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5 Abstract

6 Booming and busting populations modulate the accumulation of genetic diversity, encoding
7 histories of living populations in present-day variation. Many methods exist to decode these
8 histories, and all must make strong model assumptions. It is typical to assume that mutations
9 accumulate uniformly across the genome at a constant rate that does not vary between closely
10 related populations. However, recent work shows that mutational processes in human and great
1 ape populations vary across genomic regions and evolve over time. This perturbs the mutation
12 spectrum: the relative mutation rates in different local nucleotide contexts. Here, we develop
13 theoretical tools in the framework of Kingman’s coalescent to accommodate mutation spectrum
14 dynamics. We describe mushi: a method to perform fast, nonparametric joint inference of
15 demographic and mutation spectrum histories from allele frequency data. We use mushi to
16 reconstruct trajectories of effective population size and mutation spectrum divergence between
17 human populations, identify mutation signatures and their dynamics in different human popu-
18 lations, and produce more accurate time calibration for a previously-reported mutational pulse
19 in the ancestors of Europeans. We show that mutation spectrum histories can be productively
20 incorporated in a well-studied theoretical setting, and rigorously inferred from genomic variation
21 data like other features of evolutionary history.

» Introduction

23 Over the past decade, population geneticists have developed many sophisticated methods for in-
2 ferring population demography, and have consistently found that simple, isolated populations of
25 constant size are far from the norm. Population expansions and founder events, as well as migration
2% between species and geographic regions, have been inferred from virtually all high resolution ge-
27 netic datasets that have been generated, and we now recognize that inferring these non-equilibrium
28 demographies is often essential for understanding histories of adaptation and global migration.
20 Population genetics has uncovered many features of human history that were once virtually un-
50 knowable by other means [1], revealing a complex series of migrations, population replacements,
st and admixture networks among human groups and extinct hominoids. Related analyses of genetic
32 variation have also shown that ancestral human populations differed from one another at the bio-
33 chemical level, inheriting systematically different patterns of DNA damage. It is not known how
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s« many of these differences were genetically encoded as opposed to environmentally induced, but
35 either type of perturbation has the potential to complicate the task of inferring population history
36 from genetic variation.

37 The process of germline mutation is the writing mechanism that records signatures of demo-
33 graphic events in genomes, so its influence on modern genomic variation is similar in importance to
30 the demographic histories themselves. Demographic inference methods can model complex popula-
20 tion splits, migration, and admixture, and while some have the potential to accommodate various
s functional forms for N(¢), mutation has long received a comparatively simple treatment. Usually, a
22 single mutation rate parameter y is assumed to apply at all loci, in all individuals, and at all times.
a3 It may then be regarded as a nuisance parameter needed for time calibration of models where time
s is measured in dimensionless Wright-Fisher generations (i.e. units of 2/V). De novo mutation rates
45 in humans can be measured by parent-child trio sequencing studies, while for other species it is
s typical to use a phylogenetically calibrated mutation rate parameter, and the accuracy of these
a7 often uncertain estimates places a fundamental limit on the precision of inferred parameters such
48 as times of admixture and population divergence.

49 Although modern methods for inferring demography from genetic data tend to assume a mu-
so tational process that is simple and unchanging, mutation rate evolution has long been a subject
51 of study in population genetics. Soon after Haldane developed equilibrium theory for alleles in
52 mutation-selection balance and used this to provide the first principled estimate of the human
53 mutation rate by studying hemophilia incidence [2], 3], Kimura began to consider how mutator al-
54 leles—i.e. genetic modifiers of the mutation rate—had the potential to optimize mutation rates by
ss balancing adaptive response to environmental changes against increasing genetic load [4]. Kimura
s6 recognized the tendency of mutators to escape their deleterious consequences via recombination
57 away from new mutations that they help create, and therefore deduced that rising mutation rates
ss might be a deleterious consequence of increasing reliance on sexual reproduction. The drift-barrier
so  hypothesis of Lynch et al. expands upon this idea by considering the effect of genetic drift on mu-
60 tation rate optima. Population bottlenecks and low effective population size ultimately limit the
61 ability of a population to evolve toward an optimum of high replication fidelity, as the efficiency of
2 selection against mutator alleles increases with N [5].

63 Growing evidence indicates that germline mutation is a dynamic process that evolves over both
64 interspecific and population time scales. The rate of this evolution has the potential to be highly
65 pleiotropic; influenced by replication machinery polymorphisms as well as life history, mutagenic
66 exposures, and genomic features such as repeats and epigenetic marks. Mutation rates among
67 great apes appear to have declined along the lineage leading to humans—a phenomenon called
¢ the hominoid slowdown [0l [7]—, showing that mutation rate evolution between species distorts
60 phylogenetic time calibration. At the level of single generations, children of older parents receive
70 more germline mutations, especially from older fathers. Replicative errors in spermatogenesis add
n = 1 additional expected mutation per year of paternal age, and the repair efficiency of spermatocyte
72 DNA damage declines with age [8]. This parental age effect [9] means that sex-specific life history
73 traits can influence mutagenesis at the population level. The first few embryonic cell divisions are
72 more error prone than others [10], further demonstrating that not all cell divisions are clock-like.
75 These phenomena show that the accumulation of mutations is complexly coupled to other biological
76 processes.

77 A complex and polymorphic mutation process also reveals itself in associations with genomic
78 position and local nucleotide context. The rate of C—T transitions is elevated at methylated CpG
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79 sites due to spontaneous deamination [I1) 12]. GC-biased gene conversion (gbGC) refers to the
so tendency of stronger-binding GC alleles to overwrite AT alleles during homologous recombination
s1  [13, [14]. This biased non-Mendelian segregation pattern is tantamount to selection for weak-to-
82 strong mutations from AT to GC, and can create new, sequence-biased mutations when non-allelic
83 gene conversion transfers variation between paralogous genomic regions.

84 It is difficult to disentangle past changes in mutation rate from past changes in effective pop-
85 ulation size, which can change the rate of nucleotide substitution even when mutation rate stays
ss constant. However, evolution of the mutation process can be indirectly detected by measuring its
g7 effects on the mutation spectrum: the relative mutation rates among different local nucleotide con-
s texts. Hwang and Green [I1] modeled the triplet context-dependence of the substitution process in
g0 a mammalian phylogeny, finding varying contributions from replication errors, cytosine deamina-
90 tion, and biased gene conversion. Many cancers have elevated mutation rates due to different failure
o1 points in the DNA repair process, and these differences cause hypermutation in different sets of
o triplet sequence motifs [I5] [16]. Harris and Pritchard [17, 18] demonstrated the power of examining
93 the same triplet-based spectrum in an evolutionary context, and counted single nucleotide vari-
94 ants in each triplet mutation type as a proxy for mutational input from each individual’s history.
os  Human triplet spectra distinctly cluster according to continental ancestry group, and evidence of
s historical pulses in mutation activity (or suppression of repair) has been found in the distribution
o7 of allele frequencies in certain mutation types. Mathiesen et al. studied similar mutation signa-
¢ tures in rare human variants [19], and clarified alternative non-mutational hypotheses for their
99 origin, including population differences in demography, patterns of selection, recombination, or
100 recombination-associated processes such as gene conversion. Rare variants in large cohorts serve as
101 a proxy for recent de novo mutations, and they reveal mutational signatures of replication timing,
102 recombination, and sex differences in repair processes [20, 21].

103 Emerging from the literature is a picture of a mutation process evolving within and between
104 populations, anchored to genomic features and accented by spectra of local nucleotide context. If
105 probabilistic models of population genetic processes are to keep pace with these empirical findings,
106 mutation deserves a richer treatment in state-of-the-art inference tools. In this paper, we build on
107 classical theoretical tools to introduce fast nonparametric inference of population-level mutation
s spectrum history (MuSH)—the relative mutation rate in different local nucleotide contexts across
100 time—alongside inference of demographic history. Whereas previous work has demonstrated muta-
1o tion spectrum evolution using phenomenological statistics on modern variation, we shift perspective
1 to focus on inference of the MuSH, which we model on the same footing as demography.

112 Demographic inference requires us to invert the map that takes population history to the pat-
us  terns of genetic diversity observable today. This task is often simplified by first compressing these
s genetic diversity data into a summary statistic such as the sample frequency spectrum (SFS), the
us distribution of derived allele frequencies among sampled haplotypes. The SES is a well-studied
116 population genetic summary statistic that is sensitive to demographic history. Unfortunately, in-
u7  verting the map from demographic history to SFS is a notoriously ill-posed problem, in that many
us different population histories can have identical expected SFS [22], 23, 24, 25 26]. One way to
ue deal with the ill-posedness of demographic inference (and other inverse problems) is to specify
120 a parametric model. This is done by allowing a small number of constant or exponential epochs
121 whose location and scale parameters are optimized to recapitulate the patterns observed in genomic
122 data. An alternative is to allow a more general space of solutions, but to regularize by penalizing
123 histories that contain features deemed biologically unrealistic (e.g. high frequency population size
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124 oscillations). Both approaches shrink the set of feasible solutions to the inverse problem so that it
125 becomes well-posed, and can be thought of as leveraging prior knowledge. In particular, the pe-
126 nalization approach leverages knowledge about the granularity of generations in the discrete-time
127 reproductive models that the continuous-time coalescent only approximates.

