

Impact of bead-beating intensity on microbiome recovery in mouse and human stool: *Optimization of DNA extraction*

Bo Zhang^{1*}, Matthew Brock^{1*}, Carlos Arana¹, Chaitanya Dende¹, Lora Hooper¹ and Prithvi Raj^{1*}

¹Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA *Microbiome Research Laboratory (MRL)

Correspondence:

Prithvi Raj, Microbiome Research Laboratory (MRL) Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Email:
prithvi.raj@utsouthwestern.edu

Keywords: Microbiome, 16S Sequencing, OTU, DNA extraction, Bead beating

1 **Abstract**

2 DNA extraction methods play an important role in the acquisition of accurate and reproducible
3 16S sequencing data in microbiome studies. In this study, we assessed the impact of bead-beating
4 intensity during DNA extraction on microbiome recovery in mouse and human stool. We observed
5 a higher DNA yield, better DNA integrity, higher *Shannon's entropy* and *Simpson's index* in
6 samples beaten for 4 and 9 minutes as compared to unbeaten samples. 16S sequencing data showed
7 that bead beating has a statistically-significant ($p<0.05$) impact on the recovery of many clinically
8 relevant microbes that live in the mouse and human gut, including *Bifidobacterium*, *Sutterella* and
9 *Veillonella*. It was observed that 4 minutes of bead beating promotes recovery of about 70% of
10 OTUs in mouse and human stool, while the remaining 30% requires longer bead beating. In
11 conclusion, our study indicates adjustments in bead beating treatment based on the composition of
12 the specimen and the targeted bacteria.

13

14

15

16

17

18

19

20

21

22

23

24 **Introduction:**

25 High throughput sequencing technology is commonly used to characterize microbial composition
26 of biological specimens. This approach can be applied to capture microbial diversity in human and
27 environmental specimens with unprecedented depth (1-4). A number of prior studies provide
28 evidence that methods of sample collection, storage and DNA extraction are critical for accurate
29 profiling of microbiota in environmental (5-7) or human samples (8-10). In particular, it is
30 increasingly apparent that the DNA extraction method is crucial to the accuracy of microbiome
31 analysis (11-13). Given that the microbial composition of a niche is generally diverse with
32 significant variations in cell membrane structures and functions among community members,
33 obtaining a complete and unbiased representation of microbial DNA from all community members
34 is technically challenging.

35

36 There is growing evidence that complete lysis of bacterial cell walls is critical for optimum yield
37 of DNA. Lysis protocols include procedures that lead to physical and or enzymatic disruption of
38 the microbial cell wall (5, 14, 15). It has been observed that extended lysis time and mechanical
39 disruption can enhance nucleic acid yield. However, extended lysis time can also reduce molecular
40 complexity by shearing genomic DNA into smaller fragments (16, 17). In general, bacterial cells
41 are lysed to release the nucleic acids and the remaining proteins are discarded. Gram-positive
42 bacteria pose the greatest challenge for complete lysis due to their thick cell walls and complex
43 cell wall composition, consisting of several layers of peptidoglycan (18).

44

45 Given that the precise composition of pathogenic clinical specimens is mostly unknown and may
46 vary significantly from sample to sample, an ideal DNA extraction method should accurately

47 recover DNA from a wide variety of bacteria and avoid the bias that can be introduced by
48 incomplete cell wall lysis. Bead-beating is a method of mechanical disruption that is performed
49 prior to standard DNA extraction. In this step, ceramic or glass beads are added to the tube
50 containing microbial samples. This is followed by moderate to high speed shaking, causing
51 collisions between the beads and the samples. Bead-beating has become a common method of
52 bacterial cell lysis in microbial metagenomics studies, and a number of different bead beating
53 protocols have been used to extract microbial DNA from stool samples (19). Here we have
54 assessed the impact of bead-beating time on extraction efficiency of nucleic acids and abundance
55 and composition of bacterial OTUs in mouse and human stool.

56

57

58 **Materials & Methods**

59 **Sample collection**

60 We collected two mouse (C57/Bl6) stool samples, designated WT1 and WT2, and two human
61 stool samples, designated Hum1 and Hum2. The stool samples were collected under sterile
62 conditions and stored in DNA/RNA shield, a nucleic acid stabilizing solution from Zymo Research
63 (R1100). DNA/RNA shield provides an accurate molecular signature of the sample at the time of
64 collection by preserving nucleic acids at ambient temperature and inactivating organisms including
65 infectious agents.

66

67 **DNA extraction**

68 We used the ZymoBIOMICS™ DNA Miniprep Kit (D4300) for DNA extraction on both mice and
69 human stools. Figure 1 illustrates the experimental workflow of the study. Each of the mouse and

70 human stool samples was aliquoted into four subsamples for the experiment. About 200 mg of
71 feces was aliquoted into a ZR BashingBead lysis tube (0.1 and 0.5 mm). For lysis, 750 ul of
72 ZymoBIOMICS lysis solution was added to each sample tube. Next, each sample tube was tightly
73 closed and loaded onto the PowerLyzer 24 Homogenizer (110/220 V) from Qiagen for bead
74 beating. WT1 and WT2 and Hum1 and Hum2 were two independent replicates of mouse and
75 human feces, respectively. We selected four different bead beating time points as illustrated in
76 Figure 1: 0 minutes (no bead-beating at all), 1 minute (one cycle of shaking), 4 minutes (2 cycles
77 of 2 minute shaking, with a 30 second pause after each cycle) and 9 minutes (4 cycles of 2 min
78 and 1 cycle of 1 minute, with a 30 second pause after each cycle). Each of these samples were
79 bead-beaten at a speed of 2200 RPM and were maintained at a temperature of 20°C throughout the
80 bead beating process. Following beat-beating and lysis, DNA was purified using the
81 ZymoBIOMICS protocol, and 100 ul was eluted for downstream experiments. The DNA
82 concentration was measured using the Picogreen method (Invitrogen Quant-iT™ Picogreen
83 dsDNA Assay Kit Reference No. P11496 on Perkin Elmer 2030 Multilabel Reader Victor X3) and
84 DNA integrity number (DIN) was determined on 4150 Tapestation from Agilent using Agilent's
85 gDNA Screen Tape (Reference No. 5067-5365) and Agilent's gDNA Reagents (Reference No.
86 5067-5366).

