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Abstract

While animal model studies have extensively defined mechanisms controlling cell diversity in
the developing mammalian lung, the limited data available from late stage human lung
development represents a significant knowledge gap. The NHLBI Molecular Atlas of Lung
Development Program (LungMAP) seeks to fill this gap by creating a structural, cellular and
molecular atlas of the human and mouse lung. Single cell RNA sequencing generated
transcriptional profiles of 5500 cells obtained from two newborn human lungs from the
LungMAP Human Tissue Core Biorepository. Frozen single cell isolates were captured, and
library preparation was completed on the Chromium 10X system. Data was analyzed in Seurat,
and cellular annotation was performed using the ToppGene functional analysis tool. Single cell
sequence data from an additional 32000 postnatal day 1 through 10 mouse lung cells generated
by the LungMAP Cincinnati Research Center was integrated with the human data.
Transcriptional interrogation of newborn human lung cells identified distinct clusters
representing multiple populations of epithelial, endothelial, fibroblasts, pericytes, smooth
muscle, and immune cells and signature genes for each of these population. Computational
integration of newborn human and postnatal mouse lung development cellular transcriptomes
facilitated the identification of distinct epithelial lineages including AT1, AT2 and ciliated
epithelial cells. Integration of the newborn human and mouse cellular transcriptomes also
demonstrated cell type-specific differences in maturation states of newborn human lung cells.
In particular, newborn human Ilung matrix fibroblasts could be separated into those
representative of younger cells (n=393), or older cells (n=158). Cells with each molecular profile
were spatially resolved within newborn human lung tissue. This is the first comprehensive
molecular map of the cellular landscape of neonatal human lung, including biomarkers for cells

at distinct states of maturity.
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INTRODUCTION

The lung is a complex organ comprised of over 40 different cell types [1, 2]. Despite recent
advances in our understanding of lung development, the complex cellular function and
intracellular interactions in the developing human lung are yet to be clearly understood.
Development and maintenance of lung structure requires cross talk among multiple cell types to
coordinate lineage specification, cell proliferation, differentiation, migration, morphogenesis, and
injury repair. The diverse array of pulmonary cells can be categorized into four major cell
populations, namely, epithelial cells, endothelial cells, mesenchymal cells, and lung resident and
transient immune cells, with each group being relatively well distinguished by specific cell-
surface proteins. Even though key signaling molecules, genes, and pathways driving lung
development have been identified [3-9], significant knowledge gaps still exist in our

understanding of this process especially in humans.

Transition of the lung from fetal to neonatal states is highly complex, and has been
characterized in murine models [10-16]. While early stages of human fetal lung development
have been characterized at the molecular level [17, 18]), data describing the newborn human
lung is lacking [19]. Although, molecular profiling has been applied to pre-viable human lung [18,
20], further understanding of later human lung development has been limited by lack of access
to tissue of sufficient quality for molecular analysis. These limitations have been recently
overcome by the NHLBI Molecular Atlas of Lung Development Program (LungMAP).
Additionally, most high-throughput molecular studies of lung development have used whole
lung tissue [10], limiting insights into the activities of and interactions among different cell
types. Single cell RNA-seq enables transcriptomic mapping of individual cells to measure

and understand cellular heterogeneity and responses in complex biological systems [21].

LungMAP was developed to generate detailed structural and molecular data regarding normal

perinatal and postnatal lung development in the mouse and human [22]. We have recently
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reported that high-throughput analysis (transcriptomics, proteomics, etc.) of sorted dissociated
cells from human neonatal and pediatric lungs reveals retention of in vivo phenotypes [20,
22-24]. Here, we build on rapid advancement in single-cell transcriptomics that enables the
identification of cell-type specific transcriptomes of neonatal and ageing murine lungs,
serving as a comparative basis for understanding the transcriptomic landscape of the
newborn human lung [21, 25]. We computationally integrate single-cell signatures of newborn
human lungs with single cell transcriptomic profiles of developing perinatal mouse lung to

generate a trans-species cellular impression of the developing lung.
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MATERIALS AND METHODS
Study Population

Two newborn (one-day old) lungs were donated for research and provided, with de-identified
clinical data, through the federal United Network of Organ Sharing via the National Disease
Research Interchange (NDRI) and International Institute for Advancement of Medicine (IIAM).
While both the lungs were from individuals who were deceased at one day of life due to
suspected anencephaly, they differed at their gestational age at birth (GAB). One of them was a
full term (GAB of 38 weeks), whereas the other hadwas a pre-term birth (GAB of 31 weeks).
The organs were received by the LungMAP Human Tissue Core at the University of Rochester,
and subjected to processing as previously described [23]. The LungMAP program and resulting

studies are approved by the University of Rochester IRB (RSRB00047606).
Single cell suspension preparation

