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Summary 

 
Background Detection of incident hepatitis C virus (HCV) infections is crucial for identification 
of outbreaks and development of public health interventions. However, there is no single 
diagnostic assay for distinguishing recent and persistent HCV infections. HCV exists in each 
infected host as a heterogeneous population of genomic variants, whose evolutionary dynamics 
remain incompletely understood. Genetic analysis of such viral populations can be applied to the 
detection of incident HCV infections and used to understand intra-host viral evolution.  
 
Methods We studied intra-host HCV populations sampled using next-generation sequencing 
from 98 recently and 256 persistently infected individuals. Genetic structure of the populations 
was evaluated using 245,878 viral sequences from these individuals and a set of selected 
parameters measuring their diversity, topological structure, complexity, strength of selection, 
epistasis, evolutionary dynamics, and physico-chemical properties.  
 
Findings Distributions of the viral population parameters differ significantly between recent and 
persistent infections. A general increase in viral genetic diversity from recent to persistent 
infections is frequently accompanied by decline in genomic complexity and increase in 
structuredness of the HCV population, likely reflecting a high level of intra-host adaptation at 
later stages of infection. Using these findings, we developed a Machine Learning classifier for 
the infection staging, which yielded a detection accuracy of 95.22%, thus providing a higher 
accuracy than other genomic-based models. 
 
Interpretation The detection of a strong association between several HCV genetic factors and 
stages of infection suggests that intra-host HCV population develops in a complex but regular 
and predictable manner in the course of infection. The proposed models may serve as a 
foundation of cyber-molecular assays for staging infection, that could potentially complement 
and/or substitute standard laboratory assays. 
 
Funding AZ and PS were supported by NIH grant 1R01EB025022. PIB was supported by GSU 
MBD fellowship.  
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1. Introduction 
 
Hepatitis C virus (HCV) infection remains a major cause of morbidity and mortality, with an 
estimated 70 million people being HCV infected worldwide in 20151. HCV infection is the 
leading cause of chronic liver diseases and hepatocellular carcinoma worldwide, contributing to 
the death of more than 350,000 people in 20151

. Hepatitis C outbreaks continue to occur, posing 
a serious challenge to public health2

. HCV is highly mutable. As a result, each infected 
individual hosts a heterogeneous population of genetically related HCV variants or 
quasispecies3

. Substantial diversity of intra-host viral populations plays a crucial role in disease 
progression and epidemic spread4-6

. However, intra-host dynamics of HCV and other RNA 
viruses remain poorly understood. One of the most important questions is the relative 
contribution of random and deterministic evolutionary factors in disease progression, or, using 
the metaphor of S.J. Gould7, whether is it possible to “replay the tape of life” for the virus 
evolution inside a host. This question is of high importance for biomedical research, as 
predictability of viral evolution potentially implies the power to understand and control the 
disease8,9, which may result in advanced diagnostic and treatment strategies. 
In this paper, we study evolutionary factors associated with the transition between HCV infection 
stages. In more than 50% of cases untreated HCV infection proceeds to the chronic phase, which 
can lead to the development of liver cirrhosis and/or hepatocellular carcinoma8

