

1

2

3

4 The ribbon-helix-helix domain proteins CdrS and CdrL regulate cell division in archaea.

5

6 Cynthia L. Darnell¹, Jenny Zheng², Sean Wilson², Ryan M. Bertoli¹, Alexandre W. Bisson-Filho³,

7 Ethan C. Garner², Amy K. Schmid^{1,4*}

8

9 ¹Biology Department, Duke University, Durham, North Carolina, United States

10 ²Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts,
11 United States.

12 ³Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University,
13 Waltham, Massachusetts, USA

14 ⁴Center for Genomics and Computational Biology, Duke University, Durham, North Carolina,
15 United States

16

17

18 *Corresponding author

19 Email: amy.schmid@duke.edu

20 **Abstract**

21 Precise control of the cell cycle is central to the physiology of all cells. In prior work we
22 demonstrated that archaeal cells maintain a constant size; however, the regulatory mechanisms
23 underlying the cell cycle remain unexplored in this domain of life. Here we use genetics,
24 functional genomics, and quantitative imaging to identify and characterize the novel CdrSL gene
25 regulatory network in a model species of archaea. We demonstrate the central role of these
26 ribbon-helix-helix family transcription factors in the regulation of cell division through specific
27 transcriptional control of the gene encoding FtsZ2, a putative tubulin homolog. Using time lapse
28 fluorescence microscopy in live cells cultivated in microfluidics devices, we further demonstrate
29 that FtsZ2 is required for cell division but not elongation. The *cdrS-ftsZ2* locus is highly
30 conserved throughout the archaeal domain, and the central function of CdrS in regulating cell
31 division is conserved across hypersaline adapted archaea. We propose that the CdrSL-FtsZ2
32 transcriptional network coordinates cell division timing with cell growth in archaea.

33

34 **Importance**

35 Healthy cell growth and division are critical for individual organism survival and species long-
36 term viability. However, it remains unknown how cells of the domain Archaea maintain a healthy
37 cell cycle. Understanding archaeal cell cycle is of paramount evolutionary importance given that
38 an archaeal cell was the host of the endosymbiotic event that gave rise to eukaryotes. Here we
39 identify and characterize novel molecular players needed for regulating cell division in archaea.
40 These molecules dictate the timing of cell septation, but are dispensable for growth between
41 divisions. Timing is accomplished through transcriptional control of the cell division ring. Our
42 results shed light on mechanisms underlying the archaeal cell cycle, which has thus far
43 remained elusive.

44

45 **Introduction**

46 The cell cycle proceeds through an ordered progression of molecular events including cell
47 volume increase, DNA replication, segregation, and cytokinesis. The fine-tuned control between
48 these processes has been studied intensely for decades, yielding deep insight into cell cycle
49 mechanisms. To date, such work has focused on bacterial and eukaryotic model organisms. In
50 contrast, the archaeal cell cycle remains virtually unexplored despite its importance as the
51 evolutionary progenitor of eukaryotes (Zaremba-Niedzwiedzka et al., 2017). The few studies
52 that have been conducted on the cell cycle in archaeal model organisms point to a hybrid of
53 eukaryotic and bacterial features with differential assortment of these features throughout the
54 archaeal lineages. For example, in *Crenarchaeota*, the cell cycle phases, molecular machinery
55 of DNA replication, and cell division are largely conserved with eukaryotes (Kelman and
56 Kelman, 2014; Lindas and Bernander, 2013; Lundgren and Bernander, 2007; Poplawski and
57 Bernander, 1997). In contrast, the cell cycle in the lineage Euryarchaeota retains features of all
58 three domains, including a bacterial FtsZ system of cell division (Makarova and Koonin, 2010), a
59 eukaryotic system for DNA replication (Kelman and Kelman, 2014), and archaeal-specific firing
60 of replication origins (Hawkins et al., 2013).

61 The tubulin homolog FtsZ has been studied in detail in many bacteria for its central role
62 in cell division. In most bacteria, FtsZ monomers assemble into short filaments that form the
63 cytokinetic ring at mid-cell, which constricts to divide the mother cell into two daughters of equal
64 size (Adams and Errington, 2009; Bisson-Filho et al., 2017; Haeusser and Margolin, 2016; Xiao
65 and Goley, 2016; Yang et al., 2017). FtsZ in archaea appears to function similarly, as previous
66 fluorescence imaging experiments in fixed (Aylett and Duggin, 2017; Grant et al., 2018;
67 Herrmann and Soppa, 2002; Margolin et al., 1996) and live (Abdul-Halim et al., 2020; Duggin et
68 al., 2015; Walsh et al., 2019) hypersaline-adapted archaeal cells (species *Haloferax volcanii*)
69 demonstrated Z-like rings forming at mid-cell. However, all known halophilic archaeal genomes

70 encode multiple tubulin-like proteins (Aylett and Duggin, 2017; Becker et al., 2014), so the
71 function and mechanism of these proteins in cell division remain unclear.

72 Halobacteria, a clade of hypersaline-adapted Euryarchaeota, provide excellent model
73 systems for understanding cell cycle mechanisms and how they are regulated. In particular, for
74 the model species *Halobacterium salinarum*, *Halofex volvani*, and *Halofex mediterranei*,
75 large and facile toolkits enable genetic manipulation (knockouts, overexpression, etc.)(Allers et
76 al., 2010; Bitan-Banin et al., 2003; Liu et al., 2011; Peck et al., 2000). For *Hbt. salinarum* strain
77 NRC-1, large systems biology datasets, including transcriptomic profiles under a wide array of
78 growth and stress conditions, enable rapid hypothesis generation regarding gene functions
79 (Brooks et al., 2014; Dulmage et al., 2018). In previous work, we developed live-cell, time-lapse
80 microscopy methods for hypersaline adapted archaea to overcome the challenges of rapid salt
81 crystallization on microscopy slides (Eun et al., 2018). Salt-impregnated agarose
82 microchambers were fabricated using soft lithography, which support up to six generations of
83 growth for *Hbt. salinarum*. Using these tools, we demonstrated that single, rod-shaped *Hbt.*
84 *salinarum* cells grow (elongate) exponentially, adding a constant volume between divisions (the
85 “adder” model of cell size control (Sauls et al., 2016)). However, the size distribution and
86 division site placement at mid-cell demonstrated greater variance than bacterial cells that
87 maintain their size in a similar fashion (Eun et al., 2018). Here we adapt microfluidics for *Hbt.*
88 *salinarum* and leverage the existing genetics and systems biology toolkits to interrogate the
89 regulation of the archaeal cell cycle.

90 Cell cycle progression in eukaryotes is known to be exquisitely regulated, and DNA
91 replication and cell division are coordinated in bacteria (Haeusser and Levin, 2008). However,
92 despite recent progress regarding cell growth and size control in archaea, the underlying
93 molecular mechanisms regulating these processes remain unknown. Gene expression profiling
94 experiments suggest that archaea possess the capability for oscillating gene expression
95 patterns, a hallmark of genes with cell cycle-related functions in eukaryotes (Orlando et al.,

96 2008). For example, our prior work with transcriptomics in *Hbt. salinarum* provides evidence for
97 temporally coordinated induction of hundreds of genes during the resumption of growth
98 following stasis (Schmid et al., 2007; Skotheim et al., 2008). Oscillating gene expression was
99 observed in *Hbt. salinarum* cultures entrained to day-night cycles (Whitehead et al., 2009).
100 Cyclic gene expression patterns have also been observed in synchronized cultures of the
101 crenarchaeon *Sulfolobus solfataricus* (Lundgren and Bernander, 2007).

102 Gene regulatory networks (GRNs), comprised of interacting transcription factors (TFs)
103 and their target genes, are central to the process of dynamic, physiological response to a
104 variable environment. Archaeal transcription proteins resemble those of both bacteria and
105 eukaryotes at the level of amino acid sequence. Basal transcriptional machinery required for
106 transcription initiation in archaea, like that of eukaryotes, consists of transcription factor II B
107 (TFB), a TATA binding protein (TBP), and an RNA-Pol II-like polymerase (reviewed in
108 (Martinez-Pastor et al., 2017)). The proteins that modulate transcription (e.g., activator and
109 repressor TFs) typically resemble those of bacteria, with the majority of these proteins
110 possessing HTH or wHTH DNA binding domains (Perez-Rueda and Janga, 2010). Our recent
111 studies on gene regulatory networks (GRNs) in *Hbt. salinarum* systematically investigated the
112 function of transcription factors using high throughput phenotyping of TF knockouts (Darnell et
113 al., 2017; Tonner et al., 2017). This study implicated the putative TF DNA binding protein
114 *VNG0194H* (VNG_RS00795) as a candidate regulator of multiple stress responses: deletion of
115 *VNG0194H* lead to growth defect under multiple stress conditions, including oxidative stress,
116 low salinity, and heat shock (Darnell et al., 2017). Intriguingly, *VNG0194H* is encoded upstream
117 of *ftsZ2* (Ng et al., 2000), suggesting additional roles for *VNG0194H* in cell growth and/or
118 division. An additional putative DNA binding transcriptional regulator *VNG0195H* is encoded
119 upstream.

120 To address knowledge gaps regarding archaeal cell division mechanisms, here we
121 investigate the cell growth and division functions of *FtsZ2*, *VNG0194H* (CdrS, cell division

122 regulator short) and VNG0195H (CdrL, cell division regulator long). We combine a battery of
123 assays, including genetic knockouts, quantitative time lapse microscopy of single cells, custom
124 microfluidics technology, gene expression profiling, and TF-DNA binding ChIP-seq experiments.
125 The resultant data demonstrate that CdrS and FtsZ2 are required for normal cytokinesis but not
126 cell elongation. This regulation is accomplished via: (i) CdrS activation of *ftsZ2* and other cell
127 cycle-related genes; (ii) CdrL direct regulation of the *cdrS-ftsZ2* operon. The CdrSL GRN
128 system is highly specific to regulation of *ftsZ2* at the level of transcription.
129
130
131

132 **Results**

133 **cdrS encodes a conserved, putative transcription factor co-transcribed with the tubulin-
134 encoding ftsZ2 gene.**

135 Our previous genetics experiments indicated an important role for putative DNA binding protein
136 VNG0194H in stress response and growth physiology of *Hbt. salinarum* (Darnell et al., 2017;
137 Tonner et al., 2017). We first used bioinformatics to generate hypotheses regarding the
138 physiological function of VNG0194H and its encoding gene locus (Figure 1A). VNG0194H is
139 predicted to encode a small 55 amino acid, single-domain protein that exhibits >99% structural
140 homology to other ribbon-helix-helix domain transcriptional regulators of the RHH_1 family
141 (PF01402, E-value of primary sequence homology 5.3×10^{-5} ; 99.6% confidence in structural
142 homology to *E. coli* NikR), suggesting that it may function as a DNA binding transcriptional
143 regulator or in protein-protein interactions (Gomis-Ruth et al., 1998). Encoded immediately
144 upstream, the VNG0195H protein is predicted to contain an N-terminal RHH_1 domain (95.9%
145 confidence in structural homology to *E. coli* NikR) and a C-terminal double zinc ribbon domain
146 (DZR, PF12773, E-value 3.1×10^{-7}). The presence of VNG0195H in this locus appears to be
147 unique to halophiles (Supplementary Figure S1). In addition, a tubulin FtsZ homolog is encoded
148 immediately downstream of VNG0194H (*ftsZ2*; VNG0192G; Figure 1A). *Hbt. salinarum* FtsZ2
149 exhibits strong primary sequence identity to known tubulin components of the cell division ring
150 (tubulin / FtsZ GTPase domain PF00091, E-value 7.4×10^{-77} ; tubulin C-terminal domain
151 PF03593, E-value 6×10^{-32} ; (Duggin et al., 2015)). Taking these bioinformatic analyses together,
152 we re-named VNG0194H as “CdrS” for “cell division regulator Short” and VNG0195H as “CdrL”
153 for “cell division regulator Long”.

154 Previous tiling microarray studies indicated co-transcription of *cdrS* and *ftsZ2*, but were
155 inconclusive regarding the inclusion of *cdrL* in this operon (Koide et al., 2009). To further
156 investigate the transcriptional status of this locus, we examined the expression of the three
157 genes from 1,154 microarray and 3 RNA-seq transcriptome profiles for *Hbt. salinarum* grown

158 under a wide variety of environmental and genetic perturbations (Brooks et al., 2014; Dulmage
159 et al., 2018)(Figure 1B). Across all conditions, *cdrS* and *ftsZ2* were strongly and significantly
160 correlated (Spearman's $\rho = 0.923$, 95% CI = 0.915, 0.932), whereas *cdrL* was weakly but
161 significantly correlated with *cdrS* ($\rho = 0.275$, 95% CI = 0.221, 0.327) and *ftsZ2* ($\rho = 0.299$, 95%
162 CI = 0.245, 0.350). As a control, we calculated the correlation of these genes with an unrelated
163 gene located elsewhere in the genome (*trmB* VNG1451C), which exhibited weakly negative
164 correlation with the locus (*cdrS*, $\rho = -0.275$, 95% CI = -0.327, -0.221; *ftsZ2*, $\rho = -0.291$, 95% CI
165 = -0.343, -0.238). The weak but significant correlation of *cdrL* with *ftsZ2* and *cdrS* is driven by
166 strong co-expression of the three genes in response to stress such as metal overload (50
167 transcriptome profiles, $\rho = 0.771$, CI = 0.627, 0.864; Figure 1C, right). In contrast, *cdrL* is not co-
168 expressed with *ftsZ2* or *cdrS* under conditions that foster rapid growth (58 profiles; $\rho = -0.158$,
169 95% CI = -0.400, 0.104; Figure 1C, left). Previous statistical models that inferred the global
170 gene regulatory network of *Hbt. salinarum* also predicted co-regulation of *cdrS* and *ftsZ2* under
171 all growth conditions, whereas *cdrL* was only co-regulated with the other two genes under a
172 subset of conditions (Brooks et al., 2014). Together these results suggest that *cdrS* and *ftsZ2*
173 are co-transcribed from a polycistronic operon that is co-regulated under all growth conditions.
174 *cdrL*, in contrast, is conditionally co-regulated with the other two genes.
175 To determine how broadly this locus was conserved outside of *Hbt. salinarum*, we investigated
176 the sequence conservation of each gene and the genomic synteny of the gene pair across
177 archaeal genomes. The co-occurrence of *cdrS* with *ftsZ2* homologs was detectable across
178 representatives of all known archaeal clades except DPANN (Figure 1D; Supplementary Table
179 1. All supplementary files available at <https://doi.org/10.6084/m9.figshare.12195081.v1>). FtsZ in
180 the absence of CdrS was also widely distributed. Conservation of the *cdrS-ftsZ2* locus was
181 particularly strong across the Euryarchaeota, with wide conservation across the halophilic
182 archaeal clade (including classes Halobacteria, Natrialbales, and Haloferacales) and

183 neighboring phylogenetic class Methanomicrobia (Supplementary Figure S1). CdrL was
184 widespread across the Halobacteria but absent from all other archaeal clades. Taken together,
185 these results suggest that: (a) *cdrS* exhibits a strong primary and secondary structural homology
186 to transcriptional regulators of the CopG family; (b) the *cdrS-ftsZ2* locus encodes a highly
187 conserved, co-regulated transcriptional unit; (c) CdrL is a putative transcription regulator unique
188 to halophiles and appears to be conditionally co-expressed with *cdrS-ftsZ2*. We therefore
189 focused our subsequent analysis on CdrS.

190

191 **The *cdrS-ftsZ2* locus is important for maintaining cell size and biomass in bulk culture.**
192 To test the function of the *cdrS-ftsZ2* locus, we constructed independent gene deletion mutants
193 in each coding region and tested for cell division defects. We previously reported a $\Delta VNG0194H$
194 strain (Darnell et al., 2017; Tonner et al., 2017); however, that strain included a start site for the
195 *ftsZ2* gene that was mis-annotated in the NCBI database, which we have corrected here (Figure
196 1A, Supplementary Figure S1). This enabled a more precise, conservative deletion within *cdrS*
197 to avoid polar effects by keeping the putative *ftsZ2* ribosome binding site intact (Figure 1A,
198 Supplementary Tables 5-7). Because halophilic archaea are highly polyploid (Zerulla and
199 Soppa, 2014), stringent quality controls were implemented for both $\Delta cdrS$ and $\Delta ftsZ2$ strains,
200 including PCR, Sanger sequencing, and whole genome Illumina re-sequencing (see Methods).
201 These controls confirmed that the coding genes were removed from all genome copies and that
202 no second site mutations had accumulated (Supplementary Table 2).

203 To investigate the phenotypes of the $\Delta cdrS$ and $\Delta ftsZ2$ mutant strains, cells were grown
204 in aerobic batch culture in rich medium. Population growth rates, colony forming units (CFU),
205 and single cell length and area were quantified (Methods). Early exponential phase cultures of
206 the *Dura3* parent strain were comprised of cells with a mean length of 5.39 μm ($\sigma = 3.076 \mu\text{m}$;
207 Table 1; Supplementary Table 3) and an area of 6.32 μm^2 ($\sigma = 4.12 \mu\text{m}^2$; Figure 2A, top panel).

208 87.9% of *Δura3* cells fell within one standard deviation of the geometric mean for length (Figure
209 2A, insets; Table 1). These length and area measurements are consistent with previous
210 observations for *Hbt. salinarum* growth and division (Eun et al., 2018). The rightward skew of
211 the distribution resulted in 10.3% of the cells longer than one standard deviation above the
212 geometric mean; these longer cells are commonly seen during routine culturing and contribute
213 to the noise in the *Hbt. salinarum* cell division model (Eun et al., 2018). Similar cell lengths were
214 measured at time points sampled in mid-log phase and stationary phases of the growth curve
215 (Table 1; Supplementary Figure S2). In contrast, early exponential phase cultures of the *ΔcdrS*
216 strain cells were significantly longer (Welch's $p < 2 \times 10^{-16}$; medium effect size 0.760) and larger
217 in area ($p < 2.67 \times 10^{-16}$; medium effect 0.665) than those of the parent strain. Large variation in
218 size distribution of mutant length and area were also detected (Table 1; Figure 2A, middle
219 panel; Supplementary Table 3). Indeed, 36% of *ΔcdrS* cells were longer than those of the parent
220 strain, with the longest cells $> 40 \mu\text{m}$. Similarly, the *ΔftsZ2* strain cell size was significantly larger
221 and more variable than that of the parent strain (length $p < 2.2 \times 10^{-16}$, large effect 0.832; area p
222 $< 3.52 \times 10^{-15}$, medium effect 0.571; Figure 2A, bottom panel). These differences in cell sizes
223 between the parent and mutant strains were consistent across growth phases. Together, these
224 microscopy results indicate a role for *ftsZ2* and *cdrS* in maintaining wild type cell size in *Hbt.*
225 *salinarum*.