128 In this paper, we extend a coalescent framework for demographic inference to accommodate
120 inference of the MuSH from a SFS that is resolved into different local k-mer nucleotide contexts.
130 This is a richer summary statistic that we call the k-SFS, where e.g. kK = 3 means triplet context.
131 We show using coalescent theory that the k-SF'S is related to the MuSH by a linear transformation,
132 while depending non-linearly on the demographic history. We jointly infer both demographic history
133 and MuSH using optimization, where the cost that we minimize balances a data fitting term, which
13« employs the forward map from coalescent theory, along with a regularization term that favors
135 smooth solutions with low complexity. Our open-source software mushi (mutation spectrum history
136 inference) is available at https://harrispopgen.github.io/mushi as a Python package alongside
137 computational notebooks that both demonstrate its use and reproduce the results of this paper.
138 Using default settings and modest hardware, mushi takes only a few seconds to infer histories from
139 population-scale sample frequency data.

140 The recovered MuSH is a rich object that illuminates both standard and previously hidden
11 dimensions of population history. Various biological questions about evolution of the mutation
12 process may be addressed by computing MuSH summary statistics, both intrapopulation (patterns
13 within a single MuSH) and interpopulation (comparisons between MuSHs). After validating with
144 data simulated under known histories, we use mushi to independently infer histories for each of the
us 26 populations (from 5 super-populations defined by continental ancestry) from the 1000 Genomes
us Project (1IKG) [27]. We demonstrate that mushi is a powerful tool for demographic inference that
17 has several advantages over existing demographic inference methods, then go on to describe the
s newly illuminated features of human mutation spectrum evolution.

149 We recover accurately timed demographic features that are robust to regularization parameter
10 choices, including the out-of-Africa event (OOA) and the more recent bottleneck in the ancestors
151 of modern Finns, and we find that effective population sizes converge ancestrally within each
152 super-population, despite being inferred independently. Decomposing human MuSH into principal
153 mutation signatures varying through time in each population, we find evidence of global divergence
154 in the mutation process impacting many mutation types, and recapitulate trees of population and
155 super-population relatedness. Finally, we revisit the timing of a previously reported ancient pulse
156 of elevated TCC—TTC mutation rate, active primarily in the ancestors of Europeans, and absent
157 in East Asians [17, [I8, 28]. We find that the extent of the pulse into the ancient past is exquisitely
158 sensitive to the choice of demographic history model, and that our best-fitting demographic model
150 yields a pulse timing that is significantly older than previously thought, seemingly arising before
160 the divergence time of East Asians and Europeans.

161 With mushi we can quickly reconstruct demographic history and MuSH without strong model
162 specification requirements. This adds a new approach to the toolbox for researchers interested only
163 in demographic inference. For researchers studying the mutation spectrum, accurate demographic
164 history is essential if time calibration of events in mutation history are sought. Thus we expect
165 that jointly modeling demography and mutation spectrum history will be an important tool for
166 studying complex histories of mutational processes in population genetics.
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v Model Summary

s Augmenting the SFS with nucleotide context information

160 The standard sample frequency spectrum (SFS) is a summary statistic of population variation that
170 counts variants partitioned by the number of sampled individuals who carry the derived allele.
171 Since rare variants tend to be younger than common variants, this summary preserves considerable
172 information about the distribution of allele age, which can reflect temporal variation in either the
173 mutation rate or the intensity of genetic drift. To disentangle these two causal factors, we leverage
174 the fact that genetic drift affects all mutations uniformly, whereas the mutation rate is more likely
175 to exhibit patterns of change that differ between genomic sequence contexts.

176 We could choose to partition mutations by any desired genomic characteristics, including their
177 presence in epigenetically modified functional genomic regions, but in this work we focus on clas-
178 sifying mutations by their derived allele and the ancestral k-mer nucleotide contexts in which
179 they occur, with k odd and the variant occupying the central position of the motif. There are
10 k= 2 x 3 x 4~ mutation types after collapsing by strand symmetry. For example, when k = 3
181 there are k = 96 triplet mutation types, of which TCC—TTC is one. For a sample of n genomes,
122 the standard SFS is an (n — 1)-dimensional vector of the number of variants present in exactly i
183 genomes, with ¢ ranging from 1 to n — 1. In contrast, the k-SFS is an (n — 1) x k-dimensional
184 matrix, where the (7, j)-th entry is the number of variants present in exactly 7 individuals that stem
15 from mutations of type j (from one particular k-mer to another).

186 Our goal is to jointly infer demographic history and MuSH by efficiently searching for histories
157 that optimize a composite likelihood of an observed k-SFS data matrix X. This requires computing
188 = = E[X], the expected k-SFS as a function of effective population size and context-dependent
180 mutation intensity over time. Our main theoretical result, Theorem [I| in the Methods, shows that
190 2 is a linear functional of the k-element mutation spectrum history p(t) given the haploid effective
1 population size history n(t) (where n(t) = 2N (t) for diploid populations): E = L(n)uT Figure (1}
192 sketches the generation of a sampled k-SFS matrix X in a toy setting of n = 4 sampled haplotypes,
193 3 mutation types, and a fixed genealogy. Figure [Ip clarifies the action of the linear operator £(n).

s Using regularization to select parsimonious population histories

15 Even ordinary demographic inference—the recovery of n(t) from SFS summary data—is complicated
106 by the fact that different population size histories can have identical expected sample frequency
107 spectra. This problem, known as non-identifiability, has been extensively explored in the literature
ws  [22] 23], 24], [25], [26], and it is generally solved by preferring population size histories that have fewer
190 changes and biologically unrealistic oscillations. Here, we use similar smoothing assumptions to
200 treat this non-identifiability, as well as a compositional constraint that we explain next.

201 A new yet tractable identifiability problem arises in the MuSH inference setting. The effective
202 population size n(t) and the mutation intensity p(t) are mutually non-identifiable for all ¢, meaning
203 that the expected SFS £ is invariant under a modification of 7(t) so long as a compensatory
200 modification is made in p(t). The non-identifiability of n and p can be understood intuitively by
205 example: an excess of variants of a given frequency can be explained by an historical population
206 boom, which lengthens coalescent lines in the boom time interval, but it may be explained equally
207 well by a period of increased mutation intensity with no demographic change.

208 While the overall mutation intensity is confounded with demography, the composition of the
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Figure 1: Mutation spectrum history and demography are encoded in the k-SF'S as joint
inverse problems. a. A schematic of a marked Poisson process with n = 4 sampled haplotypes is
conditioned on coalescent times ¢4, t3,t2. The mutation spectrum history p(t) = [p1(t) po(t) us(t)]7
shows just three mutation types (colors). Dots indicate mutation events placed by time ¢, genomic
position p, and coalescent line (which are depicted as extruded in the genomic coordinate axis,
grey sheets). The probability that a mutation of type i occurs in a differential time interval dt
and genomic interval dp on a given line is proportional to the instantaneous mutation intensity
wi(t). The crosses on the sampled haplotypes indicate segregating variants of each mutation type.
The sampled k-SFS data is shown as a stacked histogram (top right), and in matrix form (bottom
right). b. Unpacking the forward map from MuSH p(¢) and demography 7(t) to expected k-SFS E.
c. Schematic of the isometric log ratio transform for compositional data, which maps the simplex
(top) to a Euclidean space (bottom) in which optimization is more easily performed. d. Schematic
of regularization concepts for inferring 7(¢) and wp(t). Complex oscillations in time are penalized,
as is the number of independent mutation spectrum components, and ancestral convergence may
be encouraged.
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200 mutation spectrum—the relative mutation intensity of each mutation type—reveals itself in the
210 k-SFS. This can also be understood intuitively: an excess of variants of a given frequency in only
a1 a single mutation type (one column of the k-SFS) cannot be explained by an historical population
212 boom, because all mutation types are associated to the same demographic history. In this case,
213 we would infer a period of increased relative mutation intensity for this mutation type. Because
214 we cannot discern changes in total mutation rate, mushi assumes a constant total rate g, so that
215 time variation in the rate of drift is modeled only in 7(¢). Figure [l schematizes how we handle this
216 constraint using a transformation technique from the field of compositional data analysis. Details
217 are described in the Methods.

218 Even with this compositional constraint on the total mutation rate, many very different and er-
210 ratic population histories may be equally consistent with an empirical k-SFS. As mentioned before,
20 we overcome this by leveraging recently developed optimization methods to find smoothly regular-
21 ized demographies and MuSHs. We penalize the model for three different types of irregularity. One
22 penalty is familiar from the demographic inference literature: histories that feature rapid oscilla-
23 tions of the effective population size over time are disallowed in favor of similarly likely histories
24 with effective population sizes that change less rapidly and less often. The second penalty may be
225 more familiar to users of clustering methods such as STRUCTURE [29], where information criteria
26 are used to favor explanations of the data with as few independently varying ancestry profiles as
227 possible. Analogous to this, we favor models in which the mutation spectrum history matrix p(t)
28 has low rank, meaning that there exist relatively few mutational signatures that independently
29 vary in their intensity over time. The third regularization penalty is known as a classical ridge or
230 Tikhonov penalty, favoring solutions with small £5 norm, which speeds up convergence of the opti-
231 mization without significantly affecting the solution. Figure schematizes intuitions behind our
22 regularization approach, and detailed formulation of our optimization problems and regularization
233 strategies are in the Methods.

