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Abstract 
  
With the rapid advance of single cell sequencing techniques, single cell molecular data are 
quickly accumulated. However, there lacks a sound approach to properly integrate single cell 
data with the existing large amount of patient-level disease data. To address such need, we 
proposed DEGAS (Diagnostic Evidence GAuge of Single cells), a novel deep transfer-learning 
framework which allows for cellular and clinical information, including cell types, disease risk, 
and patient subtypes, to be cross-mapped between single cell and patient data, provided they 
share at least one common type of molecular data. We call such transferrable information 
“impressions”, which are generated by the deep learning models learned in the DEGAS 
framework. Using eight datasets from a wide range of diseases including Glioblastoma 
Multiforme (GBM), Alzheimer’s Disease (AD), and Multiple Myeloma (MM), we demonstrate the 
feasibility and broad applications of DEGAS in cross-mapping clinical and cellular information 
across disparate single cell and patient level transcriptomic datasets. Specifically, we correctly 
mapped clinically known GBM patient subtypes onto single cell data. We also identified 
previously known neuron loss from AD brains, then mapped the “impression” of AD risk to single 
cell data. Furthermore, we discovered novel differences in excitatory and inhibitory neuron loss 
in AD data. From the exploratory MM data, we identified differences in the malignancy of 
different CD138+ cellular subtypes based on “impressions” of relapse information transferred 
from MM patients. Through this work, we demonstrated that DEGAS is a powerful framework to 
cross-infer cellular and patient-level characteristics, which not only unites single cell and patient 
level transcriptomic data by identifying their latent links using the deep learning approach, but 
can also prioritize both patient subtypes and cellular subtypes for precision medicine. 
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Introduction  
 
Large data consortia containing a variety of omics data are widely available for many disease 
types, which allow researchers to identify multi-level omic perturbations that are associated with 
disease status and clinical outcomes. Unfortunately, most of such consortia do not contain 
assays specifically addressing tissue heterogeneity at the cellular level. On the other hand, 
databases and portals have quickly accumulated with single cell RNA sequencing datasets 
(scRNA-seq), such as Hemberg lab [1], scRNASeqDB [2], SCPortalen [3], Allen Institute Cell 
Types Database, and the NCBI Gene Expression Omnibus (GEO) [3]. However, these single 
cell databases all lack enough patient clinical information to assess how the heterogeneous cell 
types affect clinical outcomes at the patient level. 
 
In order to transfer the molecular heterogeneity information we learn from scRNA-seq data and 
apply it to patient-level analysis, there is an urgent need in methodology development to 
integrate both data types and identify hidden links between the two. However, such integration 
faces a lot of challenges as different data modalities and difference data sources can have 
different characteristics, such as quantity, quality, distribution and resolution of the data [4]. For 
instance, it is common to find studies with a large number patient samples of bulk tissue RNA-
seq, whereas studies with scRNA-seq data usually contains a small number of patient samples. 
Also, most scRNA-seq experiments generate a large number of cells per sample, making the 
scaling of such data to multiple tissue samples computationally difficult [4]. On top of this, a 
large patient sample size is often required for statistical studies such as outcome prediction and 
survival analysis. If traditional methods were used, the resulting scRNA-seq data could end up 
with cell numbers in the scale of millions. To address such challenges as sample size and 
computational cost, in this study, we establish a transfer learning framework DEGAS 
(Diagnostic Evidence GAuge of Single cells) to integrate studies of scRNA-seq and bulk tissue 
RNA-seq data with the goal to identify the hidden links between the two. Through cross-
mapping, DEGAS identifies disease associated cell subtypes while at the same time dissecting 
patient bulk tissue data into corresponding cell types. The DEGAS framework in its simplest 
form can be broken into three tasks: 1) correctly labeling cells with a cellular subtype using 
multitask learning, 2) correctly assigning proportional hazards or clinical labels to patients using 
multitask learning, and more importantly, 3) generating a subspace for cross-mapping where the 
patients and cells are comparable using domain adaptation. 
 
Taking transcriptomic data as an example, the rationale behind the DEGAS framework is that 
since scRNA-seq data and patient-level transcriptomic data share the same set of genes 
(feature space), there must exist a natural connection between the two data types that can be 
leveraged to further identify the associations between patients and cells and even cross-map 
the traits from one data type to the other. Viewing this association as a graph (Fig. 1), we can 
connect the outcomes in patients to the groups of cells, i.e., subtypes, via the common feature 
space (gene set) between the two. The expression patterns of the genes should also carry at 
least part of the same biological patterns such as molecular pathways, signaling cascades, and 
metabolic processes, making the information/knowledge learned from such portion of gene 
expression patterns transferable between patients and cells. Our assumption is that information 
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learned from these shared gene expression patterns are simultaneously predictive of both 
patient outcomes and cellular subtypes.  
 
To determine the link between single cell data and the associated disease state is not new –  
previous methods mainly utilize unsupervised learning and focused primarily on the number of 
differentially expressed genes (DEGs) in a given cell type corresponding to some clinical 
outcome [5, 6]. For example, Gawel et al. used enrichment of the cell cluster specific DEGs and 
multicellular disease models (MCDMs) to visualize the cell type prioritization [7]. Alternatively, 
Augur did not rely primarily on DEGs, since it decreased the biological resolution to cell type 
level [8]. Instead, they trained classifiers on each cell type with respect to the disease state of 
the tissue from which those cells were sampled. The accuracy of the classifier in each cell type 
was used to prioritize the cell types in relation to the disease state of interest [8]. Both of these 
methods rely on either prior knowledge to calculate enrichment of DEGs or clinical 
measurements for each subject from which single cells were extracted.  
  
However, in our DEGAS workflow, we try to incorporate the patient level outcome information 
with cell type from disparate datasets to perform “cell type prioritization” on scRNA-seq data of a 
disease that can be attributed to disease-related biological perturbations. This is a novel neural 
network approach for cell type prioritization, and we hope to achieve the goals that i) train a 
model simultaneously on both single cell data with cellular information as a label, and patient 
data with patient information as a label where at least one set of labels, patient or single cell, is 
available for training; ii) the model is established in such a way that the data distributions 
between the single cells and patients are reconciled. Multitask learning, a type of transfer 
learning, is precisely designed to achieve these two goals. Used extensively in computer vision, 
multitask learning learns a low dimensional representation of the input data to optimally address 
multiple tasks. Examples of such application in medical science include predicting benign 
versus malignant tumor samples, as well as subclassification in breast cancer histology images 
[9, 10]. Recently a new method called SAUCIE has been proposed to denoise the scRNA-seq 
data, cluster cells, and cluster patients using a multitask learning approach [11]. We further 
extend this line of research to include datasets with patient outcomes that can be trained 
simultaneously so that the outcomes can be transferred or cross-mapped between single cells 
and patients, that is, transfer single cell knowledge learned from deep learning models to 
patients and patient knowledge to single cells. The major advantage of such transfer learning 
framework is that, the single cell patients and clinical bulk expression patients, from which the 
outcomes are being learned, can come from different cohorts. This flexibility not only presents 
an ingenious way to integrate molecular omic data analysis in different levels, but also virtually 
merges them into the same cohort, which makes studying a broad variety of heterogeneous 
diseases possible.  
 
To perform DEGAS, first we obtain the common molecular information, in our case, 
transcriptomic data, from single cell level (scRNA-seq data) and patient level (bulk expression 
data); secondly, we apply deep learning models to further learn the connections between the 
single cell and patient-level gene expression patterns, with the goal to simultaneously minimize 
a) cell type classification error; b) patient outcome prediction error; and c) the data variance 
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between the two gene expressions in the hidden layer. Finally, the patient-level clinical data 
such as survival and clinical subtypes from the patient expression data will be cross-mapped to 
the populations of single cells in the scRNA-seq data. Similarly, the cell type information from 
single cells can be cross-mapped to the patient samples. As an analogy to visual perception, we 
call these transferrable features “impressions” since information from gene expression of 
disparate data types and studies can be extracted and the characteristics from one data type 
can be mapped to the other. 
 
