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Abstract

With the rapid advance of single cell sequencing techniques, single cell molecular data are
quickly accumulated. However, there lacks a sound approach to properly integrate single cell
data with the existing large amount of patient-level disease data. To address such need, we
proposed DEGAS (Diagnostic Evidence GAuge of Single cells), a novel deep transfer-learning
framework which allows for cellular and clinical information, including cell types, disease risk,
and patient subtypes, to be cross-mapped between single cell and patient data, provided they
share at least one common type of molecular data. We call such transferrable information
“impressions”, which are generated by the deep learning models learned in the DEGAS
framework. Using eight datasets from a wide range of diseases including Glioblastoma
Multiforme (GBM), Alzheimer’s Disease (AD), and Multiple Myeloma (MM), we demonstrate the
feasibility and broad applications of DEGAS in cross-mapping clinical and cellular information
across disparate single cell and patient level transcriptomic datasets. Specifically, we correctly
mapped clinically known GBM patient subtypes onto single cell data. We also identified
previously known neuron loss from AD brains, then mapped the “impression” of AD risk to single
cell data. Furthermore, we discovered novel differences in excitatory and inhibitory neuron loss
in AD data. From the exploratory MM data, we identified differences in the malignancy of
different CD138+ cellular subtypes based on “impressions” of relapse information transferred
from MM patients. Through this work, we demonstrated that DEGAS is a powerful framework to
cross-infer cellular and patient-level characteristics, which not only unites single cell and patient
level transcriptomic data by identifying their latent links using the deep learning approach, but
can also prioritize both patient subtypes and cellular subtypes for precision medicine.
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Introduction

Large data consortia containing a variety of omics data are widely available for many disease
types, which allow researchers to identify multi-level omic perturbations that are associated with
disease status and clinical outcomes. Unfortunately, most of such consortia do not contain
assays specifically addressing tissue heterogeneity at the cellular level. On the other hand,
databases and portals have quickly accumulated with single cell RNA sequencing datasets
(scRNA-seq), such as Hemberg lab [1], scRNASeqDB [2], SCPortalen [3], Allen Institute Cell
Types Database, and the NCBI Gene Expression Omnibus (GEO) [3]. However, these single
cell databases all lack enough patient clinical information to assess how the heterogeneous cell
types affect clinical outcomes at the patient level.

In order to transfer the molecular heterogeneity information we learn from scRNA-seq data and
apply it to patient-level analysis, there is an urgent need in methodology development to
integrate both data types and identify hidden links between the two. However, such integration
faces a lot of challenges as different data modalities and difference data sources can have
different characteristics, such as quantity, quality, distribution and resolution of the data [4]. For
instance, it is common to find studies with a large number patient samples of bulk tissue RNA-
seq, whereas studies with scRNA-seq data usually contains a small number of patient samples.
Also, most scRNA-seq experiments generate a large number of cells per sample, making the
scaling of such data to multiple tissue samples computationally difficult [4]. On top of this, a
large patient sample size is often required for statistical studies such as outcome prediction and
survival analysis. If traditional methods were used, the resulting scRNA-seq data could end up
with cell numbers in the scale of millions. To address such challenges as sample size and
computational cost, in this study, we establish a transfer learning framework DEGAS
(Diagnostic Evidence GAuge of Single cells) to integrate studies of scRNA-seq and bulk tissue
RNA-seq data with the goal to identify the hidden links between the two. Through cross-
mapping, DEGAS identifies disease associated cell subtypes while at the same time dissecting
patient bulk tissue data into corresponding cell types. The DEGAS framework in its simplest
form can be broken into three tasks: 1) correctly labeling cells with a cellular subtype using
multitask learning, 2) correctly assigning proportional hazards or clinical labels to patients using
multitask learning, and more importantly, 3) generating a subspace for cross-mapping where the
patients and cells are comparable using domain adaptation.

Taking transcriptomic data as an example, the rationale behind the DEGAS framework is that
since scRNA-seq data and patient-level transcriptomic data share the same set of genes
(feature space), there must exist a natural connection between the two data types that can be
leveraged to further identify the associations between patients and cells and even cross-map
the traits from one data type to the other. Viewing this association as a graph (Fig. 1), we can
connect the outcomes in patients to the groups of cells, i.e., subtypes, via the common feature
space (gene set) between the two. The expression patterns of the genes should also carry at
least part of the same biological patterns such as molecular pathways, signaling cascades, and
metabolic processes, making the information/knowledge learned from such portion of gene
expression patterns transferable between patients and cells. Our assumption is that information
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learned from these shared gene expression patterns are simultaneously predictive of both
patient outcomes and cellular subtypes.

To determine the link between single cell data and the associated disease state is not new —
previous methods mainly utilize unsupervised learning and focused primarily on the number of
differentially expressed genes (DEGs) in a given cell type corresponding to some clinical
outcome [5, 6]. For example, Gawel et al. used enrichment of the cell cluster specific DEGs and
multicellular disease models (MCDMs) to visualize the cell type prioritization [7]. Alternatively,
Augur did not rely primarily on DEGs, since it decreased the biological resolution to cell type
level [8]. Instead, they trained classifiers on each cell type with respect to the disease state of
the tissue from which those cells were sampled. The accuracy of the classifier in each cell type
was used to prioritize the cell types in relation to the disease state of interest [8]. Both of these
methods rely on either prior knowledge to calculate enrichment of DEGs or clinical
measurements for each subject from which single cells were extracted.

However, in our DEGAS workflow, we try to incorporate the patient level outcome information
with cell type from disparate datasets to perform “cell type prioritization” on scRNA-seq data of a
disease that can be attributed to disease-related biological perturbations. This is a novel neural
network approach for cell type prioritization, and we hope to achieve the goals that i) train a
model simultaneously on both single cell data with cellular information as a label, and patient
data with patient information as a label where at least one set of labels, patient or single cell, is
available for training; ii) the model is established in such a way that the data distributions
between the single cells and patients are reconciled. Multitask learning, a type of transfer
learning, is precisely designed to achieve these two goals. Used extensively in computer vision,
multitask learning learns a low dimensional representation of the input data to optimally address
multiple tasks. Examples of such application in medical science include predicting benign
versus malignant tumor samples, as well as subclassification in breast cancer histology images
[9, 10]. Recently a new method called SAUCIE has been proposed to denoise the scRNA-seq
data, cluster cells, and cluster patients using a multitask learning approach [11]. We further
extend this line of research to include datasets with patient outcomes that can be trained
simultaneously so that the outcomes can be transferred or cross-mapped between single cells
and patients, that is, transfer single cell knowledge learned from deep learning models to
patients and patient knowledge to single cells. The major advantage of such transfer learning
framework is that, the single cell patients and clinical bulk expression patients, from which the
outcomes are being learned, can come from different cohorts. This flexibility not only presents
an ingenious way to integrate molecular omic data analysis in different levels, but also virtually
merges them into the same cohort, which makes studying a broad variety of heterogeneous
diseases possible.

To perform DEGAS, first we obtain the common molecular information, in our case,
transcriptomic data, from single cell level (scRNA-seq data) and patient level (bulk expression
data); secondly, we apply deep learning models to further learn the connections between the
single cell and patient-level gene expression patterns, with the goal to simultaneously minimize
a) cell type classification error; b) patient outcome prediction error; and c) the data variance
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between the two gene expressions in the hidden layer. Finally, the patient-level clinical data
such as survival and clinical subtypes from the patient expression data will be cross-mapped to
the populations of single cells in the scRNA-seq data. Similarly, the cell type information from
single cells can be cross-mapped to the patient samples. As an analogy to visual perception, we
call these transferrable features “impressions” since information from gene expression of
disparate data types and studies can be extracted and the characteristics from one data type
can be mapped to the other.

