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Abstract 9 

Single particle electron cryomicroscopy (cryo-EM) requires full automation to allow 10 

high-throughput structure determination which is especially important for drug 11 

discovery research. Although several software packages exist where parts of the 12 

cryo-EM pipeline are automated, a complete solution that offers reliable, quality-13 

optimized on-the-fly processing, resulting in a high-resolution three-dimensional 14 

reconstruction does not exist. Here we present TranSPHIRE: A software package for 15 

fully automated processing of cryo-EM data sets during data acquisition. TranSPHIRE 16 

transfers data from the microscope, automatically applies the common pre-17 

processing steps, picks particles, performs 2D clustering, and 3D refinement parallel 18 

to image recording. Importantly, TranSPHIRE introduces a machine learning-based 19 

feedback loop to re-train its internally used picking model to adapt to any given data 20 

set live during processing. This elegant approach enables TranSPHIRE to process data 21 

more effectively, producing high-quality particle stacks. TranSPHIRE collects, and 22 

displays all microscope settings and metrics generated by its individual tools, in order 23 

to allow users to quickly evaluate data during acquisition. TranSPHIRE can run on a 24 

single work station and also includes the automated processing of filaments. 25 

26 
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Introduction 27 

Single particle electron cryomicroscopy (cryo-EM) has successfully established itself 28 

as a prime method to determine the three-dimensional structure of macromolecular 29 

complexes at close to atomic resolution 1,2. The technique has therefore the potential 30 

to become a key tool for drug discovery research 3. However, single particle analysis 31 

(SPA) studies still require large amounts of processing time, expert knowledge, and 32 

computational resources. With the number of modern high-throughput microscopes 33 

growing rapidly, there is an urgent demand for a robust, automated processing 34 

pipeline that requires little to no user intervention. This need is felt especially in the 35 

field of drug discovery 3. 36 

In many cases, data sets that were recorded for several days and can include 37 

10,000 to 20,000 movies turn out to be unusable for high-resolution structure 38 

determination during subsequent data processing. It is therefore necessary for users 39 

to obtain feedback on the quality of their data immediately during recording. This 40 

enables them to decide whether or not to continue a session, adjust any of the 41 

acquisition parameters at the microscope, and compare different grids. This can only 42 

be achieved when processing the data in parallel to data acquisition. A fully 43 

automated pipeline requires streamlined data transfer and automated pre-44 

processing and processing workflows, free of any user bias.  45 

Although several software packages partially address these issues 4-10, a 46 

complete solution that offers reliable, quality-optimized and flexible on-the-fly 47 

processing during data acquisition resulting in a high-resolution 3D reconstruction 48 

does not yet exist. CryoFLARE 4, for example, performs live analysis and processing 49 

parallel to data acquisition, but only to the level of 2D classification and lacks the 50 

ability to perform ab initio 3D reconstructions or high resolution refinements. 51 

Similarly, Focus 8, Appion 10, and Warp 6 do not produce 2D class averages and 3D 52 
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reconstructions. The latter two are less flexible than other offerings by being 53 

restricted to either collecting data with Leginon 11 in case of Appion or exclusive 54 

compatibility with Windows and Warp-native tools. All three software packages 55 

concentrate on data acquisition and associated parameters but not on the 56 

optimization of data processing which is an important prerequisite for automated 57 

structure determination. The non-interactive data pre-processing in Relion-3 5 offers, 58 

similar to Focus 8, some flexibility in terms of tool integration, but hinders the 59 

implementation of more complicated cryo-EM processing by making advanced 60 

parameters only accessible via manual scripting, rather than its GUI. Both Relionit 5 61 

and Scipion 7 share the same accessibility issue of quality metrics, where no values 62 

are automatically plotted and updated during processing. Instead, the user has to 63 

step in and trigger the compilation of a log-file that contains a mix of metrics for all 64 

processed data; any specific values of an individual micrograph have to be found 65 

manually. This makes assessment problematic, especially for beginners in the field. 66 

Here we present TranSPHIRE, a fully automated pipeline for on-the-fly 67 

processing of cryo-EM data. It combines deep learning tools with a novel, feedback-68 

driven approach to re-train the integrated crYOLO particle picker 12 during ongoing 69 

pre-processing. This allows TranSPHIRE to perform GPU accelerated 2D classification 70 

to provide high-quality 2D class averages and, subsequently, 3D reconstructions from 71 

clean data. This gives experimentalists the means to quickly evaluate both the quality 72 

of their data sets as well as their chosen microscope settings during data acquisition. 73 

A combination of new and improved tools allows TranSPHIRE to provide users with 74 

the strongest early results in the shortest amount of time, without the need to 75 

outsource the computational load to a computer cluster, or the need for user 76 

intervention. Importantly, it allows users to perform automated high-throughput on-77 

the-fly screenings for different buffer conditions or ligands of interest as well as to 78 
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fine-tune the workflow for the respective target-protein and perform digital 79 

purification during image acquisition. 80 

 81 

Results 82 

General setup, functionality and layout of TranSPHIRE 83 

TranSPHIRE is an automated pipeline for processing cryo-EM data sets (Figure 1). It is 84 

developed in Python 3 to run on Linux, and is available online for free. TranSPHIRE 85 

performs parallelized data transfer and flexibly integrates a range of commonly used 86 

pre-processing tools, as well as the advanced processing tools of the SPHIRE package 87 

13. Using these tools, TranSPHIRE implements a fully automated pipeline to process 88 

cryo-EM data on-the-fly during data acquisition. TranSPHIRE is designed to allow 89 

users to make the best use of their available resources by prioritizing data analysis, 90 

presenting early results, and using machine learning tools to identify and process 91 

only those parts of the data that contribute to high quality results. 92 

TranSPHIRE is controlled via an easy-to-use GUI that allows users to set up a 93 

session, and choose and configure the desired tools to use (Supplementary Figure 1). 94 

For pre-processing, the TranSPHIRE pipeline integrates MotionCor2 14 and Unblur 15 95 

for beam induced motion correction with dose weighting; as well as CTFFIND4 16, 96 

CTER 17, and GCTF 18 for CTF estimation. This modularized integration is entirely 97 

parameterized, allowing experimentalists to both choose their preferred tools as well 98 

as configure them as needed – all without leaving the TranSPHIRE GUI. Available 99 

parameters are sorted by level of usage (“main”, “advanced”, and “rare”) to highlight 100 

and help identify the most commonly adjusted parameters for each tool.  101 

During the session, TranSPHIRE automatically parallelizes the batch-wise 102 

processing of incoming micrographs, outsources computationally expensive steps to  103 
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 104 

Figure 1. The TranSPHIRE pipeline and the SPHIRE backend. (a) Upper register (solid 105 

line): Overview of the integrated TranSPHIRE pipeline and all automated processing 106 

steps. The pipeline includes file management tasks, i.e., parallelized data transfer, file 107 

compression, and file backup (grey); 2D processing, i.e., motion correction, CTF 108 

estimation, particle picking, 2D clustering, and 2D class selection (turquoise); and 3D 109 

processing, i.e., ab initio 3D reconstruction and 3D refinement (red). Additionally, the 110 

pipeline includes an automated feedback loop optimization to adapt picking to the 111 

current data set during runtime (purple). Lower register (dotted line): The SPHIRE 112 

software package forms the backend for TranSPHIRE and offers the tools used for 2D 113 

and 3D processing. SPHIRE includes additional tools for advanced processing, such as 114 

heterogeneity analysis and local resolution determination. (b) The TranSPHIRE 115 

feedback loop. Grey arrows indicate the flow of data processing. Red arrows indicate 116 

the flow of the feedback loop. Left (input): Micrographs are initially picked using the 117 

crYOLO general model. Center (processing): Particles are picked and extracted. Once 118 
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a pre-defined number of particles have been accumulated, the pipeline performs 2D 119 

classification; the resulting 2D class averages are labeled as either "good" or "bad" by 120 

