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Summary

Background Detection of incident hepatitis C virus (HCV) infections is crucial for identification
of outbreaks and development of public health interventions. However, there is no single
diagnostic assay for distinguishing recent and persistent HCV infections. HCV exists in each
infected host as a heterogeneous population of genomic variants, whose evolutionary dynamics
remain incompletely understood. Genetic analysis of such viral populations can be applied to the
detection of incident HCV infections and used to understand intra-host viral evolution.

Methods We studied intra-host HCV populations sampled using next-generation sequencing
from 98 recently and 256 persistently infected individuals. Genetic structure of the populations
was evaluated using 245,878 viral sequences from these individuals and a set of selected
parameters measuring their diversity, topological structure, complexity, strength of selection,
epistasis, evolutionary dynamics, and physico-chemical properties.

Findings Distributions of the viral population parameters differ significantly between recent and
persistent infections. A general increase in viral genetic diversity from recent to persistent
infections is frequently accompanied by decline in genomic complexity and increase in
structuredness of the HCV population, likely reflecting a high level of intra-host adaptation at
later stages of infection. Using these findings, we developed a Machine Learning classifier for
the infection staging, which yielded a detection accuracy of 95.22%, thus providing a higher
accuracy than other genomic-based models.

Interpretation The detection of a strong association between several HCV genetic factors and
stages of infection suggests that intra-host HCV population develops in a complex but regular
and predictable manner in the course of infection. The proposed models may serve as a
foundation of cyber-molecular assays for staging infection, that could potentially complement
and/or substitute standard laboratory assays.
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1. Introduction

Hepatitis C virus (HCV) infection remains a major cause of morbidity and mortality, with an
estimated 70 million people being HCV infected worldwide in 2015'. HCV infection is the
leading cause of chronic liver diseases and hepatocellular carcinoma worldwide, contributing to
the death of more than 350,000 people in 2015". Hepatitis C outbreaks continue to occur, posing
a serious challenge to public health’. HCV is highly mutable. As a result, each infected
individual hosts a heterogeneous population of genetically related HCV variants or
quasispecies®. Substantial diversity of intra-host viral populations plays a crucial role in disease
progression and epidemic spread®®. However, intra-host dynamics of HCV and other RNA
viruses remain poorly understood. One of the most important questions is the relative
contribution of random and deterministic evolutionary factors in disease progression, or, using
the metaphor of S.J. Gould’, whether is it possible to “replay the tape of life” for the virus
evolution inside a host. This question is of high importance for biomedical research, as
predictability of viral evolution potentially implies the power to understand and control the
disease®®, which may result in advanced diagnostic and treatment strategies.

In this paper, we study evolutionary factors associated with the transition between HCV infection
stages. In more than 50% of cases untreated HCV infection proceeds to the chronic phase, which
can lead to the development of liver cirrhosis and/or hepatocellular carcinoma®. Accurate recent
or persistent staging of HCV infection is important for biomedical applications. In clinical
settings, it may inform the patient management and treatment strategy. In epidemiology,
identification of acute cases alows for detection and investigation of recent transmissions and
outbreaks and provides information on disease incidence. Understanding of changes in intra-host
HCV populations at different stages of infection would constitute a large step towards reliable
forecasting of viral evolutionary dynamics.

Recent HCV infection is usually accessed using clinical symptoms and time since
seroconversion. HCV infection may, however, remain asymptomatic for years while
seroconversion is not frequently detected, preventing accurate identification of infection stages.
Severa laboratory methods have been reported for distinguishing acute and chronic stages of
infection'®. Detection of HCV RNA in the absence of anti-HCV activity in serum specimens
was used as an indication of recent HCV infection'?. Although a strong marker, it has a very
short duration and cannot be used for reliable detection of acute infections.