DEGAS is developed as a generalizable transfer learning framework/model that can be applied 
to any disease data as long as the data contain: 1) clinical information for a cohort of patients 
and/or 2) a separate clustering analysis result on sets of cells from scRNA-seq experiments of 
the same disease. Either cell type labels or patient outcome labels, but not both, can also be 
omitted to produce a DEGAS model which only generates “impressions” in one direction. Using 
this transfer learning framework, these two types of data can be leveraged to construct a 
DEGAS model and infer cross-mappable results (impressions). We show the general model and 
workflow in Fig. 1. More detailed information is described in the Methods section. 
 
To demonstrate the feasibility and effectiveness of the DEGAS framework, we first tested 
DEGAS on glioblastoma (GBM) transcriptomic data, which has ground-truth labels of cancer 
subtypes in both bulk tissue cohorts and singe cell samples. Then we applied it to Alzheimer’s 
disease (AD) studies in which neuron loss is known. Finally, as an exploratory tool, we applied 
DEGAS to study multiple myeloma (MM) transcriptomic data, where the disease subtypes and 
high-risk factors associated with single cells are largely unknown. MM stems from the 
proliferation of aberrant clonal plasma cells in the bone marrow that secrete monoclonal 
immunoglobulin protein. It is the second most common blood cancer in the United States and 
32,110 new cases will be diagnosed with 12,960 estimated deaths in the United States in 2019 
[12]. We combined our newly generated MM scRNA-seq data from six local samples and bulk 
tissue data from the Multiple Myeloma Research Foundation, then applied DEGAS to infer 
clinical impressions for plasma cell subtypes and successfully identified a patient subgroup with 
high risk of relapse.  
 
 
Results 
 
DEGAS clinical impression framework 
In this study, we applied DEGAS to integrate and analyze scRNA-seq and clinical data from 
three different diseases: GBM, AD and MM. Since the ground truth of GBM subtypes are 
known, and the neuron loss in AD brains are also known, the GBM and AD datasets primarily 
served as validation to demonstrate the feasibility and universality of the DEGAS transfer 
learning approach with high accuracies. We then further expand our study to MM data, which 
serves as the discovery dataset, since the plasma cell subtypes and high-risk factors are largely 
unknown for MM. In the MM study, we applied DEGAS on patient data from the Multiple 
Myeloma Research Foundation (MMRF) and scRNA-seq data from patients at Indiana 
University School of Medicine (IUSM). Our aim was to identify the cell subtypes as well as a 
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high-risk subgroup of patients using the impressions of relapse risk on the single cells and 
impressions of cellular subtype in MM patients. We then applied the results to two separate MM 
validation datasets, one of which contained plasma cells from normal bone marrow (NHIP), MM 
precursor conditions: monoclonal gammopathy of undetermined significance (MGUS) and 
smoldering multiple myeloma (SMM), and MM.  We wanted to observe if DEGAS assignment of 
relapse risk to cell subtypes were higher for more malignant conditions. An additional external 
validation dataset of patient level expression data with overall survival was used to evaluate 
whether the patient stratification learned by DEGAS was robust enough to be generalized to an 
external survival dataset. 
 

 
Fig. 1 A workflow diagram of the DEGAS framework. The scRNA-seq and patient expression data are preprocessed 
into expression matrices. Next a DEGAS model is trained using both single cell and patient outcomes via a multitask 
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learning neural network while the data distribution differences are reduced between patients and single cells at the 
final hidden layer using maximum mean discrepancy (MMD), which attempts to match the data distributions from two 
sources. As the output, this model can be used to infer clinical outcome impressions in single cells and cellular 
composition impression in patients. 
 
DEGAS correctly mapped single cells to corresponding GBM subtypes 
In Patel et al. [13], researchers assigned four major GBM tumor subtypes (Proneural, 
Mesenchymal, Classical, and Neural) to the single cell scRNA-seq data obtained from five GBM 
tumors. Of the five tumor samples, four had been labeled in the original publication with a single 
subtype based on the major proportion of cells assigned to each GBM subtype. For GBM bulk 
tumor tissue expression data, we obtained RNA-seq data for 111 GBM patients from The 
Cancer Genome Atlas (TCGA), in which the same GBM subtypes were also known. As the 
simplest form of validation, we used these two datasets as input for the DEGAS model to test if 
it could reidentify the same GBM subtypes for both single cells and for TCGA cohort. Indeed, 
DEGAS reidentified the same labels for all four tumors by overlaying GBM subtypes association 
on each single cell (Fig. 2A-D). For the fifth tumor sample, MGH31, it was labeled as a 
combination of multiple GBM subtypes in the original study and DEGAS also identified mixed 
cell types for this sample (Fig. 2E). In Fig. 2 A-D, the groups of cell subtypes with the highest 
association score (as judged by the median value) matched the ground-truth label of that tumor 
sample (indicated with the dash line box). Additionally, these relationships can be visualized by 
plotting the single cells and overlaying the GBM subtype association. It is clear that MGH28 and 
MGH29, for instance, have a high association with the mesenchymal GBM subtype (Fig. 2F). 
These DEGAS models also proved to be accurate with high AUCs (0.93-0.98) for predicting 
each of the GBM subtypes in the TCGA patients during cross-validation (Fig. S1). 
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Fig. 2 DEGAS output of the distribution of GBM subtypes in single cells from five GBM tumors. Four of the five 
tumors had known GBM subtype information from Patel et al. (MGH26: Proneural, MGH28: Mesenchymal, MGH29: 
Mesenchymal, and MGH30: Classical, indicated by dashed red boxes) which were recapitulated by DEGAS. The 
subtype information for the tumors, MGH26, MGH28, MGH29, and MGH30 were derived from Patel et al. where 
MGH31 did not have a clearly defined subtype in Patel et al. The association of cells assigned to each subtype were 
plotted for each tumor; A) MGH26, B) MGH28, C) MGH29, D) MGH30 and E) MGH31. Median values are marked by 
a diamond in each of the violin plots. F) The association with the mesenchymal subtype is overlaid on all of the single 
cells from the five tumors (indicated by the size of the dots). It clearly shows that the single cell from MGH28 and 
MGH29 have the highest association with the mesenchymal subtype. Note: the tumors in (F) are color coded the 
same as the boxplots in (A-E).  
 
DEGAS identifies AD patients with increased microglia and reduced neuron populations 
Aside from GBM, AD also has well documented characteristics that can be used as a test bed 
for DEGAS. Specifically, there is a well-documented reduction in neurons [14-16] and increase 
in microglia [17-20] in AD patients. AD scRNA-seq data are from the Allen Institute for Brain 
Science and bulk RNA-seq data are from Mount Sinai Brain Bank (MSBB)[21]. The DEGAS 
models were trained using either a single neuron cell type or two types (excitatory, and 
inhibitory neurons), oligodendrocyte, astrocyte, oligodendrocyte progenitor cell (OPC), and 
microglia. The brain samples were split into groups based on AD diagnosis status (AD+ or AD-),  
 