Cinderella. Class labels and crYOLO box files are then used to re-train crYOLO and 121 

adapt its internal model to the processed data. In the next feedback round this 122 

updated model is used to re-pick the data. Right (output): After five feedback rounds, 123 

the complete data set is picked with the final optimized picking model and 2D 124 

classified in batches. For every batch a particles stack of “good” particles is created 125 

and available for 3D processing. 126 

 127 

available GPUs, and produces preliminary 2D class averages and 3D reconstructions 128 

based on the most recently processed batch of data (Figure 2, Supplementary Figure 129 

2). Through the optimal distribution of processes, TranSPHIRE runs on-the-fly for a 130 

wide range of data acquisition settings using a single workstation (Supplementary 131 

Figure 3; see Methods for details about hardware). Moreover, TranSPHIRE can catch-132 

up with the speed of the acquisition after the initial delay due to the feedback loop 133 

(see below) for routinely used data acquisition schemes (Figure 3c). Thus, initial 2D 134 

class averages and 3D reconstructions are available within a few hours after starting 135 

the data collection (Figure 2, Supplementary Figure 3). 136 

Throughout the processing, TranSPHIRE collects all data quality metrics 137 

produced by its individual tools, links them with the relevant micrographs where 138 

appropriate, and presents them front and center in its GUI (Supplementary Figure 1).  139 

Optionally, notifications for early milestones such as 2D class averages and 140 

preliminary 3D maps, can also be sent via email. These features enable 141 

experimentalists to both identify and address any issues as soon as they surface 142 

during data acquisition, without requiring constant user supervision. Additionally, all 143 

results produced by the integrated tools during processing are also copied in parallel 144 

to the pre-defined workstation and backup locations (Supplementary Figure 2). To 145 

support interoperability with existing packages, all pre-processing steps until particle 146 
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picking support the file formats used in both SPHIRE and RELION; for later processing 147 

steps utilities are included to convert SPHIRE files into RELION .star. 148 

 149 

 150 

Figure 2. Timeline of the TranSPHIRE pipeline. Timeline depicting the parallel 151 

execution of the processes of the TranSPHIRE pipeline. Timings are based on a Tc 152 

holotoxin data set consisting of 2,053 micrographs, each containing 36 particles on 153 

average, collected at a speed of 188 micrographs per hour (K2 super-resolution, 40 154 

frames). TranSPHIRE ran on-the-fly up to the creation of an ab initio 3D 155 

reconstruction using default settings. Important milestones are denoted in black: (a) 156 

first 2D class averages produced after 1.4h; (b) end of the feedback loop after 7.3h; 157 

(c) ab initio 3D reconstruction after 9.1h; and (d) final 3D reconstruction of the first 158 

batch of particles after 15.5h. 159 

 160 

Transfer and pre-processing 161 

Once a session starts, TranSPHIRE automatically detects and transfers new 162 

micrographs from the camera computer of the microscope (Figure 1, Supplementary 163 

Figure 2). These data are moved in parallel to several, user-specified locations e.g. a 164 

work station or cluster for processing, and a backup storage server. In case of the 165 

latter, TranSPHIRE also automatically compresses the data to preserve storage space. 166 

Copy locations may also include additional spaces such as transportable hard discs. If 167 
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desired, TranSPHIRE further renames files, and deletes images from the camera 168 

workstation in order to free up more space to enable continuous data collection. It 169 

also extracts meta data such as acquisition time, grid square, hole number and 170 

coordinates, spot scan, and phase plate position from .xml files provided by EPU or 171 

.gtg files provided by Latitude S. 172 

During the ongoing data transfer, any data that has already been copied is 173 

pre-processed in parallel (Figure 2, Supplementary Figure 2). During setup, users can 174 

choose to perform motion correction using either MotionCor2 14 or Unblur15. While 175 

motion correction is performed, TranSPHIRE presents all relevant metrics, such as the 176 

average shift per frame, or the overall shift per micrograph (Supplementary Figure 1). 177 

For CTF estimation, users can set up TranSPHIRE to use either CTFFIND4 16, CTER 17, 178 

and GCTF 18. Depending on whether or not CTF estimation on movies is activated in 179 

TranSPHIRE, CTF estimation is performed in parallel to motion correction 180 

(Supplementary Figure 2). The metrics extracted and displayed by TranSPHIRE 181 

include defocus, astigmatism, and the resolution limit (Supplementary Figure 1). 182 

Combined with the information gathered during motion correction, these values 183 

allow experimentalists to assess the performance and alignment of the microscope 184 

during acquisition, and adjust any thresholds to automatically discard low quality 185 

micrographs as necessary. 186 

For particle picking the TranSPHIRE pipeline integrates crYOLO 12, our state of 187 

the art deep learning particle picker. During picking, TranSPHIRE displays the particles 188 

picked per micrograph, which allows users to assess the picking performance and 189 

overall sample quality (Supplementary Figure 1).  190 

Once a fixed threshold of picked particles is reached (Supplementary Figure 191 

4; also see Methods), TranSPHIRE launches 2D classification using a GPU accelerated 192 

version of ISAC2 19 (Figure 1). ISAC2 limits the number of class members to spread the 193 
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given particles across multiple classes which prevents individual classes from growing 194 

too large. This results in sharp, equal-sized, and reproducible classes that contain all 195 

possible orientations exceeding the minimum class size. They enable 196 

experimentalists to reliably assess particle orientations and overall quality, and help 197 

to identify possible issues such as preferred orientations or heterogeneity. 198 

The 2D class averages are then sorted by Cinderella 20, our integrated deep 199 

learning tool for 2D class selection. Cinderella labels the given 2D classes as either 200 

“good” or “bad” and determines which class averages and, thereby, particles are 201 

used for further processing. This results in an automatic cleaning of the data and 202 

allows TranSPHIRE to process only the relevant subset of a given data set, thereby 203 

dramatically lowering the amount of data processed by the computationally 204 

expensive steps of 3D reconstruction and refinement.  205 

 206 

Optimizing particle picking using a machine learning-fueled feedback loop 207 

For any cryo-EM pipeline the ability to reliably perform high quality picking 208 

irrespective of the data at hand is essential. This poses a challenge when processing 209 

is to be automated, as this immediately excludes any user intervention such as 210 

manual inspection of the picking results. The latter is especially relevant if a sample is 211 

unknown to the picking procedure, or is otherwise difficult to process, e.g. due to 212 

contamination or interfering conformational states – issues that usually need to be 213 

identified by a qualified expert before processing can continue. 214 

TranSPHIRE solves these issues by introducing a machine learning based 215 

feedback loop that repeatedly re-trains the fully integrated crYOLO 12 deep learning 216 

particle picker during data acquisition to adapt picking to the given data set (Figure 217 

1b). This enables crYOLO to specifically target those particles that end up in stable 2D 218 

class averages, while, at the same time, learning to disregard particles that do not. 219 
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First, incoming motion corrected micrographs are forwarded to crYOLO for picking. 220 

Once a batch of 20,000 picked particles has been accumulated, it is handed over to 221 

our GPU accelerated version of the 2D classification algorithm ISAC2 19 222 

(Supplementary Figure 3). Here we determine which particles can be used to create 223 

stable 2D class averages, and reject the particles that cannot be accounted for. The 224 

newly produced 2D class averages are given to our deep learning tool Cinderella 20, 225 

which labels each class average as either “good” or “bad”. At this point, the particles 226 

of the “good” classes are used to re-train crYOLO and update its internal model. 227 

Specifically, we randomly select a maximum of 50 micrographs that contain particles 228 

that ended up in the “good” classes for the re-training (for details see Methods). 229 

