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Abstract 

While animal model studies have extensively defined mechanisms controlling cell diversity in 

the developing mammalian lung, the limited data available from late stage human lung 

development represents a significant knowledge gap. The NHLBI Molecular Atlas of Lung 

Development Program (LungMAP) seeks to fill this gap by creating a structural, cellular and 

molecular atlas of the human and mouse lung. Single cell RNA sequencing generated 

transcriptional profiles of 5500 cells obtained from two newborn human lungs from the 

LungMAP Human Tissue Core Biorepository. Frozen single cell isolates were captured, and 

library preparation was completed on the Chromium 10X system. Data was analyzed in Seurat, 

and cellular annotation was performed using the ToppGene functional analysis tool. Single cell 

sequence data from an additional 32000 postnatal day 1 through 10 mouse lung cells generated 

by the LungMAP Cincinnati Research Center was integrated with the human data. 

Transcriptional interrogation of newborn human lung cells identified distinct clusters 

representing multiple populations of epithelial, endothelial, fibroblasts, pericytes, smooth 

muscle, and immune cells and signature genes for each of these population. Computational 

integration of newborn human and postnatal mouse lung development cellular transcriptomes 

facilitated the identification of distinct epithelial lineages including AT1, AT2 and ciliated 

epithelial cells. Integration of the newborn human and mouse cellular transcriptomes also 

demonstrated cell type-specific differences in maturation states of newborn human lung cells.  

In particular, newborn human lung matrix fibroblasts could be separated into those 

representative of younger cells (n=393), or older cells (n=158). Cells with each molecular profile 

were spatially resolved within newborn human lung tissue. This is the first comprehensive 

molecular map of the cellular landscape of neonatal human lung, including biomarkers for cells 

at distinct states of maturity. 
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INTRODUCTION 

The lung is a complex organ comprised of over 40 different cell types [1, 2]. Despite recent 

advances in our understanding of lung development, the complex cellular function and 

intracellular interactions in the developing human lung are yet to be clearly understood. 

Development and maintenance of lung structure requires cross talk among multiple cell types to 

coordinate lineage specification, cell proliferation, differentiation, migration, morphogenesis, and 

injury repair. The diverse array of pulmonary cells can be categorized into four major cell 

populations, namely, epithelial cells, endothelial cells, mesenchymal cells, and lung resident and 

transient immune cells, with each group being relatively well distinguished by specific cell-

surface proteins. Even though key signaling molecules, genes, and pathways driving lung 

development have been identified [3-9], significant knowledge gaps still exist in our 

understanding of this process especially in humans.  

Transition of the lung from fetal to neonatal states is highly complex, and has been 

characterized in murine models [10-16]. While early stages of human fetal lung development 

have been characterized at the molecular level [17, 18]), data describing the newborn human 

lung is lacking [19]. Although, molecular profiling has been applied to pre-viable human lung [18, 

20], further understanding of later human lung development has been limited by lack of access 

to tissue of sufficient quality for molecular analysis. These limitations have been recently 

overcome by the NHLBI Molecular Atlas of Lung Development Program (LungMAP). 

Additionally, most high-throughput molecular studies of lung development have used whole 

lung tissue [10], limiting insights into the activities of and interactions among different cell 

types. Single cell RNA-seq enables transcriptomic mapping of individual cells to measure 

and understand cellular heterogeneity and responses in complex biological systems [21]. 

LungMAP was developed to generate detailed structural and molecular data regarding normal 

perinatal and postnatal lung development in the mouse and human [22]. We have recently 
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reported that high-throughput analysis (transcriptomics, proteomics, etc.) of sorted dissociated 

cells from human neonatal and pediatric lungs reveals retention of in vivo phenotypes [20, 

22-24]. Here, we build on rapid advancement in single-cell transcriptomics that enables the 

identification of cell-type specific transcriptomes of neonatal and ageing murine lungs, 

serving as a comparative basis for understanding the transcriptomic landscape of the 

newborn human lung [21, 25]. We computationally integrate single-cell signatures of newborn 

human lungs with single cell transcriptomic profiles of developing perinatal mouse lung to 

generate a trans-species cellular impression of the developing lung. 
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MATERIALS AND METHODS 

Study Population  

Two newborn (one-day old) lungs were donated for research and provided, with de-identified 

clinical data, through the federal United Network of Organ Sharing via the National Disease 

Research Interchange (NDRI) and International Institute for Advancement of Medicine (IIAM). 