DEGAS is developed as a generalizable transfer learning framework/model that can be applied
to any disease data as long as the data contain: 1) clinical information for a cohort of patients
and/or 2) a separate clustering analysis result on sets of cells from scRNA-seq experiments of
the same disease. Either cell type labels or patient outcome labels, but not both, can also be
omitted to produce a DEGAS model which only generates “impressions” in one direction. Using
this transfer learning framework, these two types of data can be leveraged to construct a
DEGAS model and infer cross-mappable results (impressions). We show the general model and
workflow in Fig. 1. More detailed information is described in the Methods section.

To demonstrate the feasibility and effectiveness of the DEGAS framework, we first tested
DEGAS on glioblastoma (GBM) transcriptomic data, which has ground-truth labels of cancer
subtypes in both bulk tissue cohorts and singe cell samples. Then we applied it to Alzheimer’s
disease (AD) studies in which neuron loss is known. Finally, as an exploratory tool, we applied
DEGAS to study multiple myeloma (MM) transcriptomic data, where the disease subtypes and
high-risk factors associated with single cells are largely unknown. MM stems from the
proliferation of aberrant clonal plasma cells in the bone marrow that secrete monoclonal
immunoglobulin protein. It is the second most common blood cancer in the United States and
32,110 new cases will be diagnosed with 12,960 estimated deaths in the United States in 2019
[12]. We combined our newly generated MM scRNA-seq data from six local samples and bulk
tissue data from the Multiple Myeloma Research Foundation, then applied DEGAS to infer
clinical impressions for plasma cell subtypes and successfully identified a patient subgroup with
high risk of relapse.

Results

DEGAS clinical impression framework

In this study, we applied DEGAS to integrate and analyze scRNA-seq and clinical data from
three different diseases: GBM, AD and MM. Since the ground truth of GBM subtypes are
known, and the neuron loss in AD brains are also known, the GBM and AD datasets primarily
served as validation to demonstrate the feasibility and universality of the DEGAS transfer
learning approach with high accuracies. We then further expand our study to MM data, which
serves as the discovery dataset, since the plasma cell subtypes and high-risk factors are largely
unknown for MM. In the MM study, we applied DEGAS on patient data from the Multiple
Myeloma Research Foundation (MMRF) and scRNA-seq data from patients at Indiana
University School of Medicine (IUSM). Our aim was to identify the cell subtypes as well as a
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high-risk subgroup of patients using the impressions of relapse risk on the single cells and
impressions of cellular subtype in MM patients. We then applied the results to two separate MM
validation datasets, one of which contained plasma cells from normal bone marrow (NHIP), MM
precursor conditions: monoclonal gammopathy of undetermined significance (MGUS) and
smoldering multiple myeloma (SMM), and MM. We wanted to observe if DEGAS assignment of
relapse risk to cell subtypes were higher for more malignant conditions. An additional external
validation dataset of patient level expression data with overall survival was used to evaluate
whether the patient stratification learned by DEGAS was robust enough to be generalized to an

external survival dataset.
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Fig. 1 A workflow diagram of the DEGAS framework. The scRNA-seq and patient expression data are preprocessed
into expression matrices. Next a DEGAS model is trained using both single cell and patient outcomes via a multitask
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learning neural network while the data distribution differences are reduced between patients and single cells at the
final hidden layer using maximum mean discrepancy (MMD), which attempts to match the data distributions from two
sources. As the output, this model can be used to infer clinical outcome impressions in single cells and cellular
composition impression in patients.

DEGAS correctly mapped single cells to corresponding GBM subtypes

In Patel et al. [13], researchers assigned four major GBM tumor subtypes (Proneural,
Mesenchymal, Classical, and Neural) to the single cell scRNA-seq data obtained from five GBM
tumors. Of the five tumor samples, four had been labeled in the original publication with a single
subtype based on the major proportion of cells assigned to each GBM subtype. For GBM bulk
tumor tissue expression data, we obtained RNA-seq data for 111 GBM patients from The
Cancer Genome Atlas (TCGA), in which the same GBM subtypes were also known. As the
simplest form of validation, we used these two datasets as input for the DEGAS model to test if
it could reidentify the same GBM subtypes for both single cells and for TCGA cohort. Indeed,
DEGAS reidentified the same labels for all four tumors by overlaying GBM subtypes association
on each single cell (Fig. 2A-D). For the fifth tumor sample, MGH31, it was labeled as a
combination of multiple GBM subtypes in the original study and DEGAS also identified mixed
cell types for this sample (Fig. 2E). In Fig. 2 A-D, the groups of cell subtypes with the highest
association score (as judged by the median value) matched the ground-truth label of that tumor
sample (indicated with the dash line box). Additionally, these relationships can be visualized by
plotting the single cells and overlaying the GBM subtype association. It is clear that MGH28 and
MGH29, for instance, have a high association with the mesenchymal GBM subtype (Fig. 2F).
These DEGAS models also proved to be accurate with high AUCs (0.93-0.98) for predicting
each of the GBM subtypes in the TCGA patients during cross-validation (Fig. S1).
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Fig. 2 DEGAS output of the distribution of GBM subtypes in single cells from five GBM tumors. Four of the five
tumors had known GBM subtype information from Patel et al. (MGH26: Proneural, MGH28: Mesenchymal, MGH29:
Mesenchymal, and MGH30: Classical, indicated by dashed red boxes) which were recapitulated by DEGAS. The
subtype information for the tumors, MGH26, MGH28, MGH29, and MGH30 were derived from Patel et al. where
MGH31 did not have a clearly defined subtype in Patel ef al. The association of cells assigned to each subtype were
plotted for each tumor; A) MGH26, B) MGH28, C) MGH29, D) MGH30 and E) MGH31. Median values are marked by
a diamond in each of the violin plots. F) The association with the mesenchymal subtype is overlaid on all of the single
cells from the five tumors (indicated by the size of the dots). It clearly shows that the single cell from MGH28 and
MGH29 have the highest association with the mesenchymal subtype. Note: the tumors in (F) are color coded the
same as the boxplots in (A-E).

DEGAS identifies AD patients with increased microglia and reduced neuron populations

Aside from GBM, AD also has well documented characteristics that can be used as a test bed
for DEGAS. Specifically, there is a well-documented reduction in neurons [14-16] and increase
in microglia [17-20] in AD patients. AD scRNA-seq data are from the Allen Institute for Brain
Science and bulk RNA-seq data are from Mount Sinai Brain Bank (MSBB)[21]. The DEGAS
models were trained using either a single neuron cell type or two types (excitatory, and
inhibitory neurons), oligodendrocyte, astrocyte, oligodendrocyte progenitor cell (OPC), and
microglia. The brain samples were split into groups based on AD diagnosis status (AD" or AD"),

