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Abstract

DNA extraction methods play an important role in the acquisition of accurate and reproducible
16S sequencing data in microbiome studies. In this study, we assessed the impact of bead-beating
intensity during DNA extraction on microbiome recovery in mouse and human stool. We observed
a higher DNA yield, better DNA integrity, higher Shannon’s entropy and Simpson’s index in
samples beaten for 4 and 9 minutes as compared to unbeaten samples. 16S sequencing data showed
that bead beating has a statistically-significant (p<<0.05) impact on the recovery of many clinically
relevant microbes that live in the mouse and human gut, including Bifidobacterium, Sutterella and
Veillonella. It was observed that 4 minutes of bead beating promotes recovery of about 70% of
OTUs in mouse and human stool, while the remaining 30% requires longer bead beating. In
conclusion, our study indicates adjustments in bead beating treatment based on the composition of

the specimen and the targeted bacteria.
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Introduction:

High throughput sequencing technology is commonly used to characterize microbial composition
of biological specimens. This approach can be applied to capture microbial diversity in human and
environmental specimens with unprecedented depth (1-4). A number of prior studies provide
evidence that methods of sample collection, storage and DNA extraction are critical for accurate
profiling of microbiota in environmental (5-7) or human samples (8-10). In particular, it is
increasingly apparent that the DNA extraction method is crucial to the accuracy of microbiome
analysis (11-13). Given that the microbial composition of a niche is generally diverse with
significant variations in cell membrane structures and functions among community members,
obtaining a complete and unbiased representation of microbial DNA from all community members

is technically challenging.

There is growing evidence that complete lysis of bacterial cell walls is critical for optimum yield
of DNA. Lysis protocols include procedures that lead to physical and or enzymatic disruption of
the microbial cell wall (5, 14, 15). It has been observed that extended lysis time and mechanical
disruption can enhance nucleic acid yield. However, extended lysis time can also reduce molecular
complexity by shearing genomic DNA into smaller fragments (16, 17). In general, bacterial cells
are lysed to release the nucleic acids and the remaining proteins are discarded. Gram-positive
bacteria pose the greatest challenge for complete lysis due to their thick cell walls and complex

cell wall composition, consisting of several layers of peptidoglycan (18).

Given that the precise composition of pathogenic clinical specimens is mostly unknown and may

vary significantly from sample to sample, an ideal DNA extraction method should accurately
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recover DNA from a wide variety of bacteria and avoid the bias that can be introduced by
incomplete cell wall lysis. Bead-beating is a method of mechanical disruption that is performed
prior to standard DNA extraction. In this step, ceramic or glass beads are added to the tube
containing microbial samples. This is followed by moderate to high speed shaking, causing
collisions between the beads and the samples. Bead-beating has become a common method of
bacterial cell lysis in microbial metagenomics studies, and a number of different bead beating
protocols have been used to extract microbial DNA from stool samples (19). Here we have
assessed the impact of bead-beating time on extraction efficiency of nucleic acids and abundance

and composition of bacterial OTUs in mouse and human stool.

Materials & Methods

Sample collection

We collected two mouse (C57/Bl16) stool samples, designated WT1 and WT2, and two human
stool samples, designated Huml and Hum?2. The stool samples were collected under sterile
conditions and stored in DNA/RNA shield, a nucleic acid stabilizing solution from Zymo Research
(R1100). DNA/RNA shield provides an accurate molecular signature of the sample at the time of
collection by preserving nucleic acids at ambient temperature and inactivating organisms including

infectious agents.