While both the lungs were from individuals who were deceased at one day of life due to 

suspected anencephaly, they differed at their gestational age at birth (GAB). One of them was a 

full term (GAB of 38 weeks), whereas the other hadwas a pre-term birth (GAB of 31 weeks). 

The organs were received by the LungMAP Human Tissue Core at the University of Rochester, 

and subjected to processing as previously described [23]. The LungMAP program and resulting 

studies are approved by the University of Rochester IRB (RSRB00047606). 

Single cell suspension preparation  

The right upper and middle lung lobes were digested to single cell suspensions using a four 

enzyme cocktail (collagenase A, DNase, dispase and elastase) according to LungMAP protocol, 

as described previously [23]. Isolated cells were resuspended in freezing media (90%FBS, 

10%DMSO) at a concentration no more than 60x106cells/mL, slow cooled to -80 C overnight 

and stored in liquid nitrogen until use. 

Human Single Cell Sequencing  

Unfractionated dissociated cells from each subject were rapidly thawed and, without resting, 

used for two separate captures of single cells for RNAseq. For each lung, one capture was 

preceded by magnetic selection (Miltenyi Biotech, Santa Barbara, CA). Cell capture and library 

production was performed on the Chromium 10X Genomics system. Sequencing was performed 

on a HiSeq4000, with read alignment to GRCh38. Cells filtered to exclude low quality cells, and 

potential doublets, were used to create analytical dataset. Highly variable genes were identified 
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using “MeanVarPlot” function in Seurat [26]. Principal component analysis (PCA) was used for 

dimension reduction based on only the highly variable genes. Top principal components (PCs) 

identified by JackStrawPlot(),graph based Louvain-Jaccard methods [27], were used for t-

Distributed Stochastic Neighbor Embedding (tSNE) and clustering analysis. All single cell 

sequencing data analysis was performed using Seurat v2.4 [28, 29]. No significant differences 

in overall capture quality and data were observed between the two runs from each individual 

lung, therefore data from both captures were combined. Differential expression was defined 

using a parametric Wilcoxon rank sum test at a corrected significance level of p<0.05. Pathway 

analysis and cell type association was performed using ToppGene Functional Annotation tool 

(ToppFun) [30].   

Mouse Single Cell Sequencing  

Animal protocols were approved by the Institutional Animal Care and Use Committee at 

Cincinnati Children’s Medical Center (CCMC) in accordance with NIH guidelines. C57BL6/J 

mice were used in the production of the mouse single cell RNA-seq data set as previously 

described [21]. Filtered data were log transformed, scaled, clustered and represented by t-

Distributed Stochastic Neighbor Embedding (t-SNE), similar to the analysis of human cells. Cell 

clusters were assigned to putative cell types based on inspecting the expression of known cell 

type markers, and the individual cluster markers analyzed using ToppFun [30].  

Integrating Human and Mouse Data  

We integrated our newborn human lung data set with single cell sequencing data (Drop-Seq) 

from longitudinal postnatal (post-natal days 1, 3, 7, and 10) mouse lung samples [21]. These 

data characterized mouse datasets, hosted by LungMAP (https://lungmap.net/), were used as a 

reference to help define the human lung cell populations. The useMart and getLDS functions, 

within the biomaRt package, were used to identify human and mouse orthologues 
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(https://bioconductor.org/packages/release/bioc/html/biomaRt.html). A list of 21,608 mouse MGI 

symbols were queried against HGNC symbols to identify 14,647 non-redundant orthologues. 