Advent of next-generation sequencing (NGS) presented an opportunity to sample and analyze
unprecedented large numbers of intra-host viral variants from numerous infected individuals.
HCV variants sampled by NGS have been used to detect stages of HCV infection'**. The stage
detection methods are generally based on the assumption that intra-host viral evolution is driven
by the continuous immune escape resulting in genetic diversification. Consequently, quantitative
measures of genetic diversity of intra-host viral variants are assumed to be most useful for
staging. However, several recent reports contested the veracity of this assumption. In particular,
after initial diversification, intra-host HCV populations may actually lose heterogeneity and stop
diverting at later stages of infection,>!5 with certain viral variants persisting in infected hosts for
years™'®. Furthermore, this process is accompanied by increase of negative selection over the
course of HCV infection>*217.18, These findings suggest a high level of intra-host adaptation at
late stages of infection® and indicate that genetic heterogeneity is not a reliable marker for
infection staging, and more elaborate metrics are needed to understand HCV evolution and to
accurately classify recent and persistent HCV infection.
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Here, we present a new approach for staging HCV infection using quantitative genomic
measures to evaluate diversity, information content, effective dimensionality, topological
structure, evolutionary dynamics and physical-chemical properties of intra-host HCV variants
and populations. Analysis of parameters distributions at early and late stages of infection
suggests that intra-host HCV populations evolve in a complex but regular and predictable
manner. Based on these findings, we propose a multi-parameter machine learning classifier for
staging HCV infection. The mode allows for more accurate detection of recent HCV infection
than models based only on population diversity and provides new insights into mechanisms of
infection progression.

2. Materials and M ethods

2.1 Data Collection and Preprocessing

We analyzed intra-host HCV populations sampled from recently (N=98) and persistently
(N=256) infected persons collected as described in3>. The E1/E2 junction of the HCV genome (L
= 246nt), which contains the hypervariable region 1 (HVR1), was sequenced using the GS FLX
System and the GS FLX Titanium Sequencing Kit (454 Life Sciences, Roche, Branford, CT).
Obtained sequences were processed using the error correction and haplotyping algorithm KEC™,
which produced 245,878 unique viral haplotypes with frequencies.

2.2 Parameters Calculation

The analyzed parameters could be loosely split into four groups. genomic parameters,
complexity parameters, network parameters and biochemical parameters. We assumed that a
given intra-host population contains n unique haplotypes with frequencies f, ..., f,,- Sixteen
parameters corresponding to this population congtitutes its feature vector.

Genomic Parameters

These parameters are obtained by direct comparison of sequences from each population.
Distance-based parameters include mean and standard deviation of pairwise hamming distance
distribution, and the conservation score of the population consensus sequence calculated with the
NUC44 scoring matrix. We also utilized the so-called mutation frequency parameter,® which is
defined as the mean distance between all haplotypes and the most frequent haplotype. All four
parameters measure the population diversity.

Diversity was also quantified using three entropy-based parameters. For a genomic position i, its
positional k-entropy is defined as the entropy of the frequency distribution of k-mers
(subseguences of length k) starting at i. An average positional k-mer entropy E), is the mean of
positional k-entropies over all positions:

L-k+1
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Here h is a k-mer, H; is the set of k-mers starting from the i-th position and f;(h) refers to the
relative frequency of h inside H;. For k = L the parameter E, is an entropy of observed
haplotype frequencies, while for k = 1 it is an average position-wise nucleotide entropy. In our
model we used entropies E,, E; and E;,.

Next, we estimated the frequency of transversions (mutations between purines and pyrimidines)
among all observed mutations within the population. This parameter is suggested by previous
studies® that reported higher frequencies of transitions over transversionsin HCV populations.
SHlective Pressure was measured using the DN/DS ratio, which has been calculated as the ratio
of rates of non-synonymous (DN) and synonymous (DS) substitutions with respect to the most
frequent genomic variant.

2.3 Complexity Parameters

PCA complexity is derived from principal component analysis (PCA). For each population, its
alignment is transformed into n x L numerical matrix, and the complexity is defined as the
percentage of principal components required to explain at least « = 50% percent of the observed
genetic variance. PCA complexity measures the effective dimensionality of the population as the
multidimensional system.

Kolmogorov complexity is the classical concept of information theory, which quantifies the
descriptive/information complexity of a string over a finite alphabet. Informally it is defined as
the highest possible degree of compression of a given string without loss of information.
Although the exact value of Kolmogorov complexity is algorithmically incomputable, it can be
efficiently approximated using data compression techniques. In our case, each viral sequence has
been transformed into a binary string, the strings have been concatenated, and Kolmogorov
complexity of the resulting string has been estimated by a variant of Lempel-Ziv algorithm?.

