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Abstract: Detection of antibodies to upper respiratory pathogens is critical to surveillance,
assessment of the immune status of individuals, vaccine development, and basic biology. The
urgent need for antibody detection tools has proven particularly acute in the COVID-19 era. We

report a multiplex label-free antigen microarray on the Arrayed Imaging Reflectometry (AIR)
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platform for detection of antibodies to SARS-CoV-2, SARS-CoV-1, MERS, three circulating
coronavirus strains (HKU1, 229E, OC43) and three strains of influenza. We find that the array is
readily able to distinguish uninfected from convalescent COVID-19 subjects, and provides

quantitative information about total Ig, as well as IgG- and IgM-specific responses.

Introduction: The ongoing SARS-CoV-2 pandemic has had enormous costs in terms of lives
lost, impacts to quality of life, and the global economy. In order to reduce the impact of this virus
over time, it is widely recognized that assessing human immunity to SARS-CoV-2 will have a
critical role to play in safeguarding public health. Detection of anti-SARS-CoV-2 antibodies can
provide a clearer understanding of the actual infection rate of an area. It is also hypothesized
that those with antibodies to SARS-CoV-2 are protected from reinfection, and therefore able to
return to work without health concern.! Indeed, emerging data indicates that COVID-19 patients
can achieve a robust immune response.?® Although recent anecdotal reports suggest that
reinfection can occur, even here an ability to measure and quantify coronavirus antibodies will
be important to assess whether reinfection probability correlates with low antibody titer, or
potentially with antibody responses to some antigens and not others, or correlates with the
presence or lack of immunity to other respiratory pathogens. Analytical tools for monitoring
antibody responses to specific antigens are also of obvious importance in the development of
new vaccines and for understanding fundamental aspects of disease course.*

In response to this need, industry and academia have both risen to the challenge,®
beginning with several reports on SARS-CoV-2 ELISA assays in late February and early March
2020.578° However, most tests that have been reported to date rely on the response of single
antigens. Concerns have also been raised regarding the accuracy of some tests.'®'" There is a
need to understand the preponderance of SARS-CoV-2 antibodies in the general population. It
is also critical to study the human immune response following infection. Singleplex tests,

whether rapid or implemented in a clinical laboratory, are beginning to provide this information.


https://doi.org/10.1101/2020.06.15.153064
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.15.153064; this version posted June 16, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

What they do not provide, however, is a broader understanding of the human immune response
to SARS-CoV-2 infection, or illuminate potential relationships between COVID-19 infection and
previous infections (and immunity to) other respiratory viruses including circulating
coronaviruses that cause the common cold. To address these goals, multiplex analytical
techniques are required. A bead-based multiplex immunoassay for six coronaviruses infecting
humans (pre-SARS-CoV-2) has been reported,’> and more recently a 4-plex assay on the
Quanterix platform focused on SARS-CoV-2 antigens has been described.”® Despite these
advances, there remains a significant need for analytical methods able to rapidly quantify
antibodies not only to SARS-CoV-2, but also to other coronaviruses, and other pathogenic
viruses. Most importantly, these must be able to discriminate among responses to different
closely related viruses and different antigens from the same virus. To address this need, we
have developed a prototype 15-plex array on the Arrayed Imaging Reflectometry (AIR) platform.

AIR is a label-free multiplex sensor method in which the surface chemistry and
deposition of capture molecules to form a microarray on a silicon chip are carefully controlled
such that s-polarized HeNe laser light at a 70.6° incident angle to the chip undergoes total
destructive interference within the surface film." Binding to any probe spot on the array
degrades the antireflective condition in proportion to the amount of material bound, yielding an
increase in the reflected light as observed by a CCD camera. By comparing the intensity of the
reflected light to an experimentally validated model, the thickness change for each spot, and
therefore the quantity of each analyte in the sample, may be precisely and sensitively
determined.’

We have previously reported the utility of influenza antigen arrays fabricated on the AIR
platform for assessment of anti-influenza antibodies in human, animal, and avian serum,'®"”
both as a tool for viral surveillance and for assessment of the efficacy of a candidate vaccine.
We have also demonstrated that AIR is scalable at least to 115-plex assays, used for

discriminating different influenza virus serotypes.'®'® We therefore anticipated that the platform
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would be useful as a way to quantify anti-SARS-CoV-2 antibodies, antibodies to other
coronaviruses including circulating (“‘common cold”) strains, and other respiratory pathogens
including influenza. Here, we discuss the development and testing of a mixed coronavirus /
influenza antigen panel on AIR, and its application to analyzing the coronavirus antibody profile

of a cohort of convalescent COVID-19 patients and subjects of unknown disease status.