The right upper and middle lung lobes were digested to single cell suspensions using a four
enzyme cocktail (collagenase A, DNase, dispase and elastase) according to LungMAP protocol,
as described previously [23]. Isolated cells were resuspended in freezing media (90%FBS,
10%DMSO) at a concentration no more than 60x10°cells/mL, slow cooled to -80 C overnight

and stored in liquid nitrogen until use.
Human Single Cell Sequencing

Unfractionated dissociated cells from each subject were rapidly thawed and, without resting,
used for two separate captures of single cells for RNAseq. For each lung, one capture was
preceded by magnetic selection (Miltenyi Biotech, Santa Barbara, CA). Cell capture and library
production was performed on the Chromium 10X Genomics system. Sequencing was performed
on a HiSeg4000, with read alignment to GRCh38. Cells filtered to exclude low quality cells, and

potential doublets, were used to create analytical dataset. Highly variable genes were identified


https://doi.org/10.1101/2020.06.16.156042
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.16.156042; this version posted June 18, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

using “MeanVarPlot” function in Seurat [26]. Principal component analysis (PCA) was used for
dimension reduction based on only the highly variable genes. Top principal components (PCs)
identified by JackStrawPlot(),graph based Louvain-Jaccard methods [27], were used for t-
Distributed Stochastic Neighbor Embedding (tSNE) and clustering analysis. All single cell
sequencing data analysis was performed using Seurat v2.4 [28, 29]. No significant differences
in overall capture quality and data were observed between the two runs from each individual
lung, therefore data from both captures were combined. Differential expression was defined
using a parametric Wilcoxon rank sum test at a corrected significance level of p<0.05. Pathway
analysis and cell type association was performed using ToppGene Functional Annotation tool

(ToppFun) [30].

Mouse Single Cell Sequencing

Animal protocols were approved by the Institutional Animal Care and Use Committee at
Cincinnati Children’s Medical Center (CCMC) in accordance with NIH guidelines. C57BL6/J
mice were used in the production of the mouse single cell RNA-seq data set as previously
described [21]. Filtered data were log transformed, scaled, clustered and represented by t-
Distributed Stochastic Neighbor Embedding (t-SNE), similar to the analysis of human cells. Cell
clusters were assigned to putative cell types based on inspecting the expression of known cell

type markers, and the individual cluster markers analyzed using ToppFun [30].

Integrating Human and Mouse Data

We integrated our newborn human lung data set with single cell sequencing data (Drop-Seq)
from longitudinal postnatal (post-natal days 1, 3, 7, and 10) mouse lung samples [21]. These

data characterized mouse datasets, hosted by LungMAP (https://lungmap.net/), were used as a

reference to help define the human lung cell populations. The useMart and getLDS functions,

within the biomaRt package, were used to identify human and mouse orthologues
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(https://bioconductor.org/packages/release/bioc/html/biomaRt.html). A list of 21,608 mouse MGI

symbols were queried against HGNC symbols to identify 14,647 non-redundant orthologues.
For all downstream analyses, HGNC symbols replaced MGI symbols within the mouse data set
based on the biomaRt query [31]. We integrated Human cells (n=5499; 15%) and Mouse cells
(n=32849) using canonical correlation analysis (CCA) implemented within Seurat [28]

(https://satijalab.org/seurat/)(Figure S1). No batch effects were evident following implementation

of CCA. Markers genes from individual clusters were used to determine the cellular identity of

co-clustered human cells in ToppFun.
Estimation of Human Cell Age

We used the defined age of mouse cells to estimate the age of the human cells in the integrated
data set. A schematic describing the approach used is provided in Supplemental Figure S1.
First, we separated the data set based upon major cell type clusters (e.g., endothelial cells,
matrix fibroblasts, etc.) using cell type-specific annotations. Next, we identified a surrogate of
mouse age in each cell type independently, using principal components (PC) analysis. For each
cell type, the most informative PC which was significantly correlated with age was used as the
age surrogate (PC"%). We then measured the linear (Euclidean) distance between each human
cell and the 100 nearest mouse cells in PC*%. The human cell age was defined as the average
age of the nearest mouse cells, adjusted for the proportion of cells in the data set from each

mouse age (Figure S1). Additional information is provided in the Supplemental Methods section.
Flow Cytometry

The presence of immune cell populations in newborn human lungs were validated by flow
cytometry, essentially as previously published [32] . Frozen lung cells were thawed, blocked
(2% serum in 1% BSA/DPBS) and stained for anti-nCD45 (APC-R700, clone HI30), anti-

hCD235a (PE-Cy5.5, clone GA-R2), anti-hCD3 (PE-Cy7, clone SK7) (all from BD Biosciences,


https://doi.org/10.1101/2020.06.16.156042
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.16.156042; this version posted June 18, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

San Jose, CA) and anti-hHLA-DR (BV785, clone L243, Biolegend, San Diego, CA) and 7-AAD
(viability marker, BD Biosciences). Staining was assessed on a 4-laser 18-color FACSAria flow
cytometer (Becton Dickenson, San Jose, CA). Single antibody stained Simply Cellular®
compensation beads (Bangs Lab, Fishers, IN) were used for fluorescence overlap
compensation. Fluorescence minus one (FMO) controls and heat-killed 7AAD stained cells were
used to set expression gates for each antibody and for live/dead gating. Data were analyzed
using FlowJo software (version 10; FlowJo LLC, Ashland, OR). Cell multiplets, Dead cells (7-

AAD+) and erythrocytes (CD235a+) were excluded from analysis.