. Accurate recent 
or persistent staging of HCV infection is important for biomedical applications. In clinical 
settings, it may inform the patient management and treatment strategy. In epidemiology, 
identification of acute cases allows for detection and investigation of recent transmissions and 
outbreaks and provides information on disease incidence. Understanding of changes in intra-host 
HCV populations at different stages of infection would constitute a large step towards reliable 
forecasting of viral evolutionary dynamics. 
Recent HCV infection is usually accessed using clinical symptoms and time since 
seroconversion. HCV infection may, however, remain asymptomatic for years while 
seroconversion is not frequently detected, preventing accurate identification of infection stages. 
Several laboratory methods have been reported for distinguishing acute and chronic stages of 
infection10,11. Detection of HCV RNA in the absence of anti-HCV activity in serum specimens 
was used as an indication of recent HCV infection12. Although a strong marker, it has a very 
short duration and cannot be used for reliable detection of acute infections.  
Advent of next-generation sequencing (NGS) presented an opportunity to sample and analyze 
unprecedented large numbers of intra-host viral variants from numerous infected individuals. 
HCV variants sampled by NGS have been used to detect stages of HCV infection13,14. The stage 
detection methods are generally based on the assumption that intra-host viral evolution is driven 
by the continuous immune escape resulting in genetic diversification. Consequently, quantitative 
measures of genetic diversity of intra-host viral variants are assumed to be most useful for 
staging. However, several recent reports contested the veracity of this assumption. In particular, 
after initial diversification, intra-host HCV populations may actually lose heterogeneity and stop 
diverting at later stages of infection,5,15 with certain viral variants persisting in infected hosts for 
years5,16. Furthermore, this process is accompanied by increase of negative selection over the 
course of HCV infection5,15,17,18. These findings suggest a high level of intra-host adaptation at 
late stages of infection4 and indicate that genetic heterogeneity is not a reliable marker for 
infection staging, and more elaborate metrics are needed to understand HCV evolution and to 
accurately classify recent and persistent HCV infection.  
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Here, we present a new approach for staging HCV infection using quantitative genomic 
measures to evaluate diversity, information content, effective dimensionality, topological 
structure, evolutionary dynamics and physical-chemical properties of intra-host HCV variants 
and populations. Analysis of parameters’ distributions at early and late stages of infection 
suggests that intra-host HCV populations evolve in a complex but regular and predictable 
manner. Based on these findings, we propose a multi-parameter machine learning classifier for 
staging HCV infection. The model allows for more accurate detection of recent HCV infection 
than models based only on population diversity and provides new insights into mechanisms of 
infection progression.  
 

2. Materials and Methods 

 

2.1 Data Collection and Preprocessing 

 
We analyzed intra-host HCV populations sampled from recently (N=98) and persistently 
(N=256) infected persons collected as described in35. The E1/E2 junction of the HCV genome (L 
= 246nt), which contains the hypervariable region 1 (HVR1), was sequenced using the GS FLX 
System and the GS FLX Titanium Sequencing Kit (454 Life Sciences, Roche, Branford, CT). 
Obtained sequences were processed using the error correction and haplotyping algorithm KEC19, 
which produced 245,878 unique viral haplotypes with frequencies.  
 

2.2 Parameters Calculation 

 
The analyzed parameters could be loosely split into four groups: genomic parameters, 
complexity parameters, network parameters and biochemical parameters. We assumed that a 
given intra-host population contains n unique haplotypes with frequencies ��, … , ��. Sixteen 
parameters corresponding to this population constitutes its feature vector.  
 

Genomic Parameters 

 
These parameters are obtained by direct comparison of sequences from each population.  
Distance-based parameters include mean and standard deviation of pairwise hamming distance 
distribution, and the conservation score of the population consensus sequence calculated with the 
NUC44 scoring matrix. We also utilized the so-called mutation frequency parameter,13 which is 
defined as the mean distance between all haplotypes and the most frequent haplotype. All four 
parameters measure the population diversity. 
Diversity was also quantified using three entropy-based parameters. For a genomic position �, its 
positional �-entropy is defined as the entropy of the frequency distribution of �-mers 
(subsequences of length �) starting at �. An average positional k-mer entropy ��  is the mean of 
positional �-entropies over all positions:  

 

 �� � 1

 � � � 1 
 
 �����������������

����

	
���

���

 (1) 
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Here � is a �-mer, ��  is the set of �-mers starting from the �-th position and ����� refers to the 
relative frequency of � inside �� . For � � 
 the parameter �	 is an entropy of observed 
haplotype frequencies, while for � � 1 it is an average position-wise nucleotide entropy. In our 
model we used entropies ��, �	 and ��
. 
Next, we estimated the frequency of transversions (mutations between purines and pyrimidines) 
among all observed mutations within the population. This parameter is suggested by previous 
studies20 that reported higher frequencies of transitions over transversions in HCV populations. 
Selective Pressure was measured using the DN/DS ratio, which has been calculated as the ratio 
of rates of non-synonymous (DN) and synonymous (DS) substitutions with respect to the most 
frequent genomic variant. 
 