87

88 **16S rRNA gene sequencing**

89 10-50 ng of purified DNA from stool was used to amplify hypervariable region V3-V4 of the
90 bacterial 16S rRNA gene using the Illumina Nextera protocol (Part # 15044223 Rev. B). A single
91 amplicon of about 460 bp was amplified using the 16S Forward Primer
92 (5' TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNNGCWGCAG) and

93 the 16S Reverse Primer
94 (5'GTCTCGTGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC
95) as described in the Illumina protocol. The PCR product was purified using Agencourt AmpureXP
96 beads from Beckman Counter Genomics. We used the Nextera XT Index Kit v2 (Reference no.
97 15052166) for 16S amplification. Illumina adapter and barcode sequences were ligated to the
98 amplicon in order to attach them to the MiSeqDx flow cell and for multiplexing. Quality and
99 quantity of each sequencing library were assessed using Bioanlyzer and picogreen measurements,
100 respectively. The libraries were then pooled in equal concentrations according to picogreen
101 measurements. Each pool was quantified using KAPA Biosystems Library Quant Kit (illumina)
102 ROX Low qPCR Mix (Reference No. 07960336001) on an Applied Biosystems 7500 Fast Real-
103 Time PCR system. According to the qPCR measurements, 6 pM of pooled libraries was loaded
104 onto a MiSeqDX flow cell and sequenced using MiSeq Reagent Kit v3 600 Cycles PE (Paired end
105 300 bp). Raw fastq files were demultiplexed based on unique barcodes and assessed for quality.
106
107 **16S data analysis pipeline**
108 Samples with more than 50K QC pass sequencing reads were used for downstream 16S OTU
109 analysis. Taxonomic classification and Operational Taxonomic Units (OTUs) abundance analysis
110 were done using the CLC Bio microbial genomics module
111 (<https://www.qiagenbioinformatics.com/plugins/clc-microbial-genomics-module/>). Individual
112 sample reads were annotated with the Greengene database and taxonomic features were identified.
113 Alpha and beta diversity analysis was done to understand within- and between-treatment group
114 diversity, respectively. Raw fastq files from this study have been submitted to the Sequence Read
115 Archive with ID PRJNA625828.
116

117 **Results**

118 **Assessment of DNAs extracted using different bead beating times**

119 First, we measured the amount of total DNA recovered from each bead-beating treatment. As
120 expected, the bead-beaten samples yielded higher amounts of DNA as compared to unbeaten
121 samples. As shown in Supplementary Fig.1 A-B, the highest yields were observed in samples
122 beaten for 4 or 9 minutes. The DNA integrity number (DIN) was highest in samples treated for 1
123 and 4 minutes (Supplementary Fig.1C-D). The number of pass filter sequencing reads was highest
124 in mouse stool samples that were beaten for 4 and 9 minutes (Supplementary Fig.1E). However,
125 in human stool samples, the highest pass filter reads were obtained at the 1 and 4-minute time
126 points (Supplementary Fig.1F). We also compared the total number of high-confidence OTUs
127 annotated in all the samples. As shown, the highest OTUs were observed in samples beaten for 4
128 or 9 minutes (Supplementary Fig. 1G-H). Overall, 4 minutes of beating time was found to give the
129 optimum results for all the assessed parameters.

130

131 ***Actinobacteria* requires extensive bead beating for maximal recovery**

132 QC pass sequencing reads were used to define OTUs (operational taxonomic units) at different
133 taxonomic levels such as phylum, class, order, family, genus, and species (Fig. 2A-B,
134 Supplementary Table S1-S4). 16S analysis showed that *Actinobacteria* were significantly ($p < 0.05$)
135 underrepresented in unbeaten samples. Their maximal recovery was observed after 4 and 9-
136 minutes of bead-beating (Fig.2C-D). On the other hand, *Proteobacteria*, which are Gram-negative
137 organisms, were better captured in unbeaten samples or after just 1 minute of bead beating (Fig.
138 2I&J). Bacteroidetes were least affected by bead-beating time in both mouse and human stool
139 samples (Fig. 2G&H). Results for *Firmicutes* were not consistent between mouse and human

140 samples, as more *Firmicutes* were recovered at 4 and 9 minutes of bead-beating of mouse stool
141 whereas no such trend was observed in the human samples. The aggregated phylum level
142 abundances and comparative statistics between time points in mouse and human data are given in
143 Supplementary Tables S3 and S4, respectively. Differential abundance analysis revealed OTUs
144 that differed significantly between 0, 1, 4 and 9-minutes of bead-beating of mouse and human stool
145 (Supplementary Tables S5 & S6). Supplementary Tables 7A&B list genus level annotations of top
146 OTUs in mouse and human stool.

147

148 **High bacterial diversity in bead beaten samples**

149 Alpha diversity analysis showed higher phylogenetic richness in bead beaten samples as compared
150 to unbeaten samples (Supplementary Fig.2A, E). Shannon's entropy and Simpson's indices are
151 metrics that are commonly used for measurement of bacterial diversity. As shown in
152 Supplementary Fig. 2B &F, higher Shannon entropy was observed after 1, 4 and 9-minutes of bead
153 beating as compared no bead beating. Similarly, Simpson's indices were higher in bead-beaten
154 samples, further suggesting high bacterial recovery at 4 and 9 minutes of bead beating
155 (Supplementary Fig. 2C&G). As shown in Supplementary Tables S8 & S9, bead beaten samples
156 showed a 1.1-fold increase in phylogenetic diversity, *Simpson's index* and *Shannon entropy* as
157 compared to unbeaten sample. Beta diversity analysis showed that all bead beaten samples
158 clustered more closely to one another than to unbeaten samples (Supplementary Fig. 2D&H).
159 Overall, it was observed that most of the diversity was captured by beating for 4 minutes and no
160 significant increase in diversity was noticed with further bead beating.

161

162

163 **Bead beating duration strongly impacts recovery of clinically relevant bacteria**

164 Differential abundance analysis on the most abundant OTUs revealed five clusters of bacteria (Fig.
165 3A, Supplementary Table S10). As shown, cluster 1 (C1) was comprised of *Bifidobacterium* and
166 *Ruminicoccus* in human stool. Maximum recovery of these bacteria was observed after 4 and 9
167 minutes of beating as compared to no bead beating (C1 in Fig.3A). On the other hand, abundance
168 of *Sutterella*, *Veillonella dispar* and *Veillonella parvula* DNA was highest in samples that were
169 unbeaten or beaten for 1 minute as compared to samples beaten for 4 or 9 minutes (C2 in Fig. 3A).
170 Another cluster of bacteria in human stool was comprised of *Blutia obeum*, *Bifidobacterium*
171 *longum*, *Coprococcus*, *Dorea* and *Streptococcus*. These organisms were more highly represented
172 at the 4-minute timepoint and did not show a significant increase in recovery with longer bead
173 beating (i.e., 9 minutes). Cluster 4 (C4) was comprised of *Lactobacillus reuteri*, *Allobaculum* and
174 *Bifidobacterium pseudolongum* in mouse stool. Maximum abundance of these bacteria was
175 observed after 9 minutes of bead beating (Fig. 3A, C4). On the other hand, bacteria of the
176 *Rikenellaceae*, *Desulfovibrio*, *Bacteroidales* and *Clostridiales* groups showed maximum
177 abundance in unbeaten samples, as shown in cluster 5 (C5) of Fig. 3A.