In situ hybridization and Immunostaining

Fluorescence in situ hybridization (FISH), combined with immunofluorescence staining, were
performed on formalin fixed, paraffin embedded native human postnatal lung sections (6 pm).
FISH was completed using the RNAscope Fluorescent Multiplex Assay (Advanced Cell
Diagnostics, Newark, CA, cat. # 323110) as previously described [33], with minor adjustments.
Treatment time with Protease Plus was reduced to 22 minutes. Tissues were incubated with the
following probes: HES1 (cat. # 311191-C4), TCF21 (cat. # 470371) or COL6A3 (cat. # 482631)
(Advanced Cell Diagnostics). Following washing and signal development, tissues were blocked
(3% bovine serum albumin in 5% normal goat sera and 0.1% Triton) and incubated overnight at
4°C with primary antibodies: CD31 (Neomarkers, RB-10333-P0) or CDH1 (BD Biosciences,
6315829). Slides were washed and incubated with Cy3-goat-anti-mouse or anti-rabbit-
conjugated secondary antibodies (Jackson Immunoresearch Laboratories, Inc., West Grove,
PA). Slides were counter-stained with DAPI (LifeTechnologies, Carlsbad, CA, cat. # DE571) and
mounted using ProLong Diamond Antifade Mountant (LifeTechnologies). Images were acquired

on an LSM710 confocal system with a 20x/0.8 Plan-APOCHROMAT obijective lens [34].
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Results

Cellular Landscape of the Newborn Human Lung

To characterize cellular heterogeneity in the newborn human lung, we performed single cell
RNA sequencing (scRNAseq) of protease-dissociated cells from two one-day old lung samples.
While the two lungs were obtained from individuals born at different GAB, there were no
observable differences in cellular composition among the two, and hence cells from both lungs
were combined using Canonical Correlation Analysis (CCA) as implemented in Seurat [28].
When combined, the analytic dataset comprised of a total of 5499 cells (Table S1), with an
average detection of 2000-3000 genes per cell (Figure S2). To exclude low quality events, cells
having fewer than 500 UMIs detected, or with > 12.5% mitochondrial genes, were excluded
(Figure S2). This filtering resulted in an analytical dataset of 19,136 genes in 5499 cells; 3001
cells from two separate captures on lung 1 and 2498 cells from two separate captures on lung

2.

This data set was used for analysis and visualization by t-distributed stochastic neighbor
embedding (t-SNE). We identified 15 separate clusters of cells, along with corresponding
marker genes (Figure 1). Each cluster displayed relatively equivalent distribution of cells from
both subjects (Figure 1A). Among these 15 clusters, four major cell types, as defined by known
selective markers, were identified on basis of expression of known markers (Figure 1D).
Epithelial cells (n(1="1209) were defined by expression of EPCAM, SFTPB, SCGB1Al, and
NKX2-1. Endothelial cells (n0J=31092) were defined by expression of PECAM1, VWF,
CLDNS5, and CDH5). Mesenchymal cells (nOJ=03553) were defined by expression of ACTA2,
ELN, COL1A1, and CYR61. Immune cells (nJ=0618) were defined by expression of leukocyte

and lymphocyte cell markers PTPRC, CD8A, CD19, and CD3E.
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Based upon selective expression, we identified marker genes for individual clusters (Figure 2A).
Functional enrichment analysis successfully identified lung cell sub-types for each of the 15
clusters (Figure 2B and Table S1). The markers for each individual cluster are presented in

Table S4.

A majority of the cells (>63%) appeared to be of mesenchymal origin. Distinct large populations
of myofibroblasts (Cluster 0, n=820) expressing ACTG2, DES, ACTA2, TAGLN, CNN1, matrix
fibroblasts (Cluster 1, n=814) expressing CFD, ADH1B, LUM, GPC3, TCF21, smooth muscle
cells (Cluster 2, n=592) expressing ADIRF, PI115, PTN, SOD3, PLN, NTRK3 were identified.
Two distinct populations of pericytes were observed, one cluster expressed FAM162B, HIGD1B,
NDUFA4L2, COX412, CHN1 (Cluster 5, n=419), while the other expressed PRSS35, THY1,

AGT, ID4, COL1A1(Cluster 6, n=398).

We also identified four separate endothelial cells clusters; Cluster 3 (n=567) defined by
expression of RGCC2, EDN1, RAMP23, CA4, IFI273 among others, Cluster 8 (n=321) defined
by expression of HPGD3, HLA-E8, ITM2A1l, EMCN1, CLDN58 among others, Cluster 10
(n=146) defined by expression of ACKR1, PTGDS, VWF, HYAL24, SLCO2A12, among others,
and Cluster 12 (n=85) defined by expression of SERPINE2, GLUL7, ID19, GJA42, SLC9A3R29,
among others. Interestingly, functional analysis of the cluster marker genes associated Cluster 3

cells with vascular development and Cluster 12 cells with integrin signaling.

A much smaller fraction of cells (<4%) were identified as epithelial cells. Epithelial cells were
separated into AT1 cells (Cluster 11, n=131) expressing CCL21, TFF3, SFTPB, AGR3, AGER)

and AT2 cells (Cluster 14, n=14) expressing SFTPC, SFTPB, AGER, SFTPA1, KRT19.