For all downstream analyses, HGNC symbols replaced MGI symbols within the mouse data set 

based on the biomaRt query [31]. We integrated Human cells (n=5499; 15%) and Mouse cells 

(n=32849) using canonical correlation analysis (CCA) implemented within Seurat [28] 

(https://satijalab.org/seurat/)(Figure S1). No batch effects were evident following implementation 

of CCA. Markers genes from individual clusters were used to determine the cellular identity of 

co-clustered human cells in ToppFun. 

Estimation of Human Cell Age 

We used the defined age of mouse cells to estimate the age of the human cells in the integrated 

data set. A schematic describing the approach used is provided in Supplemental Figure S1. 

First, we separated the data set based upon major cell type clusters (e.g., endothelial cells, 

matrix fibroblasts, etc.) using cell type-specific annotations. Next, we identified a surrogate of 

mouse age in each cell type independently, using principal components (PC) analysis. For each 

cell type, the most informative PC which was significantly correlated with age was used as the 

age surrogate (PCAge). We then measured the linear (Euclidean) distance between each human 

cell and the 100 nearest mouse cells in PCAge. The human cell age was defined as the average 

age of the nearest mouse cells, adjusted for the proportion of cells in the data set from each 

mouse age (Figure S1). Additional information is provided in the Supplemental Methods section. 

Flow Cytometry  

The presence of immune cell populations in newborn human lungs were validated by flow 

cytometry, essentially as previously published [32] . Frozen lung cells were thawed, blocked 

(2% serum in 1% BSA/DPBS) and stained for anti-hCD45 (APC-R700, clone HI30), anti-

hCD235a (PE-Cy5.5, clone GA-R2), anti-hCD3 (PE-Cy7, clone SK7) (all from BD Biosciences, 
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San Jose, CA) and anti-hHLA-DR (BV785, clone L243, Biolegend, San Diego, CA) and 7-AAD 

(viability marker, BD Biosciences). Staining was assessed on a 4-laser 18-color FACSAria flow 

cytometer (Becton Dickenson, San Jose, CA). Single antibody stained Simply Cellular® 

compensation beads (Bangs Lab, Fishers, IN) were used for fluorescence overlap 

compensation. Fluorescence minus one (FMO) controls and heat-killed 7AAD stained cells were 

used to set expression gates for each antibody and for live/dead gating. Data were analyzed 

using FlowJo software (version 10; FlowJo LLC, Ashland, OR). Cell multiplets, Dead cells (7-

AAD+) and erythrocytes (CD235a+) were excluded from analysis. 

In situ hybridization and Immunostaining 

Fluorescence in situ hybridization (FISH), combined with immunofluorescence staining, were 

performed on formalin fixed, paraffin embedded native human postnatal lung sections (6 µm). 

FISH was completed using the RNAscope Fluorescent Multiplex Assay (Advanced Cell 

Diagnostics, Newark, CA, cat. # 323110) as previously described [33], with minor adjustments. 

Treatment time with Protease Plus was reduced to 22 minutes. Tissues were incubated with the 

following probes: HES1 (cat. # 311191-C4), TCF21 (cat. # 470371) or COL6A3 (cat. # 482631) 

(Advanced Cell Diagnostics). Following washing and signal development, tissues were blocked 

(3% bovine serum albumin in 5% normal goat sera and 0.1% Triton) and incubated overnight at 

4°C with primary antibodies: CD31 (Neomarkers, RB-10333-P0) or CDH1 (BD Biosciences, 

6315829). Slides were washed and incubated with Cy3-goat-anti-mouse or anti-rabbit-

conjugated secondary antibodies (Jackson Immunoresearch Laboratories, Inc., West Grove, 

PA). Slides were counter-stained with DAPI (LifeTechnologies, Carlsbad, CA, cat. # DE571) and 

mounted using ProLong Diamond Antifade Mountant (LifeTechnologies). Images were acquired 

on an LSM710 confocal system with a 20x/0.8 Plan-APOCHROMAT objective lens [34].  
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Results 

Cellular Landscape of the Newborn Human Lung 

To characterize cellular heterogeneity in the newborn human lung, we performed single cell 

RNA sequencing (scRNAseq) of protease-dissociated cells from two one-day old lung samples. 