234 The intensity of all three regularizations can be tuned up or down by changing the values of
235 user-specified hyperparameters. As the strength of regularization is increased, the method returns
236 increasingly simple histories, but eventually this may result in a poor fit between the expected
237 k-SFS and the empirical k-SFS. Users should tune the regularization parameters to seek histories
238 that appear as simple as possible without over-smoothing, a process that is designed to be more
230 straightforward than the parametric model specification that is required by many methods that
20 infer demography from the SFS.

21 Quantifying goodness of fit to the data

22 The likelihood of an empirical SF'S given an expected SF'S is often measured using a Poisson random
23 field (PRF) approximation [30], which stipulates that, neglecting linkage, the observed number of
24 sites with frequency ¢ is Poisson-distributed around the expected number of sites of this frequency.
25 This PRF approximation is easily generalizable to k-SF'S data. Recall that X is the observed k-SFS
26 matrix, so the SFS is x = X1 (row sums over mutation types). In the Methods we show that the
27 generalized PRF likelihood factorizes as P(X | n,u) = P(x | n) P(X | x,7, ), with the first factor
28 given by a Poisson and the second by a multinomial likelihood. We also show that the SFS x is
29 a sufficient statistic for the demographic history n with respect to the k-SFS X. This means that
20 estimation of n can be done by fitting the total SFS, which maximizes the first factor. Then the
251 MuSH can be estimated by fitting the k-SFS, maximizing the second factor, conditioned on this 7
252 estimate.
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» Results

s+ Reconstructing simulated histories

25 We first investigated the ability of mushi to recover histories in simulations where known histories
26 are used to generate k-SFS data. Instead of simulating under the mushi forward model itself,
27 we used msprime [3I] to simulate a succint tree sequence describing the genealogy for 200 haplo-
28 types of human chromosome 1 across all loci. This is a more difficult test, as it introduces linkage
20 disequilibrium that violates our model assumptions. The results of this section can be repro-
260 duced with the supplementary notebook https://harrispopgen.github.io/mushi/notebooks/
21 |simulation.html.

262 We used the human chromosome 1 model implemented in the stdpopsim package [32], which
263 includes a realistic recombination map [33]. We used a difficult demography consisting of a series
264 of exponential crashes and expansions, variously referred to as the “sawtooth”, “oscillating”, or
265 “zigzag” history. This pathological history has been widely used to evaluate demographic inference
26 methods [34], 35 [36) 28], and is available in the stdpopsim package as the Zigzag 15814 model for
267 use with msprime. Our simulated tree sequence contained about 250 thousand marginal trees.

268 We defined a MuSH with 96 mutation types, two of which are dynamic: one undergoing a pulse,
269 and the other a monotonic increase. The total mutation rate varies due to these two components—
270 introducing another model misspecification, since inference assumes only compositional changes.
onn - We placed mutations on the simulated tree sequence according to the historical intensity function
a2 for each mutation type, and computed the k-SFS.

273 Figure 2| depicts inference results for this simulation scenario. We find that mushi accurately
a4 recovers the difficult sawtooth demography for most of its history, but begins to over-smooth by
a5 the time of the third population bottleneck because little information survives in the SFS from
a6 this time period. The MuSH is accurately reconstructed as well, with both the pulse and ramp
o7 signatures recovered, and the remaining 94 components flat. The timing of the features in the MuSH
a7s  also appears accurate, despite demographic misspecification that has the potential to distort the
279 diffusion timescale.

280 One noteworthy feature of our fit to the sawtooth demography is the increasing tendency of
281 mushi to smooth out older demographic oscillations without smoothing younger oscillations as
252 aggressively. In contrast to methods such as the pairwise sequential Markov coalescent (PSMC)
283 [37] that tend to infer large, runaway population sizes in the ancient past, mushi is designed such
28« that the inferred history flattens in the limit of the ancient past. The same constraint underlies
255 both PSMC’s ancient oscillations and our method’s ancient flattening: genomic data sampled from
286 modern individuals cannot contain information about history older than the time to most recent
257 common ancestor (TMRCA) of the sample, since mutations that occurred before then will be
288 fixed, rather than segregating, in the sample. For example, we expect that population bottlenecks
289 erase information about more ancient history, since they accelerate the fixation of variant sites
200 that predate the bottleneck. While this information loss intuition holds for very general coalescent
201 processes [38], the linearity in Theorem (1| enables us to make these statements precise for mutation
202 rate history via spectral analysis of the operator £(n). This is explored in detail for the case
203 of a simple bottleneck demography in Appendix and the results may be reproduced from the
204 supplementary notebook https://harrispopgen.github.io/mushi/notebooks/observability.
205 htmll
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Figure 2: Simulation study of mushi performance. The sawtooth demography (top right) and
a MuSH with 96 mutation types (bottom right, with two non-constant components in bold) were
used to simulate 3-SF'S data for n = 200 sampled haplotypes. The MuSH has a total mutation rate
of about pg = 83, generating about 8.3 million segregating variants. The top left panel shows the
SF'S, and the bottom left shows the k-SF'S as a composition among mutation types at each allele
frequency (the two components corresponding to the non-constant mutation rates are in bold).
Time was discretized with a logarithmic grid of 100 points.
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26 Reconstructing the histories of human populations

207 With encouraging results from simulation experiments, we next set out to infer the histories of
208 human populations from large publicly-available resequencing data. We computed a k-SFS for
200 each of the 26 human populations from 5 continental ancestries sequenced in the 1000 Genomes
s00  Project (1KG) [27]. Our bioinformatic pipeline for computing the k-SF'S for each 1KG population is
s detailed in the Methods, and a reusable implementation is provided in the mushi repository. Briefly,
32 we augment autosomal biallelic SNPs in variant call data by adding triplet mutation type (k = 3)
303 annotations, masking for strict callability and ancestral triplet context identifiability. Across 1KG
s+ populations the resulting number of segregating variants ranged from ~8 million (population CDX)
35 to ~16 million (population ACB). We also computed the genomic target sizes for each ancestral
s06 triplet context, resulting in a total ascertained genome size of ~2.0 Gb.

307 A few basic model parameters are defined as follows. We use a de novo mutation rate estimate
308 of g = 1.25 x 1078 per site per generation [39], which corresponds to ~25.4 mutations per ~2.0Gb
s00  masked haploid genome per generation. For time calibration, we assume a generation time of 29
sw years [40]. To discretize the time axis, we use a logarithmically-spaced grid of 200 points, with the
si most recent at 1 generation ago, and the oldest at 200 thousand generations (5.8 million years)
sz ago. Finally, we mask the last 10 entries in the SFS, which are more vulnerable to ancestral state
s13 mis-identification. Other details, including regularization parameter settings, are available in the
314 supplementary notebook https://harrispopgen.github.io/mushi/notebooks/1KG.html, which
s1i5s reproduces the results of this section.

sis  Human demographic history

si7 We used mushi to infer demographic history 7(t) independently for each 1KG population. Figure
sis shows results grouped by super-population: African (AFR), Admixed American (AMR), East
si9 Asian (EAS), European (EUR), and South Asian (SAS). Broadly, we recover many previously-
320 known features of human demographic history that are highly robust to regularization parameters,
21 genomic masks, and SFS frequency masking: a ~100 kya out-of-Africa bottleneck in non-Africans,
;2 a second contraction ~10 kya due to a founder event in Finland (FIN), and recent exponential
323 expansion of all populations. Histories ancestrally converge within each super-population, and
324 super-populations converge at the most ancient times.

325 Human mutation spectrum history

26 Each of our estimated demographic histories induces a mapping of population allele frequency onto
327 a distribution of allele ages. With these distributions encoded in our model, we next used mushi
38  to infer time-calibrated MuSHs for each population. First, to highlight the time calibration capa-
320 bilities of mushi, we focus on the specific triplet mutation type TCC—TTC, which was previously
30 reported to have undergone an ancient pulse of activity in the ancestors of Europeans, and is ab-
31 sent in East Asians [I7, I8, 28]. To produce sharp estimates of the timing of this TCC pulse, we
32 used regularization parameters that prefer histories with a minimum number of change points (see
333 Methods). Figure 4a shows our fit to this component of the k-SFS for each EUR population, and
3¢ Figure [db shows the corresponding estimated component of the MuSH.

335 With the consistent joint estimation performed by mushi, we find that the TCC pulse is much
336 older than previously reported, beginning ~80 kya. It is also possible to run mushi without es-
337 timating a new demographic history from the input data, but instead assuming a pre-specified
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Figure 3: Effective population size histories for 1000 Genomes Project populations. a.
The left column shows SFS data (open circles) for each population with separate panels for each
super-population, as well as fits based on the expected SFS from the estimated demography history
(points connected by dotted lines). The right column shows the corresponding demographic history
n(t) estimates. b. The same 7(t) estimates as in (b.) on common axes, to allow comparison of
super-populations.
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Figure 4: Timing of TCC—TTC pulse in Europeans. More accurate timing of a previously-
reported pulse in TCC—TTC mutation rate in the ancestors of Europeans is enabled by joint
inferencce of MuSH and demography. a. The relative composition of TCC—TTC variants in each
frequency class for each EUR population (computed with the centered log ratio transform, see
Methods), shows an excess at intermediate frequencies (open circles). The expectated values fit
using the inferred MuSH are shown as points connected by dotted lines. b. The corresponding
inferred TCC—TTC mutation intensity histories (in units of mutations per ascertained genome per
generation).