178

179 Interestingly, we found that bead beating intensity has a strong impact on the recovery of clinically-
180 relevant inhabitants of mouse and human gut, including members of the genera *Bifidobacterium*,
181 *Sutterella* and *Veillonella*. As shown in Fig. 3B-E, replicates of mouse and human stool showed
182 maximum abundance of *Bifidobacterium* in samples beaten for 9 minutes, with 30 -100-fold higher
183 recovery in mouse and 2-16-fold higher recovery in human stool upon bead beating. On the other
184 hand, maximum abundance of *Sutterella* was observed in mouse and human stool samples that
185 were unbeaten or beaten for the least amount of time (Fig. 3F-I). We observed a 2-4-fold reduction

186 in *Sutterella* abundance in bead beaten stool, suggesting an adverse effect of beating on recovery
187 of DNA from this bacterial group. These results were consistent across mouse and human stool
188 replicates (Fig. 3F-I, Supplementary data in Table S11-12).

189

190 **Optimum bead beating time for maximal recovery of microbiome diversity**

191 We compared various parameters including nucleic acid yield, DNA integrity, sequencing depth
192 and OTU counts across beating times in order to determine the optimum beating intensity for
193 mouse and human stool analysis. We found that optimum data were obtained with 4 and 9 minute
194 bead beating treatment as compared to no bead beating or beating for 1 minute. Comparison of
195 samples beaten for 4 and 9 minutes did not show marked differences. In data from mouse stool,
196 there were only 7 OTUs (out of 24 major OTUs) whose abundance differed significantly ($p<0.05$)
197 between samples beaten for 4 and 9 minutes. These were *Bifidobacterium*, *Adlercreutzia*,
198 *Allobaculum*, *Coriobacteriaceae*, *Lactobacillus*, *Turicibacter* and *Ruminicoccus* (Supplementary
199 Table S7A-B). Similarly, *Streptococcus*, *Sutrella*, *Dorea*, *Parabacteroides* and *Bifidobacterium*
200 were 5 of 27 major OTUs in human stool that differed significantly ($p<0.05$) in samples beaten for
201 4 versus 9 minutes. These results suggest that up to 70% of microbial signatures can be captured
202 with just 4 minutes of bead beating. However, stool samples rich in bacteria such as
203 *Bifidobacterium*, *Streptococcus* and *Adlercreutzia*, etc. may require more than 4 minutes of beating
204 for maximal DNA recovery. These results suggest that 4-5 minutes of bead beating may be
205 sufficient to capture most of the bacterial diversity in mouse and human stool.

206

207

208

209 **Discussion:**

210 In this study we have systematically assessed the impact of bead beating on microbiome analysis
211 of mouse and human stool. Due to multiple technical and environmental factors, an accurate and
212 reproducible characterization of microbiota composition is a major challenge. Methods of sample
213 storage and collection, DNA extraction, sequencing library preparation and bioinformatics
214 analysis have been shown to contribute variability in 16S results (20-24). Of these, the DNA
215 extraction method is among the most important in that it can introduce bias at the initial step.

216

217 Several studies have reported optimization of DNA extraction methods and have developed
218 protocols for extracting microbial DNA from stool samples (8, 9). Large scale microbiome studies
219 such as Human Microbiome Project (HMP), MetaHIT, and the Earth Microbiome Project have
220 reported improved versions of DNA extraction protocols for various types of samples (25-27). The
221 published literature suggests that complete lysis of bacterial cell walls using beads can markedly
222 impact DNA yield as well downstream 16S sequencing results (28, 29). Observed maximal
223 recovery of *Actinobacteria* in samples subjected to bead beating for 9 minutes is consistent with
224 published literature that reports enhanced nucleic acid recovery from Gram-positive organisms
225 with longer disruption of the bacterial cell wall (30). However, there are also other factors such as
226 volume and temperature of elution buffer, type of lysis beads, lysis tubes and columns that were
227 not evaluated in the current study but can also impact overall DNA yield and sequencing data
228 quality.

229

230 Our data suggest that bead beating duration strongly impacts the recovery of DNA from several
231 groups of bacteria. For example, optimization of the duration of bead beating enhanced DNA

232 recovery from *Bifidobacteria*, *Sutterella* and *Veillonella*, three clinically-relevant bacterial groups
233 that are important members of the mouse and human gut microbiome (19, 31-35). *Bifidobacterium*,
234 a genus that is significantly underrepresented in the analysis of unbeaten stool, is one of the major
235 colonizers of the human gastrointestinal tract. These microbes have been shown to provide health
236 benefits to their host and are investigated in the context of various human diseases such as
237 colorectal cancer, necrotizing enterocolitis and inflammatory bowel diseases (31).

238

239 By contrast, we found that recovery of DNA from certain bacterial groups was reduced by bead
240 beating. For example, DNA from *Sutterella* and *Veillonella* showed reduced prevalence in
241 samples after bead beating, suggesting sensitivity of these microbes to extensive mechanical lysis.
242 These bacteria are also clinically relevant, as altered abundance of *Sutterella* has been associated
243 with many clinical conditions such as autism spectrum disorder, down syndrome and inflammatory
244 bowel disease (32, 33). Similarly, epidemiological studies in young children have associated
245 *Veillonella* with asthma (34), bronchiolitis (36) and autism (35). Since abundance of these
246 microbes could be clinically informative, it is important to be able accurately and precisely
247 determine their abundance in clinical specimens. Our data suggest that studies targeting
248 *Bifidobacteria* should incorporate longer (up to 9 minutes) bead beating protocols in order to
249 ensure maximal recovery of DNA from these bacteria, while those targeting organisms such as
250 *Sutterella* and *Veillonella* should avoid extensive bead beating for maximal recovery and accurate
251 representation. Our data indicate that 4-5 minutes of bead beating may be appropriate to process
252 samples where the composition of microbiomes are unknown.

253

254 In summary, our study demonstrates that the duration of bead beating has a strong impact on the
255 recovery of DNA from clinically relevant microbiota in both mouse and human gut. Our data
256 suggest that a minimum of 4 minutes of bead beating (using Qiagen PowerLyzer) can result in
257 recovery of about 70% of gut microbiota DNA signatures. Further, our study identifies particular
258 groups of bacteria in mouse and human stool that can be recovered with up to 4 minutes of bead
259 beating and those that require extensive bead beating for maximal recovery.

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280 **Acknowledgments:**

281 This study was supported by the UT Southwestern Microbiome Research Laboratory. Authors
282 gratefully acknowledge donors of deidentified human stool samples for the study.

