

¹ Red fox viromes across an urban-rural gradient

²

³ Sarah J Campbell¹, Wilbur Ashley¹, Margarita Gil-Fernandez¹, Thomas M. Newsome², Francesca Di
⁴ Giallonardo⁴, Ayda Susana Ortiz-Baez³, Jackie E Mahar³, Alison L Towerton⁵, Michael Gillings¹, Edward C
⁵ Holmes³, Alexandra JR Carthey¹, Jemma L Geoghegan^{1,6,7}

⁶

⁷ ¹Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.

⁸ ²School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia.

⁹ ³Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences
¹⁰ and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.

¹¹ ⁴The Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia.

¹² ⁵Greater Sydney Local Land Services, Sydney, NSW, Australia.

¹³ ⁶Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.

¹⁴ ⁷Institute of Environmental Science and Research, Wellington 5018, New Zealand.

¹⁵

¹⁶

¹⁷

¹⁸

¹⁹ Author for correspondence:

²⁰ Jemma L Geoghegan; jemma.geoghegan@otago.ac.nz

²¹

²²

²³ Key words: *Vulpes vulpes*, carnivore, predator, canine, exotic species, urban, virus, metagenomics

24 Abstract

25 The Red fox (*Vulpes vulpes*) has established large populations in Australia's urban and rural areas since its
26 introduction following European settlement. Foxes' cryptic and highly adaptable nature allows them to
27 invade cities and live among humans while remaining largely unnoticed. Urban living and access to
28 anthropogenic food resources also influences fox ecology. Urban foxes grow larger, live at higher densities
29 and are more social than their rural counterparts. These ecological changes in urban red foxes are likely to
30 impact the pathogens that they harbour, and foxes could pose a disease risk to humans and other species
31 that share these urban spaces. To assess this possibility, we used a meta-transcriptomic approach to
32 characterise the viromes of urban and rural foxes across the Greater Sydney region in Australia. Urban and
33 rural foxes differed significantly in virome composition, with rural foxes harbouring a greater abundance of
34 viruses compared to their urban counterparts. In contrast, urban fox viromes comprised a greater diversity
35 of viruses compared to rural foxes. We identified nine potentially novel vertebrate-associated viruses in
36 both urban and rural foxes, some of which are related to viruses associated with disease in domestic
37 species and humans. These included members of the *Astroviridae*, *Picobirnaviridae*, *Hepeviridae* and
38 *Picornaviridae* as well as rabbit haemorrhagic disease virus-2 (RHDV2). This study sheds light on the viruses
39 carried by urban and rural foxes and emphasises the need for greater genomic surveillance of foxes and
40 other invasive species at the human-wildlife interface.

41

42 Importance

43 Urbanisation of wild environments is increasing as human populations continue to expand. Remnant
44 pockets of natural environments and other green spaces in urban landscapes provide invasive wildlife such
45 as red foxes with refuges within urban areas, where they thrive on the food resources provisioned by
46 humans. Close contact between humans, domestic species and foxes likely increases the risk of novel
47 pathogen emergence. Indeed, the vast majority of emerging infectious diseases in humans originate in
48 wild animals. Here, we explored potential differences in viromes between urban fox invaders and their
49 rural counterparts. Viromes of foxes and their ectoparasites comprise a diversity of viruses including those
50 from the *Astroviridae*, *Picobirnaviridae*, *Hepeviridae*, *Caliciviridae* and *Picornaviridae*. Microbial surveillance
51 in foxes and other urban wildlife is vital for monitoring viral emergence and for the prevention of infectious
52 diseases.

53

54

55

56 Introduction

57 Red foxes (*Vulpes vulpes*) have the largest natural distribution of any wild terrestrial carnivore (1),
58 extending through Eurasia and north America (2). After their introduction into Australia in the mid-1800's,
59 their range expanded to cover most of the continent. Red foxes exploit a wide range of habitats with
60 varying climates, from alpine to desert, and are considered one of the most adaptable species on the
61 planet. They are broadly distributed across different land uses including natural and forested landscapes as
62 well as highly urbanised, human dominated landscapes (3, 4). Red fox home range size varies depending
63 on resource availability and land use type. Globally, urban fox home ranges average approximately 1.7
64 km², while rural fox home ranges are larger, at around 5.7 km² on average (5). In Australia, home ranges for
65 foxes in arid regions can reach at least 120 km² (6), between 5-7km² in rural areas (7) and less than 1km² in
66 urban centres (8).

67 Foxes are common across rural and bushland regions in Australia and have established a large presence in
68 major metropolitan centres (3, 9), being recorded near the Sydney region since 1907 (10). They were first
69 sighted in an Australian city (Melbourne) in 1943, although they were noted in Melbourne's suburban
70 surrounds as early as 1933 (11). For comparison, foxes were first noted in British cities (i.e. in their native
71 range) in 1930 (4). Urban cities support much higher densities of foxes than more rural regions. In
72 Melbourne, city foxes live in densities of up to 16 individuals per km² (9). This is compared to just 0.2
73 individuals per km² in more rural areas (3). In Bristol city in the UK, densities as high as 35 individual foxes
74 per km² have been estimated (12).

75 Predation by red foxes is a key threat to Australian native fauna (13). The list of native animals threatened
76 by fox predation includes some of Australia's most endangered species, such as the rufous hare-wallaby
77 (*Lagorchestes hirsutus*) and loggerhead turtle (*Caretta caretta*), as well as the critically endangered brush-
78 tailed bettong (*Bettongia penicillata*), Gilbert's potoroo (*Potorous gilbertii*), western swamp tortoise
79 (*Pseudemydura umbrina*) and orange bellied parrot (*Neophema chrysogaster*) (14). Due to the threat foxes
80 pose to endangered wildlife and Australian biodiversity, fox populations are actively controlled. Poison
81 baiting is the most common and cost-effective method of control in rural areas (3). In urban areas,
82 however, the risk to pets limits control methods to trapping and shooting (15). However, foxes are
83 notoriously difficult to trap and shooting in urban areas requires tracking at night (when foxes are most
84 active) by licensed professionals. Such limitations make it difficult to effectively control foxes in urban
85 areas.

86 Red foxes exhibit cryptic and nocturnal behaviour, going largely undetected in urban areas despite their
87 high abundance (16, 17). They thrive on the resources inadvertently provided by humans in cities and may
88 develop distinct urban behaviours as a consequence of urban living (4, 18, 19). For example, urban
89 carnivores such as coyotes (*Canis latrans*) display increased boldness and decreased human aversion when
90 compared to their rural counterparts (4, 20, 21). Urban living also increases carnivore body size which may
91 have positive effects on fitness and fecundity (4, 22). When food is abundant, carnivore home ranges are

92 smaller, higher densities are supported and encounters between conspecifics are more frequent (4, 23, 24).
93 In urban areas, fox family group sizes are often larger than those in rural areas, with juvenile females
94 remaining in their natal territory to assist with cub rearing (9, 25, 26). Thus, urban environments may
95 favour increased conspecific tolerance and social behaviours in foxes (9, 24-26).

96 Although red foxes are known to harbour a diversity of viruses (27, 28), it is unknown whether urban and
97 rural foxes have different viral compositions. High-density living and increased host contact can increase
98 pathogen transmission rates among hosts (29). As such, a high-density population of cryptic urban foxes
99 living in close proximity to largely unsuspecting humans could pose an important pathogen risk. Foxes are
100 likely to investigate human refuse, including compost and rubbish bins, and consume food scraps from
101 surfaces such as outdoor barbeques and furniture, eat from pet bowls and wildlife feeding stations and
102 defecate nearby, increasing the potential for pathogen transfer (18). In addition, as urban animals can
103 gradually become habituated to humans (4), we would expect to see an increase in direct fox-human
104 interactions with the potential for disease transmission between the two species.

105 Using an unbiased, meta-transcriptomic approach, we describe, for the first time, the virome of the
106 introduced Australian red fox sampled from urban and rural regions. We hypothesised that foxes in urban
107 areas could harbour a greater viral diversity and abundance compared to rural foxes, due to the potentially
108 higher population densities and increased conspecific interactions in urban areas. While there is limited
109 information on fox social dynamics in Australia, we also postulated that females could harbour a greater
110 diversity and abundance of viruses than males due to particular social behaviours reported for female
111 foxes in their native ranges, such as cooperative cub rearing (25, 26). To this end, samples (liver, faecal and
112 ectoparasite) were collected from foxes around the Greater Sydney region, Australia, including in urban
113 and more rural areas (Figure 1). Samples were pooled (based on sampling location and sex) and subject to
114 RNA sequencing to reveal viral diversity, evolution and abundance.

115

116 Materials & Methods

117 *Sample collection*

118 The current project was part of a larger research program into urban foxes in partnership with Greater
119 Sydney Local Land Services, a New South Wales State Government organisation responsible for
120 management of pest species across the region. We collected fresh carcasses from independent licensed
121 trappers and shooters who were actively controlling foxes in the Greater Sydney region (see Figure 1 for
122 sample locations). To minimise degradation of RNA, samples were taken as soon as possible after death
123 (03:19:00 ± 02:59:00 hrs post-mortem, n=27). One carcass had been frozen for approximately one week
124 and one carcass had been dead for an unknown amount of time. The foxes used for this study were either

125 trapped in cages and shot, or tracked and shot. One individual was obtained as recent roadkill. Foxes killed
126 by poison baits were excluded.

127 Whole fox carcasses were collected and transported to the laboratory where they were immediately
128 dissected to collect faecal, liver and ectoparasite samples. All samples were individually stored in
129 RNALater at -80°C. We sampled a total of 29 individual foxes; 13 males and 16 females. For this study,
130 foxes were classified as juvenile if their body mass and body length were less than 3.3 kg and 51cm,
131 respectively. These values were chosen as the body mass of an adult red fox can range between 3.3 and
132 8.2kg, while body length can range between 51 and 78cm (when measured from the tip of the nose to the
133 first vertebra of the tail) (30). Based on this assessment, 25 foxes were classified as adults (12 males, 13
134 females) and four as juveniles (1 male, 3 females).

135 *Sampling in urban and rural areas*

136 Fox sampling relied on coordination with professional pest control operators who focus control efforts in
137 specific locations in accordance with local control initiatives. For this reason, a representative sample
138 across a land-use gradient from urban to rural was not possible. Sufficiently fresh rural and bushland fox
139 samples were also difficult to obtain since poison baiting is the principal control method in these areas.
140 Therefore, 'rural' was broadly defined as any natural bushland, national park, mostly agricultural or
141 sparsely populated region outside the central urban districts, with a human population density of fewer
142 than 500 people per km². Similarly, 'urban' was defined as built up areas inside the central urban district
143 (including parks, gardens and golf courses) with a population density of more than 500 people per km²
144 either in the area sampled or in the immediate surrounding areas. Human population density information
145 was obtained from the Australian Bureau of Statistics (2016 census data) (31). Central urban districts were
146 defined by the Urban Centres and Localities statistical classification (UCL) (32). Land use classification and
147 human population density cut-offs were loosely based on work by Stepkovich (2019).