Methods:

Material sources: For AIR assays, SARS-CoV-2, SARS-CoV, MERS, and Influenza Type A and
B antigens were obtained from Sino Biological, Inc., and are described in more detail below.
Most antigens were supplied as lyophilized material and reconstituted at the recommended
concentrations using 18-MQ water, while the remaining antigens were supplied frozen on dry
ice. PBS-ET was prepared as phosphate buffer (10 mM monobasic sodium phosphate, 10 mM
dibasic sodium phosphate, 150 mM NaCl) with 0.02% w/v Tween-20 and 5 mM EDTA. Amine-
reactive substrates for fabrication of AIR arrays were provided by Adarza BioSystems, Inc. For
ELISA assays, SARS-CoV-2 full-length spike and RBD were produced in-house using a

mammalian expression system,?%?!

as was influenza A/H1N1/California 2009 hemagglutinin.
SARS-CoV2 nucleocapsid expressed in mammalian cells was obtained from RayBiotech, while
HCoV-229E and HCoV-OC43 spike proteins (baculovirus-expressed) were obtained from Sino

Biological. Tetanus toxoid (TTd) was obtained from Calbiochem.

Antigen probe formulation: Prior to microarray fabrication, antigens were buffer-exchanged and
concentrated using Amicon centrifugation filters (EMD Millipore) into phosphate buffer at pH 5.8
and pH 7.2 prior to use. During development, several printing concentrations and/or solution pH

values of each antigen were tested, along with sugar additives (glycerol, trehalose) in order to


https://doi.org/10.1101/2020.06.15.153064
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.15.153064; this version posted June 16, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

optimize spot uniformity and morphology as well as initial probe thickness.?? Antigen
concentrations and pH values printed in the final arrays to generate all data in this publication

are shown in Table 1.

Array Antigen Probe Concentration pH Additives
ID (ng/mL)
F1 a-FITC 650 650 7.2 2.5%
Trehalose
F2 a-FITC 400 400 7.2 5% Glycerol
F3 a-FITC 400 + 5% glycerol 400 5.8 2.5%
Trehalose
1 Human coronavirus spike glycoprotein, HKU isolate 200 5.8 2.5%
(aa 1-760, His tag) Trehalose
2 MERS-CoV (nCoV/Novel coronavirus) Spike Protein 270 7.2 2.5%
S1 (aa 1-725, His Tag) Trehalose
3 MERS-CoV (nCoV/Novel coronavirus) Spike Protein 300 7.2 2.5%
fragment Trehalose
(RBD, aa 367-606, His Tag)
4 SARS-CoV Spike/S1 Protein 205 5.8 2.5%
(S1 Subunit, His Tag) Trehalose
5 Human SARS Coronavirus Spike Protein 141 7.2 2.5%
(Receptor Binding Domain, His tag) Trehalose
6 NCP-CoV (2019-nCoV) Spike Protein 400 7.2 2.5%
(S1+S2 ECD, His tag) Trehalose
7 SARS-CoV-2 (2019-nCoV) Spike Protein 150 5.8 2.5%
(S2 ECD, His tag) Trehalose
8 SARS-CoV-2 (2019-nCoV) Spike Protein 300 7.2 2.5%
(S1 Subunit, His tag) Trehalose
9 2019-nCoV Spike Protein (RBD, His Tag) 400 7.2 2.5%
Trehalose
10 Human coronavirus (HCoV-229E) Spike Protein 200 7.2 2.5%
(S1+S2 ECD, His Tag) Trehalose
11 Human coronavirus (HCoV-OC43) Spike Protein 200 7.2 2.5%
(S1+S2 ECD, His Tag) Trehalose
12 Influenza B/Brisbane/2008 HA 100 5.8 2.5%
Trehalose
13 Influenza A/California/2009 (H1N1) HA 100 5.8 2.5%
Trehalose
14 Influenza A/Wisconsin/2005 (H3N2) HA 100 5.8 2.5%
Trehalose

Table 1. Formulation parameters for printed antigen solutions.