2.3.1 Network Parameters

This group of parameters is derived from the analysis of genetic networks of HCV populations,
that represent a sequence space® of a virus. Formally, for each patient its genetic network
Gy = (V,E) is a graph, whose vertices V represent sampled viral haplotypes, and edges E
connect variants which differ by at most T mutations (by default T = 1) (see Fig. 1). With each
vertex we associate the frequency of the corresponding haplotype. In the case of a large
population size accompanied by a high mutation rate and a fast reproduction time, genetic
networks constructed usng NGS data represent population structures significantly more
accurately than phylogenetic trees'’. Their structure is shaped by various factors, such as
epistasis, founder effects, and selection pressures that affect the virus over the course of
infection®?. For each network, the following four parameters have been calculated.
Robustness/selection balance has been measured by the correlation between vectors of vertex
frequencies and eigenvector centralities. The latter is the principal eigenvector of the adjacency
matrix of Gp. In the classical quasispecies model, vertex centralities are indicative of the
mutational robustness of corresponding viral variants®, while a high frequency may be
indicative of ahigher fitness.

Topological structures of genetic networks have been assessed using two parameters. The first of
them is smetric™ s(Gy) = Y jyer did;, Which measures how close a network is to being scale-
free (here, d; is adegree (number of neighbors) of a vertex i). Scale-free networks are ubiquitous
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in biological and social systems and share specific properties such as a power-law degree
distribution, small diameter and presence of hubs. To account for variable sample sizes, is
normalized by the factor (the order of magnitude of the maximum -metric for -vertex
network).

w
=
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Figure 1: Examples of genetic viral networks for a recently infected (left) and a persistently infected (right) individual. The viral
network of the recently infected host has the structural properties typical for scale-free networks.

The second network structural parameter is the clustering coefficient, which measures the degree
to which network vertices tend to cluster together. It is defined as the probability that a random
connected vertex triplet is complete (i.e. every pair of vertices is connected by an edge).

Evolutionary dynamics parameter estimates an age of the genetic network using an evolutionary
model. Given n viral variants, we simulate their frequencies using a system of
ordinary differential equations (S1)—<S3), which describes the interaction of the viral population
with the host’s immune system (Supplemental Section S1). We classify populations as recent or
persistent based on the qualitative behavior of the function describing the deviation of simulated
and observed frequencies over time. Formally, we define an estimated population age as the time

, when simulated viral frequencies achieve the best agreement with observed
frequencies, i.e, where IS a Jensen-Shannon divergence
between distributions and . Owing to the inherent uncertainty of the quantitative
parameters of the model, rather than using as a prediction variable we utilize qualitative
characteristics of the divergence function . Namely, persistent and recent populations

are characterized by divergence functions with descending and ascending trends, respectively
(Fig. S1, see Supplemental Section S1). The classification is performed separately for each
connected component of the genetic network, and the patient is classified as persistently infected
(the parameter ), if at least one of the components is persistent, and as recently
infected ( , otherwise.

2.3.2 Biochemical parameter

For each viral sequence, we assess whether this sequence has physico-chemical properties
associated with recent or persistent infection. The biochemical index of an intra-host population
is thus defined as the sum of frequencies of variants identified as having a physico-chemical
profile pointing to persistent infection.
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The method for evaluation of the properties of a given viral haplotype is described in detail in
Supplemental Section S2. Briefly, for a given sequence we construct its biochemical feature
profile using the following physico-chemical indexes of DNA dimers:. the thermodynamic
indexes (Breslauer-dH and Breslauer-dG), structural indexes (twist-tilt, slide-rise, protein-DNA
twist, dide-2, twist-1), the nucleotide composition index (G-content) and the energy indexes of
DNA (stabilizing energy of Z DNA and enthalpy)®. Such set of parameters can accurately
measure changes in structure-function relationships and can be used to predict a broad range of
biological and biochemical properties of DNA/RNA biomolecules”. The constructed set of
features is processed by the problem-specific dimensionality reduction and feature selection
pipeline, and binarized. The obtained binary feature vector representations of intra-host HCV
variants were used as input data to train a stochastic gradient descent (SGD) classifier®. The
SGD classifier implements regularized linear models with stochastic gradient descent (SGD)
learning and is a very efficient approach, with linear training cost, which can easily be scaled to
big data problems. Selection and tuning of the hyperparameters of the SGD classifier was done
using a balanced training set (1,968 and 1,965 feature vectors for sequences sampled from
recently and persistently infected hosts) and assessed by five-fold cross-validation.