148 *RNA extraction and whole transcriptome sequencing*

149 Qiagen RNeasy Plus Mini Kits were used to extract RNA from liver, faecal, and ectoparasite samples from
150 collected red fox carcasses. Thawed samples were transferred to a lysis buffer solution containing 1% β-
151 mercaptoethanol and 0.5% Reagent DX. Samples were homogenised and centrifuged. DNA was removed
152 from the supernatant via gDNA eliminator spin column and RNA was eluted via RNeasy spin column. RNA
153 concentration and purity were measured using the Thermo Fisher Nanodrop. Samples were pooled based
154 on land use category (urban or rural), sex and sample type (liver, faecal or ectoparasite), resulting in nine
155 representative sample pools (Table 1). Adults and juveniles were pooled as only two juveniles were
156 sampled. Ectoparasites included fleas (*Siphonaptera*) and ticks (*Ixodida*). These were not classified below
157 the Order level and due to the small number sampled were also pooled. The TruSeq Stranded Total RNA
158 Ribo-Zero Gold (h/m/r) kit was used to prepare pooled samples for sequencing. Pooled samples were
159 sequenced on the NextSeq 500 with 2x75bp output at the Ramaciotti Centre for Genomics at the

160 University of New South Wales, Sydney. Sequencing resulted in nine representative data libraries (Table
161 1). The raw reads are available on NCBI's SRA database under BioProject XXX, while the consensus
162 sequences of each virus have been submitted to NCBI GenBank and assigned accession numbers XXX-
163 YYY.

164 *Virus discovery*

165 Sequencing reads were assembled *de novo* into longer sequences (contigs) based on overlapping
166 nucleotide regions using Trinity RNA-Seq (33). Assembled contigs were assigned to a taxonomic group
167 (virus, Bacteria, Archaea, Eukarya) and viruses were identified to their closest species match based on
168 sequence similarity searches against the NCBI nucleotide (nt) and non-redundant protein (nr) databases
169 using BLASTn (34) and Diamond (BLASTX) (35), respectively. An e-value threshold of 1×10^{-5} was used as a
170 cut-off to identify positive matches. We removed non-viral hits, including host contigs with similarity to
171 viral sequences (e.g. endogenous viral elements), as well as any contigs with similarity to plant viruses,
172 which were more likely to be derived from the foxes' diet.

173 *Inferring the evolutionary history of fox viruses*

174 We inferred the phylogenetic relationships of the vertebrate-associated viruses identified in the fox
175 samples. Vertebrate-associated viruses were defined as viruses which shared sequence similarity to other
176 known vertebrate viruses. First, the amino acid translations of the viral transcripts were combined with
177 other virus protein sequences from the same virus families obtained from GenBank (Table 2). Second, the
178 sequences were aligned using MAFFT v.3.4, employing the E-INS-I algorithm. Ambiguously aligned
179 regions were removed using trimAl v.1.2 (36). To estimate phylogenetic trees, we selected the optimal
180 model of amino acid substitution identified using the Bayesian Information Criterion as implemented in
181 Modelgenerator v0.85 (37) and employed the maximum likelihood approach available in PhyML v3.1 (38)
182 with 1000 bootstrap replicates. For the viral transcript matching RHDV2 we used a nucleotide alignment
183 with similar viruses. New viruses were named after fictional fox characters.

184 *Diversity and abundance analysis*

185 Transcript abundance for all viruses (vertebrate and invertebrate-associated) was estimated using RSEM
186 within Trinity (39). Specifically, we assessed how many short reads within a given library mapped to a
187 particular transcript. Raw counts were then standardised against the total number of reads within each
188 library. Virome diversity (i.e. virus species richness) and relative abundance were compared among
189 samples using a non-metric multidimensional scaling (nMDS) ordination in conjunction with an analysis of
190 similarities (ANOSIM) based on Bray-Curtis dissimilarity as implemented in the vegan package in R (40).
191 To determine which viral families were contributing the most to differences between samples, an indicator
192 species analysis was performed, using a point biserial coefficient of correlation within the indicspecies
193 package in R (41).

194

195 **Results**

196 Meta-transcriptomic sequencing of nine representative pooled samples resulted in 44-57 million paired
197 reads per pool (593,406,706 reads in total). BLAST analyses revealed that the faecal samples were
198 dominated by bacteria (51.17-84.61%), while the liver samples were dominated by eukaryotic transcripts
199 (92.90-99.43%), largely comprising fox RNA. Viruses made up a small proportion of the four representative
200 faecal samples (0.002-5.85%) and were detected in only one of the representative liver samples (0.001%).
201 Archaea were detected at very low levels in faecal samples only (0.002-0.021%). The ectoparasites (fleas
202 and ticks) differed substantially to the liver and faecal samples with 50.97% of reads classed as
203 'unmatched' meaning they did not share sequence similarity to any known sequence. The remainder of the
204 contigs from ectoparasite samples were from eukaryotes (44.39%), bacteria (4.64%) and viruses (0.004%).
205 Unmatched reads in liver and faecal samples ranged between 0.52-12.22% (Figure 2a).

206 Multiple novel vertebrate-associated virus transcripts were identified from both urban and rural foxes,
207 including a hepevirus, picobirnavirus, astrovirus and various picornaviruses (Table 2). In addition, we found
208 virus transcripts with sequence similarity to rabbit haemorrhagic disease virus-2 (RHDV2). Vertebrate-
209 associated virus transcripts represented between 0.4-98% of viral reads. The remainder comprised mostly
210 invertebrate, plant and fungi associated virus transcripts which were most likely acquired from the foxes'
211 diet.

212 *Virome composition*

213 Urban, rural and ectoparasite samples had distinctly different virome compositions (ANOSIM R = 1,
214 $p = 0.0167$; Figure 2 and Figure 3). Transcripts from a total of 30 distinct viral families were identified across
215 the six pools in which viral RNA was detected (rural male faeces, rural female faeces, rural female liver,
216 urban male faeces, urban female faeces, and ectoparasites). Overall, 21 viral families were identified in
217 transcripts from urban foxes and 19 from rural foxes. Urban foxes exhibited a higher diversity of viruses
218 compared to rural foxes; transcripts from the latter were heavily dominated by *Picornaviridae*, which made
219 up between 77.33-98.97% of the virome of rural foxes (Figure 2b). Indicator species analysis suggested that
220 while the rural samples were characterised by the presence of *Picornaviridae* (stat = 0.978, $p = 0.0496$), the
221 urban samples were significantly associated with the presence of *Nodaviridae* (stat = 0.998, $p = 0.0498$).
222 Viral diversity was higher in females (25 distinct viral families) than in males (13 distinct viral families). A
223 much larger percentage of the viral transcripts identified were vertebrate-associated in rural foxes (male:
224 98.23%, female: 97.84%) compared to urban foxes (male: 2.41%, female: 0.39%), although this percentage
225 was higher in males in both groups. In this context it is important to note that some virus transcripts found
226 here may be the result of contamination by reagents.

227 On average, total viral abundance (including both vertebrate and non-vertebrate viruses) was higher in

228 rural foxes ($2.03 \pm 3.31\%$, n=3) than in urban foxes ($0.03 \pm 0.04\%$, n=2), and in female foxes ($1.97 \pm 3.36\%$,
229 n=3) than in male foxes ($0.12 \pm 0.17\%$, n=2) (Figure 2c). However, due to the small sample size, differences
230 between males and females may be due to individual animals contributing more to overall abundance than
231 others. For example, the rural female fox pool (comprising three individual foxes) contained an unusually
232 high number of viruses (>5%) compared to the others. This may have inflated virus abundance counts in
233 females when combined. While virome composition was compared among a relatively small number of
234 samples, this is balanced by the fact that each sample comprises the viromes of multiple individual foxes
235 (n = 3-13 foxes per pool; Table 1).

236 *Vertebrate-associated viruses in foxes*

237 *Hepeviridae*. Hepevirus (positive-sense single stranded RNA viruses) sequences were discovered in the
238 rural female faecal samples. Tentatively named swiper virus, this virus transcript was very distinct in
239 sequence, sharing only 28.92% amino acid identity to its closest relative, elicom virus-1 from mussels, and
240 had a relative abundance of 0.01% (Table 2). While its closest genetic relative is not from a vertebrate host
241 suggesting it may be a diet associated contaminant, phylogenetic analysis of the RNA dependant RNA
242 polymerase (RdRp) encoding region placed this hepevirus in close proximity to both house mouse
243 hepevirus and elicom virus-1, with these viruses forming a distinct monophyletic group (Figure 4).

244 *Astroviridae*. We detected an astrovirus (positive-sense single stranded RNA virus), tentatively named
245 vulpix virus, in the rural male faecal samples. Notably, the sequence shared a 96.11% amino acid identity
246 with feline astrovirus D1 and had a relative abundance of 0.046% (Table 2). Based on phylogenetic analysis
247 of the RdRp, this virus clustered with other mammalian-associated viruses within the mamastroviruses
248 (Figure 4).

249 *Picobirnaviridae*. Picobirnavirus (double-stranded RNA viruses) sequences were detected in urban male,
250 rural male and urban female faecal samples. As some of the sequences represented less conserved regions
251 of the viral genome, only one RdRp sequence (from the urban female samples) was used for phylogenetic
252 analysis. The sequence, tentatively named charmer virus, shared an 80.27% amino acid identity with a
253 picobirnavirus found in wolves and had a relative abundance of 0.0001% (Table 2). The sequence also
254 clustered with other mammalian associated picobirnaviruses (Figure 4).

255 *Picornaviridae*. Several picornaviruses (positive-sense single stranded RNA viruses) were discovered. Two
256 kobuvirus related sequences were discovered in the rural female faecal samples. The longer sequence,
257 tentatively named vixey virus, shared highest amino acid identity with canine kobuvirus from a domestic
258 dog (97.65%) and had a relative abundance of 0.007% (Table 2). Analysis of the RdRp region showed the
259 sequence clustered most closely with feline kobuvirus and other mammalian kobuviruses (Figure 4).