From DEGAS results, we confirmed that in the single cell level, the AD association score was
reduced in neuron single cells as previously described [22], as shown by the small point sizes of



neuron cells (Fig. 3A) (Table 1-2). At the patient level, the neuron enrichment score was also
reduced in AD patient brain samples, as shown by the smaller point sizes for AD patients
compared to normal patients (Fig. 3B). One important finding among AD brain samples is that
the decreased neuron pattern was only found on excitatory neurons but not in inhibitory
neurons. This supports the similar findings in previous AD studies [22, 23]. However, another
study discovered inhibitory neuron loss in AD [24]. In fact, with DEGAS results, although the
inhibitory neuron percentage appeared to increase in AD (Table 3-4), this could be due to the
much greater loss of excitatory neurons. Specifically, the 1.90 mean increase (from -1.14 in AD’
to 0.7 in AD") in inhibitory neuron enrichment score (Table 3) is much smaller than the 2.84
mean reduction (from 1.70 in AD" to -1.14 in AD* samples) in excitatory neuron enrichment
score (Table 3) in MSBB samples. Since the enrichment score only reflects the relative
proportion of each cell type, the results suggest that the putative gain of inhibitory neuron might
actually be a relatively smaller loss in relation to the excitatory neuron loss. Indeed, when
inhibitory and excitatory neurons were combined into a single neuron group, the mean reduction
in enrichment are actually larger (3.74, Table 1) compared to using the excitatory neuron
enrichment alone (2.84, Table 3). This means that combining the two neuron groups together
actually resulted in even greater neuron loss being detected, which indicates that the apparent
increase in inhibitory neurons was just an artifact of a differential amount of loss between
excitatory and inhibitory neurons. Opposite to the neuron change, we observed a significant
increase in the microglia enrichment in AD patients and a significant increase in AD association
in microglia single cells (Fig. 3C, Table 2,4). The patients assigned with increased microglia
enrichment score and decreased excitatory neuron enrichment also follow worse outcomes from
AD diagnostic scores in multiple brain regions (Fig. 3D). Specifically, we evaluated the
signature in relation to clinical dementia rating (CDR) [25], Braak and Braak stage (BBS) [26],
and B-amyloid plaque mean (Plaque_mean) [27]. The CDR measure evaluates dementia based
on interviews with caregivers about a patient behavior and quality of life [25]. The BBS measure
evaluates the localization of neurofibrillary tangles in regions of the brain [26]. The
Plague_mean measure is performed during an autopsy to study the presence and size of B-
amyloid plaques in the brain of a decreased patient [27] (Fig. $8). During 10-fold cross-
validation, DEGAS models achieved high cell type prediction AUCs (0.97-1.00) for single cells
and high AD diagnosis AUC (0.76) in MSBB patients when inhibitory and excitatory neurons
were separated by cell type labels. Similarly, when inhibitory and excitatory neurons were
combined into a single neuron cell type, DEGAS models also achieved high cell type prediction
AUC (0.90-1.00) for single cells and high AD AUC (0.76) in MSBB patients in 10-fold cross-
validation.
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Fig. 3 DEGAS output of relationship between brain cell type and AD diagnosis based on AD scRNA-seq data and AD
bulk tissue RNA-seq data. A) DEGAS output an AD association score for each single cell. The AD association score
is indicated by the dot size and is overlaid on 2000 Allen Institute single cells, 400 from each cell type, showing the
negative AD association (smaller neuron dots) in neuron cells. B) The neuron enrichment overlaid on MSBB patients
showing that the neuron enrichment positively correlated with normal brains. C) The microglia enrichment overlaid on
MSBB patients showing that the microglia enrichment follows the density of AD patients. D) The AD diagnostic test
scores combined (CDR, BBS, B-amyloid plaque mean) overlaid on MSBB patients showing that AD diagnostic
scores align with AD patients. The blue and red density kernels on the x- and y-axes (B-D) describe the distribution of
of AD samples in the t-SNE plots.

Table 1 Comparison of cell type enrichment scores in patients between disease status groups. The DEGAS models
were trained using a combined neuron cell type, oligodendrocyte, astrocyte, OPC, and microglia. The patient samples
were split into groups based on AD diagnosis status (AD" or AD’) and the cell type enrichment scores were compared
between groups using t-tests. See Table S1 for all cell types.

Cell type AD+ mean AD- mean t-statistics p-value
Neuron -1.74 2.00 -7.54 1.83E-13
Microglia 1.43 -2.75 8.62 <2.2E-16

Table 2 Comparison of AD association scores in single cells between cell types. The DEGAS models were trained
using a combined neuron cell type, oligodendrocyte, astrocyte, OPC, and microglia. The single cells were split into
groups based on their cell type then compared to all other cell types (Cell-type” or Cell-type’) and the AD association
was compared between groups using t-tests. See Table S2 for all cell types.



Cell type Cell-type” mean | Cell-type’ mean | t-statistics p-value
Neuron -1.10 10.30 131.34 <2.2E-16
Microglia 11.53 -0.17 -126.38 <2.2E-16

Table 3 Comparison of cell type enrichment score in patients between disease status groups. The DEGAS models
were trained using two neuron cell types, inhibitory and excitatory neurons, plus the other four cell types. The patient
samples were split into groups based on AD diagnosis status (AD* or AD) and the cell type enrichment was
compared between groups using t-tests.

See Table S3 for all cell types.

Cell type AD+ mean AD- mean t-statistics p-value
Inhibitory 0.76 -1.14 2.60 9.64E-3
Excitatory -1.14 1.70 -3.89 1.11E-4
Microglia 1.05 -1.58 3.60 3.40E-4

Table 4 Comparison of AD association score in single cells between cell types. The DEGAS models were trained
using two neuron cell types, inhibitory and excitatory neurons, plus the other four cell types. The single cells were
split into groups based on their cell type then compared to all other cell types (Cell-type” or Cell-type’) and the AD
association was compared between groups using t-tests. See Table S4 for all cell types.

Cell type Cell-type® mean | Cell-type’ mean | t-statistics p-value

Inhibitory 8.59 -2.68 -136.90 <2.2E-16
Excitatory -4.64 9.15 191.90 <2.2E-16
Microglia 11.08 -0.13 -78.62 <2.2E-16

DEGAS identifies plasma cell subtypes in IUSM CD138+ scRNA-seq of MM

In the MM study, unlike the previous two datasets, there were no predefined cell type labels, but
DEGAS was still capable of analyzing such data. We first used Seurat [28], a commonly used
scRNA-seq data analysis tool, to merge and cluster all the CD138+ bone marrow cells from four
MM patients whose samples were collected at the IUSM. Seurat generated 11 clusters of cells
for the IUSM scRNA-seq study. Since many of these clusters were not distinct from one another
(Fig. 4), we merged neighboring clusters and reduced the 11 clusters to 5. We further validated
these subtype clusters by individually clustering each patient with Seurat and using another
scRNA-seq normalization tool Batch Effect ReMoval Using Deep Autoencoders (BERMUDA)
[29] on all four patients. We found that the individual clustering experiments closely mirrored the
Seurat-CCA clusters (Fig. S10A-D, Table S6) and that subtype 2 was consistent across MM
patients using BERMUDA (Fig. S10E). These 5 clusters were the cell subtypes used as the
subtype labels in the DEGAS framework. For bulk tissue data from MMRF, the clinical outcome
of relapse free survival for 647 patients was used as the input to DEGAS.
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Fig. 4 Clusters generated from Seurat-CCA colored by A) IUSM scRNA-seq patient, and B) cluster, i.e., subtype.