2.4 Machine Learning Classifier

Feature vectors of recently and chronically infected hosts were used to train machine learning
classifiers for infection stage prediction. Given a labeled training set comprising feature vectors
together with their class labels (recent or persistent), each classifier is fitted to the training data
by adjusting its model parameters and assigns labels for unlabeled feature vectors using the
trained moddl. In this study, we used Support Vector Machines with linear and polynomial
kernel and Logistic Regression. Both approaches are classical supervised learning methods that
construct a hyperplane in the multidimensional Euclidean space, which serves as a separator for
feature vectors from classes of recently and persistently infected hosts.

Figure 2: Left: 3-D projection of feature vectors of recently and persistently infected hosts (with highly correlated features
removed) constructed by multidimensional scaling. Right: heatmap of absolute values of pairwise correlations between
parameters
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3 Results

3.1 Stage-specific distributions of parameters.

Except for several diversity measures (k-entropy, site entropy, mean distance, conservation score
and mutation frequency), there is a small-to-medium correlation between the parameters (Fig. 2),
demonstrating that they reflect different properties of intra-host viral populations.

Persistently infected Recently infected

Parameters p-value Mean 95% Cl Mean 95% CI

1. Mean distance 1.41E-24 0-034 (0-031, 0-037) 0-015 (0-012, 0-017)
2. Std distance 4-10E-14 0-019 (0-018, 0-021) 0-010 (0-007, 0-013)
3. Conservation score 5-11E-25 0-422 (0-393, 0-451) 0-188 (0-155, 0-221)
4. Mutation frequency 3-07E-16 0-023 (0-021, 0-026) 0-010 (0-007, 0-013)
5. k-entropy 7-00E-23 0630 (0-602, 0-658) 0-357 (0-323, 0-392)
6. Frequency entropy 4-56E-06 0-668 (0-648, 0-689) 0-567 (0-527, 0-607)
7. SNV entropy 1.14E-21 0-084 (0-079, 0-089) 0-043 (0-037, 0-048)
8. Transversion mutation 1-06E-07 0-061 (0-054, 0-068) 0-032 (0-027, 0-038)
9. DN/DS 5-39E-10 0-713 (0-626, 0-779) 1-330 (1-096, 1-565)
10. PCA complexity 4-91E-04 0-014 (0-012, 0-026) 0-034 (0-023, 0-045)
11. Kolmogorov complexity | 1-55E-11 0-041 (0-040, 0-043) 0-052 (0-048, 0-056)
12. Robustness/Selection 3-66E-15 0-628 (0-608, 0-647) 0-386 (0-329, 0-442)
13. s-metric 1-93E-20 0-001 (0, 0:002) 0-044 (0-023, 0-065)
14. Clustering coefficient 2-08E-13 0-082 (0-064, 0-100) 0-356 (0-292, 0-420)
15. ODE 2-42E-06 -0:270 (-0-378, -0-162) 0-224 (0-055, 0-394)
16. Biochemical parameter | 2-92E-35 0628 (0-614, 0-642) 0-379 (0-354, 0-403)

Table 1: Parameters with a significant association to the infection stage. The columns contain p-values of U-test, mean values,
and 95% confidence intervals for viral populations among persistently and recently infected persons.