Preparation of arrays: Arrays were printed on amine-reactive silicon oxide substrates (Adarza
BioSystems, Inc.) using a Scienion SX piezoelectric microarrayer (Scienion, A.G.) with spot
volumes of approximately 300 pL. Six spots were printed for each antigen, the final layout of
which is shown in Figure 1. The number of spots arrayed was not critical to robust analytical

performance or statistical analysis. Each spot consists of approximately 300 pixels when
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imaged by the CCD in an AIR chip reader (Adarza BioSystems, Inc.), with each pixel
representing a discrete interrogation of a unique probe surface region. Therefore, averaging
these pixel values together produces an inherently reliable measure of analyte-to-probe
response. Dilutions of polyclonal anti-fluorescein (anti-FITC, Rockland Inc.), were printed as
negative intra-array controls. After printing, chips were mounted onto adhesive strips at
appropriate spacing for 96-well plates, and then placed into 50 mM sodium acetate buffer (pH 5)
for 5 minutes. Next, a 1.5% BSA solution was added to each well resulting in a final BSA
concentration of 0.5% to passivate the remaining amine-reactive surface functionality. After
blocking for 20 minutes, the chips were transferred to new wells containing 20% fetal bovine
serum (Gibco) in PBS-ET as a secondary block, and incubated for 40 min. This step was
required to reduce nonspecific binding from human serum at the assay endpoint. The chips
were then rinsed briefly (5 min) in new wells containing PBS-ET, then transferred to wells
containing Microarray Stabilizer Solution (Surmodics IVD). After a 30-minute incubation, the
chips were dried at 40 °C in an oven for 60 min. This last step renders the sensors shelf-stable,

until use in assays performed later.


https://doi.org/10.1101/2020.06.15.153064
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.15.153064; this version posted June 16, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

B2 [Elle2 [ B2 |3 [ r2 s R 2 |3 [l 2 s Rl

: /
3| 3 -
3] 3
3 3 :
2|F3 —
MERS o| olr2[10[10[r2[11[11F212]12]2 ‘ "I ~
o| o|r3[10[10]F3[11]11|F3[12]12]F3
SARS-CoV o| o|F2[10[10[F2[11 2:
2|3 [Elle2 s B2 L
F2[13[13|F2 | 14]14F2 R| 1 1r| 2

F3|13|13|F3|14|14|F3 F3| 1] 1|F3| 2
13 14|F2 F2| 1] 1|F2| 2

F3 [Ellr2 |3 [El 2 |3 R 2

Ak
HIEEE

Figure 1: AIR assay for antibodies to respiratory viruses. For each antigen, six replicate spots
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are printed in two different locations on the chip. Each group of six spots is surrounded by
negative control reference spots (anti-FITC). Blank (background) areas are included as
additional negative controls. Key: 1: human coronavirus (HKU isolate) spike glycoprotein, aa 1-
760; 2: MERS-CoV spike glycoprotein, S1 domain; 3: MERS-CoV spike glycoprotein, receptor
binding domain (RBD); 4: SARS-CoV spike glycoprotein, S1 domain; 5: SARS-CoV spike
glycoprotein, RBD; 6: SARS-CoV-2 spike glycoprotein, S1+S2 ECD; 7: SARS-CoV-2 spike
glycoprotein, S2 ECD; 8: SARS-CoV-2 spike glycoprotein, S1 domain; 9: SARS-CoV-2 spike
glycoprotein, RBD; 10: human coronavirus (HCoV-229E isolate) spike glycoprotein, S1+S2
ECD; 11: human coronavirus (HCoV-OC43 isolate) spike glycoprotein, S1+S2 ECD; 12:
influenza B/Brisbane/2008 hemagglutinin; 13: influenza A/California/2009 (H1N1)
hemagglutinin; 14: influenza A/Wisconsin/2005 (H3N2) influenza. F1, F2, and F3 are derived
from spotting three different dilutions of anti-FITC. The image at right is a representative array