DNA extraction
We used the ZymoBIOMICS™ DNA Miniprep Kit (D4300) for DNA extraction on both mice and

human stools. Figure 1 illustrates the experimental workflow of the study. Each of the mouse and
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human stool samples was aliquoted into four subsamples for the experiment. About 200 mg of
feces was aliquoted into a ZR BashingBead lysis tube (0.1 and 0.5 mm). For lysis, 750 ul of
ZymoBIOMICS lysis solution was added to each sample tube. Next, each sample tube was tightly
closed and loaded onto the PowerLyzer 24 Homogenizer (110/220 V) from Qiagen for bead
beating. WT1 and WT2 and Huml and Hum2 were two independent replicates of mouse and
human feces, respectively. We selected four different bead beating time points as illustrated in
Figure 1: 0 minutes (no bead-beating at all), 1 minute (one cycle of shaking), 4 minutes (2 cycles
of 2 minute shaking, with a 30 second pause after each cycle) and 9 minutes (4 cycles of 2 min
and 1 cycle of 1 minute, with a 30 second pause after each cycle). Each of these samples were
bead-beaten at a speed of 2200 RPM and were maintained at a temperature of 20°C throughout the
bead beating process. Following beat-beating and lysis, DNA was purified using the
ZymoBIOMICS protocol, and 100 ul was eluted for downstream experiments. The DNA
concentration was measured using the Picogreen method (Invitrogen Quant-iT™ Picogreen
dsDNA Assay Kit Reference No. P11496 on Perkin Elmer 2030 Multilabel Reader Victor X3) and
DNA integrity number (DIN) was determined on 4150 Tapestation from Agilent using Agilent’s
gDNA Screen Tape (Reference No. 5067-5365) and Agilent’s gDNA Reagents (Reference No.

5067-5366).

16S rRNA gene sequencing

10-50 ng of purified DNA from stool was used to amplify hypervariable region V3-V4 of the
bacterial 16S rRNA gene using the [llumina Nextera protocol (Part # 15044223 Rev. B). A single
amplicon of about 460 bp was amplified wusing the 16S Forward Primer

(8'TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG) and
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93  the 16S Reverse Primer
94  (5'GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC
95 )asdescribed in the Illumina protocol. The PCR product was purified using Agencourt AmpureXP
96  beads from Beckman Counter Genomics. We used the Nextera XT Index Kit v2 (Reference no.
97  15052166) for 16S amplification. Illumina adapter and barcode sequences were ligated to the
98  amplicon in order to attach them to the MiSeqDx flow cell and for multiplexing. Quality and
99  quantity of each sequencing library were assessed using Bioanlyzer and picogreen measurements,
100  respectively. The libraries were then pooled in equal concentrations according to picogreen
101  measurements. Each pool was quantified using KAPA Biosystems Library Quant Kit (illumina)
102  ROX Low qPCR Mix (Reference No. 07960336001) on an Applied Biosystems 7500 Fast Real-
103  Time PCR system. According to the qPCR measurements, 6 pM of pooled libraries was loaded
104  onto a MiSeqDX flow cell and sequenced using MiSeq Reagent Kit v3 600 Cycles PE (Paired end
105 300 bp). Raw fastq files were demultiplexed based on unique barcodes and assessed for quality.
106
107  16S data analysis pipeline
108  Samples with more than 50K QC pass sequencing reads were used for downstream 16S OTU
109  analysis. Taxonomic classification and Operational Taxonomic Units (OTUs) abundance analysis
110 were done using the CLC Bio microbial genomics module

111  (https://www.qiagenbioinformatics.com/plugins/clc-microbial-genomics-module/). Individual

112 sample reads were annotated with the Greengene database and taxonomic features were identified.
113 Alpha and beta diversity analysis was done to understand within- and between-treatment group
114  diversity, respectively. Raw fastq files from this study have been submitted to the Sequence Read
115 Archive with ID PRINA625828.

116
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117  Results

118  Assessment of DNASs extracted using different bead beating times

119  First, we measured the amount of total DNA recovered from each bead-beating treatment. As
120  expected, the bead-beaten samples yielded higher amounts of DNA as compared to unbeaten
121  samples. As shown in Supplementary Fig.1 A-B, the highest yields were observed in samples
122 beaten for 4 or 9 minutes. The DNA integrity number (DIN) was highest in samples treated for 1
123 and 4 minutes (Supplementary Fig.1C-D). The number of pass filter sequencing reads was highest
124  in mouse stool samples that were beaten for 4 and 9 minutes (Supplementary Fig.1E). However,
125  in human stool samples, the highest pass filter reads were obtained at the 1 and 4-minute time
126  points (Supplementary Fig.1F). We also compared the total number of high-confidence OTUs
127  annotated in all the samples. As shown, the highest OTUs were observed in samples beaten for 4
128  or 9 minutes (Supplementary Fig. 1G-H). Overall, 4 minutes of beating time was found to give the
129  optimum results for all the assessed parameters.