Once the training and thus the first feedback round has completed, processing re-230 

starts using the optimized picking model (Figure 1b).  231 

The TranSPHIRE feedback loop iterates five times, which has proven sufficient 232 

to achieve convergence in our experiments, and afterwards is not repeated for the 233 

remainder of the data acquisition. Re-training crYOLO 12 to become increasingly more 234 

proficient at targeting particles that end up in “good” classes has the additional 235 

benefit of trimming down the overall size of the data set. Though the pre-processing 236 

of cryo-EM data is already time consuming, the following 3D refinement requires 237 

even more computational power. While it is usually customary to process as much 238 

data as possible, the computational cost of 3D refinement usually does not scale 239 

linearly, and such an approach will not be sustainable in the near future. This is 240 

further exacerbated by the fact that image acquisition speeds and sizes of data sets 241 

are both growing rapidly. Because of this, the aim should be to process as little data 242 

as necessary, without harming the quality of the final reconstruction. Fortunately, it 243 

is known that cryo-EM data sets contain a large amount of unusable data that can be 244 

safely discarded – if we have a way to reliably ensure that we keep those data that 245 
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we are actually interested in. The TranSPHIRE feedback loop offers this functionality 246 

and provides quality in quantity.  247 

 248 

Ab initio 3D model reconstruction and 3D refinement  249 

To compute a 3D reconstruction, the particles included in all classes labeled “good” 250 

by Cinderella are extracted and form a clean, high-resolution particle stack. If there is 251 

no initial 3D reference provided to TranSPHIRE, the pipeline waits until at least 200 252 

(by default) “good” classes have been accumulated. The respective 2D class averages 253 

are then used to create a reproducible, ab initio 3D reconstruction using SPHIRE 254 

RVIPER  13,21 (Figure 1). This provides a first view of the structure of the target protein 255 

and a first impression of the conformational state.  256 

The initial 3D reference is then used by TranSPHIRE to initialize the 3D 257 

refinement using SPHIRE MERIDIEN (Figure 2). While the initial map is computed only 258 

once, a new 3D refinement is started every time another set of 40,000 (by default) 259 

“good” particles has been accumulated.  260 

Note that in contrast to SPHIRE RVIPER, which only uses the first 2D class 261 

averages, SPHIRE MERIDIEN uses all particles subsumed by the last batch of “good” 262 

particles. The fully automated creation of an initial 3D map and continuous 263 

production of a series of refined reconstructions based on that latest data enables 264 

TranSPHIRE to present high-resolution structures already during data acquisition.  265 

This enables for a more detailed, on-the-fly evaluation by the user, such as 266 

analyzing the conformational state and/or confirming whether and where a ligand is 267 

bound. By providing a series of reconstructions – one for every batch, TranSPHIRE 268 

also offers a time-resolution of the data set, enabling experimentalists to gauge the 269 

quality of their data over time throughout data acquisition.  270 
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With the following three experiments we illustrate the capabilities of 271 

TranSPHIRE to automatically adapt to unknown data, make use of prior knowledge to 272 

selectively target the conformational subpopulation within a sample and process 273 

filamentous data. 274 

 275 

Learning to pick an initially unknown membrane channel without user intervention 276 

Similar to crYOLO, many modern particle picking programs are based on machine 277 

learning, where an internal model is trained to recognize particles within 278 

micrographs 6,22,23. While this method features an inherent capacity to generalize to 279 

unseen data sets, this ability is limited. Therefore, reliable picking can usually not be  280 

guaranteed out of the box when samples differ too much from the original training 281 

data of the network. Samples might also be of unusually low contrast, or an unknown 282 

form of contamination is encountered. While such issues can be overcome by adding 283 

the problematic data to the training set, this requires manual user intervention on 284 

multiple levels. First, the insufficient picking capability has to be detected; second, an 285 

experienced experimentalist has to pick a small amount of training data by hand; and 286 

third, the network has to be re-trained manually. 287 

The TranSPHIRE feedback loop resolves this issue and entirely foregoes the 288 

need for user intervention even when facing data that is either unknown to the 289 

picking model or yields insufficient picking results for any other reason. To 290 

demonstrate this ability, we processed a data set of the TRPC4 membrane protein 291 

channel with the TranSPHIRE feedback loop using a picking model without any prior 292 

knowledge of this protein (Figure 3). Specifically, to ensure the sample was unknown 293 

to crYOLO at the start of the feedback loop, we removed all four TRP channel data 294 

sets normally included in the training data of the crYOLO general model. Additionally, 295 

in order to simulate a bad generalization of crYOLO we randomized 90% of all picks in  296 
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                                                            297 

298 
 Figure 3. Processing the TRPC4 membrane channel using a deliberately hampered 299 

picking model. (a) To simulate low quality picking, only 10% of the initial crYOLO 300 

picks were used while the remaining 90% were re-positioned randomly (left). After 301 

the feedback loop crYOLO reliably picks the TRPC4 particles (right). (b) Total amount 302 

of 2D class averages produced in the first iteration of the feedback loop (top) and 21 303 

representative averages produced in the final iteration of the feedback loop (bottom). 304 

(c) Progression of the number of particles labeled “good” when applying the 305 

intermediate picking models of the feedback loop to a fixed subset of 500 306 
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micrographs. The curve flattens out in the final iterations, indicating the convergence 307 

of the feedback loop optimization. (d) Fourier shell correlation (FSC) curves of the 308 

individual 3D reconstructions computed from particles labeled “good” (also see c). (e) 309 

Representative alpha-helix (amino acids 600-615) illustrating the improvement of the 310 

density when using the final (bottom) compared to the initial (top) picking model. (f) 311 

3D reconstruction of TRPC4 computed from 500 micrographs using the optimized 312 

picking model. 313 

 314 

the first iteration of the feedback loop (Figure 3a). This was done by replacing 90% of 315 

the particle boxes determined by crYOLO with randomly positioned boxes within the 316 

same micrographs. In combination, these measures ensured that the initial picking 317 

results were almost entirely unusable and successful re-training had to take place in 318 

order to enable further processing of the data. 319 

Despite the bad starting point, by the final feedback loop iteration the 320 

repeatedly re-trained model has successfully learned to pick the previously unknown 321 

TRPC4 particles resulting in high-resolution 2D class averages (Figure 3a, b). An 322 

evaluation of the performance of the feedback loop on a fixed subset of 500 323 

micrographs (see Methods for details), illustrates that the number of “good” particles 324 

increases sharply within the early iterations of the feedback loop from an initial 25% 325 

of particles to a stable value of ~ 50%, (Table 1, Figure 3c) and a final resolution of 3.6 326 

Å (FSC=0.143). This increased ability to identify a greater number of usable particles 327 

on the same subset of micrographs is also reflected in the map quality and achieved 328 

resolution when using the intermediate crYOLO models produced during the 329 

individual feedback rounds to process the fixed set of 500 micrographs (Figure 3d-f).  330 

This experiment furthermore demonstrates the ability of crYOLO to adapt to 331 

unknown data even if only sparse training data is available. In the initial round of the 332 

feedback loop a mere 5 particles per micrograph ended up in “good” classes on 333 
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average – and, consequently, are all that was available to re-train the picking model 334 

(Table 1). 335 

Feedback 
round 

Good 
classes 

Good 
particles Picks/Mic 

Good 
picks/Mic Resolution 

Relative 
good picks 

2 28 2,504 20 5 4.71 0.25 
3 236 22,154 104 44 3.65 0.43 
4 349 32,513 132 65 3.60 0.49 
5 355 33,415 152 67 3.60 0.44 
6 361 34,018 147 68 3.55 0.46 