Interestingly, immune cells represented a sizeable fraction (11%) within the newborn human
lung. Among immune cells, we were able to distinguish multiple discrete populations including

macrophages (Cluster 7, n=349) expressing S100A8, S100A9, LYZ, HLA-DRA, HLA-DRB1, T
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cells (Cluster 9, n=190) expressing GNLY, NKG7, KLRB1, GZMB, CCL4 among others, and B

cells (Cluster 13, n=79) expressing IGHM, IGKC, IGLC2, IGLC3, CD79B, among others.

Further validation of the presence of these immune cells in newborn human lungs was
performed by flow cytometry of single cell dissociates from additional age-matched lungs (one
day old). To ensure high viability and to exclude lysis-resistant nucleated RBCs found in
neonates, 7-AAD+ dead cells, and CD235a+ erythrocytes were detected and excluded from
FACS analysis. From viable, RBC-depleted cells, mixed immune cells (MICs) were identified by
CD45. The percentage of leukocytes detected varied from donor to donor, and ranged from 3-
14%, which was consistent with the frequency of immune cells observed in the single cell

transcriptomics data set (Figure S5).

Cellular Landscape of the Postnatal Mouse Lung

Single cell RNA sequencing of murine lung tissue was performed using custom Drop-seq
technology as previously described [21]. Cells with less than 500 detected genes, and greater
than 10% of transcript counts mapped to mitochondrial genes were removed. Filtering the cells
based on the aforementioned criteria resulted in an analytical data set of 17508 genes, from
32849 cells (PND1 n=8003, PND3 n=8090, PND7 n=6324 and PND10 n=10432). All mouse
cells were grouped into 32 clusters, with and each cluster had relatively similar distribution of
cells from individual time points (Figure 2A). Similar to the human cells, the four major cell types
were readily identified based upon the expression of known selective marker gene expression
(Figure S3, Table S3). Mesenchymal cells, again representing the largest fraction of the
population (n=10678;33%), were defined by expression of ACTA2, ELN, COL1A1l, and CYRG61.
The mesenchymal cell were identified into different sub-types including of multiple clusters of
matrix fibroblasts, myo-fibroblasts, stromal cells and mixed fibroblasts. Endothelial cells
comprised a sizeable portion of the mouse cells (n'=18891), and were defined by expression

of PECAM1, VWF, CLDN5, and CDH5. In the mouse data set, epithelial cells were well
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represented (nJ=06133) and defined by the expression of EPCAM, SFTPB, SCGB1Al, and
NKX2-1. Epithelial cells clusters were further sub-classified into pulmonary alveolar type | (AT1),
alveolar type Il (AT2), and ciliated respiratory epithelial cells. As in the human, immune cells
were frequent in the neonatal mouse lung (n1=17244) as defined by expression of
PTPRC, CD8A, CD19, and CD3E). The immune cells were further classified as B-cells, T-cells,
macrophages, monocytes, and myeloid cells among others (Figure 2B). Compared to human
newborn lungs, mouse lungs appear to have relatively greater proportion of epithelial cells. In
addition, even among the mesenchymal cells, there appears to be a greater proportion of matrix

fibroblasts.

Integration of Newborn Human and Mouse Lung Data Sets

We next combined the human and murine lung data sets (Figure 4). A total of 14,502
orthologous genes were identified using BioMart [31]. Canonical correlation analysis (CCA),
implemented in Seurat, was used for data integration across the species. After performing data
quality filtering similar to the human and mouse only datasets, the species-integrated analytical
data set contained a total of 29762 cells: 2327 (15%) human cells and 27435 (85%) mouse
cells. In this integrated data set, we identified 17 clusters of cells, along with corresponding
cluster marker genes. Each cluster was composed of a combination of mouse and human cells
(Figure 4A and Table S4). We again identified four major cell types by known cell-type selective
marker expression (Figure 4B-D); mesenchymal cells (n1=19980, 25% human), endothelial
cells (n(1=118292, 12.5% human), epithelial cells (n 1=15146, 4% human) and immune cells

(nJ=06344, 7% human).

Based upon selective expression, we identified marker genes for individual clusters (Figure 5A).
Functional enrichment analysis successfully identified lung cell sub-types for each of the 17
clusters in the integrated data set representing postnatal lung tissues from human and mouse

(Figure 5B and Table S4). We observed multiple clusters of mesenchymal cells; myofibroblasts
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(n=4592; Clusters 3, 10, and 11), matrix fibroblasts (n=4743; Clusters 1 and 14) and pericytes
(n=645, Cluster 12). We observed multiple clusters of endothelial cells (n=8292; Clusters 0, 5, 9,
and 15). We observed multiple immune cell populations including macrophages (n=3002,
Cluster 4), T cells (n=1330, Cluster 8), B cells (n=1388, Cluster 7), and myeloid cells (n=585,

Cluster 13) as well.
Estimating Maturity of Human Cells

There exists a degree of uncertainty regarding the state of maturity of the human and mouse
lung at the time of birth, since rodents and humans are born at different histological stages,
alveolar in humans, but saccular in mice. We sought to determine the “cellular maturity” of the
newborn human lung in comparison to the postnatal mouse lung, using the integrated human-
mouse data set. We performed this analysis separately for each distinct cell type (Figure S1), in
order to identify age as a contributing variable. Cell types were assigned based upon
annotations described above and separated into independent data sets. For each cell type data
set, we independently performed PCA, and tested the relationship between each PC vector and
the known age of the mouse cells. For simplicity, the surrogate for age was chosen as the single
PC that was statistically correlated with age and explained the greatest variance in the data set.
We calculated the age of every human cell using its linear distance to 100 mouse cells in space
defined by the age-related PC (PC"%). The PC associated with age differed for each cell type,
and the correlation coefficients (r) values, which were used as metric for identifying the PC

related to age (Table S5).

