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Abstract 25 

Bacterial biofilms are major contributors to chronic infections in humans. Because they are 26 

recalcitrant to conventional therapy, they present a particularly difficult treatment challenge. 27 

Identifying factors involved in biofilm development can help uncover novel targets and guide the 28 

development of anti-biofilm strategies. Pseudomonas aeruginosa causes surgical site, burn wound, 29 

and hospital acquired infections, and is also associated with aggressive biofilm formation in the 30 

lungs of cystic fibrosis patients. A potent but poorly understood contributor to P. aeruginosa 31 

virulence is the ability to produce outer membrane vesicles (OMVs). OMV trafficking has been 32 

associated with cell-to-cell communication, virulence factor delivery, and the transfer of antibiotic 33 

resistance genes. Because OMVs have almost exclusively been studied using planktonic cultures, 34 

little is known about their biogenesis and function in biofilms. Our group has shown that the 35 

Pseudomonas Quinolone Signal (PQS) induces OMV formation in P. aeruginosa, and in other 36 

species, through a biophysical mechanism that is also active in biofilms. Here, we demonstrate 37 

that PQS-induced OMV production is highly dynamic during biofilm development. Interestingly, 38 

PQS and OMV synthesis are significantly elevated during dispersion, compared to attachment and 39 

maturation stages. PQS biosynthetic and receptor mutant biofilms were significantly impaired in 40 

their ability to disperse, but this phenotype could be rescued by genetic complementation or 41 

exogenous addition of PQS. Finally, we show that purified OMVs can actively degrade 42 

extracellular protein, lipid, and DNA. We therefore propose that enhanced production of PQS-43 

induced OMVs during biofilm dispersion facilitates cell escape by coordinating the controlled 44 

degradation of biofilm matrix components. 45 

 46 

Importance 47 
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Treatments that manipulate biofilm dispersion hold the potential to convert chronic drug-tolerant 48 

biofilm infections from protected sessile communities into released populations that are orders-of-49 

magnitude more susceptible to antimicrobial treatment. However, dispersed cells often exhibit 50 

increased acute virulence and dissemination phenotypes. A thorough understanding of the 51 

dispersion process is therefore critical before this promising strategy can be effectively employed. 52 

PQS has been implicated in early biofilm development, but we hypothesized that its function as 53 

an OMV inducer may contribute at multiple stages. Here, we demonstrate that PQS and OMVs 54 

are differentially produced during Pseudomonas aeruginosa biofilm development and that 55 

effective biofilm dispersion is dependent on production of PQS-induced OMVs, which likely act 56 

as delivery vehicles for matrix degrading enzymes. These findings lay the groundwork for 57 

understanding the roles of OMVs in biofilm development and suggest a model to explain the 58 

controlled matrix degradation that accompanies biofilm dispersion in many species.  59 

 60 

Introduction 61 

It has long been appreciated that biofilms contribute to a majority of bacterial infections (1–4). 62 

Biofilm cells differ from planktonic cells in phenotype (5), gene expression (6), and protein 63 

production (7–10). These differences provide biofilm cells enhanced tolerance to antibiotics and 64 

host defenses (11–14). Pseudomonas aeruginosa is a clinically relevant and highly studied model 65 

organism for biofilm development. Surface-attached P. aeruginosa biofilms develop in a stepwise 66 

fashion where bacteria first reversibly and then irreversibly attach to a surface (7). The maturation 67 

phase is marked by the emergence of three-dimensional microcolonies during maturation I and the 68 

formation of mushroom-like clusters during maturation II (7). In response to external or 69 

endogenous cues, the final phase is initiated when bacterial cells erupt from the biofilm and 70 
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disperse (7). During dispersion, motile bacteria degrade the extracellular polymeric matrix that 71 

encases them, colonize new surfaces, and recommence the biofilm life cycle (7, 15). Identification 72 

of the factors that regulate biofilm development is essential for the creation of novel therapeutics 73 

against these recalcitrant bacterial communities. 74 

Quorum signaling is known to regulate P. aeruginosa biofilm formation (7, 16). Specifically, the 75 

Las system controls the progression from reversible to irreversible attachment (16), and the Rhl 76 

system controls the transition from irreversible attachment to maturation I (7). The Pseudomonas 77 

Quinolone Signal (PQS) has also been proposed to regulate biofilm development (17, 18). 78 

Production of PQS is initiated by the Las system through direct activation of the genes encoding 79 

the PQS regulator, PqsR (18, 19), and the biosynthetic FAD-dependent monooxygenase, PqsH 80 

(20, 21). PQS controls the production of many virulence factors (17), including elastase, pyocyanin 81 

(22), and iron chelators (23–25). It has been reported that PQS biosynthetic mutants are deficient 82 

in the formation of mushroom-shaped microcolonies, which are characteristic of mature biofilms 83 

(26, 27). Several hypotheses aim to connect the contributions of PQS in biofilm development to 84 

its functionality as a cell-to-cell communication signal. Rampioni and coworkers (28) suggested 85 

that PQS controls biofilm development via PqsE-dependent signaling, activating the Rhl system 86 

and its downstream effectors. It has also been shown that extracellular DNA (eDNA) contributes 87 

to biofilm maturation and that PQS-induced prophage activation results in DNA release into the 88 

biofilm (26). The buildup of HQNO, which is controlled by PQS signaling, likewise results in 89 

autolysis, eDNA release, and increased biofilm biomass (29). We were interested in exploring 90 

whether other well-documented functions of PQS may also play a role during the various stages 91 

of biofilm development. 92 
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In addition to its role as a signaling molecule, PQS is also known to modulate production of outer 93 

membrane vesicles (OMVs) (30–34). OMVs are spherical structures derived from the outer 94 

membrane of Gram-negative bacteria that range from 50-300 nm in diameter (35–38). These 95 

nanostructures form a dedicated transport system that helps deliver cell-to-cell communication 96 

signals (30, 39, 40), nucleic acids (41, 42), proteases (43, 44), antibiotic degrading enzymes (45, 97 

46), lytic enzymes (47–49), iron chelators (23–25), and antibiotic resistance genes (50). In 98 

conjunction with their function as transport machinery, OMVs have also been associated with 99 

biofilm development in Helicobacter pylori (51), Vibrio cholerae (52), and Pseudomonas putida 100 

