

1 **New insights on the modelling of the molecular mechanisms underlying neural maps**
2 **alignment in the midbrain**

3

4 Elise Laura Savier^{1,*}, James Dunbar^{2,3}, Kyle Cheung², and Michael Reber^{2,3,4,5,6,*}

5

6 1. Department of Biology and Psychology, University of Virginia, 485 McCormick Rd,
7 Charlottesville, VA 22903, USA.

8 2. Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network,
9 Toronto, ON, M5T0S8, Canada.

10 3. Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8,
11 Canada.

12 4. Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada.

13 5. Cell and System Biology, University of Toronto, Toronto, ON M5S 1A8, Canada.

14 6. CNRS UPR 3212, University of Strasbourg, Strasbourg, 67084 France.

15 * co-corresponding authors.

16 **Abstract**

17 We previously identified and modelled a principle of visual maps alignment in the midbrain
18 involving the mapping of the retinal projections and concurrent transposition of retinal guidance
19 cues into the superior colliculus providing positional information for the organization of cortical V1
20 projections onto the retinal map (Savier et al., 2017). This principle relies on mechanisms involving
21 EphA/Efna signaling, correlated neuronal activity and axon competition. Here, using the 3-step
22 map alignment computational model, we predict and validate *in vivo* the visual mapping defects in
23 a well-characterized mouse model. Our results challenge previous hypotheses and provide an
24 alternative, although complementary, explanation for the phenotype observed. In addition, we
25 propose a new quantification method to assess the degree of alignment and organization between
26 maps, allowing inter-model comparisons. This work generalizes the validity and robustness of the
27 3-step map alignment algorithm as a predictive tool and confirms the basic mechanisms of visual
28 maps organization.

29 **Introduction**

30 Understanding and modelling the mechanisms of neural circuits formation in the brain has been a
31 challenging subject in fundamental neurobiology for decades. One of the most studied biological
32 models to investigate the formation and function of sensory connectivity -or sensory maps- from
33 both experimental and theoretical standpoints is the superior colliculus (SC), an evolutionary
34 conserved structure located in the midbrain (Cang and Feldheim, 2013; Basso and May, 2017). In
35 most vertebrates, the SC is the premier brain center for integrating sensory inputs from visual,
36 auditory and somatosensory modalities distributed in different interacting laminae. This structure
37 is a key node in the network of brain areas responsible for controlling the location of attention and
38 even decision-making (Basso and May, 2017). Visual inputs in the superficial layers of the SC
39 correspond to the organized projections from the retinal ganglion cells (RGCs) in the retina (the
40 retino-collicular projections) and from layer V neurons in the primary visual cortex V1 (the cortico-
41 collicular projections). Both projections form visual maps that must be aligned and in register to
42 allow efficient detection of visual stimuli (Basso and May, 2017; Liang et al., 2015; Zhao et al.,
43 2014).

44 Although many studies have focused on the mechanisms involved in the formation of the retino-
45 collicular map, little is known about how the retino- and cortico-collicular maps are aligned during
46 development. Previous studies on retino-collicular mapping have revealed the involvement of
47 gradients of Eph tyrosine kinases receptors (Eph) and their cognate membrane-bound ligands,
48 the ephrins (Efn), together with competition between axons for collicular space and correlated
49 neuronal activity in the form of spontaneous waves (Ackman and Crair, 2014; Cang and Feldheim,
50 2013; Triplett et al., 2011). To gain insight into the molecular mechanisms involved in map
51 formation, mouse genetic models were generated, in which the expression of members of the Eph
52 and ephrin family was manipulated. The mapping mechanisms of the nasal-temporal axis of the
53 retina onto the rostral-caudal axis of the SC involving EphA/Efna signaling have been, by far, the
54 most studied experimentally (Feldheim et al., 1998; Brown et al., 2000; Feldheim et al., 2000;

55 Reber et al., 2004; Rashid et al., 2005; Pfeiffenberger et al., 2006; Triplett et al., 2009; Bevins et
56 al., 2011; Suettelin and Drescher, 2014; Owens et al., 2015; Savier et al., 2017; Savier and Reber,
57 2018). Several hypotheses have been made to account for the phenotypes observed in mouse
58 genetic models and this extensive body of work has been used to generate computational
59 approaches which attempt to replicate experimental findings (Honda, 2003; Reber et al., 2004;
60 Honda, 2004; Koulakov and Tsigankov, 2004; Goodhill and Xu, 2005; Willshaw, 2006; Tsigankov
61 and Koulakov, 2006, 2010; Triplett et al., 2011; Simpson and Goodhill, 2011; Grimbert and Cang,
62 2012; Sterratt and Hjorth, 2013; Willshaw et al., 2014; Hjorth et al., 2015; Owens et al., 2015;
63 Savier et al., 2017). However, until recently, these models have not been able to explain how
64 collicular visual maps are aligned during development.

65 Interestingly, the formation of the retino-collicular map occurs prior to the establishment of the
66 cortico-collicular map. Other studies have shown that the existence of the retino-collicular map is
67 necessary for the formation of the cortico-collicular map, suggesting an interdependence of the
68 two mechanisms (Khachab and Bruce, 1999; Rhoades et al., 1985; Triplett et al., 2009). Similar
69 observations have been made in other part of the visual system (Shanks et al., 2016). Another
70 piece of evidence came from the study of map alignment in the *Isl2-Epha3*^{KI}, one of the best
71 characterized mutant in the field. In these mutants, the *Epha3* receptor is ectopically expressed in
72 50% of RGCs, leading to a duplication of the retino-collicular map (Brown et al., 2000). Strikingly,
73 a full duplication of the cortico-collicular map is also observed in the *Isl2-Epha3*^{KI/KI} homozygous
74 mutants, which display a normal retinotopy in the visual cortex (Triplett et al., 2009). The authors
75 concluded that a retinal-matching mechanism involving spontaneous correlated activity in the
76 retina instructs cortico-collicular projections and alignment onto the retino-collicular map.
77 Alternative explanations can also be suggested. For instance, the ectopic expression of *Epha3*
78 specifically in the retina may alter the expression of other members of *Epha/Efna* throughout the
79 visual system disrupting maps formation and alignment. In another example, molecular cues
80 originating from the retina could be carried over to the colliculus and provide mapping/alignment

81 information to ingrowing cortical axons, as suggested earlier (Savier et al., 2017). This latter
82 hypothesis is in line with a retinal-matching mechanism inferred by Triplett and collaborators
83 (Triplett et al., 2009). A similar mechanism of guidance cues transportation has recently been
84 demonstrated for axon guidance at the optic chiasm in the mouse visual system (Peng et al.,
85 2018).

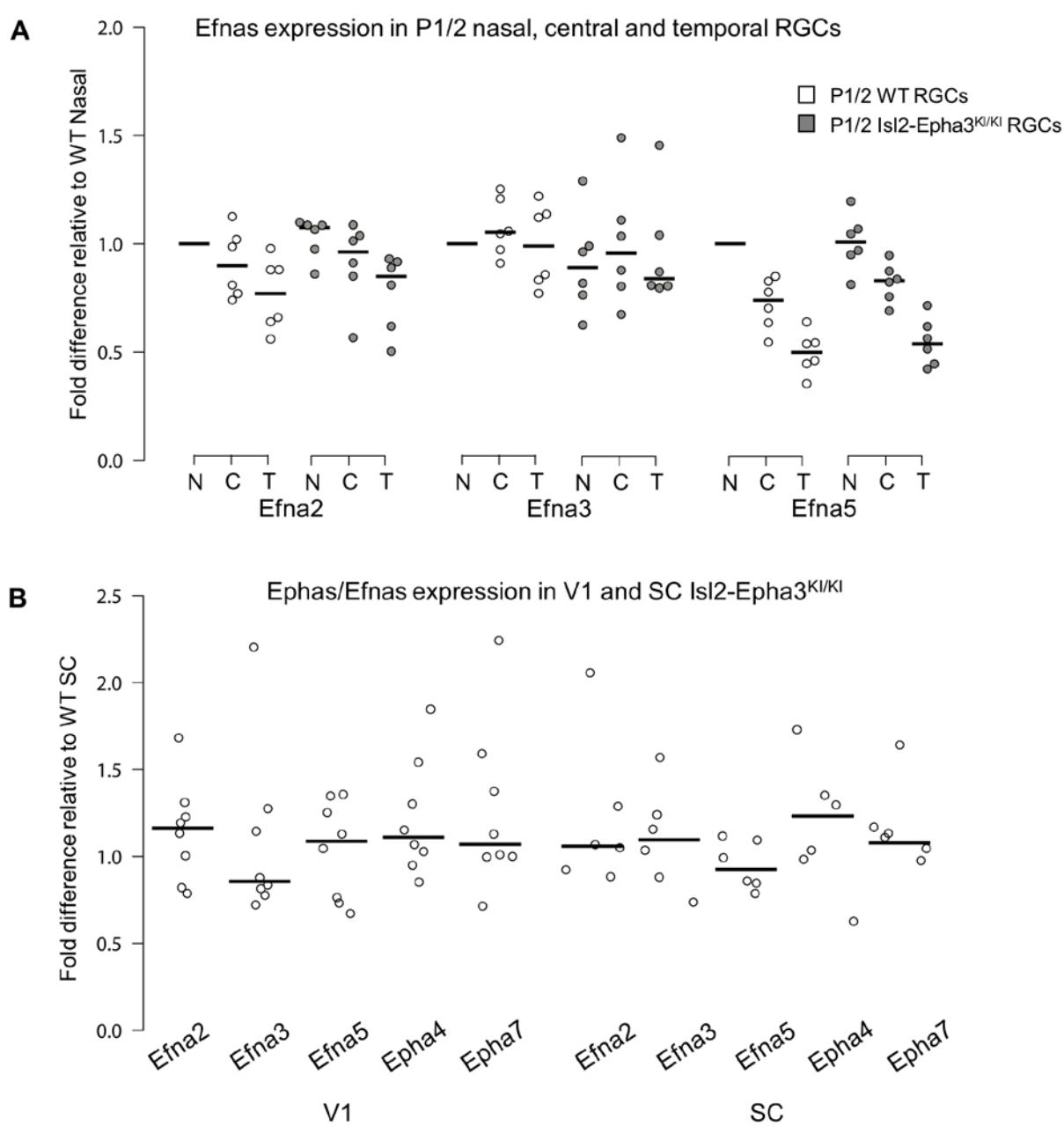
86 To gain insight into the implication of molecular guidance cues in the retina in the alignment of
87 visual maps in the SC, we have characterized a new mutant, the *Isl2-Efna3KI*, which over-
88 expresses the ligand *Efna3* in 50% of the RGCs (Savier et al., 2017). To our surprise, this mutant
89 does not display any defect in the formation of the retino-collicular map, however the subsequent
90 cortico-collicular map is duplicated. This led us to conclude that molecular guidance cues
91 expressed in the retina are implicated in the formation cortico-collicular map (Savier et al., 2017).

92 To simulate this mechanism *in silico*, we generated the 3-step map alignment model, based on
93 the Koulakov model (Koulakov and Tsigankov, 2004; Tsigankov and Koulakov, 2010, 2006). Many
94 different algorithms have been generated to model retino-collicular mapping controlled by Eph/Efn.
95 Recently, Hjorth et al., (Hjorth et al., 2015) developed a pipeline which allowed for systematic
96 testing of the currently available models and revealed that most cannot reproduce all nuances of
97 experimental findings (*Isl2-Epha3KI*, *EfnaKOs* and *Math5KO*). Among those tested, the most
98 faithful was the Koulakov model, which had recently been extended to explain the variability in the
99 phenotypes observed in a particular mouse model, the *Isl2-Epha3KI* (Owens et al., 2015).