The estimated age of individual human cell types differed slightly, but primarily remained in the
range of 5-9 mouse days, consistent with the known histological relationships between human
and mouse (Figure 6A). Interestingly, epithelial cells, endothelial cells and matrix fibroblasts

displayed a more diverse distribution in estimated age. Matrix fibroblasts, which represented a
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large proportion of all cells displayed a somewhat bi-phasic pattern, where 29 % of cells
appeared to be an estimated age consistent with other cell types (5-9 days), while a second set
of cells appeared to be of much younger estimated age (1-4 days) (Figure 6B and Figure S7A).
We identified marker genes for younger and more mature matrix fibroblast population using
DESeq2 [35] leading to identification of 210 differentially expressed genes. Among the 23 genes
that were over expressed in “the mature matrix fibroblasts” (those presenting with an older
estimated age), included B2M, CYBA, and CCBE1. Among the 187 genes that were over
expressed in “immature matrix fibroblasts” (those presenting with a younger estimated age),
included IGFBP7, HES1, RGS3, TAGLN, C11orf96 and EGFL6. Pathway analysis using these
187 genes revealed smooth muscle, matrix, and collagen related pathways, along with oxidative
stress, stress response, degranulation and scavenging related pathways were affected in the

immature matrix fibroblasts (Figure S6).

One of the markers for younger matrix fibroblasts, HES1, was also expressed in other
mesenchymal cells (pericytes and stromal cells) and endothelial cells as well (Figure S7B). We
further identified cells expressing HES1 alone, and cells coexpressing it with matrix fibroblast
markers (COL6A3 or TCF21; Figure S7C-D) or markers for other cell types (PECAM1 for
endothelial cells or CDH1 for epithelial cells; Figure S7TE-F). Finally, we tested whether we could
identify the older/mature and younger/immature matrix fibroblasts in the newborn human lung.
We performed combined immunohistochemistry and in situ hybridization to identify the
expression of general- (COL6A3 and TCF21) and immature population-specific (HES1) markers
at the cellular level. We were able to identify individual matrix fibroblasts (as defined by
expression of COL6A3 or TCF21, but not PECAM1 or CDH1) that expressed HES1, as well as
matrix fibroblasts that did not express HES1 (Figure 6C). These data indicate the presence of a
distinct group of immature matrix fibroblasts in the newborn human lung that display high

expression of HES1 transcript.
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Discussion

Cell lineages, and their relationships, during lung development and in diseased states have
been extensively studied in rodent models, thanks in large part to use of transgenic technology.
It has been more difficult to confirm independent cell types and their lineages in the relatively
rare and non-experimental nature of human lung tissue analysis. However, given recent
advancements in high-throughput molecular profiling technologies, rapid progress is being
made [21, 25, 33]. The establishment of the LungMAP program, and its success in obtaining
human tissues for structural, cellular and molecular analysis has, and will continue to, facilitate
this progress [22, 36-38]. Here, we report transcriptional analysis of newborn human lung cells,
including all major cell types, and describe the molecular profile for matrix fibroblast subtypes

that may represent cells at different states of maturity.

Applying single cell RNA sequencing to newborn human lungs, we identified a diversity of
pulmonary cells, including epithelial, fibroblast, immune, endothelial, and other cell subtypes
based upon distinct gene expression patterns. Although a novel and necessary study, it has to
be acknowledged that some bias likely exists in the cells isolated and herein. We note a paucity
in the capture of epithelial cells, consistent with our recent report of similar analyses of human
fetal lung tissues [33]. Our prior studies using similar cell isolation protocols in older pediatric
lung samples, demonstrated a higher proportion of epithelial cells [23]. Low capture/detection of
epithelial cells in the fetal and newborn human lung may be attributed to the developmental age
of the studied samples or difficulty in capture of these cells with the Chromium 10X protocol.
Cellular capture from the young lungs is further complicated by the lack of knowledge regarding

cell dissociation, different protease sensitivity, and cell survival during digestion and capture
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procedures. We performed two independent captures on each sample, one involving removal of
unhealthy cells. Importantly, we noted consistent recovery of all major cell populations
regardless of capture (Tables S1 and S4). We did observe an absence in type Il epithelial cell
capture prior to selection, suggesting epithelial cell viability may contribute their diminished

detection.

It is clear that although stages of lung development, and their morphological correlates, are
highly conserved across species, significant differences exist in their relative length and timing
[39]. An example is that the mouse lung is in the saccular stage at birth, while the human lung at
term birth is in the alveolar stage. The newborn human lung is histologically and
developmentally similar to a 1week old mouse lung (Figure S4). We took advantage of recent
data from the LungMAP program, describing postnatal mouse lung development at the single
cell level, to infer the “age” or “maturity” of newborn human lung cells. Majority of the human
cells, regardless of cell type/lineage, were estimated to be 4 to 9 days of mouse age, consistent
with the histological comparisons. For some cell types (e.g., matrix fibroblasts, endothelial cells,
epithelial cells), greater diversity in estimated age was noted. The epithelial cell population was
not large enough to separate known distinct lineages. Among the other cellular populations, the
extent of endothelial cell diversity (e.g., large vs. small vessel), has been well documented [40].
We focused subsequent analysis on the matrix fibroblasts, as phenotypic diversity among this

population is less well described.

