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9 Abstract

10  Single particle electron cryomicroscopy (cryo-EM) requires full automation to allow
11 high-throughput structure determination which is especially important for drug
12 discovery research. Although several software packages exist where parts of the
13 cryo-EM pipeline are automated, a complete solution that offers reliable, quality-
14  optimized on-the-fly processing, resulting in a high-resolution three-dimensional
15 reconstruction does not exist. Here we present TranSPHIRE: A software package for
16  fully automated processing of cryo-EM data sets during data acquisition. TranSPHIRE
17  transfers data from the microscope, automatically applies the common pre-
18  processing steps, picks particles, performs 2D clustering, and 3D refinement parallel
19  to image recording. Importantly, TranSPHIRE introduces a machine learning-based
20 feedback loop to re-train its internally used picking model to adapt to any given data
21  set live during processing. This elegant approach enables TranSPHIRE to process data
22 more effectively, producing high-quality particle stacks. TranSPHIRE collects, and
23 displays all microscope settings and metrics generated by its individual tools, in order
24 to allow users to quickly evaluate data during acquisition. TranSPHIRE can run on a
25  single work station and also includes the automated processing of filaments.

26
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27 Introduction

28  Single particle electron cryomicroscopy (cryo-EM) has successfully established itself
29  as a prime method to determine the three-dimensional structure of macromolecular
30  complexes at close to atomic resolution . The technique has therefore the potential
31  to become a key tool for drug discovery research ®. However, single particle analysis
32 (SPA) studies still require large amounts of processing time, expert knowledge, and
33 computational resources. With the number of modern high-throughput microscopes
34  growing rapidly, there is an urgent demand for a robust, automated processing
35 pipeline that requires little to no user intervention. This need is felt especially in the
36 field of drug discovery °.

37 In many cases, data sets that were recorded for several days and can include
38 10,000 to 20,000 movies turn out to be unusable for high-resolution structure
39  determination during subsequent data processing. It is therefore necessary for users
40  to obtain feedback on the quality of their data immediately during recording. This
41  enables them to decide whether or not to continue a session, adjust any of the
42  acquisition parameters at the microscope, and compare different grids. This can only
43 be achieved when processing the data in parallel to data acquisition. A fully
44  automated pipeline requires streamlined data transfer and automated pre-
45 processing and processing workflows, free of any user bias.

46 Although several software packages partially address these issues *'°, a
47  complete solution that offers reliable, quality-optimized and flexible on-the-fly
48 processing during data acquisition resulting in a high-resolution 3D reconstruction
49 does not yet exist. CryoFLARE *, for example, performs live analysis and processing
50 parallel to data acquisition, but only to the level of 2D classification and lacks the
51 ability to perform ab initio 3D reconstructions or high resolution refinements.

52  Similarly, Focus 2 Appion '°, and Warp ® do not produce 2D class averages and 3D
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53 reconstructions. The latter two are less flexible than other offerings by being

54  restricted to either collecting data with Leginon !

in case of Appion or exclusive
55 compatibility with Windows and Warp-native tools. All three software packages
56 concentrate on data acquisition and associated parameters but not on the
57  optimization of data processing which is an important prerequisite for automated
58  structure determination. The non-interactive data pre-processing in Relion-3 ° offers,
59 similar to Focus %, some flexibility in terms of tool integration, but hinders the
60 implementation of more complicated cryo-EM processing by making advanced
61 parameters only accessible via manual scripting, rather than its GUI. Both Relionit °
62  and Scipion ’ share the same accessibility issue of quality metrics, where no values
63 are automatically plotted and updated during processing. Instead, the user has to
64  step in and trigger the compilation of a log-file that contains a mix of metrics for all
65 processed data; any specific values of an individual micrograph have to be found
66 manually. This makes assessment problematic, especially for beginners in the field.

67 Here we present TranSPHIRE, a fully automated pipeline for on-the-fly
68  processing of cryo-EM data. It combines deep learning tools with a novel, feedback-
69  driven approach to re-train the integrated crYOLO particle picker ** during ongoing
70  pre-processing. This allows TranSPHIRE to perform GPU accelerated 2D classification
71  to provide high-quality 2D class averages and, subsequently, 3D reconstructions from
72  clean data. This gives experimentalists the means to quickly evaluate both the quality
73  of their data sets as well as their chosen microscope settings during data acquisition.
74 A combination of new and improved tools allows TranSPHIRE to provide users with
75  the strongest early results in the shortest amount of time, without the need to
76  outsource the computational load to a computer cluster, or the need for user
77  intervention. Importantly, it allows users to perform automated high-throughput on-

78  the-fly screenings for different buffer conditions or ligands of interest as well as to
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79  fine-tune the workflow for the respective target-protein and perform digital
80 purification during image acquisition.

81

82 Results

83  General setup, functionality and layout of TranSPHIRE

84  TranSPHIRE is an automated pipeline for processing cryo-EM data sets (Figure 1). It is
85  developed in Python 3 to run on Linux, and is available online for free. TranSPHIRE
86  performs parallelized data transfer and flexibly integrates a range of commonly used
87 pre-processing tools, as well as the advanced processing tools of the SPHIRE package
88 3. Using these tools, TranSPHIRE implements a fully automated pipeline to process
89 cryo-EM data on-the-fly during data acquisition. TranSPHIRE is designed to allow
90 users to make the best use of their available resources by prioritizing data analysis,
91 presenting early results, and using machine learning tools to identify and process
92  only those parts of the data that contribute to high quality results.
93 TranSPHIRE is controlled via an easy-to-use GUI that allows users to set up a
94  session, and choose and configure the desired tools to use (Supplementary Figure 1).
95 For pre-processing, the TranSPHIRE pipeline integrates MotionCor2 ** and Unblur **
96 for beam induced motion correction with dose weighting; as well as CTFFIND4 16
97 CTER Y, and GCTF *® for CTF estimation. This modularized integration is entirely
98  parameterized, allowing experimentalists to both choose their preferred tools as well
99  as configure them as needed — all without leaving the TranSPHIRE GUI. Available
100 parameters are sorted by level of usage (“main”, “advanced”, and “rare”) to highlight
101  and help identify the most commonly adjusted parameters for each tool.

102 During the session, TranSPHIRE automatically parallelizes the batch-wise

103 processing of incoming micrographs, outsources computationally expensive steps to
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105  Figure 1. The TranSPHIRE pipeline and the SPHIRE backend. (a) Upper register (solid
106  line): Overview of the integrated TranSPHIRE pipeline and all automated processing
107  steps. The pipeline includes file management tasks, i.e., parallelized data transfer, file
108  compression, and file backup (grey); 2D processing, i.e., motion correction, CTF
109  estimation, particle picking, 2D clustering, and 2D class selection (turquoise); and 3D
110  processing, i.e., ab initio 3D reconstruction and 3D refinement (red). Additionally, the
111  pipeline includes an automated feedback loop optimization to adapt picking to the
112 current data set during runtime (purple). Lower register (dotted line): The SPHIRE
113  software package forms the backend for TranSPHIRE and offers the tools used for 2D
114  and 3D processing. SPHIRE includes additional tools for advanced processing, such as
115  heterogeneity analysis and local resolution determination. (b) The TranSPHIRE
116  feedback loop. Grey arrows indicate the flow of data processing. Red arrows indicate
117  the flow of the feedback loop. Left (input): Micrographs are initially picked using the

118  crYOLO general model. Center (processing): Particles are picked and extracted. Once
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119 a pre-defined number of particles have been accumulated, the pipeline performs 2D
120 classification; the resulting 2D class averages are labeled as either "good" or "bad" by
121 Cinderella. Class labels and crYOLO box files are then used to re-train crYOLO and
122 adapt its internal model to the processed data. In the next feedback round this
123 updated model is used to re-pick the data. Right (output): After five feedback rounds,
124 the complete data set is picked with the final optimized picking model and 2D
125  classified in batches. For every batch a particles stack of “good” particles is created
126  and available for 3D processing.