226 However, it remained unclear whether the drastic increase in cell size together with
227 morphology defects in *ΔftsZ2* and *ΔcdrS* mutants were due to unregulated growth (cell
228 elongation or biomass accumulation) or a decrease in cell division (fewer septation events). To
229 compare the rate of biomass accumulation between wild type and mutant strains, we measured
230 growth rates by optical density for each of the parent, *ΔftsZ2*, and *ΔcdrS* strains in batch culture
231 under aerobic conditions in rich media (Methods). The maximum instantaneous growth rate of
232 the *Δura3* strain was $0.152 \text{ h}^{-1} \pm 0.004$ (Supplementary Table 3), consistent with previous
233 observations (Darnell et al., 2017; Tonner et al., 2017). Neither the *ΔcdrS* or *ΔftsZ2* mutant

234 strain exhibited a growth rate defect measured by optical density at 600 nm (OD), and reached
235 similar carrying capacities (OD₆₀₀ = 1.73 – 2.62 for all three strains after 94 hours,
236 Supplementary Table 3, Figure 2B). This suggests that deletion of neither *cdrS* nor *ftsZ2*
237 reduces biomass as measured by optical density.

238 However, in the spectrophotometer, elongated cells scatter light differently than short
239 cells (Stevenson et al., 2016), which can obfuscate true defects in cell size and/or division.
240 Therefore, in addition to OD readings, we also plated for colony forming units (CFUs). As the
241 largest range of cell lengths occurred during early exponential phase, we plated multiple
242 timepoints in the linear OD range between lag phase and OD = 0.2. We detected a strong and
243 significant positive correlation between log₂-transformed OD and log₁₀-transformed CFUs/ml for
244 the *Δura3* parent strain (Pearson's $p = 0.9561$, p -value = 1.188×10^{-6} ; Figure 2C). Similar
245 correlations were detected for each of $\Delta cdrS$ ($p = 0.8166$, p -value = 1.19×10^{-3}) and $\Delta ftsZ2$ ($p =$
246 0.8509 , p -value = 4.494×10^{-4}). These strong correlations enabled direct comparison between
247 strains of the CFUs normalized by OD (see Methods). The $\Delta ftsZ2$ strain yielded 2.2-fold fewer
248 CFUs/ml per log₂(OD) compared to the *Δura3* parent, and $\Delta cdrS$ had 2.6-fold fewer. These
249 results suggest that fewer viable individual cells are present in cultures of the mutant strains
250 compared to *Δura3*, which is likely the result of larger mutant cell size (more biomass per CFU).
251 Together, these colony counts, cell density, and quantitative microscopy results support the
252 hypothesis that *cdrS* and *ftsZ2* gene products are important for cell division but not cell area
253 increase in batch culture.

254

255 ***ΔcdrS* cells are phenotypically insensitive to aphidicolin.**

256 To further test whether growth and cell division are decoupled in the $\Delta cdrS$ mutant, we
257 synchronized populations of cells by treating with the cell cycle inhibitor aphidicolin, which
258 specifically targets DNA polymerase- α in eukaryotes (Ikegami et al., 1978). Aphidicolin has
259 been shown to impair DNA replication and cell division but not elongation in wild type *Hbt*.

260 *salinarum* (Forterre et al., 1984; Herrmann and Soppa, 2002; Schinzel, 1984). Here we
261 quantified cell area prior to aphidicolin addition, following 6 hours of cell cycle block in the
262 presence of drug, and 11 hours after drug removal (Figure 3). After aphidicolin treatment, the
263 Δ *ura3* average cell area increased significantly from $4.42 \mu\text{m}^2$ to $7.44 \mu\text{m}^2$ (geometric mean;
264 Figure 3A; $p < 2.0 \times 10^{-16}$; large effect size (es) of 1.146), suggesting continued elongation in the
265 absence of division and consistent with previous observations (Herrmann and Soppa, 2002).
266 After aphidicolin removal, Δ *ura3* cells returned to an average area indistinguishable from that of
267 pre-treatment values ($4.31 \mu\text{m}^2$; $p = 0.59$; large es 0.965). Cells undergoing septation were also
268 observed, indicating a recovery of cell division (Supplementary Figure S3). In contrast, the
269 distribution of Δ *cdrS* cell area remained largely unchanged by aphidicolin treatment (geometric
270 mean of $8.73 \mu\text{m}^2$ before addition and $9.43 \mu\text{m}^2$ after 6 hours of treatment, respectively; Figure
271 3B; $p = 0.15$; negligible es 0.094). Removal of aphidicolin from Δ *cdrS* cultures slightly
272 decreased the cell area relative to the pre-treatment area ($6.52 \mu\text{m}^2$; 2.3×10^{-7} ; small es 0.433);
273 however, it is unclear whether this decrease is a biological or technical effect, as longer cells
274 may shear during wash steps. Nevertheless, the distribution of cell area in the Δ *cdrS* mutant
275 remained heavily skewed toward elongated cells compared to the Δ *ura3* parent.

276 To ensure that the insensitivity to aphidicolin was specific to the deletion of *cdrS*, we
277 generated a complementation strain by integration of *P_{cdrS}-cdrS* into the chromosome at a
278 neutral locus (NC_002607.1:1245981-1247318; Peck et al 2000; Methods). Prior to aphidocolin
279 treatment, the complemented strain cell area intermediate between that of the Δ *ura3* parent and
280 Δ *cdrS* mutant strains ($6.45 \mu\text{m}^2$), suggesting partial complementation (Figure 3C). However,
281 after exposure to aphidicolin, the average cell area increased to $9.52 \mu\text{m}^2$ ($p < 3.9 \times 10^{-14}$, small
282 es 0.448). After aphidicolin wash-out, the cell area mean returned to a smaller $4.78 \mu\text{m}^2$ (2×10^{-16} ,
283 large es 0.887). These shifts in distribution across the time course indicate that the
284 complemented strain was responsive to aphidicolin, suggesting that complementation was
285 achieved under native transcriptional control at the ectopic site. Therefore, while the area of the

286 Δ *Aura3* and the *cdrS* complementation strain were affected by aphidicolin treatment, the Δ *cdrS*
287 mutant remained insensitive. Consistent with results from batch culture growth, these data
288 suggest that CdrS is important for cell division but not elongation. In addition, these data support
289 the idea that *cdrS* may act as a checkpoint regulator, acting the pathway that arrests cell
290 division when DNA replication is perturbed.

291

292 **Time lapse microscopy reveals cell division defects in Δ *cdrS* and Δ *ftsZ2* mutants.**

293 In previous work, we designed agarose chambers that allowed real-time microscopic
294 observation of unperturbed growth of *H. salinarum* (Eun et al., 2018). However, these chambers
295 were square in shape (10 x 10 μ m), precluding growth of the filamentous Δ *ftsZ2* and Δ *cdrS*
296 strains and necessitating a new device. We adapted the mother machine microfluidic device for
297 real-time growth observation of these mutant *Hbt. salinarum*. The halophile mother machine
298 design used here is the same as those used previously for bacteria (Hussain et al., 2018),
299 consisting of linear channels 1.5 μ m wide, 1 μ m deep, and a selection of lengths (80 μ m used
300 here; Supplementary Figure S4). The mold for the chip was fabricated via photolithography. The
301 chip is arrayed with ~200 troughs per feeding channel (4 feeding channels per slide). Each chip
302 was connected to microfluidics, supplying the growing cells with fresh medium throughout the
303 course of each experiment (Methods). Under steady state growth conditions in the mother
304 machine, Δ *Aura3* cell area doubling time (6.85 ± 1.98 hr, Figure 4A) was similar to that in batch
305 culture (6.68 hr; Figure 1B; Supplementary Table 3). Mother machine growth rates also
306 reflected previous chamber growth measurements (6 ± 1 hr, (Eun et al., 2018)). Like the square
307 chambers, the mother machine supports up to 6 generations of growth (Supplementary Movies
308 1-4). We conclude that the *Hbt. salinarum* parent strain grows optimally in the mother machine.

309 To compare division events from single cells across strains in real time using the mother
310 machine, phase contrast time lapse images were used to quantify the cell growth parameters of

311 elongation rate, division ratio, and interdivision time. Cell area doubling time (proportional to
312 elongation rate) of the $\Delta ccdR$ (geometric mean $7.88 \text{ hr} \pm 2.21 \text{ hr}$) and $\Delta ftsZ2$ ($8.04 \pm 2.03 \text{ hr}$)
313 mutants was statistically indistinguishable from the $\Delta ura3$ parent strain ($6.86 \pm 1.98 \text{ hr}$; Figure
314 4A; Supplementary Figure S5; p -values comparing each mutant to the parent > 0.76 ; effect size
315 0-0.1). This corroborates batch culture results that CcdR and FtsZ2 are not required for cell
316 elongation. In contrast, division was strongly impaired for each mutant relative to the parent
317 strain. Division of the $\Delta ccdR$ strain (30 of 108 cells divided) was observed at 35% the frequency
318 of $\Delta ura3$ (63 of 80 cells), and the $\Delta ftsZ2$ strain was not observed to divide (0 of 110 cells).
319 $\Delta ccdR$ cells that did not divide continued to elongate throughout the experiment, filling the
320 chamber. In some cases, growth continued after the cell pole was extruded outside the single
321 cell trough (Supplementary Movie SM1). Typically, $\Delta ura3$ cells divided in the center, with the
322 division ratio (area daughter : area mother) centered at 0.492, variance $CV = 17.6\%$,
323 quantitatively consistent with previous observations (Eun et al., 2018). In contrast, $\Delta ccdR$ cells
324 divided asymmetrically, with few cells observed to divide in the center (Figure 4B). This
325 asymmetric division pattern was not random: 30% divided nearby the cell pole (division ratio \leq
326 0.20), 50% divided offset from the cell midline (i.e. division ratio 0.3-0.6), a few outliers at the
327 cell quarters (~ 0.25 or 0.75), and none dividing within $0.05 \mu\text{m}$ of the center (Figure 4B). The
328 mean area of the $\Delta ccdR$ mother cells at the time of division (geometric mean $19.64 \mu\text{m}^2$; $\sigma =$
329 17.57) was significantly larger and more variable than that of $\Delta ura3$ (Figure 4C; $8.79 \mu\text{m}^2$; $\sigma =$
330 2.52; Welch's p -value 1.7×10^{-7} , effect size 1.50). $\Delta ccdR$ daughter cell mean area was twice as
331 large as that of $\Delta ura3$ (Figure 4D; $8.81 \mu\text{m}^2$, $\sigma = 13.67$ vs $4.32 \mu\text{m}^2$, $\sigma = 1.60$, respectively,
332 Welch's p -value 2.3×10^{-10} and effect size 1.16). This suggests that asymmetric division leads to
333 variable cell sizes of mothers and daughters, with a tendency toward larger cell size in $\Delta ccdR$
334 relative to that of the $\Delta ura3$ parent (Figure 4C and D).

335 In the same cells visualized for quantitation with phase contrast imaging, we tracked
336 FtsZ1 division rings to differentiate active division events from cell fragmentation. The gene
337 encoding monomeric superfolder GFP (msfGFP) was integrated at the native chromosomal
338 locus by translational fusion to FtsZ1 in each of the three strain backgrounds (Methods). In the
339 Δ *ura3* strain, we observed that cell division was preceded by helical assembly of the FtsZ1 ring
340 (Figure 5A, Supplementary movie SM2). In contrast, deletion of *ftsZ2* abrogated ring formation
341 in some cells, with a diffuse msfGFP-FtsZ1 signal observed throughout. In other Δ *ftsZ2* cells,
342 rings formed but constriction was not observed (Supplementary movie SM3). Despite these
343 division defects, Δ *ftsZ2* cells continued to elongate for the duration of the imaging experiments,
344 filling the chamber (SM3). For Δ *cdrS* cells that were able to divide (though at a lower frequency
345 than Δ *ura3* cells), each division event was preceded by formation of a msfGFP-FtsZ1 ring
346 (Figure 5B; Supplementary Movie SM4a). However, not all ring formation resulted in division: in
347 Δ *cdrS* cells that were not observed to divide, rings often formed but later disassembled (Figure
348 5C; Supplementary Movie SM4b). Taking these fluorescence images together with the
349 quantitative analyses of the phase contrast images (Figure 4), these data strongly suggest that
350 CdrS is an important regulator of cell division, and FtsZ2 is required for triggering cytokinesis at
351 mid-cell. However, elongation appears to proceed independently of these factors.

352

353 **CdrS specifically regulates cell division and other cell cycle genes.**

354 To determine how CdrS regulates cell division, we compared gene expression of the Δ *cdrS*
355 strain to the isogenic parent Δ *ura3* over the growth curve and in response to cell cycle arrest by
356 aphidicolin. Given the cell division defects of the Δ *cdrS* strain, we focused on 20 genes known
357 or predicted to be involved in growth and division in other systems, including all known *ftsZ* and
358 *cetZ* paralogs encoded in the *Hbt. salinarum* genome. We used NanoString probe-based mRNA
359 counting technology. Previous work demonstrated that this method is successful for accurate
360 quantification of gene expression over time in *Hbt. salinarum* (Todor et al., 2013). Of the genes

361 tested, 10 were significantly differentially expressed in the Δ *ura3* parent strain in batch cultures
362 over the course of the growth curve, including *ftsZ2* and three *CetZ* homologs: *cetZ1*
363 (*VNG1933G*), *cetZ2* (*VNG0265G*) and *cetZ5* (*VNG6260G*) (Supplementary Figure S6A;
364 Supplementary Table 4). Relative to the Δ *ura3* control strain, *ftsZ2*, *cetZ1*, and *sojA* were
365 significantly differentially expressed in response to *cdrS* deletion during growth (Figure 6A). The
366 protein product of plasmid-encoded *sojA* is a predicted member of the SIMIBI superfamily (NCBI
367 accession cl28913), encompassing NTP-ases involved in a wide array of cellular functions,
368 including the plasmid partitioning ParA AAA-type ATPase widely conserved in bacteria (Gerdes
369 2010 review). *ftsZ1* was not differentially expressed either over the growth curve or in the Δ *cdrS*
370 vs the parent strain (Figure 6A, upper left). In contrast, *ftsZ2*, *cetZ1*, and *sojA* were dynamically
371 expressed throughout growth, and expression levels were lower in Δ *cdrS* during early log phase
372 (Figure 6A). For example, *ftsZ2* expression steadily increased ~1.8-fold throughout growth,
373 reaching its peak during the transition to stationary phase (Figure 6A, upper right;
374 Supplementary Table 4). In the Δ *cdrS* strain, *ftsZ2* expression followed a similar growth-
375 dependent expression pattern. However, expression magnitude ranged from 1.3 to 2.2-fold
376 lower across all growth time points in the Δ *cdrS* strain, with the largest defect in gene activation
377 observed at the early log time point, with *cetZ1* and *sojA* following similar patterns (Figure 6A).

378 In response to cell division block by aphidicolin and subsequent release into growth, 11
379 genes were significantly differentially expressed in the Δ *ura3* parent strain (Supplementary
380 Figure S6B, Supplementary Table 4). *ftsZ2* was also significantly reduced in expression in the
381 Δ *cdrS* strain relative to the Δ *ura3* strain in response to aphidicolin (Figure 6B). Three *par* family
382 paralogs (*sojA*, *B*, and *E*) were also significantly mis-regulated in the Δ *cdrS* strain relative to the
383 parent control under these conditions (Figure 6B). Together these expression data indicate that
384 *CdrS* is important for wild type expression magnitude but not growth-dependent expression
385 change of *ftsZ2*, *cetZ1*, and SIMIBI family protein-coding genes. These results are consistent

386 with the hypothesis that CdrS is a specific regulator of the cell division ring and other putative
387 cell division-related functions.

388

389 **CdrL is a specific and direct regulator of the *cdrS-ftsZ2* operon.**

390 To further investigate how the *cdrS-ftsZ2* locus is regulated, we conducted protein-DNA binding
391 analysis by chromatin immunoprecipitation coupled to sequencing (ChIP-seq, see Methods).
392 The putative DNA binding protein CdrL is encoded directly upstream of the *cdrS-ftsZ2* operon
393 (Figure 1). Given this synteny and *cdrL* conditional co-expression with *cdrS-ftsZ2*, we reasoned
394 that CdrL may play a role in regulation of the locus. The FLAG epitope was integrated into the
395 chromosome at the 3' end of the native *cdrL* locus, with the resultant strain encoding a C-
396 terminal CdrL-FLAG translational fusion (Methods, Supplementary Table 5). In both mid-
397 logarithmic and stationary phases of growth, the region upstream of the *cdrS-ftsZ2* locus was
398 the only significant CdrL binding site reproducibly detected throughout the entire genome
399 (Figure 7). Significant binding at other locations was detected in some ChIP-seq samples.
400 However, these binding events were detected in redundant genomic regions, poor coverage in
401 the input sample, or not detected across replicate samples (Supplementary Figure S7). We
402 conclude that CdrL is a specific and direct regulator of *cdrS-ftsZ2* expression, binding
403 exclusively and reproducibly upstream of this locus.

404

405 ***cdrS* homologs in other Haloarchaea are required for maintaining cell shape and size.**

406 The *cdrS-ftsZ2* locus was detected in all known Haloarchaeal genomes (Figure 1), and protein
407 alignments showed strong conservation in model species across the clade (Figure 8A). The
408 beta-sheet region of the RHH protein was perfectly conserved, and only 9 residues of the alpha
409 helical regions varied across these species (Figure 8A). Given this strong conservation, we
410 hypothesized that CdrS plays a conserved functional role as a regulator of cell division across
411 hypersaline-adapted archaeal species. However, multiple attempts to delete *cdrS* in the

412 genetically amenable model species *Haloferax volcanii* [HVO_0582; HVO_RS07500] and
413 *Haloferax mediterranei* [HFX_0561, HFX_RS02725] were unsuccessful despite using a
414 selection-counterselection scheme routinely used in the field (Allers et al., 2004; Liu et al.,
415 2011). In *Hfx. volcanii*, 48 clones were screened by PCR across 3 transformations, and 292
416 clones across 4 transformations in *Hfx. mediterranei*. No *Hfx. mediterranei* knockout candidate
417 clones were detected. Eight *Hfx. volcanii* candidates were identified; however, Sanger
418 sequencing detected many point mutations throughout the locus. These results, corroborated by
419 a parallel study on *cdrS* in *Hfx. volcanii* (Vogel et al, 2020), suggest that *cdrS* is required for
420 viability under laboratory conditions in these species.