6 + T 0.257 331 31,237 114 62 3.6 0.55 
 336 

Table 1. TRPC4 feedback loop statistics. For every feedback round as well as the final 337 

run after optimization of the picking threshold (6 + T x.xx) the number of classes 338 

labeled “good” by Cinderella; the number of particles included in these classes; the 339 

total number and the number of good particles picked per micrograph; the final 340 

resolution of the 3D reconstruction; and the relative amount of good particles are 341 

listed for the TRPC4 data (500 micrographs). 342 

 343 

In summary, the TranSPHIRE feedback loop is able to automatically optimize 344 

the internally used picking model and provide reliable, high quality picking results 345 

even when processing challenging samples that initially are barely recognized by the 346 

model. We have shown that in such a case, after five feedback rounds, crYOLO is able 347 

to pick the TRPC4 membrane protein to completion, without requiring the user to 348 

continuously monitor, let alone disrupt the ongoing data processing. The feedback 349 

loop optimization is fully integrated into the TranSPHIRE pipeline and works entirely 350 

automated out of the box. Its capabilities extend to difficult data sets such as 351 

membrane proteins, and enable advanced processing methods, such as targeting 352 

specific conformational states, or processing filamentous data sets, as demonstrated 353 

in the following. 354 

 355 

 356 
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Selectively targeting a conformational state in a mixed sample using prior 357 

knowledge 358 

A basic assumption of most algorithms currently used to process cryo-EM data is that 359 

all particles in a data set are projections of the same structure, hidden behind a 360 

curtain of noise. In reality, however, cryo-EM samples are often more complex, and 361 

can contain multiple conformational states of the target structure, impurities, and 362 

aggregates. Filtering such unwanted data and selectively targeting only a subset of 363 

the structures found within a sample is one of the fundamental issues in cryo-EM, 364 

and often requires significant efforts to address and resolve. 365 

The TranSPHIRE feedback loop offers a straightforward solution to this issue by 366 

allowing the injection of additional knowledge into the pipeline, either before or 367 

during runtime. This enables users to incorporate and make use of information that is 368 

already available, as well as information that was just produced during acquisition. 369 

Specifically, a set of 2D class averages of the target structure can be used to train 370 

Cinderella 20 to only recognize these averages as representatives of “good” classes, 371 

and, consequently, everything else as “bad.” If such averages are available 372 

beforehand, Cinderella can be pre-trained; otherwise the feedback loop can be 373 

paused once the first set of 2D class averages are produced in the TranSPHIRE 374 

pipeline and continued after manual re-training of Cinderella. This additional training 375 

step to embed additional knowledge into the TranSPHIRE pipeline enables us to steer 376 

the re-training of the picking model during the feedback loop iterations. More 377 

precisely, particles that end up in sharp classes depicting a different particle, a 378 

subcomplex, and/or the target protein in the wrong conformational state (for 379 

example) will now also be labeled as “bad” by Cinderella, despite their high quality. 380 

During the feedback loop, crYOLO will thus be taught to only focus on particles that 381 
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end up in quality classes depicting the wanted particle or state, while, at the same 382 

time, reject anything else, including sharp classes from an unwanted subpopulation. 383 

To demonstrate the capability of the TranSPHIRE feedback loop to use prior 384 

knowledge and target a pre-selected conformation, we processed a sample of the Tc 385 

holotoxin that contained particles in two conformational states, namely the pre-pore 386 

and pore state (Figure 4a). Of these, we only targeted the pore state, which is 387 

significantly more difficult to find as it only accounts for ~ 19% of the particles within 388 

the data set (Table 2, Figure 4b). Cinderella was trained with 318 examples of “good” 389 

classes (side-views of the pore state) and 664 examples of “bad” classes (views of the 390 

pre-pore state and contamination). During the feedback loop crYOLO was then re-391 

trained with only those particle picks that ended up in “good” classes showing views 392 

of the pore state.  393 

 394 

Table 2. Tc holotoxin feedback loop statistics. For every feedback round as well as 395 

the final run after optimization of the picking threshold (6 + T x.xx) the number of 396 

classes labeled “good” by Cinderella; the number of particles included in these 397 

classes; the total number and the number of good particles picked per micrograph; 398 

the final resolution of the 3D reconstruction; and the relative amount of good 399 

particles are listed for the Tc Holotoxin data (500 micrographs). 400 

 401 

To evaluate the performance of the feedback loop we used the intermediate 402 

picking models produced during the individual feedback rounds to separately process 403 

a fixed set of 500 micrographs once the feedback loop had finished (see Methods for 404 

Feedback 
round 

Good 
classes 

Good 
particles Picks/Mic 

Good 
picks/Mic Resolution 

Relative 
good picks 

1 130 12,595 130 25 4.28 0.19 
2 145 10,406 100 21 4.24 0.21 
3 151 14,534 74 29 4.36 0.40 
4 146 14,081 71 28 4.28 0.40 
5 155 14,935 68 27 4.28 0.40 
6 140 13,566 69 27 4.24 0.39 

6 + T 0.194 145 13,954 55 28 4.24 0.50 
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details). We observed a steady decrease of particles representing the pre-pore state 405 

– that we are not interested in – together with an initial rise and then level amount of 406 

pore state picks (Figure 4b, Table 2). While initially only 19% of the particles 407 

resembled the pore state, slightly more than 50% of all picks ended up in 2D class 408 

averages depicting our targeted conformation when using the final optimized picking 409 

model (Figure 4c-d). As in the previous experiment, the percentage of relative good 410 

picks per micrograph steadily increases. Notably, this happens while neither the 411 

number of good classes, nor the number of good particles seem to follow suit (Table 412 

2). This means that our re-training efforts are working as intended: Over the course 413 

of the feedback loop, crYOLO learns to discard quality class averages of the pre-pore 414 

state that we are not interested in and instead focus on picking the less common 415 

pore state. Consequently, the amount of picked particles changes slowly, while, at 416 

the same time, the relative amount of “good” particle picks steadily increases, 417 

resulting in a 4.2 Å (FSC=0.143) 3D reconstruction of the pore state from no more 418 

than 500 micrographs (Figure 4e). 419 

Taken together, these results illustrate how additional knowledge can be 420 

used to pre-train Cinderella, allowing TranSPHIRE to steer the re-training of the 421 

picking model during the feedback loop and to target a known subpopulation within 422 

the data. Using a picking model optimized for a specific conformation offers a two-423 

fold advantage. First, reconstruction efforts will be more effective, as we gain more 424 

particles of the subpopulation that we are interested in. Second, reconstruction 425 

efforts will be more efficient, as the rejection of particles that end up in “bad” classes 426 

significantly shrinks the overall size of the data set. In our example, we reduce the 427 

number of picked particles from an initial total of 67,117 to a set of only 27,646 428 

particles, without reducing the achieved resolution or the number of pore state 429 

particles that we are interested in (Figure 4b). Any follow-up computations, such as 430 
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costly 3D reconstructions, benefit greatly from such a reduction in data set size as it 431 

results in a much more efficient use of the available computational resources. 432 

 433 

 434 

Figure 4. Using prior knowledge to extract a pre-selected conformational state. (a) 435 

The processed data set contains the Tc holotoxin in both the pre-pore state (left) and 436 

the more rare pore state (right). In this experiment we specifically target the pore 437 

state. (b) Progression of the number of picked particles (blue), those accounted during 438 

2D classification (grey) and particles labeled “good” i.e. representing the pore state 439 

(green) when applying the intermediate picking models of the feedback loop to a 440 

fixed subset of 500 micrographs. Initial picking is dominated by pre-pore state 441 

particles. This overhead is reduced with each iteration, while the amount of picked 442 

pore state particle remains stable. (c) Representative 2D class averages depicting the 443 

decrease of unwanted classes (pore state or low quality; marked red) from an initial 444 

68% in the first feedback round (left) to 26% after the last feedback round (right). (d) 445 

Representative 2D class averages depicting the pore state as selected by Cinderella in 446 

the final iteration of the feedback loop. (e) 3D reconstruction of the Tc holotoxin pore 447 

state computed from 500 micrographs using the final optimized picking model. 448 

 449 

 450 
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Using TranSPHIRE to automatically process filamentous proteins 451 

Filamentous proteins such as the actomyosin complex are notoriously difficult to 452 

process. This is because their structure is by definition not limited to a single element 453 

but rather forms a continuous strand that both enters and exits the enclosing frame 454 

of any picked particle image. Consequently, filamentous proteins are traced, rather 455 

than picked, and overlapping segments have to be identified along each filament, 456 

while filament crossings and contamination need to be avoided. In addition, 457 

filamentous projections share a similar overall geometry which increases the 458 

correlation between any two particles and interferes with alignment attempts during 459 