260 Multiple picodicistrovirus sequences were detected in the urban male, rural male and urban female faecal
261 samples. Two of the sequences, tentatively named tod virus-1 and tod virus-2 both shared 98% amino acid

262 identity with canine picodicistrovirus (Table 2). Based on analysis of the RdRp region the sequences
263 clustered together with mammalian dicipivirus and rosaviruses as well as reptilian picornaviruses (Figure
264 4).

265 Multiple picornavirus sequences were identified in the rural male and rural female samples. Two
266 sequences, tentatively named wilde virus-1 and 2, all shared between 73-89% amino acid identity with
267 canine picornavirus and had relative abundances of 5.66% and 0.00058%, respectively (Table 2). These
268 sequences clustered with other mammalian picornaviruses in the order *Sapelovirus* (Figure 4).

269 *Caliciviridae*. One of the most striking observations was the identification of rabbit haemorrhagic disease
270 virus-2 (RHDV2) (positive-sense single-stranded RNA virus) in rural female and urban male faecal samples.
271 The viral sequence in the rural female samples shared a 99.62% amino acid identity with RHDV2 isolated
272 from rabbits between 2015-2016 and had a relative abundance of 0.14% (Table 2) (Figure 5). The viral
273 sequence in the urban male samples was too short to enable phylogenetic analysis. This is the second time
274 that RHDV2 has been found in non-rabbit hosts (42), presumably through rabbit consumption in this case.

275

276 Discussion

277 We have revealed that Sydney's red foxes, in both urban and rural environments, harbour a wide diversity
278 of viruses, some of which are genetically similar to those that infect domestic pets and humans. Domestic
279 mammals tend to hold central positions in mammal viral transmission networks (43). The close genetic
280 similarity of the viruses found here to viruses frequently found in common domestic pets such as cats and
281 dogs suggests cross-species transmission between foxes and domestic species may have occurred. The
282 most cited case of viral transmission between humans and domestic pets is the transmission of rabies virus
283 (44), although other examples include noroviruses from dogs, isolated cases of influenza A(H7N2) virus
284 from cats (45, 46) and numerous bacterial diseases and parasites (44, 47). There may also be additional
285 cases of viral sharing between humans and their pets, although these may go undiagnosed due to
286 insufficient knowledge of the genetic variability of these viruses and their relationships with hosts.

287 All vertebrate-associated viruses found here were RNA viruses. Although this may in part be due to the
288 reliance on transcript-based viral detection, RNA viruses are in general characterised by lower host
289 specificity than DNA viruses, reflecting an increased occurrence of cross-species transmission (43, 48). The
290 opportunity for interactions between urban wildlife, pets and humans provide likely transmission
291 pathways for novel RNA viruses. Indeed, eukaryotic parasites are already known to infect human hosts
292 following the wildlife-domestic pet-human transmission network (49). We discovered viral transcripts with
293 some sequence similarity to the *Hepeviridae* that cause hepatitis E in mammals, which has already been
294 isolated from various domestic and wild animals including foxes in the Netherlands (28, 50). Confirmed
295 zoonotic cases include transmission to humans from domestic pigs, cats and wild rodents (50, 51). In

296 contrast, the hepevirus detected here was phylogenetically distinct from the fox hepatitis E virus
297 previously detected (28), and instead was more closely related to hepeviruses detected in freshwater
298 mussels and a house mouse. Hence, although we have classed the virus as vertebrate-associated, its
299 divergent phylogenetic position could in fact mean that it results from dietary consumption.

300 The astrovirus transcript (*vulpix* virus) showed the greatest sequence similarity (96%) to astroviruses from
301 domestic cats as well as from other foxes, humans and pigs. Astroviruses have a broad host range (52) and
302 are frequently detected in the faeces of mammals, birds and humans with gastroenteritis (53, 54).
303 Astroviruses have also been associated with other diseases and disorders such as shaking syndrome in
304 minks (55), neurological disease in cattle (56) and encephalitis in humans (57). Some human astroviruses
305 are more closely related to those in animals than to each other, suggesting that these viruses periodically
306 emerge from zoonotic origins (58). The similarity of fox astroviruses to those found in cats indicates that
307 these viruses may have jumped hosts in the past and highlights further the potential role of domestic pets
308 and wildlife in virus transmission.

309 Picobirnaviruses are found in humans and other mammals and are thought to be linked with
310 gastroenteritis, however their role in disease remains unclear (59, 60). The picobirnavirus related transcript
311 found here showed the greatest sequence similarity to a picobirnavirus found in wolves with diarrheic
312 symptoms (59). It is also similar to picobirnaviruses described as potentially zoonotic in humans with
313 gastroenteritis (61). There is, however, evidence that picobirnaviruses may actually be bacteriophage
314 rather than eukaryote associated viruses (62), such that the virology of these viruses is currently unclear.

315 We identified novel fox viruses within the *Picornaviridae* belonging to three distinct genera: kobuvirus,
316 picodicistrovirus and picornavirus. The *Picornaviridae* are a large and diverse family that include viruses
317 associated with a variety of human diseases such as hand, foot and mouth disease, polio, myocarditis,
318 hepatitis A virus and rhinovirus (63). All viral sequences here were most closely related to those viruses
319 previously found in dogs. While we cannot assume that these viruses cause disease, kobuviruses have been
320 isolated from dogs and other mammals with diarrheic symptoms (64, 65). Additionally, the fox
321 picornaviruses found here are closely related to sapeloviruses that cause encephalitis in domestic pigs (66-
322 68).

323 Finally, and of particular note, we identified rabbit haemorrhagic disease virus-2 (RHDV2) in fox faeces.
324 RHDV was initially released (or escaped) in Australia in 1995 following testing as a biological control agent
325 for invasive rabbits. A novel variant of the disease, RHDV2, began circulating in Australia in 2015 and is
326 presumed to be an incursion from Europe where it first emerged in 2010 (69). RHDV2 has become the
327 dominant strain circulating in Australia's wild rabbits (70). The virus identified here was most closely
328 related to RHDV2 strains found in rabbits in New South Wales, Australia in 2015-2016. It is likely, then, that
329 Sydney foxes consume diseased rabbits and the virus is simply a gut contaminant with no active RHDV2
330 replication in the fox host. Although it is worth noting that antibodies against RHDV have been detected in

331 red foxes in Germany, there was no evidence of illness or viral replication (71). Alternatively, it is possible
332 that RHDV2 found in foxes was the result of infected fly consumption while scavenging. RHDV can be
333 transmitted by flies after contact with diseased rabbit carcasses and remain viable for up to 9 days (72).
334 The virus can also be excreted in fly faeces and regurgitate, which contain a sufficient number of virions to
335 infect rabbits (72). Indeed, flies may be important vectors for pathogen transmission for scavenging
336 predators such as foxes.

337 Urbanisation influences pathogen exposure and prevalence in wildlife. For example, the prevalence of
338 parvovirus increases with proximity to urban areas in grey foxes (*Urocyon cinereoargenteus*) in the US (73),
339 and dogs in urban areas in Brazil harbour more tick-borne pathogens than rural dogs (74). In addition, the
340 prevalence of West Nile virus in wild birds in the US increases with proximity to urban areas and human
341 population density (75). Here, we found the highest overall viral abundance in rural foxes while urban foxes
342 harboured a higher diversity of viruses (Figure 2b-2c). It has previously been suggested that red foxes in
343 highly urbanised areas experience lower exposure to canine distemper virus due to reduced movement
344 opportunities as a result of wildlife corridors being absent in densely built-up areas (70). By comparison,
345 exposure to canine distemper virus increased in areas with more natural habitats (76). Urban green spaces
346 or remnant forest may therefore increase the potential for pathogen transmission due to a greater
347 convergence of urban wildlife together with domestic animals and humans (76). This emphasises the need
348 for targeted control of foxes in urban areas of Australia since green spaces and remnant forests have
349 benefits associated with the conservation of native biodiversity and associated ecosystem services.

350 It is possible that urban living reduces fox susceptibility to viral infection by positively influencing host
351 immunity. For example, an abundance of rich food sources would increase nutritional intake, positively
352 influencing overall health and condition and hence resistance to viral infections (77). Kit foxes (*Vulpes*
353 *macrotis*) in urban areas in California show less nutritional stress, increased body condition and improved
354 immune function when compared to foxes in a nearby nature reserve (78). Australian lace monitors
355 (*Varanus varius*) consuming human refuse experience improved body condition and reduced blood
356 parasite infection compared to those that do not subsist on anthropogenic food waste (79). Foxes in urban
357 Sydney grow larger and are heavier than foxes in rural areas (22), and there may be an advantage to
358 consuming anthropogenic food sources for overall condition and pathogen resistance.

359 Across both rural and urban habitats we observed that female foxes harboured a higher abundance, and
360 had almost twice the diversity of viruses found in male foxes (when including both vertebrate and non-
361 vertebrate associated). While other studies looking at sex differences and immunity suggest females
362 typically display stronger immune responses and reduced pathogen load compared to males (80), this
363 observation could be explained by greater sociality in female compared to male foxes. That is, female
364 foxes associate with both cubs and other 'helper females', whereas males are more solitary (25, 26).
365 Greater sociality increases viral transmission opportunities, although our understanding of red fox sociality

366 in Australia is limited (81) and males may be more likely to be involved in aggressive encounters with
367 conspecifics than females (82). Alternatively, other biological differences, such as hormones, could also
368 contribute to variation between male and female viromes (83).

369 Multiple co-occurring factors could simultaneously affect viral infection in Sydney's foxes. Additional
370 assessments of habitat structures, fox densities, movement behaviours and social dynamics in urban and
371 rural areas in the Greater Sydney region will help to elucidate such factors. An obvious extension to this
372 work is to examine fox viromes across a more comprehensive urban-rural gradient, including foxes from
373 more isolated bush habitats. This would help us to understand differences in pathogen prevalence and
374 transmission between isolated natural habitats and more disturbed environments, and how introduced
375 species such as foxes contribute to disease prevalence across different ecosystems. Another useful
376 approach could compare viral transmission dynamics in red foxes between their native and introduced
377 ranges.

378 Human encroachment on wild environments and the adaptation of wild animals to urban areas continues
379 to intensify human-wildlife interactions. The effects of urbanisation on wildlife pathogen dynamics may
380 have unexpected consequences for human and domestic animal health. Although we cannot say
381 definitively that the viruses identified here cause disease outbreaks or spill-over events, it is clear that
382 foxes living in Greater Sydney carry viruses that are related to those found in domestic animals and
383 humans. Our findings indicate that foxes may be reservoirs for viral pathogens with zoonotic potential.