Feature vectors of recent and persistent populations are separable from each other (Fig. 2). For
each parameter, Mann-Whitney U-test suggests statistically significant difference between recent
and persistent intra-host populations (Table 1).
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As expected, diversities are on average higher for persistent than recent populations (p-values
between 1.41-107%* and 4.56-107°; Fig. 3 (1-7)). Higher genetic diversity of persistent
populations is accompanied by significantly lower PCA and Kolmogorov complexities (p =
491-10"* and p = 1.55- 1071%; Fig. 3 (10-11)). This could be explained by the role of intra-
host adaptation during the later stage of infection, when genomes are highly specific to the
environment and SNVs selected over the course of intra-host evolution are highly
interdependent, thus reducing the effective dimensionality of the population. It is known that
high Kolmogorov complexity indicates high level of randomness of a sequence, while low
complexity implies the presence of specific structural patterns inside a sequence. Thus, lower
Kolmogorov complexity at later stages of disease suggests the increase in strength of epistatic
connectivity among nucleotide positions during intra-host evolution and points to a higher level
of adaptation and specialization of members of intra-host populations. At the earlier stages of
infection, nucleotide changes are seemingly more random, resulting in populations with higher
dimensionality. Increase in negative selection additionally contributes to the reduction of
dimensionality and complexity at later stages of HCV infection (p = 5.39 - 10719; Fig. 3 (9)).
Transition mutations were overwhelmingly more frequent than transversion mutations for both
classes of samples. This fact agrees with the previously published results®, although the
magnitude of difference vary along the genome: HVRL transitions are ~ 18 times more frequent
than transversions, while a 75-fold difference was reported for NS5B®. Prevalence of
transversions was ~ 2 times higher in persistent populations (p = 1.06 - 10~7; Fig. 3 (8)). This
phenomenon could be interpreted as another reflection of increasing intra-host adaptation over
the course of infection. Indeed, transversions represent a higher genetic barrier for the selection
of escape mutants from HCV-specific immune responses®. Thus, growth of transversion
frequencies at later evolutionary stages may mark a declining role of immune escape and a
growing role of other evolutionary mechanisms such as adaptation by antigenic cooperation®.
Genetic networks of recent and persistent intra-host populations possess different structural
properties. Networks of recent populations have significantly higher s-metrics and clustering
coefficients (p = 1.93 - 1072% and p = 2.08 - 10713; Fig. 3 (13-14)). It indicates that, in contrast
to the persistent populations, they tend to have structural properties more typical for scale-free
networks, including the power-law degree distribution with clearly manifested hubs (high-degree
vertices), with their vertices having propensity to cluster (Fig.1). This observation can be
explained by the role of founder viral variants at the earlier stage of infection. A significantly
higher correlation between frequencies and network centralities of variants in persistent
populations (p = 3.66 - 10~1°; Fig. 3 (12)) indicates that the population structure at later stages
is significantly influenced by mutational robustness, while at earlier stagesit is basically defined
by founders. Recent and persistent HCV populations are also separable by an evolutionary
dynamic parameter c,pr (p = 2.42 - 107°; Fig. 3 (15)).

Finally, individual sequences of recent and persistent populations have distinct physico-chemical
properties (p = 2.92 - 1073%; Fig. 3 (16)). It suggests that the physico-chemical property of
HVRL1 is influenced by, and is responsive to, within-host environmental factors specific to the
recent and persistent stages of HCV infection.
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3.2 Machine Learning Classification.

Mutation frequency, k-entropy and frequency entropy have been excluded from the prediction
model as they are highly correlated with other parameters. The remaining 13 parameters were
used to train Support Vector Machines (SVM) and Logistic Regression classifiers for binary
classification of intra-host viral populations labelled as "persistent” and "recent". Accuracy of
classifiers has been assessed using a two-step cross-validation. First, to account for the bias
associated with unequal numbers of cases with persistent (n = 256) and recent (n = 98)
infection, repeated random subsampling of 98 populations from the persistent sample dataset was
performed. For each of the balanced training sets 10-fold cross-validation was carried out.

The average prediction accuracies are reported in Table 2. Classification performance evaluation
of al methods indicates a high accuracy of infection stage inference, with SVM with quadratic
kernel demonstrating the highest accuracy of 95.22%.

Method Prediction Accuracy
SVM - linear kernel 95:17%
SVM - quadratic kernel 95-22%
Logistic regression 93-17%

Table 2: HCV infection stage prediction accuracies of machine learning methods

SVM classifier with quadratic kernel has been compared to the previously published HCV
infection staging models™ which classify intra-host viral populations as recent or persistent using
frequency entropy, SNV entropy or mutation frequency. The ROC curves of the classifiers are
shown in Fig. 4. Previously proposed methods (AUROC = 0.81, 0.66 and 0.78, respectively)
were less accurate in comparison with the SVM classifier (AUROC = 0.99), thus suggesting
that diversity parameters alone are not sufficient for accurate distinction between recent and
persistent cases. SVM classifier performed at the expected lower accuracy on randomly labelled
datasets (average AUROC = 0.4966), thus indicating that the associations between parameter
distributions and infection stages are likely due to the structural and evolutionary factors rather
than to random statistical correlationsin the data.
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Figure 3: Box plots of parameter distributions for recent (left box plot on each graph) and persistent (right box plot on each
graph) intra-host HCV populations. The plots are in the same order as in Table 1.
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Figure 4: ROC Curves of classification models