Our data on newborn human lung matrix fibroblast diversity are consistent with a prior report of
different types of murine lung matrix fibroblasts [41]. The majority of newborn human lung matrix
fibroblasts appeared to be more similar to younger mouse matrix fibroblasts and displayed
higher levels of expression of HES1. HESL1 is a regulator of Notch signaling and appears to
actively suppress differentiation [42]. Interestingly, regulation of collagen expression by Notch is

achieved through a Hesl-dependent mechanism [43]. Furthermore, HES1 appears to play a
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critical role in regulating lung fibroblast differentiation [44]. HESL1 is known to be expressed in
mucus cells from patients with chronic obstructive pulmonary disease, idiopathic pulmonary
artery hypertension or IPF [45]. Another gene that displayed higher expression in the
younger/immature matrix fibroblasts was IGFBP7, which has previously been associated with
resistance to lung cancer [46]. The younger/immature matrix fibroblasts may represent cells in
an immature state, with importance for normal development, and may hint at a developmental

origin for some adult diseases such as lung fibrosis.

To summarize, here we report a dataset describing the transcriptome of newborn human lung
cells defined using single cell RNA sequencing. Our results include markers for all major lung
cell types including multiple populations of mesenchymal, endothelial, epithelial and immune
cells. We also successfully integrated the transcriptomes of newborn human cells with
postnatal developing mouse lung cells, enabling the estimation of cell-type specific maturity
states of human cells. The data show that maturation states, even though largely in the
expected range of 4 to 9 murine postnatal days, differ by cell type. Integrated single cell RNA
profiling of human and mouse lung will help identify common and species-specific mechanisms

of lung development and respiratory disease.
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Figure Legends:

Figure 1 Identification of lung major cell types using single cell RNA sequencing of
newborn human lung. (a) t-distributed Stochastic Neighbor Embedding (tSNE) analysis of
cells. Cells are indicated by donor. (b) Visualization of distinct cell clusters in tSNE plot. (c)
Expression of some known cell type markers. (d) The assignment of cell clusters to four major

cell types, including endothelial cells, mesenchymal cells, immune cells, and epithelial cells.

Figure 2: Identification of cell sub-type markers in newborn human lungs. (a)Genes
expression patterns of select markers of corresponding cell clusters. (b) Assignment of cell

types to 15 distinct tSNE clusters.

Figure 3: Identification of lung cell types using in mouse lung. (a) t-distributed Stochastic
Neighbor Embedding (tSNE) analysis of cells. Cells are colored by mouse age. (b) Visualization

of cell clusters in tSNE plot of cells with assignment of cell types to 32 distinct tSNE clusters.

Figure 4: Integration of human and mouse lung cell data sets. (a) t-distributed Stochastic
Neighbor Embedding (tSNE) analysis of cells. Cells are indicated by species. (b) Expression of
known cell type markers in tSNE plot of cells in the integrated data set. (c) Visualization of
mouse cell clusters in tSNE plot of cells grouped by major cell types. In the integrated object
created from combining both human and mouse lung cells, the assignment of cell clusters to
four major cell types, including endothelial cells, mesenchymal cells, immune cells, and
epithelial cells. (d) Proportion of cells derived from human and mouse data. In the integrated
dataset 15% of cells are human; human mesenchymal cells (25%) are over-represented, but

endothelial (12.5%), immune (7%) and epithelial cells (4%) are under-represented.
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Figure 5: Identification of cellular sub-types in combined human and mouse lungs. (a)
Gene expression patterns of select markers of corresponding cell types is shown in the
heatmap. (b) The t-distributed stochastic neighbor embedding (tSNE) visualization shows

unsupervised transcriptomic clustering, revealing 18 distinct cellular identities.

Figure 6: Estimating maturity of human cells. (a) Distribution of the estimated ages of the
human cells derived from post -natal age (PND) of 100 nearest mouse cells to each of the
human cells. (b) Proportion of cells of individual human cell types at each stage of maturity
defined in terms of estimated post-natal day age of mouse. (c) Fluorescent in situ hybridization
(FISH) combined with immunofluorescence of Immature Matrix Fibroblast marker HES1 (red),
Non-Mesenchymal Cell Markers, PECAM1 or CDH1 cyan), and Mesenchymal Cell Markers
COL6A3 or TCF21 (green) on newborn human lung sections from 3 donor lungs of 1 day of
age. Pink arrows indicated the presence of immature matrix fibroblasts shown by co-localization

of HES1 (red) and Mesenchymal Cell Markers COL6A3 or TCF21 (green).


https://doi.org/10.1101/2020.06.16.156042
http://creativecommons.org/licenses/by-nc-nd/4.0/