384

385 Acknowledgements

386 This work was funded by a grant awarded to AJRC and JLG by the Greater Sydney Local Land Services.
387 AJRC is a recipient of the Macquarie University Research Fellowship. ECH is supported by an ARC
388 Australian Laureate Fellowship (FL170100022).

389

390 **Figures and Tables**

391 **Table 1.** Breakdown of red fox representative samples, detailing land-use, sex and sample type, as well as
392 the number of individuals pooled for RNA sequencing.

Representative sample	Land use	Sex	Sample type	Number of individual foxes pooled	Viral transcripts found?
1	urban	male	liver	9	No
2	urban	male	faeces	6	Yes
3	rural	male	liver	3	No
4	rural	male	faeces	3	Yes
5	urban	female	liver	9	No
6	urban	female	faeces	13	Yes
7	rural	female	liver	3	Yes
8	rural	female	faeces	3	Yes
9	both	male (1) female (2)	ectoparasites	3	Yes

393

394

395 **Table 2.** Vertebrate-associated viral contigs, contig length (nt), percent abundance in their respective
396 pools and the percent amino acid identity to their closest match on NCBI/GenBank.

Land use (sex)	Virus name (species)	Virus family	Contig length (nt)	% Relative abundance	Closest match (GenBank accession number)	% Amino acid identity
rural (female)	Vixey virus	<i>Picornaviridae</i>	2427	0.007%	Canine kobuvirus (AZS64124.1)	97.65%
	Wilde virus-1	<i>Picornaviridae</i>	7236	5.66%	Canine picornavirus (YP_005351240.)	89.18%
	Swiper virus	<i>Hepeviridae</i>	7374	0.01%	Elicom virus-1 (YP_009553584.)	28.92%
	Red fox associated rabbit haemorrhagic disease virus-2	<i>Caliciviridae</i>	7026	0.14%	Rabbit haemorrhagic disease virus-2 (MF421679.1)	99.62%
rural (male)	Tod virus-2	<i>Picornaviridae</i>	4263	0.17%	Canine picodicistrovirus (YP_007947664.)	98.53%
	Vulpix virus	<i>Astroviridae</i>	2556	0.046%	Feline astrovirus (YP_009052460.)	96.11%
urban (female)	Tod virus-1	<i>Picornaviridae</i>	2062	0.0004%	Canine picodicistrovirus (YP_007947664.)	98.83%
	Charmer virus	<i>Picobirnaviridae</i>	448	0.0001%	Wolf picobirnavirus (ANS53886.1)	80.27%
urban (male)	Wilde virus-2	<i>Picornaviridae</i>	1524	0.00058%	Canine picornavirus (YP_005351240.)	73.37%

397 **Figure 1.** Map of the Greater Sydney region showing fox sampling locations of urban (red) and rural
398 (blue) fox carcasses, identified as male (circle) or female (triangle), as well as those harbouring
399 ectoparasites (green asterisk).

400 **Figure 2.** Overview of the red fox virome. (a) Percentage abundance of each taxonomic group
401 identified in each respective pooled sample, standardised against the number of raw reads per pool.
402 Due to their low abundance, archaea (0.002-0.021%) and some of the viral reads (0.001-5.85%) are
403 too small to visualise. (b) Percentage abundance of (eukaryotic-associated) viral families detected in
404 each respective pooled sample (excluding bacteriophage). (c) Boxplots showing percentage
405 abundance of (eukaryotic-associated) viral reads in urban, rural and ectoparasite samples and males
406 and females. A black line indicates the median and the bottom and top edges of the box indicate
407 the 25th and 75th percentiles, respectively. Raw abundances are superimposed, and the colour and
408 shape of data points are as in Figure 1.

409 **Figure 3.** Non-metric multidimensional scaling (nMDS) ordination showing differences in virome
410 composition (at the family level) among samples according to habitat and sex. Individual points
411 represent individual pooled samples. Points closer together have a more similar virome composition
412 (based on Bray-Curtis dissimilarity, which incorporates both the diversity and abundance of viruses)
413 and *vice versa* for those further apart.

414 **Figure 4.** Phylogenetic relationships of likely vertebrate-associated viruses discovered from
415 assembled contigs: (a) *Hepeviridae*, (b) *Picobirnaviridae*, (c) *Astroviridae* and (d) *Picornaviridae*. The
416 maximum likelihood phylogenetic trees show the topological position of the newly discovered
417 potential viruses (bold, red text), in the context of their closest relatives. All branches are scaled to
418 the number of amino acid substitutions per site and trees were mid-point rooted for clarity only. An
419 asterisk indicates node support of >70% bootstrap support.

420 **Figure 5.** A maximum likelihood phylogenetic tree showing the topological position of RHDV2
421 capsid gene in the red fox (bold, red text), in the context of its closest relatives. Major clades are
422 labelled. All branches are scaled to the number of nucleotide substitutions per site and trees were
423 mid-point rooted for clarity only. An asterisk indicates node support of >70% bootstrap support.

424

425 **References**

- 426 1. Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, Katariya V, Lamoreux J, Rodrigues AS, Stuart SN, Temple HJ. 2008. The status of the world's land and marine mammals: diversity, threat, and knowledge. *Science* 322:225-230.
- 427 2. Statham MJ, Murdoch J, Janecka J, Aubry KB, Edwards CJ, Soulsbury CD, Berry O, Wang Z, Harrison D, Pearch M. 2014. Range-wide multilocus phylogeography of the red fox reveals ancient continental divergence, minimal genomic exchange and distinct demographic histories. *Mol Ecol* 23:4813-4830.
- 428 3. Saunders G, Gentle M, Dickman C. 2010. The impacts and management of foxes *Vulpes vulpes* in Australia. *Mamm Rev* 40:188-211.
- 429 4. Bateman PW, Fleming P. 2012. Big city life: carnivores in urban environments. *J Zool* 287:1-23.
- 430 5. Šálek M, Drahníková L, Tkadlec E. 2015. Changes in home range sizes and population densities of carnivore species along the natural to urban habitat gradient. *Mamm Rev* 45:1-14.
- 431 6. Newsome T, Spencer E, Dickman C. 2017. Short-term tracking of three red foxes in the Simpson Desert reveals large home-range sizes. *Aust Mammal* 39:238-242.
- 432 7. Coman B, Robinson J, Beaumont C. 1991. Home range, dispersal and density of red foxes (*Vulpes vulpes* L.) in central Victoria. *Wildl Res* 18:215-223.
- 433 8. Marks CA, Bloomfield TE. 2006. Home-range size and selection of natal den and diurnal shelter sites by urban red foxes (*Vulpes vulpes*) in Melbourne. *Wildl Res* 33:339-347.
- 434 9. Marks CA, Bloomfield TE. 1999. Distribution and density estimates for urban foxes (*Vulpes vulpes*) in Melbourne: implications for rabies control. *Wildl Res* 26:763-775.
- 435 10. Abbott I, Peacock D, Short J. 2014. The new guard: the arrival and impacts of cats and foxes, p 69-104. In Glen A, Dickman C (ed) Carnivores of Australia: past, present and future. CSIRO publishing, Collingwood, Vic.
- 436 11. Robinson NA, Marks CA. 2001. Genetic structure and dispersal of red foxes (*Vulpes vulpes*) in urban Melbourne. *Aust J Zool* 49:589-601.
- 437 12. Baker PJ, Harris S, Robertson CP, Saunders G, White PC. 2001. Differences in the capture rate of cage-trapped red foxes *Vulpes vulpes* and an evaluation of rabies control measures in Britain. *J Appl Ecol* 38:823-835.
- 438 13. EPBC. 1999. Environment protection and biodiversity conservation act. Department of the Environment and Energy. Australian Government.
- 439 14. DEWHA. 2008. Threat abatement plan for predation by the european red fox. Department of the Environment, Water, Heritage and the Arts. Australian Government.
- 440 15. Marks C, Nijk M, Gigliotti F, Busana F, Short R. 1996. Preliminary field assessment of a cabergoline baiting campaign for reproductive control of the red fox (*Vulpes vulpes*). *Wildl Res* 23:161-168.
- 441 16. Doncaster C, Macdonald D. 1997. Activity patterns and interactions of red foxes (*Vulpes vulpes*) in Oxford city. *J Zool* 241:73-87.
- 442 17. Phillips M, Catling P. 1991. Home range and activity patterns of red foxes in Nadgee Nature Reserve. *Wildl Res* 18:677-686.
- 443 18. Contesse P, Hegglin D, Gloor S, Bontadina F, Deplazes P. 2004. The diet of urban foxes (*Vulpes vulpes*) and the availability of anthropogenic food in the city of Zurich, Switzerland. *Mamm Biol* 69:81-95.
- 444 19. Stepkovich B. 2017. Feeding ecology of an invasive predator across an urban land use gradient. MRes thesis. Western Sydney University, Sydney, NSW.
- 445 20. Robertson KE. 2018. Boldness behavior and chronic stress in free-ranging, urban coyotes (*Canis latrans*). PhD thesis. The Ohio State University, Columbus, OH.

474 21. Breck SW, Poessel SA, Mahoney P, Young JK. 2019. The intrepid urban coyote: a
475 comparison of bold and exploratory behavior in coyotes from urban and rural environments.
476 *Sci Rep* 9:2104.

477 22. Stepkovitch B, Martin JM, Dickman CR, Welbergen JA. 2019. Urban lifestyle supports larger
478 red foxes in Australia: an investigation into the morphology of an invasive predator. *J Zool*
479 309:287-294.

480 23. Newsome TM, Dellinger JA, Pavey CR, Ripple WJ, Shores CR, Wirsing AJ, Dickman CR.
481 2015. The ecological effects of providing resource subsidies to predators. *Global Ecol*
482 *Biogeogr* 24:1-11.

483 24. Dorning J, Harris S. 2019. Individual and seasonal variation in contact rate, connectivity and
484 centrality in red fox (*Vulpes vulpes*) social groups. *Sci Rep* 9:20095.

485 25. Macdonald DW. 1983. The ecology of carnivore social behaviour. *Nature* 301:379-384.

486 26. Macdonald DW. 1979. 'Helpers' in fox society. *Nature* 282:69-71.

487 27. Lojkic I, Bidin M, Prpic J, Simic I, Kresic N, Bedekovic T. 2016. Faecal virome of red foxes
488 from peri-urban areas. *Microbiol Infect Dis* 45:10-15.

489 28. Bodewes R, van der Giessen J, Haagmans BL, Osterhaus ADME, Smits SL. 2013.
490 Identification of multiple novel viruses, including a parvovirus and a hepevirus, in feces of
491 red foxes. *J Virol* 87:7758-7764.