(53). Little is known about the roles that OMVs play in P. aeruginosa biofilms. However, it has 101 

been reported that OMVs are commonly found within biofilms produced by this organism (44, 54) 102 

and that their production is controlled by PQS (55).  103 

PQS induces OMV production through a biophysical mechanism that is driven by favorable 104 

interactions with lipopolysaccharide (LPS) in the outer leaflet of the outer membrane (OM) (32, 105 

56). These interactions promote asymmetric expansion of the outer membrane, which induces 106 

membrane curvature and ultimately leads to the production of OMVs (33). The importance of PQS 107 

in OMV production is evident from many experiments involving deletions in early biosynthetic 108 

genes (e.g. pqsA, coding for the anthrailoyl-CoA ligase responsible for the first step in alkyl-109 

quinolone biosynthesis (57–59)), late biosynthetic genes (e.g. pqsH, coding for the flavin-110 

dependent monooxygenase responsible for the final step in PQS biosynthesis (20, 21, 60, 61)), and 111 

the PQS receptor (pqsR) (19, 62). Deletion of any of these genes results in drastic reductions or 112 

outright abrogation of OMV biogenesis in planktonic cultures. Our recent work demonstrated that 113 

loss of PQS production also compromised OMV production in P. aeruginosa biofilms (55). 114 

Importantly, use of these well-characterized mutants (in addition to others such as pqsE) can help 115 
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detangle the biophysical roles of PQS from its role as a signaling molecule, as well as clarify 116 

contributions directly related to PQS from those of other related alkyl-quinolones. 117 

While several studies have implicated PQS in the development of P. aeruginosa biofilms, it is not 118 

known if PQS is involved all stages of biofilm formation. Additionally, it remains unclear if PQS 119 

affects biofilm development due to its role in quinolone signaling, virulence factor production, 120 

OMV biogenesis, or any combination of these. The current study presents a comprehensive 121 

investigation aimed at elucidating the role of PQS-induced OMV production during the five stages 122 

of biofilm development in P. aeruginosa. Here, we report that PQS and OMVs are maximally 123 

produced during biofilm dispersion. We further demonstrate that PQS biosynthetic and receptor 124 

mutants are deficient in dispersion compared to the wild type. The identified dispersion deficiency 125 

was rescued with exogenous PQS, supporting the notion that PQS and PQS-induced OMVs are 126 

major contributing factors to P. aeruginosa biofilm dispersion. We also demonstrate that purified 127 

OMVs possess protease, lipase, and nuclease activities. These results indicate that OMVs may 128 

contribute to biofilm dispersion by trafficking enzymes capable of breaking down major EPS 129 

components. Through this work, we shed light on a novel role of outer membrane vesicles: the 130 

enhancement of biofilm dispersion. 131 

 132 

Results 133 

PQS production is elevated during dispersion 134 

Although OMVs are ubiquitous in P. aeruginosa biofilms (44, 55), their roles and importance in 135 

the development of a biofilm remain to be elucidated. PQS is known to promote OMV biogenesis 136 

through a biophysical mechanism (30–33), and its synthesis and export are strong indicators of 137 

OMV production potential in P. aeruginosa (34). The production of PQS is tightly regulated by 138 
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quorum signaling systems (17, 21, 62, 63), and environmental conditions, such as oxygen 139 

availability (61). Due to the heterogeneous nature of biofilm development (64, 65), we 140 

hypothesized that PQS-induced OMV production would vary during biofilm progression as 141 

nutrient and substrate availability change. Using a continuous flow model, we set out to quantify 142 

total PQS production during each stage of biofilm development. Growth stages were determined 143 

via microscopic imaging of flow cells using parameters determined by Sauer and coworkers (7). 144 

In our system, reversible attachment, irreversible attachment, maturation I, and maturation II were 145 

established to occur at 8 h, 24 h, day 3, and day 5, respectively. Dispersion was induced on day 146 

five through exogenous addition of the native dispersion cue cis-2-decenoic acid (cis-DA) 147 

Although a P. aeruginosa biofilm will naturally produce cis-DA and disperse (66), we 148 

administered this molecule exogenously in order to synchronize the dispersion event (66, 67). With 149 

this study, we found that the highest level of PQS per cell was produced during dispersion (Fig. 150 

1). Concentrations of PQS were normalized to total CFUs and were measured to be 2.7 x 10-4 ± 151 

7.2 x 10-5, 5.5 x 10-5± 2 x 10-4, 3.8 x 10-4± 1.7 x 10-4, 3.0 x 10-4 ± 1.5 x 10-4 and 3.0 x 10-3 ± 4.7 x 152 

10-4 µMol per billion CFUs at reversible attachment, irreversible attachment, maturation I, 153 

maturation II, and dispersion, respectively (Fig. 1). Statistically significant differences were 154 

identified between reversible attachment and dispersion, irreversible attachment and dispersion, 155 

maturation I and dispersion, and maturation II and dispersion (one-way ANOVA, Tukey’s post 156 

hoc-test, p = 0.00020, 0.0015, 0.00080, 0.00020, respectively). In short, a significant increase in 157 

PQS was observed in dispersion compared to all other biofilm stages. 158 

OMV production varies during biofilm development 159 

Following quantification of PQS, OMVs were isolated from the five different biofilm stages and 160 

quantified using two independent techniques: OMV protein quantification and nanoparticle 161 
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tracking analysis (NTA). Modified Lowry assays showed that the highest protein levels were 162 

detected in OMV preparations harvested during reversible attachment, irreversible attachment, and 163 

dispersion (Fig. 2A). Protein concentrations in OMV pellets were normalized per billion CFUs. 164 

The measured values were 94 ± 44, 105 ± 8.5, 11 ± 3.2, 6.5 ± 3.4, and 55 ± 17 µg / billion CFUs 165 

during reversible attachment, irreversible attachment, maturation I, maturation II, and dispersion, 166 

respectively (Fig. 2A). Statistically significant differences were observed between reversible 167 

attachment and maturation I, reversible attachment and maturation II, irreversible attachment and 168 

maturation I, irreversible attachment and maturation II, irreversible attachment and dispersion, 169 

maturation I and dispersion, and maturation II and dispersion (One-way ANOVA, Tukey’s post 170 

hoc-test, p = <0.00010, <0.00010, <0.00010, <0.00010, 0.049, 0.025, 0.036, respectively). 171 

Quantification via nanoparticle tracking analysis demonstrated that OMV production per cell 172 

remained low until the dispersion stage. The particles measured during reversible attachment, 173 

irreversible attachment, maturation I, maturation II, and dispersion were 0.44 ± 0.24, 0.69 ± 0.23, 174 