2.3 Complexity Parameters 

 
PCA complexity is derived from principal component analysis (PCA). For each population, its 
alignment is transformed into � � 
 numerical matrix, and the complexity is defined as the 
percentage of principal components required to explain at least � � 50% percent of the observed 
genetic variance. PCA complexity measures the effective dimensionality of the population as the 
multidimensional system. 
Kolmogorov complexity is the classical concept of information theory, which quantifies the 
descriptive/information complexity of a string over a finite alphabet. Informally it is defined as 
the highest possible degree of compression of a given string without loss of information. 
Although the exact value of Kolmogorov complexity is algorithmically incomputable, it can be 
efficiently approximated using data compression techniques. In our case, each viral sequence has 
been transformed into a binary string, the strings have been concatenated, and Kolmogorov 
complexity of the resulting string has been estimated by a variant of Lempel-Ziv algorithm21. 
  

2.3.1 Network Parameters 
 
This group of parameters is derived from the analysis of genetic networks of HCV populations, 
that represent a sequence space20 of a virus. Formally, for each patient its genetic network 
�� � ��, �� is a graph, whose vertices � represent sampled viral haplotypes, and edges � 
connect variants which differ by at most � mutations (by default � � 1) (see Fig. 1). With each 
vertex we associate the frequency of the corresponding haplotype. In the case of a large 
population size accompanied by a high mutation rate and a fast reproduction time, genetic 
networks constructed using NGS data represent population structures significantly more 
accurately than phylogenetic trees17. Their structure is shaped by various factors, such as 
epistasis, founder effects, and selection pressures that affect the virus over the course of 
infection5,22. For each network, the following four parameters have been calculated. 
Robustness/selection balance has been measured by the correlation between vectors of vertex 
frequencies and eigenvector centralities. The latter is the principal eigenvector of the adjacency 
matrix of ��. In the classical quasispecies model, vertex centralities are indicative of the 
mutational robustness of corresponding viral variants23, while a high frequency may be 
indicative of a higher fitness.  
Topological structures of genetic networks have been assessed using two parameters. The first of 
them is s-metric24 ����� �  ∑ !�!���,���� , which measures how close a network is to being scale-
free (here, !�  is a degree (number of neighbors) of a vertex �). Scale-free networks are ubiquitous 
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in biological and social systems and share specific properties such as a power-law degree
distribution, small diameter and presence of hubs. To account for variable sample sizes,  is
normalized by the factor  (the order of magnitude of the maximum -metric for -vertex
network).  

Figure 1: Examples of genetic viral networks for a recently infected (left) and a persistently infected (right) individual. The vira

network of the recently infected host has the structural properties typical for scale-free networks. 

The second network structural parameter is the clustering coefficient, which measures the degree
to which network vertices tend to cluster together. It is defined as the probability that a random
connected vertex triplet is complete (i.e. every pair of vertices is connected by an edge). 
Evolutionary dynamics parameter estimates an age of the genetic network using an evolutionary
model. Given n viral variants, we simulate their frequencies  using a system of
ordinary differential equations (S1)–(S3), which describes the interaction of the viral population
with the host’s immune system (Supplemental Section S1). We classify populations as recent or
persistent based on the qualitative behavior of the function describing the deviation of simulated
and observed frequencies over time. Formally, we define an estimated population age as the time

, when simulated viral frequencies  achieve the best agreement with observed
frequencies, i.e.,  where  is a Jensen-Shannon divergence
between distributions  and . Owing to the inherent uncertainty of the quantitative
parameters of the model, rather than using  as a prediction variable we utilize qualitative
characteristics of the divergence function . Namely, persistent and recent populations
are characterized by divergence functions with descending and ascending trends, respectively
(Fig. S1, see Supplemental Section S1). The classification is performed separately for each
connected component of the genetic network, and the patient is classified as persistently infected
(the parameter ), if at least one of the components is persistent, and as recently
infected ( , otherwise.  
 