2D classification. While there are several programs available that implement manual 460 

filament processing 13,24-27, until now there has not yet been any cryo-EM software 461 

package that offers the automated processing of filamentous data sets. 462 

With TranSPHIRE we introduce a comprehensive software package for cryo-463 

EM that includes the ability to automatically process filamentous proteins utilizing 464 

methods of the SPHIRE package 13. While the actual processing is fully automated, 465 

some preparation is still needed when using the TranSPHIRE pipeline to process 466 

filaments. Specifically, crYOLO  needs to be trained to pick filaments 28, as these look 467 

fundamentally different from the single particle complexes known to its default 468 

general model. Additionally, Cinderella 20 also needs to be trained with 2D class 469 

averages of the filament in question. If such class averages are not available initially, 470 

the feedback loop can be halted for re-training Cinderella as soon as TranSPHIRE has 471 

produced them. Once the models for the deep learning decision makers of the 472 

pipeline are trained on the specific filamentous data, TranSPHIRE and its integrated 473 

feedback loop are ready to automatically process the respective filamentous data 474 

sets. 475 
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As an example of processing initially unknown filamentous data, we chose an 476 

actomyosin complex. To further demonstrate the ability of the feedback loop to 477 

adjust the picking to a specific filamentous protein complex, we trained crYOLO with 478 

multiple data sets of F-actin, which looks substantially different than the actomyosin 479 

complex (Figure 5a). Thereby, crYOLO learns to trace filaments, but does not readily 480 

recognize actomyosin filaments resulting in a weak initial picking performance 481 

(Figure 5b-c). 482 

As soon as the first 2D class averages became available, the feedback loop 483 

was halted and a new Cinderella model was trained manually. Afterwards the 484 

feedback loop continued through its default five iterations, automatically teaching 485 

crYOLO to identify projections of the actomyosin complex. To evaluate the 486 

performance of the feedback loop we separately processed a fixed set of 100 487 

micrographs using the intermediate picking models produced during the individual 488 

feedback iterations (Figure 5, Table 3, see Methods for details).  489 

 490 

Table 3. Actomyosin complex feedback loop statistics. For every feedback round as 491 

well as the final run after optimization of the picking threshold (6 + T x.xx) the number 492 

of classes labeled “good” by Cinderella; the number of particles included in these 493 

classes; the total number and the number of good particles picked per micrograph; 494 

the final resolution of the 3D reconstruction; and the relative amount of good 495 

particles are listed for the actomyosin complex data (100 micrographs). 496 

 497 

Feedback 
round 

Good 
classes 

Good 
particles Picks/Mic 

Good 
picks/Mic Resolution 

Relative 
good picks 

1 211 9,629 143 96 7.63 0.67 
2 659 29,559 358 296 4.48 0.83 
3 936 42,779 552 428 4.37 0.77 
4 1,016 45,849 639 458 4.54 0.72 
5 1,203 54,134 1,098 541 4.32 0.49 
6 1,174 53,221 1,073 532 4.72 0.50 

6 + T 0.3 869 38,946 515 389 4.54 0.76 
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 498 

Figure 5. Ligand identification within an actomyosin complex. (a) Representative 499 

micrograph of the F-actin data used to train crYOLO. (b) Progression of the number of 500 

"good" particles per micrograph (blue) and in total (grey) when applying the 501 

intermediate picking models of the feedback loop to a fixed subset of 100 502 

micrographs. The dipping curve at the end indicates the desired loss of low-quality 503 

picks that are excluded when a higher picking threshold (0.3) is used. (c) 504 

Representative micrograph of the actomyosin complex highlighting the weak initial 505 

picking results when using the crYOLO model trained on F-actin data (see a). (d) 506 

Particle picking performance on the same micrograph using the final picking model. 507 

While filaments are now traced much more effectively, the model also picks 508 

unwanted filament crossings and contamination. (e) Increasing the picking threshold 509 

from 0.1 to the default value of 0.3 minimizes the amount of false positive picks, while 510 
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maintaining the desired filament traces. (f) Representative 2D class averages labeled 511 

"good" (top) and “bad” (bottom) by Cinderella based on 100 micrographs and using 512 

the final model for picking. (g) 3D reconstruction of the actomyosin complex 513 

computed from 100 micrographs using the initial picking model. (h) 3D reconstruction 514 

computed from the same 100 micrographs using the final optimized picking model. 515 

The resolution is sufficient to verify the binding of a ligand (circled). 516 

 517 

Initially a low confidence threshold of 0.1 (default) was used for picking in 518 

order to gather enough training data (Figure 5c, d). However, the amount of picked 519 

particles and the confidence in the picks increased throughout the feedback loop 520 

(Figure 5b, c). Thus, the picking threshold was adjusted to the default value of 0.3 521 

after the feedback in order to exclude low confidence picks of contamination and 522 

filament crossings (Figure 5b, d-e). Thereby, the number of relative good particles 523 

could be increased from 50% to 76% (Table 3) resulting in few classes labeled “bad” 524 

(Figure 5f). The improvement is also visible when comparing the initial and final 3D 525 

reconstruction computed from the same set of 100 micrographs (Figure 5g-h). 526 

Particularly, the final reconstruction of 4.4 Å (FSC=0.143) is sufficient to identify a 527 

small molecule bound to the filament, highlighting how TranSPHIRE can simplify 528 

ligand screenings. 529 

Using the feedback loop, TranSPHIRE offers the first cryo-EM software 530 

package that is able to automatically process filamentous data, even if the precise 531 

shape of a specific filament is initially unknown to the pipeline. Moreover, 532 

TranSPHIRE now enables experimentalists to produce an early 3D reconstruction with 533 

a resolution sufficient to identify bound ligands and determine whether or not their 534 

data is likely to yield a high resolution reconstruction – all within the time frame of 535 

hours and while their data is still being collected at the microscope (Figure 2, 536 

Supplementary Figure 3). The automated processing greatly simplifies the processing 537 
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of filamentous samples in general and, most importantly, facilitates the fast 538 

determination of multiple structures of one filament decorated with different 539 

accessory proteins or bound to ligands. 540 

 541 

4 Discussion 542 

In this paper we present the streamlined TranSPHIRE pipeline for automated, 543 

feedback-driven processing of cryo-EM data. It fully automates data transfer, pre-544 

processing and the creation of a series of early reconstructions based on the most 545 

recently processed data (Figure 1a). At the same time, TranSPHIRE prominently 546 

displays all relevant data evaluation metrics, updated in real time (Supplementary 547 

Figure 1), and offers the option to send email notifications when issues are 548 

encountered or important milestones – such as the first 2D class averages, or an 549 

initial 3D reconstruction – have been reached. 550 

We also introduce the TranSPHIRE feedback loop (Figure 1b), a machine 551 

learning-based method to optimize the internally used particle picking model and 552 

adapt our native crYOLO picker to any data set, even while it is still being collected at 553 

the microscope. This allows TranSPHIRE to adjust to never before seen data, as well 554 

as to avoid any issues that a cryo-EM sample might include, such as unwanted 555 

proteins, low contrast, and/or different kinds of contamination. The optimization of 556 

the picking model performed by the feedback loop can further be guided by the 557 

experimentalist in order to specifically select a subpopulation within the data, such as 558 

a distinct conformational or oligomeric state. 559 

We demonstrate these capabilities of TranSPHIRE and its new feedback loop 560 

by performing three distinct experiments, each addressing a common issue in cryo-561 

EM: First, we processed the membrane protein TRPC4, after purposefully sabotaging 562 

our particle picking to simulate processing a data set that is not only unknown, but 563 
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initially only barely provides enough useful picks for training. Nevertheless, the 564 

TranSPHIRE feedback loop successfully taught crYOLO to identify and pick the sought-565 

after particles without any need for user intervention or expert knowledge input. 566 