0.74± 0.28, 0.32 ± 0.28, and 2.1 ± 0.37 particles / CFU, respectively (Fig. 2B). Statistically 175 

significant differences were identified between reversible attachment and dispersion, irreversible 176 

attachment and dispersion, maturation I and dispersion, and maturation II and dispersion (One-177 

way ANOVA, Tukey’s post hoc-test, p = <0.00010, <0.00010, 0.00010, <0.00010, respectively). 178 

Both quantification techniques showed significantly larger numbers of OMVs present during the 179 

dispersion stage compared to the maturation stages. The high level of OMV production during 180 

dispersion paralleled enhanced PQS synthesis during this stage. Interestingly, an increase in OMV 181 

production during attachment was observed via protein quantification but not through NTA. 182 

PQS mutants are not deficient in reversible or irreversible attachment 183 
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To determine if PQS and/or PQS-controlled phenotypes are involved in the initial stages of P. 184 

aeruginosa biofilm development, we assessed reversible and irreversible attachment abilities of 185 

wild type PA14, ΔpqsA, ΔpqsH, ΔpqsE, and ΔpqsR. Crystal violet attachment assays (see 186 

methods) were performed at 2 h, 8 h, and 24 h, the former two time points were representative of 187 

reversible attachment and the latter was representative of irreversible attachment (7). We found 188 

that ΔpqsA was not deficient in attachment after 2 or 8 h (Fig. 3A) (Student’s two-tailed t-test, p = 189 

0.41 and 0.91, respectively) suggesting that quinolones are not involved in reversible attachment. 190 

Interestingly, we found that ΔpqsA displayed increased attachment after 24 hours (Fig. 3A) 191 

(Student’s two-tailed t-test, p = 0.014). These results indicate that under normal conditions, 192 

synthesis of at least one quinolone molecule results in reduced irreversible attachment. Next, we 193 

wanted to determine if the observed phenotypes were specifically due to the lack of PQS and PQS-194 

mediated functions. Because ΔpqsA is unable to make over 55 different quinolones, we quantified 195 

attachment of ΔpqsH, which is deficient in synthesis of PQS only (20, 61). We observed no 196 

difference in attachment after 2 h or 24 h (Fig. 3B) (One-way ANOVA, p = 0.73 and 0.48, 197 

respectively). Next, we assessed attachment ability of ΔpqsE and ΔpqsR, which are unable to 198 

induce Rhl-dependent virulence factors (68, 69) and respond to PQS (19), respectively. Reversible 199 

(Fig. 3B) and irreversible (Fig. 3C) attachment were unaffected in both mutants (One-way 200 

ANOVA, p = 0.73 and 0.48, respectively). These results indicate that PQS and PQS-mediated 201 

phenotypes do not contribute to the attachment of P. aeruginosa to an abiotic surface. 202 

 ΔpqsA displays diminished biofilm dispersion 203 

Our initial analysis of PQS and OMV production during biofilm development identified that both 204 

PQS and OMVs are highly produced during dispersion. To determine if PQS-mediated functions 205 

are involved in this stage of development, we quantified dispersion in semi-batch biofilms grown 206 
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in 24-well plates. On days 4, 5, 6 and 7 after inoculation, microcolonies were observed using light 207 

microscopy, and the fraction of microcolonies that had formed central voids, a phenotypic 208 

hallmark of the dispersion process in P. aeruginosa (7, 9, 67), was determined for PA14 wild type 209 

biofilms and for PA14 ΔpqsA biofilms. On day 4, little to no dispersion occurred in either strain 210 

(Fig. 4A) (Student’s two tailed t-test, p = 0.87). On days 5, 6 and 7, however, we noted significant 211 

differences in microcolony dispersion between the wild type and ΔpqsA biofilms (Student’s two-212 

tailed t-test, p = 0.019, 0.0018, 0.0018, respectively) (Fig. 4A). For subsequent analyses, biofilms 213 

were grown until day 6 and analyzed for dispersion. Expression of pqsA in trans was able to restore 214 

the diminished dispersion phenotype to wild type levels (One-way ANOVA, Tukey’s post-hoc 215 

test, p = 0.63) (Fig. 4B-E). 216 

P. aeruginosa dispersion is dependent on PQS biosynthesis, but not PqsE 217 

The pqsA mutant is deficient in the production of over 55 quinolone molecules (20). For this 218 

reason, we were not yet able to conclude whether the inhibition of dispersion was due to a lack of 219 

PQS, or a lack of one of the other quinolone molecules. To address this ambiguity, we investigated 220 

native dispersion in a pqsH mutant. Our results showed that ΔpqsH was deficient in dispersion 221 

compared to wild type (Fig. 5A). The percentage of microcolonies containing voids in wild type 222 

biofilms was 74.68 ± 6.15%, compared to 11.91 ± 3.08% in ΔpqsH, suggesting that PQS is 223 

specifically responsible for this phenotype (One-way ANOVA, Dunnett’s post-hoc test, p = 224 

0.0003) (Fig. 5A). However, as PQS is independently involved in both signaling (17) and OMV 225 

formation (30, 33, 34), it is unknown whether one or both of these processes are responsible for 226 

native levels of dispersion. We also investigated dispersion of a pqsE mutant, which produces wild 227 

type levels of PQS (21) and OMVs (data not shown), but is deficient in the production of many 228 

quorum sensing dependent virulence factors (20). We found that the percentage of microcolonies 229 
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containing voids in biofilms formed by ΔpqsE was 68.69 ± 6.10%, indicating that it disperses at 230 

wild type levels (One-way ANOVA, Dunnett’s post-hoc test, p = 0.86) (Fig. 5A). This suggests 231 

that a non-signaling-dependent function of the PQS system, such as OMV production, is likely 232 

responsible for the diminished dispersion phenotype in the ΔpqsA and ΔpqsH mutants. We also 233 

investigated dispersion in the pqsR mutant, which displays reduced production of both PQS and 234 

OMVs (21, 30). The percentage of microcolonies containing voids in biofilms formed by ΔpqsR 235 

was 37.48 ± 18.97% and significantly lower than wild type (One-way ANOVA, Dunnett’s post-236 

hoc test, p = 0.0065) (Fig. 5A). The reduced dispersion phenotype of the ΔpqsH and the ΔpqsR 237 

mutants was restored to wild type levels through genetic complementation (Fig. 5B). The 238 

percentages of microcolonies containing voids in biofilms formed by PA14 / pJN105, ΔpqsH / 239 

pJN105-pqsH, and ΔpqsR / pJN105-pqsR strains were 73.24 ± 12.35%, 85.20 ± 4.92%, and 81.80 240 