283

284 **Author contributions**

285 B.Z. and M.B. performed experiments; C.A. performed sequencing quality control, C.D. collected
286 mouse stool for study, L.V.H. contributed to manuscript editing and P.R. conceived and designed
287 the experiments and wrote the manuscript.

288

289 **Competing interests:** The authors declare no competing interests.

290

291 **Data availability:** Raw fastq files from mouse and human experiments have been deposited in
292 NCBI SRA database with accession no. PRJNA625828

293

294

295

296

297

298

299

300

301

302 **Figure legends.**

303 **Figure 1. Experimental workflow for 16S sequencing**

304 Illustration of the experimental workflow. Two mouse and two human stool samples were
305 homogenized using a PowerLyzer 24 Homogenizer (110/220V; Qiagen). DNA was extracted
306 using four different bead beating times, followed by 16S rRNA gene sequencing and analysis.

307

308 **Figure 2. *Actinobacteria* are strongly impacted by bead beating in mouse and human stool**

309 Panels A-B: Color coded bar plots showing the phylum level abundance across different bead
310 beating treatments in mouse and human stool, respectively. Panels C-D show abundance of
311 *Actinobacteria* across bead beating treatments in mouse and human stool, respectively. Panels
312 E-F show abundance of *Firmicutes* in mouse and human stool beaten for different times. Panel
313 G-H shows abundance of *Bacteroidetes* in mouse and human stool. Similarly, in Panels I-J,
314 bar plots show abundance of *Proteobacteria* across four bead beating time points in mouse
315 and human stool. Statistical p-values are denoted with *, # and \$ represent comparison with
316 samples that were unbeaten, or beaten for 1 minute and 4 minutes, respectively.

317 **Figure 3. Bacterial clusters defined by bead beating time**

318 Panel A: Results of differential abundance analysis. The heatmap shows the top 30
319 differentially recovered OTUs in mouse and human stool. Panels B-E show the abundance of
320 *Bifidobacterium* across four beating treatments in mouse and human stool. Similarly, Panels
321 F-I show the abundance of *Sutterella* across four beating treatments in mouse and human
322 stool. Data from replicates of mouse and human sample is presented. Statistical p-values

323 denoted with *, # and \$ represent comparison with samples that were unbeaten, or beaten for
324 1 minute and 4 minutes, respectively.

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347 **References:**

348 1. Werner JJ, Zhou D, Caporaso JG, Knight R, Angenent LT. Comparison of Illumina paired-end and
349 single-direction sequencing for microbial 16S rRNA gene amplicon surveys. *The ISME journal*.
350 2012;6(7):1273-6.

351 2. The Integrative Human Microbiome Project. *Nature*. 2019;569(7758):641-8.

352 3. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of
353 the human distal gut microbiome. *Science*. 2006;312(5778):1355-9.

354 4. Nelson KE, Weinstock GM, Highlander SK, Worley KC, Creasy HH, Wortman JR, et al. A catalog of
355 reference genomes from the human microbiome. *Science*. 2010;328(5981):994-9.

356 5. Bag S, Saha B, Mehta O, Anbumani D, Kumar N, Dayal M, et al. An Improved Method for High
357 Quality Metagenomics DNA Extraction from Human and Environmental Samples. *Sci Rep*. 2016;6:26775.

358 6. Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16S primers. *Journal of*
359 *microbiological methods*. 2003;55(3):541-55.

360 7. Tremblay J, Singh K, Fern A, Kirton ES, He S, Woyke T, et al. Primer and platform effects on 16S
361 rRNA tag sequencing. *Frontiers in microbiology*. 2015;6:771.

362 8. Costea PI, Zeller G, Sunagawa S, Pelletier E, Alberti A, Levenez F, et al. Towards standards for
363 human fecal sample processing in metagenomic studies. *Nat Biotechnol*. 2017;35(11):1069-76.

364 9. Sinha R, Abu-Ali G, Vogtmann E, Fodor AA, Ren B, Amir A, et al. Assessment of variation in
365 microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project
366 consortium. *Nat Biotechnol*. 2017;35(11):1077-86.

367 10. Brooks JP, Edwards DJ, Harwich MD, Jr., Rivera MC, Fettweis JM, Serrano MG, et al. The truth
368 about metagenomics: quantifying and counteracting bias in 16S rRNA studies. *BMC microbiology*.
369 2015;15:66.

370 11. Momozawa Y, Deffontaine V, Louis E, Medrano JF. Characterization of bacteria in biopsies of
371 colon and stools by high throughput sequencing of the V2 region of bacterial 16S rRNA gene in human.
372 PLoS One. 2011;6(2):e16952.

373 12. Willner D, Daly J, Whiley D, Grimwood K, Wainwright CE, Hugenholtz P. Comparison of DNA
374 extraction methods for microbial community profiling with an application to pediatric bronchoalveolar
375 lavage samples. PLoS One. 2012;7(4):e34605.

376 13. Wu GD, Lewis JD, Hoffmann C, Chen YY, Knight R, Bittinger K, et al. Sampling and
377 pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence
378 tags. BMC microbiology. 2010;10:206.

379 14. Gill C, van de Wijgert JH, Blow F, Darby AC. Evaluation of Lysis Methods for the Extraction of
380 Bacterial DNA for Analysis of the Vaginal Microbiota. PLoS One. 2016;11(9):e0163148.

381 15. Valentini A, Taberlet P, Miaud C, Civade R, Herder J, Thomsen PF, et al. Next-generation
382 monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol Ecol. 2016;25(4):929-
383 42.

384 16. von Wintzingerode F, Gobel UB, Stackebrandt E. Determination of microbial diversity in
385 environmental samples: pitfalls of PCR-based rRNA analysis. FEMS microbiology reviews.
386 1997;21(3):213-29.

387 17. Dilhari A, Sampath A, Gunasekara C, Fernando N, Weerasekara D, Sissons C, et al. Evaluation of
388 the impact of six different DNA extraction methods for the representation of the microbial community
389 associated with human chronic wound infections using a gel-based DNA profiling method. AMB Express.
390 2017;7(1):179.

391 18. Kim SJ, Chang J, Singh M. Peptidoglycan architecture of Gram-positive bacteria by solid-state
392 NMR. Biochim Biophys Acta. 2015;1848(1 Pt B):350-62.

393 19. Fiedorova K, Radvansky M, Nemcova E, Grombirikova H, Bosak J, Cernochova M, et al. The
394 Impact of DNA Extraction Methods on Stool Bacterial and Fungal Microbiota Community Recovery. *Front*
395 *Microbiol.* 2019;10:821.

396 20. A review of 10 years of human microbiome research activities at the US National Institutes of
397 Health, Fiscal Years 2007-2016. *Microbiome.* 2019;7(1):31.