DEGAS patient stratification and cell type classification on MM

After a DEGAS model was trained on IUSM patient scRNA-seq data with subtype labels and
MMREF patients with bulk tissue data and relapse free survival information, performance metrics
were calculated via cross-validation. When relapse was treated as a binary outcome, DEGAS
was able to achieve a median relapse prediction AUC of 0.68 when simultaneously integrating
the single cell data with the patient samples and predicting the subtypes on the single cells.
When predicting cellular subtype label in single cells, DEGAS was able to achieve an AUC
between 0.92-0.99 for all five of the CD138+ cellular subtypes we identified in the IUSM scRNA-
seq data (Fig. 5A). Aside from classifying the single cells correctly, DEGAS was able to stratify
patients into high and low risk groups based on median relapse risk (p-value = 1.67E-9, Fig.
5B). We then applied the trained model on an external patient transcriptomic dataset from Zhan
et al. [30] for overall survival validation. We demonstrated that the Cox proportional hazards
portion of the DEGAS model was robust across datasets, and the impression extracted from the
DEGAS framework was capable to stratify patients into low and high-risk groups in the Zhan et
al. dataset (p-value=1.37E-2, Fig. 5C).

DEGAS identifies CD138+ cellular subtypes that are associated with patient relapse

The DEGAS model for the MM study transfers clinical information (impressions) to single cells
(i.e., single cells were directly assigned a relapse association), as well as transfers
cellular/molecular features (impressions) to patients (i.e., patients are assigned subtype
enrichment). We found that subtype 1 and subtype 2 cells were the most important for
prognosis. Specifically, subtype 1 was associated with a longer time to relapse and subtype 2
with a shorter time to relapse — IUSM single cells that were subtype 1 had much lower
association with relapse than single cells that were subtype 2 (Fig. 5D, p-value < 2.2E-16). The
MMREF patients who relapsed had significantly lower subtype 1 enrichment (Fig. 5E, p-value =
6.2E-9) and higher subtype 2 enrichment (Fig. 5F, p-value = 2.90E-3). On an external validation
scRNA-seq dataset from Ledergor ef al., we found a steady decrease in subtype 1 enrichment



from NHIP (normal control) to the near-MM stage SMM (Fig. 5H, p-value = 7.80E-3) and
increase in subtype 2 enrichment from NHIP to near-MM stage SMM (Fig. 5I, p-value=1.15E-2)
and MM (Fig. 5l, Kruskal-Wallis p-value = 6.40E-3). The relapse association predicted by
DEGAS framework also increased from NHIP to SMM (Fig. 5G, p-value = 2.20E-2) and MM
(Fig. 5G, Kruskal-Wallis p-value = 3.50E-2), which agrees with the order of precursor conditions
for MM (NHIP (no disease) & MGUS = SMM = MM).
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Fig. 5 Association between subtypes and relapse risk. A) The ROC curves for predicting the correct subtype B)
Kaplan Meier curves from cross-validation for the MMRF patients stratified by median proportional hazard. C) Kaplan
Meier curves of overall survival of Zhan et al. external dataset. MM patients stratified by median proportional hazard.
D) Proportional hazard prediction for NHIP, MGUS, SMM, and MM in the IUSM dataset. E) Subtype 1 enrichment for
relapsed vs. non-relapsed MMRF patients. F) Subtype 2 enrichment for relapsed vs. non-relapsed MMRF patients.
G) Proportional hazard prediction for NHIP, MGUS, SMM, and MM in the external dataset GSE117156. H) Subtype 1



enrichment for NHIP, MGUS, SMM, and MM in the external dataset GSE117156. 1) Subtype 2 enrichment for NHIP,
MGUS, SMM, and MM in the external dataset GSE117156. NHIP: normal hip bone marrow, MGUS: monoclonal
gammopathy of undetermined significance, SMM: smoldering multiple myeloma, MM: multiple myeloma. Significance
values: * (0.1), * (0.05), ** (0.01), *** (0.001). All median values in violin plots are marked with a diamond. All plots
were generated using the default parameters for the DEGAS package described in the section of Methods: Transfer
learning using DEGAS.

MM distinct prognostic subtypes have distinct co-expression signatures

In order to understand the molecular level differences between subtypes 1 and 2, which behave
oppositely in terms of the association to tumor malignancy, we performed gene co-expression
analysis on the scRNA-seq data of the two cell subtypes using WGCNA [31]. When we
compared the gene co-expression patterns between subtypes 1 and 2, we found that the blue
and turquoise modules were shared by the two subtypes and subtype 2 additionally included
two unique modules (Fig. 6A, B). We performed cell type enrichment analysis on each of the
two unique modules, and the results were summarized in Table 5. Similarly, we also calculated
the differentially expressed genes for subtype 2 (Supplementary File 2). The most interesting
observation was the down-regulation of CD45 as well as the up-regulation of CD71, CD138, and
CD38 gene expressions, which constitutes a CD45-/CD71+/CD138+/CD38+ signature of
subtype 2 compared to all other subtypes in the CD138+ fraction. Furthermore, the increased
cell type enrichment for erythroblast and progenitor ontology terms (Table 5) may indicate a
progenitor cell like phenotype for subtype 2.

A C Yellow module genes (Subtype 1) E Brown module genes (Subtype 1)
Subtype 1

SECtaLa-]

g $
Ty

AHD |

PHOSPHO! -
& AL -

RING -

AcHE -
KEL-| Abs(PCC)

Gvpe-| o0

crse-| 075

RHCE - 050
DMTN | 025
HBZ-| 000

SELENBP1 -
GvPe-|

Abs(PCC)
100

075
050
025
000

ALasz-
SLoaAT -
Gve-|
chz-
Hew-|

N ST R S RO R
R R I CO S 2 SO RS

U]
S : 55
Subtype 2
B W% D Yellow module genes (Subtype 2) F Brown module genes (Subtype 2)
1
bl

. seotaL]
AP
il | PHOSPHOT

i
KEL-| Abs(PCC)

GYpE-
cse-| 075

e | - os0
ownv 0zs

000

Abs(PCC)
1.00

075

050
025
000

SELENBP1-|
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Table 5 Cell type enrichment terms for co-expression modules in subtype 1 and subtype 2.

Subtype Module Database Cell type p-value g-value
Subtype 2 yellow Human Gene Atlas CD71+_EarlyErythroid 4.12E-22 3.46E-20
Subtype 2 yellow ARCHS4 Tissues ERYTHROBLAST 2.71E-17 2.92E-15
Subtype 2 yellow Jenson TISSUES K-562_cell 9.61E-9 1.77E-5
Subtype 2 brown Human Gene Atlas CD71+_EarlyErythroid 1.28E-15 1.08E-13
Subtype 2 brown ARCHS4 Tissues ERYTHROBLAST 1.26E-16 1.36E-14
Subtype 2 brown Jenson TISSUES ERYTHROID_CELL 1.79E-7 3.30E-4
Subtype 1 and blue | GO Biological Process regulation of B cell 432E-17 | 1.10E-13
Subtype 2 activation

Subtype 1 and blue ARCHS4 Tissues PLASMA CELL 5.30E-8 2.90E-6
Subtype 2

Subtype 1 and .

Subtype 2 blue ARCHS4 Tissues CD19+ B CELLS 717E-7 1.55E-5
Subtype 1 and . .

Subtype 2 turquoise Human Gene Atlas Lymphoma_burkitts 3.26E-8 2.74E-6
Subtype 1 and .