127

128  available GPUs, and produces preliminary 2D class averages and 3D reconstructions
129  based on the most recently processed batch of data (Figure 2, Supplementary Figure
130  2). Through the optimal distribution of processes, TranSPHIRE runs on-the-fly for a
131 wide range of data acquisition settings using a single workstation (Supplementary
132 Figure 3; see Methods for details about hardware). Moreover, TranSPHIRE can catch-
133 up with the speed of the acquisition after the initial delay due to the feedback loop
134  (see below) for routinely used data acquisition schemes (Figure 3c). Thus, initial 2D
135  class averages and 3D reconstructions are available within a few hours after starting
136  the data collection (Figure 2, Supplementary Figure 3).

137 Throughout the processing, TranSPHIRE collects all data quality metrics
138  produced by its individual tools, links them with the relevant micrographs where
139  appropriate, and presents them front and center in its GUI (Supplementary Figure 1).
140 Optionally, notifications for early milestones such as 2D class averages and
141 preliminary 3D maps, can also be sent via email. These features enable
142  experimentalists to both identify and address any issues as soon as they surface
143  during data acquisition, without requiring constant user supervision. Additionally, all
144  results produced by the integrated tools during processing are also copied in parallel
145  to the pre-defined workstation and backup locations (Supplementary Figure 2). To

146 support interoperability with existing packages, all pre-processing steps until particle
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147 picking support the file formats used in both SPHIRE and RELION; for later processing
148 steps utilities are included to convert SPHIRE files into RELION .star.

149
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151  Figure 2. Timeline of the TranSPHIRE pipeline. Timeline depicting the parallel
152 execution of the processes of the TranSPHIRE pipeline. Timings are based on a Tc
153 holotoxin data set consisting of 2,053 micrographs, each containing 36 particles on
154  average, collected at a speed of 188 micrographs per hour (K2 super-resolution, 40
155  frames). TranSPHIRE ran on-the-fly up to the creation of an ab initio 3D
156  reconstruction using default settings. Important milestones are denoted in black: (a)
157  first 2D class averages produced after 1.4h; (b) end of the feedback loop after 7.3h;
158  (c) ab initio 3D reconstruction after 9.1h; and (d) final 3D reconstruction of the first
159  batch of particles after 15.5h.

160

161  Transfer and pre-processing

162 Once a session starts, TranSPHIRE automatically detects and transfers new
163 micrographs from the camera computer of the microscope (Figure 1, Supplementary
164  Figure 2). These data are moved in parallel to several, user-specified locations e.g. a
165  work station or cluster for processing, and a backup storage server. In case of the
166 latter, TranSPHIRE also automatically compresses the data to preserve storage space.

167 Copy locations may also include additional spaces such as transportable hard discs. If
7
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168 desired, TranSPHIRE further renames files, and deletes images from the camera
169  workstation in order to free up more space to enable continuous data collection. It
170 also extracts meta data such as acquisition time, grid square, hole number and
171 coordinates, spot scan, and phase plate position from .xml files provided by EPU or
172 .gtg files provided by Latitude S.

173 During the ongoing data transfer, any data that has already been copied is
174  pre-processed in parallel (Figure 2, Supplementary Figure 2). During setup, users can
175  choose to perform motion correction using either MotionCor2 ** or Unblur™. While
176 motion correction is performed, TranSPHIRE presents all relevant metrics, such as the
177  average shift per frame, or the overall shift per micrograph (Supplementary Figure 1).
178  For CTF estimation, users can set up TranSPHIRE to use either CTFFIND4 *°, CTER ¥/,
179  and GCTF . Depending on whether or not CTF estimation on movies is activated in
180  TranSPHIRE, CTF estimation is performed in parallel to motion correction
181 (Supplementary Figure 2). The metrics extracted and displayed by TranSPHIRE
182 include defocus, astigmatism, and the resolution limit (Supplementary Figure 1).
183  Combined with the information gathered during motion correction, these values
184  allow experimentalists to assess the performance and alignment of the microscope
185  during acquisition, and adjust any thresholds to automatically discard low quality
186 micrographs as necessary.

187 For particle picking the TranSPHIRE pipeline integrates crYOLO *, our state of
188  the art deep learning particle picker. During picking, TranSPHIRE displays the particles
189  picked per micrograph, which allows users to assess the picking performance and
190 overall sample quality (Supplementary Figure 1).

191 Once a fixed threshold of picked particles is reached (Supplementary Figure
192 4; also see Methods), TranSPHIRE launches 2D classification using a GPU accelerated

193  version of ISAC2 * (Figure 1). ISAC2 limits the number of class members to spread the
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194  given particles across multiple classes which prevents individual classes from growing
195 too large. This results in sharp, equal-sized, and reproducible classes that contain all
196 possible orientations exceeding the minimum class size. They enable
197 experimentalists to reliably assess particle orientations and overall quality, and help
198  to identify possible issues such as preferred orientations or heterogeneity.

199 The 2D class averages are then sorted by Cinderella %°, our integrated deep
200 learning tool for 2D class selection. Cinderella labels the given 2D classes as either
201 “good” or “bad” and determines which class averages and, thereby, particles are
202 used for further processing. This results in an automatic cleaning of the data and
203  allows TranSPHIRE to process only the relevant subset of a given data set, thereby
204  dramatically lowering the amount of data processed by the computationally
205 expensive steps of 3D reconstruction and refinement.

206

207  Optimizing particle picking using a machine learning-fueled feedback loop

208 For any cryo-EM pipeline the ability to reliably perform high quality picking
209 irrespective of the data at hand is essential. This poses a challenge when processing
210 is to be automated, as this immediately excludes any user intervention such as
211 manual inspection of the picking results. The latter is especially relevant if a sample is
212 unknown to the picking procedure, or is otherwise difficult to process, e.g. due to
213  contamination or interfering conformational states — issues that usually need to be
214  identified by a qualified expert before processing can continue.

215 TranSPHIRE solves these issues by introducing a machine learning based
216  feedback loop that repeatedly re-trains the fully integrated crYOLO ** deep learning
217  particle picker during data acquisition to adapt picking to the given data set (Figure
218 1b). This enables crYOLO to specifically target those particles that end up in stable 2D

219 class averages, while, at the same time, learning to disregard particles that do not.
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220 First, incoming motion corrected micrographs are forwarded to crYOLO for picking.
221 Once a batch of 20,000 picked particles has been accumulated, it is handed over to
222 our GPU accelerated version of the 2D classification algorithm ISAC2 *°
223 (Supplementary Figure 3). Here we determine which particles can be used to create
224  stable 2D class averages, and reject the particles that cannot be accounted for. The
225 newly produced 2D class averages are given to our deep learning tool Cinderella *°,
226  which labels each class average as either “good” or “bad”. At this point, the particles
227  of the “good” classes are used to re-train crYOLO and update its internal model.
228  Specifically, we randomly select a maximum of 50 micrographs that contain particles
229  that ended up in the “good” classes for the re-training (for details see Methods).
230 Once the training and thus the first feedback round has completed, processing re-
231 starts using the optimized picking model (Figure 1b).