100 The 3-step map alignment model simulates the formation of the retino-collicular map and, for the
101 first time, the subsequent formation and alignment of the cortico-collicular map along the rostral-
102 caudal axis of the SC based on experimental and mechanistic evidence (Savier et al., 2017; Savier
103 and Reber, 2018). This algorithm predicts normal wildtype (WT) mapping as well as the map
104 alignment defects observed in the *Isl2-Efna3KI* animals (Savier et al., 2017). However, whether it
105 also simulates mapping abnormalities observed in other Eph/Efna mutants, and particularly in
106 the *Isl2-Epha3KI* animal model, is unknown. Here we demonstrate that the 3-step map alignment

107 algorithm accurately simulates both retino- and cortico-collicular mapping defects in *Isl2-Epha3KI*
108 mutants (Brown et al., 2000; Triplett et al., 2009). Our results strongly suggest that the mechanism
109 underlying the subsequent duplication of the cortico-collicular projection corresponds to a
110 redistribution of retinal molecular cues, the Efnas, into the SC. The retinal Efnas, provided by the
111 incoming retinal axons within the SC, act together with correlated activity to instruct cortico-
112 collicular alignment onto the retino-collicular map (Savier et al., 2017; Triplett et al., 2009). We
113 further confirmed and validated the predictions of the algorithm by quantitative *in vivo* map analysis
114 in both heterozygous and homozygous *Isl2-Epha3KI* animals. Moreover, a new implementation of
115 the algorithm generates indexes providing a qualitative measure of map organization and allowing
116 comparison of visual map layouts between biological models. Together with our previous work
117 (Savier et al., 2017), these data confirm the validity and robustness of our algorithm and reinforces
118 the underlying principle of visual maps formation and alignment in the midbrain, where the layout
119 of the dominant retino-collicular map specifies the alignment of the cortico-collicular map through
120 spontaneous correlated activity and transposed retinal Efnas. Such principle dictates the optimal
121 functioning of the system by allowing fine adjustments which compensate for intrinsic variability -
122 or stochasticity- of sensory maps formation.

123


124

125 **Results**

126 ***Normal Ephas/Efnas expression in Isl2-Epha3^{KI/KI} retinas, SC and V1 cortex.***

127 Retinal expression of *Epha* receptors in *Isl2-Epha3KI* animals has been extensively characterized
128 (Reber et al., 2004). However, whether EPHA3 ectopic expression in *Isl2*-positive (*Isl2*(+)) RGCs
129 affects retinal *Efna* co-expression is unknown. We performed a quantitative analysis of retinal *Efna*
130 transcripts in P1/P2 nasal, central and temporal acutely isolated RGCs (Savier et al., 2017),
131 revealing similar expression levels between *Isl2-Epha3^{KI/KI}* and WT littermates. The graded
132 expression of *Efna2* and *Efna5* running from high-nasal to low-temporal is preserved in *Isl2*-

133 Eph3^{KI/KI} animals, whereas the expression of *Efna3* is homogeneous (Fig 1A). Transcript
134 analyses in V1 and SC (Fig 1B) revealed similar levels of *Efna2/a3/a5* and *Eph4/a7* receptors in
135 Isl2-Eph3^{KI/KI} compared to WT littermates at P7 excluding indirect effects on mapping due to local
136 changes of *Ephas/Efnas* gene expression.

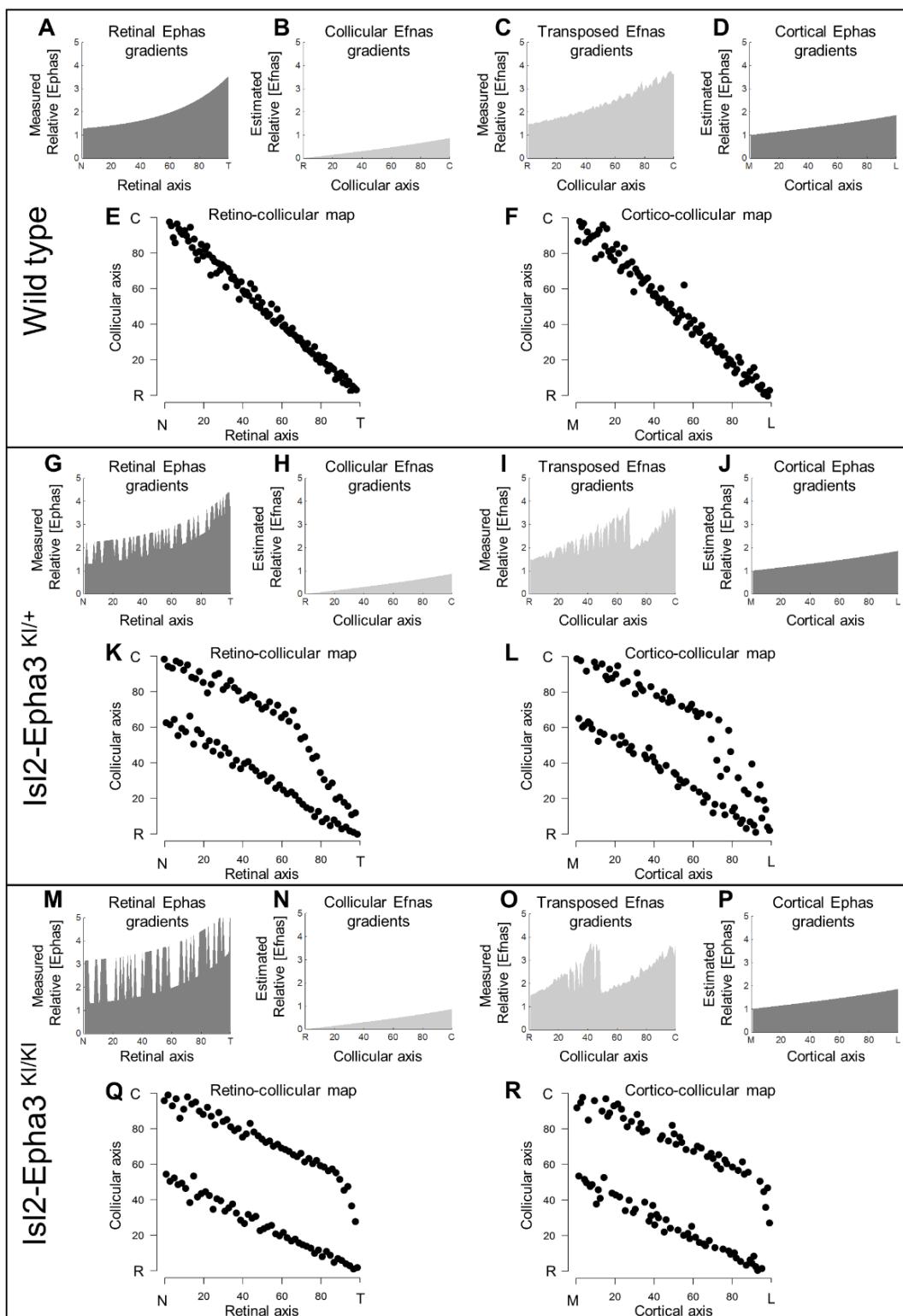
137

138 **Figure 1. Dot plots representing Ephas/Efnas expression in *Isl2-Epha3*^{KI/KI} retinas, V1
139 cortex and SC.**

140 **A.** Median Efna2/a3/a5 expression levels (relative to wildtype nasal expression) in P1/2 wildtype
141 (WT - white) and *Isl2-Epha3*^{KI/KI} (grey) acutely isolated RGCs from nasal (N), central (C) and
142 temporal (T) retinas (WT, *Isl2-Epha3*^{KI/KI}, n = 6 animals, 12 retinas, Two-way ANOVA without
143 replication: Efna2 x genotype: $F_{(1,2)} = 3.72 < F_{\text{crit.}} = 18.5$, p = 0.19; Efna3 x genotype : $F_{(1,2)} = 11.13$
144 < $F_{\text{crit.}} = 18.5$, p = 0.07; Efna5 x genotype: $F_{(1,2)} = 3.58 < F_{\text{crit.}} = 18.5$, p = 0.20

145 **B.** Median Efna2/a3/a5 ligands and Eph4/a7 receptors expression levels (relative to WT
146 expression levels) in *Isl2-Epha3*^{KI/KI} V1 (WT n = 5 animals, *Isl2-Epha3*^{KI/KI} n = 8 animals; variables
147 are normally distributed, one sample t-test: Efna2: p = 0.29; Efna3: p = 0.43; Efna5: p = 0.42;
148 Eph4: p = 0.07; Eph7: p = 0.54) and SC (WT n = 5 animals, *Isl2-Epha3*^{KI/KI} n = 6 animals;
149 variables are normally distributed, one sample t-test: Efna2: p = 0.20; Efna3: p = 0.65; Efna5: p =
150 0.71; Eph4: p = 0.11; Eph7: p = 0.17). qPCRs were repeated 3 times with duplicates for each
151 sample.

152


153

154 ***Simulation of the *Isl2-Epha3*^{KI} mutants retino- and cortico-collicular mapping***

155 Our data above, together with previous work (Reber et al., 2004; Savier et al., 2017), showed that
156 ectopic expression of Eph4 or Efna3 in *Isl2*(+) RGCs does not affect endogenous Efnas nor
157 Ephas expression within the retina, SC and V1. We can reasonably assume that the equations
158 modelling retinal, collicular and cortical Efnas gradients as well as cortical Ephas gradients related
159 to the *Isl2-Epha3*^{KI} genotypes are equivalent to the equations previously characterized (measured
160 experimentally or estimated) in WT animals (Reber et al., 2004; Cang et al., 2005; Tsigankov and
161 Koulakov, 2006, 2010; Bevins et al., 2011; Savier et al., 2017). Measured gradients of Eph4
162 receptors (R_{Eph4}) in RGCs along the nasal-temporal axis (x), $R_{\text{Eph4}}(x)^{\text{retina}}$ (Fig 2A, G, M) (Brown
163 et al., 2000; Reber et al., 2004) are modelled by two equations, one corresponding to *Isl2*(+) RGCs
164 expressing WT levels of Ephas + Eph4 (in Fig 2G, M) and the second corresponding to *Isl2*-
165 negative (*Isl2*(-)) RGCs expressing only WT levels of Ephas (see Materials and Methods for
166 numerical values).

167 The projections of one hundred RGCs onto the SC, the retino-collicular map, were simulated by
168 the 3-step map alignment model (10^7 iterations per run, $n = 20$ runs) for the WT, $\text{Isl2-Epha3}^{\text{KI}+/}$ and
169 $\text{Isl2-Epha3}^{\text{KI/KI}}$ genotypes (Fig 2E, K, Q). RGCs axons/growth cones carrying gradients of Ephra
170 receptors are repelled by complementary gradients of collicular Efnas (forward signaling) (Fig 2B,
171 H, N). Results showed a continuous, single map for WT (Fig 2E), as expected from previous
172 experimental findings and theoretical modelling (Brown et al., 2000; Reber et al., 2004; Savier et
173 al., 2017; Bevins et al., 2011). For the $\text{Isl2-Epha3}^{\text{KI}+/}$, partially duplicated retino-collicular mapping
174 is modelled, together with the presence of a collapse point for temporal-most RGCs (Fig 2K) as
175 extensively observed experimentally (Brown et al., 2000; Reber et al., 2004; Bevins et al., 2011)
176 and theoretically (Reber et al., 2004; Willshaw, 2006; Tsigankov and Koulakov, 2010; Simpson
177 and Goodhill, 2011). For $\text{Isl2-Epha3}^{\text{KI/KI}}$, the retino-collicular map is fully duplicated, similarly to
178 previous experimental and theoretical findings (Fig 2Q) (Brown et al., 2000; Reber et al., 2004;
179 Willshaw, 2006; Tsigankov and Koulakov, 2010; Bevins et al., 2011; Simpson and Goodhill, 2011).
180 In the following step, the gradient of experimentally measured retinal Efnas is transposed to the
181 SC according to the layout of the retino-collicular map (Fig 2C, I, O). For WT, this generates a
182 smooth monotonically increasing gradient (Fig 2C). For the $\text{Isl2-Epha3}^{\text{KI}+/}$ genotype, this
183 transposition generates a double oscillatory gradient of retinal Efnas in the SC (Fig 2I), a
184 consequence of the partial duplication of the retino-collicular map (Fig 2K). For the $\text{Isl2-Epha3}^{\text{KI/KI}}$,
185 the transposition of the retinal Efnas gradient, according to the fully duplicated retino-collicular
186 map (Fig 2Q), generated a double oscillatory gradient of transposed retinal Efnas in the SC (Fig
187 2O).
188 Finally, the projections of one hundred V1 neurons onto the SC (the cortico-collicular map) were
189 simulated for all three genotypes (Fig 2F, L, R). V1 axons/growth cones carrying gradients of Ephra
190 receptors (Fig 2D, J, P) are repelled by the transposed gradients of retinal Efnas into the SC
191 (forward signaling) as suggested previously (Savier et al., 2017). The WT cortico-collicular map is
192 smooth and continuous (Fig 2F), similarly to the retino-collicular map (Fig 2E). The $\text{Isl2-Epha3}^{\text{KI}+/}$

193 simulations show dispersed projections forming two separated maps collapsing in the rostral-most
194 part of the SC from lateral-most V1 neurons (Fig 2L). Cortico-collicular map simulations for the
195 $\text{Isl2-Epha3}^{\text{KI/KI}}$ genotype shows dispersed projections forming two fully separated maps (Fig 2R).