338 demography. When we use the Tennessen, et al. history [4I], which was assumed by Harris and
330  Pritchard [18] in their estimate of the timing of the TCC pulse, we recover a pulse beginning around
a0 15-20 kya, as previously estimated. We estimated a third set of European MuSHs conditioned on
sa1 - demographic histories that were inferred using the recently developed method Relate [28], which
sz utilized the same 1KG input data that we analyze here, but leveraged linkage information as well
a3 as allele frequencies to infer population size changes. Conditioning on the Relate demographies also
a4 yielded younger estimates of the TCC pulse timing, but both pre-specified demographies fit the SF'S
35 poorly, indicating that demographic misspecification has likely distorted mushi’s time calibration
s (see section “TCC—TTC pulse in Europeans” of the supplementary notebook linked above). It is
347 also likely that the mushi-inferred history fails to fit features of the data such as linkage disequilib-
as  rium patterns. If further advances in demographic inference manage to produce a history that fits
a0 both the SFS and orthogonal aspects of the data, this might necessitate further revisions to our
350 best estimates of MuSH time calibration.

351 After our focused study of the TCC pulse, we aimed to more broadly characterize how human
32 MuSH decomposes into principal mutation signatures varying through time in each population.
353 We ran mushi on all 1IKG populations using regularization parameters that favor smooth variation
34 over time, rather than constraining the number of change points (see Methods). This resulted
355 in an estimated MuSH for each population of the 26 populations in the 1KG data. Fits to the
36 k-SF'S and reconstructed MusHs are shown for each 1KG population in supplementary notebook
357 section “Mutation spectrum histories for all populations”. We then normalized each MuSH by
358 the genomic target size for each triplet mutation type, so that mutation rate is rendered site-wise,
39 and stacked the population-wise MusHs to form an order 3 tensor. As pictured in Figure [Bh, this
s0 tensor is a 3D numerical array with dimensions (num. populations) x (num. time points) x (num.
1 mutation types) = 26 x 200 x 96. When we slice the array along the time axis, we obtain a series
362 of matrices whose rows are the inferred mutation spectra of each 1KG population at a past time
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363 t. The numerical value of an entry in the tensor indicates the mutation rate (in units of mutations
34 per site per generation) in a given population, at a given time, and for a given mutation type.

365 We used non-negative canonical polyadic tensor factorization (NNCP, reviewed by Kolda and
36 Bader [42]) to extract factors in the population, time, and mutation type domains. This is analogous
7 to extracting mutational signatures that form a low rank vocabulary for explaining the mutation
ss  spectrum variation between tumor mutational profiles. NNCP generalizes non-negative matrix
30 factorization to tensors of arbitrary order. The addition of the time dimension means that each
70 mutational signature is associated with a dosage that can jointly increase or decrease over the
sn histories of all populations.

372 Briefly, we hypothesize that the MuSH tensor can be approximated by a sum of a few rank-1
s13 tensors (Figure pp). This is tantamount to assuming that most evolving mutational processes are
ana  shared across multiple populations, possibly with different relative intensities over time. We find
375 that a tensor of rank 8, which describes a set of 8 mutational processes, can accurately represent
sre  the 1IKG MuSH tensor (Figure [5p). This NNCP decomposition results in 26 x 8, 200 x 8, and 96 x 8
s factor matrices for population, time, and mutation type, respectively. Figure [fc—e projects each set
ss of factors from 8 dimensions to 2 principal components for visualization. The population factors
sro (Figure ) clearly cluster by super-population. The time factors (Figure ) trace out a continuous
30 trajectory in factor space for the set of all populations, which is expected since regularization in
ss1. mushi imposed smoothness in the time domain. The mutation type factors (Figure [5g) show a
322 number of mutation types with distinct outlier behavior, including TCC—TTC, as expected.

383 We next recast the MuSH for each population in terms of the 8 mutation signatures that
s34 comprise the tensor factors, capturing covariation among the set of 96 triplet mutation types with
35 the smaller set of signatures. This allows us to characterize and biologically interpret the time
36 dynamics of each mutation signature in each population. Figure[6p shows the 8 mutation signatures
7 as loadings in each triplet mutation type. Figure [(b shows how each of these 8 signatures varies
38 through time in each 1KG population (computed by projecting 96-dimensional spectra to the 8
380 mutational signatures in each population at each time). Signature 3 fits the profile of the TCC
s0 pulse that affects Europeans, South Asians, and European-admixed Amerindians, containing all
301 previously reported minor components of the pulse such as ACC—ATC and CCC—CTC. Signatures
s2 1 and 5, which are consistent with deamination of CpG sites, are consistently enriched in rare
53 (young) variants across populations, which is likely due to a combination of purifying selection and
s biased gene conversion. Biased gene conversion disfavors the increase in frequency of C/G—A/T
35 mutations (also called strong-to-weak mutations), and many CpG sites are conserved due to their
a6 role in the regulating chromatin accessibility as well as gene expression. Signatures 2 and 6 are
so7  enriched for common (old) variants, and have high loadings of A—G, which is consistent with the
308 action of biased gene conversion to select for the retention of weak-to-strong mutations.

309 Although the time profiles of these 8 signatures appear to be modulated by biased gene con-
200 version, they also vary between populations at recent times and cannot be explained by a selective
a1 force acting uniformly on all non-GC-conservative mutations. Signature 8 fits the profile of a sig-
w2 nature reported to be enriched specifically in the Japanese population [18]; though this signature
203 may stem from a subtle cell line artifact affecting the Japanese Hap Map samples [43], it is still
a4 a feature of the 1KG data that is expected to fit the profile of a population-specific mutational
405 signature. Signature 4, which is dominated by C—T transitions, is enriched in Europeans and
206 South Asians relative to FEast Asians and Africans, charting the time course of a trend that was
a7 previously reported in empirical heat map data [I§]. Another reported trend is the existence of
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Figure 5: Decomposition of mutation spectrum histories for 1000 Genomes Project

populations into nonnegative factors. a. Schematic of tensor decomposition, showing the
MuSH for all populations stacked into a 3rd dimension, and approximated as the sum of tensors of
rank 1. The set of rank 1 tensors in this sum are composed (via an outer product) of factors for
populations, times, and mutation signatures, which are amenable to biological interpretation. b.
Tensor reconstruction error over a range of ranks for NNCP decomposition, indicating rank 8 as a
good approximation. c. 8-dimensional population factors projected to first 2 principal components.
d. 8-dimensional time factors projected to first 2 principal components. e. 8-dimensional mutation
signature factors projected to first 2 principal components. Overall, variation in the rates of select
transitions account for most of the mutation spectrum variation between populations.
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Figure 6: Dynamics of mutation signatures in the history of 1000 Genomes Project
populations. a. Triplet mutation signatures, shown as loading into triplet mutation types for
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axis ranges to indicate relative scale, and the remaining columns show the same histories for each
super-population, with ranges for each signature.
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Figure 7: Global divergence in the mutation signature history of 1000 Genomes Project
populations. a. UMAP embedding of mutation signature histories was initialized using the first
two PCs of the time-domain factors, and then performed with default parameters. b. Equivalent
embedding with time coordinate added as a 3rd dimension.

differences between populations in the rates of CA*—CG* mutations which can be explained by
differences between populations in the recent dosages of signatures 7 and 8.

Finally, we used uniform manifold approximation and projection (UMAP) [44] to compute a 2D
embedding of mutation signature histories (after initially decomposing the MuSHs into 8 mutation
signatures as described) of each 1KG population at each time point. Figure shows this embedding
with all times in the same axes. Despite performing independent inferences for each population’s
MuSH, we see recapitulation of trees of population and super-population ancestry. Figure [7p shows
the same embedding with the time coordinate resolved as a 3rd dimension.

Discussion

It is becoming increasingly clear that mutation spectrum variation is a common feature of large
genomic datasets, having been discovered and formally reported in population sequencing panels
from humans, great apes, and mice [I8] 45| 46]. Initial reports on the existence of such variation
were mostly qualitative in nature, focused on enumerating which populations exhibit robust vari-
ation along this newly characterized dimension and putting bounds on the possible contributions
of bioinformatic error. Here, we have introduced a novel quantitative framework for characterizing
mutation spectrum evolution within populations, which utilizes variation of all ages from unphased
whole genome data to resolve a time-varying portrait of germline mutagenesis. Our method mushi
can decompose context-augmented sample frequency spectra into time-varying mutational signa-
tures, regardless of whether those signatures are sparse and obvious like the European TCC pulse or
represent more subtle concerted perturbations of mutation rates in many sequence contexts. Pre-
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428 vious estimates of the timescale of mutation spectrum change were restricted to sparse signatures
229 that are more obvious but less ubiquitous than diffuse signatures appear to be [18, 2§].

430 Not all of the temporal structure unveiled by mushi can be interpreted as time variation in
41 the germline mutational processes. Some time variation in signature dosage is consistent with
42 the action of biased gene conversion, and there is no automated mechanism to flag signatures
33 that have suspicious hallmarks of cell line artifacts [43]. The strengths of mushi are to automate
434 the visualization of deviations from mutation spectrum uniformity and quickly localize them to
435 particular populations, frequency ranges, and time periods, enabling straightforward scrutiny and
436 the design of downstream investigations of their validity and ontogeny.