398 21. Penington JS, Penno MAS, Ngu KM, Ajami NJ, Roth-Schulze AJ, Wilcox SA, et al. Influence of
399 fecal collection conditions and 16S rRNA gene sequencing at two centers on human gut microbiota
400 analysis. *Sci Rep.* 2018;8(1):4386.

401 22. Carroll IM, Ringel-Kulka T, Siddle JP, Klaenhammer TR, Ringel Y. Characterization of the fecal
402 microbiota using high-throughput sequencing reveals a stable microbial community during storage. *PLoS*
403 *One.* 2012;7(10):e46953.

404 23. Gorzelak MA, Gill SK, Tasnim N, Ahmadi-Vand Z, Jay M, Gibson DL. Methods for Improving
405 Human Gut Microbiome Data by Reducing Variability through Sample Processing and Storage of Stool.
406 *PLoS One.* 2015;10(8):e0134802.

407 24. Rintala A, Pietila S, Munukka E, Eerola E, Pursiheimo JP, Laiho A, et al. Gut Microbiota Analysis
408 Results Are Highly Dependent on the 16S rRNA Gene Target Region, Whereas the Impact of DNA
409 Extraction Is Minor. *J Biomol Tech.* 2017;28(1):19-30.

410 25. Structure, function and diversity of the healthy human microbiome. *Nature.*
411 2012;486(7402):207-14.

412 26. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene
413 catalogue established by metagenomic sequencing. *Nature.* 2010;464(7285):59-65.

414 27. Marotz C, Amir A, Humphrey G, Gaffney J, Gogul G, Knight R. DNA extraction for streamlined
415 metagenomics of diverse environmental samples. *Biotechniques.* 2017;62(6):290-3.

416 28. Teng F, Darveekaran Nair SS, Zhu P, Li S, Huang S, Li X, et al. Impact of DNA extraction method
417 and targeted 16S-rRNA hypervariable region on oral microbiota profiling. *Sci Rep.* 2018;8(1):16321.

418 29. Lim MY, Song EJ, Kim SH, Lee J, Nam YD. Comparison of DNA extraction methods for human gut
419 microbial community profiling. *Syst Appl Microbiol.* 2018;41(2):151-7.

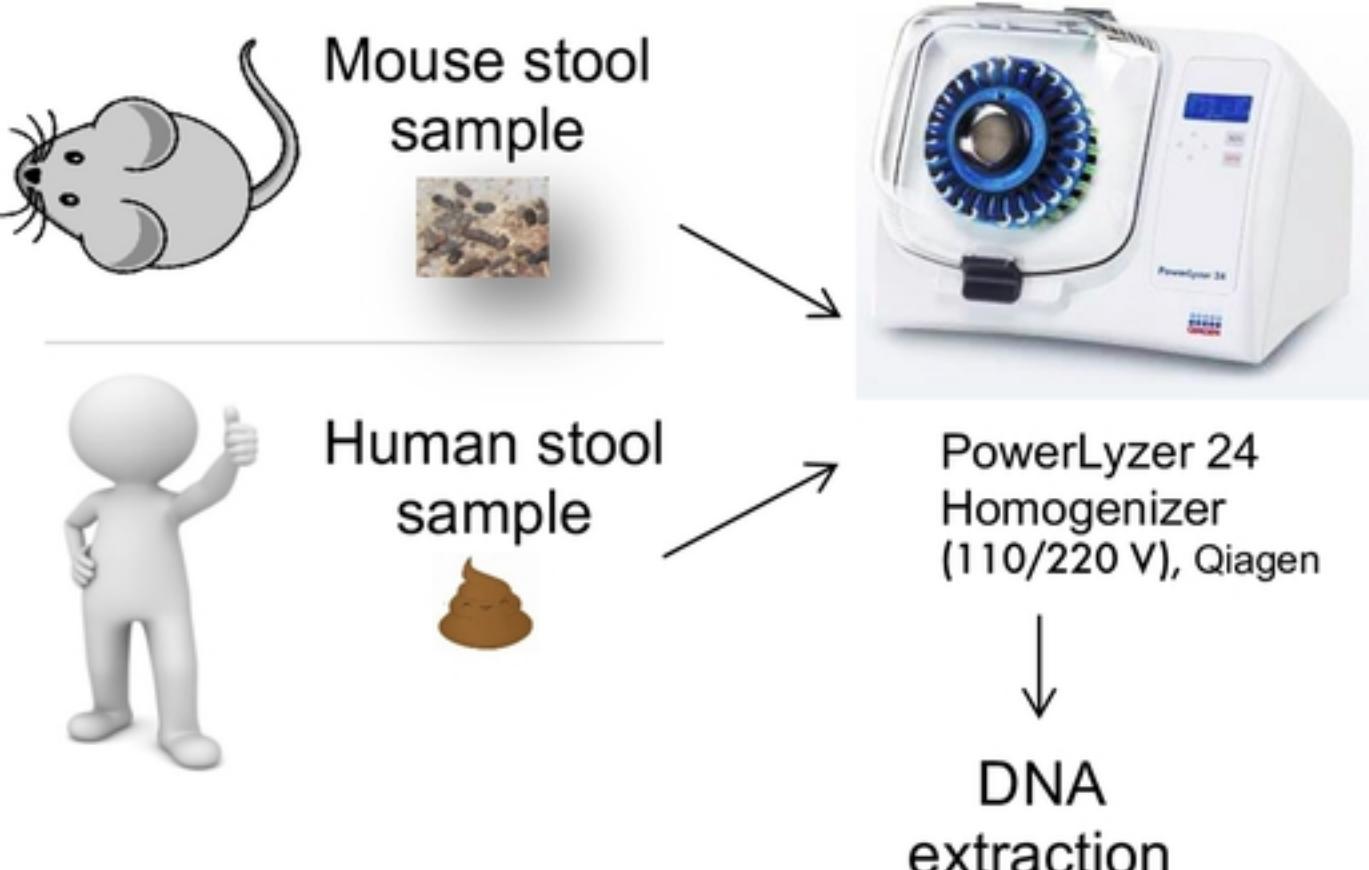
420 30. Yuan S, Cohen DB, Ravel J, Abdo Z, Forney LJ. Evaluation of methods for the extraction and
421 purification of DNA from the human microbiome. *PLoS One.* 2012;7(3):e33865.

422 31. O'Callaghan A, van Sinderen D. Bifidobacteria and Their Role as Members of the Human Gut
423 Microbiota. *Front Microbiol.* 2016;7:925.

424 32. Wang L, Christensen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA. Increased abundance
425 of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. *Mol
426 Autism.* 2013;4(1):42.