198 **Figure 2 – Simulations of retino- and cortico-collicular mapping in *Isl2-Epha3Kl* animals.**

199 **A, G, M.** Representation of measured retinal Ephas gradients along the NT axis in WT (A), *Isl2-*
200 *Epha3^{KI/+}* (G) and *Isl2-Epha3^{KI/KI}* (M) animals (see Materials and Methods and Table 1 for
201 equations).

202 **B, H, N.** Representation of the estimated collicular Efnas gradients along the RC axis in WT (B),
203 *Isl2-Epha3^{KI/+}* (H) and *Isl2-Epha3^{KI/KI}* (N) animals (see Materials and Methods and Table 1 for
204 equations).

205 **C, I, O.** Representation of the transposed retinal Efnas gradients into the SC along the RC axis in
206 WT (C), *Isl2-Epha3^{KI/+}* (I) and *Isl2-Epha3^{KI/KI}* (O) animals (see Materials and Methods and Table 1
207 for equations).

208 **D, J, P.** Representation of the estimated cortical Ephas gradients along the ML axis in V1 in WT
209 (*D*), *Isl2-Epha3^{KI/+}* (*J*) and *Isl2-Epha3^{KI/KI}* (*P*) animals (see Materials and Methods and Table 1 for
210 equations).

211 **E, K, Q.** Simulated retino-collicular map in in WT (E), *Isl2-Epha3^{KI/+}* (K) and *Isl2-Epha3^{KI/KI}* (Q)
212 animals generated by the 3-step map alignment algorithm (representative of $n = 20$ runs).

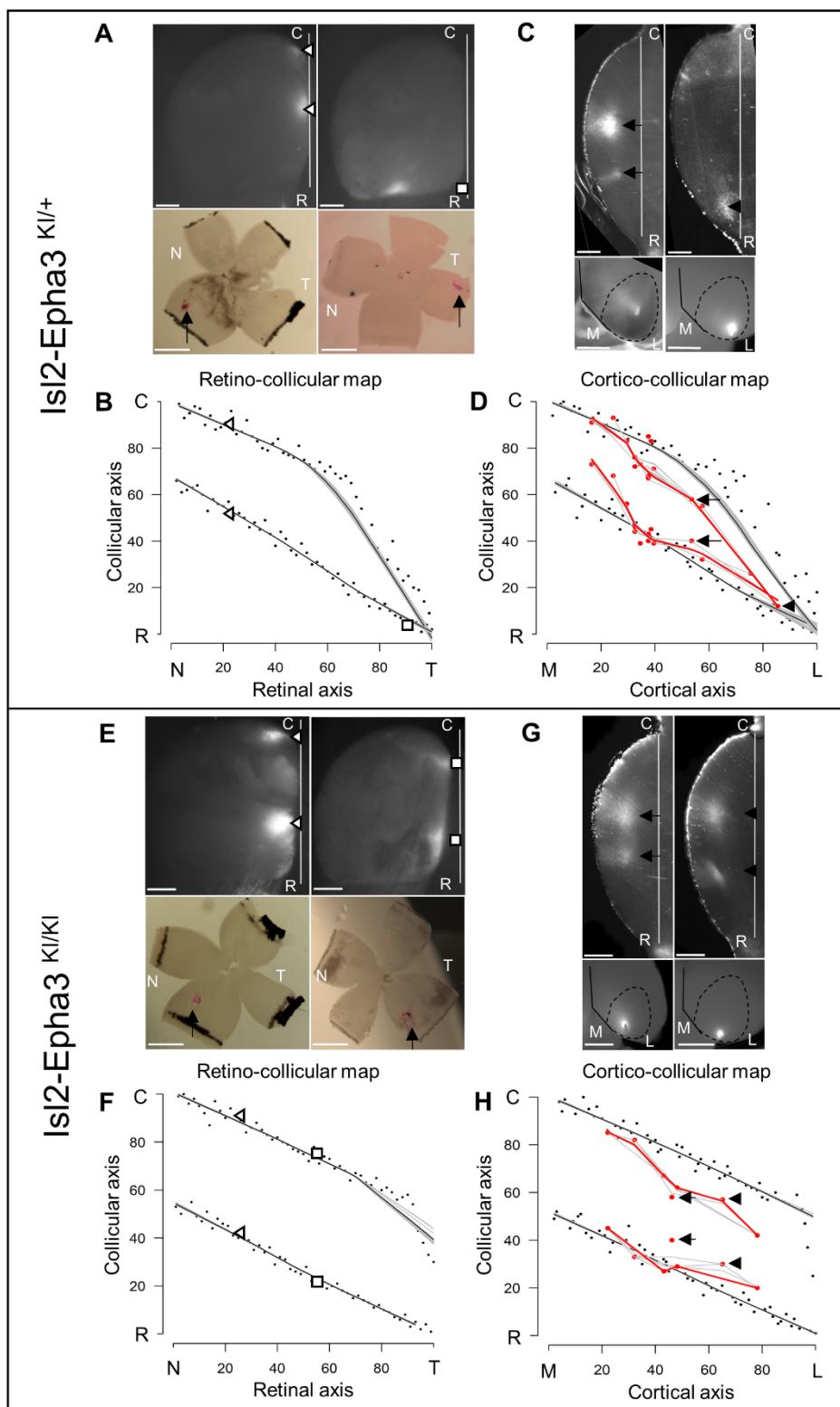
213 **F, L, R.** Simulated cortico-collicular map in WT (F), *Isl2-Epha3^{KI/+}* (L) and *Isl2-Epha3^{KI/KI}* (R) animals
214 generated by the 3-step map alignment algorithm (representative of $n = 20$ runs).

215 Abbreviations: N, nasal; T, temporal; R, rostral; C, caudal; M, medial; L, lateral.

216

217 **Table 1 – summary of the parameters of the 3-step map alignment algorithm**

Receptor	Epha3	Epha4	Epha5	Epha6	Source
Retina	WT = 0 $Epha3^{Kl/Kl} = 1.86$ $Epha3^{Kl/+} = 0.93$	1.05	$0.14e^{0.018x}$	$0.09e^{0.029x}$	Measured (Brown et al., 2000; Reber et al., 2004)
V1	$e^{(-x/100)} - e^{((x - 200)/100) + 1}$				Estimated (Tsigankov and Koulakov, 2010, 2006)
Ligand	EfnA2	EfnA3	EfnA5		
Retina	$1.85 e^{-0.008x}$	0.44		$1.79 e^{-0.014x}$	Measured (Savier et al., 2017)
SC	$e^{((x - 100)/100)} - e^{((-x-100)/100)}$				Estimated (Cang et al., 2005; Savier et al., 2017; Tsigankov and Koulakov, 2010, 2006)
Parameters					
γ	1				Strength of activity interaction
α	200				Chemical strength
d	3				SC interaction distance
b	0.11				Retinal correlation distance


218 **Experimental validation of the 3-step map alignment model**

219 To validate the simulations of the model predicting the formation of visual maps in the *Isl2-Epha3*^{KI}
220 animals, we performed anterograde retino- and cortico-collicular tracings *in vivo*. In the *Isl2-*
221 *Epha3*^{KI/+} animals, two experimental measurements (Fig 3A, triangles and square in Fig 3B) are
222 shown, plotted on the simulated retino-collicular map (black dots, grey/black lines, Fig 3B)
223 indicating a duplicated projection for cells from the nasal pole of the retina as extensively shown
224 earlier (Brown et al., 2000; Reber et al., 2004; Savier et al., 2017). For RGCs located on the
225 temporal side of the retina, a single projection can be found as was also described previously
226 (Brown et al., 2000; Reber et al., 2004; Savier et al., 2017). Our experimental measurements
227 (triangles and square, Fig 3B) match with the theoretical representation (black dots, black/grey
228 lines Fig 3B). Further validation of the algorithm was performed by *in vivo* analysis of the cortico-
229 collicular mapping in the *Isl2-Epha3*^{KI/+} animals. Cortico-collicular anterograde tracing (Fig 3D, n =
230 15, red dots/lines), performed as described earlier (Savier et al., 2017), revealed a partially
231 duplicated cortico-collicular map with the occurrence of a collapse point near 82% of the medial-
232 lateral axis of V1 (16% of the rostral-caudal axis of the SC), similarly to the simulated map (black
233 dots, black/grey lines Fig 3D, two-samples Kolmogorov-Smirnov test). Two of the injections and
234 their corresponding terminations zones in the SC are depicted (Fig 3C, arrows and arrowhead in
235 Fig 3D).

236 In *Isl2-Epha3*^{KI/KI}, retino-collicular duplications are observed as shown by two experimental
237 measurements (triangles and squares) plotted on the retino-collicular map (Fig 3E, F) and as
238 extensively described previously (Brown et al., 2000; Reber et al., 2004). These experimental data
239 match with the simulated mapping (black dots, black/grey lines Fig 3F). Cortico-collicular map
240 tracing *in vivo* (Fig 3G, H, red dots/line, n = 7) revealed a fully duplicated cortico-collicular map, as
241 predicted by the simulations (Fig 3H, black dots, black/grey lines, two-samples Kolmogorov-
242 Smirnov test). Two of the injections and their corresponding terminations zones in the SC are

243 depicted (Fig 3G, arrows and arrowhead in Fig 3H.). These results further validate the predictions
244 and reinforce the underlying mapping principle encoded in the 3-step map alignment algorithm.

245

246 **Figure 3 - Experimental validation of retino- and cortico-collicular mapping in *Isl2-Epha3^{KI}* animals.**

248 **A.** Images of two experimental injections showing the collicular terminations zones (triangles and
249 square, top-view, upper panels) after focal retinal injections (arrows, flat-mount, lower panel) in
250 *Isl2-Epha3^{KI/+}* animals.

251 **B.** Cartesian representation of the injections (triangles and square) in (A) superimposed with the
252 simulated retino-collicular map (black dots, n = 100) in *Isl2-Epha3^{KI/+}*. Map profile is calculated by
253 LOESS smoothing (black and grey lines).

254 **C.** Images of two experimental injections showing the collicular termination zones (sagittal view,
255 upper panels) after focal cortical V1 injection (top-view, lower panels). Arrows and arrowheads
256 indicate the site of the termination zones. Lower left panel shows CO staining (dark grey)
257 delineating V1.

258 **D.** Cartesian representation of the experimental (red dots/lines, n = 15 animals) and simulated
259 (black dots, n = 100) cortico-collicular maps calculated by LOESS smoothing (black, red and grey
260 lines). Arrows and arrowhead represent the two injections shown in (C). Two-samples
261 Kolmogorov-Smirnov test, D-stat = 0.273 < D-crit. = 0.282, p = 0.06, simulated and experimentally
262 measured cortico-collicular maps are not significantly different.

263 **E.** Images of two experimental injections showing the collicular terminations zones (triangles and
264 squares, top-view, upper panels) after focal retinal injection (arrows, flat-mount, lower panel) in
265 *Isl2-Epha3^{KI/KI}* animals.

266 **F.** Cartesian representation of the injections (triangles and squares) in (E) superimposed with the
267 simulated retino-collicular map (black dots, n = 100) in *Isl2-Epha3^{KI/KI}*. Map profile is calculated by
268 LOESS smoothing (black and grey lines).

269 **G.** Images of two experimental injections showing the collicular duplicated termination zones
270 (arrows and arrowheads, sagittal view, upper panels) after focal cortical V1 injection (top-view,
271 lower panels).

272 **H.** Cartesian representation of the experimental (red dots/lines, n = 7 animals) and simulated
273 (black dots, n = 100) cortico-collicular maps calculated by LOESS smoothing (black, red and grey
274 lines). Arrows and arrowheads represent the two examples in (G). Two-samples Kolmogorov-
275 Smirnov test, D-stat = 0.190 < D-crit. = 0.371, p = 0.72, simulated and experimentally measured
276 cortico-collicular maps are not significantly different.