130

131  Actinobacteria requires extensive bead beating for maximal recovery

132 QC pass sequencing reads were used to define OTUs (operational taxonomic units) at different
133 taxonomic levels such as phylum, class, order, family, genus, and species (Fig. 2A-B,
134 Supplementary Table S1-S4). 16S analysis showed that Actinobacteria were significantly (p<0.05)
135  underrepresented in unbeaten samples. Their maximal recovery was observed after 4 and 9-
136  minutes of bead-beating (Fig.2C-D). On the other hand, Proteobacteria, which are Gram-negative
137  organisms, were better captured in unbeaten samples or after just 1 minute of bead beating (Fig.
138  21&J). Bacteroidetes were least affected by bead-beating time in both mouse and human stool

139  samples (Fig. 2G&H). Results for Firmicutes were not consistent between mouse and human
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140  samples, as more Firmicutes were recovered at 4 and 9 minutes of bead-beating of mouse stool
141  whereas no such trend was observed in the human samples. The aggregated phylum level
142 abundances and comparative statistics between time points in mouse and human data are given in
143 Supplementary Tables S3 and S4, respectively. Differential abundance analysis revealed OTUs
144 that differed significantly between 0, 1, 4 and 9-minutes of bead-beating of mouse and human stool
145  (Supplementary Tables S5 & S6). Supplementary Tables 7A&B list genus level annotations of top
146  OTUs in mouse and human stool.

147

148  High bacterial diversity in bead beaten samples

149  Alpha diversity analysis showed higher phylogenetic richness in bead beaten samples as compared
150  to unbeaten samples (Supplementary Fig.2A, E). Shannon’s entropy and Simpson’s indices are
151  metrices that are commonly used for measurement of bacterial diversity. As shown in
152 Supplementary Fig. 2B &F, higher Shannon entropy was observed after 1, 4 and 9-minutes of bead
153  beating as compared no bead beating. Similarly, Simpson’s indices were higher in bead-beaten
154  samples, further suggesting high bacterial recovery at 4 and 9 minutes of bead beating
155  (Supplementary Fig. 2C&G). As shown in Supplementary Tables S8 & S9, bead beaten samples
156  showed a 1.1-fold increase in phylogenetic diversity, Simpson’s index and Shannon entropy as
157 compared to unbeaten sample. Beta diversity analysis showed that all bead beaten samples
158  clustered more closely to one another than to unbeaten samples (Supplementary Fig. 2D&H).
159  Overall, it was observed that most of the diversity was captured by beating for 4 minutes and no
160  significant increase in diversity was noticed with further bead beating.

161

162
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163  Bead beating duration strongly impacts recovery of clinically relevant bacteria

164  Differential abundance analysis on the most abundant OTUs revealed five clusters of bacteria (Fig.
165  3A, Supplementary Table S10). As shown, cluster 1 (C1) was comprised of Bifidobacterium and
166  Ruminicoccus in human stool. Maximum recovery of these bacteria was observed after 4 and 9
167  minutes of beating as compared to no bead beating (C1 in Fig.3A). On the other hand, abundance
168  of Sutterella, Veillonella dispar and Veillonella parvula DNA was highest in samples that were
169  unbeaten or beaten for 1 minute as compared to samples beaten for 4 or 9 minutes (C2 in Fig. 3A).
170  Another cluster of bacteria in human stool was comprised of Blutia obeum, Bifidobacterium
171 longum, Coprococcus, Dorea and Streptococcus. These organisms were more highly represented
172 at the 4-minute timepoint and did not show a significant increase in recovery with longer bead
173 beating (i.e., 9 minutes). Cluster 4 (C4) was comprised of Lactobacillus reuteri, Allobaculum and
174  Bifidobacterium pseudolongum in mouse stool. Maximum abundance of these bacteria was
175  observed after 9 minutes of bead beating (Fig. 3A, C4). On the other hand, bacteria of the
176  Rikenellaceae, Desulfovibrio, Bacteroidales and Clostriadales groups showed maximum
177  abundance in unbeaten samples, as shown in cluster 5 (C5) of Fig. 3A.