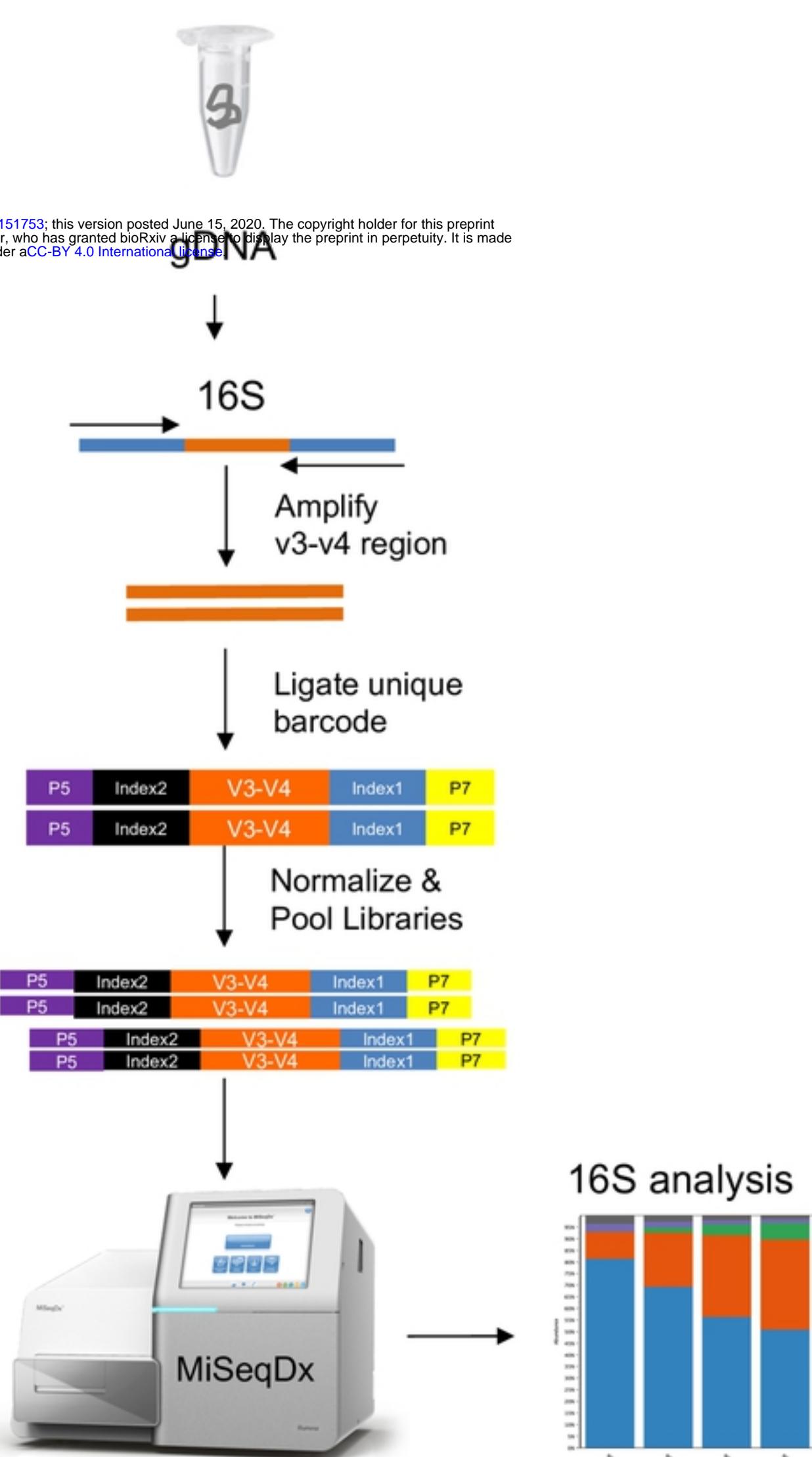
427 33. Zhang M, Ma W, Zhang J, He Y, Wang J. Analysis of gut microbiota profiles and microbe-disease
428 associations in children with autism spectrum disorders in China. *Sci Rep.* 2018;8(1):13981.