While the two lungs were obtained from individuals born at different GAB, there were no 

observable differences in cellular composition among the two, and hence cells from both lungs 

were combined using Canonical Correlation Analysis (CCA) as implemented in Seurat [28]. 

When combined, the analytic dataset comprised of a total of 5499 cells (Table S1), with an 

average detection of 2000-3000 genes per cell (Figure S2). To exclude low quality events, cells 

having fewer than 500 UMIs detected, or with > 12.5% mitochondrial genes, were excluded 

(Figure S2). This filtering resulted in an analytical dataset of 19,136 genes in 5499 cells; 3001 

cells from two separate captures on lung 1 and 2498 cells from two separate captures on lung 

2.  

This data set was used for analysis and visualization by t-distributed stochastic neighbor 

embedding (t-SNE). We identified 15 separate clusters of cells, along with corresponding 

marker genes (Figure 1). Each cluster displayed relatively equivalent distribution of cells from 

both subjects (Figure 1A). Among these 15 clusters, four major cell types, as defined by known 

selective markers, were identified on basis of expression of known markers (Figure 1D). 

Epithelial cells (n�=�209) were defined by expression of EPCAM, SFTPB, SCGB1A1, and 

NKX2-1. Endothelial cells (n�=�1092) were defined by expression of PECAM1, VWF, 

CLDN5, and CDH5). Mesenchymal cells (n�=�3553) were defined by expression of ACTA2, 

ELN, COL1A1, and CYR61. Immune cells (n�=�618) were defined by expression of leukocyte 

and lymphocyte cell markers PTPRC, CD8A, CD19, and CD3E.  
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Based upon selective expression, we identified marker genes for individual clusters (Figure 2A). 

Functional enrichment analysis successfully identified lung cell sub-types for each of the 15 

clusters (Figure 2B and Table S1). The markers for each individual cluster are presented in 

Table S4. 

A majority of the cells (>63%) appeared to be of mesenchymal origin. Distinct large populations 

of myofibroblasts (Cluster 0, n=820) expressing ACTG2, DES, ACTA2, TAGLN, CNN1, matrix 

fibroblasts (Cluster 1, n=814) expressing CFD, ADH1B, LUM, GPC3, TCF21, smooth muscle 

cells (Cluster 2, n=592) expressing ADIRF, PI15, PTN, SOD3, PLN, NTRK3 were identified. 

Two distinct populations of pericytes were observed, one cluster expressed FAM162B, HIGD1B, 

NDUFA4L2, COX4I2, CHN1 (Cluster 5, n=419), while the other expressed PRSS35, THY1, 

AGT, ID4, COL1A1(Cluster 6, n=398).  

We also identified four separate endothelial cells clusters; Cluster 3 (n=567) defined by 

expression of RGCC2, EDN1, RAMP23, CA4, IFI273 among others, Cluster 8 (n=321) defined 

by expression of HPGD3, HLA-E8, ITM2A1, EMCN1, CLDN58 among others, Cluster 10 

(n=146) defined by expression of ACKR1, PTGDS, VWF, HYAL24, SLCO2A12, among others, 

and Cluster 12 (n=85) defined by expression of SERPINE2, GLUL7, ID19, GJA42, SLC9A3R29, 

among others. Interestingly, functional analysis of the cluster marker genes associated Cluster 3 

cells with vascular development and Cluster 12 cells with integrin signaling.  

A much smaller fraction of cells (<4%) were identified as epithelial cells. Epithelial cells were 

separated into AT1 cells (Cluster 11, n=131) expressing CCL21, TFF3, SFTPB, AGR3, AGER) 

and AT2 cells (Cluster 14, n=14) expressing SFTPC, SFTPB, AGER, SFTPA1, KRT19.  