492 29. Nunn CL, Jordán F, McCabe CM, Verdolin JL, Fewell JH. 2015. Infectious disease and group
493 size: more than just a numbers game. *Philos Trans R Soc Lond B Biol Sci* 370:20140111.

494 30. Cavallini P. 1995. Variation in the body size of the red fox. *Ann Zool Fenn* 32:421-427.

495 31. Australian Bureau of Statistics. 2016. Regional population growth, Australia. Australian
496 Bureau of Statistics, Canberra.

497 32. Australian Bureau of Statistics. 2016. Australian statistical geography standard (ASGS),
498 significant urban areas, urban centres and localities. Australian Bureau of Statistics,
499 Canberra.

500 33. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles
501 D, Li B, Lieber M. 2013. *De novo* transcript sequence reconstruction from RNA-seq using the
502 Trinity platform for reference generation and analysis. *Nat Protoc* 8:1494.

503 34. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search
504 tool. *J Mol Biol* 215:403-410.

505 35. Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND.
506 *Nat Methods* 12:59.

507 36. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated
508 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* 25:1972-1973.

509 37. Keane TM, Creevey CJ, Pentony MM, Naughton TJ, McInerney JO. 2006. Assessment of
510 methods for amino acid matrix selection and their use on empirical data shows that ad hoc
511 assumptions for choice of matrix are not justified. *BMC Evol Biol* 6:29.

512 38. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New
513 algorithms and methods to estimate maximum-likelihood phylogenies: assessing the
514 performance of PhyML 3.0. *Syst Biol* 59:307-321.

515 39. Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or
516 without a reference genome. *BMC Bioinformatics* 12:323.

517 40. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara
518 RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. 2019. vegan: Community
519 ecology package. R package version 2.5-6.

520 41. De Cáceres M, Legendre P, Moretti M. 2010. Improving indicator species analysis by
521 combining groups of sites. *Oikos* 119:1674-1684.

522 42. Chong R, Shi M, Grueber CE, Holmes EC, Hogg CJ, Belov K, Barrs VR. 2019. Fecal viral
523 diversity of captive and wild Tasmanian devils characterized using virion-enriched
524 metagenomics and metatranscriptomics. *J Virol* 93:e00205-19.

525 43. Wells K, Morand S, Wardeh M, Baylis M. 2020. Distinct spread of DNA and RNA viruses
526 among mammals amid prominent role of domestic species. *Global Ecol Biogeogr* 29:470-
527 481.

528 44. Ghasemzadeh I, Namazi SH. 2015. Review of bacterial and viral zoonotic infections
529 transmitted by dogs. *J Med Life* 8:1-5.

530 45. Lee CT, Slavinski S, Schiff C, Merlino M, Daskalakis D, Liu D, Rakeman JL, Misener M,
531 Thompson C, Leung YL, Varma JK, Fry A, Havers F, Davis T, Newbury S, Layton M. 2017.
532 Outbreak of influenza A(H7N2) among cats in an animal shelter with cat-to-human
533 transmission - New York City, 2016. *Clin Infect Dis* 65:1927-1929.

534 46. Marinova-Petkova A, Laplante J, Jang Y, Lynch B, Zanders N, Rodriguez M, Jones J, Thor S,
535 Hodges E, De La Cruz JA, Belser J, Yang H, Carney P, Shu B, Berman L, Stark T, Barnes J,
536 Havers F, Yang P, Trock SC, Fry A, Gubareva L, Bresee JS, Stevens J, Daskalakis D, Liu D,
537 Lee CT, Torchetti MK, Newbury S, Cigel F, Toohey-Kurth K, St George K, Wentworth DE,
538 Lindstrom S, Davis CT. 2017. Avian influenza A(H7N2) virus in human exposed to sick cats,
539 New York, USA, 2016. *Emerging Infect Dis* 23:2046-2049.

540 47. O'Neil J. 2018. Zoonotic infections from common household pets. *J Nurse Pract* 14:363-370.

541 48. Geoghegan JL, Duchêne S, Holmes EC. 2017. Comparative analysis estimates the relative
542 frequencies of co-divergence and cross-species transmission within viral families. *PLoS
543 Pathog* 13:e1006215.

544 49. Wells K, Gibson DI, Clark NJ, Ribas A, Morand S, McCallum HI. 2018. Global spread of
545 helminth parasites at the human–domestic animal–wildlife interface. *Global Change Biol*
546 24:3254-3265.

547 50. Meng XJ. 2010. Hepatitis E virus: Animal reservoirs and zoonotic risk. *Vet Microbiol* 140:256-
548 265.

549 51. Dremsek P, Wenzel JJ, Johne R, Ziller M, Hofmann J, Groschup MH, Werdermann S, Mohn
550 U, Dorn S, Motz M. 2012. Seroprevalence study in forestry workers from eastern Germany
551 using novel genotype 3-and rat hepatitis E virus-specific immunoglobulin G ELISAs. *Med
552 Microbiol Immunol* 201:189-200.

553 52. Donato C, Vijaykrishna D. 2017. The broad host range and genetic diversity of mammalian
554 and avian astroviruses. *Viruses* 9:102.

555 53. Finkbeiner SR, Li Y, Ruone S, Conrardy C, Gregoricus N, Toney D, Virgin HW, Anderson LJ,
556 Vinjé J, Wang D. 2009. Identification of a novel astrovirus (astrovirus VA1) associated with
557 an outbreak of acute gastroenteritis. *J Virol* 83:10836-10839.

558 54. De Benedictis P, Schultz-Cherry S, Burnham A, Cattoli G. 2011. Astrovirus infections in
559 humans and animals – Molecular biology, genetic diversity, and interspecies transmissions.
560 *Infect Genet Evol* 11:1529-1544.

561 55. Blomström A-L, Widén F, Hammer A-S, Belák S, Berg M. 2010. Detection of a novel
562 astrovirus in brain tissue of mink suffering from shaking mink syndrome by use of viral
563 metagenomics. *J Clin Microbiol* 48:4392-4396.

564 56. Li L, Diab S, McGraw S, Barr B, Traslavina R, Higgins R, Talbot T, Blanchard P, Rimoldi G,
565 Fahsbender E. 2013. Divergent astrovirus associated with neurologic disease in cattle.
566 *Emerging Infect Dis* 19:1385.

567 57. Quan P-L, Wagner TA, Briese T, Torgerson TR, Hornig M, Tashmukhamedova A, Firth C,
568 Palacios G, Baisre-De-Leon A, Paddock CD. 2010. Astrovirus encephalitis in boy with X-
569 linked agammaglobulinemia. *Emerging Infect Dis* 16:918.

570 58. Kapoor A, Li L, Victoria J, Oderinde B, Mason C, Pandey P, Zaidi S, Delwart E. 2009.
571 Multiple novel astrovirus species in human stool. *J Gen Mol Virol* 90:2965–2972.

572 59. Conceição-Neto N, Mesquita JR, Zeller M, Yinda CK, Álvares F, Roque S, Petrucci-Fonseca
573 F, Godinho R, Heylen E, Van Ranst M. 2016. Reassortment among picobirnaviruses found in
574 wolves. *Arch Virol* 161:2859-2862.

575 60. Malik YS, Kumar N, Sharma K, Dhama K, Shabbir MZ, Ganesh B, Kobayashi N, Banyai K.
576 2014. Epidemiology, phylogeny, and evolution of emerging enteric Picobirnaviruses of
577 animal origin and their relationship to human strains. *Biomed Res Int* 2014:780752.

578 61. Yinda CK, Vanhulle E, Conceição-Neto N, Beller L, Deboutte W, Shi C, Ghogomu SM, Maes
579 P, Van Ranst M, Matthijnssens J. 2019. Gut virome analysis of cameroonians reveals high
580 diversity of enteric viruses, including potential interspecies transmitted viruses. *mSphere*
581 4:e00585-18.

582 62. Krishnamurthy SR, Wang D. 2018. Extensive conservation of prokaryotic ribosomal binding
583 sites in known and novel picobirnaviruses. *Virology* 516:108-114.

584 63. Zell R. 2018. Picornaviridae – the ever-growing virus family. *Arch Virol* 163:299-317.

585 64. Di Martino B, Di Felice E, Ceci C, Di Profio F, Marsilio F. 2013. Canine kobuviruses in
586 diarrhoeic dogs in Italy. *Vet Microbiol* 166:246-249.

587 65. Reuter G, Boros Á, Pankovics P. 2011. Kobuviruses – a comprehensive review. *Rev Med Virol*
588 21:32-41.

589 66. Arruda P, Arruda B, Schwartz K, Vannucci F, Resende T, Rovira A, Sundberg P, Nietfeld J,
590 Hause B. 2017. Detection of a novel sapelovirus in central nervous tissue of pigs with
591 polioencephalomyelitis in the USA. *Transbound Emerg Dis* 64:311-315.

592 67. Schock A, Gurrala R, Fuller H, Foyle L, Dauber M, Martelli F, Scholes S, Roberts L, Steinbach
593 F, Dastjerdi A. 2014. Investigation into an outbreak of encephalomyelitis caused by a
594 neuroinvasive porcine sapelovirus in the United Kingdom. *Vet Microbiol* 172:381-389.

595 68. Lan D, Ji W, Yang S, Cui L, Yang Z, Yuan C, Hua X. 2011. Isolation and characterization of
596 the first Chinese porcine sapelovirus strain. *Arch Virol* 156:1567.

597 69. Hall RN, Mahar JE, Haboury S, Stevens V, Holmes EC, Strive T. 2015. Emerging rabbit
598 hemorrhagic disease virus 2 (RHDVb), Australia. *Emerging Infect Dis* 21:2276.

599 70. Mahar JE, Hall RN, Peacock D, Kovaliski J, Piper M, Mourant R, Huang N, Campbell S, Gu X,
600 Read A, Urakova N, Cox T, Holmes EC, Strive T. 2018. Rabbit hemorrhagic disease virus 2
601 (RHDV2; GI.2) is replacing endemic strains of rhdv in the australian landscape within 18
602 months of its arrival. *J Virol* 92:e01374-17.

603 71. Frölich K, Klima F, Dedeck J. 1998. Antibodies against rabbit hemorrhagic disease virus in
604 free-ranging red foxes from Germany. *J Wildl Dis* 34:436-442.

605 72. Schwensow NI, Cooke B, Kovaliski J, Sinclair R, Peacock D, Fickel J, Sommer S. 2014. Rabbit
606 haemorrhagic disease: virus persistence and adaptation in Australia. *Evol Appl* 7:1056-1067.