Subtype 2 turquoise Human Gene Atlas 721_B_lymphoblasts 4.18E-4 8.78E-3
Subtype T and turquoise ARCHS4 Tissues CD34+ CELL 545E-83 | 5.89E-81
Subtype 2 q ’ )

DEGAS is robust to hyper-parameter choice in GBM

To measure the robustness of DEGAS, we also analyzed how the hyper-parameter choices
influence the DEGAS results, using a set of 100 randomly generated hyper-parameters and
performing 10-fold cross-validation on each set of those 100 sets of hyper-parameters on the
GBM datasets. The hyper-parameters that we evaluated were: the number of training steps,
batch size for single cells, batch size for patients, number of hidden layer nodes, drop-out
retention rate (the percentage of nodes randomly retained at the hidden layer), patient loss
weight, MMD loss weight, and L, regularization weight. The default parameters used for all
previous experiments are listed in the Methods section of Transfer learning using DEGAS. For
more information on the range of hyper-parameters that were randomly sampled, please see
the Methods section of Evaluation of DEGAS robustness to hyper-parameters in GBM. We
discovered that most hyper-parameters did not significantly affect the AUC predicting GBM
subtype in TCGA GBM patients with the exception of the drop-out retention rate and number of
hidden layer nodes (Fig. S11, Table 8). Similarly, most hyper-parameters did not significantly
affect the correct assignment of GBM subtype to GBM scRNA-seq tumor, except for the number
of hidden layer nodes and the drop-out retention rate (Fig. $12, Table S$9), where an initial
phase of increased AUC was seen with the parameter values increasing (for the number of
hidden layer nodes < 20 and the drop-out retention rate < 20%). In this case, we suggest users



to keep default settings for these two parameters as described in the Methods. Other than these
two parameters, the rest of the hyper-parameters do not affect the high accuracy of the tumor
subtype classification. Furthermore, we found that regardless of the hyper-parameters used in
our hyper-parameter comparison experiment (including suboptimal ones), the correct GBM
subtype was assigned to the corresponding GBM scRNA-seq tumor 62% of the time (Fig. S$13).

Discussion

In this work, we constructed a transfer learning framework DEGAS to integrate scRNA-seq and
patient expression data in order to infer the transferrable “impressions” of patient characteristics
in single cells and cellular characteristics in patients. By transfer learning, we trained a model
using both scRNA-seq and patient bulk tissue gene expression, then reduced the data
differences between the two types in the final hidden layer of our model via domain adaptation
while simultaneously predicting cell characteristics using only scRNA-seq data and predicting
patient characteristics using only patient expression data. We validated the feasibility and broad
applications of our DEGAS framework on datasets from two diseases, GBM and AD, which
contained ground truth tumor subtype labels and ground truth cell type-disease associations,
respectively. Within the GBM single cell patient cohort, each GBM tumor, from which scRNA-
seq data was generated, had a GBM subtype label from Patel et al. [13]. The DEGAS results
showed that the majority of cells in each tumor were labeled with the same GBM subtype as
previously defined in [13]. Specifically, we correctly mapped Proneural, Mesenchymal,
Classical, and Neural GBM subtypes to single cells in four GBM tumor samples. This
experiment also shows the broad applicability of the model since the single cells had no labels
and the patient samples had multiclass labels. DEGAS allows for different categories of output
labels to be combined, which may include but are not limited to: classification labels, Cox
proportional hazard, and no labels. This allows for a wide variety of applications to adopt the
DEGAS framework so that impressions are not limited to only one type of outcome. It also can
be applied to other types of molecular data besides transcriptomic data, provided the same
feature space (such as genes, or loci) are shared between single-cell data and the patient-level
data.

The DEGAS analysis on Alzheimer’s disease data further validated our model by correctly
identifying the decreased neuron and increased microglia proportions in AD patients. Aside from
these known characteristics of AD change, we also discovered that excitatory neuron loss was
much greater than inhibitory neuron loss. In fact, the proportion of interneurons appeared to
increase slightly though this is most likely attributed to a large decrease in the number of
excitatory neurons in relation to a much smaller decrease in the number of inhibitory neurons.
Despite the increased efforts put into AD research, there still lacks a general agreement about
the change of neuronal subtypes and their roles in AD progression [22-24], making our finding a
valuable contribution to this field.

To explore disease with unknown cell types and risk information, we applied DEGAS to MM
data. The models were able to assign relapse free survival metrics to subtype populations of



CD138+ cells identified by cell type clustering methods Seurat [28] and BERMUDA [29]. Among
the identified subtypes of cells, subtype 2 was the most consistent between IUSM patients
visualized by BERMUDA (Fig. S10E). Furthermore, we found that the subtype 2 population
appeared to have a gradient of cells moving away from the main subtype 1 group, possibly
associated with a certain degree of differentiation (Fig. $10). Based on cell type enrichment
analysis [32] on the gene co-expression modules unique to subtype 2 (i.e., the yellow and
brown modules in Fig. 6), we found an erythroblast/stem-like signature that may be related to
convergent evolution in tumors, since evidence of convergent evolution has already been noted
through copy number alterations in circulating tumor cells in multiple cancer types [33]. Another
possible explanation could be that subtype 2 is some form of malignant progenitor cell.

Upon further examination, we found evidence that subtype 2 may represent a population of
erythroblast-like cells in MM. Tumor-inducible erythroblast-like cells have already been reported
in hepatocellular carcinoma (HCC) [34]. These CD71+ erythroblast-like cells have been shown
in mice to be derived from embryonic stem cells. It would be unusual to find erythroid cells in the
CD138+ fraction but the VK*MYC mouse model of MM has been shown to contain populations
of CD71+/CD138+ erythroid progenitor cells [35]. In addition, there is also evidence of CD45
low/CD138+/CD38+ tumor intiating cells found in patient derived xenograft models of MM [36].
The cell type enrichment analysis from the subtype 2 specific gene co-expression modules
indicates CD71+ enrichment in these two gene modules. When we performed differential gene
expression analysis between subtype 2 and all other cell subtypes, subtype 2 shows
significantly higher SDC1 (also known as CD138) expression levels, increased TFRC (CD71)
expression, insignificantly decreased PTPRC (CD45) expression, and significantly decreased
PTPRCAP (CD45 associated protein) expression. Since all of the IUSM MM cells in our study
had already been FACS sorted for CD138+, it is possible we have identified a population of
CD45-/CD71+/CD138+/CD38+ cells in MM with a similar phenotype to the erythroblast-like cells
found previously in HCC [34].

DEGAS discovered for the first time this special population of cells (CD45-/CD71+/CD138+
cells) in MM, along with its association with worse prognosis, which would be impossible using
the scRNA-seq data alone. The erythroblast-like cells in subtype 2 are the most stable cluster
across datasets (Fig. $10). We speculate this inter-tumor population stability could be attributed
to convergent evolution in MM toward a more erythroblast-like phenotype or a stable pool of
malignant progenitor cells that might help the cells to escape therapy. Consequently, this
subtype could be targeted using precision immunotherapies that are not restricted to a single
patient since the erythroblast-like phenotype, i.e., subtype 2, is present in multiple (3/4) patients.

Based on the validated results in a variety of disease data analyses, we find that DEGAS has
broad applications in virtually all diseases with available patient-level and single cell level omic
data, as well as clinical data. The tensorflow [37] machine learning code is integrated with a
simple R package interface (https://github.com/tsteelejohnson91/DEGAS) which will facilitate
researchers to manipulate scRNA-seq and bulk expression data on their own.