421 Instead, we overexpressed *cdrS* in these species to investigate how its role in cell
422 division is conserved. Both *cdrS^{Hv}* and *cdrS^{Hm}* were cloned downstream of the strong
423 constitutive *Hbt. salinarum* rRNA P2 promoter in vector pJAM202c and transformed into the
424 respective *Haloferax* species (Kaczowka and Maupin-Furlow, 2003). Overnight cultures of the
425 empty vector control strain grew well under selection, reaching high final cell densities (OD600
426 2.0-3.5; Figure 8B). In contrast, both *Haloferax* species carrying the *cdrS* overexpression
427 plasmid (*cdrS+*) exhibited significant growth inhibition (Figure 8B), indicating the importance of
428 tight control of *cdrS* expression levels. In both species, severe morphological defects were
429 observed in *cdrS*-overexpression strains compared to the disc-shaped control strain (Figure
430 8C). *Hfx. volcanii* *cdrS+* overexpression cell area was, on average, 3-fold larger than the
431 corresponding empty vector control strain (Welch's $p < 2.2 \times 10^{-16}$; effect size 1.355 (large);
432 Figure 8D; Table 3). *cdrS+* cells were also 3-fold longer than the disc-shaped control,
433 suggesting that the area increase was primarily due to elongation of the cell body. However,
434 thickness varied along the length of the *cdrS+* cells, often resulting in club-like shapes (Figure
435 8C). Similar to *Hbt. salinarum* Δ *cdrS* (Figures 2, 4), *cdrS+* cell area was more variable than that
436 of the empty vector cells, suggesting impaired regulation (Table 3, Figure 8D). Similar results
437 were obtained with the *Hfx. mediterranei* system, with 3-fold larger cell area and increased

438 variance observed relative to the control strain (Welch's $p < 2.2 \times 10^{-16}$; effect size 1.536 (large);
439 Table 3; Figure 8C, D). However, unlike $cdrS^{Hv+}$ overexpression cells, the $cdrS^{Hm+}$ cells were, on
440 average, only 1.5-fold longer than control cells. We observed that $cdrS+$ in *Hfx. mediterranei*
441 exhibited two major forms, one with an increase in cell area across two planes, generating
442 plate-like cells, and the other elongated and/or club-shaped (Figure 8C). Taken together, these
443 data suggest that CdrS is required for maintaining wild type disc-like cell shape and size in other
444 halophilic archaea. Given the similarity of these phenotypes with those of *Hbt. salinarum*, these
445 data are consistent with the hypothesis that CdrS^{Hv} and CdrS^{Hm} are also required for cell
446 division regulation but may play an additional role in maintaining cell shape and viability.

447

448 **Discussion**

449 Growth and division are precisely controlled to ensure the coordination of cellular events.
450 However, such regulation thus far has been unexplored in archaea. In the current study, we
451 identify and characterize the highly conserved CdrSL gene regulatory network (GRN).
452 Quantitative microscopy on cells from bulk culture and single cell time lapse images
453 demonstrates the requirement of CdrS for cell division in the model archaeal species *Hbt.*
454 *salinarum* (Figures 2-5). Specifically, deletion of *cdrS* or *ftsZ2* impairs cell division but does not
455 affect cell elongation rate, providing strong evidence that the CdrS regulatory system and FtsZ2
456 itself are required for coupling cell growth and division. Intriguingly, while FtsZ2 is absolutely
457 required for cell division, a small subset of $\Delta cdrS$ cells are able to divide (Figures 4, 5), hinting
458 that other mechanisms regulating archaeal cell division await discovery.

459 Our genetic evidence, transcript profiling, and protein-DNA binding suggest that
460 regulation is achieved via CdrS transcriptional activation of genes that encode proteins
461 predicted to function in critical aspects of cell division (Figures 6, 7). These include the cell
462 division ring (FtsZ2), cell shape maintenance (CetZ1; (Duggin et al., 2015)), and DNA
463 partitioning (SojABE). One caveat is that the *soj* genes are encoded on the *Hbt. salinarum*

464 pNRC100 and pNRC200 megaplasmids. These genomic elements are subject to frequent copy
465 number variation (Dulmage et al., 2018), so further evidence is needed to determine the
466 definitive mechanism by which CdrS affects their expression. Nevertheless, CdrS exerts its
467 effect on these genes in early log phase and following release from a chemical cell division
468 block, suggesting that CdrS acts during the transition from stasis to growth. CdrL provides a
469 second level of regulation by binding the region upstream of the *cdrS-ftsZ2* operon (Figure 7).
470 Together these data suggest a mechanism by which the CdrSL system controls cell division.

471 Here we show that FtsZ proteins have distinct but interrelated roles in cell division, which
472 are reflected in their differential regulation by CdrS (Figures 4-6). Previous work in halophilic
473 archaea suggest that a large class of tubulin-like proteins, FtsZ and CetZ, function in cell
474 division and cell morphology, respectively (Aylett and Duggin, 2017; Duggin et al., 2015). Here
475 we build on this knowledge, demonstrating that *ftsZ1* expression levels are independent of CdrS
476 regulation, and remain fairly constant at different growth rates (Figure 6). FtsZ1 rings form just
477 prior to cell division events (Figure 5). In contrast, *ftsZ2* transcript levels fluctuate depending on
478 the presence of CdrS, growth phase, and chemical perturbations, indicating a growth-sensitive
479 mechanism of transcriptional regulation (Figure 6). Although *ftsZ2* can be deleted in *Hbt.*
480 *salinarum* (Figures 2-5, Supplementary Table 2), it is essential for triggering the constriction of
481 the cytokinetic ring during exponential growth, further suggesting condition-specific functions for
482 FtsZ2 (Figure 5). Therefore, the multiple copies of FtsZ within the Halobacteria, and likely other
483 Euryarchaeota, do not appear to be redundant but instead may represent a case of
484 subfunctionalization. CdrS plays a key role in regulating the interrelated but separate functions
485 of the two FtsZ proteins, as $\Delta cdrS$ cells fail to activate *ftsZ2* during rapid growth (early log
486 phase), delaying cell division (Figures 4-6). Given the independence of cell elongation from
487 regulation by CdrS and FtsZ2 (Figures 2-4), and that haloarchaeal cells grow by inserting new
488 surface-layer (S-layer) material at midcell (Abdul-Halim et al., 2020); cell elongation and

489 cytokinesis may occur at the same cell region (Z ring), but may be temporally sequential and
490 separately regulated. CdrS appears to play a key role in coordinating these events.

491 Our results evoke a function for archaeal FtsZ proteins analogous with those required for
492 chloroplast division in land plants and some bacterial species. In chloroplasts, FtsZ1 and FtsZ2
493 have interrelated but non-redundant functions in cell division. The two FtsZ homologs form co-
494 polymers, with one thought to be involved in divisome structure, the other involved in dynamic
495 GTP turnover and constriction (TerBush et al., 2013). Similarly, in the alpha-proteobacterium
496 *Agrobacterium tumifaciens*, although two FtsZ proteins co-polymerize at mid-cell, only one is
497 required for constriction (Howell et al., 2019). Recent results in *Hfx. volcanii* suggest co-
498 localization of FtsZ1 and FtsZ2 at mid-cell (Liao et al., 2020). Consistent with these multi-FtsZ
499 models of cell division, the defects observed here in *Hbt. salinarum* FtsZ1 ring assembly in the
500 absence of FtsZ2 or CdrS suggest that FtsZ1 and FtsZ2 could also form co-polymers whose
501 stoichiometry is balanced by CdrS regulation.

502 The CdrS-FtsZ2 system is widely conserved across the Archaea at both the protein
503 structural and functional levels, with CdrL restricted to the Halobacteria (Figures 1,8). At the
504 level of primary structure, the ribbon-helix-helix (RHH) CdrS protein is detected in every major
505 known taxonomic group of archaea except DPANN (Figure 1). Further, RHH protein CdrL is
506 encoded in all sequenced members of Halobacteria, though often only annotated by the C-
507 terminal double zinc ribbon (DZR) domain. The CdrS and CdrL clades are phylogenetically
508 distinct within the RHH superfamily (PF01402, Figure 1, Supplementary Figure S1), suggesting
509 independent evolutionary history. Restriction of *cdrL* to the Halobacteria further supports this
510 hypothesis. Therefore, we predict that the locus acquired *cdrL* after the divergence of
511 Methanomicrobial and Halobacterial ancestors.

512 CdrS is also conserved at the functional level, as we demonstrate that CdrS is required for
513 proper cell division across multiple species of haloarchaea, including *Hbt. salinarum*, *Hfx.*
514 *volcanii*, and *Hfx. mediterranei* (Figure 8). This was corroborated independently in a companion

515 study, which also demonstrated that *cdrS* is an essential gene whose product is required for cell
516 division in *Hfx. volcanii* (Vogel et al., 2020). Given the essentiality of *cdrS* in both *Haloferax*
517 species and the polyploidy of Halobacteria, we have included whole genome sequencing (WGS)
518 as an essential step of strain construction (Supplementary Table 2). Particularly with seemingly
519 essential genes, we have found WGS more sensitive than standard PCR and Sanger
520 sequencing in detecting all copies of a target gene as well as ruling out second site suppressor
521 mutations (see also (Zaretsky et al., 2019)). Taking our phylogenetic and genomics evidence
522 together, we conclude that the CdrS-FtsZ2 system is widely conserved and important for cell
523 division across hypersaline adapted archaea.

524

525 **Methods**

526 Bioinformatic prediction and phylogenetic analysis.

527 Protein structural predictions of CdrS and Cdrl were conducted using the Phyre2 server (Kelley
528 et al., 2015) using default parameters, access date 2/12/2020. The top hit reported in the text
529 was the structure CopG DNA binding domain of the NikR transcription factor [protein databank
530 identifier 2BJ7 [PDB, rscb.org, access date 2/12/2020, original structure published in (Chivers
531 and Tahirov, 2005)]. Protein primary sequence predictions are reported for protein families
532 [PFAM; pfam.xfam.org; (El-Gebali et al., 2019); access date 2/12/2020], e-values of significance
533 of the matches for each protein were found in the *Hbt. salinarum* genome database ((Ng et al.,
534 2000); <https://baliga.systemsbiology.net/projects/halobacterium-species-nrc-1-genome/>). Gene
535 expression correlations were calculated and visualized (Figure 1C) using the corplot and
536 psychometric packages in the RStudio coding environment, R version 3.6.1. Synteny of the
537 *cdrL-cdrS-ftsZ2* ((Ng et al., 2000) identifiers VNG0195H-VNG0194H-VNG0192G; NCBI
538 identifiers VNG_RS00800-VNG_RS00795-VNG_RS00790) locus was determined using the
539 SyntTax database using default parameters [<https://archaea.i2bc.paris-saclay.fr/SyntTax/>;
540 accessed January 2019; (Oberto, 2013)]. All 384 archaeal genomes housed in the SyntTax

541 database were searched with the FtsZ2 (VNG0192G) protein sequence of *Hbt. salinarum*.
542 Detection of locus homologs and synteny for those genomes not included in SyntTax
543 (Bathyarchaeota, Korarchaeota, Asgard, 20 genomes) were found using NCBI genomes
544 database using BLAST to detect FtsZ2 homologs (sequence similarity >200 bits). Subsequent
545 manual inspection in the NCBI genome browser (<https://www.ncbi.nlm.nih.gov/genome/>)
546 detected synteny of the locus. Locus identifiers for *cdrS-ftsZ2* across 93 archaeal genomes; and
547 UniProt protein identifiers for FtsZ-family homologs (including FtsZ and CetZ-like proteins) in the
548 absence of *cdrS* across 1,497 genomes are given in Supplementary Table 1. CdrS protein
549 sequence alignments shown in Figure 8 were conducted using Clustal Omega using default
550 parameters in the DNAsstar MegAlign software package.

551
552 Strains, plasmids, and primers.
553 *Halobacterium salinarum* NRC-1 (ATCC 700922) was the wild-type used in this study. Gene
554 deletions and chromosomal integrations were performed using two-stage selection and
555 counterselection homologous recombination in the Δ pyrF (Δ ura3) strain isogenic parent
556 background as described (Peck et al., 2000), updated in (Wilbanks et al., 2012), and subject to
557 whole genome resequencing here (Supplementary Table 2, Sequence Read Archive
558 PRJNA614648). Plasmids were constructed using isothermal assembly (Gibson, 2011) and
559 propagated in *E. coli* NEB5 α ; see primer list for details (Supplementary Table 6). Primers were
560 ordered from Integrated DNA Technologies (Coralville, IA). Final strain genotypes were verified
561 using site-specific PCR and Sanger sequencing by Eton Biosciences, Inc (San Diego, CA) and
562 genomic DNA extraction followed by Illumina sequencing (see section below). Plasmids used in
563 cloning are presented in Supplementary Table 7 and resultant strains in Supplementary Table 5.

564 For overexpression studies, *Haloferax volcanii* DS2 and *Haloferax mediterranei*
565 ATCC33500 were the wild-type strains. Plasmids were constructed from pJAM809 using
566 restriction enzymes NdeI and KpnI to remove the resident ORF and replace with the *cdrS* gene

567 from each species. Δ pyrE2 derivatives of *Haloferax* species (Bitan-Banin et al., 2003; Liu et al.,
568 2011) were transformed with NEB5 α -propagated plasmid. Due to concerns about the higher
569 mutation rate in methylase-deficient *E. coli*, we opted not to passage plasmids through a *dam* $^{-}$
570 /*dcm* $^{-}$ strain as is commonly done (Dyall-Smith, 2009).

571

572 Media and growth conditions.

573 *Hbt. salinarum* strains were routinely grown using CM medium (250 g/L NaCl (Fisher Scientific);
574 20 g/L MgSO₄·7H₂O (Fisher Scientific); 3 g/L trisodium citrate (Fisher Scientific); 2 g/L KCl
575 (Fisher Scientific); 10 g/L Bacteriological Peptone (Oxoid); pH 6.8)). Media were supplemented
576 with 50 μ g/ml uracil (Sigma) to complement the uracil auxotropy of the Δ ura3 background.
577 During knockout and integrant strain construction, the first stage of selection was performed on
578 mevinolin (10 μ g/ml; AG Scientific) plates (CM with 20 g/L agar; Difco), and the second stage of
579 counterselection on 5-Fluoroorotic acid (300 μ g/ml; ChemImpex) were used in agar plates. All
580 growth was performed at 42°C and liquid culturing was shaken at 225 rpm under ambient light.
581 Self-replicating plasmids were maintained using 1 μ g/ml mevinolin in liquid culture. *E. coli* was
582 grown in LB with carbenicillin (50 μ g/ml; Sigma) to maintain plasmids. Maximum instantaneous
583 growth rates were calculated as described in (Sharma et al., 2012). Raw data are provided in
584 Supplementary Table 3.

585 For statistical analysis of OD vs CFU data shown in Figure 2, we noted that the slopes of
586 the regression lines were similar between Δ ura3 and each mutant, so we fit a linear model using
587 log₂(OD) and genotype to predict log₁₀(CFU). In a two-way ANOVA test, we found no evidence
588 of interaction between strain and OD vs CFU slope (Δ ura3 vs Δ cdrS: *p*-value = 0.225; Δ ura3 vs
589 Δ ftsZ2: *p*-value = 0.95). Therefore, a new model was fit that constrained equal slopes for the
590 regression line for each strain, allowing us to determine the difference in CFU/ml per unit
591 log₂(OD) between strains. These differences are reported in the text.

592

593 gDNA extraction and Illumina sequencing

594 *Hbt. salinarum* strains were grown to mid-logarithmic phase (OD₆₀₀ ~0.7) and 1 mL pelleted by
595 centrifugation. Pellets were stored at -20°C until processed. DNA was extracted using a phenol-
596 chloroform method. Briefly, pellets were lysed in dH₂O and treated with RNase A and
597 Proteinase K. DNA was extracted using phenol:chloroform:isoamyl alcohol (25:24:1) (Fisher
598 Scientific) in Phase Lock Gel tubes (QuantaBio) and ethanol precipitated. DNA pellet was
599 resuspended in modified TE buffer (10 mM Tris-HCl pH 8.0, 0.1 mM EDTA). Purified DNA was
600 quantified using a Nanodrop systems (Thermo Scientific) and sonicated in a Diagenode
601 sonicating water bath for 20 cycles on high. DNA quality was assessed by Bioanalyzer using a
602 High Sensitivity DNA chip (Agilent). Samples were submitted to Duke Center for Genomic and
603 Computational Biology core sequencing facility for adapter ligation with TruSeq (Illumina)
604 adapters and library amplification. Samples were pooled and run in a single lane on an Illumina
605 HiSeq 4000. 50 bp reads were assessed for quality using FastQC and adapter sequences
606 trimmed using Trim Galore and Cutadapt. Reads were aligned to *H. salinarum* NRC-1 genome
607 using Bowtie2 within the breseq package as described in (Deatherage and Barrick, 2014;
608 Zaretsky et al., 2019). breseq results were analyzed for incomplete gene conversion, SNPs, and
609 possible genomic rearrangements. Results are given in Supplementary Table 2, code freely
610 available on github <https://github.com/amyschmid/agIB-WGS-growth>, and raw data accessible
611 through the Sequence Read Archive (SRA) accession PRJNA614648.