From DEGAS results, we confirmed that in the single cell level, the AD association score was 
reduced in neuron single cells as previously described [22], as shown by the small point sizes of 
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neuron cells (Fig. 3A) (Table 1-2).  At the patient level, the neuron enrichment score was also 
reduced in AD patient brain samples, as shown by the smaller point sizes for AD patients 
compared to normal patients (Fig. 3B). One important finding among AD brain samples is that 
the decreased neuron pattern was only found on excitatory neurons but not in inhibitory 
neurons. This supports the similar findings in previous AD studies [22, 23].  However, another 
study discovered inhibitory neuron loss in AD [24]. In fact, with DEGAS results, although the 
inhibitory neuron percentage appeared to increase in AD (Table 3-4), this could be due to the 
much greater loss of excitatory neurons. Specifically, the 1.90 mean increase (from -1.14 in AD- 
to 0.7 in AD+) in inhibitory neuron enrichment score (Table 3) is much smaller than the 2.84 
mean reduction (from 1.70 in AD- to -1.14 in AD+ samples) in excitatory neuron enrichment 
score (Table 3) in MSBB samples. Since the enrichment score only reflects the relative 
proportion of each cell type, the results suggest that the putative gain of inhibitory neuron might 
actually be a relatively smaller loss in relation to the excitatory neuron loss. Indeed, when 
inhibitory and excitatory neurons were combined into a single neuron group, the mean reduction 
in enrichment are actually larger (3.74, Table 1) compared to using the excitatory neuron 
enrichment alone (2.84, Table 3). This means that combining the two neuron groups together 
actually resulted in even greater neuron loss being detected, which indicates that the apparent 
increase in inhibitory neurons was just an artifact of a differential amount of loss between 
excitatory and inhibitory neurons. Opposite to the neuron change, we observed a significant 
increase in the microglia enrichment in AD patients and a significant increase in AD association 
in microglia single cells (Fig. 3C, Table 2,4). The patients assigned with increased microglia 
enrichment score and decreased excitatory neuron enrichment also follow worse outcomes from 
AD diagnostic scores in multiple brain regions (Fig. 3D). Specifically, we evaluated the 
signature in relation to clinical dementia rating (CDR) [25], Braak and Braak stage (BBS) [26], 
and β-amyloid plaque mean (Plaque_mean) [27]. The CDR measure evaluates dementia based 
on interviews with caregivers about a patient behavior and quality of life [25]. The BBS measure 
evaluates the localization of neurofibrillary tangles in regions of the brain [26]. The 
Plaque_mean measure is performed during an autopsy to study the presence and size of β-
amyloid plaques in the brain of a decreased patient [27] (Fig. S8). During 10-fold cross-
validation, DEGAS models achieved high cell type prediction AUCs (0.97-1.00) for single cells 
and high AD diagnosis AUC (0.76) in MSBB patients when inhibitory and excitatory neurons 
were separated by cell type labels. Similarly, when inhibitory and excitatory neurons were 
combined into a single neuron cell type, DEGAS models also achieved high cell type prediction 
AUC (0.90-1.00) for single cells and high AD AUC (0.76) in MSBB patients in 10-fold cross-
validation. 



 

 
Fig. 3 DEGAS output of relationship between brain cell type and AD diagnosis based on AD scRNA-seq data and AD 
bulk tissue RNA-seq data. A) DEGAS output an AD association score for each single cell. The AD association score 
is indicated by the dot size and is overlaid on 2000 Allen Institute single cells, 400 from each cell type, showing the 
negative AD association (smaller neuron dots) in neuron cells. B) The neuron enrichment overlaid on MSBB patients 
showing that the neuron enrichment positively correlated with normal brains. C) The microglia enrichment overlaid on 
MSBB patients showing that the microglia enrichment follows the density of AD patients. D) The AD diagnostic test 
scores combined (CDR, BBS, β-amyloid plaque mean) overlaid on MSBB patients showing that AD diagnostic 
scores align with AD patients. The blue and red density kernels on the x- and y-axes (B-D) describe the distribution of 
of AD samples in the t-SNE plots. 
 
Table 1 Comparison of cell type enrichment scores in patients between disease status groups. The DEGAS models 
were trained using a combined neuron cell type, oligodendrocyte, astrocyte, OPC, and microglia. The patient samples 
were split into groups based on AD diagnosis status (AD+ or AD-) and the cell type enrichment scores were compared 
between groups using t-tests. See Table S1 for all cell types. 
Cell type AD+ mean AD- mean t-statistics p-value 
Neuron -1.74 2.00 -7.54 1.83E-13 
Microglia 1.43 -2.75 8.62 <2.2E-16 
 
Table 2 Comparison of AD association scores in single cells between cell types. The DEGAS models were trained 
using a combined neuron cell type, oligodendrocyte, astrocyte, OPC, and microglia. The single cells were split into 
groups based on their cell type then compared to all other cell types (Cell-type+ or Cell-type-) and the AD association 
was compared between groups using t-tests. See Table S2 for all cell types. 
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Cell type Cell-type+ mean Cell-type- mean t-statistics p-value 
Neuron -1.10 10.30 131.34 <2.2E-16 
Microglia 11.53 -0.17 -126.38 <2.2E-16 
 
Table 3 Comparison of cell type enrichment score in patients between disease status groups. The DEGAS models 
were trained using two neuron cell types, inhibitory and excitatory neurons, plus the other four cell types. The patient 
samples were split into groups based on AD diagnosis status (AD+ or AD-) and the cell type enrichment was 
compared between groups using t-tests. 
See Table S3 for all cell types. 
Cell type AD+ mean AD- mean t-statistics p-value 
Inhibitory 0.76 -1.14 2.60 9.64E-3 
Excitatory -1.14 1.70 -3.89 1.11E-4 
Microglia 1.05 -1.58 3.60 3.40E-4 
 
Table 4 Comparison of AD association score in single cells between cell types. The DEGAS models were trained 
using two neuron cell types, inhibitory and excitatory neurons, plus the other four cell types. The single cells were 
split into groups based on their cell type then compared to all other cell types (Cell-type+ or Cell-type-) and the AD 
association was compared between groups using t-tests. See Table S4 for all cell types. 
Cell type Cell-type+ mean Cell-type- mean t-statistics p-value 
Inhibitory 8.59 -2.68 -136.90 <2.2E-16 
Excitatory -4.64 9.15 191.90 <2.2E-16 
Microglia 11.08 -0.13 -78.62 <2.2E-16 
 
DEGAS identifies plasma cell subtypes in IUSM CD138+ scRNA-seq of MM 
In the MM study, unlike the previous two datasets, there were no predefined cell type labels, but 
DEGAS was still capable of analyzing such data. We first used Seurat [28], a commonly used 
scRNA-seq data analysis tool, to merge and cluster all the CD138+ bone marrow cells from four 
MM patients whose samples were collected at the IUSM. Seurat generated 11 clusters of cells 
for the IUSM scRNA-seq study. Since many of these clusters were not distinct from one another 
(Fig. 4), we merged neighboring clusters and reduced the 11 clusters to 5. We further validated 
these subtype clusters by individually clustering each patient with Seurat and using another 
scRNA-seq normalization tool Batch Effect ReMoval Using Deep Autoencoders (BERMUDA) 
[29] on all four patients. We found that the individual clustering experiments closely mirrored the 
Seurat-CCA clusters (Fig. S10A-D, Table S6) and that subtype 2 was consistent across MM 
patients using BERMUDA (Fig. S10E). These 5 clusters were the cell subtypes used as the 
subtype labels in the DEGAS framework. For bulk tissue data from MMRF, the clinical outcome 
of relapse free survival for 647 patients was used as the input to DEGAS.  
 



 
Fig. 4 Clusters generated from Seurat-CCA colored by A) IUSM scRNA-seq patient, and B) cluster, i.e., subtype. 
 
DEGAS patient stratification and cell type classification on MM 
After a DEGAS model was trained on IUSM patient scRNA-seq data with subtype labels and 
MMRF patients with bulk tissue data and relapse free survival information, performance metrics 
were calculated via cross-validation. When relapse was treated as a binary outcome, DEGAS 
was able to achieve a median relapse prediction AUC of 0.68 when simultaneously integrating 
the single cell data with the patient samples and predicting the subtypes on the single cells. 
When predicting cellular subtype label in single cells, DEGAS was able to achieve an AUC 
between 0.92-0.99 for all five of the CD138+ cellular subtypes we identified in the IUSM scRNA-
seq data (Fig. 5A). Aside from classifying the single cells correctly, DEGAS was able to stratify 
patients into high and low risk groups based on median relapse risk (p-value = 1.67E-9, Fig. 
5B). We then applied the trained model on an external patient transcriptomic dataset from Zhan 
et al. [30] for overall survival validation. We demonstrated that the Cox proportional hazards 
portion of the DEGAS model was robust across datasets, and the impression extracted from the 
DEGAS framework was capable to stratify patients into low and high-risk groups in the Zhan et 
al. dataset (p-value=1.37E-2, Fig. 5C). 
 