277 Scale bars: 400 μm (A upper, C, E upper, G), 1mm (A, E lower). Abbreviations: N, nasal; T,
278 temporal; R, rostral; C, caudal; M, medial; L, lateral.

279

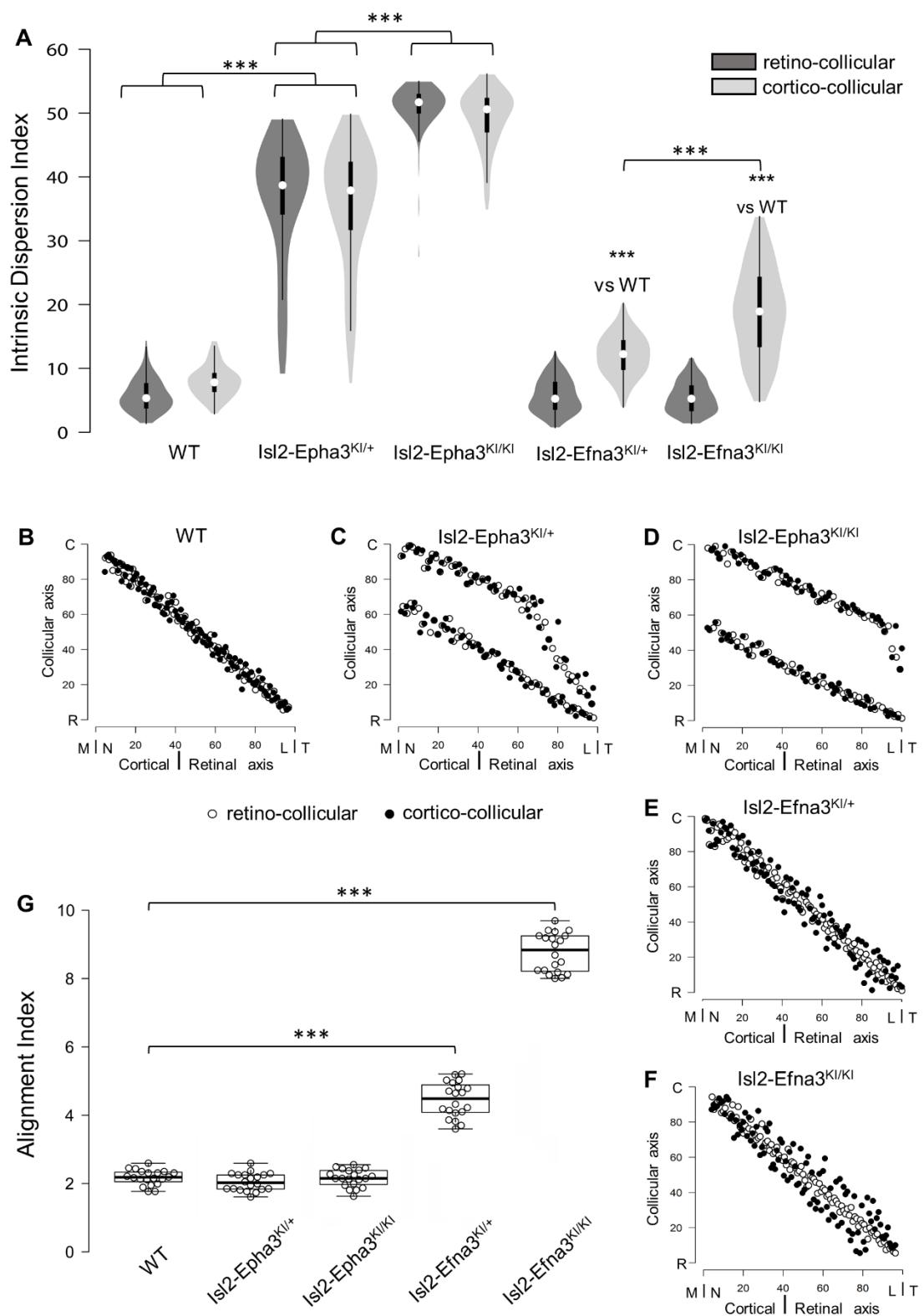
280 ***Retino/cortico-collicular maps organization indexes***

281 Previous work demonstrated that retino- and cortico-collicular maps must be aligned and in
282 register to allow efficient detection of visual stimuli by the SC (Zhao et al., 2014; Liang et al., 2015;
283 Basso and May, 2017). We further implemented the 3-step map alignment algorithm to calculate
284 an “intrinsic dispersion index” (IDI) for each visual map (IDI_{retino} and $IDI_{cortico}$) and a “alignment
285 index” (AI) for each genotype. These indexes measure the overall organization of the retino- and
286 cortico-collicular maps. IDI_{retino} and $IDI_{cortico}$ indicate the degree of dispersion of the corresponding
287 map (or within-map variability) and should be minimum. AI represents the degree of alignment
288 between the retino- and cortico-collicular maps and should be close to 1. AI = 1 corresponds to
289 the theoretical one-to-one alignment of all the RGCs projections with all the V1 projections onto
290 the SC, however such value will not be observed due to the intrinsic variability of the mapping
291 introduced by the stochastic process of spontaneous activity. In WT animals, median IDI_{retino} =
292 5.66, 95% CI [5.15; 6.17], median $IDI_{cortico}$ = 8.12 [7.63; 8.60] and median AI = 2.23 [2.13; 2.33]
293 (Fig 4A, G). These values correspond to the control values for aligned, single retino- and cortico-
294 collicular maps (Fig 4B, black and white dots). In *Isl2-Epha3^{KI/+}*, median IDI_{retino} = 38.8 [36.8; 40.8],
295 median $IDI_{cortico}$ = 38.0 [36.1; 40.0] and median AI = 2.07 [1.95; 2.19] (Fig 4A) indicating increased
296 spreading of both retino- and cortico-collicular projections, due to the partially duplicated maps
297 (Fig 4C, black and white dots). The median AI value in *Isl2-Epha3^{KI/+}* (2.07 [1.95, 2.19]) is not
298 statistically different from WT (Fig 4G), suggesting that *Isl2-Epha3^{KI/+}* retino/cortico-collicular maps
299 are aligned (Fig 4C, black and white dots). In the *Isl2-Epha3^{KI/KI}* animals, median IDI_{retino} = 51.7
300 [50.8; 52.6], median $IDI_{cortico}$ = 50.6 [49.7; 51.5] and median AI = 2.2 [2.08; 2.32] (Fig 4A, G),
301 indicating an increased separation between the retino- and cortico-collicular maps compared to
302 WT and *Isl2-Epha3^{KI/+}* due to fully duplicated projections (Fig 4D white and black dots). The median
303 AI value (2.20 [2.02; 2.43]) is not significantly different from WT (Fig 4G), indicating aligned retino-
304 and cortico-collicular maps (Fig 4D, black and white dots). Median AI values for WT, *Isl2-Epha3^{KI/+}*

305 and $\text{Isl2-Epha3}^{\text{KI/KI}}$ are not significantly different suggesting that retino- and cortico-collicular maps
306 in these animals are aligned (Fig 4G), although partially or fully duplicated.
307 To further test and validate these map organization indicators, we calculated the IDIs and AI in
308 previously characterized $\text{Isl2-Efna3}^{\text{KI/+}}$ and $\text{Isl2-Efna3}^{\text{KI/KI}}$ animals (Savier et al., 2017). Median
309 values for $\text{Isl2-Efna3}^{\text{KI/+}}$ are $\text{IDI}_{\text{retino}} = 5.56$ [5.04; 6.07] and $\text{IDI}_{\text{cortico}} = 12.5$ [11.8; 13.2] (Fig 4A).
310 $\text{IDI}_{\text{retino}}$ is not significantly different from WT suggesting no dispersion of the retino-collicular map
311 (Fig 4E, white dots). However, $\text{IDI}_{\text{cortico}}$ is significantly different from WT indicating a spreading of
312 the cortico-collicular map (Fig 4E, black dots). This suggests a mis-alignment between retino- and
313 cortico-collicular maps (Fig 4E) as confirmed by the median AI value in $\text{Isl2-Efna3}^{\text{KI/+}}$ (Fig 4G, 4.52
314 [4.28, 4.76]), significantly different from WT. Visual maps mis-alignment is more pronounced in
315 $\text{Isl2-Efna3}^{\text{KI/KI}}$ (median AI = 8.85 [8.23, 9.26], Fig 4G) compared to $\text{Isl2-Efna3}^{\text{KI/+}}$ as previously
316 shown *in vivo* (Savier et al., 2017). Map dispersion value $\text{IDI}_{\text{retino}}$ in $\text{Isl2-Efna3}^{\text{KI/KI}}$ indicates that
317 retino-collicular map spreading is similar to WT (Fig 4F, white dots; Fig 4A, median $\text{IDI}_{\text{retino}} = 5.56$
318 [5.08, 6.03], not significantly different from WT) whereas $\text{IDI}_{\text{cortico}}$ indicates dispersion of the cortico-
319 collicular map (Fig 4F, black dots; Fig 4A, median $\text{IDI}_{\text{cortico}} = 19.1$ [17.7, 20.5]) as demonstrated
320 previously (Savier et al., 2017). Such significant dispersion of the cortico-collicular map leads to
321 an important misalignment between retino- and cortico-collicular projections in $\text{Isl2-Efna3}^{\text{KI/KI}}$
322 animals (median AI = 8.85 [8.59; 9.11] significantly different from WT, Fig 4F, G).

323

324


325

326

327

328

329

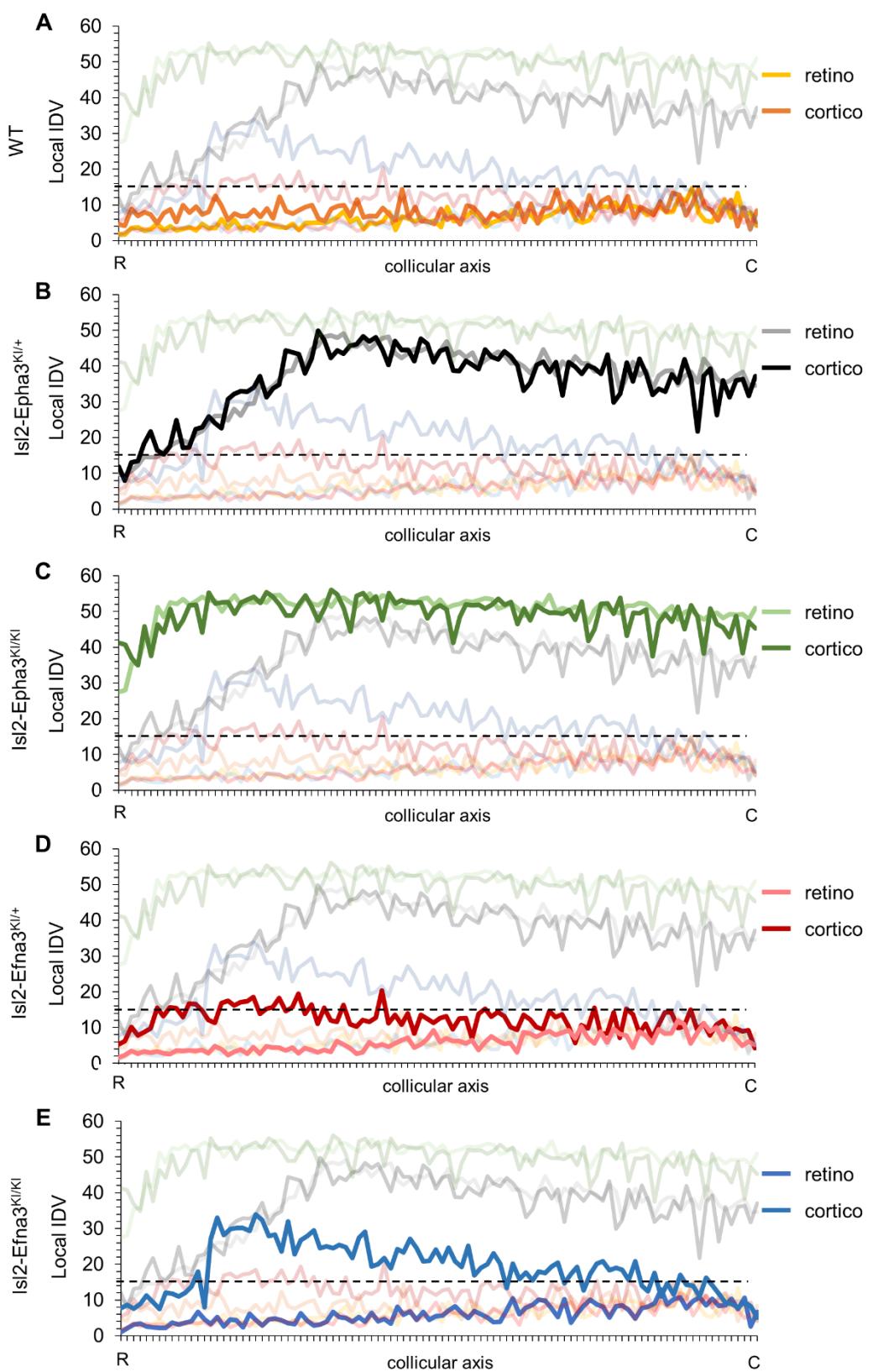
331 **Figure 4 - Intrinsic dispersion index (IDI) and alignment index (AI) in *Isl2-Epha3KI* and *Isl2-***
332 ***Efna3KI* animal models.**