When the final picking model was then used to automatically compute a full 567 

reconstruction, we reached a resolution of 3.6 Å (FSC=0.143), based on the data 568 

extracted from no more than 500 micrographs (Figure 3). 569 

Second, we processed a sample containing the Tc holotoxin in two different 570 

conformational states: The common pre-pore state, and the significantly rarer pore 571 

state that only accounts for about one fifth of the available particles. In this 572 

experiment we injected prior knowledge about the pore state into the pipeline by 573 

training Cinderella – our deep learning tool to reject unusable 2D class averages – to 574 

only accept class averages of this state. This directed the re-training during the 575 

feedback loop and taught crYOLO to focus on the rare pore state particles. As a 576 

result, we obtained a picking model that was highly selective for only one 577 

conformational state while rejecting not only low quality 2D class averages, but also 578 

high quality 2D class averages if they displayed the Tc holotoxin in the 579 

conformational state that we were not interested in (Figure 4). This produced a 580 

particle stack that was not only populated with an increased number of “good” 581 

particles, but also contained less particles overall, as unwanted particles were already 582 

rejected during particle picking. The final reconstruction obtained a resolution of 4.2 583 

Å (FSC=0.143). Such an optimized stack means that any follow-up computations only 584 

have to deal with relevant data, allowing for a more efficient use of the available 585 

computational resources.  586 

 Third, we processed a data set of an actomyosin complex to demonstrate 587 

how the ability of TranSPHIRE to automatically process cryo-EM data also extends to 588 

filamentous proteins. To adjust the pipeline to the processing of filaments, we re-589 
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trained both crYOLO and Cinderella in order to teach them about the distinct visual 590 

properties of filamentous particles and how to avoid any filament-exclusive pitfalls, 591 

such as filament crossings. To specifically showcase the ability of the feedback loop 592 

to deal with an initially unknown filament structure, we only taught crYOLO about F-593 

actin, which features a fundamentally different appearance than the actomyosin 594 

complex. Cinderella was then only trained with the initial 2D class averages that 595 

TranSPHIRE produced during the first iteration of the feedback loop. Despite the 596 

initial picking model only knowing about F-actin, Cinderella was able to teach crYOLO 597 

about the actomyosin complex and the final reconstruction reached a resolution of 598 

4.4 Å (FSC=0.143), using the data extracted from merely 100 micrographs (Figure 5).  599 

In summary, TranSPHIRE offers a fully automated pipeline that produces 600 

highly optimized particle stacks that allow for more effective processing and more 601 

efficient use of any available resources, both computational and human. Combined, 602 

these features allow experimentalists to make the most of their limited time at the 603 

microscope and to identify and address any issues as soon as they surface. 604 

Furthermore, TranSPHIRE produces early reconstructions of proteins, even if initially 605 

unknown, thereby enabling experimentalists to assess their data and identify the 606 

conformational state of their protein or validate the binding of a ligand while their 607 

data is still being collected. Hence, TranSPHIRE allows users to perform automated 608 

high-throughput on-the-fly screenings for different buffer conditions or ligands of 609 

interest.  610 

 611 

Methods 612 

Hardware used to run TranSPHIRE 613 

By default, TranSPHIRE runs on a single machine, which can be combined with a 614 

separate workstation or computer cluster to outsource computational power. For the 615 
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majority of the results presented in this manuscript, a single machine equipped with 616 

two Intel(R) Xeon(R) Gold 6128 CPUs (3.40GHz), featuring 12 CPU cores each 617 

(hyperthreading 24); 192 GB of RAM; and three GeForce RTX 1080 Ti GPUs was used. 618 

Only computationally more expensive 3D reconstructions, both the initial ab initio 619 

reconstruction and the 3D refinements (for details see below), were outsourced to 620 

our local computer cluster. There, calculations were performed on two nodes; each 621 

equipped with two Intel(R) Xeon(R) Gold 6134 CPUs (3.20GHz), featuring 32 CPU 622 

cores in total and 384 GB of RAM. 623 

 624 

Software integrated into the TranSPHIRE pipeline 625 

TranSPHIRE is a free of charge, open-source software written in Python3, which is 626 

available online (https://github.com/MPI-Dortmund/transphire).  627 

 Its fully-automated processing pipeline integrates several software packages 628 

and is thereby highly flexible and adaptable. An initial integrity check and the 629 

consecutive compression of every input stack to a LZW compressed tiff file is 630 

performed using IMOD v4.9.8 30. Currently, TranSPHIRE supports several options for 631 

motion correction (Unblur 15 and MotionCor2 14) and CTF estimation (CTFFIND 16, 632 

CTER 17 and GCTF 18). For all consecutive 2D and 3D processing steps, TranSPHIRE 633 

utilizes functions of the SPHIRE 13 package including the deep-learning particle picker 634 

crYOLO 12, the 2D class selection tool Cinderella 20 and a new GPU accelerated version 635 

of the reliable 2D classifier ISAC2 19.  636 

Results presented in this manuscript were generated with TranSPHIRE 637 

v1.4.50 and SPHIRE v1.4. Specifically, the pipeline consisted of the following modules: 638 

the CUDA 10.2.86 version of MotionCor2 v1.3.014; CTFFIND v4.1.13 for CTF 639 

estimation 16; crYOLO v1.6 for particle picking 12; SPHIRE sp_window.py for particle 640 

extraction 13; a GPU accelerated version (v1.0) of SPHIRE ISAC2 19 for on-the-fly 2D 641 
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classification (will be published elsewhere); SPHIRE Cinderella v0.5 20 for 2D class 642 

selection; SPHIRE sp_rviper.py 13,21 for ab initio reconstructions and finally SPHIRE 643 

sp_meridien.py 13 or sp_meridien_alpha.py for the 3D refinement of single particles 644 

or filaments, respectively. 645 

  646 

The automated processing pipeline within TranSPHIRE  647 

After preprocessing the data i.e. data transfer and compression, motion correction 648 

and CTF estimation (also see Supplementary Figure 2), particles are automatically 649 

picked using the deep learning, GPU-accelerated particle picker crYOLO 12. By using 650 

the general model, which was trained on 63 cryo-EM data sets, crYOLO is able to pick 651 

previously unseen particles. During the feedback rounds a picking threshold of 0.1 is 652 

used to facilitate the picking of distinct proteins and features. At the end of each 653 

feedback iteration crYOLO is retrained on particles that contributed to classes labeled 654 

“good” by Cinderella (see below and Figure 1b). When crYOLO is trained on a single 655 

data set, it quickly reaches a good picking quality even when the training data only 656 

contains few micrographs. Hence, increasing the size of the training data, enhances 657 

the training time without benefitting the training. Therefore, only particles from 50 658 

randomly selected micrographs and no more than 20,000 particles in total are used 659 

for the training. Once the feedback loop is finalized, the picking performance is 660 

further optimized by adjusting the picking threshold to an optimal one, as 661 

determined by a parameter grid search using crYOLO's internal evaluation procedure. 662 

The particle threshold value defines a confidence threshold that each pick made by 663 

crYOLO must either meet or exceed in order to be accepted. If this threshold is set to 664 

a low value, particles with a low confidence are also accepted. In order to find the 665 

optimal threshold, a fixed subset of data is repeatedly picked while varying the 666 

threshold from 0.0 to 1.0, using a step size of 0.01. Afterwards the optimal threshold 667 
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is defined by the highest F2 score 31 of all resulting picks. Processing results 668 

generated with the optimized threshold are labeled with iteration "6 + T x.xxx", 669 

where six represents the sixth and thus final model used in the feedback loop, and 670 

the value x.xxx denotes the optimized picking threshold. 671 

Picked particles are automatically extracted and classified in 2D, resulting in 672 

class averages containing 60 to 100 particles per class (standard settings). 673 

Classifications are performed by a new GPU-accelerated and updated version of 674 

ISAC2, which is based on the original ISAC (Iterative Stable Alignment and Clustering) 675 

algorithm19. Just like the CPU-bound ISAC2 it delivers high quality 2D class averages 676 

as well as an initial clean-up of the data set, but does not come with the same high 677 

computational cost. Hence, GPU ISAC provides the same functionality on a single 678 

workstation without the need to outsource 2D classification to a cluster. The GPU 679 

ISAC code repository is part of the SPHIRE repository listed above.  680 

 As the generation of high-resolution 2D class averages requires a sufficient number 681 

of particles covering a range of views, 2D classification is only started once a certain 682 

number of particles is accumulated. While this number can be adjusted in the 683 

TranSPHIRE GUI, a default value of 20,000 particles per batch has proven to be good 684 