DEGAS identifies CD138+ cellular subtypes that are associated with patient relapse 
The DEGAS model for the MM study transfers clinical information (impressions) to single cells 
(i.e., single cells were directly assigned a relapse association), as well as transfers 
cellular/molecular features (impressions) to patients (i.e., patients are assigned subtype 
enrichment). We found that subtype 1 and subtype 2 cells were the most important for 
prognosis. Specifically, subtype 1 was associated with a longer time to relapse and subtype 2 
with a shorter time to relapse — IUSM single cells that were subtype 1 had much lower 
association with relapse than single cells that were subtype 2 (Fig. 5D, p-value < 2.2E-16). The 
MMRF patients who relapsed had significantly lower subtype 1 enrichment (Fig. 5E, p-value = 
6.2E-9) and higher subtype 2 enrichment (Fig. 5F, p-value = 2.90E-3). On an external validation 
scRNA-seq dataset from Ledergor et al., we found a steady decrease in subtype 1 enrichment 
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from NHIP (normal control) to the near-MM stage SMM (Fig. 5H, p-value = 7.80E-3) and 
increase in subtype 2 enrichment from NHIP to near-MM stage SMM (Fig. 5I, p-value=1.15E-2) 
and MM (Fig. 5I, Kruskal-Wallis p-value = 6.40E-3). The relapse association predicted by 
DEGAS framework also increased from NHIP to SMM (Fig. 5G, p-value = 2.20E-2) and MM 
(Fig. 5G, Kruskal-Wallis p-value = 3.50E-2), which agrees with the order of precursor conditions 
for MM (NHIP (no disease) ! MGUS ! SMM ! MM). 
 

 
Fig. 5 Association between subtypes and relapse risk. A) The ROC curves for predicting the correct subtype B) 
Kaplan Meier curves from cross-validation for the MMRF patients stratified by median proportional hazard. C) Kaplan 
Meier curves of overall survival of Zhan et al. external dataset. MM patients stratified by median proportional hazard. 
D) Proportional hazard prediction for NHIP, MGUS, SMM, and MM in the IUSM dataset. E) Subtype 1 enrichment for 
relapsed vs. non-relapsed MMRF patients. F) Subtype 2 enrichment for relapsed vs. non-relapsed MMRF patients. 
G) Proportional hazard prediction for NHIP, MGUS, SMM, and MM in the external dataset GSE117156. H)  Subtype 1 
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enrichment for NHIP, MGUS, SMM, and MM in the external dataset GSE117156. I) Subtype 2 enrichment for NHIP, 
MGUS, SMM, and MM in the external dataset GSE117156. NHIP: normal hip bone marrow, MGUS:  monoclonal 
gammopathy of undetermined significance, SMM: smoldering multiple myeloma, MM: multiple myeloma. Significance 
values: • (0.1), * (0.05), ** (0.01), *** (0.001). All median values in violin plots are marked with a diamond. All plots 
were generated using the default parameters for the DEGAS package described in the section of Methods: Transfer 
learning using DEGAS. 
 
MM distinct prognostic subtypes have distinct co-expression signatures 
In order to understand the molecular level differences between subtypes 1 and 2, which behave 
oppositely in terms of the association to tumor malignancy, we performed gene co-expression 
analysis on the scRNA-seq data of the two cell subtypes using WGCNA [31]. When we 
compared the gene co-expression patterns between subtypes 1 and 2, we found that the blue 
and turquoise modules were shared by the two subtypes and subtype 2 additionally included 
two unique modules (Fig. 6A, B). We performed cell type enrichment analysis on each of the 
two unique modules, and the results were summarized in Table 5. Similarly, we also calculated 
the differentially expressed genes for subtype 2 (Supplementary File 2). The most interesting 
observation was the down-regulation of CD45 as well as the up-regulation of CD71, CD138, and 
CD38 gene expressions, which constitutes a CD45-/CD71+/CD138+/CD38+ signature of 
subtype 2 compared to all other subtypes in the CD138+ fraction. Furthermore, the increased 
cell type enrichment for erythroblast and progenitor ontology terms (Table 5) may indicate a 
progenitor cell like phenotype for subtype 2. 
 

 
Fig. 6 Gene co-expression network analysis. A) Subtype 1 WGCNA output. B) Subtype 2 WGCNA output. C) 
Subtype 1 yellow module Pearson Correlation Coefficient (PCC) matrix. D) Subtype 2 yellow module PCC matrix. E) 
Subtype 1 brown module PCC matrix. F) Subtype 2 brown module PCC matrix. ψ indicates subtype 1 clusters in 
Table S7 and ¶ indicates subtype 2 clusters in Table S7. 
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Table 5 Cell type enrichment terms for co-expression modules in subtype 1 and subtype 2. 

Subtype Module Database Cell type p-value q-value 

Subtype 2 yellow Human Gene Atlas CD71+_EarlyErythroid 4.12E-22 3.46E-20 

Subtype 2 yellow ARCHS4 Tissues ERYTHROBLAST 2.71E-17 2.92E-15 

Subtype 2 yellow Jenson TISSUES K-562_cell 9.61E-9 1.77E-5 

Subtype 2 brown Human Gene Atlas CD71+_EarlyErythroid 1.28E-15 1.08E-13 

Subtype 2 brown ARCHS4 Tissues ERYTHROBLAST 1.26E-16 1.36E-14 

Subtype 2 brown Jenson TISSUES ERYTHROID_CELL 1.79E-7 3.30E-4 

Subtype 1 and 
Subtype 2 blue GO Biological Process regulation of B cell 

activation 4.32E-17 1.10E-13 

Subtype 1 and 
Subtype 2 blue ARCHS4 Tissues PLASMA CELL 5.30E-8 2.90E-6 

Subtype 1 and 
Subtype 2 blue ARCHS4 Tissues CD19+ B CELLS 7.17E-7 1.55E-5 

Subtype 1 and 
Subtype 2 turquoise Human Gene Atlas Lymphoma_burkitts 3.26E-8 2.74E-6 

Subtype 1 and 
Subtype 2 turquoise Human Gene Atlas 721_B_lymphoblasts 4.18E-4 8.78E-3 

Subtype 1 and 
Subtype 2 turquoise ARCHS4 Tissues CD34+ CELL 5.45E-83 5.89E-81 

 
 
DEGAS is robust to hyper-parameter choice in GBM 
To measure the robustness of DEGAS, we also analyzed how the hyper-parameter choices 
influence the DEGAS results, using a set of 100 randomly generated hyper-parameters and 
performing 10-fold cross-validation on each set of those 100 sets of hyper-parameters on the 
GBM datasets. The hyper-parameters that we evaluated were: the number of training steps, 
batch size for single cells, batch size for patients, number of hidden layer nodes, drop-out 
retention rate (the percentage of nodes randomly retained at the hidden layer), patient loss 
weight, MMD loss weight, and L2 regularization weight. The default parameters used for all 
previous experiments are listed in the Methods section of Transfer learning using DEGAS. For 
more information on the range of hyper-parameters that were randomly sampled, please see 
the Methods section of Evaluation of DEGAS robustness to hyper-parameters in GBM. We 
discovered that most hyper-parameters did not significantly affect the AUC predicting GBM 
subtype in TCGA GBM patients with the exception of the drop-out retention rate and number of 
hidden layer nodes (Fig. S11, Table 8). Similarly, most hyper-parameters did not significantly 
affect the correct assignment of GBM subtype to GBM scRNA-seq tumor, except for the number 
of hidden layer nodes and the drop-out retention rate (Fig. S12, Table S9), where an initial 
phase of increased AUC was seen with the parameter values increasing (for the number of 
hidden layer nodes < 20 and the drop-out retention rate < 20%). In this case, we suggest users 



to keep default settings for these two parameters as described in the Methods. Other than these 
two parameters, the rest of the hyper-parameters do not affect the high accuracy of the tumor 
subtype classification. Furthermore, we found that regardless of the hyper-parameters used in 
our hyper-parameter comparison experiment (including suboptimal ones), the correct GBM 
subtype was assigned to the corresponding GBM scRNA-seq tumor 62% of the time (Fig. S13). 
 