612

613 Microscopy and quantitative analysis of cell morphology.

614 For microscopy of the deletion mutants, Δ cdrS, Δ ftsZ2, and Δ ura3 cells were collected at various
615 stages throughout the growth curve (see Supplementary Table 3 for OD600 at harvest) or in
616 response to aphidicolin treatment (see subsection below). In each experiment, 5 μ l each of 3-5
617 biological replicate culture samples were mounted on 1% agarose pads equilibrated with basal
618 salt buffer (CM medium without peptone) overnight at room temperature. Phase contrast images

619 were taken using a Zeiss Axio Scope.A1 microscope (Carl Zeiss, Oberkochen, Germany) and a
620 PixeLINK CCD camera (PixeLINK, Ottawa, Canada) at 40X magnification. Quantification of cell
621 length and area was calculated using the Fiji distribution (Schindelin et al., 2012) of ImageJ
622 (Rueden et al., 2017) and plug-in MicrobeJ (Ducret et al., 2016). For batch culture experiments
623 (overexpression and deletion mutants), the significance of the difference in cell size (length
624 and/or area) between mutant vs parent strain cells in was calculated using Welch's modified t-
625 tests on order quantile normalized data, and effect size of these differences calculated using
626 Cohen's D test. P-values were adjusted for multiple hypothesis testing using the Benjamini-
627 Hochberg correction.

628

629 *Aphidicolin treatment*

630 Cells were cultured to stationary phase, then sub-cultured in 20 mL of CM medium
631 supplemented with uracil to $OD_{600} \sim 0.01$. Subcultures were incubated at 42°C with 225 rpm
632 shaking until $OD_{600} \sim 0.3$, at which point 30 μM aphidicolin (30 mM stock in DMSO, Sigma) was
633 added. After 6 hours incubation with drug, the remaining culture was washed twice by
634 centrifugation (4500 x g, 6 minutes), resuspension in fresh CM, and incubation for 20 minutes at
635 42°C with 225 rpm shaking. Samples were harvested for microscopy (5 μl) prior to aphidicolin
636 addition, prior to washing, and 11 hours after washing (release) from aphidicolin treatment.
637 Rationale for time point selection was based on (Herrmann and Soppa, 2002). Mixed effects
638 ANOVA with Welch's post-hoc t-tests on ordinary quantile normalized data with Benjamini-
639 Hochberg correction were used to determine statistical significance of the differences between
640 strains and timepoints.

641 *Microscopy of overexpression strains across species of halophiles*. Five biological replicate
642 overnight cultures *Hfx. volcanii* strain H26 harboring the pAKS78 plasmid and *Hfx. mediterranei*
643 WR510 harboring the pAKS77 plasmid were grown in rich Hv-YPC medium. Significance of the

644 difference between *cdrS*⁺ overexpression strain cells and empty vector control strain in each
645 species was calculated as described above for knockout mutants and aphidocolin experiments.

646

647 Single cell microfluidics time lapse microscopy

648 *Strains and growth conditions.* All strains analyzed in the mother machine experiments were
649 streaked fresh from -80°C stocks and inoculated in 50 mL of CM supplemented with uracil in
650 beveled flasks and grown at 42°C to OD₆₀₀ 0.6-0.8 before loading into the microfluidic chip.

651

652 *Microfluidic chip fabrication.* The microfabrication of the master mold used to create the
653 microfluidic chip used in our mother machine experiments was as previously described
654 in (Norman et al., 2013) except that the second, wider layer in the cell chambers meant to
655 enhance growth was not necessary to maintain the cell's growth over the timescale of the
656 current experiment. Specifically, to fabricate the microfluidic device, the features were molded
657 into a piece of polydimethylsiloxane (PDMS) by pouring dimethyl siloxane monomer (Dow
658 SYLGARD 184 Silicone Elastomer Base) mixed with a curing agent (Dow SYLGARD 184
659 Silicone Curing agent) in a 10:1 ratio on top of the master mold, followed by degassing under a
660 vacuum, and curing the set-up overnight at 65°C. The solidified PDMS piece was then peeled
661 from the master and cut into approximately 1.5 x 1.5 cm chips. Access holes for each of the
662 feeding channels were punched using a 0.75 mm biopsy punch (WPI). The PDMS chip was
663 then bonded to a KOH-cleaned 22 x 60 mm glass coverslip (VWR, no. 1.5) by oxygen plasma
664 treatment at 200 mTorr of pressure and 30 Watts for 30 seconds in a PE-50 compact benchtop
665 plasma cleaning system (Plasma Etch). Chips were baked at 65°C for at least 1 hour before
666 use.

667

668 *Loading Hbt. salinarum cells into microfluidic devices.* CM medium supplemented with 1%
669 bovine serum albumin (BSA) was manually injected into the microfluidic device using a 1 mL

670 syringe and incubated for 1 hour. To avoid the crystallization of salt from the media,
671 microcapillary pipet tips with CM media were left attached to the access holes of the chip. Prior
672 to loading, cell cultures were filtered through a 40 μm cell strainer (EASYstrainer, Greiner Bio-
673 One) to remove large salt crystals formed during culture growth. Cultures were then centrifuged
674 at 3000 $\times g$ for 5 minutes and concentrated to a final volume of 100 μL . Cells were manually
675 loaded into the main flow channel of the microfluidic mother machine device using a 1 mL
676 syringe. To increase the number of cells in the mother machine wells, the chip was briefly
677 centrifuged in a VWR Galaxy mini centrifuge. The microfluidic chip was then connected to
678 automatic Harvard Apparatus syringe pumps by Tygon tubing (Saint-Gobain, ID 0.020 in) and
679 blunt end dispense tips (Fisnar, 21 gauge, 1 inch). Fresh medium was continuously pumped at
680 1-2 $\mu\text{L}/\text{min}$ at 37°C for 30 minutes to allow cells to further propagate within the mother machine
681 wells. The system was subsequently moved to the microscope for data collection.

682

683 *Microscopy.* Cells in the mother machine were imaged in a Nikon Eclipse Ti microscope with a
684 6.5 μm pixel CMOS Hamamatsu camera and a Nikon 100X NA 1.45 phase-contrast objective.
685 Images were captured every 20 minutes for 1-2 days. Exposure times for both phase contrast
686 and fluorescence were 200 milliseconds. Epi-illumination was provided by a fiber coupled
687 Agilent launch for 488nm to image msfGFP-FtsZ1 in AKS137, AKS170 and AKS196.

688

689 *Single-cell growth analysis from the mother machine.* Using phase-contrast images; 80 Δura3 ,
690 108 ΔcdrS , 110 ΔftsZ2 cells were manually traced in Fiji image analysis software (Schindelin et
691 al., 2012) to determine cell area through pixel counting. These measurements were used to
692 determine the cell area doubling (elongation) rates by fitting an exponential curve to the single
693 cell growth rate graphs of change of the cell area over time. *Hbt. salinarum* has previously been
694 shown to grow exponentially through single cell analysis (Eun et al., 2018). The area at birth
695 was calculated from images immediately following complete separation of daughter cells. The

696 area during division was determined by adding the area of the two daughter cells immediately
697 after division. The division site placement was determined by treating each pole separately, then
698 calculating the ratio of each daughter cell to its corresponding parent. Single cell measurements
699 shown in the figures were plotted using ggplot2 (Wickham, 2016) in the RStudio coding
700 environment. Statistical analyses were conducted using the sjstats (Ludecke, 2020) and rstatix
701 packages in RStudio. Significance of differences in doubling time between strains were modeled
702 using 3-way ANOVA, with effect sizes calculated using an η^2 test. Significance of the
703 differences between mother or daughter cells in the parent and mutant strains were calculated
704 using Welch's modified t-tests on order quantile normalized data, and effect size of these
705 differences calculated using Cohen's D test. P-values were adjusted for multiple hypothesis
706 testing using the Benjamini-Hochberg correction.

707

708 Gene expression analysis with NanoString.

709 To collect RNA across the growth curve, culture aliquots were collected from flask cultures at 4
710 phases of growth (early logarithmic, mid-logarithmic, early stationary phase, and late stationary
711 phase. 50 ml of culture was sampled at low OD₆₀₀ (~0.05), 2 ml at higher OD₆₀₀ (~2.0). RNA was
712 collected following 6 hours of aphidicolin treatment and 11 hours after release as described
713 above. Culture samples were centrifuged at 21,000 x g for 2 minutes, supernatant removed, and
714 immediately frozen in liquid nitrogen. Pellets were stored at -80°C overnight and RNA was
715 purified using an Absolutely RNA Miniprep kit per manufacturer's instructions (Aglient, Santa
716 Clara, CA). To verify the lack of DNA contamination, end point PCR was conducted for 30
717 cycles on 200 ng of RNA sample using primers given in Supplementary Table 6. RNA quality
718 was determined using a Bionanalyzer and RNA Nano 6000 chip according to manufacturer's
719 instructions (Aglient, Santa Clara, CA).

720 Gene expression was quantified using NanoString detection and a custom probe
721 Codeset (Supplemental table 5; (Geiss et al., 2008)). Probes were designed to target 23 genes

722 predicted to encode proteins involved in cytoskeletal and growth functions. One hundred
723 nanograms of RNA was hybridized and quantified using the nCounter instrument by the Duke
724 Microbiome Shared Resource core facility. Counts were normalized using three housekeeping
725 genes (*eif1a2* [VNG_RS06805], *coxA2* [VNG_RS02595], *VNG1065C* [VNG_RS04150]) and
726 NanoString nSolver software, then further normalized to expression in the NRC-1 wild type
727 control. Significance of this relative normalized differential expression between the parent and
728 Δ *cdrS* strain was assessed using the maSigPro package (Conesa et al., 2006) in the R
729 Bioconductor coding environment with default parameters except: Q-value 0.01; alfa 0.01; R-
730 squared cutoff 0.7. We conducted Benjamini-Hochberg correction for multiple hypothesis testing
731 in the context of the maSigPro package. All raw and normalized data and probe sequences are
732 available in Supplementary Table 4. R code is given in the github repository associated with this
733 study <https://github.com/amyschmid/cdr>.

734

735 ChIP-seq experiment and analysis.

736 Triplicate cultures of strains AKS113 (CdrL tagged at the C-terminus with the FLAG epitope,
737 Supplementary Table 5) and Δ *ura3* control strain were grown until stationary phase and
738 subcultured in rich media supplemented with uracil. At mid-log phase ($OD_{600} \sim 0.15$) and early
739 stationary phase ($OD_{600} \sim 1.8$), cultures were crosslinked and immunoprecipitated as described
740 (Wilbanks et al., 2012) with the following exceptions: cultures were crosslinked with 1%
741 formaldehyde for 30 minutes at room temperature; immuno precipitations were conducted using
742 Dynabead magnetic beads (Thermo-Fisher product 10002D) conjugated with anti-FLAG
743 (Abcam ab1162) anti-rabbit monoclonal antibody at 1:250 dilution. DNA concentration was
744 determined by Nanodrop (Thermo Scientific). Libraries were constructed using the KAPA Hyper
745 Prep kit and Illumina TruSeq adapters. DNA library quality was assessed by Bioanalyzer using a
746 High Sensitivity DNA chip (Agilent). Samples were pooled and run in a single lane on an
747 Illumina HiSeq 4000 (Duke Sequencing and Genomics Technologies core). 50 bp single reads

748 were assessed for quality using FastQC (www.bioinformatics.babraham.ac.uk) and adapter
749 sequences trimmed using Trim Galore (www.bioinformatics.babraham.ac.uk) and Cutadapt
750 (Martin, 2011). Resultant sequences were aligned to *H. salinarum* NRC-1 genome (RefSeq:
751 NC_002607.1, NC_002608.1, NC_001869.1) using Bowtie2 (Langmead and Salzberg, 2012).
752 Subsequent analyses were conducted in the R Bioconductor coding environment, and all
753 associated code is freely available at <https://github.com/amyschmid/cdr>. Peaks were called
754 using MOSAiCS (Chung et al., 2016) from sorted bam files with arguments: fragment length
755 200, bin size 200, read capping 0, analysis type IO, background estimate rMOM, signal model
756 2S, FDR 0.01. Peaks reproducible across two of three biological replicate samples were
757 integrated using the DiffBind (Stark, 2011) and ChIPQC (Carroll et al., 2014) packages. Peak
758 locations were associated with annotated genes using the IRanges Bioconductor package
759 (Lawrence et al., 2013). Data were visualized for the figures using the R package trackViewer
760 (Ou and Zhu, 2019). R package version numbers are given in the github repository at
761 <https://github.com/amyschmid/cdr>. Raw and analyzed data are available through GEO
762 accession GSE148065.

763

764 **Data availability**

765 All gene expression and ChIP-seq data from this study are available to the public through GEO
766 accession GSE148065. Whole genome resequencing data are available via Sequence Read
767 Archive Project PRJNA614648. Code and datasets are available on the GitHub repository
768 <https://github.com/amyschmid/cdr>. All supplementary figures, tables, and movies are available
769 on FigShare via <https://doi.org/10.6084/m9.figshare.12195081.v1>.

770

771

772

773 **Table 1.** Cell area geometric means during batch culture ($\mu\text{m}^2 \pm \sigma$).

		growth phase	early exponential	mid-exponential	early stationary	stationary
length	$\Delta ura3$	5.39 \pm 3.08	5.72 \pm 3.15	5.27 \pm 2.76	5.09 \pm 2.99	
	$\Delta cdrS$	8.67 \pm 8.70	7.52 \pm 8.02	5.23 \pm 5.48	5.48 \pm 4.15	
	$\Delta ftsZ2$	9.56 \pm 10.04	7.65 \pm 9.46	5.75 \pm 6.52	5.24 \pm 4.65	
area	$\Delta ura3$	6.33 \pm 4.12	6.73 \pm 5.48	5.94 \pm 4.42	6.21 \pm 4.90	
	$\Delta cdrS$	9.50 \pm 11.74	8.97 \pm 16.31	6.16 \pm 9.19	6.40 \pm 7.53	
	$\Delta ftsZ2$	9.76 \pm 16.09	7.18 \pm 14.12	6.14 \pm 10.90	5.64 \pm 8.64	

774

775

776 **Table 2.** Geometric means of cell lengths during aphidicolin addition and removal.

Strain	Time 0	6 h post drug addition	11 h post drug removal
$\Delta ura3$	4.42 \pm 2.77	7.44 \pm 3.81	4.31 \pm 3.63
$\Delta cdrS$	8.73 \pm 9.05	9.43 \pm 8.55	6.53 \pm 7.07
$\Delta cdrS ura3::P_{cdrS}-cdrS$	6.45 \pm 7.68	9.52 \pm 7.42	4.77 \pm 5.54

777

Table 3. Summary statistics of cell area and length in *Haloflexax* species

Area					
Species	Strain	geometric mean	median	σ	n
<i>Hfx. volcanii</i>	<i>cdrS+</i>	15.71926845	17.785675	49.54274	1105
<i>Hfx. volcanii</i>	vector	5.903139311	5.925052	2.964239	2554
<i>Hfx. mediterranei</i>	<i>cdrS+</i>	11.64842328	11.634059	17.05703	1253
<i>Hfx. mediterranei</i>	vector	4.298809837	4.3827778	1.600874	2291
Length					
		geometric mean	median	σ	n
<i>Hfx. volcanii</i>	<i>cdrS+</i>	9.031154158	10.20501	8.200973	1105
<i>Hfx. volcanii</i>	vector	3.25569573	3.1692971	1.30773	2554
<i>Hfx. mediterranei</i>	<i>cdrS+</i>	5.32907322	5.2788867	3.555722	1253
<i>Hfx. mediterranei</i>	vector	2.619884171	2.6185364	0.547168	2291

778

779

780

781 **Acknowledgments**

782 Funding for this project was provided for NSF MCB-1651117 and MCB-1417750 to AKS, and
783 Wellcome 203276/Z/16/Z and NIH DP2AI117923 to ECG. Special thanks to Ana Sofía Uzsoy
784 at the North Carolina School of Science and Math for assistance with cloning and growth curve
785 CFU quantification. We acknowledge the excellent support of Nicolas Devos at the Duke
786 Sequencing and Genomic Technologies Core Facility and Holly Dressman at the Duke
787 Microbiome Center Shared Resource. Thanks to Schmid lab members Rylee Hackley and
788 Sungmin Hwang for their comments on the manuscript.

789

790 **Figure legends**

791 **Figure 1. *cdrS* and *ftsZ2* comprise a polycistronic locus conserved throughout archaeal**
792 **genomes.** (A) Locus organization of *cdrL*, *cdrS*, and *ftsZ2* genes (*VNG_RS00800* -
793 *VNG_RS00790*; *VNG0195H*-*VNG0192G*). Genes are drawn to scale, with chromosomal
794 coordinates and scale bar shown below the locus diagram. (B) \log_{10} gene expression data from
795 1,154 normalized microarray experiments over various conditions and genetic backgrounds. X-
796 axis indicates the transcriptome profile number across multiple growth and stress conditions
797 (Brooks et al., 2014; Dulmage et al., 2018). Y-axis represents normalized \log_{10} gene expression
798 ratio relative to the wild type control under optimum growth conditions (mid-logarithmic phase,
799 rich CM medium, 37°C, 225 rpm shaking). (C) Gene expression under subsets of conditions in
800 which *cdrL* is not co-expressed (left) or is co-expressed (right) with *cdrS* and *ftsZ2*. Axes are as
801 in panel C. (D) Co-occurrence of *ftsZ2* and *cdrS* in the major archaeal lineages (Hug et al.,
802 2016; Raymann et al., 2015; Spang et al., 2017). Light purple boxes indicate clades with
803 genomes found to encode at least one FtsZ protein but no CdrS (see also Supplementary Table

804 1). Blue and dark purple boxes indicate clades with genomes that encode genes homologous to
805 *cdrS* and *ftsZ2* in synteny (see also Supplementary Figure S1).

806

807 **Figure 2. CdrS, and FtsZ2 are required for maintaining cell size and division in batch**
808 **culture but are dispensable for growth rate.** (A) Area of individual cells during early
809 exponential phase across Δ *ura3* (black), Δ *cdrS* (blue), and Δ *ftsZ2* (purple) strains. Median area
810 for Δ *ura3* is indicated in black dashed line. Gray shading indicates 1 standard deviation flanking
811 the Δ *ura3* median in both directions. Insets: Representative phase-contrast micrographs of the
812 Δ *ura3* parent strain and mutants during early exponential growth. White scale bar is 10 μ m. (B)
813 Growth curve for all strains in rich media with aerobic conditions measured using optical density
814 at 600 nm. Solid lines represent the mean of three independent biological replicate samples and
815 shaded regions represent 95% confidence intervals. Black, Δ *ura3*; blue, Δ *cdrS*; purple, Δ *ftsZ2*.
816 (C) Correlation of cell concentrations by CFUs per ml and OD₆₀₀. Dots in each panel represent
817 quantification at multiple time points sampled from three replicate exponentially growing batch
818 cultures for each strain. Solid lines indicate the linear regression fit to the data points with
819 shaded regions representing 95% confidence interval. Colors are consistent with panels A and
820 B.