± 9.92%, respectively (Fig. 5B). These data suggest that PQS-induced OMV production plays a 241 

significant role in P. aeruginosa biofilm dispersion. 242 

Exogenous PQS restores dispersion in the ΔpqsR mutant 243 

To confirm whether PQS modulates dispersion through an OMV-dependent mechanism, 244 

exogenous PQS was administered to a ΔpqsR biofilm and dispersion efficiency was quantified. 245 

PQS-induced OMV production has been shown to be driven by a biophysical mechanism that is 246 

not signaling dependent (31–33). The exogenous addition of PQS to a ΔpqsR biofilm restored 247 

dispersion to wild type levels (One-way ANOVA, Tukey’s post-hoc test, p = 0.72) (Fig. 6). 248 

Microcolony void formation increased from 60.65 ± 3.12% to 77.09 ± 6.94% (One-way ANOVA, 249 

Tukey’s post-hoc test, p = 0.024) (Fig. 6). This indicates that PQS modulates dispersion using an 250 

OMV-dependent mechanism that is separate from the PQS signaling network. 251 

OMVs contain enzymes capable of degrading the biofilm matrix 252 
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Together, our results indicate that PQS-induced OMVs contribute to the dispersion of P. 253 

aeruginosa biofilms; however, the exact role the vesicles play during this developmental stage is 254 

unknown. Various studies have demonstrated that degradation of extracellular polymeric 255 

substances (EPS) of the biofilm matrix, such as polysaccharides, proteins, glycolipids, and eDNA, 256 

is a requirement for dispersion (reviewed in (15)). Degradative enzyme activity towards these 257 

matrix components has been shown to induce dispersion in both Gram-positive and Gram-negative 258 

organisms (15, 70–76) Previous OMV proteomic analyses have identified several proteins 259 

packaged within vesicles that were predicted to have degradative activity (77, 78). Therefore, we 260 

hypothesized that OMVs may contribute to dispersion through EPS degradation. To test this 261 

hypothesis, we assessed whether purified P. aeruginosa OMVs were capable of degrading skim 262 

milk, tributyrin, and DNA to assess protease, lipase, and DNase activity, respectively. In order to 263 

acquire sufficient material for these analyses, planktonic OMVs were used. Addition of OMVs to 264 

skim milk agar resulted in the formation of a 119.8 ± 36.1 mm3 zone of clearing, while the addition 265 

of vehicle control (MV buffer only) to skim milk agar resulted in the formation of a 0.1 ± 8.6 mm3 266 

zone of clearing (Student’s two-tailed t-test, p = 0.0007) (Fig. 7A). This suggests that OMVs 267 

contain enzymes that have protease activity. The addition of OMVs to tributyrin agar resulted in 268 

the formation of a 211.1 ± 24.1 mm3 zone of clearing versus the vehicle control that produced a 269 

25.9 ± 11.2 mm3 zone of clearing (Student’s two-tailed t-test, p < 0.0001) (Fig. 7B). This suggests 270 

that OMVs also contain enzymes that have lipase activity. Finally, the addition of OMVs and 271 

vehicle control to DNase agar resulted in the formation of 182.1 ±85.5 mm3 and 21.3 ±16.3 mm3 272 

zones of clearing, respectively (Student’s two-tailed t-test, p = 0.010) (Fig. 7C). This indicates that 273 

OMVs carry enzymes with DNase activity. Overall, these data support the idea that OMVs 274 
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contribute to biofilm dispersion by packaging and delivering enzymes with EPS degrading 275 

abilities. 276 

 277 

Discussion 278 

Biofilms have become a major health and economic concern due to their prevalence and 279 

recalcitrance. P. aeruginosa is a leading cause of nosocomial infections (79), as well as increased 280 

morbidity and mortality in cystic fibrosis patients (80). Virulence and pathogenesis in this 281 

organism are largely regulated by quorum sensing signals (81). PQS is one such signal that controls 282 

the production of virulence factors (17) but is also known to induce production of OMVs (30, 33, 283 

61). OMVs represent a dedicated trafficking system that delivers virulence factors (47, 82), while 284 

also carrying cargo able to degrade antibiotics (45), lyse neighboring bacteria (30, 47, 55), and 285 

enable cell-to-cell communication (30). Several groups have demonstrated that OMV production 286 

is prevalent in biofilms (44, 54, 55). However, the biogenesis and function of OMVs during biofilm 287 

development remains poorly understood, as most of what is known about OMVs comes from 288 

studies of planktonic bacteria. The present study set out to elucidate the role of PQS-induced OMV 289 

production in P. aeruginosa during the five distinct stages of biofilm development.  290 

PQS is an excellent predictor of OMV production (30, 34) and studies have consistently shown 291 

that a block in PQS synthesis (whether genetic or environmental) results in dramatically reduced 292 

OMV formation (30, 55, 61). Although extracellular vesicles have been observed in the absence 293 

of PQS (54, 55), their origins and composition are uncertain, and they are frequently mixed-294 

composition vesicles resulting from cellular disintegration. For this reason, we were surprised to 295 

measure high levels of OMVs during reversible and irreversible attachment using protein-based 296 

quantification, despite low PQS concentrations (Fig. 1 and Fig. 2). High levels of OMV production 297 
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during these initial stages measured by Lowry assay were not corroborated by nanoparticle 298 

tracking analysis, suggesting that the protein detected in these OMV preparations was not 299 

representative of OMV concentration but likely the result of non-OMV-related protein 300 

components. As a result, we predicted that PQS and OMVs were not significant effectors of 301 

reversible and irreversible attachment. This notion was supported by our crystal violet attachment 302 

assays, which demonstrated that ΔpqsA, ΔpqsH, ΔpqsR, and ΔpqsE mutants had wild type levels 303 

of reversible attachment (Fig. 3). It is notable, however, that several studies have identified an 304 

increase in biofilm formation when OMV production is stimulated (22, 51, 83, 84). Kang et al. 305 

(23) described that pqsA, but not pqsH or pqsE, was required for early biofilm attachment under 306 

static conditions. Others have reported that PQS, and possibly OMVs, were more important in later 307 

maturation stages (26, 27, 85). In contrast, Ionescu et. al. showed in Xylella fastidiosa that OMV 308 

production inhibited bacterial attachment to plant surfaces, increased bacterial motility, and 309 

enhanced plant mortality (86). In the face of these conflicting reports, it is interesting that we found 310 

the pqsA mutant had increased irreversible attachment versus wild type at 24 hours (Fig. 3A). 311 