5 & Lungl
(ﬂ) < & Lung?
40 o
v :.r £y ?"
] .l "
o i‘.‘.' -i-‘ ‘I""'FI
l.l___.r :‘ﬁ. -\.'!:.f__.-.r . ) L_é;
g Pk ?;fi"": e AT, @
01 D A A - 2
iy - T I A D
.lt:. g .-.- ".‘llt . ;"P'{ Y ...._" ol
bag & g W
] . L -
Wiy . .
- . .l,-
x ‘3-}
a0 | :-Il
{ Epithelial ercam SFTPB SCGB1AT
c) &0 : ey 40 s o0 404 '
1:'3‘3' 1 . w' 20 w 21
£ 0 y z 0 z 04
N 0 e T 20 8 204 —
Y, . s — &) A S
2= 0 5 M 0 2
1SNE_1 1SHE_1
Mesenchymal acraz CYRE1
G ] £ Ii:l'-. %
1 1 = A 41._-{_':1
w Tl % ol ande
@ o A — tin s
I ol T

ISNE_2
R NE

Immune PTPRC

& &,
WETR “,
5 0 =
=2 _hiw %
2 0 25

| 401 .
a4
w &
& O, .
= 20 a
[ T I S T,
- R R

(b)

s ki
rEdaEE >
b o et
g S AL Py TR s
R R e o 4R v
R T R L 1 -
b e R L O
b A . Vi B
L TE;_—,':]-:._.::"-_. ] Elfﬂ‘-:- X .-.':,é,-lh il
X Tt b L;-"-' L o
"Bt e o

-

(d)

@ Endothelial
13 ® Mesenchymal
Immune

@ Epithelial

404
209
=
i
L
=
'L
e
207
40 '
=5 a a5,



https://doi.org/10.1101/2020.06.16.156042
http://creativecommons.org/licenses/by-nc-nd/4.0/

(a)

=820}

592)
L

Matrix Fibroblasts

(n=814)

=
R
2
L5 ]
=
0
o
=
" & |
=
O
3

' Smooth Muscle Cells

& (n

Bl Stromal Cells (n=4 19)

=398)

Pericytes (n

T Cells (n=190)

=*Endothelial Cells [n= 146)

1rr'r

Cluster Markers (n=150)

Single Cells (n=5499)

R

—
-
B s

i —
- -——.. - .

H
—l

79)

* AT2 Epithelial (m=78)

» B Cells (n

(b)

PR
vt 3 By
v 8 FRY
w1 APE T
s - .:“1';_,1'.: s L
" Peryte:; .\ .
Tk B Eb s &
i :i:' ';.|.|- H - w ¥ :‘i
lu."_r.:. i_ﬁ‘\.ﬂr:\.' L
T ¥
- i WA A 1 r
1!. ) i : .t ...f:- . ]
L

B'Cells

Smnnth Mu sﬂe
Cells

_.l.'.-

L]

&

e W

by

W

I

5
wont g b A i
Wy 0

iy T 5y }r:!fj:iima C ;‘.5._ :

i 3 Eor c ! i L
! - r a L
- T A N, S

High

Mpobroiass - Fbrotlass
< *E"d‘“he,r"“i AT1 Epithelial~
Enduth ial “}'Eff“.if ﬂi" ge
Enduthellal el prag
AT2 Eprthellal ,

{SNE_1



https://doi.org/10.1101/2020.06.16.156042
http://creativecommons.org/licenses/by-nc-nd/4.0/

25

& rro1

& rroio

@ rro:

@ Fro7

(b}

tSNE_2

25

25

25

&
&
@:
@
@
®s
®:
@
L ¥
@

AT2 Epithelial

& 10AT1 Epithelial

@ 11 Matrix Fibroblast

& 12 Macrophage

@ 12 Matrix Fibroblast

@ 1:4endothetial

@ 15 Matrix Fibroblast

@
@
@ =
® =
[ FU
@
o=z
9=
L FN
@ =
| FU
| ¥
® =
@
®»
@ 31

Endothelial
Ciliated Epithelial
Matrix Filbroblast
Endathelial
Matrix Fibroblast
Macrophage
Neutrophil
Matrix Fibrablast
Matrix Fibroblast
T-Cell

Fibreblast
Epithelial
Myeloid

AT2 Epithelial
Myofibroblast
AT2 Epithalial


https://doi.org/10.1101/2020.06.16.156042
http://creativecommons.org/licenses/by-nc-nd/4.0/