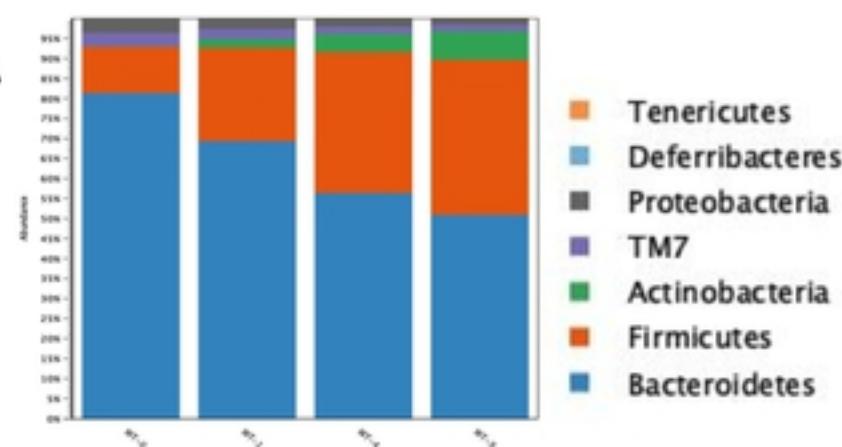
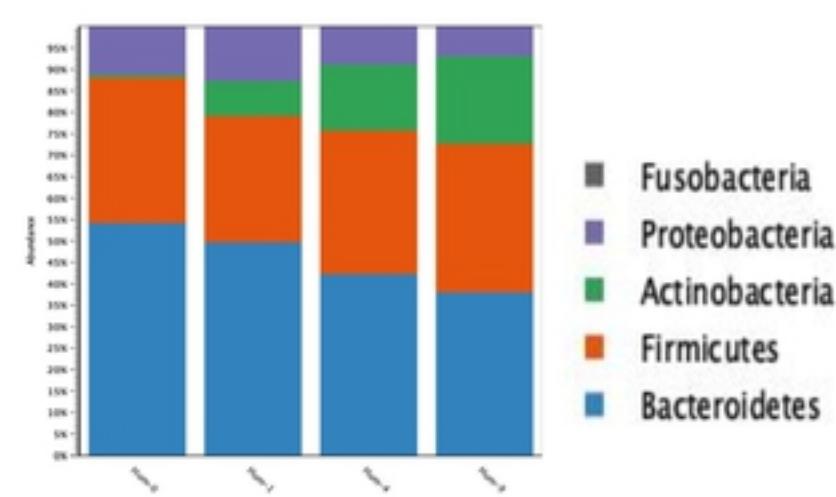
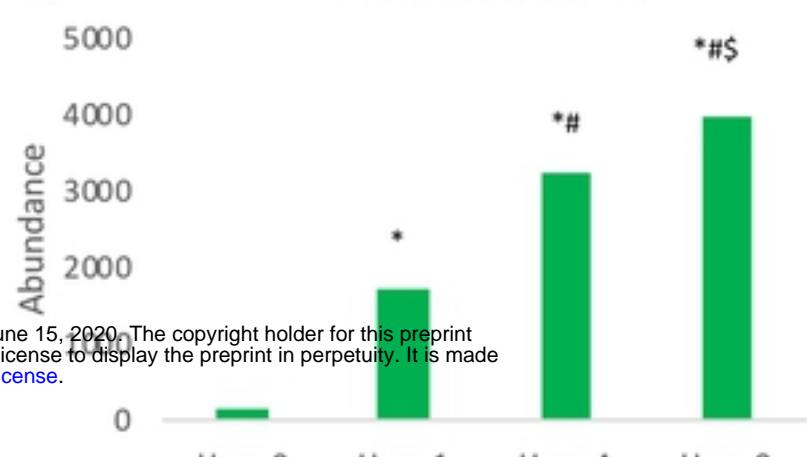
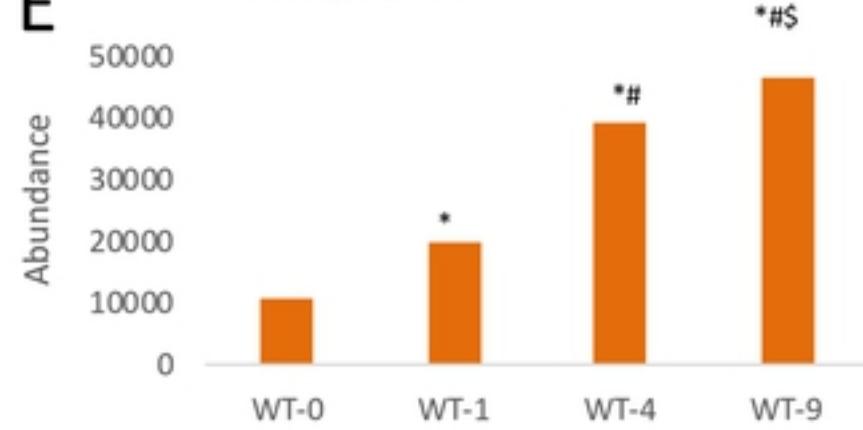
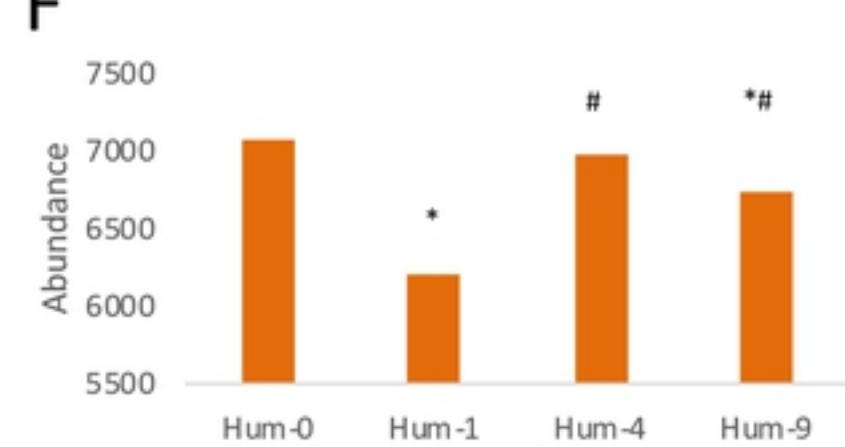
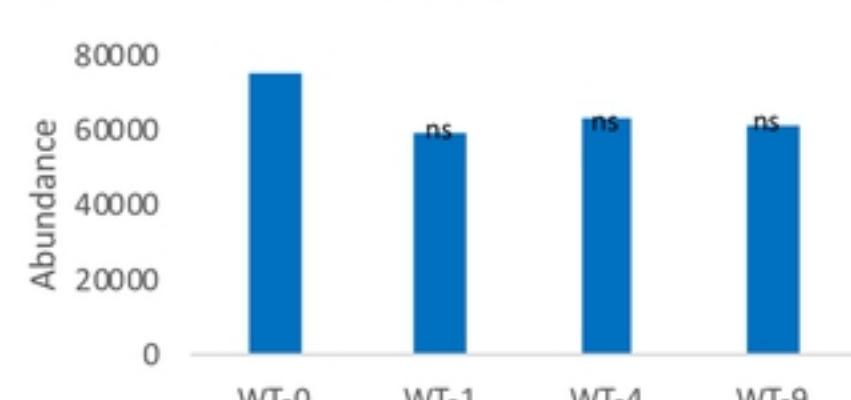
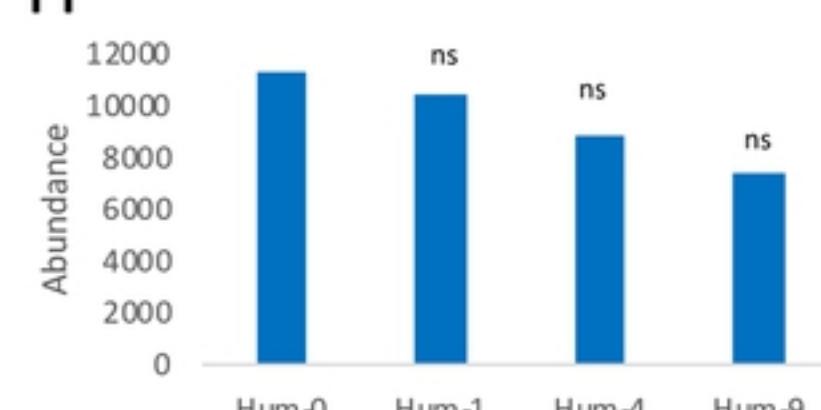
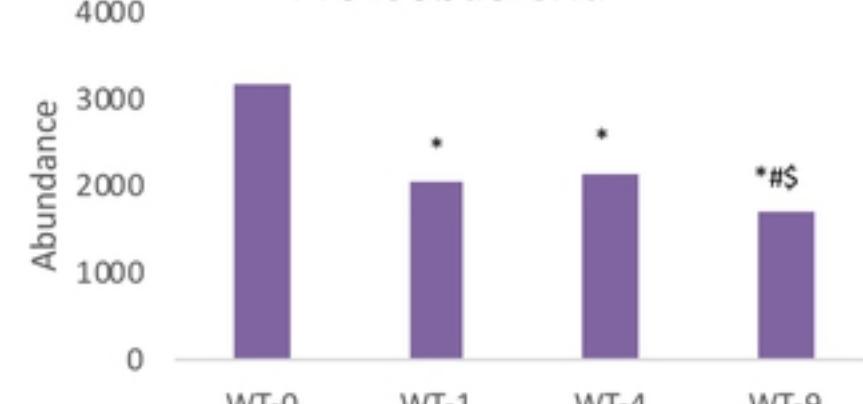
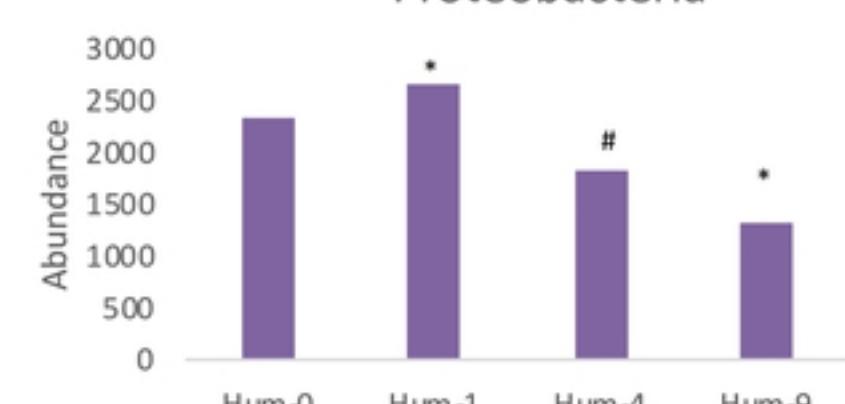
429 34. Arrieta MC, Stiemsma LT, Dimitriu PA, Thorson L, Russell S, Yurist-Doutsch S, et al. Early infancy
430 microbial and metabolic alterations affect risk of childhood asthma. *Sci Transl Med.*
431 2015;7(307):307ra152.