437 Although mushi’s most novel feature is the ability to infer mutation spectrum variation over
43 time, it includes a demographic inference subroutine with several advantages over existing de-
439 mographic inference methods. Ours is only the second method to infer population size changes
mo non-parametrically from SFS data [47], and its state-of-the-art regularization methods yield pop-
as1  ulation size histories with some more desirable properties than other methods for non-parametric
a2 effective population size history inference. With mushi, adaptation to temporally localized smooth-
w3 ness levels is much better than with smoothing splines [48]. Histories inferred by mushi stabilize
44 to a constant size in the limit of the ancient past rather than exhibiting runaway behavior due to
45 overfitting, and the use of sample allele frequencies rather than phased whole genomes should make
46 the method broadly useful to researchers working on non-model organisms, which are still beyond
447 the scope of many state-of-the-art methods that require long sequence scaffolds and phased data.
4s  The software is also very fast, returning results in seconds on a modest computer, and is designed
49 to be easily used by biologists familiar with scripting in Python.

450 The mushi model calibrates the times at which mutational signatures wax and wane using a
451 demographic model inferred from the same input allele frequency data from which the signatures
42 themselves are extracted. However, it can also calibrate its timescale using a user-specified demo-
453 graphic history, which reveals that the timing of transient events like the TCC pulse in Europe are
44 exquisitely sensitive to underlying assumptions about effective population size. When we input de-
455 mographic histories previously inferred from other datasets, we conclude that the TCC pulse began
a6 15,000 to 30,000 years ago, comfortably later than Europeans’ divergence from East Asians, which
457 were not affected by the TCC pulse. However, inferred demographic histories are notoriously poor
458 at predicting the distributions of genomic summary statistics other than the ones that were used to
a0 fit the models [49], and these external demographic history estimates yield poor fits to the 1IKG SFS
460 data. When we use mushi to estimate population histories that do fit the 1KG sample frequency
461 spectra well, we estimated a surprisingly old start time to the TCC pulse, around 80 kya, which
w62 is older than any estimates of European/East Asian divergence times. This might invoke ancient
463 population structure to explain the allele frequency distribution of excess TCC—TTC mutations
a4 in Europe. For example, the pulse may have initially been active in a basal European popula-
465 tion that diverged from East Asians earlier than other populations that contributed to modern
466 Furopean ancestry. This puzzle points to the need for future work modeling mutation spectrum
47 evolution jointly with more complex demographic history involving substructure and migration
s between populations. It also points to the tantalizing possibility that the distribution of muta-
460 tional signatures could provide extra information about hard-to-resolve substructure and gene flow
470 between populations that no longer exist in “pure” form today.

a7 Although powerful new methods for inferring ancestral recombination graphs (ARGs) ultimately
472 have the potential to estimate more accurate demographic histories than can be accomplished by
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473 fitting more compressed SF'S data, these methods are still in a relatively early stage of development.
a2 In the method Relate [28], mutation rate history is approximately inferred from an ARG using
475 independent marginal estimates for each epoch in a piecewise-constant history. This avoids joint
476 inference over all epochs—which can also be formulated as a linear inverse problem—by ignoring
477 mutation rate variation within branches. Although this lowers computational complexity, it comes
473 at the cost of estimator bias that is not well characterized.

479 Our results underscore the importance of using more compressed summary statistics to validate
a0 inference results. In theory, an ARG contains perfect information about the SFS as well as addi-
41 tional information about linkage, meaning that demographic history inferred from an ARG should
42 be consistent with the SFS. The differences between our SFS-inferred histories and Relate-inferred
453 histories have significant implications with regards to the joint distribution of allele age and allele
asa  frequency. This could affect claims about the timing of gene flow and selection in addition to the
485 claims about the timing of the TCC pulse that we focus on in this paper. Until the field of demo-
a6 graphic inference achieves its holy grail of inferring histories that are compatible with all features
4s7  of modern datasets, it will be important for researchers to practice inferring histories from different
s data summaries including classical, compressed statistics like the SFS in order to understand the
480 sensitivity of various biological and historical claims to methodological eccentricities.
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s Vet hO dS

6 'The expected SFS is a linear transform of the mutation intensity history

57 We work in the setting of Kingman’s coalescent [50} 51,52, 53], with all the usual niceties: neutrality,
ess infinite sites, linkage equilibrium, and panmixia [54, 55]. In Appendix [A| we retrace the derivation
eso by Griffiths and Tavaré [56] of the frequency distribution of a derived allele conditioned on the
60 demographic history, while generalizing to a time inhomogeneous mutation process. We make use
ss1 of the results of Polanski et al. [57, [58] to facilitate computation. We use the time discretization of
sz Rosen et al. [26], and adopt their notation. Detailed proofs can be found in the Appendix.

663 With n denoting the number of sampled haplotypes, denote the expected SFS column vector
o0 € =1[&1 ... §no1]T, where & is the expected number of variants segregating in i out of n haplotypes.
s Let n(t) denote the haploid effective population size history, with time measured retrospectively
s from the present in Wright-Fisher generations. Note that n(t) = 2N(t) for diploid populations.
67 Let pu(t) denote the mutation intensity history, in units of mutations per ascertained genome per
e6s generation, understood to apply uniformly across individuals in the population at any given time.
660 Under these model assumptions, we obtain the following theorem, whose detailed proof can be

7o found in Appendix

Theorem 1. Fiz the number of sampled haplotypes n. Then, for all bounded functions n: R>o —
Rso and p : R>g — R, the expected SFS is & = L(n)u, where L(n) is a finite-rank bounded
linear operator parameterized by n that maps mutation intensity histories p to (n — 1)-dimensional
SFES vectors €. Viewed as a nonlinear operator on n, L£(n) is also bounded. In particular, L(n)u =
Cd(n, ), where C is an (n — 1) x (n — 1) constant matriz with elements that can be computed
recursively, and d(n, u) is an (n — 1)-vector with elements

dj(n,,u,)E/oooeXp [—@ /Ot n(?g)}u(t)dt, forji=1,...m—1, (1)

o1 which is linear in p and nonlinear in 1.

s2  Recursions for computing C can be procedurally generated using Zeilberger’s algorithm [59], which
13 we detail in Appendix [A.2]).

In order to partition the expected SFS & by k-mer mutation type, we promote the (n — 1)-
element expected SFS vector & to the (n — 1) X k expected k-SFS matrix 2 (not to be confused
with the simultaneous multiple merger coalescent of Schweinsberg [60, B8] or the “SFS manifold”
of Rosen et al. [26]). Similarly, the mutation intensity history function p(t) is promoted to the
k-element mutation spectrum history p(t), a column vector with each element giving the mutation
intensity history function for one mutation type. Then Theorem [I| generalizes to

E=Lnp' (2)
674 As in Theorem [I} the time coordinate is integrated over by the action of the operator L.
675 We use the notation X to denote a sampled k-SF'S matrix, i.e. the (n—1) X x matrix containing

76 the sample counts for each mutation type. By construction, 2 = E[X].

s7  Compositional modeling leads to identifiable mutation spectrum histories

As mentioned in the summary methods, the effective population size 7(t) and the mutation intensity
u(t) are non-identifiable for all ¢, meaning that the expected SFS £ is invariant under a modification
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of 1 so long as a compensatory modification is made in u. We now demonstrate this formally by
introducing a change of variables that measures time in expected number of coalescent events since
the present, i.e. the diffusion timescale [22, 26]. Let R,(t) = fg At and substitute 7 = R,(¢) in

to give ) | @y
s = [ |- (3)r] atmacriar “

where (1) = n(R™!(7)) and fi(1) = p(R~1(7)). In this timescale, we see n and u appear as a
product on the right of . This means we cannot jointly infer  and pu, since only their product
influences the data. This non-identifiability is similarly manifest by a change of variables to measure
time in expected number of mutations.

Because we cannot discern changes in total mutation rate, we assume a constant total rate pg,
so that time variation in the rate of drift is modeled only in n(t). A MuSH with x mutation types
can then be written as p(t) = pov(t), where v(t) € S* for all ¢, and S" = {x e R : Y20, x; = 1}
denotes the standard simplex. We call the relative mutation spectrum history v(t) a composition,
and employ techniques from compositional data analysis [62] [63].

To avoid difficulties arising from optimizing directly over the simplex, we represent compositions
using Aitchison geometry [62]. Briefly, analogs of vector-vector addition, scalar-vector multiplica-
tion, and an inner product are defined for compositions, and the simplex is closed under these
operations. It is then possible to construct an orthonormal basis in the simplex 1, ..., %¥x_1 using
the Gram-Schmidt orthogonalization. We first introduce the centered log ratio transform of some
x € §%, defined as

clr(x) = |log %, ...,log %] ! , (4)

where 7 = ([[\, wi)l/ * denotes the geometric mean. The inverse transform clr™! is the softmax
function.

The isometric log ratio transform and its inverse allow us to transform back and forth between
the simplex and a Euclidean space in which we will cast our optimization problem. The transform
ilr : 8 — R*~! and its inverse are defined as

ilr(x) = ¥lelr(x), xeS” (5)
i~ (y) = ™ (Py)), y eR! (6)
where W = [¢p1 ... ¥,_1] is the K X (k — 1) matrix of basis vectors. To build intuition about this

transformation, which is an isometric isomorphism, we highlight the following behaviors: First, the
center of the simplex maps to the origin in the Euclidean space. Second, approaching a corner
of the simplex, i.e. with a component of the composition vanishing, corresponds to diverging to
infinity in some direction the Euclidean space. Finally, a ball in the Euclidean space maps to a
convex region in the simplex that is more distorted the further the ball is from the origin. These
intuitions are illustrated in Figure [Tk.