Efj

(El) ' ) (b) Epithgﬁlial EPCAM NKX2-1 SFTPB SCGBIAT
L% Y " =
] 25 a i £ ?5 Dai - u 4 ?5 L i o ?54 " "l :H”_p
] L. E I ] S | T |
F Rhor vz 0 Frw y = o *%"H‘;' "‘?ﬁ""‘
. ¢ .25 APy 0 254 SN 0 254 TP 25{ LT
—r 504 : : 504 — 50 :
: : - 4020 0 20 40 40 .20 0 20 40 4020 0 20 40 40 20 0 20 40
b d h d h ht hold hi i
25 {Which Wi noL Geri by pEor eviow) s the uthorfiunder, whe has gfanted bioRw  lnse o iSplay the. préarint  perpelLly. i & made ISNE_1 KSNE_1 tSNE_1 SNE_1
available under a€C-BY-NC-ND 4.0 International license.
: 2 Mesenchymal actaz ELN COL1A1 CYR61
¥ F.,_- m i Ell:l 5‘]1 Eﬂ
R % o 25 ’5-?-_ o, 28 ~ . AL . T 25
. = L!,I i e ..;||" i Lol a 'LP'?'- : s Lud 04; '--; = '-. (I} i
' - b . . o= § = ¥ = 5 =
¢ - f}:;, B 25, S T L @ 25 '@E‘i @ 25 ILE"'fa.".i'
‘ . . 50 50 50 - 50
o) S, w i : g S 40 .20 0 20 40 40 20 0 20 40 4020 O 20 40 4020 0 20 40
Y o] Sl - . 1 o @Human ISNE_1 ISNE_1 1SNE_1 ISNE_1
i ¥ s ; : Mouie
T B ..1-:‘!3..- . o Endutllghal VWF .. PECAM1 .. CLDNS . l.'.l:DHE
5 o = : ..' *'1‘ t.:i-ti: “'"‘14 %1, 11 'I.LII 25 B - _;;‘. :l_ 25 £ 3 :'";.’ :| 25 l""._: $| 25 i A -
) Sk g z "1 E = 24 ﬁ = Y1 ﬁ = ‘1 "ﬁ
., - (F'.'- : : ""‘h T ea]wong @ .251 Vg @ 251 e
s e - . e — . 504 50
r . ~_*'l’ ; ol 8 .,‘?‘- 4020 0 20 40 4020 0 20 40 4020 0 20 40 4020 0 20 40
‘? | R LT e ISNE_1 ISNE_1 tSNE_1 tSNE_1
i
b PTPRC CD3E cD19 CDBA
Immu% %.-u EJ:I *l-""' 5-ﬂ Eiu'l _._l-
™25 B s ™ 25 s B ?5] | 51 ot
e i 48 L Ll [k 0
@ zg & zg ﬁeﬁ zai
- : ¥ ; : -
0 L 50 50 L4 50
50— - - - 40 .20 0 20 40 4020 0 20 40 40 20 0 20 40 4020 0 20 40
SNE 1 ISNE_1 1SNE_1 tSNE_1 1SNE_1
(C) @® Endothelial
i6 ® Mesenchymal B Human
e (d] Cellular Distribution Across Species gmouse
# Epithelial
g8 Mesenchymal
&
Immune
EE._ .....
Epithelial
Endothelial
0% 59 10% 15% 20% 25% 30% 100%
Frequency
IlWI
w o
2 o
=
=i
50

40 A0

tSNE_1



https://doi.org/10.1101/2020.06.16.156042
http://creativecommons.org/licenses/by-nc-nd/4.0/

o ——
H —
< -
{E} E: 5 .
f L o . I
o o 3 — T -~ —
= © v - c o A
o ch —_
@ =] © - =, g N
b S = = = = b — |
(10 Sa—— (1 }] [— m
- 0 s = S = = i
—_ — p— - ——
bioRxiv pr8B¥int doi: https://&biofgiL.0.1101/2020.0 042; this version pasted June 1%020. TA& copyright helder for thlé:pregp
(which was p@Ccertified by peergevigw) is the author wwho has granted bigRXiv a licens displéy®the preprint in perpetuity It iw
ur se= gy Available u ri@3C-BY-NC-ND 4.0 Intgfmational Iic?e. e
- - Q sy o = = i
o il L - o = o T G
= - = ] - o . c
T i n— o - 2 Wl

Gt

1' ol ol

Al

AR e N B
VLK AL
LR
ikt ¥ "IN |.I
D (i
—
1

N ..|.I|II ....||1 TN
I--'H:'ilf"l:ll-"-'ll'-'-i"lll‘r'h i

AL TTRVR

Cluster Markers (n

(TR R T AN LT

Wik AT

ingle Cells (n=5499

d et 1
o §
N

I
IH
|
o b
A

Bl

i)

|I||H:l TL'I )

D~
o

146)
s (n=131)

=14

helial Cel

"i.};"

du_theliai Cells (n

E Eelis (n=79)

En
ATl

13

78)
T

AT2 Epithelial (n

tSNE_2

Pl
iLhi
1

D-l

NK'€ells



https://doi.org/10.1101/2020.06.16.156042
http://creativecommons.org/licenses/by-nc-nd/4.0/

0
B Endothelial
(a} (b) B Myofibroblast
EStim ﬂ.tEd AgE 1 O Matrix Fibroblast
B Macrophages
10 @ B-Cell
2
- 9
]
Z 8 "
= T
> 6 5|4
S 8 :
s 4 &l s
= 3 <
= 3
E 2 Tl s
o 1 E
U 1 T T T T T T o 4
© & ¥ ¥ L o ¥
QE} $ an CF'H "'-3"& x’a?‘. DE'H 8
i‘-% QQ& b t:‘ ﬂdﬁ t‘sg @‘5\
&
+ 10

20 40 &0 80 100

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.16.156042; this version posted June 18, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license. Prﬂpﬂrtiﬂ'n (%}
(¢) HEs1COLEAS HES1ITCF21]

T ~



https://doi.org/10.1101/2020.06.16.156042
http://creativecommons.org/licenses/by-nc-nd/4.0/