Interestingly, immune cells represented a sizeable fraction (11%) within the newborn human 

lung. Among immune cells, we were able to distinguish multiple discrete populations including 

macrophages (Cluster 7, n=349) expressing S100A8, S100A9, LYZ, HLA-DRA, HLA-DRB1, T 
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cells (Cluster 9, n=190) expressing GNLY, NKG7, KLRB1, GZMB, CCL4 among others, and B 

cells (Cluster 13, n=79) expressing IGHM, IGKC, IGLC2, IGLC3, CD79B, among others. 

Further validation of the presence of these immune cells in newborn human lungs was 

performed by  flow cytometry of single cell dissociates from additional age-matched lungs (one 

day old). To ensure high viability and to exclude lysis-resistant nucleated RBCs found in 

neonates, 7-AAD+ dead cells, and CD235a+ erythrocytes were detected and excluded from 

FACS analysis. From viable, RBC-depleted cells, mixed immune cells (MICs) were identified by 

CD45. The percentage of leukocytes detected varied from donor to donor, and ranged from 3-

14%, which was consistent with the frequency of immune cells observed in the single cell 

transcriptomics data set (Figure S5). 

Cellular Landscape of the Postnatal Mouse Lung 

Single cell RNA sequencing of murine lung tissue was performed using custom Drop-seq 

technology as previously described [21]. Cells with less than 500 detected genes, and greater 

than 10% of transcript counts mapped to mitochondrial genes were removed. Filtering the cells 

based on the aforementioned criteria resulted in an analytical data set of 17508 genes, from 

32849 cells (PND1 n=8003, PND3 n=8090, PND7 n=6324 and PND10 n=10432).  All mouse 

cells were grouped into 32 clusters, with and each cluster had relatively similar distribution of 

cells from individual time points (Figure 2A). Similar to the human cells, the four major cell types 

were readily identified based upon the expression of known selective marker gene expression 

(Figure S3, Table S3). Mesenchymal cells, again representing the largest fraction of the 

population (n=10678;33%), were defined by expression of ACTA2, ELN, COL1A1, and CYR61. 

The mesenchymal cell were identified into different sub-types including of multiple clusters of 

matrix fibroblasts, myo-fibroblasts, stromal cells and mixed fibroblasts. Endothelial cells 

comprised a sizeable portion of the mouse cells (n�=�8891), and were defined by expression 

of PECAM1, VWF, CLDN5, and CDH5. In the mouse data set, epithelial cells were well 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.16.156042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.156042
http://creativecommons.org/licenses/by-nc-nd/4.0/


represented (n�=�6133) and defined by the expression of EPCAM, SFTPB, SCGB1A1, and 

NKX2-1. Epithelial cells clusters were further sub-classified into pulmonary alveolar type I (AT1), 

alveolar type II (AT2), and ciliated respiratory epithelial cells. As in the human, immune cells 

were frequent in the neonatal mouse lung (n�=�7244) as defined by expression of 

PTPRC, CD8A, CD19, and CD3E). The immune cells were further classified as B-cells, T-cells, 

macrophages, monocytes, and myeloid cells among others (Figure 2B). Compared to human 

newborn lungs, mouse lungs appear to have relatively greater proportion of epithelial cells. In 

addition, even among the mesenchymal cells, there appears to be a greater proportion of matrix 

fibroblasts. 

Integration of Newborn Human and Mouse Lung Data Sets  

We next combined the human and murine lung data sets (Figure 4). A total of 14,502 

orthologous genes were identified using BioMart [31]. Canonical correlation analysis (CCA), 

implemented in Seurat, was used for data integration across the species. After performing data 

quality filtering similar to the human and mouse only datasets, the species-integrated analytical 

data set contained a total of 29762 cells: 2327 (15%) human cells and 27435 (85%) mouse 

cells. In this integrated data set, we identified 17 clusters of cells, along with corresponding 

cluster marker genes. Each cluster was composed of a combination of mouse and human cells 

(Figure 4A and Table S4). We again identified four major cell types by known cell-type selective 

marker expression (Figure 4B-D); mesenchymal cells (n�=�9980, 25% human), endothelial 

cells (n�=�8292, 12.5% human), epithelial cells (n�=�5146, 4% human) and immune cells 

(n�=�6344, 7% human).  