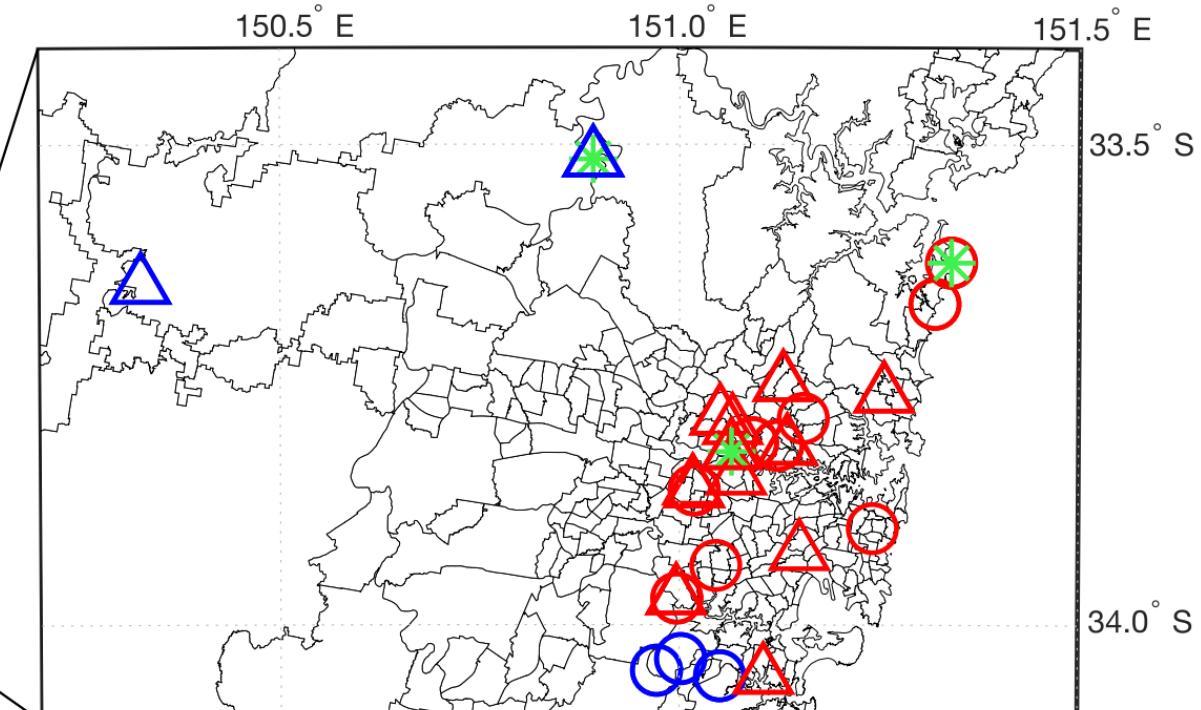
607 73. Riley SPD, Foley J, Chomel B. 2004. Exposure to feline and canine pathogens in bobcats and
608 gray foxes in urban and rural zones of a national park in California. *J Wildl Dis* 40:11-22.

609 74. Vieira TSWJ, Vieira RFDC, Nascimento DAGD, Tamekuni K, Toledo RDS, Chandrashekhar R,
610 Marcondes M, Biondo AW, Vidotto O. 2013. Serosurvey of tick-borne pathogens in dogs
611 from urban and rural areas from Paraná State, Brazil. *Rev Bras Parasitol Vet* 22:104-109.

612 75. Gibbs SEJ, Wimberly MC, Madden M, Masour J, Yabsley MJ, Stallknecht DE. 2006. Factors
613 affecting the geographic distribution of west nile virus in Georgia, USA: 2002–2004. *Vector-
614 Borne Zoonotic Dis* 6:73-82.

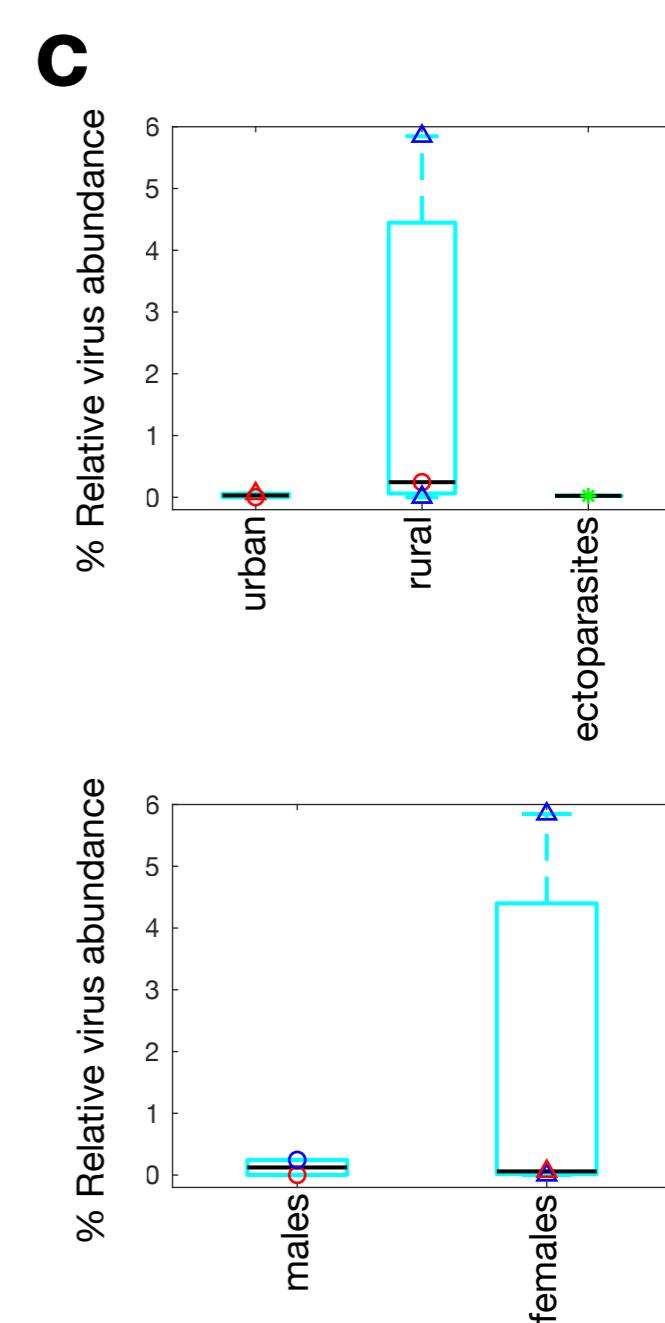
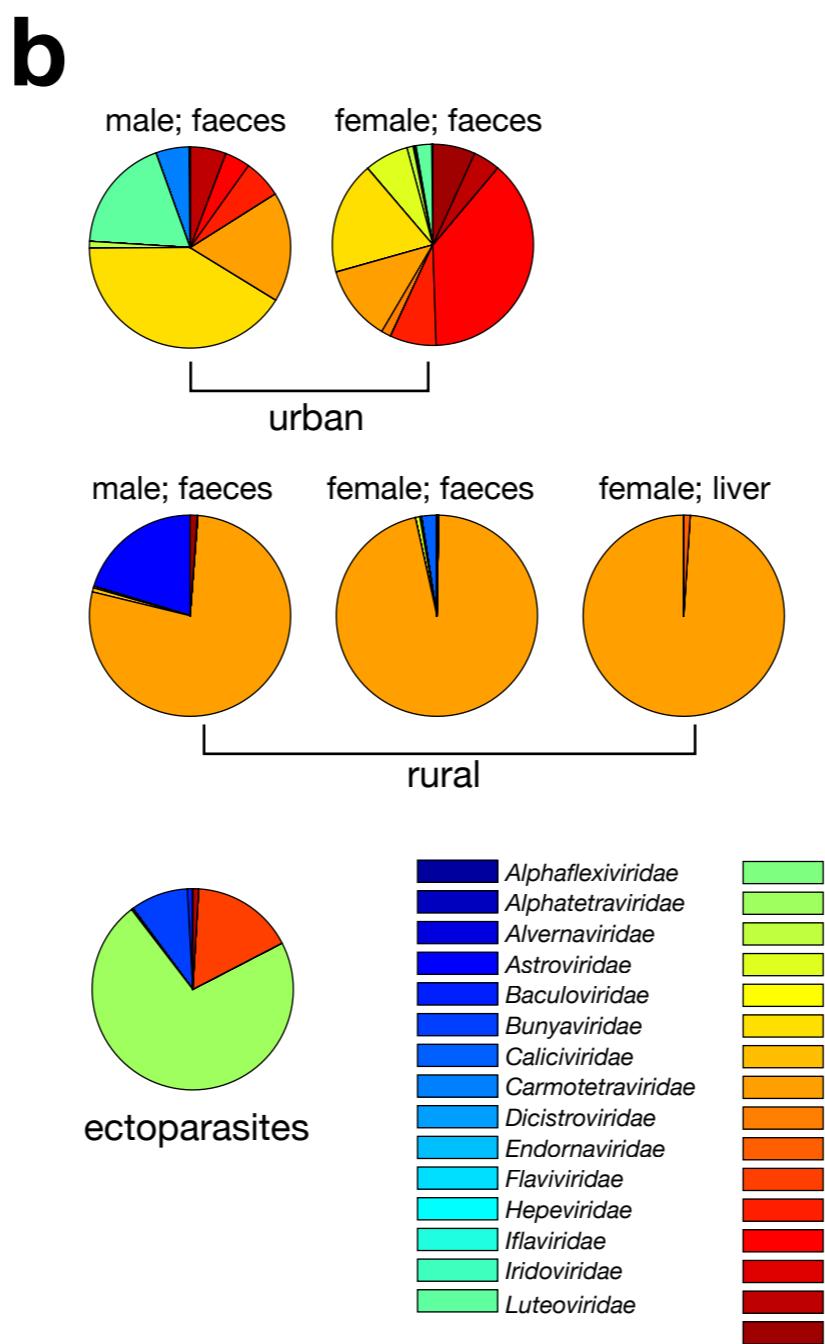
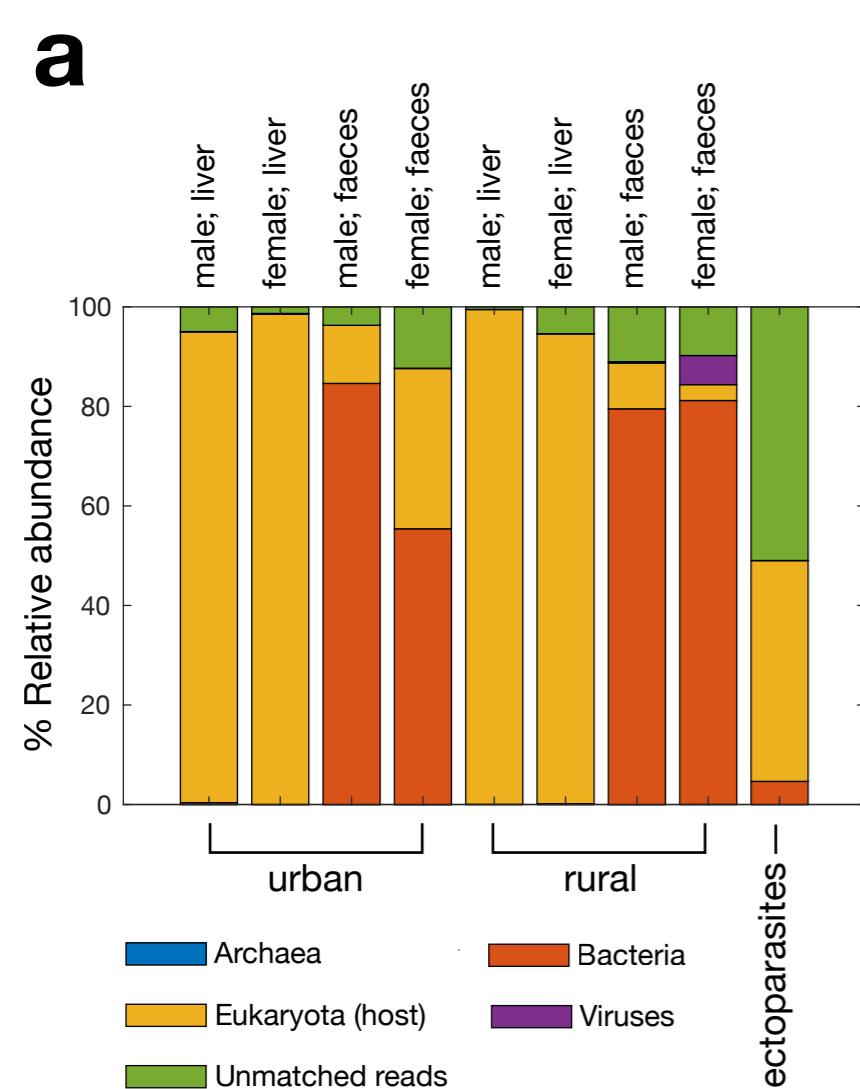
615 76. Gras P, Knuth S, Börner K, Marescot L, Benhaiem S, Aue A, Wittstatt U, Kleinschmit B,
616 Kramer-Schadt S. 2018. Landscape structures affect risk of canine distemper in urban
617 wildlife. *Front Ecol Evol* 6:136.