232 The TranSPHIRE feedback loop iterates five times, which has proven sufficient
233 to achieve convergence in our experiments, and afterwards is not repeated for the
234  remainder of the data acquisition. Re-training crYOLO ** to become increasingly more
235 proficient at targeting particles that end up in “good” classes has the additional
236  benefit of trimming down the overall size of the data set. Though the pre-processing
237  of cryo-EM data is already time consuming, the following 3D refinement requires
238  even more computational power. While it is usually customary to process as much
239  data as possible, the computational cost of 3D refinement usually does not scale
240 linearly, and such an approach will not be sustainable in the near future. This is
241  further exacerbated by the fact that image acquisition speeds and sizes of data sets
242  are both growing rapidly. Because of this, the aim should be to process as little data
243  as necessary, without harming the quality of the final reconstruction. Fortunately, it
244  is known that cryo-EM data sets contain a large amount of unusable data that can be

245 safely discarded — if we have a way to reliably ensure that we keep those data that

10
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246  we are actually interested in. The TranSPHIRE feedback loop offers this functionality
247 and provides quality in quantity.

248

249  Abinitio 3D model reconstruction and 3D refinement

250 To compute a 3D reconstruction, the particles included in all classes labeled “good”
251 by Cinderella are extracted and form a clean, high-resolution particle stack. If there is
252 no initial 3D reference provided to TranSPHIRE, the pipeline waits until at least 200
253 (by default) “good” classes have been accumulated. The respective 2D class averages
254  are then used to create a reproducible, ab initio 3D reconstruction using SPHIRE
255 RVIPER **?! (Figure 1). This provides a first view of the structure of the target protein
256  and a first impression of the conformational state.

257 The initial 3D reference is then used by TranSPHIRE to initialize the 3D
258 refinement using SPHIRE MERIDIEN (Figure 2). While the initial map is computed only
259 once, a new 3D refinement is started every time another set of 40,000 (by default)
260  “good” particles has been accumulated.

261 Note that in contrast to SPHIRE RVIPER, which only uses the first 2D class
262  averages, SPHIRE MERIDIEN uses all particles subsumed by the last batch of “good”
263 particles. The fully automated creation of an initial 3D map and continuous
264  production of a series of refined reconstructions based on that latest data enables
265  TranSPHIRE to present high-resolution structures already during data acquisition.

266 This enables for a more detailed, on-the-fly evaluation by the user, such as
267  analyzing the conformational state and/or confirming whether and where a ligand is
268  bound. By providing a series of reconstructions — one for every batch, TranSPHIRE
269  also offers a time-resolution of the data set, enabling experimentalists to gauge the

270  quality of their data over time throughout data acquisition.

11


https://doi.org/10.1101/2020.06.16.155275
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.16.155275; this version posted June 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

271 With the following three experiments we illustrate the capabilities of
272  TranSPHIRE to automatically adapt to unknown data, make use of prior knowledge to
273 selectively target the conformational subpopulation within a sample and process
274  filamentous data.

275

276  Learning to pick an initially unknown membrane channel without user intervention
277  Similar to crYOLO, many modern particle picking programs are based on machine
278  learning, where an internal model is trained to recognize particles within

62223 While this method features an inherent capacity to generalize to

279  micrographs
280 unseen data sets, this ability is limited. Therefore, reliable picking can usually not be
281  guaranteed out of the box when samples differ too much from the original training
282 data of the network. Samples might also be of unusually low contrast, or an unknown
283  form of contamination is encountered. While such issues can be overcome by adding
284  the problematic data to the training set, this requires manual user intervention on
285 multiple levels. First, the insufficient picking capability has to be detected; second, an
286  experienced experimentalist has to pick a small amount of training data by hand; and
287 third, the network has to be re-trained manually.

288 The TranSPHIRE feedback loop resolves this issue and entirely foregoes the
289  need for user intervention even when facing data that is either unknown to the
290  picking model or vyields insufficient picking results for any other reason. To
291  demonstrate this ability, we processed a data set of the TRPC4 membrane protein
292  channel with the TranSPHIRE feedback loop using a picking model without any prior
293 knowledge of this protein (Figure 3). Specifically, to ensure the sample was unknown
294 to crYOLO at the start of the feedback loop, we removed all four TRP channel data

295  sets normally included in the training data of the crYOLO general model. Additionally,

296  in order to simulate a bad generalization of crYOLO we randomized 90% of all picks in

12
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299 Figure 3. Processing the TRPC4 membrane channel using a deliberately hampered
300 picking model. (a) To simulate low quality picking, only 10% of the initial crYOLO
301  picks were used while the remaining 90% were re-positioned randomly (left). After
302 the feedback loop crYOLO reliably picks the TRPC4 particles (right). (b) Total amount
303  of 2D class averages produced in the first iteration of the feedback loop (top) and 21
304 representative averages produced in the final iteration of the feedback loop (bottom).
305 (c) Progression of the number of particles labeled “good” when applying the
306 intermediate picking models of the feedback loop to a fixed subset of 500

13
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307 micrographs. The curve flattens out in the final iterations, indicating the convergence
308 of the feedback loop optimization. (d) Fourier shell correlation (FSC) curves of the
309 individual 3D reconstructions computed from particles labeled “good” (also see c). (e)
310 Representative alpha-helix (amino acids 600-615) illustrating the improvement of the
311  density when using the final (bottom) compared to the initial (top) picking model. (f)
312 3D reconstruction of TRPC4 computed from 500 micrographs using the optimized

313  picking model.

314

315 the first iteration of the feedback loop (Figure 3a). This was done by replacing 90% of
316  the particle boxes determined by crYOLO with randomly positioned boxes within the
317  same micrographs. In combination, these measures ensured that the initial picking
318 results were almost entirely unusable and successful re-training had to take place in
319 order to enable further processing of the data.

320 Despite the bad starting point, by the final feedback loop iteration the
321 repeatedly re-trained model has successfully learned to pick the previously unknown
322  TRPC4 particles resulting in high-resolution 2D class averages (Figure 3a, b). An
323  evaluation of the performance of the feedback loop on a fixed subset of 500
324  micrographs (see Methods for details), illustrates that the number of “good” particles
325  increases sharply within the early iterations of the feedback loop from an initial 25%
326 of particles to a stable value of ~ 50%, (Table 1, Figure 3c) and a final resolution of 3.6
327 A (FSC=0.143). This increased ability to identify a greater number of usable particles
328  on the same subset of micrographs is also reflected in the map quality and achieved
329 resolution when using the intermediate crYOLO models produced during the
330 individual feedback rounds to process the fixed set of 500 micrographs (Figure 3d-f).
331 This experiment furthermore demonstrates the ability of crYOLO to adapt to
332 unknown data even if only sparse training data is available. In the initial round of the

333  feedback loop a mere 5 particles per micrograph ended up in “good” classes on

14


https://doi.org/10.1101/2020.06.16.155275
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.16.155275; this version posted June 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

334  average — and, consequently, are all that was available to re-train the picking model

335 (Table 1).

Feedback  Good Good Good Relative
round classes particles Picks/Mic picks/Mic Resolution good picks
2 28 2,504 20 5 4.71 0.25
3 236 22,154 104 44 3.65 0.43
4 349 32,513 132 65 3.60 0.49
5 355 33,415 152 67 3.60 0.44
6 361 34,018 147 68 3.55 0.46
6 +T0.257 331 31,237 114 62 3.6 0.55

336

337  Table 1. TRPC4 feedback loop statistics. For every feedback round as well as the final
338  run dafter optimization of the picking threshold (6 + T x.xx) the number of classes
339  labeled “good” by Cinderella; the number of particles included in these classes; the
340  total number and the number of good particles picked per micrograph; the final
341  resolution of the 3D reconstruction; and the relative amount of good particles are
342  listed for the TRPC4 data (500 micrographs).