4 Discussion

We present the results of comprehensive analyses of the structure of intra-host viral populations
using alarge set of samples from individuals with recent and persistent infection, which
significantly exceeds data sets used in earlier studies™. Amplicons covering HCV HVR1 have
been sequenced by NGS. Intrinsically disordered regions (IDR) of proteins like HVYR1 seem to
be most useful for application in models to identify viral clinical properties from sequences. It
has an extensive epistatic connectivity across the entire HCV polyprotein®’, and is associated
with immune escape®®, drug resistance’”® and virulence®. Consequently, IDRs play an
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important role in viral adaptation to the host environment, making regions like HVR1 sensitive
"sensors’ that accurately reflect intra-host biological changes during the infection process.

We identified a set of quantitative characteristics of intra-host HCV populations strongly
associated with stages of infection. Our results indicate significant differences in the structure of
HCV populations sampled from recently and persistently infected hosts. Models constructed
using these parameters allowed us to train machine learning classifiers capable of inferring
infection stage from HCV sequence data with accuracies as high as 95%. Our study confirms a
previously established positive correlation between infection stage and intra-host viral
diversity®*1%3!. However, because of complexities in the structural development of intra-host
populations affected by bouts of selective sweeps and negative selection during chronic
infection®, simple metrics of genetic heterogeneity are insufficient for the accurate staging of
HCV infections. High accuracy could be achieved by using a combination of parameters
measuring different structural and evolutionary properties of viral populations.

The proposed prediction models may serve as cyber-molecular assays for staging infection, that
could potentially complement and subgtitute standard laboratory assays. In particular, the
proposed models are currently being incorporated into Global Hepatitis Outbreak and
Surveillance Technology (GHOST)* — a web-based molecular surveillance system developed
and maintained by CDC. They could also be applicable to other highly mutable viruses, such as
HIV.

The detection of a strong association between several HCV genetic factors and stages of
infection suggests that intra-host HCV populations develop in a complex but regular and
predictable manner during the course of infection. Decline in dN/dS, increase in abundance of
transversion mutations and decline in information complexity of HCV population progressing
from the recent to persistent state is consistent with an orderly process of HCV population
development during infection as was suggested earlier™® and is different from a model of an
"arms race" predicting a continuous genetic diversification. These observations support the
hypothesis that intra-host viral populations may evolve as quas-social systems by
complementary speciaization of viral variants engaged in a certain type of cooperation®**. Such
specialization enables HCV populations to adapt to an intra-host environment as a group of
cooperators rather than independent variants.

Ethics approval and consent to participate

Research was conducted as approved by the Institutional Review Board of the Centers for Disease
Control and Prevention, Atlanta, GA (protocol 7270.0).

Disclaimer

The findings and conclusionsin this report are those of the authors and do not necessarily represent the
official position of the Centers for Disease Control and Prevention and Georgia State University.
Availability of data and material

The proposed method' s scripts are available in the following GitHub repository
https:.//github.com/compbel/recentvschronic. The data can be requested from the CDC.
Competing interests

The authors declare they don’t have any competing interests.

References

1. Polaris Observatory HCV Collaborators. Global prevalence and genotype distribution of
hepatitis C virus infection in 2015: a modelling study. Lancet Gastroenterol Hepatol. 2017

11


https://doi.org/10.1101/2020.06.17.157792
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.17.157792; this version posted June 19, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Mar;2(3):161-76.

2. Zibbell JE, Igbal K, Patel RC, Suryaprasad A, Sanders KJ, Moore-Moravian L, et al.
Increases in hepatitis C virus infection related to injection drug use among persons aged
<30 years - Kentucky, Tennessee, Virginia, and West Virginia, 2006-2012. MMWR Morb
Mortal Wkly Rep. 2015 May 8;64(17):453-8.

3. Domingo E, Sheldon J, Perales C. Viral quasispecies evolution. Microbiol Mol Biol Rev.
2012 Jun;76(2):159-216.

4. Skums P, Bunimovich L, Khudyakov Y. Antigenic cooperation among intrahost HCV
variants organized into a complex network of cross-immunoreactivity. Proc Natl Acad Sci U
S A. 2015 May 26;112(21):6653-8.