We use the convention that the clr and ilr act row-wise on matrices. Finally, we introduce the
ilr-transformed MuSH: z(t) = ilr(p(t)) and write as

E = poL(n) i~ ()T (7)

Again, the time coordinate is integrated over by the action of the linear operator. Although the
forward model is non-linear in z(t), it is convex given the convexity of the softmax function that
appears in ilr ().
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s0o Formulating and solving the inverse problem for population history given ge-
700 nomic variation data

700 The inverse problem is ill-posed in general, meaning many very different and erratic histories
702 can be equally consistent with the data [64]. We deal with this problem using regularization,
703 seeking solutions that are constrained in their complexity without sacrificing data fit. We leverage
704 recently-developed optimization algorithms to find regularized demographies and MuSHs.

705 Time discretization

For numerical implementation, we need finite-dimensional representations of 7(¢) and z(t). We use
piecewise constant functions of time on m segments [to,t1), [t1,t2), .., [tm—1,tm) Where the grid
0=ty <t1 < - <tm1 <ty =00 is common to n(t) and z(t). We take the boundaries of the
segments as fixed parameters and, in practice, use a logarithmically-spaced dense grid of hundreds
of segments to approximate infinite-dimensional histories. Let the m-vector y = [y1,...,ym]T
denote the population size 7(t) during each segment, and define the m x (k — 1) matrix Z as the
constant ilr-transformed MuSH z(¢) during each segment. In Appendix we show that equation
discretizes to the following matrix equation

E = uoL(y) i (Z), (8)

706 where the (n—1) xm matrix L(y) is fixed given a fixed demographic history y. The transformation
707 ih"_l(Z) is applied to each time point, i.e. row of Z, independently.

78 Regularization

700 We implement three different regularization criteria: smoothness of the solutions y and Z (hypoth-
710 esizing that the time variation of n(t) and z(¢) is not excessively erratic), limited complexity of the
71 matrix Z (hypothesizing that the number of independently evolving mutational signatures is much
712 less than the number x of distinct mutation types), and improved numerical conditioning of the
713 problem. These goals are in some cases overlapping, but we add a regularization term for each one.
714 Before computing the penalties on the demography y, we apply a log transform, because variation
715 over orders of magnitude is expected from population crashes and exponential expansions. This
716 also has the benefit of enforcing non-negative solutions. We now explain the regularizations in
77 detail.

718 Our first regularization encourages smoothness in the time domain, as well as a limited number
70 of change points, preferring to fuse consecutive segments of the history to the same value. This can
720 be achieved by penalizing ¢1 or ¢5 norms of the time derivatives of log 7(t) and z(¢). In the discrete
1 setting, the derivative operator can be approximated by a matrix A of first differences. This leads
72 to the smoothing penalties |Alogy||) and ||AZ[[?. The penalty with p = 1 constrains the total
723 number of time points at which a change in the function occurs and is referred to as a fused LASSO
724 or total variation (TV) penalty [65] [66] [67]. Using p = 2 is called a spline penalty, as it enforces
725 1st-order smoothness analogous to differentiability [68]. Many demographic inference methods fit
726 models composed of a small number of constant or exponential epochs that are motivated by prior
727 knowledge about population histories. Although our histories are represented on a dense time grid,
78 our regularization fuses neighboring time points to discover longer epochs of constant or smoothly
729 varying behavior, while remaining flexible to capture more complicated behavior if the data justify
730 it.
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731 Second, because specific mutation processes may affect multiple mutation types, it is reasonable
732 to assume that a small number of latent processes drive the majority of the variation across mutation
733 types. We thus hypothesize that Z can be approximated by a low-rank matrix and propose two
73¢ regularizations to enforce this. Let o be the vector of singular values of Z — Z,¢f, where Z,o¢ is a
735 reference, or baseline, MuSH taken to be the MLE constant solution by default. We use the nuclear
736 norm ||Z — Zet||« = ||o||1 as a soft rank penalty, as it is the convex envelope of the rank function
737 [69]. The soft rank penalty constrains the number of non-zero singular values, while also shrinking
738 them toward zero. As an alternative to the soft rank penalty we also implement a hard rank
739 penalty, which directly penalizes rank(Z — Z,ef) = ||o||o, equal to the number of nonzero singular
720 values. The hard rank penalty results in a singular value thresholding step without shrinkage in
741 the resulting algorithm, and it is not convex. Either of these rank regularizations assure that Z is a
72 low-rank perturbation of the constant solution Z,.s. Although the MuSH represents the history of
743 each of kK mutation types, this attempts to explain them using a smaller set of mutation signatures.
744 Finally, we include classical /5 (also called ridge or Tikhonov) penalties on both logy and Z. A
75 small amount of this kind of regularization speeds up convergence without significantly influencing
76 the solution. For the ridge penalty on the demography y, we use a generalized Tikhonov term
7 ||logy — log yrefﬂ% that allows the option of shrinking toward a reference demography y,.s. Here
s I is a positive definite weight matrix which can be used to vary the strength of shrinkage across
79 the time domain, and the notation Hx||% = x'I'x denotes the weighted norm squared. Note that
750 the smoothing spline penalty is also of this form, but with the indefinite matrix A. By default we
751 use the MLE constant history for yi.f, and I' = I (the identity matrix) to speed the convergence
752 of the y problem. Similarly, the ridge penalty on the MuSH is a generalized Tikhonov term for
73 each mutation type |Z — Zyef|/p, where the notation || X||% = Tr(XTT'X) denotes the square of
754 the weighted Frobenius norm. Although we model each population independently from the others,
755 the generalized Tikhonov penalty can also be used to fuse the histories of populations that are
756 known to share ancestry. For inferring 1IKG demographies, we first performed inference for the
757 YRI population using the default constant y..f and I' = I. For the other populations, we use the
s YRI history for yer, and a diagonal I';; = —1[—; log(1 — Fy(t;)), where Fy is the CDF of the
750 TMCRA of the focal population using a constant demography estimate. This applies essentially
70 1o shrinkage for most of the history, but ramps up shrinkage toward YRI at times pre-dating the
1 focal population’s TMRCA.

762 Likelihood factorization: The SFS is a sufficient statistic for the demographic history
763 with respect to the k-SFS

The PRF neglects linkage disequilibrium to model the probability of the SFS x given the expected
SFS £ as independent Poisson random variables for each sample frequency

—& ¢ Ti
P(x | ¢) = HmeZ—He S (9)

;!
=1 ¢

764 We similarly model the k-SFS as generated by independent mutational targets for each mutation
765 type.

6 Proposition 1. The standard PRF indexed on sample frequencies generalizes to be indexed on the
767 2D gmd of sample frequency and mutation type, and factorizes as P(X | B) = P(x | §) P(X | x, H),
768 with Z; j = “” . Here, P(x | €) is the Poisson distribution (9), and P(X | x, &) is multinomial.
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Proof. We have that

n—1 k n—1 k e—ELJEx@j
PX|E) = H HP(XZJ | :m) = H X =
i=1 j=1 =1 jo1 i.j
n—1 K —_ X
. 1 <: ) i
. & ¢ 2¥)
= e 6
21;[1 ‘ JI;II Xigh \ &
n—1 K 1 - Xi,j
- TI PG| &) o (%)
ll i | Si i 1J£)QJ! §z
n—1 = =
=il =
— TPl &) P((Xix, Xis] | i, [ W D
i=1 52 gz
—P(x | €) P(X | x,5). (10)

In the last two lines we’ve recognized the multinomially distributed mutation type partitioning of
counts in each sample frequency i, with the rows of é” defining a multinomial parameter vector
for each sample frequency i. The factorization of independent Poissons into an aggregate Poisson
and a multinomial is a well-known result often called “Poissonization” [70]. O

Next we restore the n and p dependence of € and E (with fixed total mutation rate ) so ((10)
gives the factorization in the main text

PX |, ) =P(x [ n) P(X | x,n, ). (11)

Lemma 1. If the total mutation rate is a constant pu(t) = po € Rso, then the SES x is a sufficient
statistic for n with respect to the k-SFS X.

Lemma [I] is proved via a Poisson thinning argument in Appendix The result is intuitively
obvious because information about historical coalescence rates recorded in the SF'S does not change
if we further specify how mutation counts are partitioned into different mutation types; this only
adds information about relative mutation rates for alleles with a given age distribution. Although
n appears in the second factor of , this only serves to map the MuSH rendered on the natural
diffusion timescale fi(7) to time measured in Wright-Fisher generations. Because this map is
one-to-one, there is no statistical information about 7 in X not already present in x. That is,
P(X | x,n, 1) = P(X | %, j1).

This sufficiency is important from an inference perspective, because it means we can sequentially
infer demography from the SFS, then infer the MuSH from the k-SFS with the demography fixed
from the previous step. Sufficiency implies that the negative log-likelihood factors into the sum of
two losses. We thus formulate two sequential optimization problems using negative log-likelihoods
from the factors as loss functions for assessing data fit. Recall that y and Z are the discrete
forms of n and u, respectively, E is given by equation , and £ is given by the row sums of 2 and
thus independent of Z. Neglecting constant terms, the two loss functions are

n—1 n—1 kK
loss; (logy) = Z(ﬁZ —x;logg&) and lossy(Z;y) = — Z ZXZ-]- log =;;. (12)
i=1 i=1 j=1

As with regularization, we parameterize in terms of logy.
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Optimization problems for mushi

We infer demography and MuSH by minimizing cost functions that combine the loss functions
above, which measure error in fitting the data, with regularization. This may be considered a
penalized likelihood method and, from a Bayesian perspective, may be interpreted as introducing
a prior distribution over histories. Inference of logy and Z is performed sequentially. We first
initialize logy = yiet using the elementary formula for the MLE constant demography

S
2o Hp—1
where S = Z?:_ll x; is the number of segregating sites, and H,_; denotes the n-th harmonic
number. We then minimize

Olridge
2

(0%)
fi(logy) =lossi(logy) + a1 [[Alogyl, + > |Alogy|s + logy — log ¥ret || (13)

over logy € R™ to obtain the demographic history. Here, the a terms are hyperparameters which
we soon describe in more detail.