2.3.2 Biochemical parameter 
 

For each viral sequence, we assess whether this sequence has physico-chemical properties
associated with recent or persistent infection. The biochemical index of an intra-host population
is thus defined as the sum of frequencies of variants identified as having a physico-chemical
profile pointing to persistent infection. 
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The method for evaluation of the properties of a given viral haplotype is described in detail in
Supplemental Section S2. Briefly, for a given sequence we construct its biochemical feature
profile using the following physico-chemical indexes of DNA dimers: the thermodynamic
indexes (Breslauer-dH and Breslauer-dG), structural indexes (twist-tilt, slide-rise, protein-DNA
twist, slide-2, twist-1), the nucleotide composition index (G-content) and the energy indexes of
DNA (stabilizing energy of Z DNA and enthalpy)25. Such set of parameters can accurately
measure changes in structure-function relationships and can be used to predict a broad range of
biological and biochemical properties of DNA/RNA biomolecules25. The constructed set of
features is processed by the problem-specific dimensionality reduction and feature selection
pipeline, and binarized. The obtained binary feature vector representations of intra-host HCV
variants were used as input data to train a stochastic gradient descent (SGD) classifier26. The
SGD classifier implements regularized linear models with stochastic gradient descent (SGD)
learning and is a very efficient approach, with linear training cost, which can easily be scaled to
big data problems. Selection and tuning of the hyperparameters of the SGD classifier was done
using a balanced training set (1,968 and 1,965 feature vectors for sequences sampled from
recently and persistently infected hosts) and assessed by five-fold cross-validation.  
 
2.4 Machine Learning Classifier 
 

Feature vectors of recently and chronically infected hosts were used to train machine learning
classifiers for infection stage prediction. Given a labeled training set comprising feature vectors
together with their class labels (recent or persistent), each classifier is fitted to the training data
by adjusting its model parameters and assigns labels for unlabeled feature vectors using the
trained model. In this study, we used Support Vector Machines with linear and polynomial
kernel and Logistic Regression. Both approaches are classical supervised learning methods that
construct a hyperplane in the multidimensional Euclidean space, which serves as a separator for
feature vectors from classes of recently and persistently infected hosts. 
 

Figure 2: Left: 3-D projection of feature vectors of recently and persistently infected hosts (with highly correlated features

removed) constructed by multidimensional scaling. Right: heatmap of absolute values of pairwise correlations between

parameters 
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3 Results 
 

3.1 Stage-specific distributions of parameters. 
 

Except for several diversity measures (�-entropy, site entropy, mean distance, conservation score 
and mutation frequency), there is a small-to-medium correlation between the parameters (Fig. 2), 
demonstrating that they reflect different properties of intra-host viral populations.  
 

 
Parameters 

 
p-value 

Persistently infected Recently infected 

Mean 95% CI  Mean 95% CI  

1. Mean distance 1·41E-24 0·034 (0·031, 0·037) 0·015 (0·012, 0·017) 

2. Std distance 4·10E-14 0·019 (0·018, 0·021) 0·010 (0·007, 0·013) 

3. Conservation score 5·11E-25 0·422 (0·393, 0·451) 0·188 (0·155, 0·221) 

4. Mutation frequency 3·07E-16 0·023 (0·021, 0·026) 0·010 (0·007, 0·013) 

5. k-entropy 7·00E-23 0·630 (0·602, 0·658) 0·357 (0·323, 0·392) 

6. Frequency entropy 4·56E-06 0·668 (0·648, 0·689) 0·567 (0·527, 0·607) 

7. SNV entropy 1·14E-21 0·084 (0·079, 0·089) 0·043 (0·037, 0·048) 

8. Transversion mutation 1·06E-07 0·061 (0·054, 0·068) 0·032 (0·027, 0·038) 

9. DN/DS 5·39E-10 0·713 (0·626, 0·779) 1·330 (1·096, 1·565) 

10. PCA complexity 4·91E-04 0·014 (0·012, 0·026) 0·034 (0·023, 0·045) 

11. Kolmogorov complexity 1·55E-11 0·041 (0·040, 0·043) 0·052 (0·048, 0·056) 

12. Robustness/Selection 3·66E-15 0·628 (0·608, 0·647) 0·386 (0·329, 0·442) 

13. s-metric 1·93E-20 0·001 (0, 0·002) 0·044 (0·023, 0·065) 

14. Clustering coefficient 2·08E-13 0·082 (0·064, 0·100) 0·356 (0·292, 0·420) 

15. ODE 2·42E-06 -0·270 (-0·378, -0·162) 0·224 (0·055, 0·394) 

16. Biochemical parameter 2·92E-35 0·628 (0·614, 0·642) 0·379 (0·354, 0·403) 

 

Table 1: Parameters with a significant association to the infection stage. The columns contain p-values of U-test, mean values, 

and 95% confidence intervals for viral populations among persistently and recently infected persons. 