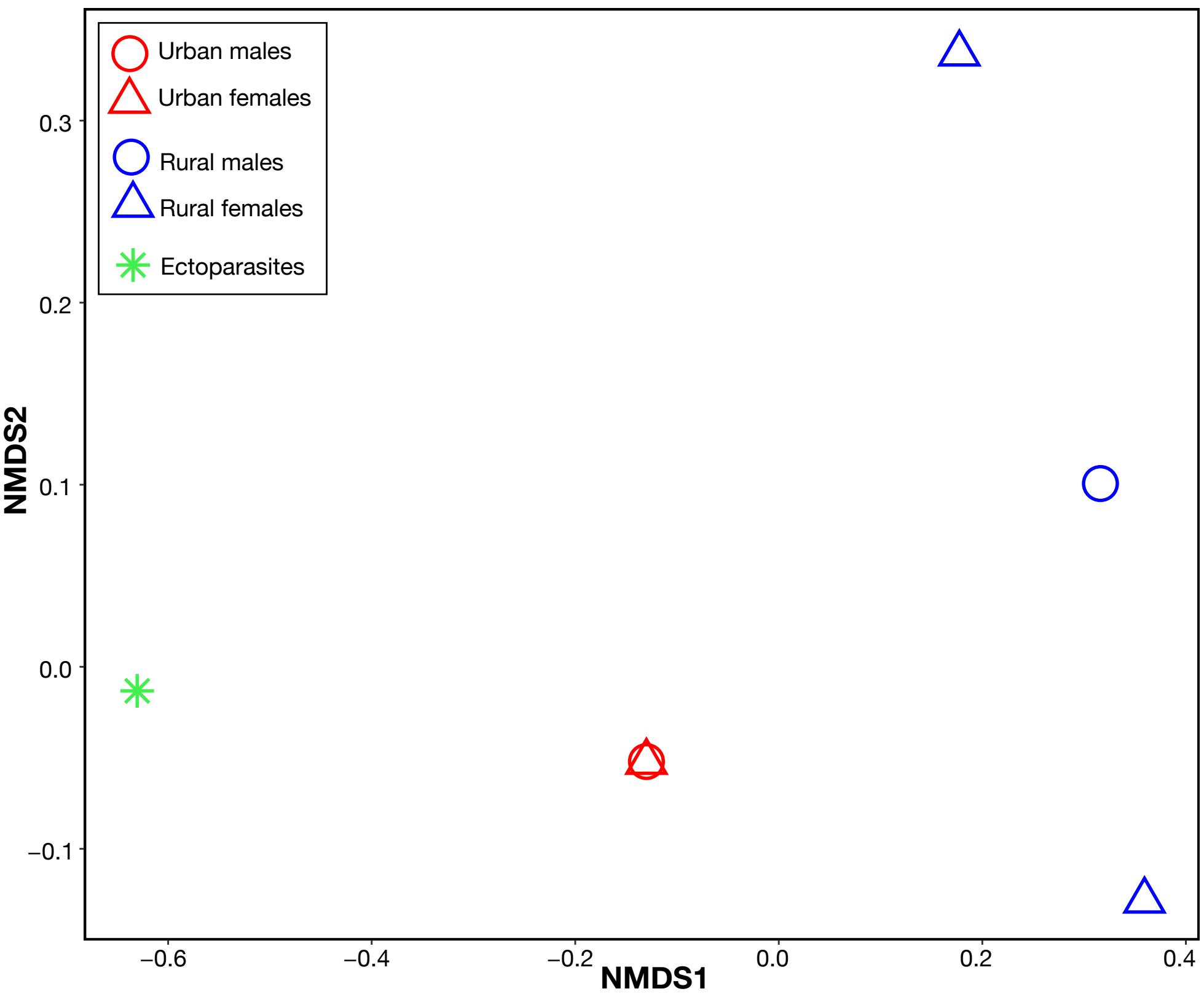
618 77. Beldomenico PM, Begon M. 2010. Disease spread, susceptibility and infection intensity:
619 vicious circles? *Trends Ecol Evol* 25:21-27.