Conclusion



DEGAS is a powerful transfer learning tool in integrating different levels of omic data and
identifying the latent molecular relationships between populations of cells and clinical outcomes,
which we refer to as impressions. We validated the DEGAS framework on GBM and AD by
showing DEGAS models were capable of accurately predicting patient characteristics in single
cells and cellular characteristics in patients. We then leveraged this transfer learning approach
on MM data and identified CD138+ subtype populations, possibly clones or progenitor cells, in
MM that were significantly associated with disease relapse. These subtypes contain unique
RNA profiles and gene correlations that can be both leveraged as a prognostic biomarker and
possibly targeted directly to reduce the risk of relapse. We believe that DEGAS can be a
powerful solution to overcome the challenge of integrating patient single cell data with bulk
tissue data so that researchers can identify populations of cells associated with an outcome of
interest, while as the same time identify patients with certain cell type composition. Furthermore,
DEGAS can accommodate flexible data types. This makes it a very general framework that can
be applied in multiple different diseases and data types to identify cellular populations that are
associated with prognosis or treatment response, or to identify specific patient groups with
certain cell subtypes for personalized treatment.

Online Methods

Datasets

In this study we analyzed data from three different diseases, GBM, AD, and MM, to validate the
DEGAS framework and apply it for novel discoveries. GBM and AD were primarily used as
validation datasets since the ground truth is known. For GBM data, we used scRNA-seq from 5
tumors from Patel et al. [13]. and microarrays for the GBM TCGA cohort [38]. For AD data, we
used human scRNA-seq from Allen Institute Cell Types Database (https://celltypes.brain-
map.org/) and AD patient RNA-seq from the Mount Sinai/JJ Peters VA Medical Center Brain
Bank (MSBB) study [21]. We further expanded our inquiry into MM, which served as a discovery
dataset. Since the plasma cell subtypes are less understood in relation to clinical outcomes, we
aimed to identify subtypes of plasma cells associated with worse prognosis.

For MM analysis, we utilized 647 CD138"-enriched bone marrow patient samples from the
Multiple Myeloma Research Foundation (MMRF). These data were generated as part of the
Multiple Myeloma Research Foundation Personalized Medicine Initiatives
(https://research.themmrf.org). The samples consisted of tumor tissue RNA-seq data and
corresponding clinical variables including relapse-free survival time and survival status.
Relapse-free survival was defined as the time taken for a patient to relapse after treatment of
the initial tumor or the time of death if relapse was not reached. The demographic information of
the MMRF patients are shown in Table 6. The scRNA-Seq data used in this study were
generated at Indiana University School of Medicine (IUSM) and consist of CD138" plasma cells
purified from bone marrow from four MM patients. The low number of patients was a good test
case considering most scRNA-seq experiments have few patients. The single cells were




sequenced using 10x Genomics and lllumina NovaSeq6000 sequencer. CellRanger 2.1.0
(http://support.10xgenomics.com/) was utilized to process the raw sequence data. Briefly,
CellRanger used bcl2fastq (https://support.ilumina.com/) to demultiplex raw base sequence
calls generated from the sequencer into sample-specific FASTQ files. The FASTQ files were
then aligned to the human reference genome GRCh38 with RNAseq aligner STAR. The aligned
reads were traced back to individual cells and the gene expression level of individual genes
were quantified based on the number of UMIs (unique molecular indices) detected in each cell.
The filtered gene-cell barcode matrices generated by CellRanger were used for further analysis.
Additionally a second publicly available scRNA-seq dataset was used for validation, which
consisted of NHIP (normal control), MGUS, SMM, and MM patients [39]. A second bulk tissue
dataset was used for validating the proportional hazards modeling. This dataset consisted of
bulk expression profiling by microarray of CD138+ plasma cells with overall survival information
for 559 MM patients [30]. The detailed dataset information are shown in Table 7.

Table 6. Summary of the clinical features in each patient cohorts used in training. * Final age category is >90 years.

Glioblastoma Multiforme TCGA

Feature Details

Sex 74 Male, 37 Female

Age (years) Range: 14-83, Mean: 56, Median: 58

Clinical GBM subtype 34 Classical, 33 Mesenchymal, 9 Neural, 35
Proneural

Alzheimer’s Disease MSBB

Feature Details

Sex 90 Male, 131 Female

Age (years) Range: 61-90+, Mean* > 82, Median = 84
AD diagnosis 135 AD, 86 Control

Multiple Myeloma MMRF

Feature Details

Sex 387 Male, 260 Female

Age (years) Range: 27-93, Mean: 64, Median: 64
Relapse-free survival time (days) Range: 13-1753, Mean: 665.4, Median: 629

200 patients relapsed

Table 7. Overview of datasets used in the analysis



Study Sample size Data type Outcome

Patel et al., 2014 532 cells scRNA-seq None
(5 patients) (SMART-seq)
TCGA GBM 111 patients Microarray GBM subtype
Allen Institute 47,396 cells scRNA-seq Brain cell types
(11 patients) (SMART-seq)
MSBB 682 samples RNA-seq AD diagnosis
(221 patients)
MMRF 647 patients RNA-seq Relapse-Free
Survival
IUSM 22,968 cells scRNA-seq Subtype cluster
(4 patients) (10x Genomics) (Subtype 1-5)
Ledergor et al., 2019 | 13,440 cells scRNA-seq Malignancy  (NHIP,
(35 patients) (MARS-seq) MGUS, SMM, MM)
Zhan et al., 2006 559 patients Microarray Overall Survival

Transfer learning using DEGAS

Cox proportional hazards, patient classification, cell type classification, and maximum mean
discrepancy (MMD), a technique used to match distributions across different sets of data [40],
were combined to create a multitask transfer learning framework. We called this framework
Diagnostic Evidence GAuge of Single cells (DEGAS). DEGAS makes it possible to combine
bulk expression from patients with clinical information and single cells with cell subtype
information. Since most scRNA-seq datasets do not contain many patients, it is difficult to derive
cellular associations with clinical outcomes. DEGAS circumvents this problem using multitask
learning and domain adaptation techniques from transfer learning. As a result, each cell type
can be given clinical attributes and each patient can be given cellular attributes.

The first step was to find a set of gene expression features that were both informative of cell
type and of patient recurrence. The intersection of high variance genes found in the scRNA-seq
and patient expression data are used for further analysis. Defining this gene set is up to the user
but Seurat-CCA, LASSO selection, and even statistical tests in R can be used to define the
gene set. Since these features are the same between patients and single cells, the patients and
cells share the same input layer. This makes it possible to predict proportional hazard and cell
type regardless of the input sample type (patient or single cell).

As an example of the DEGAS framework, we used a single layer network model for simplicity.
However, the following equations can be extrapolated to multiple layers and architectures which
are already included in our software. First, a hidden layer was used to transform the genes into
a lower dimension using a sigmoid activation function (Eq. 1). Where X represents an input



expression matrix, Oy;14en represents the hidden layer weights, and by;z4en represents the
hidden layer bias.

indden(X) = Singid(XTHHidden + bHidden) Eq 1
Next, output layers were added for both the patient output and for the single cell output. For the
single cells, there could be classification output or no output. Similarly, patients could have Cox
proportional hazard output, classification output, or no output. The Cox proportional hazards
estimates consisted of a linear transformation to a single output followed by a sigmoid activation
function (Eq. 2). The classification output consisted of a transformation to the same number of
outputs as the number of labels, i.e., patient subtypes, cellular subtypes, using a softmax
activation function (Eq. 3). Variable X represents an input expression matrix, 6.,, represents
the Cox proportional hazard layer weights [41], 6,45 represents the classification layer weights,
bcox represents the Cox proportional hazard layer bias, and b, represents the classification
layer bias.

fCox(X) = Singid(indden(X)THCOx + bCox) Eq 2

fClass(X) = Softmax(indden(X)THClass + bClass) Eq 3

To train the DEGAS model, we need to compute three types of loss functions for the Cox
proportional hazards output, classification output, and MMD [40] respectively. The Cox
proportional hazards loss [41] was calculated only for the patient expression data (Xp,;) using
the followup period (C), and event status (t) (Eq. 4). Similarly, the patient classification loss was
only calculated for the patient data (Xp,:) using the patient labels (Yp,:). Alternatively, the
cellular classification loss was only calculated for the single cell expression data (X¢.;;) and true
subtype label (Y¢.;;) (Eq. 5). However, the MMD loss was calculated between the patient
expression data (Xp,:) and the single cell expression data (X..;;) (Eq. 6).