333 **A.** Violin plot representation of the median IDIs (from $n = 10$ simulated maps, each composed of
334 100 projections) in WT, *Isl2-Epha3KI* and *Isl2-Efna3KI* animal models. Mann-Whitney test: WT
335 IDI_{retino} vs. *Isl2-Epha3^{KI/+}* IDI_{retino}, z-score = 12.08, effect r = 0.85, p = 6E-55; WT IDI_{cortico} vs. *Isl2-*
336 *Epha3^{KI/+}* IDI_{cortico}, z-score = 12.04, effect r = 0.85, p = 8E-52; *Isl2-Epha3^{KI/+}* IDI_{retino} vs *Isl2-*
337 *Epha3^{KI/KI}* IDI_{retino}, z-score = 11.25, effect r = 0.80, p = 2E-39; *Isl2-Epha3^{KI/+}* IDI_{cortico} vs *Isl2-*
338 *Epha3^{KI/KI}* IDI_{cortico}, z-score = 10.53, effect r = 0.74, p = 1E-32; WT IDI_{cortico} vs *Isl2-Efna3^{KI/+}* IDI_{cortico},
339 z-score = 8.30, effect r = 0.59, p = 1E-18; WT IDI_{cortico} vs *Isl2-Efna3^{KI/KI}* IDI_{cortico}, z-score = 10.37,
340 effect r = 0.73, p = 3E-31; *Isl2-Efna3^{KI/+}* IDI_{cortico} vs *Isl2-Efna3^{KI/KI}* IDI_{cortico}, z-score = 6.93, effect r =
341 0.49, p = 6E-13; *** p < 0.001.

342 **B, C, D, E, F.** Representation and superimposition of simulated retino-collicular (white dots) and
343 cortico-collicular (black dots) maps in WT (B), *Isl2-Epha3^{KI/+}* (C), *Isl2-Epha3^{KI/KI}* (D), *Isl2-Efna3^{KI/+}*
344 (E) and *Isl2-Efna3^{KI/KI}* (F) animals (representative of $n = 10$ runs).

345 **G.** Box plot representation of median AI (from $n = 20$ simulated retino/cortico-collicular maps) in
346 WT, *Isl2-Epha3^{KI/+}*, *Isl2-Epha3^{KI/KI}*, *Isl2-Efna3^{KI/+}* and *Isl2-Efna3^{KI/KI}* animals. Mann-Whitney test: AI
347 AI WT vs. AI *Isl2-Epha3^{KI/+}*, z-score = 1.62, effect r = 0.26 p = 0.10; AI WT vs. AI *Isl2-Epha3^{KI/KI}*, z-
348 score = 0.11, effect r = 0.02, p = 0.90; AI WT vs AI *Isl2-Efna3^{KI/+}*, z-score = 5.40, effect r = 0.85, p
349 = 1.45E-11; AI WT vs AI *Isl2-Efna3^{KI/KI}*, z-score = 5.40, effect r = 0.85, p = 1.45E-11. *** p < 0.001.

350 Abbreviations: IDI, intrinsic dispersion index; AI, alignment index; WT, wildtype; N, nasal; T,
351 temporal; R, rostral; C, caudal; M, medial; L, lateral.


352

353

354 We undertook a more detailed analysis of the mapping organization and alignment by
355 implementing the local “intrinsic dispersion variation” (IDV) (y axis) for each retino- and cortico-
356 collicular maps along the rostral-caudal axis of the SC (x axis, Fig 5). Median local IDVs indicate
357 the degree of dispersion and alignment as a function of the position along the rostral-caudal axis
358 in the SC. In WT (Fig 5A), *Isl2-Epha3^{KI/+}* (Fig 5B) and *Isl2-Epha3^{KI/KI}* (Fig 5C), median local IDVs
359 between retino- and cortico-collicular maps are similar and covary (> 0) (WT retino/cortico: Jaccard
360 similarity index = 0.60 -indicating 60% overlap- covariance = 1.64; *Isl2-Epha3^{KI/+}* retino/cortico:
361 Jaccard similarity index = 0.30, covariance = 88.2; *Isl2-Epha3^{KI/KI}* retino/cortico: Jaccard similarity

362 index = 0.55, covariance = 12.8), indicating that the maps are aligned. This is in sharp contrast to
363 the *Isl2-Efna3*^{KI/+} (Fig 5D) and *Isl2-Efna3*^{KI/KI} (Fig 5E) animals where median local retino- and
364 cortico-collicular IDVs variation do not superimpose nor covary (*Isl2-Efna3*^{KI/+} retino/cortico: Jaccard similarity
365 index = 0.17, covariance = -1.99; *Isl2-Efna3*^{KI/KI} retino/cortico: Jaccard similarity
366 index = 0.08, covariance = -4.13). Moreover, values of IDV are indicative of map dispersion along
367 the RC axis in the SC. We calculated a cut-off value of median local IDV based on WT
368 retino/cortico-collicular maps organization (median local IDV_{threshold} = 14.7, the minimum local IDV,
369 dashed black line in Fig 5) corresponding to the WT maps dispersion. Values greater than the
370 local IDV_{threshold}, indicate a duplication of the map, while values below this threshold indicate a
371 single map. In WT (Fig 5A, yellow), *Isl2-Efna3*^{KI/+} (Fig 5D, light red) and *Isl2-Efna3*^{KI/KI} (Fig 5E, light
372 blue), median local IDV_{retino} representations suggest a similar dispersion along the RC axis with all
373 IDV values below IDV_{threshold} indicating single maps and corresponding to experimental
374 observations (Savier et al., 2017). In *Isl2-Epha3*^{KI/+} IDV_{retino} and IDV_{cortico} (Fig 5B), *Isl2-Epha3*^{KI/KI}
375 IDV_{retino} and IDV_{cortico} (Fig 5C), *Isl2-Efna3*^{KI/+} IDV_{cortico} (Fig 5D, dark red) and *Isl2-Efna3*^{KI/KI} IDV_{cortico}
376 (Fig 5E, dark blue), values are above IDV_{threshold}, indicating map duplication. More precisely, in
377 *Isl2-Epha3*^{KI/+} animals, median local IDV_{retino} and median local IDV_{cortico} reach IDV_{threshold} at 12%
378 and at 8% of the rostral-caudal axis in the SC respectively (Fig 5B) consistent with the position of
379 the collapse points described earlier (Brown et al., 2000; Savier et al., 2017 and Fig 3B, D). This
380 suggests single retino- and cortico-collicular maps in the rostral-most pole of the SC and a
381 duplicated visual maps from 8%-12% to 100% of the rostral-caudal axis as shown experimentally
382 and theoretically (Brown et al., 2000; Savier et al., 2017; Fig 3B, D). In *Isl2-Epha3*^{KI/KI} animals, both
383 retino- and cortico- median local IDV > IDV_{threshold} along the entire rostral-caudal axis (Fig 5C),
384 indicating full retino- and cortico-collicular maps duplication as shown experimentally (Brown et
385 al., 2000; Triplett et al., 2009; Fig 3F, H). Finally, for both *Isl2-Efna3*^{KI/+} and *Isl2-Efna3*^{KI/KI} cortico-
386 collicular maps (Fig 5D, dark red, Fig 5E, dark blue, respectively) local IDVs oscillate around the
387 IDV_{threshold} with a more pronounced effect in the rostral-half of the SC in *Isl2-Efna3*^{KI/KI} indicating

388 partial duplications of the cortico-collicular maps in these animals, as demonstrated *in vivo* (Savier
389 et al., 2017). Retino-collicular median local IDVs in *Isl2-Efna3^{KI/+}* and *Isl2-Efna3^{KI/KI}* animals (Fig
390 5D pink line, Fig 5E light blue line, respectively) fall below $IDV_{threshold}$ indicating single maps as
391 demonstrated previously (Savier et al., 2017). Altogether these results suggest that IDIs, AIs and
392 median local IDVs are relevant, reliable and accurate indicators of visual maps organization and
393 conformation.

395 **Figure 5 - Local intrinsic dispersion variation (local IDV) in WT, Isl2-Epha3KI and Isl2-
396 Efna3KI animal models.**

397 **A, B, C, D, E.** Representation of the local IDV values for both retinal (light colors) and cortical (dark
398 colors) projections along the rostral R (0%) – caudal C (100%) axis of the SC in WT (A), Isl2-
399 Epha3^{KI/+} (B), Isl2-Epha3^{KI/KI} (C), Isl2-Efna3^{KI/+} (D) and Isl2-Efna3^{KI/KI} (E) animals (representative of
400 n = 10 runs). Dashed line represents the threshold above which maps are duplicated.
401 Abbreviations: IDV, intrinsic dispersion variation; WT, wildtype; R, rostral; C, caudal.

402

403 **Discussion**

404 **The 3-step map alignment model replicates other visual map-defective mutants**

405 Taken together, these experimental and theoretical results confirm the validity and robustness of
406 the 3-step map alignment algorithm in predicting retino- and cortico-collicular maps formation and
407 alignment during development. These findings broaden the simulation capacity of the model to the
408 formation and alignment of visual maps in Isl2-Epha3KI mutant animals originally described in
409 2000 (Brown et al., 2000). After 10^7 iterations per run, the algorithm generates retino-collicular
410 maps for Isl2-Epha3^{KI/+} heterozygous and Isl2-Epha3^{KI/KI} homozygous animals. In Isl2-Epha3^{KI/KI},
411 the simulated retino-collicular map is fully duplicated, as described *in vivo* (Brown et al., 2000;
412 Reber et al., 2004; Fig 2Q, 3F) whereas in the Isl2-Epha3^{KI/+}, the simulated retino-collicular
413 duplication collapses at approximately 80% of the nasal-temporal axis, similarly to previous results
414 (Brown et al., 2000; Reber et al., 2004; Fig 2K, 3B). More recent experimental analyses show a
415 collapse point appearing within a range of 74% to 80% of the nasal-temporal axis (Savier et al.,
416 2017) in contrast to previous results indicating a collapse at 76% of the nasal-temporal axis (Brown
417 et al., 2000; Reber et al., 2004). This discrepancy might be explained by the measurement
418 methods which differ between the original Brown et al. publication (Brown et al., 2000) and the
419 recent Savier et al. (Savier et al., 2017) and here (Fig 3B, D, E, F). In the last two, the Locally
420 Weighted Scatterplot Smoothing (LOWESS) cross validation method (Efron and Tibshirani, 1991)
421 was used on both experimental and simulated maps providing a range of values, instead of a

422 given value as performed in Brown et al. (Brown et al., 2000), for the occurrence of the collapse
423 point along the nasal-temporal axis (see also Fig 6 Sup. Fig 1 in Savier et al., 2017). In *Isl2-*
424 *Epha3*^{KI} animals, the lower retino-collicular maps corresponds to *Isl2*(+) *Epha3*-expressing RGCs,
425 covering 0% to 50% of the rostral-caudal axis in the *Isl2-Epha3*^{KI/KI} and 0% to 80% of the axis in
426 *Isl2-Epha3*^{KI/+} (Fig 5, 6 in Brown et al., 2000). The upper map, corresponding to the *Isl2*(-) WT
427 RGCs, covers the caudal half (50% to 100%) of the rostral-caudal axis of the SC in *Isl2-Epha3*^{KI/KI}
428 and 20%-100% of the axis in *Isl2-Epha3*^{KI/+} (Fig 5, 6 in Brown et al., 2000). In both contexts, nasal
429 *Isl2*(-) RGCs, expressing high levels of Efnas, project to caudal locations in the SC whereas nasal
430 *Isl2*(+) RGCs, also carrying high levels of Efnas, project ectopically in a more rostral part of the
431 SC, where the WT levels of retinal Efnas are normally low (compare Fig 2C with Fig 2I and 2O;
432 see also Fig 6). Such distribution of RGC projections in the SC in both *Isl2-Epha3*^{KI/KI} and *Isl2-*
433 *Epha3*^{KI/+} animals leads to a perturbation of the transposed retinal Efnas gradient in the SC,
434 generating duplicated Efnas gradient along the rostral-caudal axis in both genotypes (Fig 2I, O,
435 Fig 6). Consequently, simulated cortico-collicular maps are also duplicated for both *Isl2-Epha3*^{KI/+}
436 and *Isl2-Epha3*^{KI/KI} and further align with the duplicated retino-collicular maps as confirmed by *in*
437 *vivo* analyses (Fig 3D, H, Fig 6).