Having fixed y from the previous step, we next infer Z. We initialize Z = Zo to the MLE
constant MuSH: mutation type j has the constant rate ,uo%, where S; = Z?_ll X ; is the number

of segregating sites in mutation type j. Using the default soft rank penalty, we then minimize

6 ridge
2

1o(2) = 0352 (Z:y) + B1 | AZ], + 2 |AZIE + Brankl Z ~ Zuell + 725 7 -z (14)
over Z € R™*(5=1) 0 obtain the ilr-transformed MuSH. Using the hard rank penalty instead of the
default soft rank penalty, we would replace the nuclear norm || - ||« with the rank function rank(-).
In equations and , the a and 8 hyperparameters control the strength of the penalties on
y and Z respectively.

We now briefly cover the methods used for optimization. The cost function is nonconvex
due to the nonlinear dependence of £ on y, while the cost function is convex (although using the
hard rank penalty renders it nonconvex). The TV penalties on both and are nonsmooth,
as is the soft rank penalty on (14)). If the hard rank penalty is used instead of the soft rank
penalty, is also nonconvex. Although we cannot guarantee convergence to the global minimum
for the demographic history (y) problem, we have found that proximal gradient methods rapidly
converge to good solutions. Briefly, in proximal methods the cost is split into differentiable and
non-differentiable parts, gradient descent steps are taken using the smooth part of the cost, then the
prozimal operator (or prox) of the non-differentiable piece is applied. The prox projects to a nearby
point which ensures that the nonsmooth part of the cost is small and is easily computed for the
TV and hard or soft rank penalties. For the y problem, we use the Nesterov accelerated proximal
gradient method with adaptive line search [71}[72} [73],[74]. For the MuSH (Z) problem, we use a three
operator splitting method to deal with the two nonsmooth terms [75]. Our optimization algorithms
are implemented very generally as a submodule in the mushi package: https://harrispopgen.
github.io/mushi/stubs/mushi.optimization.html. For development purposes, we used similar
simulations to those in the main text, but using the mushi forward model instead of msprime (where
the PRF likelihood is exact) (see https://harrispopgen.github.io/mushi/developer.html).

Hyperparameter tuning

Although mushi does not require a parametric model to be specified, it requires the user to tune
a few key regularization parameters to target reasonable solutions. This tuning was performed by
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s1i1 hand as we now describe. Rather than treat the ridge penalties as adjustable parameters, we fix
sz them by default to ayigge = Bridge = 10~*. This leaves the two smoothing parameters «; and as for
s13  demographic inference. Setting both very small gives erratic, unregularized solutions. Increasing
s« «p limits the number of change points, and can be set to produce solutions that are consistent with
815 known features of human demographic history. Subsequently increasing ao smooths these change
s16 points to produce for example phases of exponential-like growth, but over-smoothing is indicated
sz when the fit to the SFS becomes poor.

818 We take a similar approach for the MuSH inference step. The three parameters in that case are
s1o  the smoothing parameters §; and P2 and the complexity parameter Br.nc. We set 81 and [ such
s20 that most mutation types are nearly flat or smoothly and monotonically varying, while allowing
21 minimal oscillations in mutation types that appear pulse-like in their frequency spectrum (e.g. the
g2 TCC—TTC pulse). Again, over-smoothing is indicated by poor fit to the k-SFS. We set SBrank to
s23  target a specific rank (number of latent histories), generally between 3 and 6. If . is too large,
824 the rank will be too small to fit all components of the k-SF'S well. By default we prefer the soft rank
825 penalty for its convexity, but can choose the hard rank penalty if the former results in undesirable
826 shrinkage.

2 Software implementation methods

222 'The open-source mushi Python package

g0 The mushi software is available as a Python 3 package at https://harrispopgen.github.io/
s30 mushi| with extensive documentation. We use the JAX package [70] for automatic differentiation
a1 and just-in-time compilation of our optimization methods, and the ProxTV package [77] for fast
82 computation of total variation proximal operators. We modified the compositional data analysis
s33 module in the scikit-bio package http://scikit-bio.org to allow JAX compatibility. Using
8¢ default parameters, inferring the demography and MuSH for a population of hundreds of individuals
835 takes a few seconds on a laptop with a modest hardware configuration.

s3s  Reproducible analysis notebooks

ss7  All of the analysis and figures for this paper can be reproduced using Jupyter [78] notebooks avail-
s3s able at https://harrispopgen.github.io/mushi. We used msprime [31] and stdpopsim [32] for
s39 simulations, TensorLy [79] for NNCP tensor decomposition, umap-learn [44] for UMAP embed-
a0 ding, and several other standard Python packages. We used the Mathematica package fastZeil
sa1  [81] to procedurally generate recursion formulas for the combinatorial matrix C in Theorem 1| (see

sz Appendix [A.2)).

23 Bioinformatic pipeline for 1000 Genomes Project data

sas - We wrote our pipeline for generating a k-SFS for each 1KG population using SCons (https://

a5 scons.org), BCFtools (http://samtools.github.io/bcftools), and mutyper (https://github.

sa6 com/harrispopgen/mutyper). It is available at https://github.com/harrispopgen/mushi/1KG.

sa7  Pre-computed k-SF'S data for all 1KG populations is available at https://github. com/harrispopgen/
ss mushi/tree/master/example_datal
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849 1KG variant call data were accessed in BCF format at ftp://ftp.1000genomes.ebi.ac.uk/

ss0 voll/ftp/release/20130502/supporting/bef_files/, with sample manifest available at ftp://

gs1 ftp.1000genomes.ebi.ac.uk/voll/ftp/release/20130502/integrated_call_samples_v3.20130502.
ss2 ALL.panel. Ancestral state estimates were accessed at ftp://ftp.1000genomes.ebi.ac.uk/

es3 voll/ftp/phasel/analysis_results/supporting/ancestral_alignments/human_ancestor_GRCh37_
ss¢ €59, and the strict callability mask was accessed at ftp://ftp.1000genomes.ebi.ac.uk/voll/

g5 ftp/release/20130502/supporting/accessible_genome_masks/20140520.strict_mask.autosomes.
gs6  bed.
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2 A Appendix

s A.1 Proof of Theorem the expected SFS given demographic and mutation
925 intensity histories

o6 Suppose n haplotypes are sampled in the present, and let random vector T = [T, ..., T,]|T denote
927 the coalescent times measured retrospectively from the present, i.e. T, is the most recent coalescent
o8 time, and 75 is the TMRCA of the sample.

929 As in Section 3 of Griffiths and Tavaré [56], we consider a marked Poisson process in which
30 every mutation is assigned a random label drawn iid from the uniform distribution on (0,1). This is
031 tantamount to the infinite sites assumption, with the unit interval representing the genome, and the
922 random variate labels representing mutant sites. Further suppose that mutation intensity at time
o33t (measured retrospectively from the present in units of Wright-Fisher generations) is a function of
o34 time 0 < pu(t) < oo (measured in mutations per genome per generation) applying equally to all lines
035 in the coalescent tree. A given line in the coalescent tree then acquires mutations on a genomic
a6 subinterval (p,p+ dp) C (0,1) at rate p(t)dp.

Let Egpp denote the event that a mutation present in b € {1,2,...,n — 1} haplotypes in the
sample occurred within a given genomic interval (p, p+dp). Given the uniform labeling assumption,
the probability of this event is independent of p, but the following argument can be generalized to
allow the labelling distribution to be nonuniform over the unit interval without changing the result.
Let Ij denote the kth intercoalescent time interval, ie. I, = (0,7},), In—1 = (T, Th-1),..., 1o =
(T3,T3). Let Egpp 1 denote the event that the mutation £y occurred during interval Ij,. For small
dp and finite pu(t) we have

P(Eapp | T) = ZIP(Sdp,b,k | T)
k=2

— - 2
= kzﬂpn,k(b) <k dp /telk pu(t)dt + O ((dp) )) :

where

iy
Pop(b) = =5 (15)
(:"1)
is the probability that a mutant that arose when there were k ancestral lines of n sampled haplotypes
will be present in b of them (see [56], eqn. 1.9). The quantity in parentheses is the probability that a
mutation arose during the kth intercoalescent interval in a genomic interval of size dp. Marginalizing

T gives

IP(gdp,b) = dpz kpn,k‘(b)lET |:/t€I M(t)dt:| +0 ((dp)2> :

k=2

For small dp, each genomic interval (p,p + dp) contains zero or one mutations. Therefore, taking
the limit dp — 0 and integrating over the genome, the expected number of mutations subtending
b haplotypes (i.e. the bth component of the SFS) is

& = /01 P(Eapp) = é kpn(b)Er [/tgk u(t)dt]
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We now substitute in the bounds of every intercoalescent interval Iy, = (Tj11,T%), giving