Losscox = ZC(i):l (fCox(XPat)i - thzti(exp (fCox(XPat)j)) Eq 4

1
LOSSClass = ; ln=1 (Z(Ytype,i - fClass(Xtype)i)) where type € {Pat' Cell} Eq 5
Lossymp = MMD (Xceu, Xpat) Eq. 6

The overall loss function was additionally weighted using the hyper-parameters, 1, (single cell
loss function), 4; (patient loss function), 4, (MMD loss), and A; (regularization loss), so that the
importance of each loss term and regularization term could be adjusted (Eq. 7). To address
more diverse datasets, we also allow for two classification outputs (Eq. 8), a single classification
output without patient outcome (Eq. 9), a single classification output without cell type label (Eq.
10), or a single Cox output without cell type label (Eq. 11).

LOSSClassCox = AOLOSSClass + 11L055C0x+/12L035MMD + /13”9”% Eq 7
LOSSClassClass = AOLOSSClass + AlLOSSClass + AZLOSSMMD + /13”6”% Eq 8
LOSSClassBlank = AOLOSSClass + AZLOSSMMD + /13”6”% Eq 9
LOSSBlankClass = /llLOSSClass + AZLOSSMMD + /13”9”% Eq 10
LoSSpiankcox = A1L0SScox + ALossyup + 23116113 Eq. 11

In summary, a common hidden layer was used to merge the single cells and patients. Next, an
output layer was added to predict the proportional hazards or classes of the patient samples
[41]. The loss function for the proportional hazards prediction or patient classification was back-
propagated across both layers for each patient. The single cells also had an output layer
consisting of a softmax output to predict the cellular subtype of each cell. Error was back-



propagated across both layers from the label output for each cell. Finally, a subspace was
learned that can model both the single cells and the patients. To perform this task, we utilized
the MMD method [40] to reduce the differences between patients and cells in a low dimensional
representation. All of the single cell patients were combined into a single group such that the
MMD loss was minimized between patients and single cells from multiple patients. Because
there are many different combinations of these outputs, i.e., single cell output followed by
patient output, we include ClassCox, ClassClass, ClassBlank, BlankClass, and BlankCox based
on equations (7)-(11) in the current version but intend to provide more options in the future.

To keep the analyses consistent, the same set of hyper-parameters were used in all of the
experiments in this study, except for the robustness to hyper-parameters experiment, where
they were intentionally altered to test the influences on the output results. These are considered
the default hyper-parameters in the DEGAS package but can be changed. They are: training
steps 2000, single cell batch size 200, patient batch size 50, hidden layer nodes 50, drop-out
retention rate 50%, patient loss weight (1;) 3, MMD loss weight (4,) 3, L, regularization weight
(43) 3.

Validating DEGAS using GBM data

The scRNA-seq data from the Patel et al. study [13] were downloaded from NCBI Gene
Expression Omnibus (GSE57872). The single cell expression values were previously
normalized to TPM containing 5,948 genes with mean(log,(TMP))>4.5 retained in the data table.
The top 20% variance genes were retained for training. These values were then converted to z-
scores then standardized to a range of [0,1] for each sample. The TCGA GBM microarray
expression data was downloaded from Firebrowse (http:/firebrowse.org/). Microarray data were
used since it contains more patient samples for training with GBM subtype information than
RNA-seq data. Likewise, the top 20% variance genes were retained for training and these
expression values were converted to z-scores then standardized to a range of [0,1] for each
sample. The GBM subtype labels for the TCGA patients were downloaded from Verhaak et al.
[42]. The intersection of genes between single cells and patients were used for the final model
training. Since subtype labels were only available for the GBM patient samples, we trained a
BlankClass DEGAS model (Eq. 10). This model minimizes the MMD loss between single cells
and patients while minimizing the classification loss only in GBM patients. We split the dataset
into 10 groups and performed 10-fold cross-validation by leaving out a single patient group
during training. After cross-validation, we normalized the GBM subtype output using quantile
normalization (quantile normalized output represented by x in Eq. 12) and increased the
variance of these quantile normalized outputs (Eq. 12) which we call association scores for
patient outcome in single cells or enrichment scores for cell type classification in patients. These
association scores were overlaid on the GBM single cells and now referred to as GBM subtype
association scores because GBM subtype from patients is overlaid on single cells. We plotted
these association scores stratified by GBM subtype for each tumor individually (Fig. 2A-E). We
then compared the proportions of these cell types to the previously defined GBM types from the
original publication marked red dashed boxes in Fig. 2. We also visualized the GBM subtypes
association in single cells by calculating a low dimensional representation using tSNE and
overlaying the kNN smoothed GBM subtype associations (Fig. 2F,$2-S5). To make the scatter




plots of cells and patients more informative, kKNN smoothing was used by averaging each point’s
GBM subtype association value with its five nearest neighbors in tSNE. The model performance
was shown with the receiver operating curve (ROC) and area-under-curve (AUC) for each of the
GBM subtype labels in the TCGA patients from cross-validation (Fig. S1).
L. log,(1E4-x),x >0
assoclation score, _

ciation _ xx=0 Eq. 12
enrichment score —log,(—1E4-x),x <0

Validating DEGAS and exploration using AD data

For AD datasets, we were primarily interested in identifying known relationships between cell
types and AD diagnosis. For these reasons, we downloaded all of the adult Human scRNA-seq
data from the Allen Brain Institute. Only inhibitory neurons, excitatory neurons,
oligodendrocytes, astrocytes, microglia, and oligodendrocyte progenitor cells (OPCs) were
retained in the analysis due to the extremely low sample sizes in the remaining cell types. In
some analysis, the inhibitory and excitatory neuron groups were merged into a single neuron
group. These data were then log, transformed, converted to sample-wise z-scores, and then
standardized to [0,1] by each sample. Genes were only retained as features if they had 70%
non-zero values. Of the remaining genes the top 30% variance genes were retained for training
to keep the feature set larger. The labels for the single cells consisted of these major cell types
listed above. The AD brain data was downloaded from Mount Sinai/JJ Peters VA Medical
Center Brain Bank (https://www.synapse.org/#!Synapse:syn3157743). Each of the RNA-seq
samples were either from an AD patient or a normal brain sample. The binary outcomes of AD
case or normal were used as the label for the model. As in the other experiments, the RNA-seq
values were log, transformed, converted to sample-wise z-scores, and standardized to [0,1] for
each sample. The top 50% variance genes were retained for training to keep the feature set
larger. The intersection of the patient genes and single cell genes were using to train the final
model. Using the cell type classification for each single cell and the AD/normal classification for
each MSBB patient we were able to train a ClassClass DEGAS model (Eq. 8). The performance
was evaluated using 10-fold cross-validation by leaving out each group during training once. As
in the GBM experiments (Eq. 12) we quantile normalized and increased the variance of the cell
type output in patients and the AD diagnosis output in single cells resulting in the cell type
enrichment and AD associations respectively. Student’s t-tests were performed on the cell type
enrichment between the patients with different disease status (AD vs. Normal) (Table 1, 3, S$1,
S3) or on AD association score between different cells with each cell type (Table 2, 4, S2, S4).
In addition, patients were plotted overlaid with KNN smoothed cell type enrichment and single
cells were plotted overlaid with KNN smoothed AD association (Fig. 3). Furthermore, to evaluate
DEGAS performance, ROC and AUC were computed for the single cells during cross-validation
for each cell type in the single cell data. Similarly, AD diagnosis ROC and AUC were computed
from the MSBB patient RNA-seq (Fig. $6). We also repeated the same above analysis without
merging the inhibitory and excitatory groups into a single neuron group so that the single cell
labels were six types instead of five, i.e., inhibitory neurons, excitatory neurons,
oligodendrocytes, astrocytes, microglia, and OPCs.