5. Ramachandran S, Campo DS, Dimitrova ZE, Xia G-L, Purdy MA, Khudyakov YE. Temporal
variations in the hepatitis C virus intrahost population during chronic infection. J Virol. 2011
Jul;85(13):6369-80.

6. Campo DS, Xia G-L, Dimitrova Z, Lin Y, Forbi JC, Ganova-Raeva L, et al. Accurate Genetic
Detection of Hepatitis C Virus Transmissions in Outbreak Settings. J Infect Dis. 2016 Mar
15;213(6):957-65.

7. Gould SJ. Wonderful Life: The Burgess Shale and the Nature of History. W. W. Norton &
Company; 1990. 352 p.

8. Seo S, Silverberg MJ, Hurley LB, Ready J, Saxena V, Witt D, et al. Prevalence of
spontaneous clearance of hepatitis C virus infection doubled from 1998 to 2017. Clin
Gastroenterol Hepatol 2020;18:511-513.

9. Lassig M, Mustonen V, Walczak AM. Predicting evolution. Nat Ecol Evol. 2017 Feb
21;1(3):77.

10. Araujo AC, Astrakhantseva 1V, Fields HA, Kamili S. Distinguishing Acute from Chronic
Hepatitis C Virus (HCV) Infection Based on Antibody Reactivities to Specific HCV Structural
and Nonstructural Proteins [Internet]. Vol. 49, Journal of Clinical Microbiology. 2011. p. 54—
7. Available from: http://dx.doi.org/10.1128/jcm.01064-10

11. Bowen DG, Walker CM. Adaptive immune responses in acute and chronic hepatitis C virus
infection. Nature. 2005 Aug 18;436(7053):946-52.

12. Tsertsvadze T, Sharvadze L, Chkhartishvili N, Dzigua L, Karchava M, Gatserelia L, et al.
The natural history of recent hepatitis C virus infection among blood donors and injection
drug users in the country of Georgia. Virol J. 2016 Feb 3;13:22.

13. Montoya V, Olmstead AD, Janjua NZ, Tang P, Grebely J, Cook D, et al. Differentiation of
acute from chronic hepatitis C virus infection by nonstructural 5B deep sequencing: a
population-level tool for incidence estimation. Hepatology. 2015 Jun;61(6):1842-50.

14. Astrakhantseva IV, Campo DS, Araujo A, Teo C-G, Khudyakov Y, Kamili S. Differences in
variability of hypervariable region 1 of hepatitis C virus (HCV) between acute and chronic
stages of HCV infection. In Silico Biol. 2011;11(5-6):163-73.

15. Gismondi MI, Carrasco JMD, Valva P, Becker PD, Guzméan CA, Campos RH, et al.

12


https://doi.org/10.1101/2020.06.17.157792
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.17.157792; this version posted June 19, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Dynamic changes in viral population structure and compartmentalization during chronic
hepatitis C virus infection in children [Internet]. Vol. 447, Virology. 2013. p. 187-96.
Available from: http://dx.doi.org/10.1016/j.virol.2013.09.002

16. Palmer BA, Dimitrova Z, Skums P, Croshie O, Kenny-Walsh E, Fanning LJ. Analysis of the
evolution and structure of a complex intrahost viral population in chronic hepatitis C virus
mapped by ultradeep pyrosequencing. J Virol. 2014 Dec;88(23):13709-21.

17. Campo DS, Dimitrova Z, Yamasaki L, Skums P, Lau DT, Vaughan G, et al. Next-generation
sequencing reveals large connected networks of intra-host HCV variants. BMC Genomics.
2014 Jul 14;15 Suppl 5:S4.

18. Lu L, Tatsunori N, Li C, Waheed S, Gao F, Robertson BH. HCV selection and HVR1
evolution in a chimpanzee chronically infected with HCV-1 over 12 years [Internet]. Vol. 38,
Hepatology Research. 2008. p. 704-16. Available from: http://dx.doi.org/10.1111/j.1872-
034x.2008.00320.x

19. Skums P, Dimitrova Z, Campo DS, Vaughan G, Rossi L, Forbi JC, et al. Efficient error
correction for next-generation sequencing of viral amplicons. BMC Bioinformatics. 2012 Jun
25;13 Suppl 10:S6.