Based upon selective expression, we identified marker genes for individual clusters (Figure 5A). 

Functional enrichment analysis successfully identified lung cell sub-types for each of the 17 

clusters in the integrated data set representing postnatal lung tissues from human and mouse 

(Figure 5B and Table S4). We observed multiple clusters of mesenchymal cells; myofibroblasts 
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(n=4592; Clusters 3, 10, and 11), matrix fibroblasts (n=4743; Clusters 1 and 14) and pericytes 

(n=645, Cluster 12). We observed multiple clusters of endothelial cells (n=8292; Clusters 0, 5, 9, 

and 15). We observed multiple immune cell populations including macrophages (n=3002, 

Cluster 4), T cells (n=1330, Cluster 8), B cells (n=1388, Cluster 7), and myeloid cells (n=585, 

Cluster 13) as well.  

Estimating Maturity of Human Cells 

There exists a degree of uncertainty regarding the state of maturity of the human and mouse 

lung at the time of birth, since rodents and humans are born at different histological stages, 

alveolar in humans, but saccular in mice. We sought to determine the “cellular maturity” of the 

newborn human lung in comparison to the postnatal mouse lung, using the integrated human-

mouse data set. We performed this analysis separately for each distinct cell type (Figure S1), in 

order to identify age as a contributing variable. Cell types were assigned based upon 

annotations described above and separated into independent data sets. For each cell type data 

set, we independently performed PCA, and tested the relationship between each PC vector and 

the known age of the mouse cells. For simplicity, the surrogate for age was chosen as the single 

PC that was statistically correlated with age and explained the greatest variance in the data set. 

We calculated the age of every human cell using its linear distance to 100 mouse cells in space 

defined by the age-related PC (PCAge). The PC associated with age differed for each cell type, 

and the correlation coefficients (r) values, which were used as metric for identifying the PC 

related to age (Table S5).  

The estimated age of individual human cell types differed slightly, but primarily remained in the 

range of 5-9 mouse days, consistent with the known histological relationships between human 

and mouse (Figure 6A). Interestingly, epithelial cells, endothelial cells and matrix fibroblasts 

displayed a more diverse distribution in estimated age. Matrix fibroblasts, which represented a 
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large proportion of all cells displayed a somewhat bi-phasic pattern, where 29 % of cells 

appeared to be an estimated age consistent with other cell types (5-9 days), while a second set 

of cells appeared to be of much younger estimated age (1-4 days) (Figure 6B and Figure S7A). 

We identified marker genes for younger and more mature matrix fibroblast population using 

DESeq2 [35] leading to identification of 210 differentially expressed genes. Among the 23 genes 

that were over expressed in “the mature matrix fibroblasts” (those presenting with an older 

estimated age), included B2M, CYBA, and CCBE1. Among the 187 genes that were over 

expressed in “immature matrix fibroblasts” (those presenting with a younger estimated age), 

included IGFBP7, HES1, RGS3, TAGLN, C11orf96 and EGFL6. Pathway analysis using these 

187 genes revealed smooth muscle, matrix, and collagen related pathways, along with oxidative 

stress, stress response, degranulation and scavenging related pathways were affected in the 

immature matrix fibroblasts (Figure S6). 

One of the markers for younger matrix fibroblasts, HES1, was also expressed in other 

mesenchymal cells (pericytes and stromal cells) and endothelial cells as well (Figure S7B). We 

further identified cells expressing HES1 alone, and cells coexpressing it with matrix fibroblast 

markers (COL6A3 or TCF21; Figure S7C-D) or markers for other cell types (PECAM1 for 

endothelial cells or CDH1 for epithelial cells; Figure S7E-F). Finally, we tested whether we could 

identify the older/mature and younger/immature matrix fibroblasts in the newborn human lung. 