During early biofilm development attachment is required. Therefore, it might be beneficial for P. 312 

aeruginosa to reduce PQS production at this time to avoid potential interference of PQS-induced 313 

OMVs with cell attachment. Regardless, it is evident that the role of OMVs in early-stage biofilm 314 

development remains unclear and will require further studies to elucidate. 315 

During maturation I and II, we saw that both PQS and OMV production were relatively low (Fig. 316 

1 and Fig. 2). Allesen-Holm et al. described PQS’ role in the development of three-dimensional 317 

microcolony architecture (26). They proposed that PQS induced prophage-mediated cell lysis, 318 

resulting in eDNA release and increased biofilm formation (26). A separate study by Tettman et 319 

al. showed that enzymatic degradation of PQS resulted in increased iron availability and enhanced 320 
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biofilm formation for early and mature biofilms (87). The latter report aligns with our observations 321 

and offers an explanation as to why cells might reduce PQS production during biofilm maturation. 322 

It is important to note that although PQS production was reduced during maturation in our study, 323 

it was not eliminated. The same was true for OMV production. It is likely that baseline levels of 324 

PQS are important for PQS-mediated cell lysis and eDNA release while reduced numbers of 325 

OMVs may carry out structural or transportation roles. At this developmental stage, elevated levels 326 

of PQS and PQS-induced OMVs could even have negative effects on biofilm development, as 327 

OMVs have been predicted to contain degradative enzymes (77, 78), which could break down 328 

major components of the EPS. 329 

While our results suggest that PQS and OMVs may play only minor (or undetermined) roles during 330 

attachment and maturation, they highlight a major increase in production of both factors upon the 331 

initiation of biofilm dispersion (Fig. 1 and Fig. 2). This observation led us to speculate that PQS 332 

and PQS-induced OMVs are important for proper dispersion of P. aeruginosa biofilms. To test 333 

this hypothesis, we analyzed microcolony dispersion frequencies for four mutants: ΔpqsA, ΔpqsH, 334 

ΔpqsR, and ΔpqsE. Biosynthetic (pqsA, pqsH) and receptor (pqsR) mutants dispersed at much 335 

lower frequencies than wild type (Fig. 4 and Fig. 5). Because the ΔpqsA and ΔpqsH mutants were 336 

similarly impaired in dispersion, we can conclude that PQS, specifically, is required (i.e. not any 337 

of the other alkyl-quinolones lost in the ΔpqsA mutant). Rescue of the ΔpqsR phenotype by 338 

exogenous PQS demonstrated that the physical presence of PQS was required, rather than 339 

signaling through its receptor (Fig. 6). The importance of a non-signaling function of PQS is 340 

further supported by the fact that the pqsE mutant showed no deficiency in dispersion, confirming 341 

that signaling downstream of PqsR is also not involved in this phenotype (Fig. 5). Together, these 342 

results demonstrate that PQS modulates P. aeruginosa dispersion in a signaling-independent 343 
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manner. Our final experiments led us to propose that PQS-induced OMVs, which are formed 344 

through a signaling-independent biophysical mechanism (30, 33), promote dispersion by carrying 345 

EPS degrading enzymes. 346 

EPS degradation is a fundamental requirement for dispersion (15). Enzymes with matrix 347 

degradative activity have been described to induce dispersion in mature biofilms in several 348 

organisms (15, 71–76, 88). The effectiveness of DNaseI at dispersing biofilms has even led to its 349 

adoption as a treatment for biofilm infections in the lungs of cystic fibrosis patients (89). Previous 350 

studies have shown that P. aeruginosa OMVs have autolysin (47, 48), and protease (44, 90) 351 

activity, and that these OMVs can associate with and lyse bacterial sacculi (47). These findings 352 

support the proposition that OMVs carry degradative enzymes. Here, we report that purified 353 

OMVs possess protease, lipase, and DNase activity (Fig. 7). A recent study by Esoda and Kuehn 354 

also found that OMVs traffic the P. aeruginosa peptidase, PaAP, and can deliver the peptidase to 355 

1-hour old P. aeruginosa and K. pneumoniae biofilms grown on A549 tissue culture cells, resulting 356 

in decreased biofilm biomass (91). Others have provided evidence that proteases are required for 357 

dispersion in S. aureus biofilms (71) and P. putida biofilms (73). In P. aeruginosa, eDNA 358 

degradation has been shown to result in biofilm disaggregation (26, 92) and recent work by Cherny 359 

and Sauer showed that eDNA degradation is required for dispersion of P. aeruginosa (72). In P. 360 

acnes, secreted lipases have also been demonstrated to enhance the dispersion response (93). 361 

Delivery of these degradative enzymes using OMVs may increase the enzymes’ efficacy, facilitate 362 

specific targeting to sites of degradation, and reduce potential deactivation of the enzymes while 363 

in transit. Bomberger et al. demonstrated that the CFTR inhibitory factor (Cif) produced by P. 364 

aeruginosa was orders-of-magnitude more potent when delivered within OMVs (82). We therefore 365 
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propose that PQS-induced OMVs enhance biofilm dispersion by delivering and potentially 366 

enhancing the activity of enzymes required for EPS degradation. 367 

Previous studies have identified the importance of PQS in biofilm formation (26, 27) and 368 

demonstrated the presence of OMVs within biofilms (44). However, a comprehensive study that 369 

analyzed the effect of these two factors at each stage in biofilm development had not been 370 

conducted prior to this work. Here, we report that PQS and OMVs are not produced consistently 371 

during biofilm development; specifically, we identified low (or variable) concentrations of PQS 372 

and OMVs during attachment and maturation stages but high concentrations during dispersion. 373 

Additionally, we showed that attachment is likely not affected by the absence of PQS and PQS-374 

mediated factors, whereas the absence of PQS significantly reduces dispersion of P. aeruginosa 375 

biofilms. Finally, we demonstrated that OMVs have the capability to breakdown extracellular 376 

DNA, lipids, and proteins – all major components of the biofilm EPS matrix. With this work we 377 

identified PQS and PQS-induced OMVs as novel regulators of biofilm dispersion. Because 378 

dispersed cells are significantly more susceptible to antimicrobials (94–96), it has been considered 379 

that dispersion agents in combination with antimicrobials could provide a potent antibiofilm 380 

therapy. Therefore, PQS and PQS-induced OMVs may provide novel avenues to create better 381 

treatment strategies against recalcitrant biofilm infections. 382 

 383 

Materials and Methods 384 

Strains, growth conditions, and media 385 

All experiments were carried out using P. aeruginosa strains described in Table 1. The ΔpqsE and 386 