343

344 In summary, the TranSPHIRE feedback loop is able to automatically optimize
345 the internally used picking model and provide reliable, high quality picking results
346  even when processing challenging samples that initially are barely recognized by the
347 model. We have shown that in such a case, after five feedback rounds, crYOLO is able
348  to pick the TRPC4 membrane protein to completion, without requiring the user to
349  continuously monitor, let alone disrupt the ongoing data processing. The feedback
350 loop optimization is fully integrated into the TranSPHIRE pipeline and works entirely
351  automated out of the box. Its capabilities extend to difficult data sets such as
352 membrane proteins, and enable advanced processing methods, such as targeting
353  specific conformational states, or processing filamentous data sets, as demonstrated
354  inthe following.

355

356
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357  Selectively targeting a conformational state in a mixed sample using prior
358 knowledge

359 A basic assumption of most algorithms currently used to process cryo-EM data is that
360 all particles in a data set are projections of the same structure, hidden behind a
361 curtain of noise. In reality, however, cryo-EM samples are often more complex, and
362  can contain multiple conformational states of the target structure, impurities, and
363  aggregates. Filtering such unwanted data and selectively targeting only a subset of
364  the structures found within a sample is one of the fundamental issues in cryo-EM,
365 and often requires significant efforts to address and resolve.

366  The TranSPHIRE feedback loop offers a straightforward solution to this issue by
367 allowing the injection of additional knowledge into the pipeline, either before or
368 during runtime. This enables users to incorporate and make use of information that is
369 already available, as well as information that was just produced during acquisition.
370 Specifically, a set of 2D class averages of the target structure can be used to train
371  Cinderella * to only recognize these averages as representatives of “good” classes,
372  and, consequently, everything else as “bad.” If such averages are available
373 beforehand, Cinderella can be pre-trained; otherwise the feedback loop can be
374  paused once the first set of 2D class averages are produced in the TranSPHIRE
375 pipeline and continued after manual re-training of Cinderella. This additional training
376  step to embed additional knowledge into the TranSPHIRE pipeline enables us to steer
377  the re-training of the picking model during the feedback loop iterations. More
378  precisely, particles that end up in sharp classes depicting a different particle, a
379  subcomplex, and/or the target protein in the wrong conformational state (for
380 example) will now also be labeled as “bad” by Cinderella, despite their high quality.

381 During the feedback loop, crYOLO will thus be taught to only focus on particles that
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382 end up in quality classes depicting the wanted particle or state, while, at the same
383 time, reject anything else, including sharp classes from an unwanted subpopulation.

384 To demonstrate the capability of the TranSPHIRE feedback loop to use prior
385 knowledge and target a pre-selected conformation, we processed a sample of the Tc
386 holotoxin that contained particles in two conformational states, namely the pre-pore
387 and pore state (Figure 4a). Of these, we only targeted the pore state, which is
388  significantly more difficult to find as it only accounts for ~ 19% of the particles within
389  the data set (Table 2, Figure 4b). Cinderella was trained with 318 examples of “good”
390 classes (side-views of the pore state) and 664 examples of “bad” classes (views of the
391 pre-pore state and contamination). During the feedback loop crYOLO was then re-
392 trained with only those particle picks that ended up in “good” classes showing views

393 of the pore state.

Feedback  Good Good Good Relative
round classes particles Picks/Mic picks/Mic Resolution good picks
1 130 12,595 130 25 4.28 0.19
2 145 10,406 100 21 4.24 0.21
3 151 14,534 74 29 4.36 0.40
4 146 14,081 71 28 4.28 0.40
5 155 14,935 68 27 4.28 0.40
6 140 13,566 69 27 4.24 0.39
6+T0.194 145 13,954 55 28 4.24 0.50

394

395 Table 2. Tc holotoxin feedback loop statistics. For every feedback round as well as
396 the final run after optimization of the picking threshold (6 + T x.xx) the number of
397 classes labeled “good” by Cinderella;, the number of particles included in these
398 classes; the total number and the number of good particles picked per micrograph;
399 the final resolution of the 3D reconstruction; and the relative amount of good

400  particles are listed for the Tc Holotoxin data (500 micrographs).

401
402 To evaluate the performance of the feedback loop we used the intermediate
403 picking models produced during the individual feedback rounds to separately process

404  afixed set of 500 micrographs once the feedback loop had finished (see Methods for
17
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405 details). We observed a steady decrease of particles representing the pre-pore state
406  —that we are not interested in — together with an initial rise and then level amount of
407 pore state picks (Figure 4b, Table 2). While initially only 19% of the particles
408 resembled the pore state, slightly more than 50% of all picks ended up in 2D class
409  averages depicting our targeted conformation when using the final optimized picking
410 model (Figure 4c-d). As in the previous experiment, the percentage of relative good
411 picks per micrograph steadily increases. Notably, this happens while neither the
412 number of good classes, nor the number of good particles seem to follow suit (Table
413 2). This means that our re-training efforts are working as intended: Over the course
414  of the feedback loop, crYOLO learns to discard quality class averages of the pre-pore
415  state that we are not interested in and instead focus on picking the less common
416 pore state. Consequently, the amount of picked particles changes slowly, while, at
417  the same time, the relative amount of “good” particle picks steadily increases,
418  resulting in a 4.2 A (FSC=0.143) 3D reconstruction of the pore state from no more
419  than 500 micrographs (Figure 4e).

420 Taken together, these results illustrate how additional knowledge can be
421 used to pre-train Cinderella, allowing TranSPHIRE to steer the re-training of the
422 picking model during the feedback loop and to target a known subpopulation within
423  the data. Using a picking model optimized for a specific conformation offers a two-
424 fold advantage. First, reconstruction efforts will be more effective, as we gain more
425 particles of the subpopulation that we are interested in. Second, reconstruction
426  efforts will be more efficient, as the rejection of particles that end up in “bad” classes
427  significantly shrinks the overall size of the data set. In our example, we reduce the
428  number of picked particles from an initial total of 67,117 to a set of only 27,646
429  particles, without reducing the achieved resolution or the number of pore state

430 particles that we are interested in (Figure 4b). Any follow-up computations, such as
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431 costly 3D reconstructions, benefit greatly from such a reduction in data set size as it
432 results in a much more efficient use of the available computational resources.

433

Feedback performance (500 micrographs)

= Total particles picked
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= Good particles

Number of particles
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434

435  Figure 4. Using prior knowledge to extract a pre-selected conformational state. (a)
436 The processed data set contains the Tc holotoxin in both the pre-pore state (left) and
437  the more rare pore state (right). In this experiment we specifically target the pore
438  state. (b) Progression of the number of picked particles (blue), those accounted during
439 2D classification (grey) and particles labeled “good” i.e. representing the pore state
440 (green) when applying the intermediate picking models of the feedback loop to a
441  fixed subset of 500 micrographs. Initial picking is dominated by pre-pore state
442  particles. This overhead is reduced with each iteration, while the amount of picked
443  pore state particle remains stable. (c) Representative 2D class averages depicting the
444  decrease of unwanted classes (pore state or low quality; marked red) from an initial
445  68% in the first feedback round (left) to 26% after the last feedback round (right). (d)
446  Representative 2D class averages depicting the pore state as selected by Cinderella in
447  the final iteration of the feedback loop. (e) 3D reconstruction of the Tc holotoxin pore

448  state computed from 500 micrographs using the final optimized picking model.

449

450
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451 Using TranSPHIRE to automatically process filamentous proteins

452 Filamentous proteins such as the actomyosin complex are notoriously difficult to
453 process. This is because their structure is by definition not limited to a single element
454  but rather forms a continuous strand that both enters and exits the enclosing frame
455 of any picked particle image. Consequently, filamentous proteins are traced, rather
456  than picked, and overlapping segments have to be identified along each filament,
457 while filament crossings and contamination need to be avoided. In addition,
458  filamentous projections share a similar overall geometry which increases the
459  correlation between any two particles and interferes with alignment attempts during
460 2D classification. While there are several programs available that implement manual

461  filament processing ****

, until now there has not yet been any cryo-EM software
462 package that offers the automated processing of filamentous data sets.