Feature vectors of recent and persistent populations are separable from each other (Fig. 2). For 
each parameter, Mann-Whitney U-test suggests statistically significant difference between recent 
and persistent intra-host populations (Table 1). 
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As expected, diversities are on average higher for persistent than recent populations ("-values 
between 1.41 $ 10��� and 4.56 $ 10��; Fig. 3 (1-7)). Higher genetic diversity of persistent 
populations is accompanied by significantly lower PCA and Kolmogorov complexities (" �
4.91 $ 10�� and " � 1.55 $ 10���; Fig. 3 (10-11)). This could be explained by the role of intra-
host adaptation during the later stage of infection, when genomes are highly specific to the 
environment and SNVs selected over the course of intra-host evolution are highly 
interdependent, thus reducing the effective dimensionality of the population. It is known that 
high Kolmogorov complexity indicates high level of randomness of a sequence, while low 
complexity implies the presence of specific structural patterns inside a sequence. Thus, lower 
Kolmogorov complexity at later stages of disease suggests the increase in strength of epistatic 
connectivity among nucleotide positions during intra-host evolution and points to a higher level 
of adaptation and specialization of members of intra-host populations. At the earlier stages of 
infection, nucleotide changes are seemingly more random, resulting in populations with higher 
dimensionality. Increase in negative selection additionally contributes to the reduction of 
dimensionality and complexity at later stages of HCV infection (" � 5.39 $ 10���; Fig. 3 (9)).  
Transition mutations were overwhelmingly more frequent than transversion mutations for both 
classes of samples. This fact agrees with the previously published results20, although the 
magnitude of difference vary along the genome: HVR1 transitions are � 18 times more frequent 
than transversions, while a 75-fold difference was reported for NS5B20. Prevalence of 
transversions was � 2 times higher in persistent populations (" � 1.06 $ 10��; Fig. 3 (8)). This 
phenomenon could be interpreted as another reflection of increasing intra-host adaptation over 
the course of infection. Indeed, transversions represent a higher genetic barrier for the selection 
of escape mutants from HCV-specific immune responses20. Thus, growth of transversion 
frequencies at later evolutionary stages may mark a declining role of immune escape and a 
growing role of other evolutionary mechanisms such as adaptation by antigenic cooperation4. 
Genetic networks of recent and persistent intra-host populations possess different structural 
properties.  Networks of recent populations have significantly higher s-metrics and clustering 
coefficients (" � 1.93 $ 10��� and " � 2.08 $ 10���; Fig. 3 (13-14)). It indicates that, in contrast 
to the persistent populations, they tend to have structural properties more typical for scale-free 
networks, including the power-law degree distribution with clearly manifested hubs (high-degree 
vertices), with their vertices having propensity to cluster (Fig.1). This observation can be 
explained by the role of founder viral variants at the earlier stage of infection. A significantly 
higher correlation between frequencies and network centralities of variants in persistent 
populations (" � 3.66 $ 10��	; Fig. 3 (12)) indicates that the population structure at later stages 
is significantly influenced by mutational robustness, while at earlier stages it is basically defined 
by founders.  Recent and persistent HCV populations are also separable by an evolutionary 
dynamic parameter *
��  (" � 2.42 $ 10��; Fig. 3 (15)).  
Finally, individual sequences of recent and persistent populations have distinct physico-chemical 
properties (" � 2.92 $ 10��	; Fig. 3 (16)). It suggests that the physico-chemical property of 
HVR1 is influenced by, and is responsive to, within-host environmental factors specific to the 
recent and persistent stages of HCV infection.  
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3.2 Machine Learning Classification. 
 

Mutation frequency, �-entropy and frequency entropy have been excluded from the prediction 
model as they are highly correlated with other parameters. The remaining 13 parameters were 
used to train Support Vector Machines (SVM) and Logistic Regression classifiers for binary 
classification of intra-host viral populations labelled as "persistent" and "recent". Accuracy of 
classifiers has been assessed using a two-step cross-validation. First, to account for the bias 
associated with unequal numbers of cases with persistent (� � 256) and recent (� � 98) 
infection, repeated random subsampling of 98 populations from the persistent sample dataset was 
performed. For each of the balanced training sets 10-fold cross-validation was carried out.  
The average prediction accuracies are reported in Table 2.  Classification performance evaluation 
of all methods indicates a high accuracy of infection stage inference, with SVM with quadratic 
kernel demonstrating the highest accuracy of 95.22%.  
 
