274 (2014).

864 85 Raven, P. H. The bases of angiosperm phylogeny: Cytology. *Ann Mo Bot Gard*
865 **63**, 724–764 (1975).

866 86 Lu, J. *et al.* Analysis of the chemical constituents of essential oil from
867 *Magnolia biondii* by GC-MS. *Journal of Chinese Medicinal Materials* **31**,
868 1649–1651 (2008).