Discussion 
 
In this work, we constructed a transfer learning framework DEGAS to integrate scRNA-seq and 
patient expression data in order to infer the transferrable “impressions” of patient characteristics 
in single cells and cellular characteristics in patients. By transfer learning, we trained a model 
using both scRNA-seq and patient bulk tissue gene expression, then reduced the data 
differences between the two types in the final hidden layer of our model via domain adaptation 
while simultaneously predicting cell characteristics using only scRNA-seq data and predicting 
patient characteristics using only patient expression data. We validated the feasibility and broad 
applications of our DEGAS framework on datasets from two diseases, GBM and AD, which 
contained ground truth tumor subtype labels and ground truth cell type-disease associations, 
respectively. Within the GBM single cell patient cohort, each GBM tumor, from which scRNA-
seq data was generated, had a GBM subtype label from Patel et al. [13]. The DEGAS results 
showed that the majority of cells in each tumor were labeled with the same GBM subtype as 
previously defined in [13]. Specifically, we correctly mapped Proneural, Mesenchymal, 
Classical, and Neural GBM subtypes to single cells in four GBM tumor samples. This 
experiment also shows the broad applicability of the model since the single cells had no labels 
and the patient samples had multiclass labels. DEGAS allows for different categories of output 
labels to be combined, which may include but are not limited to: classification labels, Cox 
proportional hazard, and no labels. This allows for a wide variety of applications to adopt the 
DEGAS framework so that impressions are not limited to only one type of outcome. It also can 
be applied to other types of molecular data besides transcriptomic data, provided the same 
feature space (such as genes, or loci) are shared between single-cell data and the patient-level 
data. 
 
The DEGAS analysis on Alzheimer’s disease data further validated our model by correctly 
identifying the decreased neuron and increased microglia proportions in AD patients. Aside from 
these known characteristics of AD change, we also discovered that excitatory neuron loss was 
much greater than inhibitory neuron loss. In fact, the proportion of interneurons appeared to 
increase slightly though this is most likely attributed to a large decrease in the number of 
excitatory neurons in relation to a much smaller decrease in the number of inhibitory neurons. 
Despite the increased efforts put into AD research, there still lacks a general agreement about 
the change of neuronal subtypes and their roles in AD progression [22-24], making our finding a 
valuable contribution to this field. 
 
To explore disease with unknown cell types and risk information, we applied DEGAS to MM 
data. The models were able to assign relapse free survival metrics to subtype populations of 



CD138+ cells identified by cell type clustering methods Seurat [28] and BERMUDA [29]. Among 
the identified subtypes of cells, subtype 2 was the most consistent between IUSM patients 
visualized by BERMUDA (Fig. S10E). Furthermore, we found that the subtype 2 population 
appeared to have a gradient of cells moving away from the main subtype 1 group, possibly 
associated with a certain degree of differentiation (Fig. S10). Based on cell type enrichment 
analysis [32] on the gene co-expression modules unique to subtype 2 (i.e., the yellow and 
brown modules in Fig. 6), we found an erythroblast/stem-like signature that may be related to 
convergent evolution in tumors, since evidence of convergent evolution has already been noted 
through copy number alterations in circulating tumor cells in multiple cancer types [33]. Another 
possible explanation could be that subtype 2 is some form of malignant progenitor cell. 
 
Upon further examination, we found evidence that subtype 2 may represent a population of 
erythroblast-like cells in MM. Tumor-inducible erythroblast-like cells have already been reported 
in hepatocellular carcinoma (HCC) [34]. These CD71+ erythroblast-like cells have been shown 
in mice to be derived from embryonic stem cells. It would be unusual to find erythroid cells in the 
CD138+ fraction but the Vk*MYC mouse model of MM has been shown to contain populations 
of CD71+/CD138+ erythroid progenitor cells [35]. In addition, there is also evidence of CD45 
low/CD138+/CD38+ tumor intiating cells found in patient derived xenograft models of MM [36]. 
The cell type enrichment analysis from the subtype 2 specific gene co-expression modules 
indicates CD71+ enrichment in these two gene modules. When we performed differential gene 
expression analysis between subtype 2 and all other cell subtypes, subtype 2 shows 
significantly higher SDC1 (also known as CD138) expression levels, increased TFRC (CD71) 
expression, insignificantly decreased PTPRC (CD45) expression, and significantly decreased 
PTPRCAP (CD45 associated protein) expression. Since all of the IUSM MM cells in our study 
had already been FACS sorted for CD138+, it is possible we have identified a population of 
CD45-/CD71+/CD138+/CD38+ cells in MM with a similar phenotype to the erythroblast-like cells 
found previously in HCC [34]. 
 
DEGAS discovered for the first time this special population of cells (CD45-/CD71+/CD138+ 
cells) in MM, along with its association with worse prognosis, which would be impossible using 
the scRNA-seq data alone. The erythroblast-like cells in subtype 2 are the most stable cluster 
across datasets (Fig. S10). We speculate this inter-tumor population stability could be attributed 
to convergent evolution in MM toward a more erythroblast-like phenotype or a stable pool of 
malignant progenitor cells that might help the cells to escape therapy. Consequently, this 
subtype could be targeted using precision immunotherapies that are not restricted to a single 
patient since the erythroblast-like phenotype, i.e., subtype 2, is present in multiple (3/4) patients. 
 
Based on the validated results in a variety of disease data analyses, we find that DEGAS has 
broad applications in virtually all diseases with available patient-level and single cell level omic 
data, as well as clinical data. The tensorflow [37] machine learning code is integrated with a 
simple R package interface (https://github.com/tsteelejohnson91/DEGAS) which will facilitate 
researchers to manipulate scRNA-seq and bulk expression data on their own. 
 
Conclusion 



 
DEGAS is a powerful transfer learning tool in integrating different levels of omic data and 
identifying the latent molecular relationships between populations of cells and clinical outcomes, 
which we refer to as impressions. We validated the DEGAS framework on GBM and AD by 
showing DEGAS models were capable of accurately predicting patient characteristics in single 
cells and cellular characteristics in patients. We then leveraged this transfer learning approach 
on MM data and identified CD138+ subtype populations, possibly clones or progenitor cells, in 
MM that were significantly associated with disease relapse. These subtypes contain unique 
RNA profiles and gene correlations that can be both leveraged as a prognostic biomarker and 
possibly targeted directly to reduce the risk of relapse. We believe that DEGAS can be a 
powerful solution to overcome the challenge of integrating patient single cell data with bulk 
tissue data so that researchers can identify populations of cells associated with an outcome of 
interest, while as the same time identify patients with certain cell type composition. Furthermore, 
DEGAS can accommodate flexible data types. This makes it a very general framework that can 
be applied in multiple different diseases and data types to identify cellular populations that are 
associated with prognosis or treatment response, or to identify specific patient groups with 
certain cell subtypes for personalized treatment.  
 
 
Online Methods 
 
Datasets 
In this study we analyzed data from three different diseases, GBM, AD, and MM, to validate the 
DEGAS framework and apply it for novel discoveries. GBM and AD were primarily used as 
validation datasets since the ground truth is known. For GBM data, we used scRNA-seq from 5 
tumors from Patel et al. [13]. and microarrays for the GBM TCGA cohort [38]. For AD data, we 
used human scRNA-seq from Allen Institute Cell Types Database (https://celltypes.brain-
map.org/) and AD patient RNA-seq from the Mount Sinai/JJ Peters VA Medical Center Brain 
Bank (MSBB) study [21]. We further expanded our inquiry into MM, which served as a discovery 
dataset. Since the plasma cell subtypes are less understood in relation to clinical outcomes, we 
aimed to identify subtypes of plasma cells associated with worse prognosis. 
 