exposed to Pooled Normal Human Serum (PNHS) at a 1:4 dilution.
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AIR Assay protocol: A sample diluent consisting of a proprietary buffer (Adarza BioSystems,
Inc.), 20% fetal bovine serum (FBS), and in some cases (polyclonal antibody titrations;
discussed later), pooled normal human serum (PNHS; 10% v/v, Innovative Research) was used
to dilute monoclonal and polyclonal antibodies as well as donor human serum samples to
appropriate standard concentrations. Wells in a 96-well plate to be used for target solutions
were first treated with a preblock solution for 40 minutes (10 mg/mL BSA in 1x mPBS-ET, pH
7.4, 0.2 ym sterile filtered). This was then pipetted out, and replaced with target solution. Arrays
were incubated with target solutions overnight at 4 °C with orbital agitation on a microtiter plate
shaker (500 RPM). Chips were then removed after target analyte exposure and rinsed by
transferring to wells containing PBS-ET for 5 min, twice. After washing, chips were rinsed under
flowing 18-MQ water and dried under a stream of nitrogen. Finally, the substrates were imaged
using a prototype AIR Reader and internally developed imaging software at several integration
times with dark field subtraction. AIR assays run using the commercial Adarza Ziva instrument
were incubated 30 minutes at room temperature before undergoing automated processing and

imaging by the instrument.

AIR antibody class assessment: To determine whether samples consisted of a primarily IgG- or
IgM-based response, we performed an experiment including a secondary antibody incubation
step. After overnight primary incubation with a selection of both positive and negative samples
(based on prior AIR assays), chips were removed from sample wells and washed twice with
PBS-ET. Then chips for each sample were placed in wells containing either anti-human IgG,
IgM, or 20% FBS as a negative control. Each of these conditions was produced in duplicate.
Secondary antibodies were diluted to 1 pg/mL for both goat a-hlgG (Jackson Immunoresearch)
and rabbit a-hlgM (Rockland, Inc.) in Adarza diluent. After one hour of incubation with
secondary antibodies at room temperature, chips were washed twice for 5 minutes in PBS-ET,

then rinsed with water and dried with nitrogen as before.
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Human samples: Whole blood was drawn via venipuncture, allowed to clot at ambient
temperature for 30 minutes, and then centrifuged at 1200 x g for 15 minutes. Serum was drawn
off via pipette, aliquoted, and stored at -80 °C prior to use. Sera were drawn under a protocol
approved by the University of Rochester Medical Center Institutional Review Board. Data
acquired by Adarza BioSystems, Inc., used samples obtained from commercial sources (pre-
COVID-19 negative samples: Innovative Research, Inc.; COVID-19 convalescent samples:

Discovery Life Sciences).

Data analysis: AIR images were analyzed using the Adarza ZIVA data analysis tool. Probe
spots with major defects or debris were manually flagged and eliminated, and minor defects in
spot quality were automatically identified and excluded from the median intensity measurement.
The median intensity values were converted to median thickness values using a best-fit line to

I."* Then, the median thickness values were further

an experimentally derived reflectance mode
processed in Microsoft Excel as described below, and are referred to simply as “thickness”
hereafter.

While anti-FITC spots were designed to serve as an intra-chip normalizer, these were
not used as such due to the unexpected presence of anti-goat IgG antibodies in some single
donor human serum samples. Therefore, the blank area served an intra-chip normalizer to
mitigate any variation in the reactivity of the surface chemistry between AIR chips. The
thickness of the blank area was subtracted from the thickness of each probe spot to produce
“normalized thickness” values for each probe spot.

All of the normalized thickness values across replicate chips (n=2) were averaged
together (maximum of n=24 probe spots) for each antigen, and the standard deviation was

calculated. The average thickness for each antigen in the fetal bovine serum (FBS) control was

subtracted from the average thickness obtained for each antigen in each subject sample to
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produce the “normalized thickness change (A Thickness).” In the case of the polyclonal antibody

titration, the control chip was incubated in a matrix of FBS and PNHS.

ELISA assay: Serum IgG titers specific for SARS-CoV-2 proteins and selected non-coronavirus
proteins were determined by ELISA as described previously.? In brief, NUNC MaxiSorp 96-well
ELISA plates (Invitrogen, Carlsbad, CA) were coated with optimized concentrations of coating
reagents at least one day prior to the assay. After blocking plates with 3% BSA/PBS for 1 h,
serial 3-fold dilutions of serum samples in ELISA diluent (0.5% BSA/0.05% Tween-20/PBS)
were added and incubated for 2 h. Antigen-specific IgG was detected by addition of alkaline
phosphatase-conjugated anti-human IgG (clone MT78; Mabtech, Cincinnati, OH), followed by p-
nitrophenyl phosphate substrate. Well absorbance was read at 405 nm after color development.
Human serum standards were used to assign weight-based concentrations of antigen-specific
IgG as previously described, with the limit of assay sensitivity set at 0.5 pg/mL for all

antigens.?*%*

Results:

Initial array qualification: Arrays were initially qualified using commercial mono- and polyclonal
antibodies (Sino Biological) doped in PNHS. PNHS alone produced strong signals to circulating
(common cold) coronaviruses HKU, OC32, and 229E, as well as to the three influenza
hemagglutinins on the array [B/Brisbane/2008, A/California/2009 (H1N1), A/Wisconsin/2005
(H3N2)]. This is as expected given the prevalence of these viruses in the general population.
Addition of an anti-SARS-CoV-2 polyclonal antibody raised against the SARS-CoV-2 spike
protein receptor binding domain (RBD) at 1 ug/mL produced a strong signal on all three RBD-
containing antigens (S1 + S2 ECD, S1, and RBD). Overall response to the polyclonal antibody

was well-behaved, and titrated to zero as expected (Figure 2C and D). Quantitative data are
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presented in Angstroms of build. At the highest concentrations, significant cross-reactive binding
to the HCoV-229E spike protein was observed, as well as some binding to the HCoV-OC43
spike protein and MERS S1. Calculated limits of detection®® for these data were 43.3 ng/mL
(SARS-CoV-2 S1 + S2 ECD), 40.7 ng/mL (SARS-CoV-2 S1), and 25.1 ng/mL (SARS-CoV-2

RBD). However, these should be viewed as provisional, and subject to optimization.

C) pAb concentration (ng/mL):
Matrix 0.064 0.32 1.6 3 40 200 1000
HCoV-HKU spike 3.72 3.16 2.25 2.24 2.33 2.94 3.36 3.72
MERS $1 2.46 0.92 0.85 0.52 0.59 0.48 1.47 5.42
MERS RBD 4.82 3.35 3.85 3.33 3.25 3.13 2.61 1.10
SARS S1+S2 ECD 0.65 0.80 0.79 0.61 0.67 0.64 1.35 2.52
SARS RBD 2.80 2.80 3.50 3.03 2.81 2.53 1.26 1.51
SARS-CoV-2 S1+S2 ECD 13.47 13.23 10.23 11.53 12.59 15.57 24.82 32.55]
SARS-CoV-2 §2 1.25 1.28 1.71 1.29 1.19 1.10 0.71 0.57
SARS-CoV-2 $1 5.14 5.22 4.11 4.06 4.48 7.86 16.68 29.14
SARS-CoV-2 RBD 1.18 1.48 0.55 0.79 1.76 5.56 19.53 31.08
HCoV-229E spike 16.86 17.28 14.36 11.65 15.14 16.34 19.15 25.05
HCoV-0C43 spike 1.55 1.84 1.01 1.00 1.21 1.67 3.19 6.13
B Brisbane HA 1.92 2.02 0.83 1.05 1.50 1.98 2.91 3.99
H1 California HA 0.81 0.84 0.39 0.49 0.62 0.82 1.00 0.62
H3 Wisconsin HA 0.51 0.62 0.09 0.04 0.12 0.41 0.70 0.91
Blank 0.14 0.22 0.18 0.13 0.11 0.19 0.15 0.03
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Figure 2: Response of a commercial anti-SARS-CoV-2 rabbit polyclonal antibody (pAb) on the
array. (A) array exposed to array exposed to 20% FBS + 10% PNHS; (B) array exposed to 1
pg/mL anti-SARS-CoV-2 pAb in 20% FBS + 10% PNHS. Strong responses to SARS-CoV-2

S1+S2 ECD, S1, and RBD are observed, as well as smaller cross-reactive responses to HCoV-

229E, HCoV-0C43, and MERS spike proteins; (C) quantitative data for the titration.
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Concentrations of pAb are provided at the top of each column in ng/mL; response values at
each concentration for each antigen are provided in Angstroms of build. (D) Titration curves for
the four SARS-CoV-2 antigens with standard deviation of replicate probe spots at each

concentration.

With initial qualification of the array completed, we turned our attention to examination of
a series of human serum samples. At the outset of our study, few samples from known COVID-
19 patients were available. Thus, the first individual donor samples constituted a small group of
healthy individuals with no known COVID-19 diagnosis. Later, a set of 15 samples were
obtained from convalescent COVID-19 patients at least 14 days out of active disease, and
acquired via the University of Rochester Medical Center's Healthy Donor protocol. Figure 3
shows a comparison of array images obtained for FBS, PNHS, and a representative
convalescent COVID-19 patient. Strong responses to SARS-CoV-2 antigens are readily visible
in the array exposed to the COVID-19 patient's sample. Differences in the response of the
known positive sample to non-SARS-CoV-2 antigens relative to PNHS are readily visible, and

discussed in more detail in the context of quantitative analysis, below.