432 35. Strati F, Cavalieri D, Albanese D, De Felice C, Donati C, Hayek J, et al. New evidences on the
433 altered gut microbiota in autism spectrum disorders. *Microbiome.* 2017;5(1):24.

434 36. Hasegawa K, Linnemann RW, Mansbach JM, Ajami NJ, Espinola JA, Petrosino JF, et al. The Fecal
435 Microbiota Profile and Bronchiolitis in Infants. *Pediatrics.* 2016;138(1).

436


437










438

Sample	Organism	Replicate I	Replicate II
No Bead beating	B6 Mouse	WT1-0	WT2-0
1 min Bead beating	B6 Mouse	WT1-1	WT2-1
4 min Bead beating	B6 Mouse	WT1-4	WT2-4
9 min Bead beating	B6 Mouse	WT1-9	WT2-9
No Bead beating	Healthy Human	Hum1-0	Hum2-0
1 min Bead beating	Healthy Human	Hum1-1	Hum2-1
4 min Bead beating	Healthy Human	Hum1-4	Hum2-4
9 min Bead beating	Healthy Human	Hum1-9	Hum2-9

bioRxiv preprint doi: <https://doi.org/10.1101/2020.06.15.151753>; this version posted June 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

A**B****C****Actinobacteria****D****Actinobacteria****E****Firmicutes****F****Firmicutes****G****Bacteroidetes****H****Bacteroidetes****I****Proteobacteria****J****Proteobacteria****Fig 2**

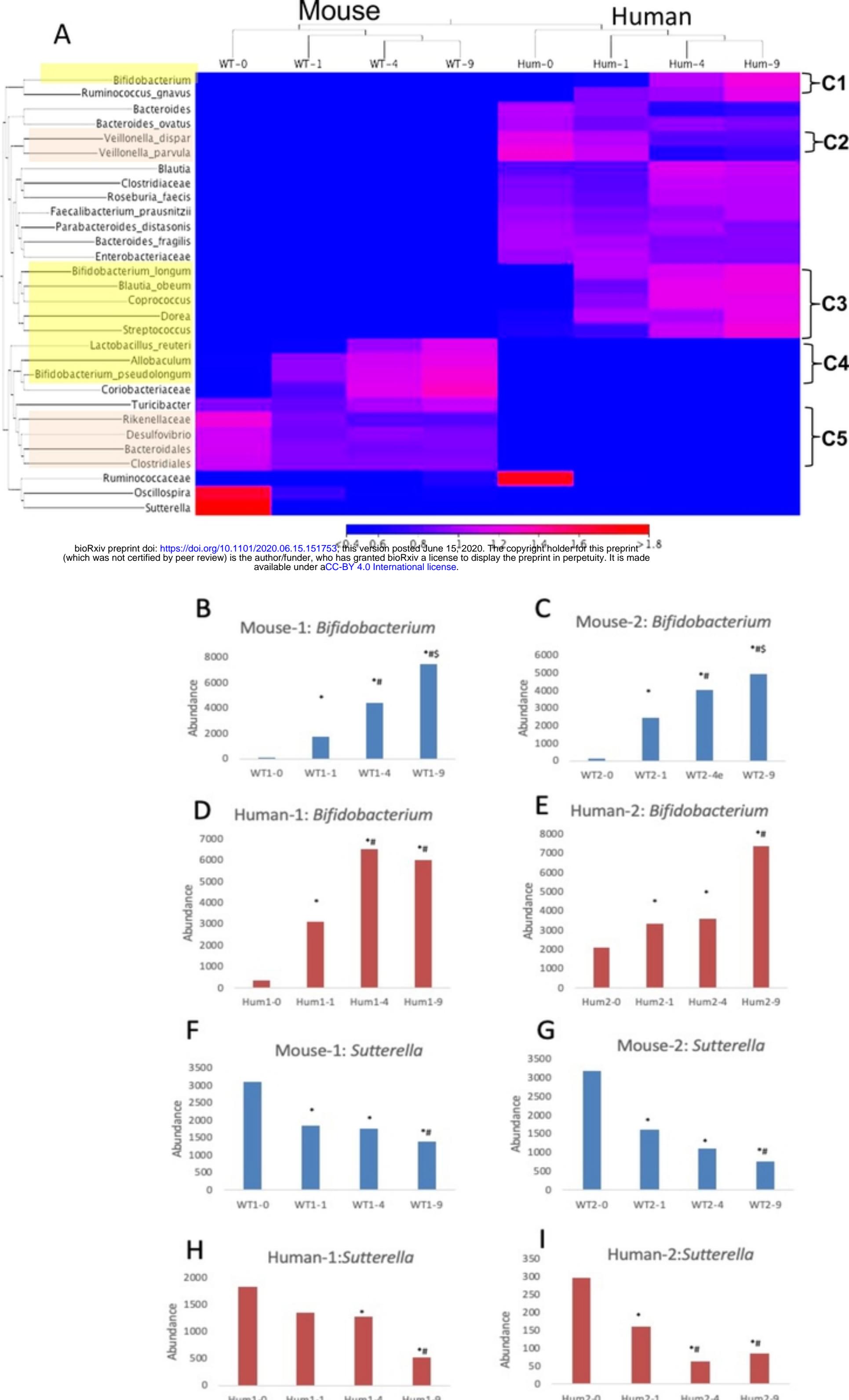


Fig 3