For MM analysis, we utilized 647 CD138+-enriched bone marrow patient samples from the 
Multiple Myeloma Research Foundation (MMRF). These data were generated as part of the 
Multiple Myeloma Research Foundation Personalized Medicine Initiatives 
(https://research.themmrf.org). The samples consisted of tumor tissue RNA-seq data and 
corresponding clinical variables including relapse-free survival time and survival status. 
Relapse-free survival was defined as the time taken for a patient to relapse after treatment of 
the initial tumor or the time of death if relapse was not reached. The demographic information of 
the MMRF patients are shown in Table 6. The scRNA-Seq data used in this study were 
generated at Indiana University School of Medicine (IUSM) and consist of CD138+ plasma cells 
purified from bone marrow from four MM patients. The low number of patients was a good test 
case considering most scRNA-seq experiments have few patients. The single cells were 



sequenced using 10x Genomics and Illumina NovaSeq6000 sequencer. CellRanger 2.1.0 
(http://support.10xgenomics.com/) was utilized to process the raw sequence data. Briefly, 
CellRanger used bcl2fastq (https://support.illumina.com/) to demultiplex raw base sequence 
calls generated from the sequencer into sample-specific FASTQ files. The FASTQ files were 
then aligned to the human reference genome GRCh38 with RNAseq aligner STAR. The aligned 
reads were traced back to individual cells and the gene expression level of individual genes 
were quantified based on the number of UMIs (unique molecular indices) detected in each cell. 
The filtered gene-cell barcode matrices generated by CellRanger were used for further analysis. 
Additionally a second publicly available scRNA-seq dataset was used for validation, which 
consisted of NHIP (normal control), MGUS, SMM, and MM patients [39]. A second bulk tissue 
dataset was used for validating the proportional hazards modeling. This dataset consisted of 
bulk expression profiling by microarray of CD138+ plasma cells with overall survival information 
for 559 MM patients [30]. The detailed dataset information are shown in Table 7. 
 
Table 6. Summary of the clinical features in each patient cohorts used in training. * Final age category is >90 years. 

Glioblastoma Multiforme TCGA 

Feature Details 

Sex 74 Male, 37 Female 

Age (years) Range: 14-83, Mean: 56, Median: 58 

Clinical GBM subtype 34 Classical, 33 Mesenchymal, 9 Neural, 35 
Proneural 

Alzheimer’s Disease MSBB 

Feature Details 

Sex 90 Male, 131 Female 

Age (years) Range: 61-90+, Mean* > 82, Median = 84 

AD diagnosis 135 AD, 86 Control 

Multiple Myeloma MMRF 

Feature Details 

Sex 387 Male, 260 Female 

Age (years) Range: 27-93, Mean: 64, Median: 64 

Relapse-free survival time (days) Range: 13-1753, Mean: 665.4, Median: 629 
200 patients relapsed 

 
 
Table 7. Overview of datasets used in the analysis 



Study Sample size Data type Outcome 

Patel et al., 2014 532 cells 
(5 patients) 

scRNA-seq 
(SMART-seq) 

None 

TCGA GBM 111 patients Microarray GBM subtype 

Allen Institute 47,396 cells 
(11 patients) 

scRNA-seq 
(SMART-seq) 

Brain cell types 

MSBB 682 samples 
(221 patients) 

RNA-seq AD diagnosis 

MMRF 647 patients RNA-seq Relapse-Free 
Survival 

IUSM 22,968 cells 
(4 patients) 

scRNA-seq 
(10x Genomics) 

Subtype cluster 
(Subtype 1-5) 

Ledergor et al., 2019 13,440 cells 
(35 patients) 

scRNA-seq 
(MARS-seq) 

Malignancy  (NHIP, 
MGUS, SMM, MM) 

Zhan et al., 2006 559 patients Microarray Overall Survival 

 
Transfer learning using DEGAS 
Cox proportional hazards, patient classification, cell type classification, and maximum mean 
discrepancy (MMD), a technique used to match distributions across different sets of data [40], 
were combined to create a multitask transfer learning framework. We called this framework 
Diagnostic Evidence GAuge of Single cells (DEGAS). DEGAS makes it possible to combine 
bulk expression from patients with clinical information and single cells with cell subtype 
information. Since most scRNA-seq datasets do not contain many patients, it is difficult to derive 
cellular associations with clinical outcomes. DEGAS circumvents this problem using multitask 
learning and domain adaptation techniques from transfer learning. As a result, each cell type 
can be given clinical attributes and each patient can be given cellular attributes. 
  
The first step was to find a set of gene expression features that were both informative of cell 
type and of patient recurrence. The intersection of high variance genes found in the scRNA-seq 
and patient expression data are used for further analysis. Defining this gene set is up to the user 
but Seurat-CCA, LASSO selection, and even statistical tests in R can be used to define the 
gene set. Since these features are the same between patients and single cells, the patients and 
cells share the same input layer. This makes it possible to predict proportional hazard and cell 
type regardless of the input sample type (patient or single cell). 
 
As an example of the DEGAS framework, we used a single layer network model for simplicity. 
However, the following equations can be extrapolated to multiple layers and architectures which 
are already included in our software. First, a hidden layer was used to transform the genes into 
a lower dimension using a sigmoid activation function (Eq. 1). Where 𝑋 represents an input 



expression matrix, 𝜃!"##$% represents the hidden layer weights, and 𝑏!"##$% represents the 
hidden layer bias. 
 𝑓!"##$% 𝑋 =  𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑋!𝜃!"##$% + 𝑏!"##$%) Eq. 1 
Next, output layers were added for both the patient output and for the single cell output. For the 
single cells, there could be classification output or no output. Similarly, patients could have Cox 
proportional hazard output, classification output, or no output. The Cox proportional hazards 
estimates consisted of a linear transformation to a single output followed by a sigmoid activation 
function (Eq. 2). The classification output consisted of a transformation to the same number of 
outputs as the number of labels, i.e., patient subtypes, cellular subtypes, using a softmax 
activation function (Eq. 3). Variable 𝑋 represents an input expression matrix, 𝜃!"# represents 
the Cox proportional hazard layer weights [41], 𝜃!"#$$ represents the classification layer weights, 
𝑏!"# represents the Cox proportional hazard layer bias, and 𝑏!"#$$ represents the classification 
layer bias. 
 𝑓!"# 𝑋 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑓!"##!" 𝑋 !𝜃!"# + 𝑏!"#) Eq. 2 
 𝑓!"#$$ 𝑋 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓!"##$% 𝑋 !𝜃!"#$$ + 𝑏!"#$$) Eq. 3 
To train the DEGAS model, we need to compute three types of loss functions for the Cox 
proportional hazards output, classification output, and MMD [40] respectively. The Cox 
proportional hazards loss [41] was calculated only for the patient expression data (𝑋!"#) using 
the followup period (𝐶), and event status (𝑡) (Eq. 4). Similarly, the patient classification loss was 
only calculated for the patient data (𝑋!"#) using the patient labels (𝑌!"#). Alternatively, the 
cellular classification loss was only calculated for the single cell expression data (𝑋!"##) and true 
subtype label (𝑌!"##) (Eq. 5). However, the MMD loss was calculated between the patient 
expression data (𝑋!"#) and the single cell expression data (𝑋!"##) (Eq. 6). 

 𝐿𝑜𝑠𝑠!"# =  𝑓!"# 𝑋!"# ! − (exp (𝑓!"# 𝑋!"# !)!!!!!! ! !!  Eq. 4 

 𝐿𝑜𝑠𝑠!"#$$ =
!
!

(𝑌!"#$,! − 𝑓!"#$$ 𝑋!"#$ !
)  𝑤ℎ𝑒𝑟𝑒 𝑡𝑦𝑝𝑒 𝜖 {𝑃𝑎𝑡,𝐶𝑒𝑙𝑙}!