463 With TranSPHIRE we introduce a comprehensive software package for cryo-
464 EM that includes the ability to automatically process filamentous proteins utilizing
465 methods of the SPHIRE package . While the actual processing is fully automated,
466  some preparation is still needed when using the TranSPHIRE pipeline to process
467  filaments. Specifically, crYOLO needs to be trained to pick filaments %, as these look
468  fundamentally different from the single particle complexes known to its default
469  general model. Additionally, Cinderella *° also needs to be trained with 2D class
470  averages of the filament in question. If such class averages are not available initially,
471  the feedback loop can be halted for re-training Cinderella as soon as TranSPHIRE has
472 produced them. Once the models for the deep learning decision makers of the
473 pipeline are trained on the specific filamentous data, TranSPHIRE and its integrated

474  feedback loop are ready to automatically process the respective filamentous data

475 sets.
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476 As an example of processing initially unknown filamentous data, we chose an
477  actomyosin complex. To further demonstrate the ability of the feedback loop to
478 adjust the picking to a specific filamentous protein complex, we trained crYOLO with
479 multiple data sets of F-actin, which looks substantially different than the actomyosin
480 complex (Figure 5a). Thereby, crYOLO learns to trace filaments, but does not readily
481 recognize actomyosin filaments resulting in a weak initial picking performance
482 (Figure 5b-c).

483 As soon as the first 2D class averages became available, the feedback loop
484  was halted and a new Cinderella model was trained manually. Afterwards the
485  feedback loop continued through its default five iterations, automatically teaching
486 crYOLO to identify projections of the actomyosin complex. To evaluate the
487 performance of the feedback loop we separately processed a fixed set of 100
488 micrographs using the intermediate picking models produced during the individual

489 feedback iterations (Figure 5, Table 3, see Methods for details).

Feedback  Good Good Good Relative
round classes particles Picks/Mic picks/Mic Resolution good picks

1 211 9,629 143 96 7.63 0.67

2 659 29,559 358 296 4.48 0.83

3 936 42,779 552 428 4.37 0.77

4 1,016 45,849 639 458 4.54 0.72

5 1,203 54,134 1,098 541 4.32 0.49

6 1,174 53,221 1,073 532 4.72 0.50
6+T0.3 869 38,946 515 389 4.54 0.76

490

491 Table 3. Actomyosin complex feedback loop statistics. For every feedback round as
492 well as the final run after optimization of the picking threshold (6 + T x.xx) the number
493  of classes labeled “good” by Cinderella; the number of particles included in these
494  classes; the total number and the number of good particles picked per micrograph;
495 the final resolution of the 3D reconstruction; and the relative amount of good

496  particles are listed for the actomyosin complex data (100 micrographs).

497
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a F-actin data used to train a general crYOLO model b
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498

499  Figure 5. Ligand identification within an actomyosin complex. (a) Representative
500  micrograph of the F-actin data used to train crYOLO. (b) Progression of the number of
501 "good" particles per micrograph (blue) and in total (grey) when applying the
502 intermediate picking models of the feedback loop to a fixed subset of 100
503  micrographs. The dipping curve at the end indicates the desired loss of low-quality
504  picks that are excluded when a higher picking threshold (0.3) is used. (c)
505  Representative micrograph of the actomyosin complex highlighting the weak initial
506  picking results when using the crYOLO model trained on F-actin data (see a). (d)
507  Particle picking performance on the same micrograph using the final picking model.
508 While filaments are now traced much more effectively, the model also picks
509  unwanted filament crossings and contamination. (e) Increasing the picking threshold

510 from 0.1 to the default value of 0.3 minimizes the amount of false positive picks, while
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511 maintaining the desired filament traces. (f) Representative 2D class averages labeled
512 "good" (top) and “bad” (bottom) by Cinderella based on 100 micrographs and using
513 the final model for picking. (g) 3D reconstruction of the actomyosin complex
514  computed from 100 micrographs using the initial picking model. (h) 3D reconstruction
515 computed from the same 100 micrographs using the final optimized picking model.

516 The resolution is sufficient to verify the binding of a ligand (circled).
517

518 Initially a low confidence threshold of 0.1 (default) was used for picking in
519 order to gather enough training data (Figure 5c, d). However, the amount of picked
520 particles and the confidence in the picks increased throughout the feedback loop
521 (Figure 5b, c). Thus, the picking threshold was adjusted to the default value of 0.3
522  after the feedback in order to exclude low confidence picks of contamination and
523  filament crossings (Figure 5b, d-e). Thereby, the number of relative good particles
524  could be increased from 50% to 76% (Table 3) resulting in few classes labeled “bad”
525 (Figure 5f). The improvement is also visible when comparing the initial and final 3D
526  reconstruction computed from the same set of 100 micrographs (Figure 5g-h).
527 Particularly, the final reconstruction of 4.4 A (FSC=0.143) is sufficient to identify a
528  small molecule bound to the filament, highlighting how TranSPHIRE can simplify
529  ligand screenings.

530 Using the feedback loop, TranSPHIRE offers the first cryo-EM software
531 package that is able to automatically process filamentous data, even if the precise
532  shape of a specific filament is initially unknown to the pipeline. Moreover,
533  TranSPHIRE now enables experimentalists to produce an early 3D reconstruction with
534  a resolution sufficient to identify bound ligands and determine whether or not their
535 data is likely to yield a high resolution reconstruction — all within the time frame of
536  hours and while their data is still being collected at the microscope (Figure 2,

537  Supplementary Figure 3). The automated processing greatly simplifies the processing
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538 of filamentous samples in general and, most importantly, facilitates the fast
539 determination of multiple structures of one filament decorated with different
540 accessory proteins or bound to ligands.

541

542 4 Discussion

543 In this paper we present the streamlined TranSPHIRE pipeline for automated,
544  feedback-driven processing of cryo-EM data. It fully automates data transfer, pre-
545 processing and the creation of a series of early reconstructions based on the most
546  recently processed data (Figure 1a). At the same time, TranSPHIRE prominently
547 displays all relevant data evaluation metrics, updated in real time (Supplementary
548 Figure 1), and offers the option to send email notifications when issues are
549  encountered or important milestones — such as the first 2D class averages, or an
550 initial 3D reconstruction —have been reached.

551 We also introduce the TranSPHIRE feedback loop (Figure 1b), a machine
552 learning-based method to optimize the internally used particle picking model and
553  adapt our native crYOLO picker to any data set, even while it is still being collected at
554  the microscope. This allows TranSPHIRE to adjust to never before seen data, as well
555 as to avoid any issues that a cryo-EM sample might include, such as unwanted
556 proteins, low contrast, and/or different kinds of contamination. The optimization of
557  the picking model performed by the feedback loop can further be guided by the
558 experimentalist in order to specifically select a subpopulation within the data, such as
559 a distinct conformational or oligomeric state.

560 We demonstrate these capabilities of TranSPHIRE and its new feedback loop
561 by performing three distinct experiments, each addressing a common issue in cryo-
562 EM: First, we processed the membrane protein TRPC4, after purposefully sabotaging

563  our particle picking to simulate processing a data set that is not only unknown, but
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564 initially only barely provides enough useful picks for training. Nevertheless, the
565  TranSPHIRE feedback loop successfully taught crYOLO to identify and pick the sought-
566  after particles without any need for user intervention or expert knowledge input.
567  When the final picking model was then used to automatically compute a full
568 reconstruction, we reached a resolution of 3.6 A (FSC=0.143), based on the data
569  extracted from no more than 500 micrographs (Figure 3).