ΔpqsR clean-deletion mutant strains were constructed using the pEX18gm suicide vector (97), and 387 

pqsE and pqsR were overexpressed in their respective mutant backgrounds using the pJN105 388 
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vector (98). Primer sequences used for construction of the vectors can be found in Table S1. 389 

Biofilm tube reactors were inoculated as described below. Planktonic cultures were inoculated to 390 

an OD600 of 0.01 and grown at 37 ℃ with shaking at 250 rpm. Planktonic cultures were grown in 391 

Lysogeny Broth (LB) or brain heart infusion medium (BHI). Planktonic cultures of strains carrying 392 

the pJN105 vector were grown in the presence of gentamicin (50 µg/mL), while biofilm cultures 393 

of the same strains were not. 394 

Biofilm growth 395 

Biofilms were grown in both continuous and semi-batch culture systems. For continuous culture, 396 

biofilms were grown in size 14 Masterflex silicone tubing (Cole Parmer) as previously described 397 

(7, 99). Cultures were inoculated under static conditions and allowed to attach for 1 h prior to 398 

initiation of flow. Biofilms were grown at 22°C in 5% LB medium under a constant flow rate of 399 

0.18 mL/min until desired stage of biofilm growth; 8 h for reversible attachment, 24 h for 400 

irreversible attachment, 3 days for maturation I, 5 days for maturation II (as determined previously 401 

(7) and in this study by microscopic flow cell images). To validate developmental stages, biofilms 402 

were grown under identical conditions in BioSurface Technologies flow cells and visualized by 403 

brightfield microscopy. Biofilms were harvested from continuous culture systems using the rolling 404 

pin method (7). Mature biofilms were collected into sterile saline (1mL / line). For stage 5, biofilm 405 

dispersion, 5% LB with or without the native dispersion induction molecule cis-2-decenoic acid 406 

(310 nM) was administered to five-day old biofilms. Biofilms were incubated with either treated 407 

or untreated medium under static flow for 1 hour (66, 67). Following induction, dispersed cells in 408 

the bulk liquid were collected under native flow, leaving attached biofilm cells behind in the 409 

tubing. To quantify if a dispersion event occurred, OD600 measurements were taken of the collected 410 

bulk liquid from the treated sample and compared to the untreated sample. 411 
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Semi-batch biofilms for dispersion analyses were cultured in 24-well plates as previously 412 

described (67) with minor modifications. Briefly, wells were inoculated with 500 µL of culture 413 

adjusted to an OD600 of 0.01 in 20% LB. Plates were incubated at 37°C with shaking at 250 rpm 414 

at a 30° angle for 24 h. Media was then replaced with 250 µL of 20% LB medium and returned to 415 

the incubator under the same conditions. Media changes were repeated every 12 h for up to 7 days. 416 

For chemical complementation experiments, strains were inoculated and grown as described above 417 

for the first 4 days. From 4 days post inoculation to 6 days post inoculation, media was changed 418 

with 20% LB containing 40 μM PQS or 20% LB containing and equivalent amount of the carrier 419 

solution (methanol) every 12 hours. 420 

PQS extraction and quantification 421 

PQS was extracted from biofilms harvested at each stage of development. Biofilms were 422 

homogenized to reduce aggregation and PQS was extracted using 1:1 acidified ethyl acetate as 423 

previously described (34, 55, 61, 100). The organic phase was separated and dried under nitrogen. 424 

Samples were resuspended in optima grade methanol and spotted onto straight-phase phosphate-425 

impregnated TLC plates that had been activated at 100°C for 1 h. PQS was visualized by intrinsic 426 

fluorescence after excitation under long-wave UV light. Digital images were captured and 427 

analyzed using a BioRad ChemiDoc XRS system and Image Lab densitometry software. PQS 428 

concentration values were normalized to total CFUs. 429 

OMV isolation and quantification 430 

OMVs were isolated from harvested biofilms as previously described (55). Biofilms were 431 

homogenized to reduce aggregation and preparations were centrifuged at 16,000xg for 10 min at 432 

4°C to remove cells. The supernatant was then passed through a 0.45 µm polyethersulfone filter 433 

to remove any remaining cells. OMVs were pelleted and purified from the supernatant using a 434 
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Thermo Scientific S50-A rotor (50,000 rpm for 1.5 h) and resuspended in 500 µL of sterile MV 435 

buffer (50 mM Tris, 5 mM NaCl, 1 mM MgSO4, pH 7.4) (34, 55).  436 

OMVs were then quantified by both modified Lowry protein assay (Thermo) (101) and 437 

nanoparticle tracking analysis (NTA) (34, 55, 102). The modified Lowry assay was performed 438 

following manufacturer's instructions. Purified vesicles were diluted to obtain 20-100 particles per 439 

frame and analyzed using a NanoSight NS3000 system (camera level 12 and gain of 1) and 440 

corresponding software (NTA 3.1). Total protein and OMV particle values were normalized to 441 

total CFUs in the original sample.  442 

Crystal violet attachment assays 443 

To assess attachment, 96-well plates were inoculated with 200 μL of culture in LB at an OD600 of 444 

0.01. The plates were then incubated at 37°C shaking at 250 rpm for 2, 8, or 24 h. Biomass was 445 

quantified by crystal violet (CV) staining. Supernatant was removed from wells and replaced by 446 

200 µL DI water. 50 μL of 0.1% CV in DI water was then added to each well, and plates were 447 

incubated for 15 minutes at 37°C with shaking at 250 rpm. Following staining, wells were washed 448 