Figure 3: Representative AIR array images (100 ms exposures) of (A) 5% FBS; (B) 10% PNHS;
(C) a negative single-donor sample, and (D) one convalescent serum sample. Strong responses

to SARS-CoV-2 antigens are readily observed in (D), but not in (A), (B), or (C). In each case,
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samples were diluted 1:20 in Adarza diluent, and incubated with the arrays overnight at 4 °C.
See Figure 1 for key to the array. All arrays in this figure were imaged at an exposure of 100

ms.

Quantification of responses was conducted for all arrays as described in the methods
section, with results presented for 1:5 dilution samples in Figure 4 (A). Most samples from
convalescent COVID-19 patients yielded robust responses to at least one SARS-CoV-2 antigen.
Small negative “build” values indicate subtle difference in sample matrix relative to the control,
and can be discounted. Sample HD2135 produced minimal signal on all coronavirus antigens.
After unblinding the clinical details of these subjects, we discovered that this sample derived
from a person self-reporting COVID-19, but with no recorded positive PCR test for SARS-CoV-
2. Sample HD2146 also was unreactive with SARS-CoV-2 antigens, despite having experienced
COVID-like symptoms and receiving a positive PCR result. Similar results were obtained via
ELISA with this sample (vide infra), suggesting the discrepancy was not technique dependent.
Samples were also run at a 1:20 dilution; as shown in Figure 4 (B), results were similar but not
identical to the 1:5 dilution results. It is likely that nonspecific binding by serum proteins
influences the results from more concentrated samples, and thus future experiments will focus

on 1:20 and higher dilutions.

A)
HD2132 HD2133 HD2134 HD2135 HD2136 HD2137 HD2138 HD2139 HD2140 HD2141 HD2142 HD2143 HD2144 HD2145 HD2146
HKU spike 14.02 424 10.79 3.36 1.59 0.89 7.70 0.06 2.53 1.86 3.18 7.76 522 4.45 4.95
MERS S$1 -0.26 -0.17 -0.05 -1.00 0.18 0.71 1.19 0.41 0.42 0.37 1.63 0.04 -0.76 0.38 -1.09
MERS RBD -0.90 -0.75 0.04 0.48 0.41 1.54 1.35 0.69 0.00 -0.36 1.40 -2.13 -1.68 -0.45 -0.28
SARS $1+S2 ECD 0.64 -0.73 1.06 -2.50 -1.54 0.03 1.98 1.98 0.54 -0.04 1.96 -2.09 -1.89 244 -1.54
SARS RBD -0.04 0.82 1.12 -0.45 -0.46 1.02 0.96 0.97 0.88 0.90 2.94 -0.29 0.41 2.58 -1.07

SARS-CoV-2 S1+82 ECD 26.43 8.69 18.0996 -3.82 1362 1745 24.41 13.58  10.81 1558  15.41 15.30 8.80  26.96

SARS-CoV-2 S2 26.70 489 13.13 -3.51 7.31 10.67  16.24 8.46 504 1175 920 11.23 3.77. 16.87 -2.71
SARS-CoV-2 81 9.24 0.12 3.96 -3.71 1.75 3.69 1148 4.35 1.32 1.78 2.52 0.22 -1.20 1447 -3.03]
SARS-CoV-2 RBD 28.31 937 2425 -486 1914 27.67 29.07 2024 2235 2252 1879 2554 19.93  28.88 -0.54]
HCoV-229E spike 18.90 1799 1875 1556 16.92 18.41 20.07 1952 1887 17.85 20.08 1548 16.13 1947 17.07
HCoV-0C43 spike 12.10 10.3591 10.42 465 1232 5.84 9.08 7.84 4.78 6.58 10.01 8.02
B Brisbane HA 3.29 1.55 2.72 213 3.27 3.16 2.86 3.67 3.09 3.31 5.16 297 2.08 4.20 1.67
H1 California HA 8.17 5.83 9.70 797 4.39 3.7 2.05 721 1.28 4.19 8.51 3.02 537 10.62 0.67
H3 Wisconsin HA 6.24 2.67 2.54 1.57 1.73 3.82 3.22 3.62 3.32 0.70 4.55 2.19 217 3.61 2.38
Blank 1.58 1.21 2.35 1.86 2.36 2.09 1.47 1.28 1.65 1.43 0.96 -0.12 0.87 1.74 0.90