570 Second, we processed a sample containing the Tc holotoxin in two different
571  conformational states: The common pre-pore state, and the significantly rarer pore
572  state that only accounts for about one fifth of the available particles. In this
573  experiment we injected prior knowledge about the pore state into the pipeline by
574  training Cinderella — our deep learning tool to reject unusable 2D class averages — to
575 only accept class averages of this state. This directed the re-training during the
576  feedback loop and taught crYOLO to focus on the rare pore state particles. As a
577 result, we obtained a picking model that was highly selective for only one
578  conformational state while rejecting not only low quality 2D class averages, but also
579  high quality 2D class averages if they displayed the Tc holotoxin in the
580 conformational state that we were not interested in (Figure 4). This produced a
581 particle stack that was not only populated with an increased number of “good”
582 particles, but also contained less particles overall, as unwanted particles were already
583 rejected during particle picking. The final reconstruction obtained a resolution of 4.2
584 A (FSC=0.143). Such an optimized stack means that any follow-up computations only
585 have to deal with relevant data, allowing for a more efficient use of the available
586 computational resources.

587 Third, we processed a data set of an actomyosin complex to demonstrate
588  how the ability of TranSPHIRE to automatically process cryo-EM data also extends to

589 filamentous proteins. To adjust the pipeline to the processing of filaments, we re-
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590 trained both crYOLO and Cinderella in order to teach them about the distinct visual
591 properties of filamentous particles and how to avoid any filament-exclusive pitfalls,
592 such as filament crossings. To specifically showcase the ability of the feedback loop
593  to deal with an initially unknown filament structure, we only taught crYOLO about F-
594  actin, which features a fundamentally different appearance than the actomyosin
595  complex. Cinderella was then only trained with the initial 2D class averages that
596  TranSPHIRE produced during the first iteration of the feedback loop. Despite the
597 initial picking model only knowing about F-actin, Cinderella was able to teach crYOLO
598  about the actomyosin complex and the final reconstruction reached a resolution of
599 4.4 A (FSC=0.143), using the data extracted from merely 100 micrographs (Figure 5).
600 In summary, TranSPHIRE offers a fully automated pipeline that produces
601 highly optimized particle stacks that allow for more effective processing and more
602 efficient use of any available resources, both computational and human. Combined,
603 these features allow experimentalists to make the most of their limited time at the
604  microscope and to identify and address any issues as soon as they surface.
605 Furthermore, TranSPHIRE produces early reconstructions of proteins, even if initially
606  unknown, thereby enabling experimentalists to assess their data and identify the
607  conformational state of their protein or validate the binding of a ligand while their
608  data is still being collected. Hence, TranSPHIRE allows users to perform automated
609  high-throughput on-the-fly screenings for different buffer conditions or ligands of
610 interest.

611
612 Methods
613 Hardware used to run TranSPHIRE

614 By default, TranSPHIRE runs on a single machine, which can be combined with a

615 separate workstation or computer cluster to outsource computational power. For the
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616 majority of the results presented in this manuscript, a single machine equipped with
617 two Intel(R) Xeon(R) Gold 6128 CPUs (3.40GHz), featuring 12 CPU cores each
618 (hyperthreading 24); 192 GB of RAM; and three GeForce RTX 1080 Ti GPUs was used.
619 Only computationally more expensive 3D reconstructions, both the initial ab initio
620 reconstruction and the 3D refinements (for details see below), were outsourced to
621 our local computer cluster. There, calculations were performed on two nodes; each
622 equipped with two Intel(R) Xeon(R) Gold 6134 CPUs (3.20GHz), featuring 32 CPU
623  coresin total and 384 GB of RAM.

624

625  Software integrated into the TranSPHIRE pipeline

626 TranSPHIRE is a free of charge, open-source software written in Python3, which is

627 available online (https://github.com/MPI-Dortmund/transphire).

628 Its fully-automated processing pipeline integrates several software packages
629 and is thereby highly flexible and adaptable. An initial integrity check and the
630 consecutive compression of every input stack to a LZW compressed tiff file is
631 performed using IMOD v4.9.8 *. Currently, TranSPHIRE supports several options for
632 motion correction (Unblur ** and MotionCor2 **) and CTF estimation (CTFFIND ¢,
633  CTER  and GCTF ™). For all consecutive 2D and 3D processing steps, TranSPHIRE
634 utilizes functions of the SPHIRE ** package including the deep-learning particle picker
635 crYOLO *, the 2D class selection tool Cinderella ?° and a new GPU accelerated version
636  of the reliable 2D classifier ISAC2 *°.

637 Results presented in this manuscript were generated with TranSPHIRE
638  v1.4.50 and SPHIRE v1.4. Specifically, the pipeline consisted of the following modules:
639 the CUDA 10.2.86 version of MotionCor2 v1.3.0*: CTFFIND v4.1.13 for CTF
640  estimation '®; crYOLO v1.6 for particle picking **; SPHIRE sp_window.py for particle

641  extraction *; a GPU accelerated version (v1.0) of SPHIRE ISAC2 *° for on-the-fly 2D
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642 classification (will be published elsewhere); SPHIRE Cinderella v0.5 ?° for 2D class
643 selection; SPHIRE sp_rviper.py 1321 for ab initio reconstructions and finally SPHIRE
644 sp_meridien.py Bor sp_meridien_alpha.py for the 3D refinement of single particles
645 or filaments, respectively.

646

647  The automated processing pipeline within TranSPHIRE

648  After preprocessing the data i.e. data transfer and compression, motion correction
649  and CTF estimation (also see Supplementary Figure 2), particles are automatically
650  picked using the deep learning, GPU-accelerated particle picker crYOLO **. By using
651  the general model, which was trained on 63 cryo-EM data sets, crYOLO is able to pick
652 previously unseen particles. During the feedback rounds a picking threshold of 0.1 is
653 used to facilitate the picking of distinct proteins and features. At the end of each
654  feedback iteration crYOLO is retrained on particles that contributed to classes labeled
655 “good” by Cinderella (see below and Figure 1b). When crYOLO is trained on a single
656  data set, it quickly reaches a good picking quality even when the training data only
657  contains few micrographs. Hence, increasing the size of the training data, enhances
658  the training time without benefitting the training. Therefore, only particles from 50
659  randomly selected micrographs and no more than 20,000 particles in total are used
660 for the training. Once the feedback loop is finalized, the picking performance is
661  further optimized by adjusting the picking threshold to an optimal one, as
662  determined by a parameter grid search using crYOLQO's internal evaluation procedure.
663  The particle threshold value defines a confidence threshold that each pick made by
664  crYOLO must either meet or exceed in order to be accepted. If this threshold is set to
665 a low value, particles with a low confidence are also accepted. In order to find the
666  optimal threshold, a fixed subset of data is repeatedly picked while varying the

667  threshold from 0.0 to 1.0, using a step size of 0.01. Afterwards the optimal threshold
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668 is defined by the highest F2 score ' of all resulting picks. Processing results
669  generated with the optimized threshold are labeled with iteration "6 + T x.xxx",
670  where six represents the sixth and thus final model used in the feedback loop, and
671 the value x.xxx denotes the optimized picking threshold.

672 Picked particles are automatically extracted and classified in 2D, resulting in
673  class averages containing 60 to 100 particles per class (standard settings).
674  Classifications are performed by a new GPU-accelerated and updated version of
675 ISAC2, which is based on the original ISAC (lterative Stable Alignment and Clustering)
676  algorithm®. Just like the CPU-bound ISAC2 it delivers high quality 2D class averages
677  as well as an initial clean-up of the data set, but does not come with the same high
678  computational cost. Hence, GPU ISAC provides the same functionality on a single
679  workstation without the need to outsource 2D classification to a cluster. The GPU
680 ISAC code repository is part of the SPHIRE repository listed above.