Preprocessing of IUSM MM single cell data

The scRNA-seq data generated at IUSM were first combined into a dataset using Seurat-CCA
[28]. This initial dataset integration allowed conserved subtypes of cells to be identified across
datasets. All four patient dataset counts were loaded into a Seurat object. They were
normalized, scaled, biased cells removed, and high variance genes identified following the
Seurat online vignette. Using the union of high variance genes, multi-canonical correlation
analysis was run across all four datasets, the subspaces were aligned across patients, the
aligned single cells were plotted with t-SNE [43], and clusters of cells were identified. The raw
expression values for the high variance genes identified by Seurat were log, transformed,
converted to z-scores, and then scaled to [0,1].

Furthermore, each IUSM scRNA-seq patient was individually clustered using Seurat to check
the replicability of the clusters and were plotted with UMAP [44]. We used Rand, Fowlkes and
Mallows's index (FM), and Jaccard index (JI) to measure the cluster consistency between single
patient clustering experiments and the merged all-patient clustering results (Fig. S10, Table
S$6). The four single patient clustering results, one for each IUSM scRNA-seq patient, were used
as input into BERMUDA [29] to visualize and evaluate the original Seurat clustering (Fig. S10).

Preprocessing of MMRF patient data

MMRF patients with bulk tissue RNA-seq and clinical data were used in MM analysis. We used
relapse-free survival (RFS) with the time to first relapse or death. TPM values for the MMRF
patient gene expression data and the RFS survival data were used as the input for DEGAS,
these values were log, transformed, converted to z-scores, and scaled to [0,1]. The union of the
features identified by Seurat in the single cell data and the features selected in the MMRF
patient data were used as the final feature set. The features retained in the MMRF data were
identified by fitting an elastic-net Cox model [45] to the TPM values based on the RFS.

Evaluate DEGAS performance on MM datasets

AUC was calculated for each of the output labels for the single cells and for patient labels if a
classification output was used for the patient data (Fig. 5A). Cox proportional hazard output was
used for patients, a log-rank test was calculated for each patient so that the hazard ratio and p-
value could be evaluated based on patient stratification by median proportional hazard (Fig 5B).
Additionally, the same models were used to predict risk in the GSE2658 dataset which had
information on OS. The output for each GSE2658 sample averaged across all 10 DEGAS
models and stratified by median risk to show the robustness of the cox output across datasets
(Fig. 5C). It is worth noting that the performance on each of these tasks individually should
decrease in DEGAS since multiple tasks are being optimized simultaneously. The benefit and
insight of DEGAS come from generating a feature space that combines traits from both tasks
and allows information unavailable in one dataset to be transferred to another, i.e., generate
“impressions”.

Identifying MM cell types associated with prognosis
Gene expression profile for each of the MMRF patients, as a result of the trained transfer
learning model, can be deconvoluted into the proportion of MM cell types identified in the single



cell MM data. In a similar fashion, the single cells from MM patients can be assigned
proportional hazards based on the MMRF Cox section of the model. During each step of cross-
validation and after training, each MMRF patient gene expression data in the validation set was
deconvoluted into MM subtypes. Each single cell in the validation set was assigned relapse risk
by feeding those samples through the Cox output layer. In this way, we can infer the association
with relapse risk of specific cell types as well as the cell type enrichment contained in each
MMRF sample. The raw output, like the GBM and AD experiments, were quantile normalized
and the variance increased (Eq. 12) into the association scores of AD risk in single cells and
enrichment scores of cell types in patients that we used for further analysis. We plotted these
relationships and conducted Student’s t-tests on the subtype vs. association with relapse in
single cells (Fig. 5D) and the subtype enrichment vs. relapse status in patients (Fig. 5E,F).

Analysis of gene co-expression of prognostic cell types

For each cell type, we performed gene co-expression analysis across all four [IUSM patients.
The Pearson correlation coefficient (PCC) was calculated for each pair of genes and used as
the edge weight for the co-expression network mining. Next, applying the co-expression mining
tool WGCNA [31], we identified modules of co-expressing genes for different cell subtypes. For
modules of interest, we compared the modules’ correlation in each cell subtype. Additionally, we
used the gene sets from each of the gene co-expression modules to identify enrichment of cell
type using EnrichR [32]. Furthermore, Student’s t-tests were calculated cell subtype 1 vs all cell
subtypes and cell subtype 2 vs. all cell subtypes using the batch corrected gene expression
values from Seurat. These values were stored in (Supplementary File 1 and Supplementary
File 2) respectively.

Evaluation of DEGAS robustness to hyper-parameters in GBM

Using the GBM dataset, we evaluated the robustness of DEGAS model outputs to hyper-
parameters by repeating 10-fold cross-validation 100 times with randomly generated hyper-
parameters following a uniform distribution. The range of hyper-parameters used in training
consisted of: training steps 1,000-3,000, single cell batch size 100-300, patient batch size 20-
100, hidden features 10-100, drop-out retention rate 0.1-0.9, Patient loss weight (1;) 0.2-5,
MMD loss weight (1,) 0.2-5, L, regularization weight (43) 0.2-5. The output for each of the 100
hyper-parameters was quantile normalized.

Using these outputs we performed two tests. One was to evaluate the loss in performance
based on changing the hyper-parameters where performance was measured with AUC among
the TCGA GBM patients labeled by patient GBM subtype (Mesenchymal, Classical, Proneural,
Neural). In this test, we calculated the spearman correlation and plotted the scatter plot between
the AUC of each of the four GBM subtype labels and the hyper-parameters used (Fig. S11,
Table S8).

Next, we evaluated whether or not the correct GBM subtype labels (Mesenchymal, Classical,
Proneural, Neural) could be recapitulated in the GBM scRNA-seq tumors that had known GBM
subtypes (MGH26: Proneural, MGH28: Mesenchymal, MGH29: Mesenchymal, MGH3O0:
Classical). To do this for each tumor (MGH26, MGH28, MGH29, MGH30), the rank of the



correct label was calculated by calculating the mean of each GBM subtype association across
all of the cells in that tumor. This resulted in each of the 100 random hyper-parameters having a
rank for each GBM subtype for each of the GBM scRNA-seq tumors (4 highest ranked, 1 lowest
ranked). Ideally all GBM scRNA-seq tumors would have a rank of 4 indicating the correct GBM
subtype was ranked the highest regardless of hyper-parameters (Fig. S13). Similarly, we also
calculated the Spearman correlation and plotted the scatter plot between correct label rank and
the hyper-parameters used (Fig. S12, Table S9).
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