178

179  Interestingly, we found that bead beating intensity has a strong impact on the recovery of clinically-
180  relevant inhabitants of mouse and human gut, including members of the genera Bifidobacterium,
181  Sutterella and Veillonella. As shown in Fig. 3B-E, replicates of mouse and human stool showed
182  maximum abundance of Bifidobacterium in samples beaten for 9 minutes, with 30 -100-fold higher
183  recovery in mouse and 2-16-fold higher recovery in human stool upon bead beating. On the other
184  hand, maximum abundance of Sutterella was observed in mouse and human stool samples that

185  were unbeaten or beaten for the least amount of time (Fig. 3F-1). We observed a 2-4-fold reduction
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186  in Sutterella abundance in bead beaten stool, suggesting an adverse effect of beating on recovery
187  of DNA from this bacterial group. These results were consistent across mouse and human stool
188  replicates (Fig. 3F-1, Supplementary data in Table S11-12).

189

190  Optimum bead beating time for maximal recovery of microbiome diversity

191  We compared various parameters including nucleic acid yield, DNA integrity, sequencing depth
192  and OTU counts across beating times in order to determine the optimum beating intensity for
193 mouse and human stool analysis. We found that optimum data were obtained with 4 and 9 minute
194  bead beating treatment as compared to no bead beating or beating for 1 minute. Comparison of
195  samples beaten for 4 and 9 minutes did not show marked differences. In data from mouse stool,
196  there were only 7 OTUs (out of 24 major OTUs) whose abundance differed significantly (p<0.05)
197  between samples beaten for 4 and 9 minutes. These were Bifidobacterium, Adlercreutzia,
198  Allobaculum, Coriobacteriaceae, Lactobacillus, Turicibacter and Ruminicoccus (Supplementary
199  Table STA-B). Similarly, Streptococcus, Suttrella, Dorea, Parabacteroides and Bifidobacterium
200  were 5 of 27 major OTUs in human stool that differed significantly (p<0.05) in samples beaten for
201 4 versus 9 minutes. These results suggest that up to 70% of microbial signatures can be captured
202 with just 4 minutes of bead beating. However, stool samples rich in bacteria such as
203 Bifidobacterium, Streptococcus and Adlercreutzia, etc. may require more than 4 minutes of beating
204  for maximal DNA recovery. These results suggest that 4-5 minutes of bead beating may be
205  sufficient to capture most of the bacterial diversity in mouse and human stool.

206

207

208


https://doi.org/10.1101/2020.06.15.151753
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.15.151753; this version posted June 15, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

209  Discussion:

210  In this study we have systematically assessed the impact of bead beating on microbiome analysis
211 of mouse and human stool. Due to multiple technical and environmental factors, an accurate and
212 reproducible characterization of microbiota composition is a major challenge. Methods of sample
213 storage and collection, DNA extraction, sequencing library preparation and bioinformatics
214  analysis have been shown to contribute variability in 16S results (20-24). Of these, the DNA
215  extraction method is among the most important in that it can introduce bias at the initial step.

216

217  Several studies have reported optimization of DNA extraction methods and have developed
218  protocols for extracting microbial DNA from stool samples (8, 9). Large scale microbiome studies
219  such as Human Microbiome Project (HMP), MetaHIT, and the Earth Microbiome Project have
220  reported improved versions of DNA extraction protocols for various types of samples (25-27). The
221  published literature suggests that complete lysis of bacterial cell walls using beads can markedly
222 impact DNA yield as well downstream 16S sequencing results (28, 29). Observed maximal
223 recovery of Actinobacteria in samples subjected to bead beating for 9 minutes is consistent with
224 published literature that reports enhanced nucleic acid recovery from Gram-positive organisms
225  with longer disruption of the bacterial cell wall (30). However, there are also other factors such as
226  volume and temperature of elution buffer, type of lysis beads, lysis tubes and columns that were
227  not evaluated in the current study but can also impact overall DNA yield and sequencing data
228  quality.