B)

SARS-CoV-2 S1+82 ECD 13.93 4.73  10.80 -068 1665 1815 1867 10.53 11.06 14.58 10.40  18.00 0.15  20.70 1.55)
SARS-CoV-2 RBD 11.37 0.61 16.41 -023 1737 17.03 2147 6.87 1248 12.03 6.60  20.80 515 26.756 -0.35]
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Figure 4: AIR results from convalescent COVID-19-positive subjects. Empty cells indicate
unreadable spots. (A) Each sample was diluted 1:5 in Adarza diluent, and incubated with the
array overnight at 4 °C. (B) Selected antigen results for samples run at 1:20 dilution, and
incubated with the array overnight at 4 °C. All values reported are in Angstroms of build relative

to an FBS control.

Convalescent serum array responses were compared to an ELISA assay (Figure 5). As
ELISA values were all IgG-specific, and AIR data discussed thus far (obtained in a “label-free”
mode) was a combination of IgG and IgM-specific responses, these results would not be
expected to match precisely. Differences in the expression system used for antigen production
(baculovirus for commercial antigens used in AIR; HEK 293T cells used for antigens used in the
ELISA assays) could also lead to differences. However, overall trends for SARS-CoV-2 antigens
correlate well, as shown in Figure 6. To provide further detail with regard to the response, AIR
assays were run using secondary anti-IgG and anti-lgM antibodies to determine class-specific

responses for a subset of samples (Figure 7).

HD2132 HD2133 HD2134 HD2135 HD2136 HD2137 HD2138 HD2139 HD2140 HD2141 HD2142 HD2143 HD2144 HD2145 HD2146

SARS-CoV-2 $1+S2 ECD 93 1.2 94 1.2 114 30.1 312 10.1 6.9 79 6.9 176 3.1 91.5 0.5
SARS-CoV-2 RBD 6.4 1.9 17.3 04 13.3 34.7 418 15.2 10.8 13.5 44 18.2 22 154.2 0.2
HCoV-229E spike 254 82 17.7 20.8 422 13.1 15.9 28 14.3 19 20.1 10.4 12.9 9 14.1
HCoV-0C43 spike 71.6 111.2 168.5 84 46.5 151.5 133 56.9 292 2356 27.8 302.2 223 192.2 14

Figure 5: IgG-specific ELISA results for convalescent COVID-19 subjects. All values are in

pg/mL.
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Figure 6: Correlation of AIR and ELISA data for SARS-CoV-2 S1+S2 ECD (left) and RBD

(right). Exponential trend lines and associated R? values are indicated.

PNHS S02 S06 HD2133 HD2138

Control  19G IgM Control  1gG IgM Control  19G IgM Control  19G IgM Control  1gG IgM
HKU spike 275 9.15 2.85 2.04 8.67 2.10 1.01 6.22 271 2.55 10.89 3.62 2.36 10.05 4.43
MERS $1 0.62 3.14 1.53 0.78 1.67 2.62 1.42 1.70 2.65 0.68 2.73 1.64 0.09 2.06 1.48
MERS RBD 0.56 1.54 1.30 0.66 1.13 2.85 1.72 1.60 1.76 0.33 0.39 1.05 -0.09 1.24 0.71
SARS $1+S2 ECD 0.80 0.20 0.38 0.42 0.24 0.56 2.1 0.95 0.50 -0.24 -0.81 -0.44 -0.11 0.30 0.26
SARS RBD 1.40 3.71 242 0.74 2.07 217 -0.40 0.20 4.14 7.68 21.36 9.47 10.16 30.72 16.51
SARS-CoV-2 $1+S2 ECD 1.72 3.82 2.40 1.09 2.28 2.68 -2.89 -2.36 6.39 9.41 25.98 11.45 17.04 41.20 33.47
SARS-CoV-2 S2 0.98 0.29 0.49 0.48 0.13 0.49 219 1.15 0.09 0.65 215 0.81 0.55 2.90 0.92
SARS-CoV-2 $1 1.27 297 1.47 0.69 1.95 1.61 -0.91 -0.91 213 1.59 3.96 237 5.71 17.58 11.60
SARS-CoV-2 RBD 0.39 2.54 1.67 1.53 2.38 3.73 0.05 0.09 5.08 4.22 9.73 5.18 20.17 41.44 41.94]
HCoV-229E spike 4.54 10.62 6.06 6.17 16.49 10.74 2.18 8.38 6.66 4.35 12.18 528 3.85 10.90 5.36
HCoV-0C43 spike 1.03 3.54 0.81 0.81 8151 0.78 1.46 3.62 1.49 1.46 7.82 2.23 -0.04 2.57 0.20
B Brisbane HA 1.12 6.17 2.08 4.72 16.13 11.63 0.96 6.12 3.09 -0.20 1.76 0.11 -0.40 0.62 -0.23
H1 California HA 0.85 -0.55 -0.07 -0.10 0.29 -0.49 1.51 -0.48 -0.15 -0.50 -1.33 -0.87 -0.02 -0.91 -0.17
H3 Wisconsin HA 0.34 2.41 0.51 0.97 5.70 2.40 0.71 0.73 0.92 0.49 0.44 -0.49 0.51 0.19
Blank -0.15 -0.11 0.21 0.24 0.31 0.28 0.15 0.39 0.10 -0.03 0.27 -0.25 -0.04 0.01