681 As the generation of high-resolution 2D class averages requires a sufficient number
682  of particles covering a range of views, 2D classification is only started once a certain
683 number of particles is accumulated. While this number can be adjusted in the
684  TranSPHIRE GUI, a default value of 20,000 particles per batch has proven to be good
685 (see also Supplementary Figure 4).

686 2D class averages are routinely used to assess the overall quality of the data
687  and to select only those particles for 3D refinement that contribute to high quality 2D
688  class averages. Previously, this selection was done manually, breaking any automated
689  processing pipeline. In order to provide a fully automated pipeline, TranSPHIRE uses
690  Cinderella °, a deep learning binary classifier based on a convolutional neural
691 network. When provided with a set of 2D class averages, Cinderella labels each of
692  them as either "good" or "bad." By default, this decision is based on a model that was

693  trained on a large set of class averages from a multitude of different cryo-EM
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694 projects. Alternatively, Cinderella can be trained on specific data to select classes
695 according to the needs of the current project. By default, TranSPHIRE runs Cinderella
696 using its general model, based on 3,559 "good" and 2,433 "bad" classes taken from
697 20 different data sets from both the EMPIAR * data base and our in-house efforts.
698  The Cinderella git repository can be found online

699  (https://github.com/MPI- Dortmund/sphire_classes_autoselect).

700 Once the feedback loop has finished and a set of at least 200 “good” class
701  averages is available (number can be adjusted if desired), a reproducible, ab initio 3D
702 reconstruction is computed from 2D class averages using the SPHIRE method RVIPER
703 B (Reproducible Validation of Individual Parameter Reproducibility). The VIPER
704  algorithm combines a genetic algorithm ** with stochastic hill climbing ** to produce
705 multiple 3D ab initio structures. These reconstructions are then compared and the
706  most reproducible model is used to seed the consecutive 3D refinement. (See online
707  documentation for RVIPER and VIPER at

708 http://sphire.mpg.de/wiki/doku.php?id=pipeline:viper:sxrviper).

709 To generate a high-resolution 3D reconstruction a stack of all particles
710 assigned to classes that were labeled “good” by Cinderella is created. The
711  consecutive refinement is performed by the SPHIRE method MERIDIEN * providing
712  theinitial reconstruction computed in the previous step as reference. The refinement
713  within MERIDIEN proceeds in two phases. The first phase, "EXHAUSTIVE", searches
714  the whole 3D parameter space -- three Euler angles for rotation and two dimensions
715 for translation -- on a discrete grid. The second phase, "RESTRICTED", searches the
716  parameter space on a discrete grid within the local area closest to the best matching
717  set of parameters found in the previous iteration. To avoid over-fitting, the image
718 dimensions and the grid spacing is adjusted after every iteration, based on the

35

719 achieved resolution according to the gold standard FSC and stability of the
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720 parameters. In order to compensate for the discreteness of the grid and the
721 uncertainty in parameter assignment, particles are weighted by the probability of the
722 parameter set for the backprojection into the 3D reconstruction. (See online
723 documentation of MERIDIEN at

724 http://sphire.mpg.de/wiki/doku.php?id=pipeline:meridien:sxmeridien).

725 Similar to the prerequisites for 2D classification, a certain number of particles
726  representing different views is required to successfully compute a 3D reconstruction.
727 Thus, TranSPHIRE will not start the 3D refinement before a defined number of
728  particles is accumulated. In our hands a total of 40,000 particles (default value, can
729  be adjusted) is sufficient to calculate a medium to high resolution 3D reconstruction
730 in a short time frame. While this reconstruction will likely not reach the highest
731 resolution possible, it still enables a first analysis i.e. identification of a
732 conformational state or the verification if a ligand is bound or not. Furthermore, it
733 provides a quality control throughout the data acquisition, as a new 3D
734 reconstruction is computed for every batch of 40,000 particles. As all 3D refinements
735  start from the same initial reference, refinement projections parameters can
736  additionally be used to directly start with a local refinement of the complete data set,
737  thereby significantly reducing the required running time.

738

739  Evaluation of the feedback performance

740  As TranSPHIRE runs in parallel to the data acquisition and data are processed as they
741  come in, the number of movies is increasing during the runtime and results from one
742  feedback iteration to the next are not directly comparable. Thus, the feedback
743 performance was evaluated separately for every data set on a fixed subset of 500

744  (TRPC4 and Tc holotoxin, Figure 3-4) and 100 (Actomyosin, Figure 5) micrographs.
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745 For each case, the fixed subset was processed using the intermediate picking models
746 produced during the individual feedback iterations. Specifically, every subset was
747 once picked with the starting model (general model, labeled round 1) and with every
748  picking model generated throughout the five iterations of the feedback loop (rounds
749 2 to 6) using a particle threshold of 0.1. In addition, another run was performed with
750  the final picking model using the optimized particle threshold (6 + T X.XX). The
751  consecutive processing in 2D and 3D was performed with AutoSPHIRE sp_auto.py,
752  which is the automatic, batch processing tool within SPHIRE ** on our local CPU
753  cluster. The processing pipeline and settings used resemble the ones described
754 above, except that CPU ISAC was used instead of the new GPU-accelerated version.
755

756

757  Automatic processing of the TRPC4 data.

758  The performance of TranSPHIRE was tested on a subset of 500 micrographs of a high-
759  resolution data set of the transient receptor channel 4 (TRPC4) from zebra fish in
760 LMNG detergent (prepared in analogy to *®, publication in preparation). The data set
761  was automatically collected at a Cs-corrected Titan Krios (FEI Thermo Fisher)
762 microscope equipped with an X-FEG and operated at 300kV using EPU (FEI Thermo
763 Fisher). Equally dosed frames with a pixel size of 0.85 A/pixel were collected with a
764 K2 Summit (counting mode, Gatan) direct electron detector in combination with a
765  GIF quantum-energy filter set to a filter width of 20 eV. Each movie contains 50
766 frames and a total electron dose of 88.5 e/A”.

767 Processing in TranSPHIRE was performed as described above with five
768  internal feedback rounds to optimize the crYOLO picking model. Within the pipeline,
769  movies were drift corrected and dose weighted by MotionCor2 ** using five patches

770 with an overlap of 20% and CTFFIND4 *® fitted the CTF between 4 A and 30 A with an
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771 Cs value of 0.001. The training data for the general model of crYOLO usually contain
772 four data sets of TRP channels. To avoid any favorable picking bias and handle the
773  TRPC4 data as previously unseen, the general model was retrained after removing all
774  TRP channels from the training data. Even then, crYOLO was able to identify most
775  TRPC4 particles through the successful generalization. To simulate a worst-case
776  scenario of a deficient initial picking performance, 90% of the particle picks in the
777  initial feedback round were replaced by random coordinates.

778 During the feedback rounds the crYOLO picking threshold was set to 0.1 and
779  the anchor size to the estimated particle diameter of 240 pixels. After the final
780  feedback round, the picking threshold value was adjusted to 0.257 based on the
781 crYOLO confidence threshold optimizing procedure described above. After each
782 particle picking step, particles were automatically extracted using SPHIRE
783  sp_window.py with a box size of 288 pixels. The subsequent 2D classification was
784  performed using a GPU accelerated version of the SPHIRE ISAC2 algorithm using
785  standard settings. The feedback loop was run with the default particle batch size of
786 20,000 (for details see above and Supplementary Figure 3).