821

822 **Figure 3. Δ *cdrS* is insensitive to cell cycle inhibitor aphidicolin.** Cell area distributions are
823 shown for the Δ *ura3* parent strain (A), Δ *cdrS* strain (B), and the complementation strain (C). As
824 shown in the legend: before drug addition (blue), after 6 hours of exposure to aphidicolin (pink),
825 and 11 hours after removing drug by washing (orange). Dotted lines indicate the geometric
826 mean for each timepoint.

827

828 **Figure 4. CdrS is required for division accuracy but not elongation.** (A) Doubling time
829 frequency plots for $\Deltaura3$ (black line), $\DeltaftsZ2$ (purple line), and \DeltacdrS (green line). Legend
830 colors are consistent throughout the figure. (B) Heatmap depicting the density distributions of
831 division ratios for $\Deltaura3$ (top) and \DeltacdrS (bottom). Cool colors represent low density, hot colors
832 high density (see scale at right). Raw data dot plot shown below. Vertical crossbar represents
833 the geometric mean. (C) Dot plot depicting area of mother cells at the time of division. Crossbar
834 represents the median. (C) Dot plot depicting area of daughter cells immediately following
835 division. Raw data dot plot shown below. Crossbar represents the median.

836

837 **Figure 5. CdrS is important for triggering cytokinesis.** (A) Montage of a representative
838 $\Deltaura3$ cell growing in the mother machine. Pink vertical bar indicates the helical assembly of the
839 division ring, and pink arrows indicate the division site just prior and just after division. Montage
840 corresponds with Supplementary Movie SM2. (B) Montage of a representative \DeltacdrS cell
841 growing and undergoing polar division. Yellow arrow represents a division ring forming that later
842 dissipates and does not result in division. Pink bar and arrow are as in panel A. Montage
843 corresponds with Supplementary Movie SM4a. (C) Montage of a representative \DeltacdrS cell that
844 does not divide in the time frame of the movie. Yellow arrows represent a division ring forming
845 and later dissipating, respectively. Montage corresponds with Supplementary Movie SM4b. For
846 all panels, time between each still image is 20 minutes and scale bars are 5 μm .

847

848 **Figure 6. CdrS is important for wild type expression levels of growth and cell division**
849 **genes.** (A) Nanostring gene expression over the growth curve. Points represent \log_{10}
850 normalized expression data. Shaded regions represent smoothed conditional means. (B)
851 Expression data in response to cell division block with aphidicolin. Labels on X-axis: aphid, gene
852 expression during aphidocolin block; release, expression following wash-out. Points represent
853 raw data, lines represent median.

854

855 **Figure 7. CdrL binds to the promoter region upstream of the *cdrS-ftsZ2* operon.** Raw
856 sequencing data for immunoprecipitated samples are shown by the black traces. Overlaid green
857 boxes represent genomic regions detected by the peak detection algorithm (see Methods) to be
858 significantly enriched for binding of CdrL relative to the input control. Y-axis scale represents
859 read counts. CdrL binding site is shown for logarithmic phase cells (top) and stationary phase
860 (bottom). Grey labeled boxes at bottom represent genes (reverse strand).

861

862 **Figure 8. CdrS is required for cell division across halophiles.** (A) Clustal Omega alignment
863 of protein sequences from halophilic archaeal model organisms. The GenBank protein
864 sequence identifiers for CdrS homologs are given at left. Species identifiers are as follows:
865 VNG, *Hbt. salinarum*; HLASA, *Halanaeroarchaeum sulfurireducens*; HAH, *Haloarcula hispanica*;
866 NMAG, *Natrialba magadii*; Nj7G, *Natrinema sp.* J7-2; HLAC, *Halorubrum lacusprofundi*; HBOR,
867 *Halogeometricum borinquense*; HFX, *Hfx. mediterranei*; HVO, *Hfx. volcanii*. (B) Final cell
868 density measurements of overnight cultures of empty vector control strains (pJAM202c, black)
869 vs *cdrS*+ overexpression strains (blue) in *Hfx. mediterranei* (left, *HFX_0561*, pAKS77) and *Hfx.*
870 *volcanii* (right, *HVO_0582*, pAKS78). (C) Phase contrast micrographs comparing empty vector
871 control to *cdrS*+ overexpression strains. Species and strain labels align in columns according to
872 labels in panel B. (D) Quantification of cell area comparing the empty vector control strain
873 (vector, black dots) to *cdrS* overexpression strain (*cdrS*+, blue dots) in *Hfx. mediterranei* (left
874 panel) and *Hfx. volcanii* (right panel). Three large *cdrS*+ outlier cells in *Hfx. mediterranei* (area
875 218.44, 209.22, 221.86 μm^2) are not shown for figure clarity. Crossbar indicates the median cell
876 area.

877

878 **Guide to supplementary material.**

879 Supplement can be accessed via the FigShare repository associated with this study at
880 <https://doi.org/10.6084/m9.figshare.12195081.v1>.

881

882 **Supplementary text.** Supplementary figure legends and Supplementary Tables 4-7.

883

884 **Supplementary Figures**

885 **Supplementary Figure S1.** The *cdrS-ftsZ2* locus is conserved across Haloarchaea, and *cdrL* is
886 unique to halophiles.

887 **Supplementary Figure S2.** Cell lengths at mid-log and stationary phase.

888 **Supplementary Figure S3.** Micrographs of cells treated with aphidicolin.

889 **Supplementary Figure S4.** Design of mother machine microfluidics device.

890 **Supplementary Figure S5.** Growth curves for individual cells in the mother machine.

891 **Supplementary Figure S6.** Expression data for all genes tested by NanoString.

892 **Supplementary Figure S7.** CdrL-FLAG ChIP-seq data: all replicates, growth phases, and peak
893 detection.

894

895 **Supplementary movies**

896 **Supplementary Movie SM1.** Movie of Δ *cdrS* growing in the mother machine, then extruding out
897 of the channel by the end of the movie.

898 **Supplementary Movie SM2.** Movie of Δ *ura3* with *ftsZ1-msfGFP* integrated into the
899 chromosome.

900 **Supplementary Movie SM3.** Movie of Δ *ftsZ2* with *ftsZ1-msfGFP* integrated into the
901 chromosome.

902 **Supplementary Movie SM4a.** Movie of Δ *cdrS* with *ftsZ1-msfGFP* integrated into the
903 chromosome.

904 **Supplementary Movie SM4b.** Movie of Δ *cdrS* with *ftsZ1-msfGFP* integrated into the
905 chromosome.

906

907 **Supplementary Tables**

908 **Supplementary Table 1.** Archaeal genomes with UniProt identifiers for CdrS-FtsZ2 loci and
909 FtsZ homologs with no CdrS associated.

910 **Supplementary Table 2.** Whole genome resequencing data for Δ *cdrS* and Δ *ftsZ2*.

911 **Supplementary Table 3.** Raw growth data and colony forming units (CFU) corresponding to
912 main text Figure 2.

913 **Supplementary Table 4.** Nanostring raw and normalized data.

914 **Supplementary Table 5.** Strains used in this study.

915 **Supplementary Table 6.** Primers used in this study.

916 **Supplementary Table 7.** Plasmids used in this study

917

918

919

920

921

922

923

924

926 **References**

927

928 Abdul-Halim, M.F., Schulze, S., DiLucido, A., Pfeiffer, F., Bisson Filho, A.W., and
929 Pohlschroder, M. (2020). Lipid Anchoring of Archaeosortase Substrates and Midcell
930 Growth in Haloarchaea. *mBio* 11.

931 Adams, D.W., and Errington, J. (2009). Bacterial cell division: assembly, maintenance
932 and disassembly of the Z ring. *Nat Rev Microbiol* 7, 642-653.

933 Allers, T., Barak, S., Liddell, S., Wardell, K., and Mevarech, M. (2010). Improved strains
934 and plasmid vectors for conditional overexpression of His-tagged proteins in *Haloferax*
935 *volcanii*. *Appl Environ Microbiol* 76, 1759-1769.

936 Allers, T., Ngo, H.P., Mevarech, M., and Lloyd, R.G. (2004). Development of additional
937 selectable markers for the halophilic archaeon *Haloferax volcanii* based on the *leuB* and
938 *trpA* genes. *Appl Environ Microbiol* 70, 943-953.

939 Aylett, C.H.S., and Duggin, I.G. (2017). The Tubulin Superfamily in Archaea. *Subcell
940 Biochem* 84, 393-417.

941 Becker, E.A., Seitzer, P.M., Tritt, A., Larsen, D., Krusor, M., Yao, A.I., Wu, D., Madern,
942 D., Eisen, J.A., Darling, A.E., *et al.* (2014). Phylogenetically driven sequencing of
943 extremely halophilic archaea reveals strategies for static and dynamic osmo-response.
944 *PLoS Genet* 10, e1004784.

945 Bisson-Filho, A.W., Hsu, Y.P., Squyres, G.R., Kuru, E., Wu, F., Jukes, C., Sun, Y.,
946 Dekker, C., Holden, S., VanNieuwenhze, M.S., *et al.* (2017). Treadmilling by FtsZ
947 filaments drives peptidoglycan synthesis and bacterial cell division. *Science* 355, 739-
948 743.

949 Bitan-Banin, G., Ortenberg, R., and Mevarech, M. (2003). Development of a gene
950 knockout system for the halophilic archaeon *Haloferax volcanii* by use of the *pyrE* gene.
951 *J Bacteriol* 185, 772-778.

952 Brooks, A.N., Reiss, D.J., Allard, A., Wu, W.J., Salvanha, D.M., Plaisier, C.L.,
953 Chandrasekaran, S., Pan, M., Kaur, A., and Baliga, N.S. (2014). A system-level model
954 for the microbial regulatory genome. *Mol Syst Biol* 10, 740.

955 Carroll, T.S., Liang, Z., Salama, R., Stark, R., and de Santiago, I. (2014). Impact of
956 artifact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data. *Front Genet* 5,
957 75.

958 Chivers, P.T., and Tahirov, T.H. (2005). Structure of *Pyrococcus horikoshii* NikR: nickel
959 sensing and implications for the regulation of DNA recognition. *J Mol Biol* 348, 597-607.

960 Chung, D., Kuan, P.F., Welch, R., and Keles, S. (2016). mosaics: MOSAiCS (MOdel-
961 based one and two Sample Analysis and Inference for ChIP-Seq).

962 Conesa, A., Nueda, M.J., Ferrer, A., and Talon, M. (2006). maSigPro: a method to
963 identify significantly differential expression profiles in time-course microarray
964 experiments. *Bioinformatics* 22, 1096-1102.

965 Darnell, C.L., Tonner, P.D., Gulli, J.G., Schmidler, S.C., and Schmid, A.K. (2017).
966 Systematic Discovery of Archaeal Transcription Factor Functions in Regulatory
967 Networks through Quantitative Phenotyping Analysis. *mSystems* 2.

968 Deatherage, D.E., and Barrick, J.E. (2014). Identification of mutations in laboratory-
969 evolved microbes from next-generation sequencing data using breseq. *Methods Mol
970 Biol* 1151, 165-188.

971 Ducret, A., Quardokus, E.M., and Brun, Y.V. (2016). MicrobeJ, a tool for high
972 throughput bacterial cell detection and quantitative analysis. *Nat Microbiol* 1, 16077.

973 Duggin, I.G., Aylett, C.H., Walsh, J.C., Michie, K.A., Wang, Q., Turnbull, L., Dawson,
974 E.M., Harry, E.J., Whitchurch, C.B., Amos, L.A., *et al.* (2015). CetZ tubulin-like proteins
975 control archaeal cell shape. *Nature* 519, 362-365.

976 Dulmage, K.A., Darnell, C.L., Vreugdenhil, A., and Schmid, A.K. (2018). Copy number
977 variation is associated with gene expression change in archaea. *Microb Genom* 4.

978 Dyall-Smith, M. (2009). The HaloHandbook: Protocols for haloarchaeal genetics,
979 version 7.3.

980 El-Gebali, S., Mistry, J., Bateman, A., Eddy, S.R., Luciani, A., Potter, S.C., Qureshi, M.,
981 Richardson, L.J., Salazar, G.A., Smart, A., *et al.* (2019). The Pfam protein families
982 database in 2019. *Nucleic Acids Res* 47, D427-D432.

983 Eun, Y.J., Ho, P.Y., Kim, M., LaRussa, S., Robert, L., Renner, L.D., Schmid, A., Garner,
984 E., and Amir, A. (2018). Archaeal cells share common size control with bacteria despite
985 noisier growth and division. *Nat Microbiol* 3, 148-154.

986 Forterre, P., Elie, C., and Kohiyama, M. (1984). Aphidicolin inhibits growth and DNA
987 synthesis in halophilic arachaeabacteria. *J Bacteriol* 159, 800-802.

988 Geiss, G.K., Bumgarner, R.E., Birditt, B., Dahl, T., Dowidar, N., Dunaway, D.L., Fell,
989 H.P., Ferree, S., George, R.D., Grogan, T., *et al.* (2008). Direct multiplexed
990 measurement of gene expression with color-coded probe pairs. *Nat Biotechnol* 26, 317-
991 325.

992 Gibson, D.G. (2011). Enzymatic assembly of overlapping DNA fragments. *Methods*
993 *Enzymol* 498, 349-361.

994 Gomis-Ruth, F.X., Sola, M., Acebo, P., Parraga, A., Guasch, A., Eritja, R., Gonzalez, A.,
995 Espinosa, M., del Solar, G., and Coll, M. (1998). The structure of plasmid-encoded
996 transcriptional repressor CopG unliganded and bound to its operator. *EMBO J* 17, 7404-
997 7415.

998 Grant, C.R., Wan, J., and Komeili, A. (2018). Organelle Formation in Bacteria and
999 Archaea. *Annu Rev Cell Dev Biol* 34, 217-238.

1000 Haeusser, D.P., and Levin, P.A. (2008). The great divide: coordinating cell cycle events
1001 during bacterial growth and division. *Curr Opin Microbiol* 11, 94-99.

1002 Haeusser, D.P., and Margolin, W. (2016). Splitsville: structural and functional insights
1003 into the dynamic bacterial Z ring. *Nat Rev Microbiol* 14, 305-319.

1004 Hawkins, M., Malla, S., Blythe, M.J., Nieduszynski, C.A., and Allers, T. (2013).
1005 Accelerated growth in the absence of DNA replication origins. *Nature* 503, 544-547.

1006 Herrmann, U., and Soppa, J. (2002). Cell cycle-dependent expression of an essential
1007 SMC-like protein and dynamic chromosome localization in the archaeon *Halobacterium*
1008 *salinarum*. *Mol Microbiol* 46, 395-409.

1009 Howell, M., Aliashkevich, A., Sundararajan, K., Daniel, J.J., Lariviere, P.J., Goley, E.D.,
1010 Cava, F., and Brown, P.J.B. (2019). *Agrobacterium tumefaciens* divisome proteins
1011 regulate the transition from polar growth to cell division. *Mol Microbiol* 111, 1074-1092.

1012 Hug, L.A., Baker, B.J., Anantharaman, K., Brown, C.T., Probst, A.J., Castelle, C.J.,
1013 Butterfield, C.N., Hernsdorf, A.W., Amano, Y., Ise, K., *et al.* (2016). A new view of the
1014 tree of life. *Nat Microbiol* 1, 16048.

1015 Hussain, S., Wivagg, C.N., Szwedziak, P., Wong, F., Schaefer, K., Izore, T., Renner,
1016 L.D., Holmes, M.J., Sun, Y., Bisson-Filho, A.W., *et al.* (2018). MreB filaments align
1017 along greatest principal membrane curvature to orient cell wall synthesis. *Elife* 7.

1018 Ikegami, S., Taguchi, T., Ohashi, M., Oguro, M., Nagano, H., and Mano, Y. (1978).
1019 Aphidicolin prevents mitotic cell division by interfering with the activity of DNA
1020 polymerase-alpha. *Nature* 275, 458-460.

1021 Kaczowka, S.J., and Maupin-Furrow, J.A. (2003). Subunit topology of two 20S
1022 proteasomes from *Haloferax volcanii*. *J Bacteriol* 185, 165-174.

1023 Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., and Sternberg, M.J. (2015). The
1024 Phyre2 web portal for protein modeling, prediction and analysis. *Nat Protoc* 10, 845-
1025 858.

1026 Kelman, L.M., and Kelman, Z. (2014). Archaeal DNA replication. *Annual review of
1027 genetics* 48, 71-97.

1028 Koide, T., Reiss, D.J., Bare, J.C., Pang, W.L., Facciotti, M.T., Schmid, A.K., Pan, M.,
1029 Marzolf, B., Van, P.T., Lo, F.Y., *et al.* (2009). Prevalence of transcription promoters
1030 within archaeal operons and coding sequences. *Mol Syst Biol* 5, 285.

1031 Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2.
1032 *Nat Methods* 9, 357-359.

1033 Lawrence, M., Huber, W., Pages, H., Aboyou, P., Carlson, M., Gentleman, R., Morgan,
1034 M.T., and Carey, V.J. (2013). Software for computing and annotating genomic ranges.
1035 *PLoS Comput Biol* 9, e1003118.

1036 Liao, Y., Ithurbide, S., Löwe, J., and Duggin, I.G. (2020). Two FtsZ proteins orchestrate
1037 archaeal cell division through distinct functions in ring assembly and constriction.
1038 *bioRxiv*, 2020.2006.2004.133736.

1039 Lindas, A.C., and Bernander, R. (2013). The cell cycle of archaea. *Nat Rev Microbiol*
1040 11, 627-638.

1041 Liu, H., Han, J., Liu, X., Zhou, J., and Xiang, H. (2011). Development of pyrF-based
1042 gene knockout systems for genome-wide manipulation of the archaea *Haloferax*
1043 *mediterranei* and *Halocarcula hispanica*. *J Genet Genomics* 38, 261-269.

1044 Ludecke, D. (2020). sjstats: statistical functions for regression models (Version 0.17.9).

1045 Lundgren, M., and Bernander, R. (2007). Genome-wide transcription map of an
1046 archaeal cell cycle. *Proc Natl Acad Sci U S A* 104, 2939-2944.