229

230  Our data suggest that bead beating duration strongly impacts the recovery of DNA from several

231  groups of bacteria. For example, optimization of the duration of bead beating enhanced DNA
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232 recovery from Bifidobacteria, Sutterella and Veillonella, three clinically-relevant bacterial groups
233 that are important members of the mouse and human gut microbiome (19, 31-35). Bifidobacterium,
234  agenus that is significantly underrepresented in the analysis of unbeaten stool, is one of the major
235  colonizers of the human gastrointestinal tract. These microbes have been shown to provide health
236  benefits to their host and are investigated in the context of various human diseases such as
237  colorectal cancer, necrotizing enterocolitis and inflammatory bowel diseases (31).

238

239 By contrast, we found that recovery of DNA from certain bacterial groups was reduced by bead
240  beating. For example, DNA from Sutterella and Veillonella showed reduced prevalence in
241  samples after bead beating, suggesting sensitivity of these microbes to extensive mechanical lysis.
242 These bacteria are also clinically relevant, as altered abundance of Sutferella has been associated
243 with many clinical conditions such as autism spectrum disorder, down syndrome and inflammatory
244 bowel disease (32, 33). Similarly, epidemiological studies in young children have associated
245  Veillonella with asthma (34), bronchiolitis (36) and autism (35). Since abundance of these
246  microbes could be clinically informative, it is important to be able accurately and precisely
247  determine their abundance in clinical specimens. Our data suggest that studies targeting
248  Bifidobacteria should incorporate longer (up to 9 minutes) bead beating protocols in order to
249  ensure maximal recovery of DNA from these bacteria, while those targeting organisms such as
250  Sutterella and Veillonella should avoid extensive bead beating for maximal recovery and accurate
251  representation. Our data indicate that 4-5 minutes of bead beating may be appropriate to process
252  samples where the composition of microbiomes are unknown.

253
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In summary, our study demonstrates that the duration of bead beating has a strong impact on the
recovery of DNA from clinically relevant microbiota in both mouse and human gut. Our data
suggest that a minimum of 4 minutes of bead beating (using Qiagen PowerLyzer) can result in
recovery of about 70% of gut microbiota DNA signatures. Further, our study identifies particular
groups of bacteria in mouse and human stool that can be recovered with up to 4 minutes of bead

beating and those that require extensive bead beating for maximal recovery.
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300

301
302  Figure legends.

303  Figure 1. Experimental workflow for 16S sequencing

304  Illustration of the experimental workflow. Two mouse and two human stool samples were
305 homogenized using a PowerLyzer 24 Homogenizer (110/220V; Qiagen). DNA was extracted
306 using four different bead beating times, followed by 16S rRNA gene sequencing and analysis.
307

308  Figure 2. Actinobacteria are strongly impacted by bead beating in mouse and human stool
309  Panels A-B: Color coded bar plots showing the phylum level abundance across different bead

310  beating treatments in mouse and human stool, respectively. Panels C-D show abundance of

311  Actinobacteria across bead beating treatments in mouse and human stool, respectively. Panels

312 E-F show abundance of Firmicutes in mouse and human stool beaten for different times. Panel

313 G-H shows abundance of Bacteroidetes in mouse and human stool. Similarly, in Panels I-J,

314  bar plots show abundance of Proteobacteria across four bead beating time points in mouse

315  and human stool. Statistical p-values are denoted with *, # and $ represent comparison with

316  samples that were unbeaten, or beaten for 1 minute and 4 minutes, respectively.

317  Figure 3. Bacterial clusters defined by bead beating time

318 Panel A: Results of differential abundance analysis. The heatmap shows the top 30

319  differentially recovered OTUs in mouse and human stool. Panels B-E show the abundance of

320  Bifidobacterium across four beating treatments in mouse and human stool. Similarly, Panels

321  F-I show the abundance of Sutferella across four beating treatments in mouse and human

322  stool. Data from replicates of mouse and human sample is presented. Statistical p-values
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denoted with *, # and $ represent comparison with samples that were unbeaten, or beaten for

1 minute and 4 minutes, respectively.
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