!!!  Eq. 5 

 𝐿𝑜𝑠𝑠!!" = 𝑀𝑀𝐷(𝑋!"## ,𝑋!"#) Eq. 6 
The overall loss function was additionally weighted using the hyper-parameters, 𝜆! (single cell 
loss function), 𝜆! (patient loss function), 𝜆! (MMD loss), and 𝜆! (regularization loss), so that the 
importance of each loss term and regularization term could be adjusted (Eq. 7). To address 
more diverse datasets, we also allow for two classification outputs (Eq. 8), a single classification 
output without patient outcome (Eq. 9), a single classification output without cell type label (Eq. 
10), or a single Cox output without cell type label (Eq. 11). 
 𝐿𝑜𝑠𝑠!"#$$!%& =  𝜆!𝐿𝑜𝑠𝑠!"#$$ + 𝜆!𝐿𝑜𝑠𝑠!"#+𝜆!𝐿𝑜𝑠𝑠!!" + 𝜆! 𝜃 !

! Eq. 7 
 𝐿𝑜𝑠𝑠!"#$$!"#$$ =  𝜆!𝐿𝑜𝑠𝑠!"#$$ + 𝜆!𝐿𝑜𝑠𝑠!"#$$ + 𝜆!𝐿𝑜𝑠𝑠!!" + 𝜆! 𝜃 !

! Eq. 8 
 𝐿𝑜𝑠𝑠!"#$$%"#&' =  𝜆!𝐿𝑜𝑠𝑠!"#$$ + 𝜆!𝐿𝑜𝑠𝑠!!" + 𝜆! 𝜃 !

! Eq. 9 
 𝐿𝑜𝑠𝑠!"#$%&"#'' =  𝜆!𝐿𝑜𝑠𝑠!"#$$ + 𝜆!𝐿𝑜𝑠𝑠!!" + 𝜆! 𝜃 !

! Eq. 10 
 𝐿𝑜𝑠𝑠!"#$%&'( =  𝜆!𝐿𝑜𝑠𝑠!"# + 𝜆!𝐿𝑜𝑠𝑠!!" + 𝜆! 𝜃 !

! Eq. 11 
  
In summary, a common hidden layer was used to merge the single cells and patients. Next, an 
output layer was added to predict the proportional hazards or classes of the patient samples 
[41]. The loss function for the proportional hazards prediction or patient classification was back-
propagated across both layers for each patient. The single cells also had an output layer 
consisting of a softmax output to predict the cellular subtype of each cell. Error was back-



propagated across both layers from the label output for each cell. Finally, a subspace was 
learned that can model both the single cells and the patients. To perform this task, we utilized 
the MMD method [40] to reduce the differences between patients and cells in a low dimensional 
representation. All of the single cell patients were combined into a single group such that the 
MMD loss was minimized between patients and single cells from multiple patients. Because 
there are many different combinations of these outputs, i.e., single cell output followed by 
patient output, we include ClassCox, ClassClass, ClassBlank, BlankClass, and BlankCox based 
on equations (7)-(11) in the current version but intend to provide more options in the future. 
 
To keep the analyses consistent, the same set of hyper-parameters were used in all of the 
experiments in this study, except for the robustness to hyper-parameters experiment, where 
they were intentionally altered to test the influences on the output results. These are considered 
the default hyper-parameters in the DEGAS package but can be changed. They are: training 
steps 2000, single cell batch size 200, patient batch size 50, hidden layer nodes 50, drop-out 
retention rate 50%, patient loss weight (𝜆!) 3, MMD loss weight (𝜆!)  3, L2 regularization weight 
(𝜆!) 3. 
 
Validating DEGAS using GBM data 
The scRNA-seq data from the Patel et al. study [13] were downloaded from NCBI Gene 
Expression Omnibus (GSE57872). The single cell expression values were previously 
normalized to TPM containing 5,948 genes with mean(log2(TMP))>4.5 retained in the data table. 
The top 20% variance genes were retained for training. These values were then converted to z-
scores then standardized to a range of [0,1] for each sample. The TCGA GBM microarray 
expression data was downloaded from Firebrowse (http://firebrowse.org/). Microarray data were 
used since it contains more patient samples for training with GBM subtype information than 
RNA-seq data. Likewise, the top 20% variance genes were retained for training and these 
expression values were converted to z-scores then standardized to a range of [0,1] for each 
sample. The GBM subtype labels for the TCGA patients were downloaded from Verhaak et al. 
[42]. The intersection of genes between single cells and patients were used for the final model 
training. Since subtype labels were only available for the GBM patient samples, we trained a 
BlankClass DEGAS model (Eq. 10). This model minimizes the MMD loss between single cells 
and patients while minimizing the classification loss only in GBM patients. We split the dataset 
into 10 groups and performed 10-fold cross-validation by leaving out a single patient group 
during training. After cross-validation, we normalized the GBM subtype output using quantile 
normalization (quantile normalized output represented by 𝑥 in Eq. 12) and increased the 
variance of these quantile normalized outputs (Eq. 12) which we call association scores for 
patient outcome in single cells or enrichment scores for cell type classification in patients. These 
association scores were overlaid on the GBM single cells and now referred to as GBM subtype 
association scores because GBM subtype from patients is overlaid on single cells. We plotted 
these association scores stratified by GBM subtype for each tumor individually (Fig. 2A-E). We 
then compared the proportions of these cell types to the previously defined GBM types from the 
original publication marked red dashed boxes in Fig. 2. We also visualized the GBM subtypes 
association in single cells by calculating a low dimensional representation using tSNE and 
overlaying the kNN smoothed GBM subtype associations (Fig. 2F,S2-S5). To make the scatter 



plots of cells and patients more informative, kNN smoothing was used by averaging each point’s 
GBM subtype association value with its five nearest neighbors in tSNE. The model performance 
was shown with the receiver operating curve (ROC) and area-under-curve (AUC) for each of the 
GBM subtype labels in the TCGA patients from cross-validation (Fig. S1). 

 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒,
𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 𝑠𝑐𝑜𝑟𝑒 =  

𝑙𝑜𝑔!(1𝐸4 ∙ 𝑥), 𝑥 > 0
𝑥, 𝑥 = 0

−𝑙𝑜𝑔!(−1𝐸4 ∙ 𝑥), 𝑥 < 0
 Eq. 12 

 
 
Validating DEGAS and exploration using AD data 
For AD datasets, we were primarily interested in identifying known relationships between cell 
types and AD diagnosis. For these reasons, we downloaded all of the adult Human scRNA-seq 
data from the Allen Brain Institute. Only inhibitory neurons, excitatory neurons, 
oligodendrocytes, astrocytes, microglia, and oligodendrocyte progenitor cells (OPCs) were 
retained in the analysis due to the extremely low sample sizes in the remaining cell types. In 
some analysis, the inhibitory and excitatory neuron groups were merged into a single neuron 
group. These data were then log2 transformed, converted to sample-wise z-scores, and then 
standardized to [0,1] by each sample. Genes were only retained as features if they had 70% 
non-zero values. Of the remaining genes the top 30% variance genes were retained for training 
to keep the feature set larger. The labels for the single cells consisted of these major cell types 
listed above. The AD brain data was downloaded from Mount Sinai/JJ Peters VA Medical 
Center Brain Bank (https://www.synapse.org/#!Synapse:syn3157743). Each of the RNA-seq 
samples were either from an AD patient or a normal brain sample. The binary outcomes of AD 
case or normal were used as the label for the model. As in the other experiments, the RNA-seq 
values were log2 transformed, converted to sample-wise z-scores, and standardized to [0,1] for 
each sample. The top 50% variance genes were retained for training to keep the feature set 
larger. The intersection of the patient genes and single cell genes were using to train the final 
model. Using the cell type classification for each single cell and the AD/normal classification for 
each MSBB patient we were able to train a ClassClass DEGAS model (Eq. 8). The performance 
was evaluated using 10-fold cross-validation by leaving out each group during training once. As 
in the GBM experiments (Eq. 12) we quantile normalized and increased the variance of the cell 
type output in patients and the AD diagnosis output in single cells resulting in the cell type 
enrichment and AD associations respectively. Student’s t-tests were performed on the cell type 
enrichment between the patients with different disease status (AD vs. Normal)  (Table 1, 3, S1, 
S3) or on AD association score between different cells with each cell type (Table 2, 4, S2, S4). 
In addition, patients were plotted overlaid with kNN smoothed cell type enrichment and single 
cells were plotted overlaid with kNN smoothed AD association (Fig. 3). Furthermore, to evaluate 
DEGAS performance, ROC and AUC were computed for the single cells during cross-validation 
for each cell type in the single cell data. Similarly, AD diagnosis ROC and AUC were computed 
from the MSBB patient RNA-seq (Fig. S6). We also repeated the same above analysis without 
merging the inhibitory and excitatory groups into a single neuron group so that the single cell 
labels were six types instead of five, i.e., inhibitory neurons, excitatory neurons, 
oligodendrocytes, astrocytes, microglia, and OPCs. 
 