1047 Makarova, K.S., and Koonin, E.V. (2010). Two new families of the FtsZ-tubulin protein
1048 superfamily implicated in membrane remodeling in diverse bacteria and archaea. *Biol
1049 Direct* 5, 33.

1050 Margolin, W., Wang, R., and Kumar, M. (1996). Isolation of an *ftsZ* homolog from the
1051 archaeobacterium *Halobacterium salinarium*: implications for the evolution of FtsZ and
1052 tubulin. *J Bacteriol* 178, 1320-1327.

1053 Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput
1054 sequencing reads. *EMBnet.journal* 17, 10-12.

1055 Martinez-Pastor, M., Tonner, P.D., Darnell, C.L., and Schmid, A.K. (2017).
1056 Transcriptional Regulation in Archaea: From Individual Genes to Global Regulatory
1057 Networks. *Annu Rev Genet* 51, 143-170.

1058 Ng, W.V., Kennedy, S.P., Mahairas, G.G., Berquist, B., Pan, M., Shukla, H.D., Lasky,
1059 S.R., Baliga, N.S., Thorsson, V., Sbrogna, J., *et al.* (2000). Genome sequence of
1060 *Halobacterium* species NRC-1. *Proc Natl Acad Sci U S A* 97, 12176-12181.

1061 Norman, T.M., Lord, N.D., Paulsson, J., and Losick, R. (2013). Memory and modularity
1062 in cell-fate decision making. *Nature* 503, 481-486.

1063 Oberto, J. (2013). SyntTax: a web server linking synteny to prokaryotic taxonomy. *BMC*
1064 *Bioinformatics* 14, 4.

1065 Orlando, D.A., Lin, C.Y., Bernard, A., Wang, J.Y., Socolar, J.E., Iversen, E.S.,
1066 Hartemink, A.J., and Haase, S.B. (2008). Global control of cell-cycle transcription by
1067 coupled CDK and network oscillators. *Nature* 453, 944-947.

1068 Ou, J., and Zhu, L.J. (2019). trackViewer: a Bioconductor package for interactive and
1069 integrative visualization of multi-omics data. *Nat Methods* 16, 453-454.

1070 Peck, R.F., Dassarma, S., and Krebs, M.P. (2000). Homologous gene knockout in the
1071 archaeon *Halobacterium salinarum* with *ura3* as a counterselectable marker. *Mol*
1072 *Microbiol* 35, 667-676.

1073 Perez-Rueda, E., and Janga, S.C. (2010). Identification and genomic analysis of
1074 transcription factors in archaeal genomes exemplifies their functional architecture and
1075 evolutionary origin. *Molecular biology and evolution* 27, 1449-1459.

1076 Poplawski, A., and Bernander, R. (1997). Nucleoid structure and distribution in
1077 thermophilic Archaea. *Journal of bacteriology* 179, 7625-7630.

1078 Raymann, K., Brochier-Armanet, C., and Gribaldo, S. (2015). The two-domain tree of
1079 life is linked to a new root for the Archaea. *Proc Natl Acad Sci U S A* 112, 6670-6675.

1080 Rueden, C.T., Schindelin, J., Hiner, M.C., DeZonia, B.E., Walter, A.E., Arena, E.T., and
1081 Eliceiri, K.W. (2017). ImageJ2: ImageJ for the next generation of scientific image data.
1082 *BMC Bioinformatics* 18, 529.

1083 Sauls, J.T., Li, D., and Jun, S. (2016). Adder and a coarse-grained approach to cell size
1084 homeostasis in bacteria. *Curr Opin Cell Biol* 38, 38-44.

1085 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
1086 Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source
1087 platform for biological-image analysis. *Nat Methods* 9, 676-682.

1088 Schinzel, R.a.B., K.J. (1984). Sensitivity of halobacteria to aphidicolin, an inhibitor of
1089 eukaryotic a-type DNA polymerases *FEMS Microbiology Letters* 25, 187-190.

1090 Schmid, A.K., Reiss, D.J., Kaur, A., Pan, M., King, N., Van, P.T., Hohmann, L., Martin,
1091 D.B., and Baliga, N.S. (2007). The anatomy of microbial cell state transitions in
1092 response to oxygen. *Genome research* 17, 1399-1413.

1093 Sharma, K., Gillum, N., Boyd, J.L., and Schmid, A. (2012). The RosR transcription
1094 factor is required for gene expression dynamics in response to extreme oxidative stress
1095 in a hypersaline-adapted archaeon. *BMC Genomics* 13, 351.

1096 Skotheim, J.M., Di Talia, S., Siggia, E.D., and Cross, F.R. (2008). Positive feedback of
1097 G1 cyclins ensures coherent cell cycle entry. *Nature* 454, 291-296.

1098 Spang, A., Caceres, E.F., and Ettema, T.J.G. (2017). Genomic exploration of the
1099 diversity, ecology, and evolution of the archaeal domain of life. *Science* 357.

1100 Stark, R.a.B., G. (2011). DiffBind: differential binding analysis of ChIP-Seq peak data.
1101 Bioconductor.

1102 Stevenson, K., McVey, A.F., Clark, I.B.N., Swain, P.S., and Pilizota, T. (2016). General
1103 calibration of microbial growth in microplate readers. *Sci Rep* 6, 38828.

1104 TerBush, A.D., Yoshida, Y., and Osteryoung, K.W. (2013). FtsZ in chloroplast division:
1105 structure, function and evolution. *Curr Opin Cell Biol* 25, 461-470.

1106 Todor, H., Sharma, K., Pittman, A.M., and Schmid, A.K. (2013). Protein-DNA binding
1107 dynamics predict transcriptional response to nutrients in archaea. *Nucleic Acids Res* 41,
1108 8546-8558.

1109 Tonner, P.D., Darnell, C.L., Engelhardt, B.E., and Schmid, A.K. (2017). Detecting
1110 differential growth of microbial populations with Gaussian process regression. *Genome*
1111 *Res* 27, 320-333.

1112 Walsh, J.C., Angstmann, C.N., Bisson-Filho, A.W., Garner, E.C., Duggin, I.G., and
1113 Curmi, P.M.G. (2019). Division plane placement in pleomorphic archaea is dynamically
1114 coupled to cell shape. *Mol Microbiol* 112, 785-799.

1115 Whitehead, K., Pan, M., Masumura, K., Bonneau, R., and Baliga, N.S. (2009). Diurnally
1116 entrained anticipatory behavior in archaea. *PLoS One* 4, e5485.

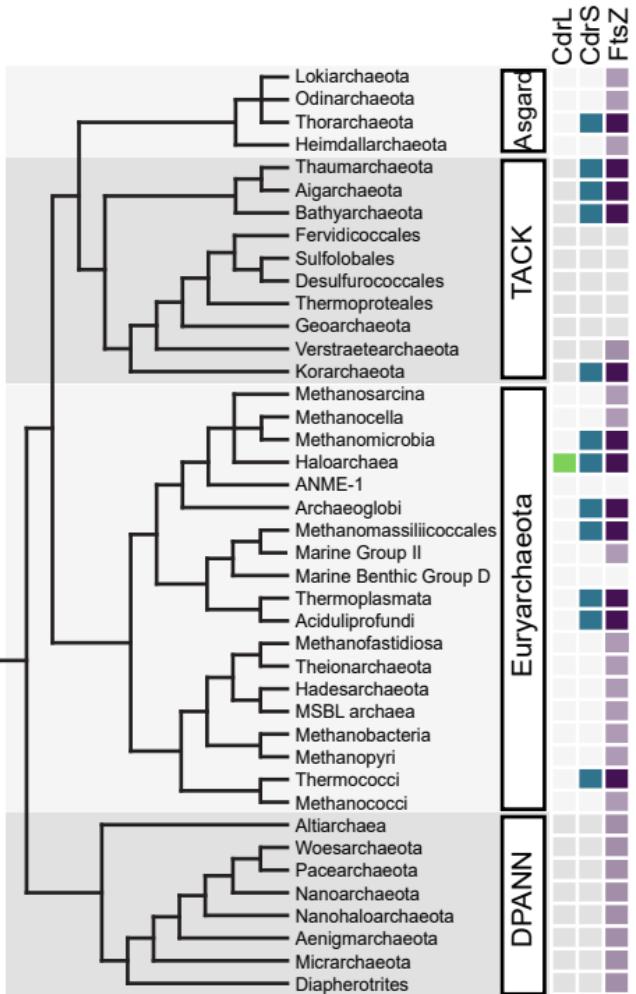
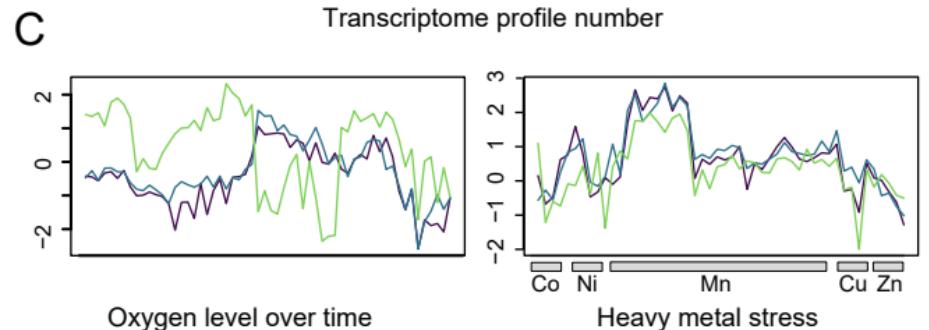
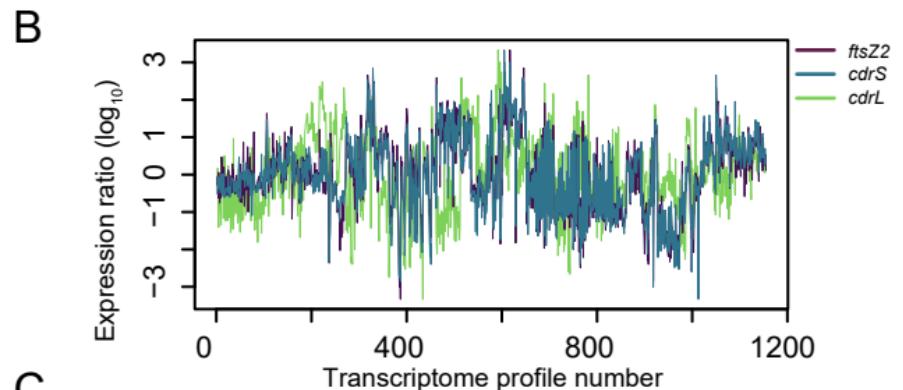
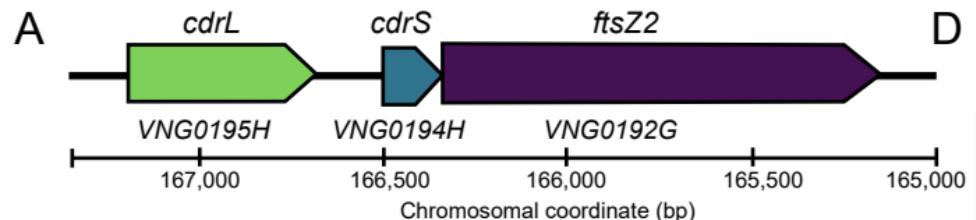
1117 Wickham, H. (2016). *ggplot2: Elegant Graphics for Data Analysis*. (New York: Springer-
1118 Verlag).

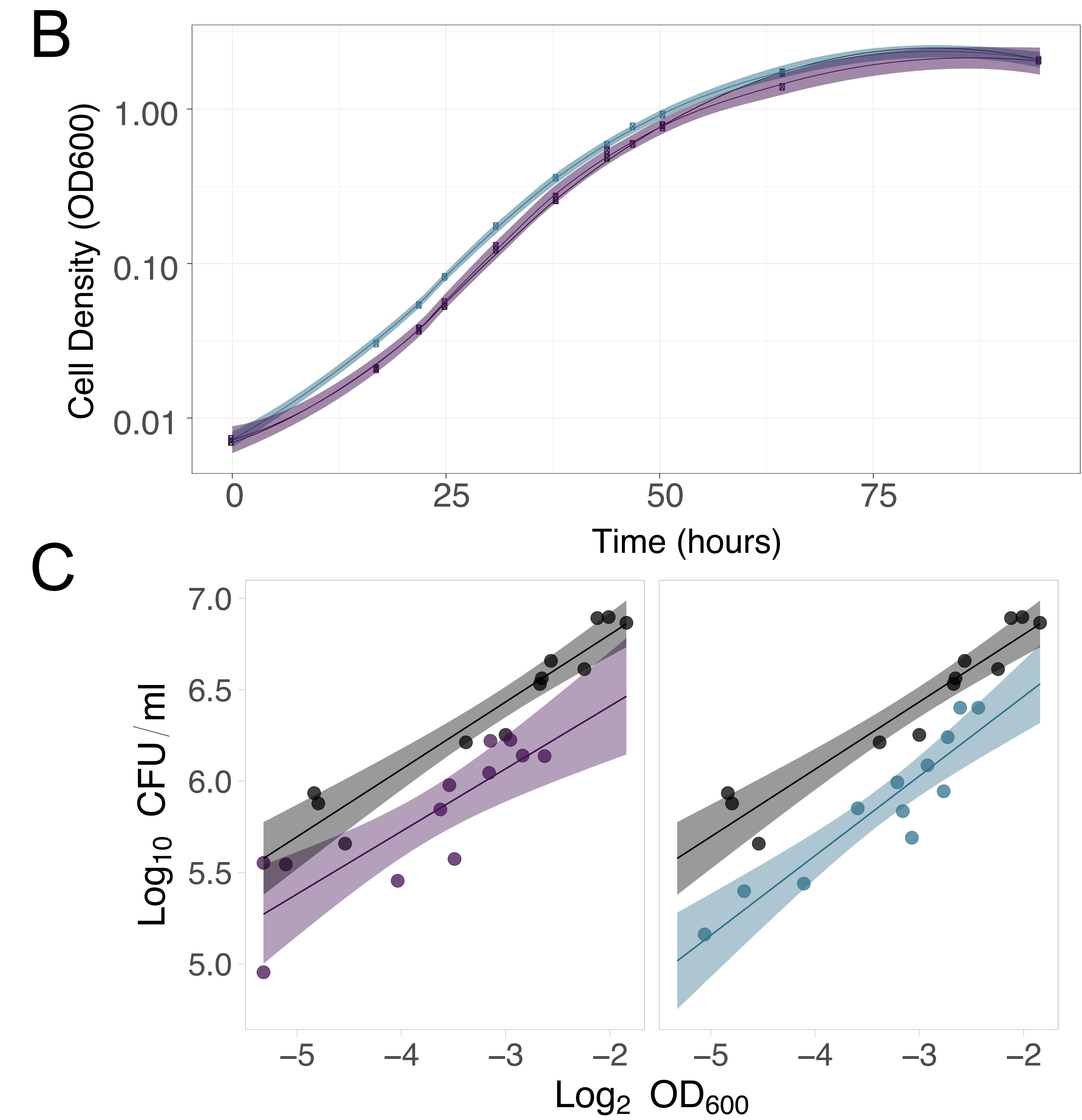
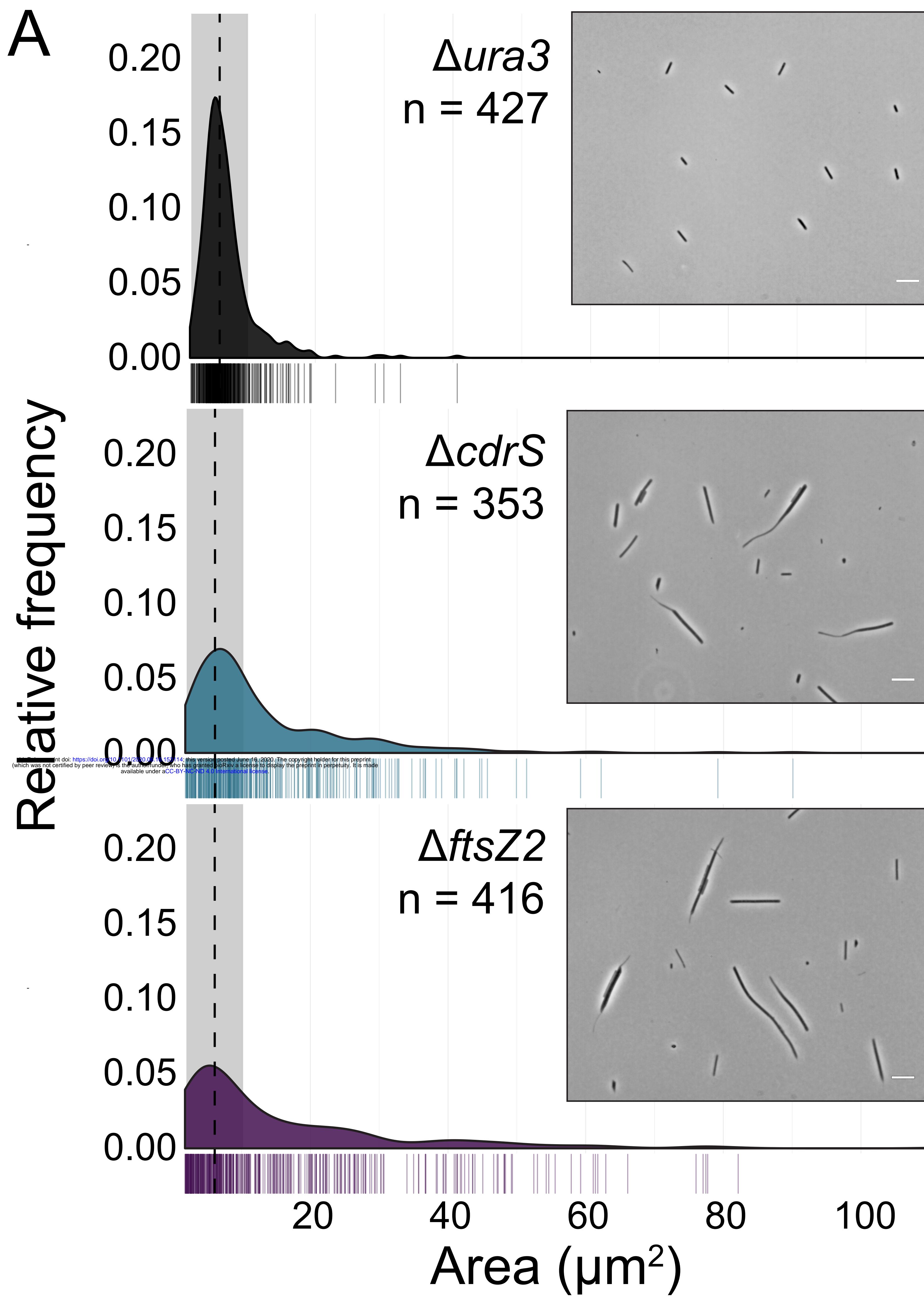
1119 Wilbanks, E.G., Larsen, D.J., Neches, R.Y., Yao, A.I., Wu, C.Y., Kjolby, R.A., and
1120 Facciotti, M.T. (2012). A workflow for genome-wide mapping of archaeal transcription
1121 factors with ChIP-seq. *Nucleic Acids Res* 40, e74.