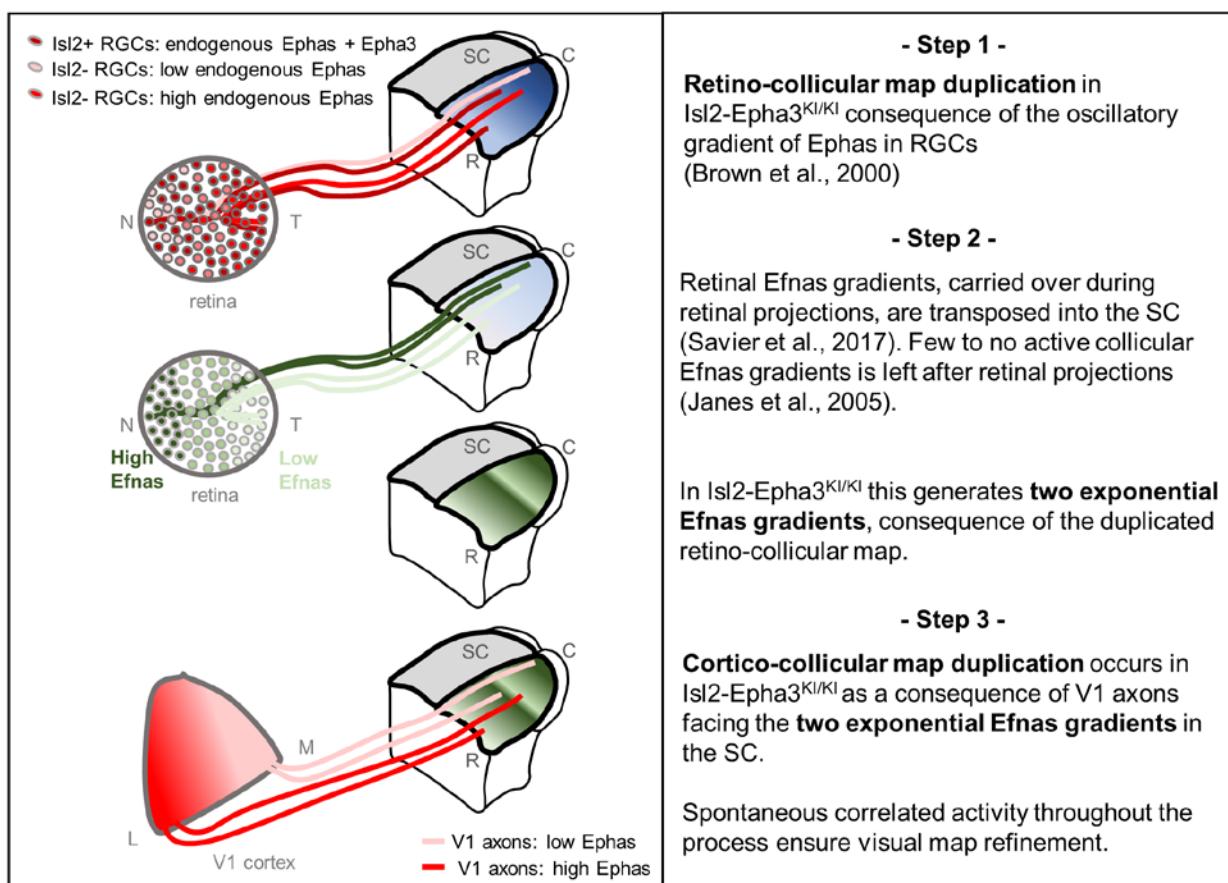
438

439

440

441

442


443

444

445

446

447

448 **Figure 6 - Proposed mechanism of visual maps duplication and alignment in *Isl2-Epha3^{KI}***
 449 **animals based on the 3-step map alignment model.**

450 **Step 1:** *Isl2(+)* RGCs expressing WT levels Ephas + ectopic Eph3 (dark red) and *Isl2(-)* RGCs
 451 expressing WT levels of Ephas (light red to red) send their axons into the SC during the first
 452 postnatal week. These retino-collicular projections form a duplicated map due to the oscillatory
 453 gradient of Ephas receptors in the RGCs reading the WT collicular Efnas gradients (blue R-C
 454 gradient in SC) through forward signaling.

455 **Step 2:** Retinal Efnas gradients (high Efnas-nasal-dark green, low Efnas-temporal-light green) are
 456 carried to the SC during the formation of the retino-collicular projections. This transposition of
 457 retinal Efnas generates two exponential gradients of Efnas in the SC, due to the duplication of the
 458 retino-collicular map and replaces the WT collicular Efnas gradients previously used by the RGCs
 459 axons (Janes et al., 2005)

460 **Step 3:** V1 axons, expressing smooth gradients of Ephas receptors (light red – red), are facing
 461 two exponential gradients of Efnas, of retinal origin, in SC. Through forward signaling, this 2
 462 exponential Efnas gradients generate a duplication of the cortico-collicular projections, which
 463 aligns with the retino-collicular map.

464 Abbreviations: N, nasal; T, temporal; M, medial; L, lateral; R, rostral; C, caudal; SC, superior
465 colliculus; RGCs, retinal ganglion cells

466

467

468 **The basic maps organization principle encoded in the 3-step map alignment model**
469 **provides an alternative explanation for map alignment defects in *Isl2-Epha3KI* animals.**

470 Our quantification of Epha and Efna throughout the visual system revealed that the ectopic over-
471 expression of Epha3 in the retina has no effect on the expression of Efna in this structure. These
472 findings exclude a potential alteration of the endogenous gradient of Efna in the retina. Previous
473 studies (Triplett et al., 2009) suggested that the redistribution of the correlated activity was
474 responsible for the duplication of the cortico-collicular map. Our results suggest an alternative,
475 although complementary mechanism, in which the redistribution of the molecular cues carried by
476 retinal axons during the formation of a duplicated retino-collicular map is sufficient to induce a
477 collicular duplication of the projections coming from V1 (Fig. 6). As mentioned earlier (Savier et
478 al., 2017), in this context retinal Efna, free or bound to Ephas to a limited amount (Suetterlin and
479 Drescher, 2014), retain their binding activity in the SC for incoming V1 axons carrying Ephas
480 receptors. Since the retino-collicular map is duplicated in the *Isl2-Epha3KI*, the nasal-temporal
481 axis of the retina, along which the retinal Efna gradient runs, is represented twice in the collicular
482 space. This rearrangement of the retinal Efna transposed to the SC generates a duplicated
483 gradient which is then encountered by the incoming cortical V1 axons. At this point in development,
484 the endogenous collicular Efna are not available anymore as, for the most part, they have been
485 endocytosed upon trans-binding with Ephas on retinal axons (Janes et al., 2005; Savier
486 et al., 2017). As a consequence, the optimal local amount of transposed Efna signalling the
487 corresponding retinotopic position to V1 axons exists at two distinct locations along the rostral-
488 caudal axis, leading to duplication of the cortico-collicular map. Our previous findings in the
489 characterization of the *Isl2-Efna3KI* mutant revealed an incomplete penetrance of the cortico-

490 collicular duplication phenotype, suggesting a counter-balancing role of the correlated activity
491 within the normal retino-collicular map. For the *Isl2-Epha3KI*, the correlated activity is also
492 duplicated along the rostro-caudal axis, due to the duplicated retino-collicular map, reinforcing this
493 “duplication” effect and leading to a stronger penetrance of the phenotype. To further test this
494 hypothesis, it would be interesting to selectively manipulate correlated activity during development
495 in either the retina, the SC or V1. Our current conceptual framework suggests that altering the
496 activity in the SC would still result in a duplication of the cortico-collicular map of the *Isl2-Epha3KI*
497 and an increase in the amount of cortico-collicular duplication in the *Isl2-Efna3KI*. Moreover,
498 mapping and alignment along the lateral-medial axis of the SC involving EphB/Efnb signalling is
499 not addressed here as the *Isl2-Epha3KI* animals only present mapping defect along the rostral-
500 caudal axis (Brown et al., 2000; Triplett et al., 2009).

501

502 **Quantifying the degree of maps alignment and organization**

503 We performed a quantitative analysis of the degree of visual maps organization, implementing the
504 intrinsic dispersion index (IDI) for each visual map, the mean alignment index (AI) (Fig 4) and the
505 local intrinsic dispersion variation (local IDV) (Fig 5). These indexes objectively describe and
506 quantify the degree of organization and conformation of both retino- and cortico-collicular maps,
507 providing a detailed measure of the dispersion of each map and a measure of the degree of
508 alignment between the maps as a whole and locally. In general, the experimental number of
509 measured projections is low, approximately $n = 15$ to 20 total, compared to the $n = 100$ (or more)
510 projections generated by the algorithm. This suggests that, if the algorithm accurately simulates
511 maps organization, the indicators, IDI, AI and local IDVs, inferred from this algorithm are more
512 precise and refined than those inferred from experimental maps. As demonstrated above, the 3-
513 step map alignment algorithm simulates and predicts visual map defects in *Isl2-Epha3KI* animals
514 as well as in other animal models (Savier et al., 2017) indicating its reliability and robustness;
515 therefore, we inferred the IDIs AIs and local IDVs from the algorithm-generated maps for each

516 genotype. An increase of both IDIs and local IDVs in *Isl2-Epha3*^{KI/+} and *Isl2-Epha3*^{KI/KI} animals
517 correlates with increased spreading of the visual maps, consequence of the duplicated retino- and
518 cortico-collicular projections. By contrast, AI values in these animals are similar to WT, indicating
519 alignment of the retino- and cortico-collicular maps, as observed *in vivo*. The relevance of the 3-
520 step map alignment algorithm and the validity of the map organization indexes are further
521 confirmed by the analysis of map organization in the previously characterized *Isl2-Efna3*^{KI}
522 animals. Here, IDIs, AIs and local IDVs generated by the algorithm predict visual map organization
523 as previously shown *in vivo* (Savier et al., 2017). High AI values ($> 2.5 = \text{WT median} + 95\% \text{ CI}$)
524 indicate a significant misalignment between retino- and cortico-collicular projections, in particular
525 in *Isl2-Efna3*^{KI/KI} (confirmed by the low Jaccard similarity index and negative covariance). Such
526 misalignment is also indicated by a significant difference in dispersion (IDI) of the cortico-collicular
527 map when compared to the retino-collicular map ($\text{IDI}_{\text{retino}} \neq \text{IDI}_{\text{cortico}}$). These observations are further
528 validated and confirmed by the local IDVs graph (Fig 5) which delivers detailed information about
529 the conformation of the maps along the rostral-caudal axis of the SC. Descriptive analyses of the
530 IDVs using Jaccard similarity index and covariance guarantees robust data as to the degree of
531 similarity of the maps (Metcalf and Casey, 2016). The implementation of these indexes provides
532 a very detailed and robust analysis of the layout and a qualitative measure of the organization and
533 alignment of the visual maps in different mice genetic models. It would also be interesting to
534 characterize other compound mutants which present more separated maps but high alignment
535 like the *Isl2-Epha3*^{KI}/ *Epha4*^{KO} (Reber et al., 2004) or the *Isl2-Epha3*^{KI}/ *Epha5*^{KO} (Bevins et al.,
536 2011) double mutants.