We performed combined immunohistochemistry and in situ hybridization to identify the 

expression of general- (COL6A3 and TCF21) and immature population-specific (HES1) markers 

at the cellular level. We were able to identify individual matrix fibroblasts (as defined by 

expression of COL6A3 or TCF21, but not PECAM1 or CDH1) that expressed HES1, as well as 

matrix fibroblasts that did not express HES1 (Figure 6C). These data indicate the presence of a 

distinct group of immature matrix fibroblasts in the newborn human lung that display high 

expression of HES1 transcript.    
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Discussion 

Cell lineages, and their relationships, during lung development and in diseased states have 

been extensively studied in rodent models, thanks in large part to use of transgenic technology. 

It has been more difficult to confirm independent cell types and their lineages in the relatively 

rare and non-experimental nature of human lung tissue analysis. However, given recent 

advancements in high-throughput molecular profiling technologies, rapid progress is being 

made [21, 25, 33]. The establishment of the LungMAP program, and its success in obtaining 

human tissues for structural, cellular and molecular analysis has, and will continue to, facilitate 

this progress [22, 36-38]. Here, we report transcriptional analysis of newborn human lung cells, 

including all major cell types, and describe the molecular profile for matrix fibroblast subtypes 

that may represent cells at different states of maturity.  

Applying single cell RNA sequencing to newborn human lungs, we identified a diversity of 

pulmonary cells, including epithelial, fibroblast, immune, endothelial, and other cell subtypes 

based upon distinct gene expression patterns. Although a novel and necessary study, it has to 

be acknowledged that some bias likely exists in the cells isolated and herein. We note a paucity 

in the capture of epithelial cells, consistent with our recent report of similar analyses of human 

fetal lung tissues [33]. Our prior studies using similar cell isolation protocols in older pediatric 

lung samples, demonstrated a higher proportion of epithelial cells [23]. Low capture/detection of 

epithelial cells in the fetal and newborn human lung may be attributed to the developmental age 

of the studied samples or difficulty in capture of these cells with the Chromium 10X protocol. 

Cellular capture from the young lungs is further complicated by the lack of knowledge regarding 

cell dissociation, different protease sensitivity, and cell survival during digestion and capture 
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procedures. We performed two independent captures on each sample, one involving removal of 

unhealthy cells. Importantly, we noted consistent recovery of all major cell populations 

regardless of capture (Tables S1 and S4). We did observe an absence in type II epithelial cell 

capture prior to selection, suggesting epithelial cell viability may contribute their diminished 

detection.  

It is clear that although stages of lung development, and their morphological correlates, are 

highly conserved across species, significant differences exist in their relative length and timing 

[39]. An example is that the mouse lung is in the saccular stage at birth, while the human lung at 

term birth is in the alveolar stage. The newborn human lung is histologically and 

developmentally similar to a 1week old mouse lung (Figure S4). We took advantage of recent 

data from the LungMAP program, describing postnatal mouse lung development at the single 

cell level, to infer the “age” or “maturity” of newborn human lung cells. Majority of the human 

cells, regardless of cell type/lineage, were estimated to be 4 to 9 days of mouse age, consistent 

with the histological comparisons. For some cell types (e.g., matrix fibroblasts, endothelial cells, 

epithelial cells), greater diversity in estimated age was noted. The epithelial cell population was 

not large enough to separate known distinct lineages. Among the other cellular populations, the 

extent of endothelial cell diversity (e.g., large vs. small vessel), has been well documented [40]. 

We focused subsequent analysis on the matrix fibroblasts, as phenotypic diversity among this 

population is less well described.  

Our data on newborn human lung matrix fibroblast diversity are consistent with a prior report of 

different types of murine lung matrix fibroblasts [41]. The majority of newborn human lung matrix 

fibroblasts appeared to be more similar to younger mouse matrix fibroblasts and displayed 

higher levels of expression of HES1. HES1 is a regulator of Notch signaling and appears to 

actively suppress differentiation [42]. Interestingly, regulation of collagen expression by Notch is 

achieved through a Hes1-dependent mechanism [43]. Furthermore, HES1 appears to play a 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.16.156042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.156042
http://creativecommons.org/licenses/by-nc-nd/4.0/


critical role in regulating lung fibroblast differentiation [44].  HES1 is known to be expressed in 

mucus cells from patients with chronic obstructive pulmonary disease, idiopathic pulmonary 

artery hypertension or IPF [45]. Another gene that displayed higher expression in the 

younger/immature matrix fibroblasts was IGFBP7, which has previously been associated with 

resistance to lung cancer [46]. The younger/immature matrix fibroblasts may represent cells in 

an immature state, with importance for normal development, and may hint at a developmental 

origin for some adult diseases such as lung fibrosis. 