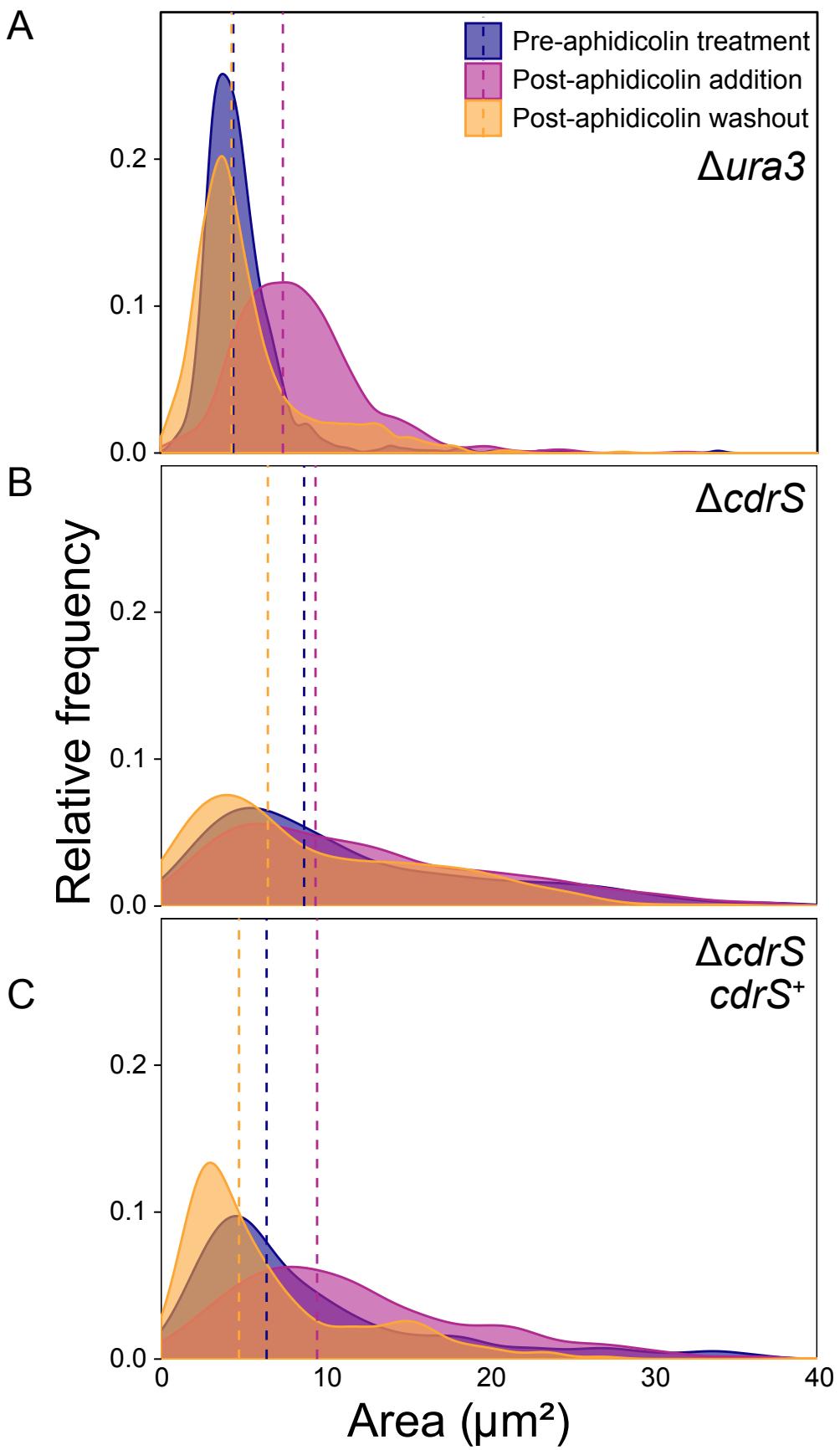
1122 Xiao, J., and Goley, E.D. (2016). Redefining the roles of the FtsZ-ring in bacterial
1123 cytokinesis. *Curr Opin Microbiol* 34, 90-96.

1124 Yang, X., Lyu, Z., Miguel, A., McQuillen, R., Huang, K.C., and Xiao, J. (2017). GTPase
1125 activity-coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell wall
1126 synthesis. *Science* 355, 744-747.

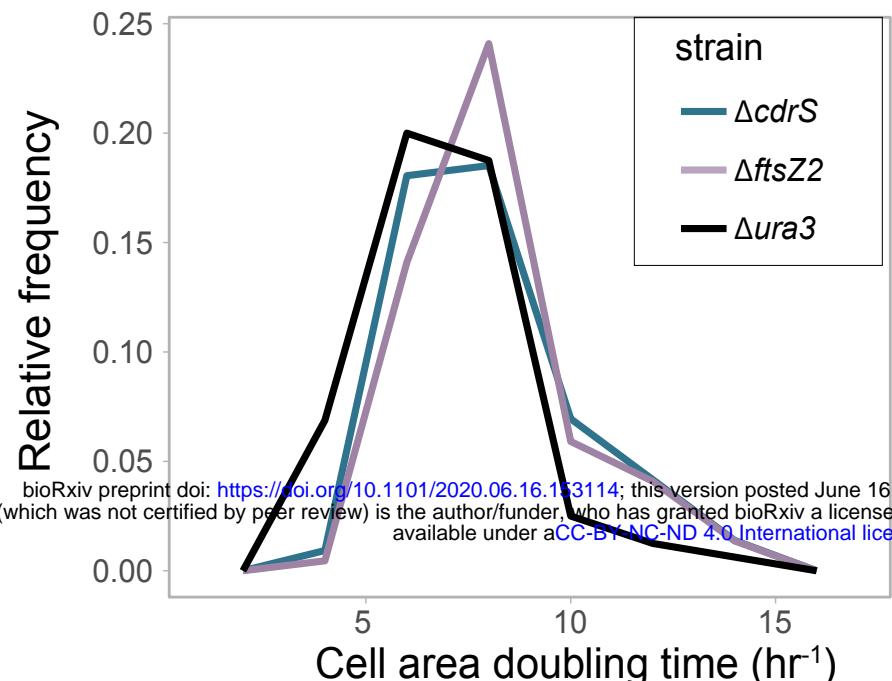
1127 Zaremba-Niedzwiedzka, K., Caceres, E.F., Saw, J.H., Backstrom, D., Juzokaite, L.,
1128 Vancaester, E., Seitz, K.W., Anantharaman, K., Starnawski, P., Kjeldsen, K.U., *et al.*
1129 (2017). Asgard archaea illuminate the origin of eukaryotic cellular complexity. *Nature*
1130 541, 353-358.

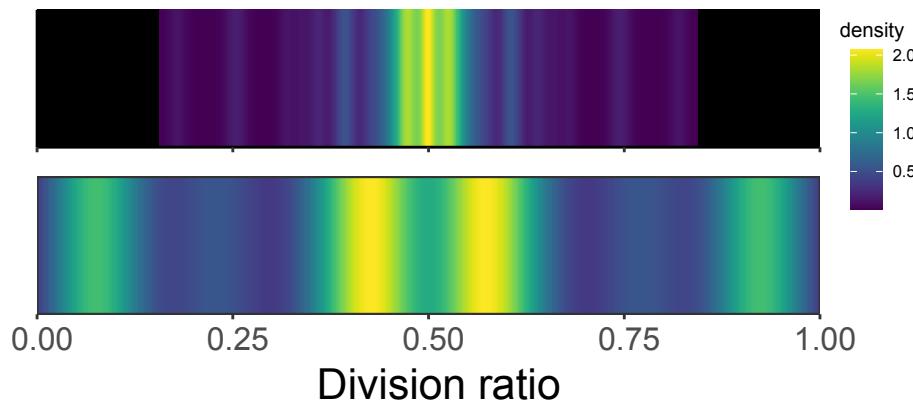




1131 Zaretsky, M., Darnell, C.L., Schmid, A.K., and Eichler, J. (2019). N-Glycosylation Is
1132 Important for *Halobacterium salinarum* Archaellin Expression, Archaellum Assembly
1133 and Cell Motility. *Front Microbiol* 10, 1367.

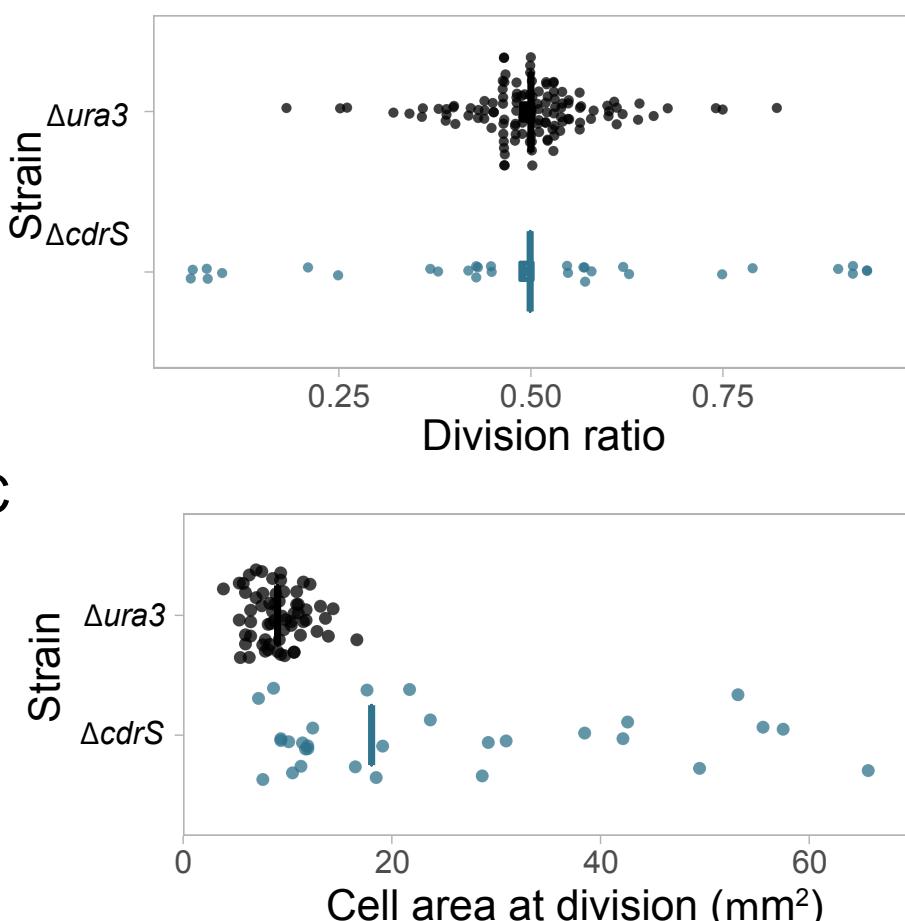


1134 Zerulla, K., and Soppa, J. (2014). Polyploidy in haloarchaea: advantages for growth and
1135 survival. *Front Microbiol* 5, 274.