537

538 Materials and Methods

539 Retinal ganglion cell isolation.

540 P1/P2 retinas were freshly dissected and RGCs were isolated and purified (>99%). For details see
541 (Steinmetz et al., 2006) and (Claudepierre et al., 2008). Briefly, cells were harvested in Neurobasal

542 medium (Gibco/Invitrogen) supplemented with (all from Sigma, except where indicated) pyruvate
543 (1 mM), glutamine (2 mM; Gibco/Invitrogen), N-acetyl-l-cysteine (60 mg/ml), putrescine (16
544 mg/ml), selenite (40 ng/ml), bovine serum albumin (100 mg/ml; fraction V, crystalline grade),
545 streptomycin (100 mg/ml), penicillin (100 U/ml), triiodothyronine (40 ng/ml), holotransferrin (100
546 mg/ml), insulin (5 mg/ml) and progesterone (62 ng/ml), B27 (1:50, Gibco/Invitrogen), brain-derived
547 neurotrophic factor (BDNF; 25 ng/ml; PeproTech, London, UK), ciliary neurotrophic factor (CNTF;
548 10 ng/ml; PeproTech) and forskolin (10 mM; Sigma). After isolation, RGCs were treated for RNA
549 extraction.

550

551 **Quantitative RT-PCR.**

552 V1 cortices, superficial layers of the SC and retinas were freshly dissected. Retinas were cut in
553 three equal pieces along the NT axis (Nasal, Central, Temporal RGCs) and RGCs acutely isolated
554 (Steinmetz et al., 2006; Claudepierre et al., 2008; see above). Total RNA was extracted and
555 quantified as previously described (Savier et al., 2017). Briefly, relative quantification was
556 performed using the comparative Delta Ct method. Duplicates were run for each sample and
557 concentrations for the target gene and for two housekeeping genes (hypoxanthine-guanine
558 phosphoribosyl transferase - Hprt and glyceraldehyde 3-phosphate dehydrogenase – Gapdh)
559 were computed.

560

561 **Projections analysis/mapping.**

562 Anterograde Dil (1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate) or DiD (1,1'-
563 dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate) labelling were
564 performed blind to genotype as described (Savier et al., 2017). Retinas were dissected and
565 imaged using Leica microscope (MG0295) and LASAF software. Retino-collicular projection
566 coordinates of the Dil injections were calculated as described (Brown et al., 2000; Reber et al.,
567 2004; Bevins et al., 2011). For cortico-collicular map analyses, sagittal vibratome sections were

568 performed on P14 SC and terminal zones (TZs) were plotted along the rostral-caudal axis on
569 Cartesian coordinates (y axis). V1 were photographed as whole-mount and focal injections plotted
570 along the V1 lateral-medial axis (x axis) (Savier et al., 2017; Triplett et al., 2009). Cortico-collicular
571 maps were generated using non-parametric smoothing technique, termed LOESS smoothing
572 (Efron and Tibshirani, 1991), to estimate the profile of the one-dimensional mapping from V1 to
573 SC. To estimate the variability in a mapping containing N data points, we repeated the procedure
574 N times with N-1 datapoints, each time dropping a different datapoint. This is termed a 'leave-one-
575 out' method and was used in the R Project for Statistical Computing (RRID:SCR_001905). V1
576 area was determined by CO staining as described (Savier et al., 2017; Zembrzycki et al., 2015)
577 and shown on Figure 3C, lower left panel. All animal procedures were in accordance with national
578 (council directive 87/848, October 1987), European community (2010/63/EU) guidelines and
579 University Health Network. Official agreement number for animal experimentation is A67-395,
580 protocol number 01831.01 and AUP 6066.4 (M.R).

581

582 **In silico simulations of the retino- and cortico-collicular maps.**

583 In the 3-step map alignment model, Ephas/Efnas forward signaling level is modelled by
584 experimentally measured and estimated values of graded expression levels of Epha receptors (EphA3/4/5/6/7) and Efna ligands (Efna2/3/5) in RGCs, SC and V1 cortex, as previously described
585 (Tsigankov and Koulakov, 2006; Savier et al., 2017). Competition, where two RGCs/V1 neurons
586 cannot project to the same target in the SC, is modelled by indexation of 100 RGCs/V1 neurons
587 projecting to 100 positions in the SC (Koulakov and Tsigankov, 2004; Tsigankov and Koulakov,
588 2006; Savier et al., 2017). Contribution of correlated neuronal activity -assuming Hebbian plasticity
589 between RGC/V1 axons and collicular neurons in the SC- is modelled by pair-wise attraction
590 inversely proportional to the distance between two RGC/V1 neurons (Savier et al., 2017). The 3-
591 step map alignment algorithm first simulates the projection of 100 RGCs along the nasal-temporal
592 axis of the retina mapping onto the rostral-caudal axis of the SC (the retino-collicular map).

594 Second, according to the layout of this map, retinal Efna gradients are transposed along the
595 rostral-caudal axis of the SC. Third, the projections of 100 V1 neurons following the medial-lateral
596 axis of V1 cortex are simulated onto the rostral-caudal axis of the SC. Forward Ephas/Efnas
597 signaling is applied for both retino-collicular and cortico-collicular projections.

598 The 3-step map alignment model in MATLAB (RRID:SCR_001622) (Savier et al., 2017) was used
599 to simulate the formation of both the retino- and cortico-collicular maps in the presence of an
600 oscillatory Ephra gradient in the retina. Each brain structure (retina, SC, V1) is modelled as a 1-d
601 array of 100 neurons (N) in each network. Two maps are generated: first, the map from retina to
602 SC; second, the map from V1 to SC. Each map is modelled sequentially in the same way. This
603 model consists in the minimization of affinity potential (E) which is computed as follows:

604 $E = E_{act} + E_{chem}$

605 At each step, this potential is minimized by switching two randomly chosen axons probabilistically
606 to reduce the energy in the system by Delta E (ΔE). The probability of switching, p, is given by:

607
$$p = \frac{1}{(1 + e^{(4\Delta E)})}$$

608 E_{chem} is expressed as follows:

609
$$E_{chem} = \sum_{i \in synapses} \alpha (R_A(i) - R_A(j))(L_A(i') - L_A(j'))$$

610 where $\alpha = 200$ is the strength, $R_A(i)$ and $R_A(j)$ the Ephra receptor concentration in the retina and V1
611 at location (i) and (j) and $L_A(i')$ and $L_A(j')$ the Efna ligand concentration at the corresponding position
612 (i') and (j') in the SC.

613 The contribution of activity-dependent process is modelled as:

614
$$E_{act} = -\frac{\gamma}{2} \sum_{i,j \in synapses} C_{ij} U(r)$$

615 where $\gamma = 1$ is the strength parameter, C_{ij} is the cross-correlation of neuronal activity between two
616 RGCs (or V1) neurons during spontaneous activity located in (i) and (j), and U simulates the

617 overlap between two SC cells. Here, we use $C_{ij} = e^{\frac{-r}{R}}$, where r is the retinal distance between
618 RGC (i) and (j), $R = b \times N$, with $b=0.11$ and $U(r') = e^{\frac{-r'^2}{2d^2}}$, where r' is the distance between two
619 SC points (i', j'), $d = 3$ and $N = 1$ to 100 neurons. Parameters of the model are presented Table 1.
620

621 **Gradients of ligands and receptors.**

622 Retinal EphA gradients:

623 Measured gradients of EphA receptors (R_{EphA}) in RGCs along the nasal-temporal axis (x) R_{EphA}
624 (x)^{retina} (Figure 2A, G, M, Brown et al., 2000; Reber et al., 2004) are modelled by two equations,
625 one corresponding to *Isl2*(+) RGCs expressing WT levels of Ephas + EphA3 and the second
626 corresponding to *Isl2*-negative (*Isl2*-) RGCs expressing the WT level of Ephas only:

627 $R_{EphA\ Isl2+}(x)^{retina} = R_{EphA5}(x) + R_{EphA6}(x) + R_{EphA4} + R_{EphA3}$

628 $= 0.14e^{0.018x} + 0.09e^{0.029x} + 1.05 + R_{EphA3}$

629 $R_{EphA\ Isl2-}(x)^{retina} = R_{EphA5}(x) + R_{EphA6}(x) + R_{EphA4}$

630 $= 0.14e^{0.018x} + 0.09e^{0.029x} + 1.05$

631 With $R_{EphA3} = 0.93$ in *Isl2*-EphA3^{KI/+} and $R_{EphA3} = 1.86$ in *Isl2*-EphA3^{KI/KI}, since EphA3 expression
632 level depend on the number of copies of the knocked-in allele (Brown et al., 2000; Reber et al.,
633 2004). The oscillatory gradient was generated by randomly attributing to 50% of collicular TZs an
634 over-expression of EphA3 in a genotype-dependent manner.

635

636 Collicular Efna gradient:

637 Estimated gradients of Efna ligands (L_{Efna}) in the SC along the rostral-caudal axis (x), $L_{Efna}(x)^{SC}$
638 (Figure 2B, (Cang et al., 2005; Savier et al., 2017; Tsigankov and Koulakov, 2010, 2006)):

639 $L_{Efna}(x)^{SC} = e^{(x-100)100} - e^{(-x-100)/100}$

640

641

642 Cortical V1 EphA gradients:

643 Estimated gradient of EphA receptors (R_{EphA}) in V1 along the medial-lateral axis (x), $R_{EphA}(x)^{V1}$

644 (Tsigankov and Koulakov, 2010, 2006) for all genotypes:

645 $R_{EphA}(x)^{V1} = e^{(-x/100)} - e^{(x-200)/100} + 1$

646

647 Retinal Efna gradients:

648 Measured gradients of Efna ligands in RGCs along the nasal-temporal axis $L_{Efna}(x)^{retina}$ (Savier et al., 2017) for all genotypes :

650 $L_{Efna}(x)^{retina} = L_{Efna5}(x)^{retina} + L_{Efna2}(x)^{retina} + L_{Efna3}^{retina} = 1.79 e^{-0.014x} + 1.85 e^{-0.008x} + 0.44$

651

652 Retinal Efna gradients transposition:

653 When transposed along the rostral-caudal axis in the SC (retina -> SC), retinal Efna gradients are flipped along the x axis and become:

655 $L_A(x)^{retina \rightarrow SC} = (1/1.78) e^{(-0.014(100-x))} + (1/1.85) e^{(-0.008(100-x))} + 0.44$

656 $L_A(x)^{retina \rightarrow SC} = 0.56 e^{(0.014x)} + 0.54 e^{(0.008x)} + 0.44$

657

658 **Intrinsic Dispersion Index (IDI) – Local intrinsic Dispersion variation (IDV) - Alignment Index (AI).**

660 The intrinsic dispersion index and local intrinsic variation, corresponding to the degree of dispersion of the maps are calculated by:

662 $IDI = (\sqrt{\sum_{x=1}^{100} (y(x) - \bar{y})^2}) / 100$ (specific to each retino- and cortico-collicular map).

663 $Local\ IDV = \sqrt{\sum_{x=1}^{100} (y(x+1) - y(x))^2}$ (specific to each retino- and cortico-collicular map)

664 The alignment index is calculated by:

665 $AI = \frac{1}{100} \sum_{x=1}^{100} |y_{x\ retina} - y_{x\ cortico}|$

666 **Statistical analysis.**

667 Comparison of relative Efna/ EphA mRNA expression levels in SC and V1 in *Isl2-Epha3^{KI/KI}* animals
668 relative to WT were performed by one sample t-test, reference value = 1 as described in (Savier
669 et al., 2017). Comparison of relative Efna expression levels, relative to WT Nasal in Nasal,
670 Central and Temporal WT and *Isl2-Epha3^{KI/KI}* were performed by the two-way ANOVA without
671 replication (Efna x genotype comparison). Experimental and simulated visual maps were
672 compared using Kolmogorov-Smirnov 2-sample test.

673 Descriptive analysis of IDV curves were performed using:

674 - the Jaccard similarity index (J), which indicates the degree of similarity of two sets of data, varies
675 between J = 0 (no similarity) and J = 1 (perfect similarity) and is calculated as follow (Metcalf and
676 Casey, 2016):

677
$$J_{(X, Y)} = (|X \cap Y| / |X \cup Y|)$$

678 - covariance cov (x, y):

679
$$\text{Cov} (x, y) = (\sum (x_i - \bar{x}) (y_i - \bar{y})) / N$$

680 where Cov > 0 indicates similar trend and Cov < 0 indicates opposite trend.