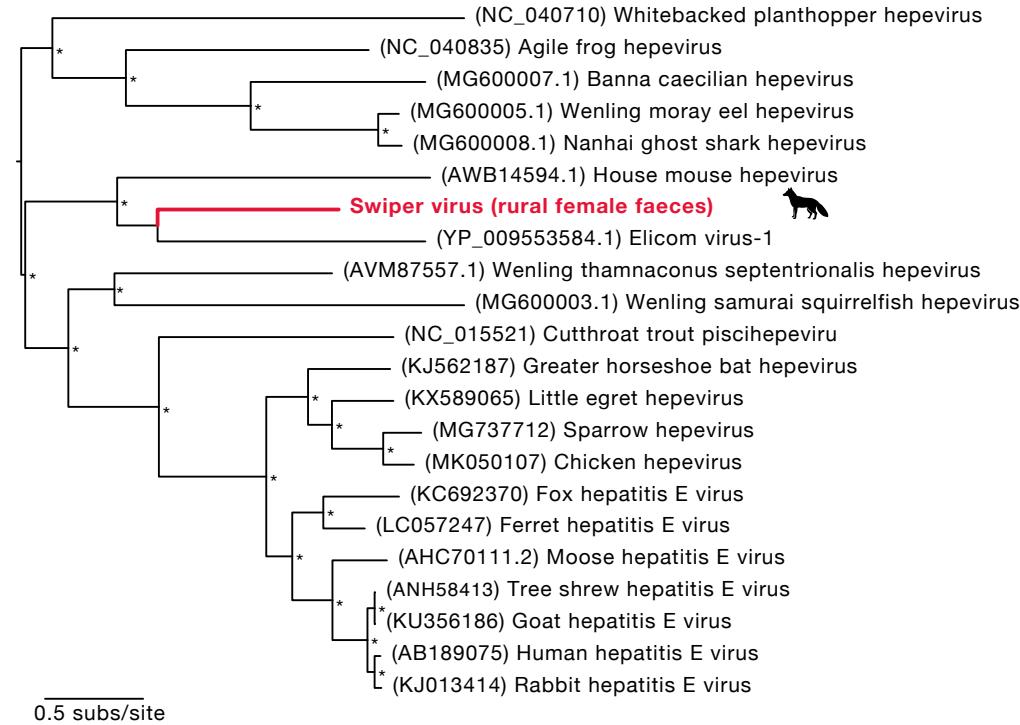
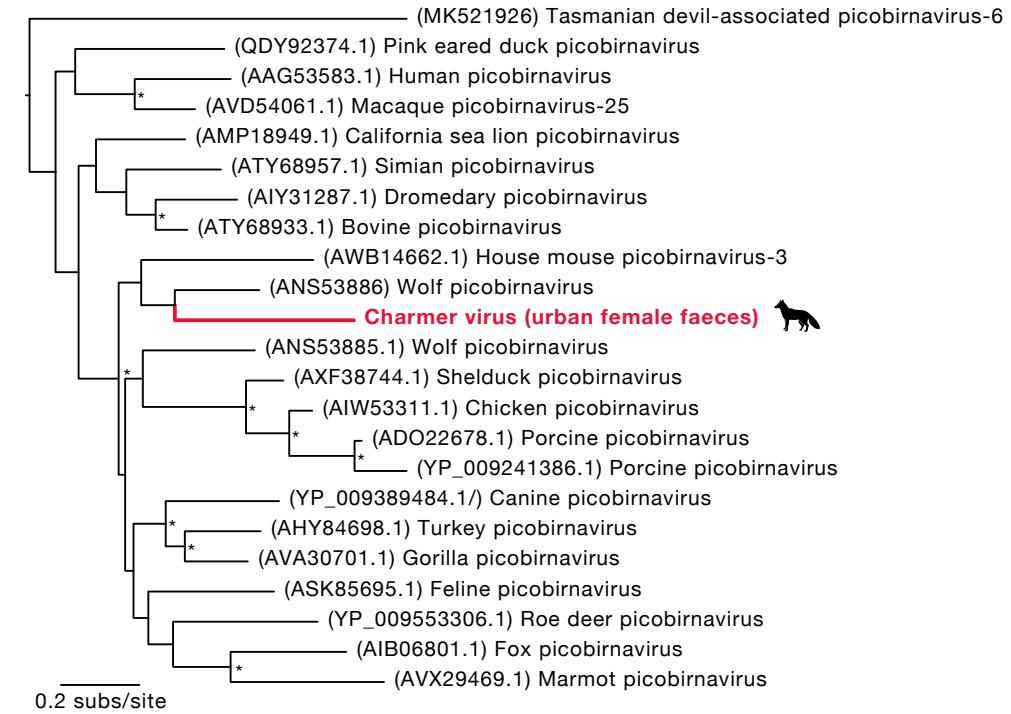
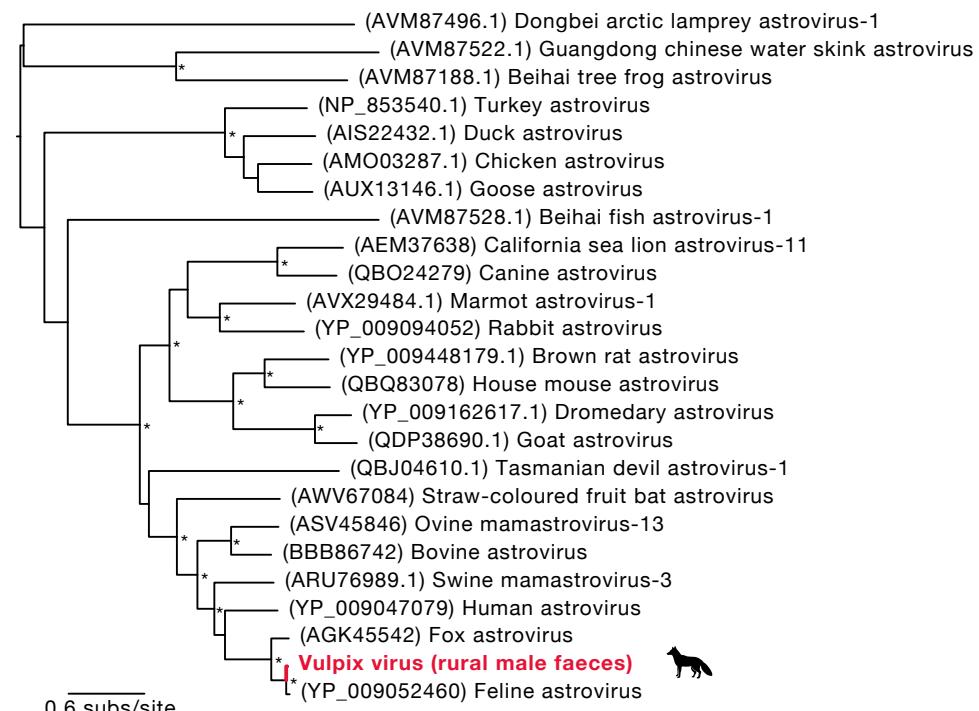
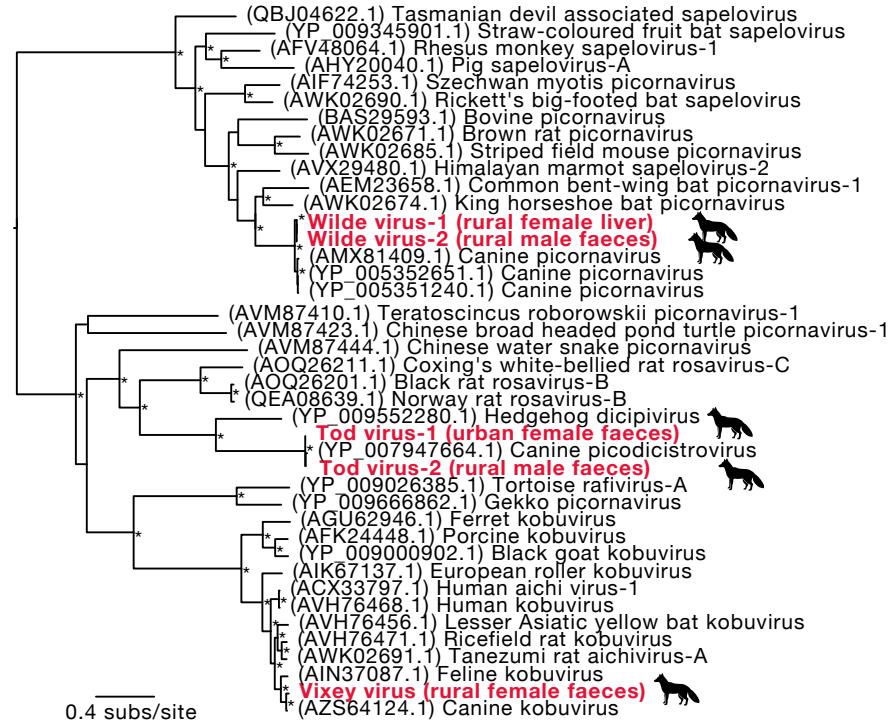

620 78. Cypher BL, Frost N. 1999. Condition of San Joaquin kit foxes in urban and exurban habitats.
621 *J Wildl Manage* 63:930-938.

622 79. Jessop TS, Smissen P, Scheelings F, Dempster T. 2012. Demographic and phenotypic
623 effects of human mediated trophic subsidy on a large Australian lizard (*Varanus varius*):
624 meal ticket or last supper? *PLoS One* 7:e34069-e34069.

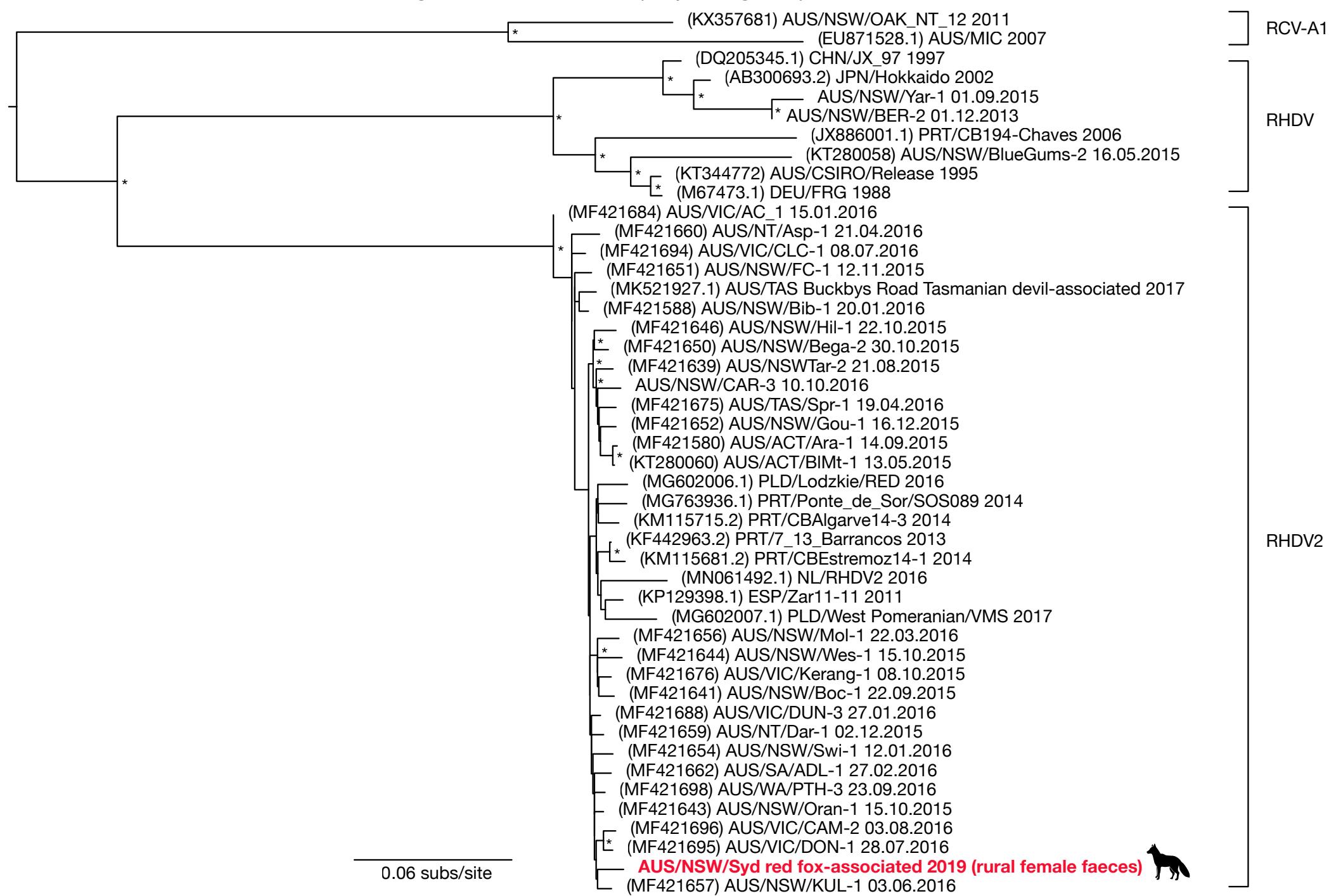
625 80. Klein SL. 2000. Hormones and mating system affect sex and species differences in immune
626 function among vertebrates. *Behav Processes* 51:149-166.
627 81. Newsome AE. 1995. Socio-ecological models for red fox populations subject to fertility
628 control in Australia. *Ann Zool Fenn* 32:99-110.
629 82. Piran CLW, Harris S. 1994. Encounters between red foxes (*Vulpes vulpes*): implications for
630 territory maintenance, social cohesion and dispersal. *J Anim Ecol* 63:315-327.
631 83. Vemuri R, Sylvia KE, Klein SL, Forster SC, Plebanski M, Eri R, Flanagan KL. 2019. The
632 microgenderome revealed: sex differences in bidirectional interactions between the
633 microbiota, hormones, immunity and disease susceptibility. *Semin Immunopathol* 41:265-
634 275.
635
636
637
638




Greater Sydney







○ Urban males
△ Urban females

○ Rural males
△ Rural females


* Ectoparasites

a Hepeviridae**b Picobirnaviridae****c Astroviridae****d Picornaviridae**

Caliciviridae: Rabbit hemorrhagic disease virus (capsid gene)