4 times with DI water to remove any unattached cells and unbound CV. Plates were then blotted 449 

vigorously onto paper towel and allowed to dry. Once dry, 200 μL of 95% ethanol was added to 450 

each well and the plate was incubated for 10 minutes at 37°C with shaking at 250 rpm to solubilize 451 

the CV. The absorbance of each well was then read at 570 nm. 452 

Assessment of dispersion phenotype in 24-well microtiter plates 453 

Biofilms were grown as described above for up to 7 days, and native dispersion was assessed as 454 

previously described (9, 67). Briefly, biofilm microcolonies were observed by transmitted light 455 

using an Olympus BX60 microscope and a 20 × UPlanF Olympus objective. Images were captured 456 

using a ProgRes CF camera (Jenoptik, Jena, Thuringia, Germany) and processed with ProgRes 457 
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CapturePro 2.7.7 software. Dispersion efficiency was quantified by determining the percentage of 458 

microcolonies that had developed an interior void. For each biological replicate, biofilms were 459 

grown in 2 to 4 wells of a 24-well plate, and all microcolonies that had formed in these biofilms 460 

were analyzed for dispersion. The total number of microcolonies analyzed for each strain and 461 

condition are presented in Supplemental table 2. 462 

Analysis of degradative enzyme presence in OMVs 463 

In order to acquire enough material for enzymatic analysis, OMVs were harvested from planktonic 464 

cultures as described above. OMV preparations were quantified using NTA and diluted to 2×1011 465 

particles/mL in MV buffer. 180 μL of OMVs were then added to wells punched in agar using a 466 

method described previously (93). Agar plates impregnated with protein, lipid or DNA were 467 

prepared, and wells were punched within the agar using the wide end of a 1000 μL pipette tip. 468 

Each 100 mm diameter petri dish used contained 25 mL of an agar solution. For proteomic 469 

analysis, milk agar plates were prepared (2.5 g/L skim milk (BD) and 15 g/L agar (BD)). For these 470 

plates, skim milk and agar were autoclaved separately, cooled to 50°C, and then mixed together 471 

prior to pouring plates. For lipase analysis, 50% tributyrin agar was used (11.5 g/L Tributyrin 472 

HiVeg Agar Base (HiMedia), 5 mL/L Tributyrin (TCI), 7.5 g/L agar (BD)). Specifically, the agar 473 

was boiled in water, tributyrin was added, and the mixture was homogenized in a blender for 474 

approximately 20 seconds to ensure effective dispersal of the hydrophobic tributyrin throughout 475 

the medium. Once autoclaved, this agar was stirred while cooling to approximately 60°C, and the 476 

plates were then poured. For DNase analysis, DNase plates were prepared (21 g/L DifcoTM DNase 477 

test agar with methyl green (BD), 7.5 g/L agar (BD)). After addition of OMVs into the punched 478 

wells, plates were sealed with parafilm and incubated at 37°C for 24 h prior to measuring the 479 

diameter of the zone of clearing. 480 
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Statistical Analysis 481 

Statistical analyses were performed as described in figure legends and carried out in GraphPad 482 

Prism 8.  483 
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pEX18gm-pqsR GmR; pEX18gm-derived vector for 

clean-deletion of pqsR 

This study 

pJN105 GmR; araC-pBAD expression vector (98) 

pJN105-pqsA GmR; pJN105-derived pqsA 

overexpression vector 

(55) 

pJN105-pqsH GmR; pJN105-derived pqsH 

overexpression vector 

This study 

pJN105-pqsR GmR; pJN105-derived pqsR 

overexpression vector 

This study 

pCR 2.1 AmpR; KanR; TA-cloning vector Invitrogen 

pRK2013 KmR; Helper plasmid used for 

triparental mating 

(106) 

  808 

Figure Legends 809 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2020. ; https://doi.org/10.1101/2020.06.15.153908doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.153908
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. PQS production is elevated during dispersion. PQS was extracted from biofilm tube 810 

reactors grown to each of the five stages of development. Measured PQS production was 811 

normalized to µMol per billion CFUs. Error bars represent the standard deviation calculated from 812 

at least three biological replicates. Statistical significance was assessed by one-way ANOVA 813 

followed by Tukey’s post-hoc test. Letters above the bars represent significance. Differences 814 

between bars that do not share a letter are statistically significant (p < 0.05). 815 

Figure 2. OMV production varies across biofilm developmental stages. OMVs were harvested 816 

from each stage of biofilm development and quantified using two different methods. (A) Purified 817 

OMVs were quantified by the modified Lowry assay and normalized to µg protein per billion 818 

CFUs. (B) Purified OMVs were also quantified using nanoparticle tracking and normalized to 819 

CFU. Error bars represent the standard deviation calculated from at least three biological 820 

replicates. Statistical significance was assessed by one-way ANOVA followed by Tukey’s post-821 

hoc test. Letters above the bars represent significance. Differences between bars that do not share 822 

a letter are statistically significant (p < 0.05). 823 

Figure 3. PQS mutants are not deficient in reversible or irreversible attachment. Cultures 824 

were grown in 96-well plates, planktonic cells were removed, and attached biomass was quantified 825 

using crystal violet staining. (A) PA14 and ΔpqsA were grown for 2, 8, and 24 h. (B and C) PA14, 826 

ΔpqsH, ΔpqsE, and ΔpqsR were grown for 2 h (B) and 24 h (C). Error bars represent the standard 827 

deviation calculated from a minimum of three biological replicates. Statistical significance was 828 

determined using Student's two-tailed t-tests for figure 3A and one-way ANOVA for figures 3B 829 

and 3C. *, p < 0.05. 830 

Figure 4. P. aeruginosa dispersion is dependent on quinolone biosynthesis. Biofilms were 831 

grown in semi-batch cultures in 24-well plates, and the fraction of microcolonies that had dispersed 832 
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was determined. (A) PA14 wild type and pqsA mutant biofilms were assessed for dispersion after 833 

4, 5, 6, and 7 days of growth. (B) Dispersion of the pqsA mutant overexpressing the pqsA gene 834 

was assessed after 6 days of growth and compared to the wild type and pqsA mutant. (C-E) 835 

Representative images show microcolonies in PA14 wild type (C), PA14 ΔpqsA (D), and PA14 836 

ΔpqsA/pJN105-pqsA (E) biofilms after 6 days of growth. Error bars represent the standard 837 

deviation calculated from at least three biological replicates. Scale bars are 100 μm. Statistical 838 

significance was determined using Student’s two-tailed t-test for figure 4A and one-way ANOVA 839 

followed by Tukey’s post-hoc test for figure 4B. n.s., p > 0.5; *, p < 0.05; **, p < 0.01. 840 

Figure 5. Production of PQS specifically restores native biofilm dispersion. Biofilms were 841 

grown in semi-batch cultures in 24-well plates for 6 days. (A) The fraction of microcolonies 842 

dispersed was found for PA14 wild type biofilms as well as ΔpqsH, ΔpqsE, and ΔpqsR biofilms. 843 