& ékpn,mb)ﬂan [ / " u(t)dt} - g kpns(D)Br, [ / " u(t)dt]

n Ty n T
=S ka0, | [ ] = (k- g | [t
k=2 0 k=3 0
n T,
=3 ByFr, [ / u(t)dt} , (16)
k=2 0
where
k n b ) k — 2
Byp=1{" #(0) (17)
kpne(0) = (k = 1)pp-1(b), k> 2
037 are combinatorial terms.
Polanski et al. [57], eqns. 5-8, give the marginal density for the coalescent time T} as
Z Ak i (tk), (18)
for k=2,...,n, where A is an (n — 1) X (n — 1) matrix indexed from 2,...,n with
1, k=j=n
Ay = 0, 7 <k,
[Tz (2) :
——="r2r—  otherwise
T ((2) - (2))

and

w0 sty ) [ ]

s for j = 2,...,n, and n(t) is the haploid effective population size history. We assume that 0 <

30  1)(t) < oo. Note that ¢;(t) is the probability density of the time to the first coalescent event among

ss0 any subset of j individuals in the present, with inhomogeneous Poisson intensity function (%) /n(t).
The expectations in can be expressed using (|18)) as

[ [ o] = [Tt [ wcranan

ti
—ZAIW/ qj tk)/ p(t)dt diy,
0
—ZAM | at) [ tocicuntoyiran

~3 4, /0 i (Ou(t)dt (19)
=k
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where in the last line we exchange integration order (by Fubini’s theorem) and define the inhomo-
geneous Poisson survival function

rj(t) = /0 N q;(t') Ljo<t<dt’ = exp [ (‘;) /0 t ;Zj)} (20)

corresponding to density ¢;(t).

Using in gives

&= Bk ZAk,j/ rj(t)p(t)dt
k=2 j=k 0

n 7 0o
=2 (Z Bb,kAku')/O ri(t)u(t)dt, (21)

exchanging summation order in the last line. We then have a linear expression for the expected
SFS as a function of the mutation intensity history u(t):

§=Cd(n,p), (22)

where the (n — 1) x (n — 1) matrix C = BA is constant in p and 7, and

s = [ riomtonte = [~ e [-(3) [ 2] uoa (23)

for j=1,...,n—1, is a linear functional of ;1 and a nonlinear functional of 7.
Given the boundedness assumptions that we have on n and p, we now prove boundedness of
the map from joint history functions (7, ) to expected SFS vectors &.

Lemma 2. For all bounded functions n: R>o — Rso and p: R>g = R>q, d;(n, p) is bounded.

Proof. We pass to the diffusion timescale, which measures time in expected number of coalescent

events since the present. Let R, (t) = ¢ %, which is strictly increasing R>¢g — R>o. Substitute

T = R,(t) in to give '
G = [ e |-(§)7| it 24)

where 7j(7) = n(R™(7)) and f(r) = p(R™'(7)). Note that d; is the Laplace transform of the
bounded function 71 evaluated at (;), and is thus bounded. In particular,

0< dj < nmaxjﬁmax7 (25)
(3)
where Nmax and pmax are the respective bounds on n and p. O]

The vector d(7, 1) may be viewed as a nonlinear operator d : L>(Rx>g) x L>®(R>q) — £2°; of
rank n — 1, and is bounded element-wise (Lemma . Boundedness of the full operator mapping
(n, 1) to the expected SFS € follows from the fact that C is a matrix with bounded norm. This
completes the proof of Theorem
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w1 A.2 Computing the elements of C

We next develop an efficient recursive procedure for computing the matrix C. Using

j
Chj = kank: Ak = Y (k= Dpni—1(0) Ax,
k=3
_ (1) (2)
where

1) = Z kpn k Ak ] (26)

) _ %
W,; = Z(’f — 1)pnp—1(0) Ag - (27)

k=3
Polanski et al. [58], eqn. 11, show that the nonzero entries of A can be expressed as

A n!(n —1)! (21 -1) (J+k—2)! (—1)i—k

kj = 7= . . (= .

T GHn—1)(n—j) (J—l) (k= DIk =2)!(G - k)!

Given the form of pj, 1(b) in , we see that and are definite sums over hypergeometric
terms. We used Zeilberger’s algorithm [59] 1], Which finds polynomial recurrences for definite sums

of hypergeometric terms, to procedurally generate the following second-order recursions in j:

(1) _ 6

Wb’z (n+1)

i _ 10(5n — 6b — 4)
b3 (n+2)(n+1)

Wy so _—[(2j+3)(—(2j—1)W§?+1( GG+ )02+ —2) —6b—j(i+1)—2)
— GG+ DnEb(2 + 5 +2) + 47+ —2) + (1 + 1) (52 + 5 +6) +4)n® + 4n)

— GGG - W @+ 1) GG+ 2)0—n - 1)))]

[ |G+ 200 = 0G40 2) (2 0+ (P 43) (04 D)
and

W2 =0
@ _ 20(n — 2)
b3 (n+1)(n+2)
@ _(2+3G-n+tl) (G+1 @ _ UU+DEb—n+1)-2(n+1)) @
Wb +2 . . b . . . . Wb i+1 .
J J 2i-D@+n) > G-D0U+2)G-n)G+n+1)
952 These formulae are used to numerically compute the entries in C. The results of this section can be

053 reproduced from the supplementary Mathematica notebook https://github.com/harrispopgen/
o5 mushi/blob/master/docsrc/notebooks/recurrence.nb
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s A.3 Discretization of history functions and computation of d(n, i)

o6 We represent histories as piecewise constant functions of time on m pieces [to, t1), [t1,%2), .- -, [tm—1,tm),
57 where 0 = tg < t; < -+ < typ—1 < ty, = 00. The grid is common to n(t) and p(t). We take the
oss  boundaries of the pieces as fixed parameters and in practice use a logarithmically-spaced dense
959 grid of hundreds of pieces to approximate infinite-dimensional histories. Let column vector y =
90 [Y1,-..,Ym]T denote the constant population size 7(t) during each piece, and let w = [wy, ..., wy,]T
o1 denote the constant mutation rate p(t) during each piece.

With this we can follow the proof of Proposition 1 in [26], mutatis mutandis, with our (24)) to

arrive at
d = M(y)w (28)
where
1 1w H?l;luz 11 .
: I N A ) |
M(Y) = . : : . : - dlag()’)a (29)
ey -1
@1 BRI s e B | o

and u; = exp(—(t;—t;—1)/y;) for I = 1,...,m. Note that the (n—1) x m matrix M(y) is a nonlinear
function of the demographic history y because the u; are nonlinear functions of y. This reflects the
fact that it is a discretization of the nonlinear operator d(-, ;). Combining with gives the
discretized forward model

§=L{y)w, (30)
o2 where L(y) = CM(y).

w3 A.4 Proof of Lemma [1

Fix the mutation type i, and consider the multinomial over j

P([Xi,hn-,Xi,,{] ‘ T, |:“£;17__.’H£;“]) .

We must show that any element of the multinomial vector

—_

N — .
—

oy %]

\_.17]‘ = §
2

can be formulated without reference to 7. From elementary properties of the multinomial, the
conditional expection value of X; ; given x; is

E[X; | %] = zi iy

Now, since mutation events are independent we perform a thinning operation on each of the x;
mutation events

E[X;; | z;] = z; P (a mutation of sample frequency i is of type j) (31)
_— / AT o (wyar, (32)
0 Ho
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where a;(7) is the pdf of a mutation’s age 7 measured in expected coalescent events (diffusion time)
conditioned on its sample frequency i. So

00 7.
i :/ (1) a;(7)dr.
0 Ho

[1]>

This is independent of i by definition of the diffusion time scale as the intensity measure of the
coalescent process. This completes the proof of Lemma

A.5 Tempora incognita: observability toward the coalescent horizon

The time-domain singular vectors of £(n) form an eigenbasis for solutions p(t) that are possible,
in principle, to reconstruct from the SFS. However, sampling noise about the expected SFS will
corrupt information from singular vectors that are associated to smaller singular values. These
corrupted components will be the directions in solution space associated with higher frequency and
less smooth dynamics. Since the singular values of £(n) have a very large dynamic range (the
condition number is large), the presence of noise will limit reconstruction to smoother, more slowly
varying components that are least corrupted and erase information about more sudden events.
Figure [8| depicts the observability of mutation rate history via spectral analysis of £(n) for a
case with 7(t) a simple bottleneck history. From and in the Appendix |A] the CDF of the
TMRCA can be computed given n(t). We see only the top few components (ranked by singular
value) persist at times older than the bottleneck, and all components vanish beyond the TMRCA
of the sample. Higher frequency behavior becomes more difficult to observe if it is older than
the bottleneck, concretely illustrating how demographic events erase information about population
history. The results of this section can be reproduced from the supplementary notebook: https:
//harrispopgen.github.io/mushi/notebooks/observability.html.
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Figure 8: Observability of mutation rate history via the spectral analysis of £(n) for the case of a
bottleneck history. The top panel plots demographic history with a bottleneck from about 3000 to
1000 generations ago (blue, left ordinate), and TMRCA CDF (orange, right ordinate). The bottom
panel plots the top 20 time domain singular vectors, with the inset showing the corresponding
ranked singular values. Time was discretized with a logarithmic grid of 1000 points, and n = 200
sampled haplotypes were assumed.
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