(see also Supplementary Figure 4). 685 

2D class averages are routinely used to assess the overall quality of the data 686 

and to select only those particles for 3D refinement that contribute to high quality 2D 687 

class averages. Previously, this selection was done manually, breaking any automated 688 

processing pipeline. In order to provide a fully automated pipeline, TranSPHIRE uses 689 

Cinderella 20, a deep learning binary classifier based on a convolutional neural 690 

network. When provided with a set of 2D class averages, Cinderella labels each of 691 

them as either "good" or "bad." By default, this decision is based on a model that was 692 

trained on a large set of class averages from a multitude of different cryo-EM 693 
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projects. Alternatively, Cinderella can be trained on specific data to select classes 694 

according to the needs of the current project. By default, TranSPHIRE runs Cinderella 695 

using its general model, based on 3,559 "good" and 2,433 "bad" classes taken from 696 

20 different data sets from both the EMPIAR 32 data base and our in-house efforts. 697 

The Cinderella git repository can be found online  698 

(https://github.com/MPI- Dortmund/sphire_classes_autoselect). 699 

Once the feedback loop has finished and a set of at least 200 “good” class 700 

averages is available (number can be adjusted if desired), a reproducible, ab initio 3D 701 

reconstruction is computed from 2D class averages using the SPHIRE method RVIPER 702 

13 (Reproducible Validation of Individual Parameter Reproducibility). The VIPER 703 

algorithm combines a genetic algorithm 33 with stochastic hill climbing 34 to produce 704 

multiple 3D ab initio structures. These reconstructions are then compared and the 705 

most reproducible model is used to seed the consecutive 3D refinement. (See online 706 

documentation for RVIPER and VIPER at  707 

http://sphire.mpg.de/wiki/doku.php?id=pipeline:viper:sxrviper). 708 

 To generate a high-resolution 3D reconstruction a stack of all particles 709 

assigned to classes that were labeled “good” by Cinderella is created. The 710 

consecutive refinement is performed by the SPHIRE method MERIDIEN 13 providing 711 

the initial reconstruction computed in the previous step as reference. The refinement 712 

within MERIDIEN proceeds in two phases. The first phase, "EXHAUSTIVE", searches 713 

the whole 3D parameter space -- three Euler angles for rotation and two dimensions 714 

for translation -- on a discrete grid. The second phase, "RESTRICTED", searches the 715 

parameter space on a discrete grid within the local area closest to the best matching 716 

set of parameters found in the previous iteration. To avoid over-fitting, the image 717 

dimensions and the grid spacing is adjusted after every iteration, based on the 718 

achieved resolution according to the gold standard FSC 35 and stability of the 719 
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parameters. In order to compensate for the discreteness of the grid and the 720 

uncertainty in parameter assignment, particles are weighted by the probability of the 721 

parameter set for the backprojection into the 3D reconstruction. (See online 722 

documentation of MERIDIEN at 723 

http://sphire.mpg.de/wiki/doku.php?id=pipeline:meridien:sxmeridien). 724 

Similar to the prerequisites for 2D classification, a certain number of particles 725 

representing different views is required to successfully compute a 3D reconstruction. 726 

Thus, TranSPHIRE will not start the 3D refinement before a defined number of 727 

particles is accumulated. In our hands a total of 40,000 particles (default value, can 728 

be adjusted) is sufficient to calculate a medium to high resolution 3D reconstruction 729 

in a short time frame. While this reconstruction will likely not reach the highest 730 

resolution possible, it still enables a first analysis i.e. identification of a 731 

conformational state or the verification if a ligand is bound or not. Furthermore, it 732 

provides a quality control throughout the data acquisition, as a new 3D 733 

reconstruction is computed for every batch of 40,000 particles. As all 3D refinements 734 

start from the same initial reference, refinement projections parameters can 735 

additionally be used to directly start with a local refinement of the complete data set, 736 

thereby significantly reducing the required running time.  737 

 738 

Evaluation of the feedback performance  739 

As TranSPHIRE runs in parallel to the data acquisition and data are processed as they 740 

come in, the number of movies is increasing during the runtime and results from one 741 

feedback iteration to the next are not directly comparable. Thus, the feedback 742 

performance was evaluated separately for every data set on a fixed subset of 500 743 

(TRPC4 and Tc holotoxin, Figure 3-4) and 100 (Actomyosin, Figure 5) micrographs.  744 
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For each case, the fixed subset was processed using the intermediate picking models 745 

produced during the individual feedback iterations. Specifically, every subset was 746 

once picked with the starting model (general model, labeled round 1) and with every 747 

picking model generated throughout the five iterations of the feedback loop (rounds 748 

2 to 6) using a particle threshold of 0.1. In addition, another run was performed with 749 

the final picking model using the optimized particle threshold (6 + T X.XX). The 750 

consecutive processing in 2D and 3D was performed with AutoSPHIRE sp_auto.py, 751 

which is the automatic, batch processing  tool within SPHIRE 13 on our local CPU 752 

cluster. The processing pipeline and settings used resemble the ones described 753 

above, except that CPU ISAC was used instead of the new GPU-accelerated version.  754 

 755 

 756 

Automatic processing of the TRPC4 data. 757 

The performance of TranSPHIRE was tested on a subset of 500 micrographs of a high-758 

resolution data set of the transient receptor channel 4 (TRPC4) from zebra fish in 759 

LMNG detergent (prepared in analogy to 36, publication in preparation). The data set 760 

was automatically collected at a Cs-corrected Titan Krios (FEI Thermo Fisher) 761 

microscope equipped with an X-FEG and operated at 300kV using EPU (FEI Thermo 762 

Fisher). Equally dosed frames with a pixel size of 0.85 Å/pixel were collected with a 763 

K2 Summit (counting mode, Gatan) direct electron detector in combination with a 764 

GIF quantum-energy filter set to a filter width of 20 eV.  Each movie contains 50 765 

frames and a total electron dose of 88.5 e/Å2. 766 

Processing in TranSPHIRE was performed as described above with five 767 

internal feedback rounds to optimize the crYOLO picking model. Within the pipeline, 768 

movies were drift corrected and dose weighted by MotionCor2 14 using five patches 769 

with an overlap of 20% and CTFFIND4 16 fitted the CTF between 4 Å and 30 Å with an 770 
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Cs value of 0.001. The training data for the general model of crYOLO usually contain 771 

four data sets of TRP channels. To avoid any favorable picking bias and handle the 772 

TRPC4 data as previously unseen, the general model was retrained after removing all 773 

TRP channels from the training data.  Even then, crYOLO was able to identify most 774 

TRPC4 particles through the successful generalization. To simulate a worst-case 775 

scenario of a deficient initial picking performance, 90% of the particle picks in the 776 

initial feedback round were replaced by random coordinates. 777 

 During the feedback rounds the crYOLO picking threshold was set to 0.1 and 778 

the anchor size to the estimated particle diameter of 240 pixels. After the final 779 

feedback round, the picking threshold value was adjusted to 0.257 based on the 780 

crYOLO confidence threshold optimizing procedure described above. After each 781 

particle picking step, particles were automatically extracted using SPHIRE 782 

sp_window.py with a box size of 288 pixels. The subsequent 2D classification was 783 

performed using a GPU accelerated version of the SPHIRE ISAC2 algorithm using 784 

standard settings. The feedback loop was run with the default particle batch size of 785 

20,000 (for details see above and Supplementary Figure 3). 786 

The produced 2D class averages were subjected to an automatic 2D class 787 

selection using our deep learning tool Cinderella and a confidence threshold of 0.1. 788 