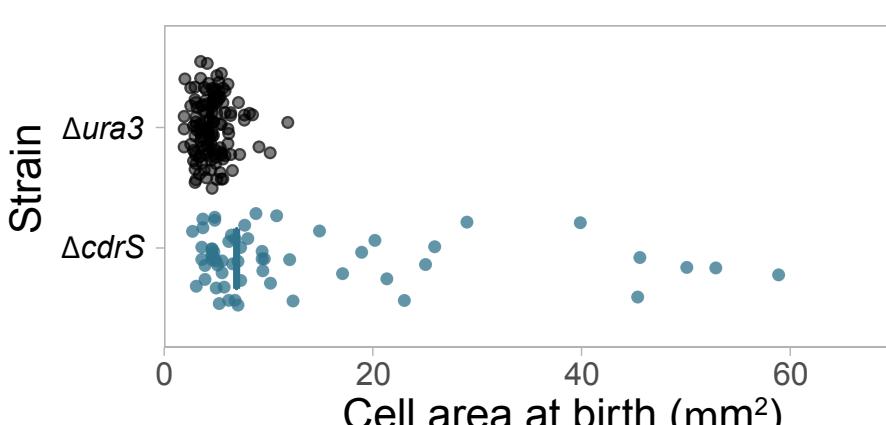

1136

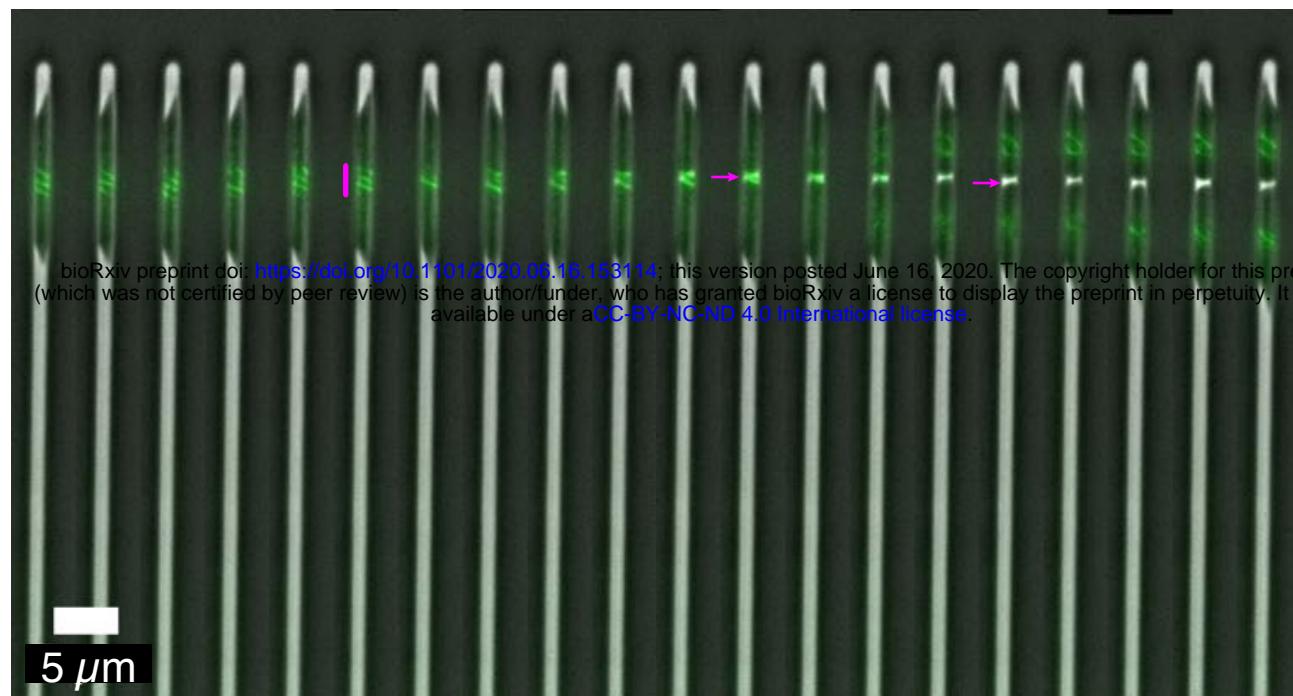
1137


1138

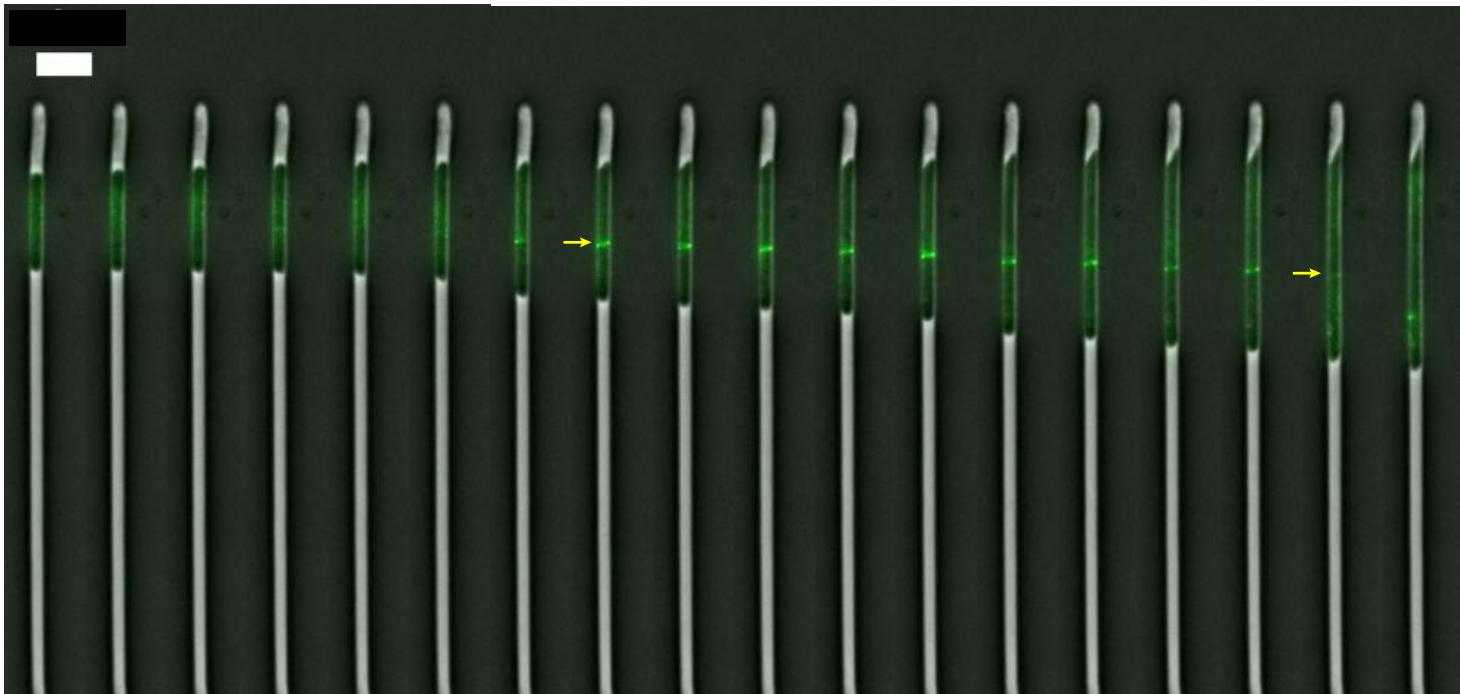



A

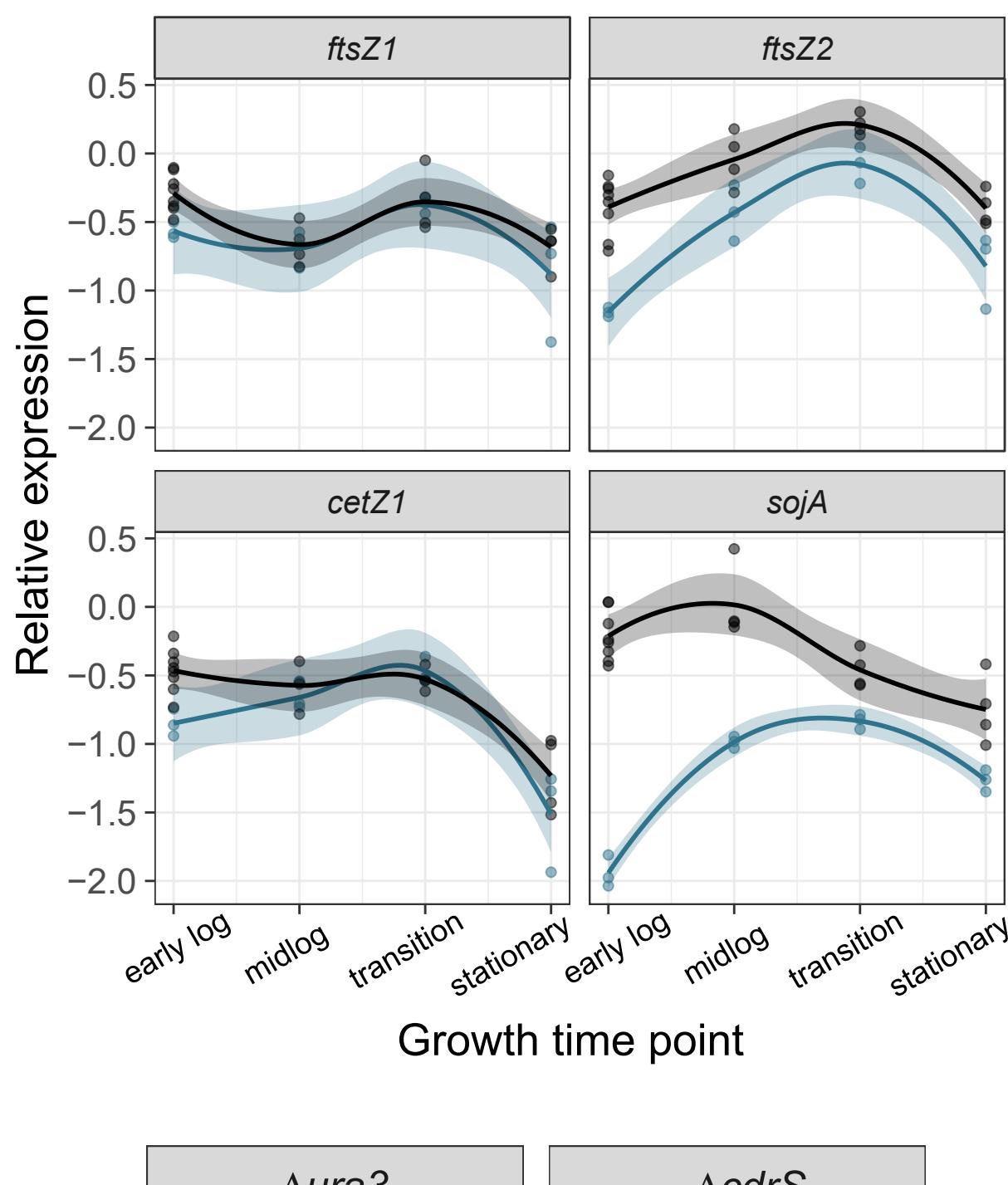

B


C

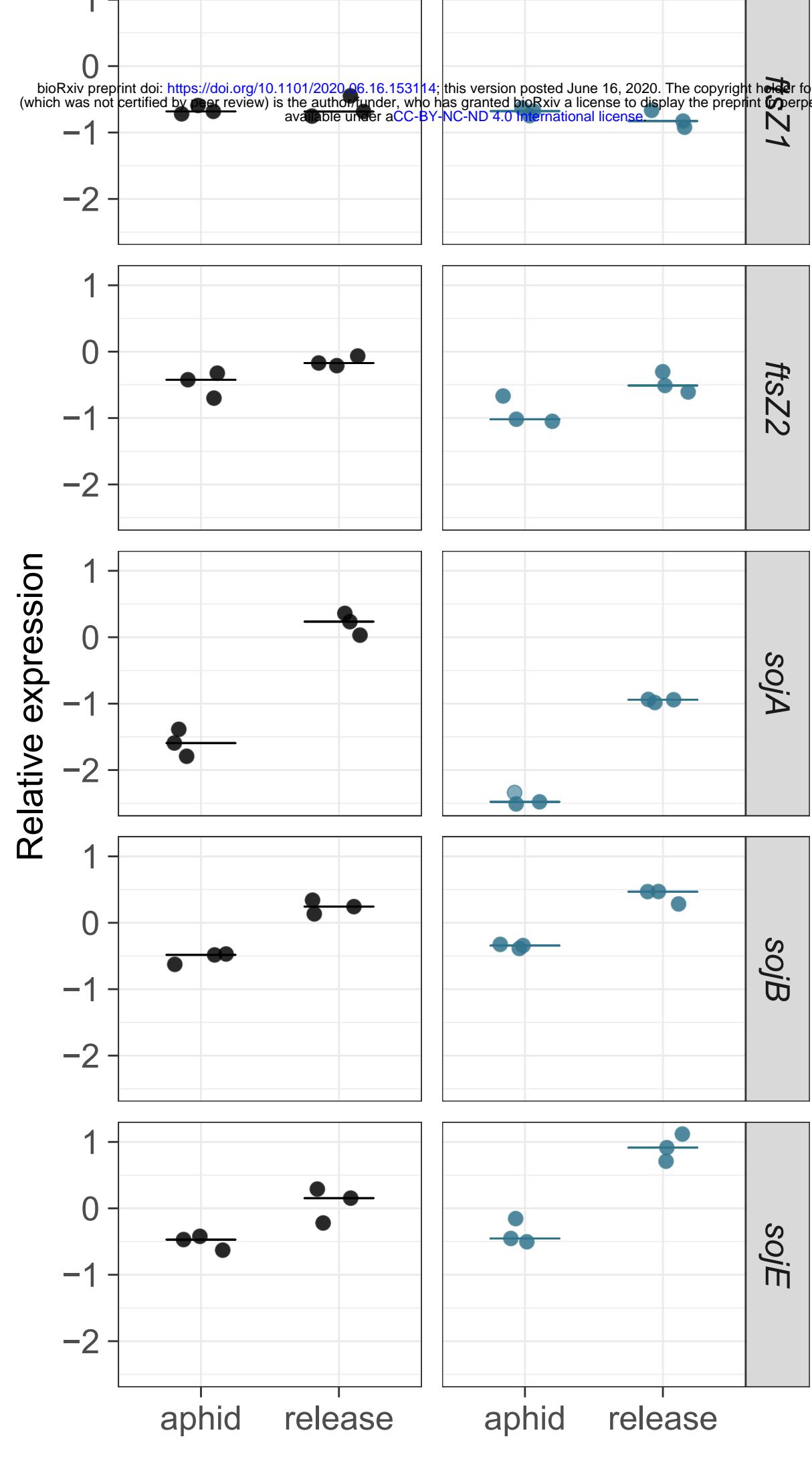
D

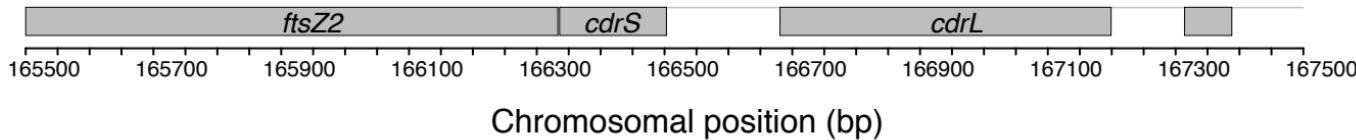
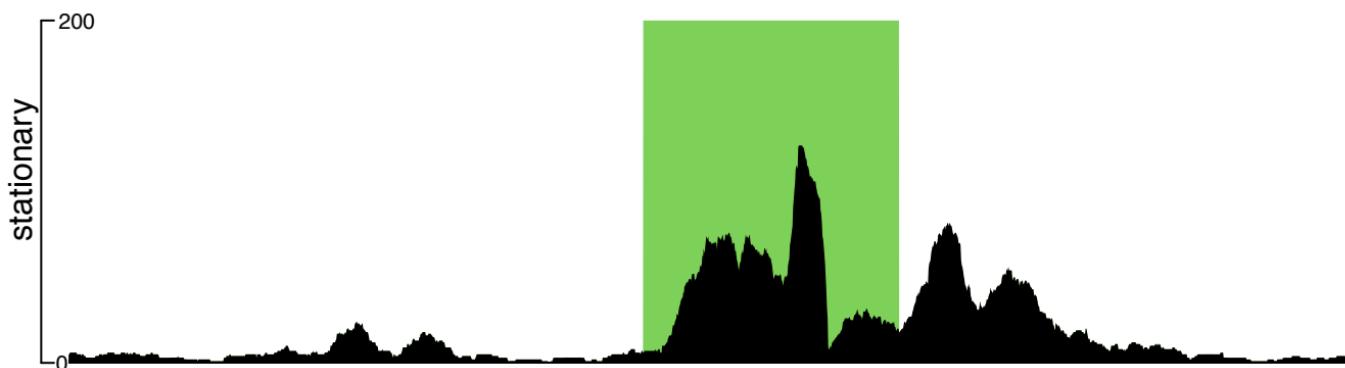
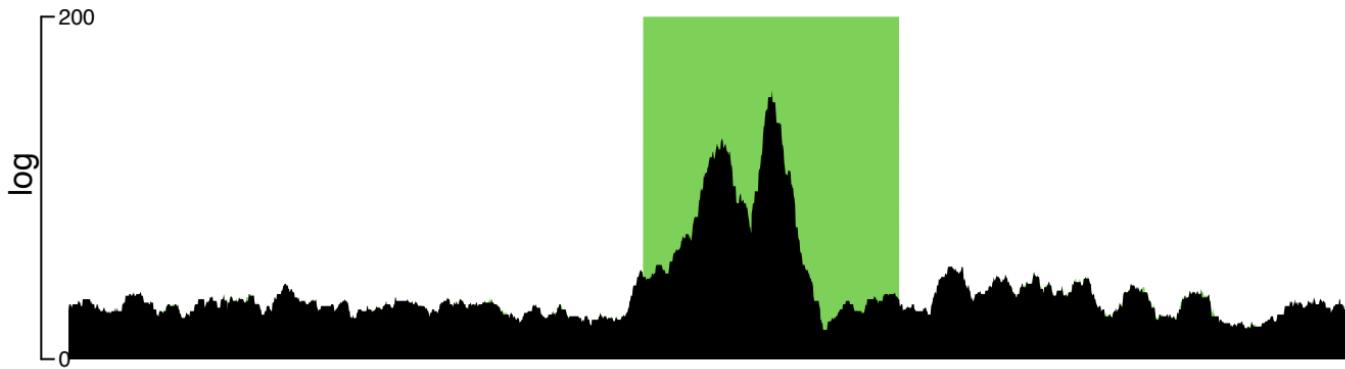

A

 $\Delta ura3$

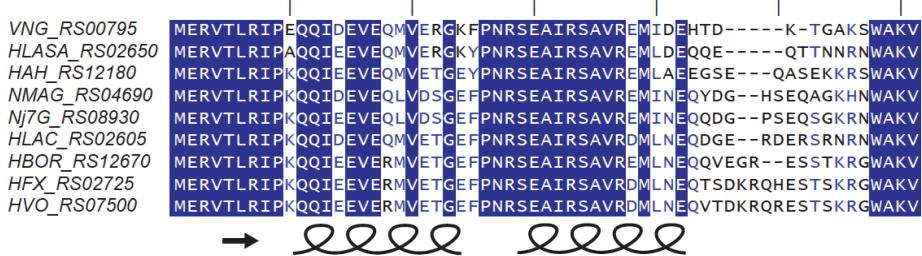

B

 $\Delta cdrS$

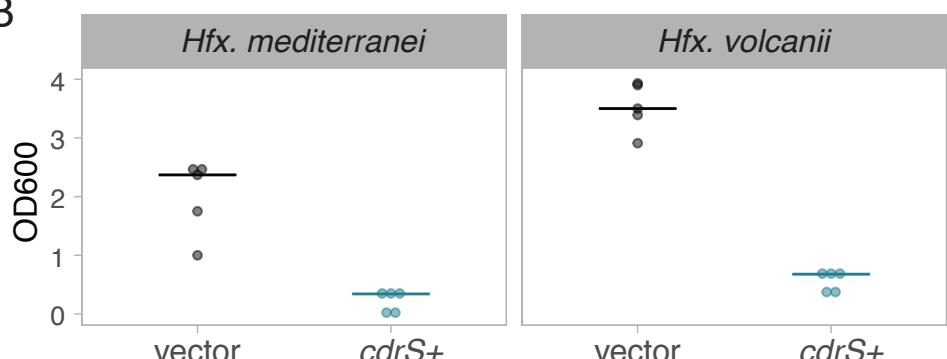

C

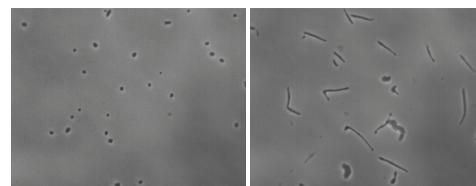
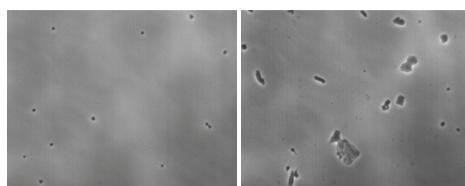



 $\Delta cdrS$

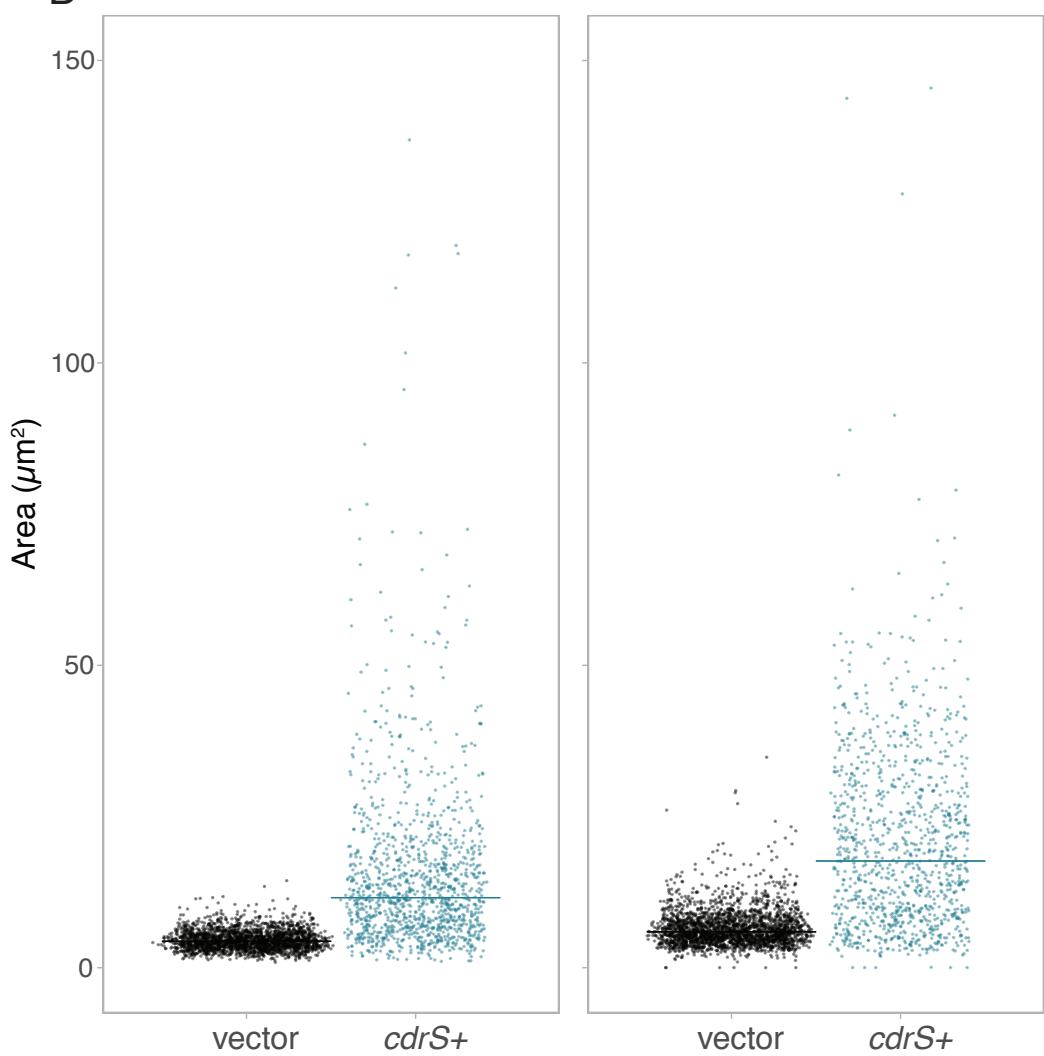
A



B





A


B

C

D