787 The produced 2D class averages were subjected to an automatic 2D class
788  selection using our deep learning tool Cinderella and a confidence threshold of 0.1.
789  To simulate the processing of a previously unseen protein, Cinderella was trained
790  with its general model training data excluding all channel proteins, thereby ensuring
791  an unbiased selection process. During the feedback rounds crYOLO was trained on
792  the default value of 50 random micrographs that contained particles contributing to
793  classes labeled “good” by Cinderella. 3D reconstructions were computed as described
794  above using no mask and imposing c4 symmetry. Note that albeit our program
795 provides the possibility to compute a 3D mask from the initial model automatically

796 and apply it during the refinement, this option is deactivated by default. Automated
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797 masking procedures might eliminate valid regions of the structure that are not well
798  resolved in the initial reconstruction, especially in cases with strong flexibility in the
799 complex. In case a 3D mask is not provided, we strongly recommend to use a mask
800 created from the results of TranSPHIRE for all follow-up experiments, in order to
801 exploit the full potential of 3D refinement. Whereas the workflow can be easily
802  extended, the pipeline for each batch stops by default after the first high resolution
803 3D refinement, in order to allow on-the-fly evaluation by the user. The results can be
804  easily converted to RELION after any milestone and vice versa. Correction of higher-
805  order aberrations for example in RELION might further improve the resolution of the
806 final result, when these optical effects are present *’.

807 The progression of the picking performance throughout the feedback rounds
808  was evaluated on a fixed subset of 500 micrographs as described above (Figure 3).
809 Note that the picking model of the first iteration is not included in this evaluation, as
810 its performance was initially corrupted by randomizing 90% of the picked particles.
811

812  Automatic processing of the Tc holotoxin data.

813  To test the capability of TranSPHIRE to target a specific conformation, a subset of 500
814  micrographs of the ABC holotoxin from Photorhabdus Luminescens reconstituted in a
815 lipid nanodisc (EMD-10313) * was processed. This data set contains a mixture of
816  conformations, namely the pre-pore and pore state of the holotoxin. The data set
817  was collected at a Cs-corrected Titan Krios (FEI Thermo Fisher) microscope equipped
818  with an X-FEG and operated at 300kV using EPU (FEI Thermo Fisher). Equally dosed
819  frames with a pixel size of 0.525 A/pixel were collected with a K2 Summit (super
820 resolution mode, Gatan) direct electron detector in combination with a GIF quantum-
821  energy filter set to a filter width of 20 eV. Each movie contains 40 frames and a total

822  electron dose of 60.8 /A%
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823 Processing in TranSPHIRE was performed as described above with five
824 internal feedback rounds to optimize the crYOLO picking model. Within the pipeline,
825 movies were drift corrected, dose weighted and binned to a pixel size of 1.05 A/px by
826  MotionCor2 * using three patches without overlap and CTFFIND4 ™ fitted the CTF
827  between 4 A and 30 A with an Cs value of 0.001. Subsequently, particles were picked
828  using the general model of crYOLO.

829 During the feedback rounds the crYOLO picking threshold was set to 0.1 and the
830  anchor size to the estimated particle diameter of 205 pixels. After the final feedback
831 round, the picking threshold value was adjusted to 0.194 based on the crYOLO
832  confidence threshold optimizing procedure described above. After each particle
833 picking step, particles were automatically extracted using SPHIRE sp_window.py with
834  a box size of 420 pixels. The subsequent 2D classification was performed using a GPU
835  accelerated version of the SPHIRE ISAC2 algorithm using standard settings. The
836  feedback loop was run with the default particle batch size of 20,000 (for details see
837  above and Supplementary Figure 3).

838 The produced 2D class averages were subjected to an automatic 2D class
839  selection using our deep learning tool Cinderella and a confidence threshold of 0.1.
840 To demonstrate the ability of the TranSPHIRE feedback loop to selectively pick
841 particles of one conformational state, Cinderella was trained on pre-existing 2D class
842  averages of the pore state as instances of “good” classes (318) and 2D class averages
843  of the pre-pore state and contamination as instances of “bad” classes (664). During
844  the feedback rounds crYOLO was trained on the default value of 50 random
845 micrographs that contained particles contributing to classes labeled “good” by
846  Cinderella. 3D reconstructions were computed as described above without applying a

847  mask or symmetry.
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848 The progression of the picking performance throughout the feedback rounds
849  was evaluated on a fixed subset of 500 micrographs as described above (Figure 4).
850

851 Automatic processing of an actomyosin complex data set.

852 A subset of 100 micrographs of an actomyosin complex with a bound small molecule
853 ligand (publication in preparation) was chosen to demonstrate the processing of
854  filamentous samples and within TranSPHIRE and its suitability for high-throughput
855 ligand screenings. The data set was collected at a Cs-corrected Titan Krios (FEI
856  Thermo Fisher) microscope equipped with an X-FEG and operated at 300kV using
857 EPU (FEI Thermo Fisher). Equally dosed frames with a pixel size of 0.56 A/pixel were
858 collected with a K2 Summit (super resolution mode, Gatan) direct electron detector
859 in combination with a GIF quantum-energy filter set to a filter width of 20 eV. Each
860 movie contains 40 frames and a total electron dose of 81.2 e/A%.

861 Processing in TranSPHIRE was performed as described above with five internal
862  feedback rounds to optimize the crYOLO picking model. Within the pipeline, movies
863  were drift corrected, dose weighted and binned to a pixel size of 1.10 A/px by
864  MotionCor2 ™ deactivating patch alignment and CTFFIND4 *° fitted the CTF between
865 5Aand 30 A with an Cs value of 0.001.

866 As the crYOLO general model does not include filamentous data it cannot be
867  readily applied to this data set. Instead a new crYOLO general model specific for actin
868  filaments was trained. The training data consisted of multiple actin data sets
869  collected within our group, but did not include any data of an actomyosin complex or
870  other actin complexes. Considering the significant optical difference of actin and
871  actomyosin filaments (also see Figure 5), picking with the general actin crYOLO model

872 mimics the processing of a previously unseen filamentous protein.
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873 During the feedback rounds the crYOLO picking threshold was set to 0.1 and
874  the anchor size to the estimated box size of 320 pixels. Furthermore, the filament
875 width was set to 100 px and the box distance to 25 px (equivalent to one helical rise
876  of 27.5 A). Only filaments consisting of at least six segments were considered. After
877  the final feedback round, the picking threshold value was adjusted to the crYOLO
878  default value of 0.3, as the threshold optimization procedure of crYOLO does not
879  support filaments. After each particle picking step, particles were automatically
880  extracted using SPHIRE sp_window.py with a box size of 320 pixels and a filament
881  width of 100 pixels. The subsequent 2D classification was performed using a GPU
882  accelerated version of the SPHIRE ISAC2 algorithm asking for 30-50 particles per
883 class. The feedback loop was run with the default particle batch size of 20,000 (for
884  details see above and Supplementary Figure 3).

885 The produced 2D class averages were subjected to an automatic 2D class
886 selection using our deep learning tool Cinderella and a confidence threshold of 0.1.
887  As filamentous data differ strongly from the data used to train the general model of
888  Cinderella, a new model was trained based on the 2D class averages produced in the
889 initial feedback round combined with previously selected class averages of actin only
890  data sets. During the feedback rounds crYOLO was trained on the default value of 50
891 random micrographs that contained particles contributing to classes labeled “good”
892 by Cinderella.

893 An initial 3D reference was created from a deposited actomyosin atomic
894  model (PDB:5JLH) *%. The 3D refinement was performed using SPHIRE
895  sp_meridien_alpha.py, an open alpha version of helical processing in SPHIRE, with a
896  particle radius of 144 px (~45% of the box size), a filament width of 100 px and a
897  helical rise of 27.5 A. While projection parameters are restrained according to the

898  helical parameters e.g. the shift along the filament axis is restricted to half of the rise,
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899 no helical symmetry is applied and therefore does not need to be determined
900 beforehand. To avoid artifacts due to the contact of the filament to the edges of the
901 box, a soft 3D mask covering 85% percent of the filament was applied during the
902 refinement.

903  The progression of the picking performance throughout the feedback rounds was

904  evaluated on a fixed subset of 100 micrographs as described above (Figure 5).
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