To simulate the processing of a previously unseen protein, Cinderella was trained 789 

with its general model training data excluding all channel proteins, thereby ensuring 790 

an unbiased selection process. During the feedback rounds crYOLO was trained on 791 

the default value of 50 random micrographs that contained particles contributing to 792 

classes labeled “good” by Cinderella. 3D reconstructions were computed as described 793 

above using no mask and imposing c4 symmetry. Note that albeit our program 794 

provides the possibility to compute a 3D mask from the initial model automatically 795 

and apply it during the refinement, this option is deactivated by default. Automated 796 
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masking procedures might eliminate valid regions of the structure that are not well 797 

resolved in the initial reconstruction, especially in cases with strong flexibility in the 798 

complex. In case a 3D mask is not provided, we strongly recommend to use a mask 799 

created from the results of TranSPHIRE for all follow-up experiments, in order to 800 

exploit the full potential of 3D refinement. Whereas the workflow can be easily 801 

extended, the pipeline for each batch stops by default after the first high resolution 802 

3D refinement, in order to allow on-the-fly evaluation by the user. The results can be 803 

easily converted to RELION after any milestone and vice versa. Correction of higher-804 

order aberrations for example in RELION  might further improve the resolution of the 805 

final result, when these optical effects  are present 37. 806 

The progression of the picking performance throughout the feedback rounds 807 

was evaluated on a fixed subset of 500 micrographs as described above (Figure 3). 808 

Note that the picking model of the first iteration is not included in this evaluation, as 809 

its performance was initially corrupted by randomizing 90% of the picked particles.  810 

 811 

Automatic processing of the Tc holotoxin data. 812 

To test the capability of TranSPHIRE to target a specific conformation, a subset of 500 813 

micrographs of the ABC holotoxin from Photorhabdus Luminescens reconstituted in a 814 

lipid nanodisc (EMD-10313) 29 was processed. This data set contains a mixture of 815 

conformations, namely the pre-pore and pore state of the holotoxin. The data set 816 

was collected at a Cs-corrected Titan Krios (FEI Thermo Fisher) microscope equipped 817 

with an X-FEG and operated at 300kV using EPU (FEI Thermo Fisher). Equally dosed 818 

frames with a pixel size of 0.525 Å/pixel were collected with a K2 Summit (super 819 

resolution mode, Gatan) direct electron detector in combination with a GIF quantum-820 

energy filter set to a filter width of 20 eV.  Each movie contains 40 frames and a total 821 

electron dose of 60.8 e/Å2. 822 
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Processing in TranSPHIRE was performed as described above with five 823 

internal feedback rounds to optimize the crYOLO picking model. Within the pipeline, 824 

movies were drift corrected, dose weighted and binned to a pixel size of 1.05 Å/px by 825 

MotionCor2 14 using three patches without overlap and CTFFIND4 16 fitted the CTF 826 

between 4 Å and 30 Å with an Cs value of 0.001. Subsequently, particles were picked 827 

using the general model of crYOLO.  828 

During the feedback rounds the crYOLO picking threshold was set to 0.1 and the 829 

anchor size to the estimated particle diameter of 205 pixels. After the final feedback 830 

round, the picking threshold value was adjusted to 0.194 based on the crYOLO 831 

confidence threshold optimizing procedure described above. After each particle 832 

picking step, particles were automatically extracted using SPHIRE sp_window.py with 833 

a box size of 420 pixels. The subsequent 2D classification was performed using a GPU 834 

accelerated version of the SPHIRE ISAC2 algorithm using standard settings. The 835 

feedback loop was run with the default particle batch size of 20,000 (for details see 836 

above and Supplementary Figure 3). 837 

The produced 2D class averages were subjected to an automatic 2D class 838 

selection using our deep learning tool Cinderella and a confidence threshold of 0.1. 839 

To demonstrate the ability of the TranSPHIRE feedback loop to selectively pick 840 

particles of one conformational state, Cinderella was trained on pre-existing 2D class 841 

averages of the pore state as instances of “good” classes (318) and 2D class averages 842 

of the pre-pore state and contamination as instances of “bad” classes (664). During 843 

the feedback rounds crYOLO was trained on the default value of 50 random 844 

micrographs that contained particles contributing to classes labeled “good” by 845 

Cinderella. 3D reconstructions were computed as described above without applying a 846 

mask or symmetry.  847 
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The progression of the picking performance throughout the feedback rounds 848 

was evaluated on a fixed subset of 500 micrographs as described above (Figure 4).  849 

 850 

Automatic processing of an actomyosin complex data set. 851 

A subset of 100 micrographs of an actomyosin complex with a bound small molecule 852 

ligand (publication in preparation) was chosen to demonstrate the processing of 853 

filamentous samples and within TranSPHIRE and its suitability for high-throughput 854 

ligand screenings. The data set was collected at a Cs-corrected Titan Krios (FEI 855 

Thermo Fisher) microscope equipped with an X-FEG and operated at 300kV using 856 

EPU (FEI Thermo Fisher). Equally dosed frames with a pixel size of 0.56 Å/pixel were 857 

collected with a K2 Summit (super resolution mode, Gatan) direct electron detector 858 

in combination with a GIF quantum-energy filter set to a filter width of 20 eV.  Each 859 

movie contains 40 frames and a total electron dose of 81.2 e/Å2. 860 

Processing in TranSPHIRE was performed as described above with five internal 861 

feedback rounds to optimize the crYOLO picking model. Within the pipeline, movies 862 

were drift corrected, dose weighted and binned to a pixel size of 1.10 Å/px by 863 

MotionCor2 14 deactivating patch alignment and CTFFIND4 16 fitted the CTF between 864 

5 Å and 30 Å with an Cs value of 0.001.  865 

As the crYOLO general model does not include filamentous data it cannot be 866 

readily applied to this data set. Instead a new crYOLO general model specific for actin 867 

filaments was trained. The training data consisted of multiple actin data sets 868 

collected within our group, but did not include any data of an actomyosin complex or 869 

other actin complexes. Considering the significant optical difference of actin and 870 

actomyosin filaments (also see Figure 5), picking with the general actin crYOLO model 871 

mimics the processing of a previously unseen filamentous protein.  872 
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During the feedback rounds the crYOLO picking threshold was set to 0.1 and 873 

the anchor size to the estimated box size of 320 pixels. Furthermore, the filament 874 

width was set to 100 px and the box distance to 25 px (equivalent to one helical rise 875 

of 27.5 Å). Only filaments consisting of at least six segments were considered.  After 876 

the final feedback round, the picking threshold value was adjusted to the crYOLO 877 

default value of 0.3, as the threshold optimization procedure of crYOLO does not 878 

support filaments. After each particle picking step, particles were automatically 879 

extracted using SPHIRE sp_window.py with a box size of 320 pixels and a filament 880 

width of 100 pixels. The subsequent 2D classification was performed using a GPU 881 

accelerated version of the SPHIRE ISAC2 algorithm asking for 30-50 particles per 882 

class. The feedback loop was run with the default particle batch size of 20,000 (for 883 

details see above and Supplementary Figure 3). 884 

The produced 2D class averages were subjected to an automatic 2D class 885 

selection using our deep learning tool Cinderella and a confidence threshold of 0.1. 886 

As filamentous data differ strongly from the data used to train the general model of 887 

Cinderella, a new model was trained based on the 2D class averages produced in the 888 

initial feedback round combined with previously selected class averages of actin only 889 

data sets. During the feedback rounds crYOLO was trained on the default value of 50 890 

random micrographs that contained particles contributing to classes labeled “good” 891 

by Cinderella. 892 

An initial 3D reference was created from a deposited actomyosin atomic 893 

model (PDB:5JLH) 38. The 3D refinement was performed using SPHIRE 894 

sp_meridien_alpha.py, an open alpha version of helical processing in SPHIRE, with a 895 

particle radius of 144 px (~45% of the box size), a filament width of 100 px and a 896 

helical rise of 27.5 Å. While projection parameters are restrained according to the 897 

helical parameters e.g. the shift along the filament axis is restricted to half of the rise, 898 
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no helical symmetry is applied and therefore does not need to be determined 899 

beforehand. To avoid artifacts due to the contact of the filament to the edges of the 900 

box, a soft 3D mask covering 85% percent of the filament was applied during the 901 

refinement.   902 

The progression of the picking performance throughout the feedback rounds was 903 

evaluated on a fixed subset of 100 micrographs as described above (Figure 5). 904 
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