Figure 7: Determination of class-specific responses for a subset of COVID-19-negative (S02,
S06) and convalescent COVID-19-positive (HD2133, HD2138) subjects. All values reported are

in Angstroms of build relative to an FBS control.

Finally, a laboratory assay is most valuable to others if it can be scaled up by a
commercial facility in a manner enabling its broad distribution. To address that issue, Adarza
BioSystems printed analogues of our arrays for use in the ZIVA system, an automated version
of AIR employing a consumable with a low volume requirement (25 uL). Fifteen samples from
convalescent COVID-19 patients were tested using a 30-minute room-temperature incubation,

and compared with 16 single-donor samples acquired prior to the outbreak of COVID-19. As
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was the case with assays run using the laboratory AIR assay, analysis using the ZIVA system
readily discriminated between negative and convalescent samples (Figure 8). Three putative
convalescent COVID-19 samples gave responses on all SARS-CoV-2 antigens that were below
the threshold for a positive response (two standard deviations above the average of the 16
negative samples). This is analogous to the AIR and ELISA results obtained for sample
HD2146, as described above. The remaining 12 convalescent samples gave strong responses
on at least one SARS-CoV-2 antigen, with many responding strongly to both RBD and S2

(Figure 8).
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Figure 8: Results from the Adarza Ziva system for pre-COVID-19 serum samples and single-

donor samples from convalescent COVID-19 (PCR-positive) subjects. Pre-COVID-19 single-
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donor results were averaged (blue bars). Black bars indicate threshold positive values,
calculated as two standard deviations above the average negative (pre-COVID-19) signal. Red

bars indicate PCR+ individuals yielding signals below the threshold on all SARS-CoV-2
antigens, while green bars indicate signals from single-donor convalescent COVID-19 samples

with at least one SARS-CoV-2 antigen response above threshold.

Discussion:

Health and disease result from many factors, including the overall landscape of a
person’s immune system. As such, methods for profiling antigen-specific antibody titers to a
range of diseases in addition to the disease of primary current interest are of utility when
studying the disease. To that end, we have presented preliminary data on a 15-plex array on the
AIR platform, developed in response to the need to study SARS-CoV-2 but incorporating
antigens for other coronaviruses and influenza. Responses to SARS-CoV-2 antigens on the
array effectively discriminated between serum samples from uninfected and COVID-19
convalescent subjects, with generally good correlation to ELISA data. Follow-up assays
demonstrated that exposure of the arrays to anti-lgG and anti-lgM antibodies enabled
discrimination of antibody isotype.

An important aspect of this work is the ability to evaluate anti-SARS-CoV-2 immunity in
the context of the individual’s overall immune landscape. Because available chip real estate
allows for substantial expansion of the multiplex capability of the array, in ongoing efforts we will
add additional antigens for other strains of influenza (by analogy to our previous work'’), as well
as other upper respiratory infections such as respiratory syncytial virus and metapneumovirus.
Other coronavirus antigens including nucleocapsid (N) are also likely candidates for addition to
the array, as they are known to produce an immune response (as seen in the ELISA results, for
example). Thus, the flexibility of the AIR platform will prove useful not only in the current

pandemic, but as other viruses inevitably emerge.
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