To summarize, here we report a dataset describing the transcriptome of newborn human lung 

cells defined using single cell RNA sequencing. Our results include markers for all major lung 

cell types including multiple populations of mesenchymal, endothelial, epithelial and immune 

cells.  We also successfully integrated the transcriptomes of newborn human cells with 

postnatal developing mouse lung cells, enabling the estimation of cell-type specific maturity 

states of human cells. The data show that maturation states, even though largely in the 

expected range of 4 to 9 murine postnatal days, differ by cell type. Integrated single cell RNA 

profiling of human and mouse lung will help identify common and species-specific mechanisms 

of lung development and respiratory disease. 
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Figure Legends: 

Figure 1 Identification of lung major cell types using single cell RNA sequencing of 

newborn human lung. (a) t-distributed Stochastic Neighbor Embedding (tSNE) analysis of 

cells. Cells are indicated by donor. (b) Visualization of distinct cell clusters in tSNE plot. (c) 

Expression of some known cell type markers. (d) The assignment of cell clusters to four major 

cell types, including endothelial cells, mesenchymal cells, immune cells, and epithelial cells. 

 

Figure 2: Identification of cell sub-type markers in newborn human lungs.  (a)Genes 

expression patterns of select markers of corresponding cell clusters. (b) Assignment of cell 

types to 15 distinct tSNE clusters. 

 

Figure 3: Identification of lung cell types using in mouse lung. (a) t-distributed Stochastic 

Neighbor Embedding (tSNE) analysis of cells. Cells are colored by mouse age. (b) Visualization 

of cell clusters in tSNE plot of cells with assignment of cell types to 32 distinct tSNE clusters.  

 

Figure 4: Integration of human and mouse lung cell data sets. (a) t-distributed Stochastic 

Neighbor Embedding (tSNE) analysis of cells. Cells are indicated by species. (b) Expression of 

known cell type markers in tSNE plot of cells in the integrated data set. (c) Visualization of 

mouse cell clusters in tSNE plot of cells grouped by major cell types. In the integrated object 

created from combining both human and mouse lung cells, the assignment of cell clusters to 

four major cell types, including endothelial cells, mesenchymal cells, immune cells, and 

epithelial cells. (d) Proportion of cells derived from human and mouse data. In the integrated 

dataset 15% of cells are human; human mesenchymal cells (25%) are over-represented, but 

endothelial (12.5%), immune (7%) and epithelial cells (4%) are under-represented. 
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Figure 5: Identification of cellular sub-types in combined human and mouse lungs. (a) 

Gene expression patterns of select markers of corresponding cell types is shown in the 

heatmap. (b) The t-distributed stochastic neighbor embedding (tSNE) visualization shows 

unsupervised transcriptomic clustering, revealing 18 distinct cellular identities.  

 

Figure 6: Estimating maturity of human cells. (a) Distribution of the estimated ages of the 

human cells derived from post -natal age (PND) of 100 nearest mouse cells to each of the 

human cells. (b) Proportion of cells of individual human cell types at each stage of maturity 

defined in terms of estimated post-natal day age of mouse. (c) Fluorescent in situ hybridization 

(FISH) combined with immunofluorescence of Immature Matrix Fibroblast marker HES1 (red), 

Non-Mesenchymal Cell Markers, PECAM1 or CDH1 cyan), and Mesenchymal Cell Markers 

COL6A3 or TCF21 (green) on newborn human lung sections from 3 donor lungs of 1 day of 

age. Pink arrows indicated the presence of immature matrix fibroblasts shown by co-localization 

of HES1 (red) and Mesenchymal Cell Markers COL6A3 or TCF21 (green).  
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