Preprocessing of IUSM MM single cell data 
The scRNA-seq data generated at IUSM were first combined into a dataset using Seurat-CCA 
[28]. This initial dataset integration allowed conserved subtypes of cells to be identified across 
datasets. All four patient dataset counts were loaded into a Seurat object. They were 
normalized, scaled, biased cells removed, and high variance genes identified following the 
Seurat online vignette. Using the union of high variance genes, multi-canonical correlation 
analysis was run across all four datasets, the subspaces were aligned across patients, the 
aligned single cells were plotted with t-SNE [43], and clusters of cells were identified. The raw 
expression values for the high variance genes identified by Seurat were log2 transformed, 
converted to z-scores, and then scaled to [0,1]. 
 
Furthermore, each IUSM scRNA-seq patient was individually clustered using Seurat to check 
the replicability of the clusters and were plotted with UMAP [44]. We used Rand, Fowlkes and 
Mallows's index (FM), and Jaccard index (JI) to measure the cluster consistency between single 
patient clustering experiments and the merged all-patient clustering results (Fig. S10, Table 
S6). The four single patient clustering results, one for each IUSM scRNA-seq patient, were used 
as input into BERMUDA [29] to visualize and evaluate the original Seurat clustering (Fig. S10). 
  
Preprocessing of MMRF patient data 
MMRF patients with bulk tissue RNA-seq and clinical data were used in MM analysis. We used 
relapse-free survival (RFS) with the time to first relapse or death. TPM values for the MMRF 
patient gene expression data and the RFS survival data were used as the input for DEGAS, 
these values were log2 transformed, converted to z-scores, and scaled to [0,1]. The union of the 
features identified by Seurat in the single cell data and the features selected in the MMRF 
patient data were used as the final feature set. The features retained in the MMRF data were 
identified by fitting an elastic-net Cox model [45] to the TPM values based on the RFS. 
 
Evaluate DEGAS performance on MM datasets 
AUC was calculated for each of the output labels for the single cells and for patient labels if a 
classification output was used for the patient data (Fig. 5A). Cox proportional hazard output was 
used for patients, a log-rank test was calculated for each patient so that the hazard ratio and p-
value could be evaluated based on patient stratification by median proportional hazard (Fig 5B). 
Additionally, the same models were used to predict risk in the GSE2658 dataset which had 
information on OS. The output for each GSE2658 sample averaged across all 10 DEGAS 
models and stratified by median  risk to show the robustness of the cox output across datasets 
(Fig. 5C). It is worth noting that the performance on each of these tasks individually should 
decrease in DEGAS since multiple tasks are being optimized simultaneously. The benefit and 
insight of DEGAS come from generating a feature space that combines traits from both tasks 
and allows information unavailable in one dataset to be transferred to another, i.e., generate 
“impressions”. 
 
Identifying MM cell types associated with prognosis 
Gene expression profile for each of the MMRF patients, as a result of the trained transfer 
learning model, can be deconvoluted into the proportion of MM cell types identified in the single 



cell MM data. In a similar fashion, the single cells from MM patients can be assigned 
proportional hazards based on the MMRF Cox section of the model. During each step of cross-
validation and after training, each MMRF patient gene expression data in the validation set was 
deconvoluted into MM subtypes. Each single cell in the validation set was assigned relapse risk 
by feeding those samples through the Cox output layer. In this way, we can infer the association 
with relapse risk of specific cell types as well as the cell type enrichment contained in each 
MMRF sample. The raw output, like the GBM and AD experiments, were quantile normalized 
and the variance increased (Eq. 12) into the association scores of AD risk in single cells and 
enrichment scores of cell types in patients that we used for further analysis. We plotted these 
relationships and conducted Student’s t-tests on the subtype vs. association with relapse in 
single cells (Fig. 5D) and the subtype enrichment vs. relapse status in patients (Fig. 5E,F).  
 
Analysis of gene co-expression of prognostic cell types 
For each cell type, we performed gene co-expression analysis across all four IUSM patients. 
The Pearson correlation coefficient (PCC) was calculated for each pair of genes and used as 
the edge weight for the co-expression network mining. Next, applying the co-expression mining 
tool  WGCNA [31], we identified modules of co-expressing genes for different cell subtypes. For 
modules of interest, we compared the modules’ correlation in each cell subtype. Additionally, we 
used the gene sets from each of the gene co-expression modules to identify enrichment of cell 
type using EnrichR [32]. Furthermore, Student’s t-tests were calculated cell subtype 1 vs all cell 
subtypes and cell subtype 2 vs. all cell subtypes using the batch corrected gene expression 
values from Seurat. These values were stored in (Supplementary File 1 and Supplementary 
File 2) respectively. 
 
Evaluation of DEGAS robustness to hyper-parameters in GBM 
Using the GBM dataset, we evaluated the robustness of DEGAS model outputs to hyper-
parameters by repeating 10-fold cross-validation 100 times with randomly generated hyper-
parameters following a uniform distribution. The range of hyper-parameters used in training 
consisted of: training steps 1,000-3,000, single cell batch size 100-300, patient batch size 20-
100, hidden features 10-100, drop-out retention rate 0.1-0.9, Patient loss weight (𝜆!) 0.2-5, 
MMD loss weight (𝜆!) 0.2-5, L2 regularization weight (𝜆!) 0.2-5. The output for each of the 100 
hyper-parameters was quantile normalized. 
 
Using these outputs we performed two tests. One was to evaluate the loss in performance 
based on changing the hyper-parameters where performance was measured with AUC among 
the TCGA GBM patients labeled by patient GBM subtype (Mesenchymal, Classical, Proneural, 
Neural). In this test, we calculated the spearman correlation and plotted the scatter plot between 
the AUC of each of the four GBM subtype labels and the hyper-parameters used (Fig. S11, 
Table S8).  
 
Next, we evaluated whether or not the correct GBM subtype labels (Mesenchymal, Classical, 
Proneural, Neural) could be recapitulated in the GBM scRNA-seq tumors that had known GBM 
subtypes (MGH26: Proneural, MGH28: Mesenchymal, MGH29: Mesenchymal, MGH30: 
Classical). To do this for each tumor (MGH26, MGH28, MGH29, MGH30), the rank of the 



correct label was calculated by calculating the mean of each GBM subtype association across 
all of the cells in that tumor. This resulted in each of the 100 random hyper-parameters having a 
rank for each GBM subtype for each of the GBM scRNA-seq tumors (4 highest ranked, 1 lowest 
ranked). Ideally all GBM scRNA-seq tumors would have a rank of 4 indicating the correct GBM 
subtype was ranked the highest regardless of hyper-parameters (Fig. S13). Similarly, we also 
calculated the Spearman correlation and plotted the scatter plot between correct label rank and 
the hyper-parameters used (Fig. S12, Table S9). 
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