681

682 **Data Availability**

683 Leave-one-out ‘Leave-one-out’ script in R: <https://github.com/michaelreber/Leave-one-out-LOESS/blob/master/wtloess.R>

685 3-step map alignment model 3-step map alignment script in MATLAB:
686 <https://github.com/michaelreber/3-step-Map-Aligment-Model>

687

688 **Acknowledgements**

689 We are grateful to Amelie Barthelemy and Frank Pfrieger, CNRS UPR3212 Strasbourg France for
690 technical advice on retinal ganglion cell isolation. This work was supported by USIAS - University

691 of Strasbourg, CNRS and start-up funds from the DKJ Eye Institute, Krembil Research Institute,
692 University Health Network.

693

694 **Author Contributions**

695 E.S. and M.R. designed and performed the experiments, implemented the 3-step map alignment
696 algorithm, analyzed the results, wrote and edited the manuscript. K.C performed qRT-PCR and
697 projections tracing. J.D. performed algorithm implementation, projections tracing and edited the
698 manuscript. Material requests and correspondence should be addressed to M.R. email:
699 michael.reber@uhnresearch.ca.

700

701 **Competing interests**

702 Authors declare having no conflict of interest.

703

704 **References**

705 Ackman JB, Crair MC. 2014. Role of emergent neural activity in visual map development. *Curr
706 Opin Neurobiol* **24**:166–175. doi:10.1016/j.conb.2013.11.011

707 Basso MA, May PJ. 2017. Circuits for Action and Cognition: A View from the Superior Colliculus.
708 *Annu Rev Vis Sci* **3**:197–226. doi:10.1146/annurev-vision-102016-061234

709 Bevins N, Lemke G, Reber M. 2011. Genetic dissection of EphA receptor signaling dynamics
710 during retinotopic mapping. *J Neurosci Off J Soc Neurosci* **31**:10302–10310.
711 doi:10.1523/JNEUROSCI.1652-11.2011

712 Brown A, Yates PA, Burrola P, Ortuño D, Vaidya A, Jessell TM, Pfaff SL, O’Leary DD, Lemke G.
713 2000. Topographic mapping from the retina to the midbrain is controlled by relative but
714 not absolute levels of EphA receptor signaling. *Cell* **102**:77–88.

715 Cang J, Feldheim DA. 2013. Developmental mechanisms of topographic map formation and
716 alignment. *Annu Rev Neurosci* **36**:51–77. doi:10.1146/annurev-neuro-062012-170341

717 Cang J, Kaneko M, Yamada J, Woods G, Stryker MP, Feldheim DA. 2005. Ephrin-as guide the
718 formation of functional maps in the visual cortex. *Neuron* **48**:577–589.
719 doi:10.1016/j.neuron.2005.10.026

720 Claudepierre T, Koncina E, Pfrieger FW, Bagnard D, Aunis D, Reber M. 2008. Implication of
721 neuropilin 2/semaphorin 3F in retinocollicular map formation. *Dev Dyn Off Publ Am
722 Assoc Anat* **237**:3394–3403. doi:10.1002/dvdy.21759

723 Efron B, Tibshirani R. 1991. Statistical data analysis in the computer age. *Science* **253**:390–395.
724 doi:10.1126/science.253.5018.390

725 Feldheim DA, Kim YI, Bergemann AD, Frisén J, Barbacid M, Flanagan JG. 2000. Genetic
726 analysis of ephrin-A2 and ephrin-A5 shows their requirement in multiple aspects of
727 retinocollicular mapping. *Neuron* **25**:563–574.

728 Feldheim DA, Vanderhaeghen P, Hansen MJ, Frisén J, Lu Q, Barbacid M, Flanagan JG. 1998.
729 Topographic guidance labels in a sensory projection to the forebrain. *Neuron* **21**:1303–
730 1313.

731 Goodhill GJ, Xu J. 2005. The development of retinotectal maps: a review of models based on
732 molecular gradients. *Netw Bristol Engl* **16**:5–34.

733 Grimbart F, Cang J. 2012. New model of retinocollicular mapping predicts the mechanisms of
734 axonal competition and explains the role of reverse molecular signaling during
735 development. *J Neurosci Off J Soc Neurosci* **32**:9755–9768.
736 doi:10.1523/JNEUROSCI.6180-11.2012

737 Hjorth JJJ, Sterratt DC, Cutts CS, Willshaw DJ, Eglen SJ. 2015. Quantitative assessment of
738 computational models for retinotopic map formation. *Dev Neurobiol* **75**:641–666.
739 doi:10.1002/dneu.22241

740 Honda H. 2004. Competitive interactions between retinal ganglion axons for tectal targets
741 explain plasticity of retinotectal projection in the servomechanism model of retinotectal
742 mapping. *Dev Growth Differ* **46**:425–437. doi:10.1111/j.1440-169x.2004.00759.x

743 Honda H. 2003. Competition between retinal ganglion axons for targets under the
744 servomechanism model explains abnormal retinocollicular projection of Eph receptor-
745 overexpressing or ephrin-lacking mice. *J Neurosci Off J Soc Neurosci* **23**:10368–10377.

746 Janes PW, Saha N, Barton WA, Kolev MV, Wimmer-Kleikamp SH, Nievergall E, Blobel CP,
747 Himanen J-P, Lackmann M, Nikolov DB. 2005. Adam meets Eph: an ADAM substrate
748 recognition module acts as a molecular switch for ephrin cleavage in trans. *Cell* **123**:291–
749 304. doi:10.1016/j.cell.2005.08.014

750 Khachab MY, Bruce LL. 1999. The maturation of corticocollicular neurons in mice. *Brain Res
751 Dev Brain Res* **112**:145–148.

752 Koulakov AA, Tsigankov DN. 2004. A stochastic model for retinocollicular map development.
753 *BMC Neurosci* **5**:30. doi:10.1186/1471-2202-5-30

754 Liang F, Xiong XR, Zingg B, Ji X, Zhang LI, Tao HW. 2015. Sensory Cortical Control of a
755 Visually Induced Arrest Behavior via Corticotectal Projections. *Neuron* **86**:755–767.
756 doi:10.1016/j.neuron.2015.03.048

757 Metcalf L, Casey W. 2016. Chapter 2 - Metrics, similarity, and sets In: Metcalf L, Casey W,
758 editors. *Cybersecurity and Applied Mathematics*. Boston: Syngress. pp. 3–22.
759 doi:10.1016/B978-0-12-804452-0.00002-6

760 Owens MT, Feldheim DA, Stryker MP, Triplett JW. 2015. Stochastic Interaction between Neural
761 Activity and Molecular Cues in the Formation of Topographic Maps. *Neuron* **87**:1261–
762 1273. doi:10.1016/j.neuron.2015.08.030

763 Peng J, Fabre PJ, Dolique T, Swikert SM, Kermasson L, Shimogori T, Charron F. 2018. Sonic
764 Hedgehog Is a Remotely Produced Cue that Controls Axon Guidance Trans-axonally at a
765 Midline Choice Point. *Neuron* **97**:326-340.e4. doi:10.1016/j.neuron.2017.12.028

766 Pfeiffenberger C, Yamada J, Feldheim DA. 2006. Ephrin-As and patterned retinal activity act
767 together in the development of topographic maps in the primary visual system. *J
768 Neurosci Off J Soc Neurosci* **26**:12873–12884. doi:10.1523/JNEUROSCI.3595-06.2006

769 Rashid T, Upton AL, Blentic A, Ciossek T, Knöll B, Thompson ID, Drescher U. 2005. Opposing
770 gradients of ephrin-As and EphA7 in the superior colliculus are essential for topographic
771 mapping in the mammalian visual system. *Neuron* **47**:57–69.
772 doi:10.1016/j.neuron.2005.05.030

773 Reber M, Burrola P, Lemke G. 2004. A relative signalling model for the formation of a
774 topographic neural map. *Nature* **431**:847–853. doi:10.1038/nature02957

775 Rhoades RW, Mooney RD, Fish SE. 1985. Subcortical projections of area 17 in the
776 anophthalmic mouse. *Brain Res* **349**:171–181. doi:10.1016/0165-3806(85)90141-5

777 Savier E, Eglen SJ, Bathélémy A, Perraut M, Pfeiffer FW, Lemke G, Reber M. 2017. A
778 molecular mechanism for the topographic alignment of convergent neural maps. *eLife* **6**.
779 doi:10.7554/eLife.20470

780 Savier E, Reber M. 2018. Visual Maps Development: Reconsidering the Role of Retinal Efnas
781 and Basic Principle of Map Alignment. *Front Cell Neurosci* **12**:77.
782 doi:10.3389/fncel.2018.00077

783 Shanks JA, Ito S, Schaevitz L, Yamada J, Chen B, Litke A, Feldheim DA. 2016. Corticothalamic
784 Axons Are Essential for Retinal Ganglion Cell Axon Targeting to the Mouse Dorsal
785 Lateral Geniculate Nucleus. *J Neurosci Off J Soc Neurosci* **36**:5252–5263.
786 doi:10.1523/JNEUROSCI.4599-15.2016

787 Simpson HD, Goodhill GJ. 2011. A simple model can unify a broad range of phenomena in
788 retinotectal map development. *Biol Cybern* **104**:9–29. doi:10.1007/s00422-011-0417-y

789 Steinmetz CC, Buard I, Claudepierre T, Nägler K, Pfrieger FW. 2006. Regional variations in the
790 glial influence on synapse development in the mouse CNS. *J Physiol* **577**:249–261.
791 doi:10.1113/jphysiol.2006.117358

792 Sterratt DC, Hjorth JJJ. 2013. Retinocollicular mapping explained? *Vis Neurosci* **30**:125–128.
793 doi:10.1017/S0952523813000254

794 Suetterlin P, Drescher U. 2014. Target-independent ephrina/EphA-mediated axon-axon
795 repulsion as a novel element in retinocollicular mapping. *Neuron* **84**:740–752.
796 doi:10.1016/j.neuron.2014.09.023

797 Triplett JW, Owens MT, Yamada J, Lemke G, Cang J, Stryker MP, Feldheim DA. 2009. Retinal
798 input instructs alignment of visual topographic maps. *Cell* **139**:175–185.
799 doi:10.1016/j.cell.2009.08.028

800 Triplett JW, Pfeiffenberger C, Yamada J, Stafford BK, Sweeney NT, Litke AM, Sher A, Koulakov
801 AA, Feldheim DA. 2011. Competition is a driving force in topographic mapping. *Proc Natl
802 Acad Sci U S A* **108**:19060–19065. doi:10.1073/pnas.1102834108

803 Tsigankov D, Koulakov AA. 2010. Sperry versus Hebb: topographic mapping in Isl2/EphA3
804 mutant mice. *BMC Neurosci* **11**:155. doi:10.1186/1471-2202-11-155

805 Tsigankov DN, Koulakov AA. 2006. A unifying model for activity-dependent and activity-
806 independent mechanisms predicts complete structure of topographic maps in ephrin-A
807 deficient mice. *J Comput Neurosci* **21**:101–114. doi:10.1007/s10827-006-9575-7

808 Willshaw D. 2006. Analysis of mouse EphA knockins and knockouts suggests that retinal axons
809 programme target cells to form ordered retinotopic maps. *Dev Camb Engl* **133**:2705–
810 2717. doi:10.1242/dev.02430

811 Willshaw DJ, Sterratt DC, Terakidis A. 2014. Analysis of local and global topographic order in
812 mouse retinocollicular maps. *J Neurosci Off J Soc Neurosci* **34**:1791–1805.
813 doi:10.1523/JNEUROSCI.5602-12.2014

814 Zembrzycki A, Stocker AM, Leingärtner A, Sahara S, Chou S-J, Kalatsky V, May SR, Stryker
815 MP, O’Leary DD. 2015. Genetic mechanisms control the linear scaling between related
816 cortical primary and higher order sensory areas. *eLife* **4**. doi:10.7554/eLife.11416

817 Zhao X, Liu M, Cang J. 2014. Visual cortex modulates the magnitude but not the selectivity of
818 looming-evoked responses in the superior colliculus of awake mice. *Neuron* **84**:202–213.
819 doi:10.1016/j.neuron.2014.08.037

820