20. Powdrill MH, Tchesnokov EP, Kozak RA, Russell RS, Martin R, Svarovskaia ES, et al.
Contribution of a mutational bias in hepatitis C virus replication to the genetic barrier in the
development of drug resistance [Internet]. Vol. 108, Proceedings of the National Academy
of Sciences. 2011. p. 20509-13. Available from:
http://dx.doi.org/10.1073/pnas.1105797108

21. Kaspar F, Schuster HG. Easily calculable measure for the complexity of spatiotemporal
patterns. Phys Rev A Gen Phys. 1987 Jul 15;36(2):842-8.

22. Schaper S, Johnston IG, Louis AA. Epistasis can lead to fragmented neutral spaces and
contingency in evolution. Proc Biol Sci. 2012 May 7;279(1734):1777-83.

23. van Nimwegen E, Crutchfield JP, Huynen M. Neutral evolution of mutational robustness.
Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9716-20.

24. LiL, Alderson D, Doyle JC, Willinger W. Towards a Theory of Scale-Free Graphs:
Definition, Properties, and Implications [Internet]. Vol. 2, Internet Mathematics. 2005. p.
431-523. Available from: http://dx.doi.org/10.1080/15427951.2005.10129111

25. Chen W, Lei T-Y, Jin D-C, Lin H, Chou K-C. PseKNC: a flexible web server for generating
pseudo K-tuple nucleotide composition. Anal Biochem. 2014 Jul 1;456:53-60.

26. Zhang T. Solving large scale linear prediction problems using stochastic gradient descent
algorithms [Internet]. Twenty-first international conference on Machine learning - ICML '04.
2004. Available from: http://dx.doi.org/10.1145/1015330.1015332

27. Lara J, Tavis JE, Donlin MJ, Lee WM, Yuan H-J, Pearlman BL, et al. Coordinated evolution
among hepatitis C virus genomic sites is coupled to host factors and resistance to
interferon. In Silico Biol. 2011;11(5-6):213-24.

28. Law JLM, Logan M, Wong J, Kundu J, Hockman D, Landi A, et al. Role of the E2

13


https://doi.org/10.1101/2020.06.17.157792
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.17.157792; this version posted June 19, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Hypervariable Region (HVR1) in the Immunogenicity of a Recombinant Hepatitis C Virus
Vaccine. J Virol [Internet]. 2018 Jun 1;92(11). Available from:
http://dx.doi.org/10.1128/JV1.02141-17

29. Aurora R, Donlin MJ, Cannon NA, Tavis JE. Genome-wide hepatitis C virus amino acid
covariance networks can predict response to antiviral therapy in humans. J Clin Invest.
2009 Jan;119(1):225-36.

30. Lara J, Khudyakov Y. Epistatic connectivity among HCV genomic sites as a genetic marker
of interferon resistance. Antivir Ther. 2012 Dec 7;17(7 Pt B):1471-5.

31. Shen C, Gupta P, Xu X, Sanyal A, Rinaldo C, Seaberg E, et al. Transmission and evolution
of hepatitis C virus in HCV seroconverters in HIV infected subjects. Virology. 2014 Jan
20;449:339-49.

32. Raghwani J, Rose R, Sheridan I, Lemey P, Suchard MA, Santantonio T, et al. Exceptional
Heterogeneity in Viral Evolutionary Dynamics Characterises Chronic Hepatitis C Virus
Infection. PLoS Pathog. 2016 Sep;12(9):e1005894.

33. Longmire AG, Sims S, Rytsareva I, Campo DS, Skums P, Dimitrova Z, et al. GHOST:
global hepatitis outbreak and surveillance technology. BMC Genomics. 2017 Dec
6;18(Suppl 10):916.

34. Domingo-Calap P, Segredo-Otero E, Durdn-Moreno M, Sanjuan R. Social evolution of
innate immunity evasion in a virus [Internet]. Vol. 4, Nature Microbiology. 2019. p.1006-13.
Available from: http://dx.doi.org/10.1038/s41564-019-0379-8

35. Lara J, Teka M, and Khudyakov Y. Identification of recent cases of hepatitis C virus

infection using physical-chemical properties of hypervariable region 1 and a radial basis
function neural network classifier. BMC Genomics. 2017; 18(Suppl 10):880.

14


https://doi.org/10.1101/2020.06.17.157792
http://creativecommons.org/licenses/by-nc-nd/4.0/