(B) Overexpression of the missing genes in the mutant backgrounds restored the dispersion 844 

phenotype that was diminished in ΔpqsH and ΔpqsR biofilms. Bars represent the standard deviation 845 

calculated from at least three biological replicates. Statistical significance was analyzed by one-846 

way ANOVA followed by Dunnett’s post-hoc test. **, p < 0.01; ***, p < 0.001. 847 

Figure 6. Exogenous PQS rescues ΔpqsR dispersion defect. PA14 wild type and ΔpqsR biofilms 848 

were grown in semi-batch cultures in 24-well plates for 4 days. For the following 2 days, the 849 

medium was exchanged every 12 hours with fresh medium containing 40 μM PQS (+ PQS), or an 850 

equivalent amount of methanol (+ MeOH, vehicle control). Dispersion efficiency was then 851 

quantified for the strains under each condition. Error bars represent the standard deviation 852 

calculated from at least three biological replicates. Statistical significance was analyzed by 853 

ANOVA followed by Tukey’s post-hoc test. n.s., p > 0.5; *, p < 0.05. 854 
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Figure 7. Purified OMVs display EPS-degrading activities. OMVs were harvested, washed 855 

with, and resuspended in MV buffer, and added to wells punched into different types of agar. (A) 856 

Skim milk agar was used to assess protease activity. (B) Tributyrin agar was used to assess lipase 857 

activity. (C) DNase agar to assess DNase activity. Error bars represent the standard deviation 858 

calculated from three biological replicates. Significance was assessed using Student's two-tailed t-859 

tests. *, p < 0.05; ***, p < 0.001; ****, p < 0.0001.  860 
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 862 

Figure 1. PQS production is elevated during dispersion. PQS was extracted from biofilm tube 863 

reactors grown to each of the five stages of development. Measured PQS production was 864 

normalized to µMol per billion CFUs. Error bars represent the standard deviation calculated from 865 

at least three biological replicates. Statistical significance was assessed by one-way ANOVA 866 

followed by Tukey’s post-hoc test. Letters above the bars represent significance. Differences 867 

between bars that do not share a letter are statistically significant (p < 0.05). 868 
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 870 

Figure 2. OMV production varies across biofilm developmental stages. OMVs were harvested 871 

from each stage of biofilm development and quantified using two different methods. (A) Purified 872 

OMVs were quantified by the modified Lowry assay and normalized to µg protein per billion 873 

CFUs. (B) Purified OMVs were also quantified using nanoparticle tracking and normalized to 874 

CFU. Error bars represent the standard deviation calculated from at least three biological 875 

replicates. Statistical significance was assessed by one-way ANOVA followed by Tukey’s post-876 

hoc test. Letters above the bars represent significance. Differences between bars that do not share 877 

a letter are statistically significant (p < 0.05). 878 
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 880 

Figure 3. PQS mutants are not deficient in reversible or irreversible attachment. Cultures 881 

were grown in 96-well plates, planktonic cells were removed, and attached biomass was quantified 882 

using crystal violet staining. (A) PA14 and ΔpqsA were grown for 2, 8, and 24 h. (B and C) PA14, 883 

ΔpqsH, ΔpqsE, and ΔpqsR were grown for 2 h (B) and 24 h (C). Error bars represent the standard 884 

deviation calculated from a minimum of three biological replicates. Statistical significance was 885 

determined using Student's two-tailed t-tests for figure 3A and one-way ANOVA for figures 3B 886 

and 3C. *, p < 0.05. 887 
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 889 

 890 

Figure 4. P. aeruginosa dispersion is dependent on quinolone biosynthesis. Biofilms were 891 

grown in semi-batch cultures in 24-well plates, and the fraction of microcolonies that had dispersed 892 

was determined. (A) PA14 wild type and pqsA mutant biofilms were assessed for dispersion after 893 

4, 5, 6, and 7 days of growth. (B) Dispersion of the pqsA mutant overexpressing the pqsA gene 894 

was assessed after 6 days of growth and compared to the wild type and pqsA mutant. (C-E) 895 

Representative images show microcolonies in PA14 wild type (C), PA14 ΔpqsA (D), and PA14 896 

ΔpqsA/pJN105-pqsA (E) biofilms after 6 days of growth. Error bars represent the standard 897 

deviation calculated from at least three biological replicates. Scale bars are 100 μm. Statistical 898 

significance was determined using Student’s two-tailed t-test for figure 4A and one-way ANOVA 899 

followed by Tukey’s post-hoc test for figure 4B. n.s., p > 0.5; *, p < 0.05; **, p < 0.01. 900 
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 902 

 903 

Figure 5. Production of PQS specifically restores native biofilm dispersion. Biofilms were 904 

grown in semi-batch cultures in 24-well plates for 6 days. (A) The fraction of microcolonies 905 

dispersed was found for PA14 wild type biofilms as well as ΔpqsH, ΔpqsE, and ΔpqsR biofilms. 906 

(B) Overexpression of the missing genes in the mutant backgrounds restored the dispersion 907 

phenotype that was diminished in ΔpqsH and ΔpqsR biofilms. Bars represent the standard deviation 908 

calculated from at least three biological replicates. Statistical significance was analyzed by one-909 

way ANOVA followed by Dunnett’s post-hoc test. **, p < 0.01; ***, p < 0.001. 910 
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 911 

Figure 6. Exogenous PQS rescues ΔpqsR dispersion defect. PA14 wild type and ΔpqsR biofilms 912 

were grown in semi-batch cultures in 24-well plates for 4 days. For the following 2 days, the 913 

medium was exchanged every 12 hours with fresh medium containing 40 μM PQS (+ PQS), or an 914 

equivalent amount of methanol (+ MeOH, vehicle control). Dispersion efficiency was then 915 

quantified for the strains under each condition. Error bars represent the standard deviation 916 

calculated from at least three biological replicates. Statistical significance was analyzed by 917 

ANOVA followed by Tukey’s post-hoc test. n.s., p > 0.5; *, p < 0.05. 918 
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 920 

 921 

Figure 7. Purified OMVs display EPS-degrading activities. OMVs were harvested, washed 922 

with, and resuspended in MV buffer, and added to wells punched into different types of agar. (A) 923 

Skim milk agar was used to assess protease activity. (B) Tributyrin agar was used to assess lipase 924 

activity. (C) DNase agar to assess DNase activity. Error bars represent the standard deviation 925 

calculated from three biological replicates. Significance was assessed using Student's two-tailed t-926 

tests. *, p < 0.05; ***, p < 0.001; ****, p < 0.0001.  927 
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