Method Prediction Accuracy 

SVM – linear kernel 95·17% 

SVM – quadratic kernel 95·22% 

Logistic regression 93·17% 

 

Table 2: HCV infection stage prediction accuracies of machine learning methods 

SVM classifier with quadratic kernel has been compared to the previously published HCV 
infection staging models13 which classify intra-host viral populations as recent or persistent using 
frequency entropy, SNV entropy or mutation frequency. The ROC curves of the classifiers are 
shown in Fig. 4. Previously proposed methods (+,-./ �  0.81, 0.66 and 0.78, respectively) 
were less accurate in comparison with the SVM classifier (+,-./ �  0.99�, thus suggesting 
that diversity parameters alone are not sufficient for accurate distinction between recent and 
persistent cases. SVM classifier performed at the expected lower accuracy on randomly labelled 
datasets (average +,-./ �  0.4966), thus indicating that the associations between parameter 
distributions and infection stages are likely due to the structural and evolutionary factors rather 
than to random statistical correlations in the data. 
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Figure 3: Box plots of parameter distributions for recent (left box plot on each graph) and persistent (right box plot on each 

graph) intra-host HCV populations. The plots are in the same order as in Table 1. 

 

 

Figure 4: ROC Curves of classification models 

4 Discussion 
 

We present the results of comprehensive analyses of the structure of intra-host viral populations
using a large set of  samples from individuals with recent and persistent infection, which
significantly exceeds data sets used in earlier studies13. Amplicons covering HCV HVR1 have
been sequenced by NGS. Intrinsically disordered regions (IDR) of proteins like HVR1 seem to
be most useful for application in models to identify viral clinical properties from sequences. It
has an extensive epistatic connectivity across the entire HCV polyprotein27, and is associated
with immune escape28, drug resistance27,29 and virulence30.  Consequently, IDRs play an
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important role in viral adaptation to the host environment, making regions like HVR1 sensitive 
"sensors" that accurately reflect intra-host biological changes during the infection process.  
We identified a set of quantitative characteristics of intra-host HCV populations strongly 
associated with stages of infection. Our results indicate significant differences in the structure of 
HCV populations sampled from recently and persistently infected hosts. Models constructed 
using these parameters allowed us to train machine learning classifiers capable of inferring 
infection stage from HCV sequence data with accuracies as high as 95%. Our study confirms a 
previously established positive correlation between infection stage and intra-host viral 
diversity13,10,31. However, because of complexities in the structural development of intra-host 
populations affected by bouts of selective sweeps and negative selection during chronic 
infection4,32, simple metrics of genetic heterogeneity are insufficient for the accurate staging of 
HCV infections. High accuracy could be achieved by using a combination of parameters 
measuring different structural and evolutionary properties of viral populations. 
The proposed prediction models may serve as cyber-molecular assays for staging infection, that 
could potentially complement and substitute standard laboratory assays. In particular, the 
proposed models are currently being incorporated into Global Hepatitis Outbreak and 
Surveillance Technology (GHOST)33 — a web-based molecular surveillance system developed 
and maintained by CDC. They could also be applicable to other highly mutable viruses, such as 
HIV.    
The detection of a strong association between several HCV genetic factors and stages of 
infection suggests that intra-host HCV populations develop in a complex but regular and 
predictable manner during the course of infection.  Decline in dN/dS, increase in abundance of 
transversion mutations and decline in information complexity of HCV population progressing 
from the recent to persistent state is consistent with an orderly process of HCV population 
development during infection as was suggested earlier4,5 and is different from a model of an 
"arms race" predicting a continuous genetic diversification. These observations support the 
hypothesis that intra-host viral populations may evolve as quasi-social systems by 
complementary specialization of viral variants engaged in a certain type of cooperation4,34. Such 
specialization enables HCV populations to adapt to an intra-host environment as a group of 
cooperators rather than independent variants.  
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